]> git.ipfire.org Git - people/arne_f/kernel.git/blob - drivers/usb/host/xhci-ring.c
43ec7005701b8391d2a96b149820f1412cdbcf72
[people/arne_f/kernel.git] / drivers / usb / host / xhci-ring.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67 #include <linux/scatterlist.h>
68 #include <linux/slab.h>
69 #include <linux/dma-mapping.h>
70 #include "xhci.h"
71 #include "xhci-trace.h"
72 #include "xhci-mtk.h"
73
74 /*
75 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
76 * address of the TRB.
77 */
78 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
79 union xhci_trb *trb)
80 {
81 unsigned long segment_offset;
82
83 if (!seg || !trb || trb < seg->trbs)
84 return 0;
85 /* offset in TRBs */
86 segment_offset = trb - seg->trbs;
87 if (segment_offset >= TRBS_PER_SEGMENT)
88 return 0;
89 return seg->dma + (segment_offset * sizeof(*trb));
90 }
91
92 static bool trb_is_noop(union xhci_trb *trb)
93 {
94 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
95 }
96
97 static bool trb_is_link(union xhci_trb *trb)
98 {
99 return TRB_TYPE_LINK_LE32(trb->link.control);
100 }
101
102 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
103 {
104 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
105 }
106
107 static bool last_trb_on_ring(struct xhci_ring *ring,
108 struct xhci_segment *seg, union xhci_trb *trb)
109 {
110 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
111 }
112
113 static bool link_trb_toggles_cycle(union xhci_trb *trb)
114 {
115 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
116 }
117
118 static bool last_td_in_urb(struct xhci_td *td)
119 {
120 struct urb_priv *urb_priv = td->urb->hcpriv;
121
122 return urb_priv->num_tds_done == urb_priv->num_tds;
123 }
124
125 static void inc_td_cnt(struct urb *urb)
126 {
127 struct urb_priv *urb_priv = urb->hcpriv;
128
129 urb_priv->num_tds_done++;
130 }
131
132 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
133 {
134 if (trb_is_link(trb)) {
135 /* unchain chained link TRBs */
136 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
137 } else {
138 trb->generic.field[0] = 0;
139 trb->generic.field[1] = 0;
140 trb->generic.field[2] = 0;
141 /* Preserve only the cycle bit of this TRB */
142 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
143 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
144 }
145 }
146
147 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
148 * TRB is in a new segment. This does not skip over link TRBs, and it does not
149 * effect the ring dequeue or enqueue pointers.
150 */
151 static void next_trb(struct xhci_hcd *xhci,
152 struct xhci_ring *ring,
153 struct xhci_segment **seg,
154 union xhci_trb **trb)
155 {
156 if (trb_is_link(*trb)) {
157 *seg = (*seg)->next;
158 *trb = ((*seg)->trbs);
159 } else {
160 (*trb)++;
161 }
162 }
163
164 /*
165 * See Cycle bit rules. SW is the consumer for the event ring only.
166 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
167 */
168 static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
169 {
170 /* event ring doesn't have link trbs, check for last trb */
171 if (ring->type == TYPE_EVENT) {
172 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
173 ring->dequeue++;
174 return;
175 }
176 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
177 ring->cycle_state ^= 1;
178 ring->deq_seg = ring->deq_seg->next;
179 ring->dequeue = ring->deq_seg->trbs;
180 return;
181 }
182
183 /* All other rings have link trbs */
184 if (!trb_is_link(ring->dequeue)) {
185 ring->dequeue++;
186 ring->num_trbs_free++;
187 }
188 while (trb_is_link(ring->dequeue)) {
189 ring->deq_seg = ring->deq_seg->next;
190 ring->dequeue = ring->deq_seg->trbs;
191 }
192
193 trace_xhci_inc_deq(ring);
194
195 return;
196 }
197
198 /*
199 * See Cycle bit rules. SW is the consumer for the event ring only.
200 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
201 *
202 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
203 * chain bit is set), then set the chain bit in all the following link TRBs.
204 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
205 * have their chain bit cleared (so that each Link TRB is a separate TD).
206 *
207 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
208 * set, but other sections talk about dealing with the chain bit set. This was
209 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
210 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
211 *
212 * @more_trbs_coming: Will you enqueue more TRBs before calling
213 * prepare_transfer()?
214 */
215 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
216 bool more_trbs_coming)
217 {
218 u32 chain;
219 union xhci_trb *next;
220
221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
222 /* If this is not event ring, there is one less usable TRB */
223 if (!trb_is_link(ring->enqueue))
224 ring->num_trbs_free--;
225 next = ++(ring->enqueue);
226
227 /* Update the dequeue pointer further if that was a link TRB */
228 while (trb_is_link(next)) {
229
230 /*
231 * If the caller doesn't plan on enqueueing more TDs before
232 * ringing the doorbell, then we don't want to give the link TRB
233 * to the hardware just yet. We'll give the link TRB back in
234 * prepare_ring() just before we enqueue the TD at the top of
235 * the ring.
236 */
237 if (!chain && !more_trbs_coming)
238 break;
239
240 /* If we're not dealing with 0.95 hardware or isoc rings on
241 * AMD 0.96 host, carry over the chain bit of the previous TRB
242 * (which may mean the chain bit is cleared).
243 */
244 if (!(ring->type == TYPE_ISOC &&
245 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
246 !xhci_link_trb_quirk(xhci)) {
247 next->link.control &= cpu_to_le32(~TRB_CHAIN);
248 next->link.control |= cpu_to_le32(chain);
249 }
250 /* Give this link TRB to the hardware */
251 wmb();
252 next->link.control ^= cpu_to_le32(TRB_CYCLE);
253
254 /* Toggle the cycle bit after the last ring segment. */
255 if (link_trb_toggles_cycle(next))
256 ring->cycle_state ^= 1;
257
258 ring->enq_seg = ring->enq_seg->next;
259 ring->enqueue = ring->enq_seg->trbs;
260 next = ring->enqueue;
261 }
262
263 trace_xhci_inc_enq(ring);
264 }
265
266 /*
267 * Check to see if there's room to enqueue num_trbs on the ring and make sure
268 * enqueue pointer will not advance into dequeue segment. See rules above.
269 */
270 static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
271 unsigned int num_trbs)
272 {
273 int num_trbs_in_deq_seg;
274
275 if (ring->num_trbs_free < num_trbs)
276 return 0;
277
278 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
279 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
280 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
281 return 0;
282 }
283
284 return 1;
285 }
286
287 /* Ring the host controller doorbell after placing a command on the ring */
288 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
289 {
290 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
291 return;
292
293 xhci_dbg(xhci, "// Ding dong!\n");
294 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
295 /* Flush PCI posted writes */
296 readl(&xhci->dba->doorbell[0]);
297 }
298
299 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci, unsigned long delay)
300 {
301 return mod_delayed_work(system_wq, &xhci->cmd_timer, delay);
302 }
303
304 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
305 {
306 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
307 cmd_list);
308 }
309
310 /*
311 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
312 * If there are other commands waiting then restart the ring and kick the timer.
313 * This must be called with command ring stopped and xhci->lock held.
314 */
315 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
316 struct xhci_command *cur_cmd)
317 {
318 struct xhci_command *i_cmd;
319
320 /* Turn all aborted commands in list to no-ops, then restart */
321 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
322
323 if (i_cmd->status != COMP_COMMAND_ABORTED)
324 continue;
325
326 i_cmd->status = COMP_COMMAND_RING_STOPPED;
327
328 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
329 i_cmd->command_trb);
330
331 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
332
333 /*
334 * caller waiting for completion is called when command
335 * completion event is received for these no-op commands
336 */
337 }
338
339 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
340
341 /* ring command ring doorbell to restart the command ring */
342 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
343 !(xhci->xhc_state & XHCI_STATE_DYING)) {
344 xhci->current_cmd = cur_cmd;
345 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
346 xhci_ring_cmd_db(xhci);
347 }
348 }
349
350 /* Must be called with xhci->lock held, releases and aquires lock back */
351 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
352 {
353 u64 temp_64;
354 int ret;
355
356 xhci_dbg(xhci, "Abort command ring\n");
357
358 reinit_completion(&xhci->cmd_ring_stop_completion);
359
360 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
361 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
362 &xhci->op_regs->cmd_ring);
363
364 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
365 * completion of the Command Abort operation. If CRR is not negated in 5
366 * seconds then driver handles it as if host died (-ENODEV).
367 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
368 * and try to recover a -ETIMEDOUT with a host controller reset.
369 */
370 ret = xhci_handshake(&xhci->op_regs->cmd_ring,
371 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
372 if (ret < 0) {
373 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
374 xhci_halt(xhci);
375 xhci_hc_died(xhci);
376 return ret;
377 }
378 /*
379 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
380 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
381 * but the completion event in never sent. Wait 2 secs (arbitrary
382 * number) to handle those cases after negation of CMD_RING_RUNNING.
383 */
384 spin_unlock_irqrestore(&xhci->lock, flags);
385 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
386 msecs_to_jiffies(2000));
387 spin_lock_irqsave(&xhci->lock, flags);
388 if (!ret) {
389 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
390 xhci_cleanup_command_queue(xhci);
391 } else {
392 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
393 }
394 return 0;
395 }
396
397 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
398 unsigned int slot_id,
399 unsigned int ep_index,
400 unsigned int stream_id)
401 {
402 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
403 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
404 unsigned int ep_state = ep->ep_state;
405
406 /* Don't ring the doorbell for this endpoint if there are pending
407 * cancellations because we don't want to interrupt processing.
408 * We don't want to restart any stream rings if there's a set dequeue
409 * pointer command pending because the device can choose to start any
410 * stream once the endpoint is on the HW schedule.
411 */
412 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
413 (ep_state & EP_HALTED))
414 return;
415 writel(DB_VALUE(ep_index, stream_id), db_addr);
416 /* The CPU has better things to do at this point than wait for a
417 * write-posting flush. It'll get there soon enough.
418 */
419 }
420
421 /* Ring the doorbell for any rings with pending URBs */
422 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
423 unsigned int slot_id,
424 unsigned int ep_index)
425 {
426 unsigned int stream_id;
427 struct xhci_virt_ep *ep;
428
429 ep = &xhci->devs[slot_id]->eps[ep_index];
430
431 /* A ring has pending URBs if its TD list is not empty */
432 if (!(ep->ep_state & EP_HAS_STREAMS)) {
433 if (ep->ring && !(list_empty(&ep->ring->td_list)))
434 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
435 return;
436 }
437
438 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
439 stream_id++) {
440 struct xhci_stream_info *stream_info = ep->stream_info;
441 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
442 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
443 stream_id);
444 }
445 }
446
447 /* Get the right ring for the given slot_id, ep_index and stream_id.
448 * If the endpoint supports streams, boundary check the URB's stream ID.
449 * If the endpoint doesn't support streams, return the singular endpoint ring.
450 */
451 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
452 unsigned int slot_id, unsigned int ep_index,
453 unsigned int stream_id)
454 {
455 struct xhci_virt_ep *ep;
456
457 ep = &xhci->devs[slot_id]->eps[ep_index];
458 /* Common case: no streams */
459 if (!(ep->ep_state & EP_HAS_STREAMS))
460 return ep->ring;
461
462 if (stream_id == 0) {
463 xhci_warn(xhci,
464 "WARN: Slot ID %u, ep index %u has streams, "
465 "but URB has no stream ID.\n",
466 slot_id, ep_index);
467 return NULL;
468 }
469
470 if (stream_id < ep->stream_info->num_streams)
471 return ep->stream_info->stream_rings[stream_id];
472
473 xhci_warn(xhci,
474 "WARN: Slot ID %u, ep index %u has "
475 "stream IDs 1 to %u allocated, "
476 "but stream ID %u is requested.\n",
477 slot_id, ep_index,
478 ep->stream_info->num_streams - 1,
479 stream_id);
480 return NULL;
481 }
482
483
484 /*
485 * Get the hw dequeue pointer xHC stopped on, either directly from the
486 * endpoint context, or if streams are in use from the stream context.
487 * The returned hw_dequeue contains the lowest four bits with cycle state
488 * and possbile stream context type.
489 */
490 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
491 unsigned int ep_index, unsigned int stream_id)
492 {
493 struct xhci_ep_ctx *ep_ctx;
494 struct xhci_stream_ctx *st_ctx;
495 struct xhci_virt_ep *ep;
496
497 ep = &vdev->eps[ep_index];
498
499 if (ep->ep_state & EP_HAS_STREAMS) {
500 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
501 return le64_to_cpu(st_ctx->stream_ring);
502 }
503 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
504 return le64_to_cpu(ep_ctx->deq);
505 }
506
507 /*
508 * Move the xHC's endpoint ring dequeue pointer past cur_td.
509 * Record the new state of the xHC's endpoint ring dequeue segment,
510 * dequeue pointer, stream id, and new consumer cycle state in state.
511 * Update our internal representation of the ring's dequeue pointer.
512 *
513 * We do this in three jumps:
514 * - First we update our new ring state to be the same as when the xHC stopped.
515 * - Then we traverse the ring to find the segment that contains
516 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
517 * any link TRBs with the toggle cycle bit set.
518 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
519 * if we've moved it past a link TRB with the toggle cycle bit set.
520 *
521 * Some of the uses of xhci_generic_trb are grotty, but if they're done
522 * with correct __le32 accesses they should work fine. Only users of this are
523 * in here.
524 */
525 void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
526 unsigned int slot_id, unsigned int ep_index,
527 unsigned int stream_id, struct xhci_td *cur_td,
528 struct xhci_dequeue_state *state)
529 {
530 struct xhci_virt_device *dev = xhci->devs[slot_id];
531 struct xhci_virt_ep *ep = &dev->eps[ep_index];
532 struct xhci_ring *ep_ring;
533 struct xhci_segment *new_seg;
534 union xhci_trb *new_deq;
535 dma_addr_t addr;
536 u64 hw_dequeue;
537 bool cycle_found = false;
538 bool td_last_trb_found = false;
539
540 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
541 ep_index, stream_id);
542 if (!ep_ring) {
543 xhci_warn(xhci, "WARN can't find new dequeue state "
544 "for invalid stream ID %u.\n",
545 stream_id);
546 return;
547 }
548 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
549 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
550 "Finding endpoint context");
551
552 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
553 new_seg = ep_ring->deq_seg;
554 new_deq = ep_ring->dequeue;
555 state->new_cycle_state = hw_dequeue & 0x1;
556 state->stream_id = stream_id;
557
558 /*
559 * We want to find the pointer, segment and cycle state of the new trb
560 * (the one after current TD's last_trb). We know the cycle state at
561 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
562 * found.
563 */
564 do {
565 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
566 == (dma_addr_t)(hw_dequeue & ~0xf)) {
567 cycle_found = true;
568 if (td_last_trb_found)
569 break;
570 }
571 if (new_deq == cur_td->last_trb)
572 td_last_trb_found = true;
573
574 if (cycle_found && trb_is_link(new_deq) &&
575 link_trb_toggles_cycle(new_deq))
576 state->new_cycle_state ^= 0x1;
577
578 next_trb(xhci, ep_ring, &new_seg, &new_deq);
579
580 /* Search wrapped around, bail out */
581 if (new_deq == ep->ring->dequeue) {
582 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
583 state->new_deq_seg = NULL;
584 state->new_deq_ptr = NULL;
585 return;
586 }
587
588 } while (!cycle_found || !td_last_trb_found);
589
590 state->new_deq_seg = new_seg;
591 state->new_deq_ptr = new_deq;
592
593 /* Don't update the ring cycle state for the producer (us). */
594 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
595 "Cycle state = 0x%x", state->new_cycle_state);
596
597 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
598 "New dequeue segment = %p (virtual)",
599 state->new_deq_seg);
600 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
601 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
602 "New dequeue pointer = 0x%llx (DMA)",
603 (unsigned long long) addr);
604 }
605
606 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
607 * (The last TRB actually points to the ring enqueue pointer, which is not part
608 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
609 */
610 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
611 struct xhci_td *td, bool flip_cycle)
612 {
613 struct xhci_segment *seg = td->start_seg;
614 union xhci_trb *trb = td->first_trb;
615
616 while (1) {
617 trb_to_noop(trb, TRB_TR_NOOP);
618
619 /* flip cycle if asked to */
620 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
621 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
622
623 if (trb == td->last_trb)
624 break;
625
626 next_trb(xhci, ep_ring, &seg, &trb);
627 }
628 }
629
630 static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
631 struct xhci_virt_ep *ep)
632 {
633 ep->ep_state &= ~EP_STOP_CMD_PENDING;
634 /* Can't del_timer_sync in interrupt */
635 del_timer(&ep->stop_cmd_timer);
636 }
637
638 /*
639 * Must be called with xhci->lock held in interrupt context,
640 * releases and re-acquires xhci->lock
641 */
642 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
643 struct xhci_td *cur_td, int status)
644 {
645 struct urb *urb = cur_td->urb;
646 struct urb_priv *urb_priv = urb->hcpriv;
647 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
648
649 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
650 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
651 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
652 if (xhci->quirks & XHCI_AMD_PLL_FIX)
653 usb_amd_quirk_pll_enable();
654 }
655 }
656 xhci_urb_free_priv(urb_priv);
657 usb_hcd_unlink_urb_from_ep(hcd, urb);
658 spin_unlock(&xhci->lock);
659 trace_xhci_urb_giveback(urb);
660 usb_hcd_giveback_urb(hcd, urb, status);
661 spin_lock(&xhci->lock);
662 }
663
664 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
665 struct xhci_ring *ring, struct xhci_td *td)
666 {
667 struct device *dev = xhci_to_hcd(xhci)->self.controller;
668 struct xhci_segment *seg = td->bounce_seg;
669 struct urb *urb = td->urb;
670
671 if (!ring || !seg || !urb)
672 return;
673
674 if (usb_urb_dir_out(urb)) {
675 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
676 DMA_TO_DEVICE);
677 return;
678 }
679
680 /* for in tranfers we need to copy the data from bounce to sg */
681 sg_pcopy_from_buffer(urb->sg, urb->num_mapped_sgs, seg->bounce_buf,
682 seg->bounce_len, seg->bounce_offs);
683 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
684 DMA_FROM_DEVICE);
685 seg->bounce_len = 0;
686 seg->bounce_offs = 0;
687 }
688
689 /*
690 * When we get a command completion for a Stop Endpoint Command, we need to
691 * unlink any cancelled TDs from the ring. There are two ways to do that:
692 *
693 * 1. If the HW was in the middle of processing the TD that needs to be
694 * cancelled, then we must move the ring's dequeue pointer past the last TRB
695 * in the TD with a Set Dequeue Pointer Command.
696 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
697 * bit cleared) so that the HW will skip over them.
698 */
699 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
700 union xhci_trb *trb, struct xhci_event_cmd *event)
701 {
702 unsigned int ep_index;
703 struct xhci_ring *ep_ring;
704 struct xhci_virt_ep *ep;
705 struct xhci_td *cur_td = NULL;
706 struct xhci_td *last_unlinked_td;
707 struct xhci_ep_ctx *ep_ctx;
708 struct xhci_virt_device *vdev;
709 u64 hw_deq;
710 struct xhci_dequeue_state deq_state;
711
712 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
713 if (!xhci->devs[slot_id])
714 xhci_warn(xhci, "Stop endpoint command "
715 "completion for disabled slot %u\n",
716 slot_id);
717 return;
718 }
719
720 memset(&deq_state, 0, sizeof(deq_state));
721 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
722
723 vdev = xhci->devs[slot_id];
724 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
725 trace_xhci_handle_cmd_stop_ep(ep_ctx);
726
727 ep = &xhci->devs[slot_id]->eps[ep_index];
728 last_unlinked_td = list_last_entry(&ep->cancelled_td_list,
729 struct xhci_td, cancelled_td_list);
730
731 if (list_empty(&ep->cancelled_td_list)) {
732 xhci_stop_watchdog_timer_in_irq(xhci, ep);
733 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
734 return;
735 }
736
737 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
738 * We have the xHCI lock, so nothing can modify this list until we drop
739 * it. We're also in the event handler, so we can't get re-interrupted
740 * if another Stop Endpoint command completes
741 */
742 list_for_each_entry(cur_td, &ep->cancelled_td_list, cancelled_td_list) {
743 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
744 "Removing canceled TD starting at 0x%llx (dma).",
745 (unsigned long long)xhci_trb_virt_to_dma(
746 cur_td->start_seg, cur_td->first_trb));
747 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
748 if (!ep_ring) {
749 /* This shouldn't happen unless a driver is mucking
750 * with the stream ID after submission. This will
751 * leave the TD on the hardware ring, and the hardware
752 * will try to execute it, and may access a buffer
753 * that has already been freed. In the best case, the
754 * hardware will execute it, and the event handler will
755 * ignore the completion event for that TD, since it was
756 * removed from the td_list for that endpoint. In
757 * short, don't muck with the stream ID after
758 * submission.
759 */
760 xhci_warn(xhci, "WARN Cancelled URB %p "
761 "has invalid stream ID %u.\n",
762 cur_td->urb,
763 cur_td->urb->stream_id);
764 goto remove_finished_td;
765 }
766 /*
767 * If we stopped on the TD we need to cancel, then we have to
768 * move the xHC endpoint ring dequeue pointer past this TD.
769 */
770 hw_deq = xhci_get_hw_deq(xhci, vdev, ep_index,
771 cur_td->urb->stream_id);
772 hw_deq &= ~0xf;
773
774 if (trb_in_td(xhci, cur_td->start_seg, cur_td->first_trb,
775 cur_td->last_trb, hw_deq, false)) {
776 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
777 cur_td->urb->stream_id,
778 cur_td, &deq_state);
779 } else {
780 td_to_noop(xhci, ep_ring, cur_td, false);
781 }
782
783 remove_finished_td:
784 /*
785 * The event handler won't see a completion for this TD anymore,
786 * so remove it from the endpoint ring's TD list. Keep it in
787 * the cancelled TD list for URB completion later.
788 */
789 list_del_init(&cur_td->td_list);
790 }
791
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793
794 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
795 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
796 xhci_queue_new_dequeue_state(xhci, slot_id, ep_index,
797 &deq_state);
798 xhci_ring_cmd_db(xhci);
799 } else {
800 /* Otherwise ring the doorbell(s) to restart queued transfers */
801 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
802 }
803
804 /*
805 * Drop the lock and complete the URBs in the cancelled TD list.
806 * New TDs to be cancelled might be added to the end of the list before
807 * we can complete all the URBs for the TDs we already unlinked.
808 * So stop when we've completed the URB for the last TD we unlinked.
809 */
810 do {
811 cur_td = list_first_entry(&ep->cancelled_td_list,
812 struct xhci_td, cancelled_td_list);
813 list_del_init(&cur_td->cancelled_td_list);
814
815 /* Clean up the cancelled URB */
816 /* Doesn't matter what we pass for status, since the core will
817 * just overwrite it (because the URB has been unlinked).
818 */
819 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
820 xhci_unmap_td_bounce_buffer(xhci, ep_ring, cur_td);
821 inc_td_cnt(cur_td->urb);
822 if (last_td_in_urb(cur_td))
823 xhci_giveback_urb_in_irq(xhci, cur_td, 0);
824
825 /* Stop processing the cancelled list if the watchdog timer is
826 * running.
827 */
828 if (xhci->xhc_state & XHCI_STATE_DYING)
829 return;
830 } while (cur_td != last_unlinked_td);
831
832 /* Return to the event handler with xhci->lock re-acquired */
833 }
834
835 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
836 {
837 struct xhci_td *cur_td;
838 struct xhci_td *tmp;
839
840 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
841 list_del_init(&cur_td->td_list);
842
843 if (!list_empty(&cur_td->cancelled_td_list))
844 list_del_init(&cur_td->cancelled_td_list);
845
846 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
847
848 inc_td_cnt(cur_td->urb);
849 if (last_td_in_urb(cur_td))
850 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
851 }
852 }
853
854 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
855 int slot_id, int ep_index)
856 {
857 struct xhci_td *cur_td;
858 struct xhci_td *tmp;
859 struct xhci_virt_ep *ep;
860 struct xhci_ring *ring;
861
862 ep = &xhci->devs[slot_id]->eps[ep_index];
863 if ((ep->ep_state & EP_HAS_STREAMS) ||
864 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
865 int stream_id;
866
867 for (stream_id = 0; stream_id < ep->stream_info->num_streams;
868 stream_id++) {
869 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
870 "Killing URBs for slot ID %u, ep index %u, stream %u",
871 slot_id, ep_index, stream_id + 1);
872 xhci_kill_ring_urbs(xhci,
873 ep->stream_info->stream_rings[stream_id]);
874 }
875 } else {
876 ring = ep->ring;
877 if (!ring)
878 return;
879 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
880 "Killing URBs for slot ID %u, ep index %u",
881 slot_id, ep_index);
882 xhci_kill_ring_urbs(xhci, ring);
883 }
884
885 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
886 cancelled_td_list) {
887 list_del_init(&cur_td->cancelled_td_list);
888 inc_td_cnt(cur_td->urb);
889
890 if (last_td_in_urb(cur_td))
891 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
892 }
893 }
894
895 /*
896 * host controller died, register read returns 0xffffffff
897 * Complete pending commands, mark them ABORTED.
898 * URBs need to be given back as usb core might be waiting with device locks
899 * held for the URBs to finish during device disconnect, blocking host remove.
900 *
901 * Call with xhci->lock held.
902 * lock is relased and re-acquired while giving back urb.
903 */
904 void xhci_hc_died(struct xhci_hcd *xhci)
905 {
906 int i, j;
907
908 if (xhci->xhc_state & XHCI_STATE_DYING)
909 return;
910
911 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
912 xhci->xhc_state |= XHCI_STATE_DYING;
913
914 xhci_cleanup_command_queue(xhci);
915
916 /* return any pending urbs, remove may be waiting for them */
917 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
918 if (!xhci->devs[i])
919 continue;
920 for (j = 0; j < 31; j++)
921 xhci_kill_endpoint_urbs(xhci, i, j);
922 }
923
924 /* inform usb core hc died if PCI remove isn't already handling it */
925 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
926 usb_hc_died(xhci_to_hcd(xhci));
927 }
928
929 /* Watchdog timer function for when a stop endpoint command fails to complete.
930 * In this case, we assume the host controller is broken or dying or dead. The
931 * host may still be completing some other events, so we have to be careful to
932 * let the event ring handler and the URB dequeueing/enqueueing functions know
933 * through xhci->state.
934 *
935 * The timer may also fire if the host takes a very long time to respond to the
936 * command, and the stop endpoint command completion handler cannot delete the
937 * timer before the timer function is called. Another endpoint cancellation may
938 * sneak in before the timer function can grab the lock, and that may queue
939 * another stop endpoint command and add the timer back. So we cannot use a
940 * simple flag to say whether there is a pending stop endpoint command for a
941 * particular endpoint.
942 *
943 * Instead we use a combination of that flag and checking if a new timer is
944 * pending.
945 */
946 void xhci_stop_endpoint_command_watchdog(unsigned long arg)
947 {
948 struct xhci_hcd *xhci;
949 struct xhci_virt_ep *ep;
950 unsigned long flags;
951
952 ep = (struct xhci_virt_ep *) arg;
953 xhci = ep->xhci;
954
955 spin_lock_irqsave(&xhci->lock, flags);
956
957 /* bail out if cmd completed but raced with stop ep watchdog timer.*/
958 if (!(ep->ep_state & EP_STOP_CMD_PENDING) ||
959 timer_pending(&ep->stop_cmd_timer)) {
960 spin_unlock_irqrestore(&xhci->lock, flags);
961 xhci_dbg(xhci, "Stop EP timer raced with cmd completion, exit");
962 return;
963 }
964
965 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
966 ep->ep_state &= ~EP_STOP_CMD_PENDING;
967
968 xhci_halt(xhci);
969
970 /*
971 * handle a stop endpoint cmd timeout as if host died (-ENODEV).
972 * In the future we could distinguish between -ENODEV and -ETIMEDOUT
973 * and try to recover a -ETIMEDOUT with a host controller reset
974 */
975 xhci_hc_died(xhci);
976
977 spin_unlock_irqrestore(&xhci->lock, flags);
978 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
979 "xHCI host controller is dead.");
980 }
981
982 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
983 struct xhci_virt_device *dev,
984 struct xhci_ring *ep_ring,
985 unsigned int ep_index)
986 {
987 union xhci_trb *dequeue_temp;
988 int num_trbs_free_temp;
989 bool revert = false;
990
991 num_trbs_free_temp = ep_ring->num_trbs_free;
992 dequeue_temp = ep_ring->dequeue;
993
994 /* If we get two back-to-back stalls, and the first stalled transfer
995 * ends just before a link TRB, the dequeue pointer will be left on
996 * the link TRB by the code in the while loop. So we have to update
997 * the dequeue pointer one segment further, or we'll jump off
998 * the segment into la-la-land.
999 */
1000 if (trb_is_link(ep_ring->dequeue)) {
1001 ep_ring->deq_seg = ep_ring->deq_seg->next;
1002 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1003 }
1004
1005 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1006 /* We have more usable TRBs */
1007 ep_ring->num_trbs_free++;
1008 ep_ring->dequeue++;
1009 if (trb_is_link(ep_ring->dequeue)) {
1010 if (ep_ring->dequeue ==
1011 dev->eps[ep_index].queued_deq_ptr)
1012 break;
1013 ep_ring->deq_seg = ep_ring->deq_seg->next;
1014 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1015 }
1016 if (ep_ring->dequeue == dequeue_temp) {
1017 revert = true;
1018 break;
1019 }
1020 }
1021
1022 if (revert) {
1023 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1024 ep_ring->num_trbs_free = num_trbs_free_temp;
1025 }
1026 }
1027
1028 /*
1029 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1030 * we need to clear the set deq pending flag in the endpoint ring state, so that
1031 * the TD queueing code can ring the doorbell again. We also need to ring the
1032 * endpoint doorbell to restart the ring, but only if there aren't more
1033 * cancellations pending.
1034 */
1035 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1036 union xhci_trb *trb, u32 cmd_comp_code)
1037 {
1038 unsigned int ep_index;
1039 unsigned int stream_id;
1040 struct xhci_ring *ep_ring;
1041 struct xhci_virt_device *dev;
1042 struct xhci_virt_ep *ep;
1043 struct xhci_ep_ctx *ep_ctx;
1044 struct xhci_slot_ctx *slot_ctx;
1045
1046 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1047 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1048 dev = xhci->devs[slot_id];
1049 ep = &dev->eps[ep_index];
1050
1051 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1052 if (!ep_ring) {
1053 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1054 stream_id);
1055 /* XXX: Harmless??? */
1056 goto cleanup;
1057 }
1058
1059 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1060 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1061 trace_xhci_handle_cmd_set_deq(slot_ctx);
1062 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1063
1064 if (cmd_comp_code != COMP_SUCCESS) {
1065 unsigned int ep_state;
1066 unsigned int slot_state;
1067
1068 switch (cmd_comp_code) {
1069 case COMP_TRB_ERROR:
1070 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1071 break;
1072 case COMP_CONTEXT_STATE_ERROR:
1073 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1074 ep_state = GET_EP_CTX_STATE(ep_ctx);
1075 slot_state = le32_to_cpu(slot_ctx->dev_state);
1076 slot_state = GET_SLOT_STATE(slot_state);
1077 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1078 "Slot state = %u, EP state = %u",
1079 slot_state, ep_state);
1080 break;
1081 case COMP_SLOT_NOT_ENABLED_ERROR:
1082 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1083 slot_id);
1084 break;
1085 default:
1086 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1087 cmd_comp_code);
1088 break;
1089 }
1090 /* OK what do we do now? The endpoint state is hosed, and we
1091 * should never get to this point if the synchronization between
1092 * queueing, and endpoint state are correct. This might happen
1093 * if the device gets disconnected after we've finished
1094 * cancelling URBs, which might not be an error...
1095 */
1096 } else {
1097 u64 deq;
1098 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1099 if (ep->ep_state & EP_HAS_STREAMS) {
1100 struct xhci_stream_ctx *ctx =
1101 &ep->stream_info->stream_ctx_array[stream_id];
1102 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1103 } else {
1104 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1105 }
1106 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1107 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1108 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1109 ep->queued_deq_ptr) == deq) {
1110 /* Update the ring's dequeue segment and dequeue pointer
1111 * to reflect the new position.
1112 */
1113 update_ring_for_set_deq_completion(xhci, dev,
1114 ep_ring, ep_index);
1115 } else {
1116 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1117 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1118 ep->queued_deq_seg, ep->queued_deq_ptr);
1119 }
1120 }
1121
1122 cleanup:
1123 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1124 dev->eps[ep_index].queued_deq_seg = NULL;
1125 dev->eps[ep_index].queued_deq_ptr = NULL;
1126 /* Restart any rings with pending URBs */
1127 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1128 }
1129
1130 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1131 union xhci_trb *trb, u32 cmd_comp_code)
1132 {
1133 struct xhci_virt_device *vdev;
1134 struct xhci_ep_ctx *ep_ctx;
1135 unsigned int ep_index;
1136
1137 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1138 vdev = xhci->devs[slot_id];
1139 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
1140 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1141
1142 /* This command will only fail if the endpoint wasn't halted,
1143 * but we don't care.
1144 */
1145 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1146 "Ignoring reset ep completion code of %u", cmd_comp_code);
1147
1148 /* HW with the reset endpoint quirk needs to have a configure endpoint
1149 * command complete before the endpoint can be used. Queue that here
1150 * because the HW can't handle two commands being queued in a row.
1151 */
1152 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1153 struct xhci_command *command;
1154
1155 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1156 if (!command)
1157 return;
1158
1159 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1160 "Queueing configure endpoint command");
1161 xhci_queue_configure_endpoint(xhci, command,
1162 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1163 false);
1164 xhci_ring_cmd_db(xhci);
1165 } else {
1166 /* Clear our internal halted state */
1167 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1168 }
1169 }
1170
1171 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1172 struct xhci_command *command, u32 cmd_comp_code)
1173 {
1174 if (cmd_comp_code == COMP_SUCCESS)
1175 command->slot_id = slot_id;
1176 else
1177 command->slot_id = 0;
1178 }
1179
1180 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1181 {
1182 struct xhci_virt_device *virt_dev;
1183 struct xhci_slot_ctx *slot_ctx;
1184
1185 virt_dev = xhci->devs[slot_id];
1186 if (!virt_dev)
1187 return;
1188
1189 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1190 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1191
1192 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1193 /* Delete default control endpoint resources */
1194 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1195 xhci_free_virt_device(xhci, slot_id);
1196 }
1197
1198 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1199 struct xhci_event_cmd *event, u32 cmd_comp_code)
1200 {
1201 struct xhci_virt_device *virt_dev;
1202 struct xhci_input_control_ctx *ctrl_ctx;
1203 struct xhci_ep_ctx *ep_ctx;
1204 unsigned int ep_index;
1205 unsigned int ep_state;
1206 u32 add_flags, drop_flags;
1207
1208 /*
1209 * Configure endpoint commands can come from the USB core
1210 * configuration or alt setting changes, or because the HW
1211 * needed an extra configure endpoint command after a reset
1212 * endpoint command or streams were being configured.
1213 * If the command was for a halted endpoint, the xHCI driver
1214 * is not waiting on the configure endpoint command.
1215 */
1216 virt_dev = xhci->devs[slot_id];
1217 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1218 if (!ctrl_ctx) {
1219 xhci_warn(xhci, "Could not get input context, bad type.\n");
1220 return;
1221 }
1222
1223 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1224 drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1225 /* Input ctx add_flags are the endpoint index plus one */
1226 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1227
1228 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1229 trace_xhci_handle_cmd_config_ep(ep_ctx);
1230
1231 /* A usb_set_interface() call directly after clearing a halted
1232 * condition may race on this quirky hardware. Not worth
1233 * worrying about, since this is prototype hardware. Not sure
1234 * if this will work for streams, but streams support was
1235 * untested on this prototype.
1236 */
1237 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1238 ep_index != (unsigned int) -1 &&
1239 add_flags - SLOT_FLAG == drop_flags) {
1240 ep_state = virt_dev->eps[ep_index].ep_state;
1241 if (!(ep_state & EP_HALTED))
1242 return;
1243 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1244 "Completed config ep cmd - "
1245 "last ep index = %d, state = %d",
1246 ep_index, ep_state);
1247 /* Clear internal halted state and restart ring(s) */
1248 virt_dev->eps[ep_index].ep_state &= ~EP_HALTED;
1249 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1250 return;
1251 }
1252 return;
1253 }
1254
1255 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1256 {
1257 struct xhci_virt_device *vdev;
1258 struct xhci_slot_ctx *slot_ctx;
1259
1260 vdev = xhci->devs[slot_id];
1261 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1262 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1263 }
1264
1265 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id,
1266 struct xhci_event_cmd *event)
1267 {
1268 struct xhci_virt_device *vdev;
1269 struct xhci_slot_ctx *slot_ctx;
1270
1271 vdev = xhci->devs[slot_id];
1272 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1273 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1274
1275 xhci_dbg(xhci, "Completed reset device command.\n");
1276 if (!xhci->devs[slot_id])
1277 xhci_warn(xhci, "Reset device command completion "
1278 "for disabled slot %u\n", slot_id);
1279 }
1280
1281 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1282 struct xhci_event_cmd *event)
1283 {
1284 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1285 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1286 return;
1287 }
1288 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1289 "NEC firmware version %2x.%02x",
1290 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1291 NEC_FW_MINOR(le32_to_cpu(event->status)));
1292 }
1293
1294 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1295 {
1296 list_del(&cmd->cmd_list);
1297
1298 if (cmd->completion) {
1299 cmd->status = status;
1300 complete(cmd->completion);
1301 } else {
1302 kfree(cmd);
1303 }
1304 }
1305
1306 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1307 {
1308 struct xhci_command *cur_cmd, *tmp_cmd;
1309 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1310 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1311 }
1312
1313 void xhci_handle_command_timeout(struct work_struct *work)
1314 {
1315 struct xhci_hcd *xhci;
1316 unsigned long flags;
1317 u64 hw_ring_state;
1318
1319 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1320
1321 spin_lock_irqsave(&xhci->lock, flags);
1322
1323 /*
1324 * If timeout work is pending, or current_cmd is NULL, it means we
1325 * raced with command completion. Command is handled so just return.
1326 */
1327 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1328 spin_unlock_irqrestore(&xhci->lock, flags);
1329 return;
1330 }
1331 /* mark this command to be cancelled */
1332 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1333
1334 /* Make sure command ring is running before aborting it */
1335 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1336 if (hw_ring_state == ~(u64)0) {
1337 xhci_hc_died(xhci);
1338 goto time_out_completed;
1339 }
1340
1341 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1342 (hw_ring_state & CMD_RING_RUNNING)) {
1343 /* Prevent new doorbell, and start command abort */
1344 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1345 xhci_dbg(xhci, "Command timeout\n");
1346 xhci_abort_cmd_ring(xhci, flags);
1347 goto time_out_completed;
1348 }
1349
1350 /* host removed. Bail out */
1351 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1352 xhci_dbg(xhci, "host removed, ring start fail?\n");
1353 xhci_cleanup_command_queue(xhci);
1354
1355 goto time_out_completed;
1356 }
1357
1358 /* command timeout on stopped ring, ring can't be aborted */
1359 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1360 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1361
1362 time_out_completed:
1363 spin_unlock_irqrestore(&xhci->lock, flags);
1364 return;
1365 }
1366
1367 static void handle_cmd_completion(struct xhci_hcd *xhci,
1368 struct xhci_event_cmd *event)
1369 {
1370 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1371 u64 cmd_dma;
1372 dma_addr_t cmd_dequeue_dma;
1373 u32 cmd_comp_code;
1374 union xhci_trb *cmd_trb;
1375 struct xhci_command *cmd;
1376 u32 cmd_type;
1377
1378 cmd_dma = le64_to_cpu(event->cmd_trb);
1379 cmd_trb = xhci->cmd_ring->dequeue;
1380
1381 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1382
1383 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1384 cmd_trb);
1385 /*
1386 * Check whether the completion event is for our internal kept
1387 * command.
1388 */
1389 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1390 xhci_warn(xhci,
1391 "ERROR mismatched command completion event\n");
1392 return;
1393 }
1394
1395 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1396
1397 cancel_delayed_work(&xhci->cmd_timer);
1398
1399 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1400
1401 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1402 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1403 complete_all(&xhci->cmd_ring_stop_completion);
1404 return;
1405 }
1406
1407 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1408 xhci_err(xhci,
1409 "Command completion event does not match command\n");
1410 return;
1411 }
1412
1413 /*
1414 * Host aborted the command ring, check if the current command was
1415 * supposed to be aborted, otherwise continue normally.
1416 * The command ring is stopped now, but the xHC will issue a Command
1417 * Ring Stopped event which will cause us to restart it.
1418 */
1419 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1420 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1421 if (cmd->status == COMP_COMMAND_ABORTED) {
1422 if (xhci->current_cmd == cmd)
1423 xhci->current_cmd = NULL;
1424 goto event_handled;
1425 }
1426 }
1427
1428 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1429 switch (cmd_type) {
1430 case TRB_ENABLE_SLOT:
1431 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1432 break;
1433 case TRB_DISABLE_SLOT:
1434 xhci_handle_cmd_disable_slot(xhci, slot_id);
1435 break;
1436 case TRB_CONFIG_EP:
1437 if (!cmd->completion)
1438 xhci_handle_cmd_config_ep(xhci, slot_id, event,
1439 cmd_comp_code);
1440 break;
1441 case TRB_EVAL_CONTEXT:
1442 break;
1443 case TRB_ADDR_DEV:
1444 xhci_handle_cmd_addr_dev(xhci, slot_id);
1445 break;
1446 case TRB_STOP_RING:
1447 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1448 le32_to_cpu(cmd_trb->generic.field[3])));
1449 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb, event);
1450 break;
1451 case TRB_SET_DEQ:
1452 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1453 le32_to_cpu(cmd_trb->generic.field[3])));
1454 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1455 break;
1456 case TRB_CMD_NOOP:
1457 /* Is this an aborted command turned to NO-OP? */
1458 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1459 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1460 break;
1461 case TRB_RESET_EP:
1462 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1463 le32_to_cpu(cmd_trb->generic.field[3])));
1464 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1465 break;
1466 case TRB_RESET_DEV:
1467 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1468 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1469 */
1470 slot_id = TRB_TO_SLOT_ID(
1471 le32_to_cpu(cmd_trb->generic.field[3]));
1472 xhci_handle_cmd_reset_dev(xhci, slot_id, event);
1473 break;
1474 case TRB_NEC_GET_FW:
1475 xhci_handle_cmd_nec_get_fw(xhci, event);
1476 break;
1477 default:
1478 /* Skip over unknown commands on the event ring */
1479 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1480 break;
1481 }
1482
1483 /* restart timer if this wasn't the last command */
1484 if (!list_is_singular(&xhci->cmd_list)) {
1485 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1486 struct xhci_command, cmd_list);
1487 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
1488 } else if (xhci->current_cmd == cmd) {
1489 xhci->current_cmd = NULL;
1490 }
1491
1492 event_handled:
1493 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1494
1495 inc_deq(xhci, xhci->cmd_ring);
1496 }
1497
1498 static void handle_vendor_event(struct xhci_hcd *xhci,
1499 union xhci_trb *event)
1500 {
1501 u32 trb_type;
1502
1503 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1504 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1505 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1506 handle_cmd_completion(xhci, &event->event_cmd);
1507 }
1508
1509 /* @port_id: the one-based port ID from the hardware (indexed from array of all
1510 * port registers -- USB 3.0 and USB 2.0).
1511 *
1512 * Returns a zero-based port number, which is suitable for indexing into each of
1513 * the split roothubs' port arrays and bus state arrays.
1514 * Add one to it in order to call xhci_find_slot_id_by_port.
1515 */
1516 static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1517 struct xhci_hcd *xhci, u32 port_id)
1518 {
1519 unsigned int i;
1520 unsigned int num_similar_speed_ports = 0;
1521
1522 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1523 * and usb2_ports are 0-based indexes. Count the number of similar
1524 * speed ports, up to 1 port before this port.
1525 */
1526 for (i = 0; i < (port_id - 1); i++) {
1527 u8 port_speed = xhci->port_array[i];
1528
1529 /*
1530 * Skip ports that don't have known speeds, or have duplicate
1531 * Extended Capabilities port speed entries.
1532 */
1533 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1534 continue;
1535
1536 /*
1537 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1538 * 1.1 ports are under the USB 2.0 hub. If the port speed
1539 * matches the device speed, it's a similar speed port.
1540 */
1541 if ((port_speed == 0x03) == (hcd->speed >= HCD_USB3))
1542 num_similar_speed_ports++;
1543 }
1544 return num_similar_speed_ports;
1545 }
1546
1547 static void handle_device_notification(struct xhci_hcd *xhci,
1548 union xhci_trb *event)
1549 {
1550 u32 slot_id;
1551 struct usb_device *udev;
1552
1553 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1554 if (!xhci->devs[slot_id]) {
1555 xhci_warn(xhci, "Device Notification event for "
1556 "unused slot %u\n", slot_id);
1557 return;
1558 }
1559
1560 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1561 slot_id);
1562 udev = xhci->devs[slot_id]->udev;
1563 if (udev && udev->parent)
1564 usb_wakeup_notification(udev->parent, udev->portnum);
1565 }
1566
1567 static void handle_port_status(struct xhci_hcd *xhci,
1568 union xhci_trb *event)
1569 {
1570 struct usb_hcd *hcd;
1571 u32 port_id;
1572 u32 temp, temp1;
1573 int max_ports;
1574 int slot_id;
1575 unsigned int faked_port_index;
1576 u8 major_revision;
1577 struct xhci_bus_state *bus_state;
1578 __le32 __iomem **port_array;
1579 bool bogus_port_status = false;
1580
1581 /* Port status change events always have a successful completion code */
1582 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1583 xhci_warn(xhci,
1584 "WARN: xHC returned failed port status event\n");
1585
1586 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1587 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1588
1589 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1590 if ((port_id <= 0) || (port_id > max_ports)) {
1591 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1592 inc_deq(xhci, xhci->event_ring);
1593 return;
1594 }
1595
1596 /* Figure out which usb_hcd this port is attached to:
1597 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1598 */
1599 major_revision = xhci->port_array[port_id - 1];
1600
1601 /* Find the right roothub. */
1602 hcd = xhci_to_hcd(xhci);
1603 if ((major_revision == 0x03) != (hcd->speed >= HCD_USB3))
1604 hcd = xhci->shared_hcd;
1605
1606 if (major_revision == 0) {
1607 xhci_warn(xhci, "Event for port %u not in "
1608 "Extended Capabilities, ignoring.\n",
1609 port_id);
1610 bogus_port_status = true;
1611 goto cleanup;
1612 }
1613 if (major_revision == DUPLICATE_ENTRY) {
1614 xhci_warn(xhci, "Event for port %u duplicated in"
1615 "Extended Capabilities, ignoring.\n",
1616 port_id);
1617 bogus_port_status = true;
1618 goto cleanup;
1619 }
1620
1621 /*
1622 * Hardware port IDs reported by a Port Status Change Event include USB
1623 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1624 * resume event, but we first need to translate the hardware port ID
1625 * into the index into the ports on the correct split roothub, and the
1626 * correct bus_state structure.
1627 */
1628 bus_state = &xhci->bus_state[hcd_index(hcd)];
1629 if (hcd->speed >= HCD_USB3)
1630 port_array = xhci->usb3_ports;
1631 else
1632 port_array = xhci->usb2_ports;
1633 /* Find the faked port hub number */
1634 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1635 port_id);
1636
1637 temp = readl(port_array[faked_port_index]);
1638 if (hcd->state == HC_STATE_SUSPENDED) {
1639 xhci_dbg(xhci, "resume root hub\n");
1640 usb_hcd_resume_root_hub(hcd);
1641 }
1642
1643 if (hcd->speed >= HCD_USB3 && (temp & PORT_PLS_MASK) == XDEV_INACTIVE)
1644 bus_state->port_remote_wakeup &= ~(1 << faked_port_index);
1645
1646 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1647 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1648
1649 temp1 = readl(&xhci->op_regs->command);
1650 if (!(temp1 & CMD_RUN)) {
1651 xhci_warn(xhci, "xHC is not running.\n");
1652 goto cleanup;
1653 }
1654
1655 if (DEV_SUPERSPEED_ANY(temp)) {
1656 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1657 /* Set a flag to say the port signaled remote wakeup,
1658 * so we can tell the difference between the end of
1659 * device and host initiated resume.
1660 */
1661 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1662 xhci_test_and_clear_bit(xhci, port_array,
1663 faked_port_index, PORT_PLC);
1664 xhci_set_link_state(xhci, port_array, faked_port_index,
1665 XDEV_U0);
1666 /* Need to wait until the next link state change
1667 * indicates the device is actually in U0.
1668 */
1669 bogus_port_status = true;
1670 goto cleanup;
1671 } else if (!test_bit(faked_port_index,
1672 &bus_state->resuming_ports)) {
1673 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1674 bus_state->resume_done[faked_port_index] = jiffies +
1675 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1676 set_bit(faked_port_index, &bus_state->resuming_ports);
1677 mod_timer(&hcd->rh_timer,
1678 bus_state->resume_done[faked_port_index]);
1679 /* Do the rest in GetPortStatus */
1680 }
1681 }
1682
1683 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1684 DEV_SUPERSPEED_ANY(temp)) {
1685 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1686 /* We've just brought the device into U0 through either the
1687 * Resume state after a device remote wakeup, or through the
1688 * U3Exit state after a host-initiated resume. If it's a device
1689 * initiated remote wake, don't pass up the link state change,
1690 * so the roothub behavior is consistent with external
1691 * USB 3.0 hub behavior.
1692 */
1693 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1694 faked_port_index + 1);
1695 if (slot_id && xhci->devs[slot_id])
1696 xhci_ring_device(xhci, slot_id);
1697 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1698 bus_state->port_remote_wakeup &=
1699 ~(1 << faked_port_index);
1700 xhci_test_and_clear_bit(xhci, port_array,
1701 faked_port_index, PORT_PLC);
1702 usb_wakeup_notification(hcd->self.root_hub,
1703 faked_port_index + 1);
1704 bogus_port_status = true;
1705 goto cleanup;
1706 }
1707 }
1708
1709 /*
1710 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1711 * RExit to a disconnect state). If so, let the the driver know it's
1712 * out of the RExit state.
1713 */
1714 if (!DEV_SUPERSPEED_ANY(temp) &&
1715 test_and_clear_bit(faked_port_index,
1716 &bus_state->rexit_ports)) {
1717 complete(&bus_state->rexit_done[faked_port_index]);
1718 bogus_port_status = true;
1719 goto cleanup;
1720 }
1721
1722 if (hcd->speed < HCD_USB3)
1723 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1724 PORT_PLC);
1725
1726 cleanup:
1727 /* Update event ring dequeue pointer before dropping the lock */
1728 inc_deq(xhci, xhci->event_ring);
1729
1730 /* Don't make the USB core poll the roothub if we got a bad port status
1731 * change event. Besides, at that point we can't tell which roothub
1732 * (USB 2.0 or USB 3.0) to kick.
1733 */
1734 if (bogus_port_status)
1735 return;
1736
1737 /*
1738 * xHCI port-status-change events occur when the "or" of all the
1739 * status-change bits in the portsc register changes from 0 to 1.
1740 * New status changes won't cause an event if any other change
1741 * bits are still set. When an event occurs, switch over to
1742 * polling to avoid losing status changes.
1743 */
1744 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1745 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1746 spin_unlock(&xhci->lock);
1747 /* Pass this up to the core */
1748 usb_hcd_poll_rh_status(hcd);
1749 spin_lock(&xhci->lock);
1750 }
1751
1752 /*
1753 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1754 * at end_trb, which may be in another segment. If the suspect DMA address is a
1755 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1756 * returns 0.
1757 */
1758 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
1759 struct xhci_segment *start_seg,
1760 union xhci_trb *start_trb,
1761 union xhci_trb *end_trb,
1762 dma_addr_t suspect_dma,
1763 bool debug)
1764 {
1765 dma_addr_t start_dma;
1766 dma_addr_t end_seg_dma;
1767 dma_addr_t end_trb_dma;
1768 struct xhci_segment *cur_seg;
1769
1770 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1771 cur_seg = start_seg;
1772
1773 do {
1774 if (start_dma == 0)
1775 return NULL;
1776 /* We may get an event for a Link TRB in the middle of a TD */
1777 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1778 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1779 /* If the end TRB isn't in this segment, this is set to 0 */
1780 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1781
1782 if (debug)
1783 xhci_warn(xhci,
1784 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
1785 (unsigned long long)suspect_dma,
1786 (unsigned long long)start_dma,
1787 (unsigned long long)end_trb_dma,
1788 (unsigned long long)cur_seg->dma,
1789 (unsigned long long)end_seg_dma);
1790
1791 if (end_trb_dma > 0) {
1792 /* The end TRB is in this segment, so suspect should be here */
1793 if (start_dma <= end_trb_dma) {
1794 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1795 return cur_seg;
1796 } else {
1797 /* Case for one segment with
1798 * a TD wrapped around to the top
1799 */
1800 if ((suspect_dma >= start_dma &&
1801 suspect_dma <= end_seg_dma) ||
1802 (suspect_dma >= cur_seg->dma &&
1803 suspect_dma <= end_trb_dma))
1804 return cur_seg;
1805 }
1806 return NULL;
1807 } else {
1808 /* Might still be somewhere in this segment */
1809 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1810 return cur_seg;
1811 }
1812 cur_seg = cur_seg->next;
1813 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1814 } while (cur_seg != start_seg);
1815
1816 return NULL;
1817 }
1818
1819 static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1820 unsigned int slot_id, unsigned int ep_index,
1821 unsigned int stream_id,
1822 struct xhci_td *td, union xhci_trb *ep_trb,
1823 enum xhci_ep_reset_type reset_type)
1824 {
1825 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1826 struct xhci_command *command;
1827 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1828 if (!command)
1829 return;
1830
1831 ep->ep_state |= EP_HALTED;
1832
1833 xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
1834
1835 if (reset_type == EP_HARD_RESET) {
1836 ep->stopped_stream = stream_id;
1837 xhci_cleanup_stalled_ring(xhci, ep_index, td);
1838 ep->stopped_stream = 0;
1839 }
1840
1841 xhci_ring_cmd_db(xhci);
1842 }
1843
1844 /* Check if an error has halted the endpoint ring. The class driver will
1845 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1846 * However, a babble and other errors also halt the endpoint ring, and the class
1847 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1848 * Ring Dequeue Pointer command manually.
1849 */
1850 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1851 struct xhci_ep_ctx *ep_ctx,
1852 unsigned int trb_comp_code)
1853 {
1854 /* TRB completion codes that may require a manual halt cleanup */
1855 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
1856 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
1857 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
1858 /* The 0.95 spec says a babbling control endpoint
1859 * is not halted. The 0.96 spec says it is. Some HW
1860 * claims to be 0.95 compliant, but it halts the control
1861 * endpoint anyway. Check if a babble halted the
1862 * endpoint.
1863 */
1864 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
1865 return 1;
1866
1867 return 0;
1868 }
1869
1870 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1871 {
1872 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1873 /* Vendor defined "informational" completion code,
1874 * treat as not-an-error.
1875 */
1876 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1877 trb_comp_code);
1878 xhci_dbg(xhci, "Treating code as success.\n");
1879 return 1;
1880 }
1881 return 0;
1882 }
1883
1884 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
1885 struct xhci_ring *ep_ring, int *status)
1886 {
1887 struct urb_priv *urb_priv;
1888 struct urb *urb = NULL;
1889
1890 /* Clean up the endpoint's TD list */
1891 urb = td->urb;
1892 urb_priv = urb->hcpriv;
1893
1894 /* if a bounce buffer was used to align this td then unmap it */
1895 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
1896
1897 /* Do one last check of the actual transfer length.
1898 * If the host controller said we transferred more data than the buffer
1899 * length, urb->actual_length will be a very big number (since it's
1900 * unsigned). Play it safe and say we didn't transfer anything.
1901 */
1902 if (urb->actual_length > urb->transfer_buffer_length) {
1903 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
1904 urb->transfer_buffer_length, urb->actual_length);
1905 urb->actual_length = 0;
1906 *status = 0;
1907 }
1908 list_del_init(&td->td_list);
1909 /* Was this TD slated to be cancelled but completed anyway? */
1910 if (!list_empty(&td->cancelled_td_list))
1911 list_del_init(&td->cancelled_td_list);
1912
1913 inc_td_cnt(urb);
1914 /* Giveback the urb when all the tds are completed */
1915 if (last_td_in_urb(td)) {
1916 if ((urb->actual_length != urb->transfer_buffer_length &&
1917 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
1918 (*status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
1919 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
1920 urb, urb->actual_length,
1921 urb->transfer_buffer_length, *status);
1922
1923 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
1924 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
1925 *status = 0;
1926 xhci_giveback_urb_in_irq(xhci, td, *status);
1927 }
1928
1929 return 0;
1930 }
1931
1932 static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1933 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
1934 struct xhci_virt_ep *ep, int *status, bool skip)
1935 {
1936 struct xhci_virt_device *xdev;
1937 struct xhci_ep_ctx *ep_ctx;
1938 struct xhci_ring *ep_ring;
1939 unsigned int slot_id;
1940 u32 trb_comp_code;
1941 int ep_index;
1942
1943 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1944 xdev = xhci->devs[slot_id];
1945 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1946 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1947 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1948 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1949
1950 if (skip)
1951 goto td_cleanup;
1952
1953 if (trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
1954 trb_comp_code == COMP_STOPPED ||
1955 trb_comp_code == COMP_STOPPED_SHORT_PACKET) {
1956 /* The Endpoint Stop Command completion will take care of any
1957 * stopped TDs. A stopped TD may be restarted, so don't update
1958 * the ring dequeue pointer or take this TD off any lists yet.
1959 */
1960 return 0;
1961 }
1962 if (trb_comp_code == COMP_STALL_ERROR ||
1963 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1964 trb_comp_code)) {
1965 /* Issue a reset endpoint command to clear the host side
1966 * halt, followed by a set dequeue command to move the
1967 * dequeue pointer past the TD.
1968 * The class driver clears the device side halt later.
1969 */
1970 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index,
1971 ep_ring->stream_id, td, ep_trb,
1972 EP_HARD_RESET);
1973 } else {
1974 /* Update ring dequeue pointer */
1975 while (ep_ring->dequeue != td->last_trb)
1976 inc_deq(xhci, ep_ring);
1977 inc_deq(xhci, ep_ring);
1978 }
1979
1980 td_cleanup:
1981 return xhci_td_cleanup(xhci, td, ep_ring, status);
1982 }
1983
1984 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
1985 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
1986 union xhci_trb *stop_trb)
1987 {
1988 u32 sum;
1989 union xhci_trb *trb = ring->dequeue;
1990 struct xhci_segment *seg = ring->deq_seg;
1991
1992 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
1993 if (!trb_is_noop(trb) && !trb_is_link(trb))
1994 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
1995 }
1996 return sum;
1997 }
1998
1999 /*
2000 * Process control tds, update urb status and actual_length.
2001 */
2002 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
2003 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2004 struct xhci_virt_ep *ep, int *status)
2005 {
2006 struct xhci_virt_device *xdev;
2007 struct xhci_ring *ep_ring;
2008 unsigned int slot_id;
2009 int ep_index;
2010 struct xhci_ep_ctx *ep_ctx;
2011 u32 trb_comp_code;
2012 u32 remaining, requested;
2013 u32 trb_type;
2014
2015 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2016 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2017 xdev = xhci->devs[slot_id];
2018 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2019 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2020 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2021 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2022 requested = td->urb->transfer_buffer_length;
2023 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2024
2025 switch (trb_comp_code) {
2026 case COMP_SUCCESS:
2027 if (trb_type != TRB_STATUS) {
2028 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2029 (trb_type == TRB_DATA) ? "data" : "setup");
2030 *status = -ESHUTDOWN;
2031 break;
2032 }
2033 *status = 0;
2034 break;
2035 case COMP_SHORT_PACKET:
2036 *status = 0;
2037 break;
2038 case COMP_STOPPED_SHORT_PACKET:
2039 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2040 td->urb->actual_length = remaining;
2041 else
2042 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2043 goto finish_td;
2044 case COMP_STOPPED:
2045 switch (trb_type) {
2046 case TRB_SETUP:
2047 td->urb->actual_length = 0;
2048 goto finish_td;
2049 case TRB_DATA:
2050 case TRB_NORMAL:
2051 td->urb->actual_length = requested - remaining;
2052 goto finish_td;
2053 case TRB_STATUS:
2054 td->urb->actual_length = requested;
2055 goto finish_td;
2056 default:
2057 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2058 trb_type);
2059 goto finish_td;
2060 }
2061 case COMP_STOPPED_LENGTH_INVALID:
2062 goto finish_td;
2063 default:
2064 if (!xhci_requires_manual_halt_cleanup(xhci,
2065 ep_ctx, trb_comp_code))
2066 break;
2067 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2068 trb_comp_code, ep_index);
2069 /* else fall through */
2070 case COMP_STALL_ERROR:
2071 /* Did we transfer part of the data (middle) phase? */
2072 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2073 td->urb->actual_length = requested - remaining;
2074 else if (!td->urb_length_set)
2075 td->urb->actual_length = 0;
2076 goto finish_td;
2077 }
2078
2079 /* stopped at setup stage, no data transferred */
2080 if (trb_type == TRB_SETUP)
2081 goto finish_td;
2082
2083 /*
2084 * if on data stage then update the actual_length of the URB and flag it
2085 * as set, so it won't be overwritten in the event for the last TRB.
2086 */
2087 if (trb_type == TRB_DATA ||
2088 trb_type == TRB_NORMAL) {
2089 td->urb_length_set = true;
2090 td->urb->actual_length = requested - remaining;
2091 xhci_dbg(xhci, "Waiting for status stage event\n");
2092 return 0;
2093 }
2094
2095 /* at status stage */
2096 if (!td->urb_length_set)
2097 td->urb->actual_length = requested;
2098
2099 finish_td:
2100 return finish_td(xhci, td, ep_trb, event, ep, status, false);
2101 }
2102
2103 /*
2104 * Process isochronous tds, update urb packet status and actual_length.
2105 */
2106 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2107 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2108 struct xhci_virt_ep *ep, int *status)
2109 {
2110 struct xhci_ring *ep_ring;
2111 struct urb_priv *urb_priv;
2112 int idx;
2113 struct usb_iso_packet_descriptor *frame;
2114 u32 trb_comp_code;
2115 bool sum_trbs_for_length = false;
2116 u32 remaining, requested, ep_trb_len;
2117 int short_framestatus;
2118
2119 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2120 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2121 urb_priv = td->urb->hcpriv;
2122 idx = urb_priv->num_tds_done;
2123 frame = &td->urb->iso_frame_desc[idx];
2124 requested = frame->length;
2125 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2126 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2127 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2128 -EREMOTEIO : 0;
2129
2130 /* handle completion code */
2131 switch (trb_comp_code) {
2132 case COMP_SUCCESS:
2133 if (remaining) {
2134 frame->status = short_framestatus;
2135 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2136 sum_trbs_for_length = true;
2137 break;
2138 }
2139 frame->status = 0;
2140 break;
2141 case COMP_SHORT_PACKET:
2142 frame->status = short_framestatus;
2143 sum_trbs_for_length = true;
2144 break;
2145 case COMP_BANDWIDTH_OVERRUN_ERROR:
2146 frame->status = -ECOMM;
2147 break;
2148 case COMP_ISOCH_BUFFER_OVERRUN:
2149 case COMP_BABBLE_DETECTED_ERROR:
2150 frame->status = -EOVERFLOW;
2151 break;
2152 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2153 case COMP_STALL_ERROR:
2154 frame->status = -EPROTO;
2155 break;
2156 case COMP_USB_TRANSACTION_ERROR:
2157 frame->status = -EPROTO;
2158 if (ep_trb != td->last_trb)
2159 return 0;
2160 break;
2161 case COMP_STOPPED:
2162 sum_trbs_for_length = true;
2163 break;
2164 case COMP_STOPPED_SHORT_PACKET:
2165 /* field normally containing residue now contains tranferred */
2166 frame->status = short_framestatus;
2167 requested = remaining;
2168 break;
2169 case COMP_STOPPED_LENGTH_INVALID:
2170 requested = 0;
2171 remaining = 0;
2172 break;
2173 default:
2174 sum_trbs_for_length = true;
2175 frame->status = -1;
2176 break;
2177 }
2178
2179 if (sum_trbs_for_length)
2180 frame->actual_length = sum_trb_lengths(xhci, ep_ring, ep_trb) +
2181 ep_trb_len - remaining;
2182 else
2183 frame->actual_length = requested;
2184
2185 td->urb->actual_length += frame->actual_length;
2186
2187 return finish_td(xhci, td, ep_trb, event, ep, status, false);
2188 }
2189
2190 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2191 struct xhci_transfer_event *event,
2192 struct xhci_virt_ep *ep, int *status)
2193 {
2194 struct xhci_ring *ep_ring;
2195 struct urb_priv *urb_priv;
2196 struct usb_iso_packet_descriptor *frame;
2197 int idx;
2198
2199 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2200 urb_priv = td->urb->hcpriv;
2201 idx = urb_priv->num_tds_done;
2202 frame = &td->urb->iso_frame_desc[idx];
2203
2204 /* The transfer is partly done. */
2205 frame->status = -EXDEV;
2206
2207 /* calc actual length */
2208 frame->actual_length = 0;
2209
2210 /* Update ring dequeue pointer */
2211 while (ep_ring->dequeue != td->last_trb)
2212 inc_deq(xhci, ep_ring);
2213 inc_deq(xhci, ep_ring);
2214
2215 return finish_td(xhci, td, NULL, event, ep, status, true);
2216 }
2217
2218 /*
2219 * Process bulk and interrupt tds, update urb status and actual_length.
2220 */
2221 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2222 union xhci_trb *ep_trb, struct xhci_transfer_event *event,
2223 struct xhci_virt_ep *ep, int *status)
2224 {
2225 struct xhci_ring *ep_ring;
2226 u32 trb_comp_code;
2227 u32 remaining, requested, ep_trb_len;
2228
2229 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2230 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2231 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2232 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2233 requested = td->urb->transfer_buffer_length;
2234
2235 switch (trb_comp_code) {
2236 case COMP_SUCCESS:
2237 /* handle success with untransferred data as short packet */
2238 if (ep_trb != td->last_trb || remaining) {
2239 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2240 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2241 td->urb->ep->desc.bEndpointAddress,
2242 requested, remaining);
2243 }
2244 *status = 0;
2245 break;
2246 case COMP_SHORT_PACKET:
2247 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2248 td->urb->ep->desc.bEndpointAddress,
2249 requested, remaining);
2250 *status = 0;
2251 break;
2252 case COMP_STOPPED_SHORT_PACKET:
2253 td->urb->actual_length = remaining;
2254 goto finish_td;
2255 case COMP_STOPPED_LENGTH_INVALID:
2256 /* stopped on ep trb with invalid length, exclude it */
2257 ep_trb_len = 0;
2258 remaining = 0;
2259 break;
2260 default:
2261 /* do nothing */
2262 break;
2263 }
2264
2265 if (ep_trb == td->last_trb)
2266 td->urb->actual_length = requested - remaining;
2267 else
2268 td->urb->actual_length =
2269 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2270 ep_trb_len - remaining;
2271 finish_td:
2272 if (remaining > requested) {
2273 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2274 remaining);
2275 td->urb->actual_length = 0;
2276 }
2277 return finish_td(xhci, td, ep_trb, event, ep, status, false);
2278 }
2279
2280 /*
2281 * If this function returns an error condition, it means it got a Transfer
2282 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2283 * At this point, the host controller is probably hosed and should be reset.
2284 */
2285 static int handle_tx_event(struct xhci_hcd *xhci,
2286 struct xhci_transfer_event *event)
2287 {
2288 struct xhci_virt_device *xdev;
2289 struct xhci_virt_ep *ep;
2290 struct xhci_ring *ep_ring;
2291 unsigned int slot_id;
2292 int ep_index;
2293 struct xhci_td *td = NULL;
2294 dma_addr_t ep_trb_dma;
2295 struct xhci_segment *ep_seg;
2296 union xhci_trb *ep_trb;
2297 int status = -EINPROGRESS;
2298 struct xhci_ep_ctx *ep_ctx;
2299 struct list_head *tmp;
2300 u32 trb_comp_code;
2301 int td_num = 0;
2302 bool handling_skipped_tds = false;
2303
2304 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2305 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2306 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2307 ep_trb_dma = le64_to_cpu(event->buffer);
2308
2309 xdev = xhci->devs[slot_id];
2310 if (!xdev) {
2311 xhci_err(xhci, "ERROR Transfer event pointed to bad slot %u\n",
2312 slot_id);
2313 goto err_out;
2314 }
2315
2316 ep = &xdev->eps[ep_index];
2317 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2318 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2319
2320 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2321 xhci_err(xhci,
2322 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2323 slot_id, ep_index);
2324 goto err_out;
2325 }
2326
2327 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2328 if (!ep_ring) {
2329 switch (trb_comp_code) {
2330 case COMP_STALL_ERROR:
2331 case COMP_USB_TRANSACTION_ERROR:
2332 case COMP_INVALID_STREAM_TYPE_ERROR:
2333 case COMP_INVALID_STREAM_ID_ERROR:
2334 xhci_cleanup_halted_endpoint(xhci, slot_id, ep_index, 0,
2335 NULL, NULL, EP_SOFT_RESET);
2336 goto cleanup;
2337 case COMP_RING_UNDERRUN:
2338 case COMP_RING_OVERRUN:
2339 goto cleanup;
2340 default:
2341 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2342 slot_id, ep_index);
2343 goto err_out;
2344 }
2345 }
2346
2347 /* Count current td numbers if ep->skip is set */
2348 if (ep->skip) {
2349 list_for_each(tmp, &ep_ring->td_list)
2350 td_num++;
2351 }
2352
2353 /* Look for common error cases */
2354 switch (trb_comp_code) {
2355 /* Skip codes that require special handling depending on
2356 * transfer type
2357 */
2358 case COMP_SUCCESS:
2359 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2360 break;
2361 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2362 trb_comp_code = COMP_SHORT_PACKET;
2363 else
2364 xhci_warn_ratelimited(xhci,
2365 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2366 slot_id, ep_index);
2367 case COMP_SHORT_PACKET:
2368 break;
2369 /* Completion codes for endpoint stopped state */
2370 case COMP_STOPPED:
2371 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2372 slot_id, ep_index);
2373 break;
2374 case COMP_STOPPED_LENGTH_INVALID:
2375 xhci_dbg(xhci,
2376 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2377 slot_id, ep_index);
2378 break;
2379 case COMP_STOPPED_SHORT_PACKET:
2380 xhci_dbg(xhci,
2381 "Stopped with short packet transfer detected for slot %u ep %u\n",
2382 slot_id, ep_index);
2383 break;
2384 /* Completion codes for endpoint halted state */
2385 case COMP_STALL_ERROR:
2386 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2387 ep_index);
2388 ep->ep_state |= EP_HALTED;
2389 status = -EPIPE;
2390 break;
2391 case COMP_SPLIT_TRANSACTION_ERROR:
2392 case COMP_USB_TRANSACTION_ERROR:
2393 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2394 slot_id, ep_index);
2395 status = -EPROTO;
2396 break;
2397 case COMP_BABBLE_DETECTED_ERROR:
2398 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2399 slot_id, ep_index);
2400 status = -EOVERFLOW;
2401 break;
2402 /* Completion codes for endpoint error state */
2403 case COMP_TRB_ERROR:
2404 xhci_warn(xhci,
2405 "WARN: TRB error for slot %u ep %u on endpoint\n",
2406 slot_id, ep_index);
2407 status = -EILSEQ;
2408 break;
2409 /* completion codes not indicating endpoint state change */
2410 case COMP_DATA_BUFFER_ERROR:
2411 xhci_warn(xhci,
2412 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2413 slot_id, ep_index);
2414 status = -ENOSR;
2415 break;
2416 case COMP_BANDWIDTH_OVERRUN_ERROR:
2417 xhci_warn(xhci,
2418 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2419 slot_id, ep_index);
2420 break;
2421 case COMP_ISOCH_BUFFER_OVERRUN:
2422 xhci_warn(xhci,
2423 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2424 slot_id, ep_index);
2425 break;
2426 case COMP_RING_UNDERRUN:
2427 /*
2428 * When the Isoch ring is empty, the xHC will generate
2429 * a Ring Overrun Event for IN Isoch endpoint or Ring
2430 * Underrun Event for OUT Isoch endpoint.
2431 */
2432 xhci_dbg(xhci, "underrun event on endpoint\n");
2433 if (!list_empty(&ep_ring->td_list))
2434 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2435 "still with TDs queued?\n",
2436 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2437 ep_index);
2438 goto cleanup;
2439 case COMP_RING_OVERRUN:
2440 xhci_dbg(xhci, "overrun event on endpoint\n");
2441 if (!list_empty(&ep_ring->td_list))
2442 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2443 "still with TDs queued?\n",
2444 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2445 ep_index);
2446 goto cleanup;
2447 case COMP_MISSED_SERVICE_ERROR:
2448 /*
2449 * When encounter missed service error, one or more isoc tds
2450 * may be missed by xHC.
2451 * Set skip flag of the ep_ring; Complete the missed tds as
2452 * short transfer when process the ep_ring next time.
2453 */
2454 ep->skip = true;
2455 xhci_dbg(xhci,
2456 "Miss service interval error for slot %u ep %u, set skip flag\n",
2457 slot_id, ep_index);
2458 goto cleanup;
2459 case COMP_NO_PING_RESPONSE_ERROR:
2460 ep->skip = true;
2461 xhci_dbg(xhci,
2462 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2463 slot_id, ep_index);
2464 goto cleanup;
2465
2466 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2467 /* needs disable slot command to recover */
2468 xhci_warn(xhci,
2469 "WARN: detect an incompatible device for slot %u ep %u",
2470 slot_id, ep_index);
2471 status = -EPROTO;
2472 break;
2473 default:
2474 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2475 status = 0;
2476 break;
2477 }
2478 xhci_warn(xhci,
2479 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2480 trb_comp_code, slot_id, ep_index);
2481 goto cleanup;
2482 }
2483
2484 do {
2485 /* This TRB should be in the TD at the head of this ring's
2486 * TD list.
2487 */
2488 if (list_empty(&ep_ring->td_list)) {
2489 /*
2490 * A stopped endpoint may generate an extra completion
2491 * event if the device was suspended. Don't print
2492 * warnings.
2493 */
2494 if (!(trb_comp_code == COMP_STOPPED ||
2495 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2496 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2497 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2498 ep_index);
2499 }
2500 if (ep->skip) {
2501 ep->skip = false;
2502 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2503 slot_id, ep_index);
2504 }
2505 goto cleanup;
2506 }
2507
2508 /* We've skipped all the TDs on the ep ring when ep->skip set */
2509 if (ep->skip && td_num == 0) {
2510 ep->skip = false;
2511 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2512 slot_id, ep_index);
2513 goto cleanup;
2514 }
2515
2516 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2517 td_list);
2518 if (ep->skip)
2519 td_num--;
2520
2521 /* Is this a TRB in the currently executing TD? */
2522 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2523 td->last_trb, ep_trb_dma, false);
2524
2525 /*
2526 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2527 * is not in the current TD pointed by ep_ring->dequeue because
2528 * that the hardware dequeue pointer still at the previous TRB
2529 * of the current TD. The previous TRB maybe a Link TD or the
2530 * last TRB of the previous TD. The command completion handle
2531 * will take care the rest.
2532 */
2533 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2534 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2535 goto cleanup;
2536 }
2537
2538 if (!ep_seg) {
2539 if (!ep->skip ||
2540 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2541 /* Some host controllers give a spurious
2542 * successful event after a short transfer.
2543 * Ignore it.
2544 */
2545 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2546 ep_ring->last_td_was_short) {
2547 ep_ring->last_td_was_short = false;
2548 goto cleanup;
2549 }
2550 /* HC is busted, give up! */
2551 xhci_err(xhci,
2552 "ERROR Transfer event TRB DMA ptr not "
2553 "part of current TD ep_index %d "
2554 "comp_code %u\n", ep_index,
2555 trb_comp_code);
2556 trb_in_td(xhci, ep_ring->deq_seg,
2557 ep_ring->dequeue, td->last_trb,
2558 ep_trb_dma, true);
2559 return -ESHUTDOWN;
2560 }
2561
2562 skip_isoc_td(xhci, td, event, ep, &status);
2563 goto cleanup;
2564 }
2565 if (trb_comp_code == COMP_SHORT_PACKET)
2566 ep_ring->last_td_was_short = true;
2567 else
2568 ep_ring->last_td_was_short = false;
2569
2570 if (ep->skip) {
2571 xhci_dbg(xhci,
2572 "Found td. Clear skip flag for slot %u ep %u.\n",
2573 slot_id, ep_index);
2574 ep->skip = false;
2575 }
2576
2577 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2578 sizeof(*ep_trb)];
2579
2580 trace_xhci_handle_transfer(ep_ring,
2581 (struct xhci_generic_trb *) ep_trb);
2582
2583 /*
2584 * No-op TRB should not trigger interrupts.
2585 * If ep_trb is a no-op TRB, it means the
2586 * corresponding TD has been cancelled. Just ignore
2587 * the TD.
2588 */
2589 if (trb_is_noop(ep_trb)) {
2590 xhci_dbg(xhci,
2591 "ep_trb is a no-op TRB. Skip it for slot %u ep %u\n",
2592 slot_id, ep_index);
2593 goto cleanup;
2594 }
2595
2596 /* update the urb's actual_length and give back to the core */
2597 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2598 process_ctrl_td(xhci, td, ep_trb, event, ep, &status);
2599 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2600 process_isoc_td(xhci, td, ep_trb, event, ep, &status);
2601 else
2602 process_bulk_intr_td(xhci, td, ep_trb, event, ep,
2603 &status);
2604 cleanup:
2605 handling_skipped_tds = ep->skip &&
2606 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2607 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2608
2609 /*
2610 * Do not update event ring dequeue pointer if we're in a loop
2611 * processing missed tds.
2612 */
2613 if (!handling_skipped_tds)
2614 inc_deq(xhci, xhci->event_ring);
2615
2616 /*
2617 * If ep->skip is set, it means there are missed tds on the
2618 * endpoint ring need to take care of.
2619 * Process them as short transfer until reach the td pointed by
2620 * the event.
2621 */
2622 } while (handling_skipped_tds);
2623
2624 return 0;
2625
2626 err_out:
2627 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2628 (unsigned long long) xhci_trb_virt_to_dma(
2629 xhci->event_ring->deq_seg,
2630 xhci->event_ring->dequeue),
2631 lower_32_bits(le64_to_cpu(event->buffer)),
2632 upper_32_bits(le64_to_cpu(event->buffer)),
2633 le32_to_cpu(event->transfer_len),
2634 le32_to_cpu(event->flags));
2635 return -ENODEV;
2636 }
2637
2638 /*
2639 * This function handles all OS-owned events on the event ring. It may drop
2640 * xhci->lock between event processing (e.g. to pass up port status changes).
2641 * Returns >0 for "possibly more events to process" (caller should call again),
2642 * otherwise 0 if done. In future, <0 returns should indicate error code.
2643 */
2644 static int xhci_handle_event(struct xhci_hcd *xhci)
2645 {
2646 union xhci_trb *event;
2647 int update_ptrs = 1;
2648 int ret;
2649
2650 /* Event ring hasn't been allocated yet. */
2651 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2652 xhci_err(xhci, "ERROR event ring not ready\n");
2653 return -ENOMEM;
2654 }
2655
2656 event = xhci->event_ring->dequeue;
2657 /* Does the HC or OS own the TRB? */
2658 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2659 xhci->event_ring->cycle_state)
2660 return 0;
2661
2662 trace_xhci_handle_event(xhci->event_ring, &event->generic);
2663
2664 /*
2665 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2666 * speculative reads of the event's flags/data below.
2667 */
2668 rmb();
2669 /* FIXME: Handle more event types. */
2670 switch (le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) {
2671 case TRB_TYPE(TRB_COMPLETION):
2672 handle_cmd_completion(xhci, &event->event_cmd);
2673 break;
2674 case TRB_TYPE(TRB_PORT_STATUS):
2675 handle_port_status(xhci, event);
2676 update_ptrs = 0;
2677 break;
2678 case TRB_TYPE(TRB_TRANSFER):
2679 ret = handle_tx_event(xhci, &event->trans_event);
2680 if (ret >= 0)
2681 update_ptrs = 0;
2682 break;
2683 case TRB_TYPE(TRB_DEV_NOTE):
2684 handle_device_notification(xhci, event);
2685 break;
2686 default:
2687 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2688 TRB_TYPE(48))
2689 handle_vendor_event(xhci, event);
2690 else
2691 xhci_warn(xhci, "ERROR unknown event type %d\n",
2692 TRB_FIELD_TO_TYPE(
2693 le32_to_cpu(event->event_cmd.flags)));
2694 }
2695 /* Any of the above functions may drop and re-acquire the lock, so check
2696 * to make sure a watchdog timer didn't mark the host as non-responsive.
2697 */
2698 if (xhci->xhc_state & XHCI_STATE_DYING) {
2699 xhci_dbg(xhci, "xHCI host dying, returning from "
2700 "event handler.\n");
2701 return 0;
2702 }
2703
2704 if (update_ptrs)
2705 /* Update SW event ring dequeue pointer */
2706 inc_deq(xhci, xhci->event_ring);
2707
2708 /* Are there more items on the event ring? Caller will call us again to
2709 * check.
2710 */
2711 return 1;
2712 }
2713
2714 /*
2715 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2716 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2717 * indicators of an event TRB error, but we check the status *first* to be safe.
2718 */
2719 irqreturn_t xhci_irq(struct usb_hcd *hcd)
2720 {
2721 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2722 union xhci_trb *event_ring_deq;
2723 irqreturn_t ret = IRQ_NONE;
2724 unsigned long flags;
2725 dma_addr_t deq;
2726 u64 temp_64;
2727 u32 status;
2728
2729 spin_lock_irqsave(&xhci->lock, flags);
2730 /* Check if the xHC generated the interrupt, or the irq is shared */
2731 status = readl(&xhci->op_regs->status);
2732 if (status == ~(u32)0) {
2733 xhci_hc_died(xhci);
2734 ret = IRQ_HANDLED;
2735 goto out;
2736 }
2737
2738 if (!(status & STS_EINT))
2739 goto out;
2740
2741 if (status & STS_FATAL) {
2742 xhci_warn(xhci, "WARNING: Host System Error\n");
2743 xhci_halt(xhci);
2744 ret = IRQ_HANDLED;
2745 goto out;
2746 }
2747
2748 /*
2749 * Clear the op reg interrupt status first,
2750 * so we can receive interrupts from other MSI-X interrupters.
2751 * Write 1 to clear the interrupt status.
2752 */
2753 status |= STS_EINT;
2754 writel(status, &xhci->op_regs->status);
2755
2756 if (!hcd->msi_enabled) {
2757 u32 irq_pending;
2758 irq_pending = readl(&xhci->ir_set->irq_pending);
2759 irq_pending |= IMAN_IP;
2760 writel(irq_pending, &xhci->ir_set->irq_pending);
2761 }
2762
2763 if (xhci->xhc_state & XHCI_STATE_DYING ||
2764 xhci->xhc_state & XHCI_STATE_HALTED) {
2765 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2766 "Shouldn't IRQs be disabled?\n");
2767 /* Clear the event handler busy flag (RW1C);
2768 * the event ring should be empty.
2769 */
2770 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2771 xhci_write_64(xhci, temp_64 | ERST_EHB,
2772 &xhci->ir_set->erst_dequeue);
2773 ret = IRQ_HANDLED;
2774 goto out;
2775 }
2776
2777 event_ring_deq = xhci->event_ring->dequeue;
2778 /* FIXME this should be a delayed service routine
2779 * that clears the EHB.
2780 */
2781 while (xhci_handle_event(xhci) > 0) {}
2782
2783 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2784 /* If necessary, update the HW's version of the event ring deq ptr. */
2785 if (event_ring_deq != xhci->event_ring->dequeue) {
2786 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2787 xhci->event_ring->dequeue);
2788 if (deq == 0)
2789 xhci_warn(xhci, "WARN something wrong with SW event "
2790 "ring dequeue ptr.\n");
2791 /* Update HC event ring dequeue pointer */
2792 temp_64 &= ERST_PTR_MASK;
2793 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2794 }
2795
2796 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2797 temp_64 |= ERST_EHB;
2798 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2799 ret = IRQ_HANDLED;
2800
2801 out:
2802 spin_unlock_irqrestore(&xhci->lock, flags);
2803
2804 return ret;
2805 }
2806
2807 irqreturn_t xhci_msi_irq(int irq, void *hcd)
2808 {
2809 return xhci_irq(hcd);
2810 }
2811
2812 /**** Endpoint Ring Operations ****/
2813
2814 /*
2815 * Generic function for queueing a TRB on a ring.
2816 * The caller must have checked to make sure there's room on the ring.
2817 *
2818 * @more_trbs_coming: Will you enqueue more TRBs before calling
2819 * prepare_transfer()?
2820 */
2821 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2822 bool more_trbs_coming,
2823 u32 field1, u32 field2, u32 field3, u32 field4)
2824 {
2825 struct xhci_generic_trb *trb;
2826
2827 trb = &ring->enqueue->generic;
2828 trb->field[0] = cpu_to_le32(field1);
2829 trb->field[1] = cpu_to_le32(field2);
2830 trb->field[2] = cpu_to_le32(field3);
2831 trb->field[3] = cpu_to_le32(field4);
2832
2833 trace_xhci_queue_trb(ring, trb);
2834
2835 inc_enq(xhci, ring, more_trbs_coming);
2836 }
2837
2838 /*
2839 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2840 * FIXME allocate segments if the ring is full.
2841 */
2842 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2843 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2844 {
2845 unsigned int num_trbs_needed;
2846
2847 /* Make sure the endpoint has been added to xHC schedule */
2848 switch (ep_state) {
2849 case EP_STATE_DISABLED:
2850 /*
2851 * USB core changed config/interfaces without notifying us,
2852 * or hardware is reporting the wrong state.
2853 */
2854 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2855 return -ENOENT;
2856 case EP_STATE_ERROR:
2857 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2858 /* FIXME event handling code for error needs to clear it */
2859 /* XXX not sure if this should be -ENOENT or not */
2860 return -EINVAL;
2861 case EP_STATE_HALTED:
2862 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2863 case EP_STATE_STOPPED:
2864 case EP_STATE_RUNNING:
2865 break;
2866 default:
2867 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2868 /*
2869 * FIXME issue Configure Endpoint command to try to get the HC
2870 * back into a known state.
2871 */
2872 return -EINVAL;
2873 }
2874
2875 while (1) {
2876 if (room_on_ring(xhci, ep_ring, num_trbs))
2877 break;
2878
2879 if (ep_ring == xhci->cmd_ring) {
2880 xhci_err(xhci, "Do not support expand command ring\n");
2881 return -ENOMEM;
2882 }
2883
2884 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
2885 "ERROR no room on ep ring, try ring expansion");
2886 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2887 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2888 mem_flags)) {
2889 xhci_err(xhci, "Ring expansion failed\n");
2890 return -ENOMEM;
2891 }
2892 }
2893
2894 while (trb_is_link(ep_ring->enqueue)) {
2895 /* If we're not dealing with 0.95 hardware or isoc rings
2896 * on AMD 0.96 host, clear the chain bit.
2897 */
2898 if (!xhci_link_trb_quirk(xhci) &&
2899 !(ep_ring->type == TYPE_ISOC &&
2900 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2901 ep_ring->enqueue->link.control &=
2902 cpu_to_le32(~TRB_CHAIN);
2903 else
2904 ep_ring->enqueue->link.control |=
2905 cpu_to_le32(TRB_CHAIN);
2906
2907 wmb();
2908 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
2909
2910 /* Toggle the cycle bit after the last ring segment. */
2911 if (link_trb_toggles_cycle(ep_ring->enqueue))
2912 ep_ring->cycle_state ^= 1;
2913
2914 ep_ring->enq_seg = ep_ring->enq_seg->next;
2915 ep_ring->enqueue = ep_ring->enq_seg->trbs;
2916 }
2917 return 0;
2918 }
2919
2920 static int prepare_transfer(struct xhci_hcd *xhci,
2921 struct xhci_virt_device *xdev,
2922 unsigned int ep_index,
2923 unsigned int stream_id,
2924 unsigned int num_trbs,
2925 struct urb *urb,
2926 unsigned int td_index,
2927 gfp_t mem_flags)
2928 {
2929 int ret;
2930 struct urb_priv *urb_priv;
2931 struct xhci_td *td;
2932 struct xhci_ring *ep_ring;
2933 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2934
2935 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2936 if (!ep_ring) {
2937 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2938 stream_id);
2939 return -EINVAL;
2940 }
2941
2942 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
2943 num_trbs, mem_flags);
2944 if (ret)
2945 return ret;
2946
2947 urb_priv = urb->hcpriv;
2948 td = &urb_priv->td[td_index];
2949
2950 INIT_LIST_HEAD(&td->td_list);
2951 INIT_LIST_HEAD(&td->cancelled_td_list);
2952
2953 if (td_index == 0) {
2954 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2955 if (unlikely(ret))
2956 return ret;
2957 }
2958
2959 td->urb = urb;
2960 /* Add this TD to the tail of the endpoint ring's TD list */
2961 list_add_tail(&td->td_list, &ep_ring->td_list);
2962 td->start_seg = ep_ring->enq_seg;
2963 td->first_trb = ep_ring->enqueue;
2964
2965 return 0;
2966 }
2967
2968 static unsigned int count_trbs(u64 addr, u64 len)
2969 {
2970 unsigned int num_trbs;
2971
2972 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
2973 TRB_MAX_BUFF_SIZE);
2974 if (num_trbs == 0)
2975 num_trbs++;
2976
2977 return num_trbs;
2978 }
2979
2980 static inline unsigned int count_trbs_needed(struct urb *urb)
2981 {
2982 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
2983 }
2984
2985 static unsigned int count_sg_trbs_needed(struct urb *urb)
2986 {
2987 struct scatterlist *sg;
2988 unsigned int i, len, full_len, num_trbs = 0;
2989
2990 full_len = urb->transfer_buffer_length;
2991
2992 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
2993 len = sg_dma_len(sg);
2994 num_trbs += count_trbs(sg_dma_address(sg), len);
2995 len = min_t(unsigned int, len, full_len);
2996 full_len -= len;
2997 if (full_len == 0)
2998 break;
2999 }
3000
3001 return num_trbs;
3002 }
3003
3004 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3005 {
3006 u64 addr, len;
3007
3008 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3009 len = urb->iso_frame_desc[i].length;
3010
3011 return count_trbs(addr, len);
3012 }
3013
3014 static void check_trb_math(struct urb *urb, int running_total)
3015 {
3016 if (unlikely(running_total != urb->transfer_buffer_length))
3017 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3018 "queued %#x (%d), asked for %#x (%d)\n",
3019 __func__,
3020 urb->ep->desc.bEndpointAddress,
3021 running_total, running_total,
3022 urb->transfer_buffer_length,
3023 urb->transfer_buffer_length);
3024 }
3025
3026 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3027 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3028 struct xhci_generic_trb *start_trb)
3029 {
3030 /*
3031 * Pass all the TRBs to the hardware at once and make sure this write
3032 * isn't reordered.
3033 */
3034 wmb();
3035 if (start_cycle)
3036 start_trb->field[3] |= cpu_to_le32(start_cycle);
3037 else
3038 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3039 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3040 }
3041
3042 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3043 struct xhci_ep_ctx *ep_ctx)
3044 {
3045 int xhci_interval;
3046 int ep_interval;
3047
3048 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3049 ep_interval = urb->interval;
3050
3051 /* Convert to microframes */
3052 if (urb->dev->speed == USB_SPEED_LOW ||
3053 urb->dev->speed == USB_SPEED_FULL)
3054 ep_interval *= 8;
3055
3056 /* FIXME change this to a warning and a suggestion to use the new API
3057 * to set the polling interval (once the API is added).
3058 */
3059 if (xhci_interval != ep_interval) {
3060 dev_dbg_ratelimited(&urb->dev->dev,
3061 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3062 ep_interval, ep_interval == 1 ? "" : "s",
3063 xhci_interval, xhci_interval == 1 ? "" : "s");
3064 urb->interval = xhci_interval;
3065 /* Convert back to frames for LS/FS devices */
3066 if (urb->dev->speed == USB_SPEED_LOW ||
3067 urb->dev->speed == USB_SPEED_FULL)
3068 urb->interval /= 8;
3069 }
3070 }
3071
3072 /*
3073 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3074 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3075 * (comprised of sg list entries) can take several service intervals to
3076 * transmit.
3077 */
3078 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3079 struct urb *urb, int slot_id, unsigned int ep_index)
3080 {
3081 struct xhci_ep_ctx *ep_ctx;
3082
3083 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3084 check_interval(xhci, urb, ep_ctx);
3085
3086 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3087 }
3088
3089 /*
3090 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3091 * packets remaining in the TD (*not* including this TRB).
3092 *
3093 * Total TD packet count = total_packet_count =
3094 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3095 *
3096 * Packets transferred up to and including this TRB = packets_transferred =
3097 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3098 *
3099 * TD size = total_packet_count - packets_transferred
3100 *
3101 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3102 * including this TRB, right shifted by 10
3103 *
3104 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3105 * This is taken care of in the TRB_TD_SIZE() macro
3106 *
3107 * The last TRB in a TD must have the TD size set to zero.
3108 */
3109 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3110 int trb_buff_len, unsigned int td_total_len,
3111 struct urb *urb, bool more_trbs_coming)
3112 {
3113 u32 maxp, total_packet_count;
3114
3115 /* MTK xHCI is mostly 0.97 but contains some features from 1.0 */
3116 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3117 return ((td_total_len - transferred) >> 10);
3118
3119 /* One TRB with a zero-length data packet. */
3120 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3121 trb_buff_len == td_total_len)
3122 return 0;
3123
3124 /* for MTK xHCI, TD size doesn't include this TRB */
3125 if (xhci->quirks & XHCI_MTK_HOST)
3126 trb_buff_len = 0;
3127
3128 maxp = usb_endpoint_maxp(&urb->ep->desc);
3129 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3130
3131 /* Queueing functions don't count the current TRB into transferred */
3132 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3133 }
3134
3135
3136 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3137 u32 *trb_buff_len, struct xhci_segment *seg)
3138 {
3139 struct device *dev = xhci_to_hcd(xhci)->self.controller;
3140 unsigned int unalign;
3141 unsigned int max_pkt;
3142 u32 new_buff_len;
3143
3144 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3145 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3146
3147 /* we got lucky, last normal TRB data on segment is packet aligned */
3148 if (unalign == 0)
3149 return 0;
3150
3151 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3152 unalign, *trb_buff_len);
3153
3154 /* is the last nornal TRB alignable by splitting it */
3155 if (*trb_buff_len > unalign) {
3156 *trb_buff_len -= unalign;
3157 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3158 return 0;
3159 }
3160
3161 /*
3162 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3163 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3164 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3165 */
3166 new_buff_len = max_pkt - (enqd_len % max_pkt);
3167
3168 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3169 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3170
3171 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3172 if (usb_urb_dir_out(urb)) {
3173 sg_pcopy_to_buffer(urb->sg, urb->num_mapped_sgs,
3174 seg->bounce_buf, new_buff_len, enqd_len);
3175 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3176 max_pkt, DMA_TO_DEVICE);
3177 } else {
3178 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3179 max_pkt, DMA_FROM_DEVICE);
3180 }
3181
3182 if (dma_mapping_error(dev, seg->bounce_dma)) {
3183 /* try without aligning. Some host controllers survive */
3184 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3185 return 0;
3186 }
3187 *trb_buff_len = new_buff_len;
3188 seg->bounce_len = new_buff_len;
3189 seg->bounce_offs = enqd_len;
3190
3191 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3192
3193 return 1;
3194 }
3195
3196 /* This is very similar to what ehci-q.c qtd_fill() does */
3197 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3198 struct urb *urb, int slot_id, unsigned int ep_index)
3199 {
3200 struct xhci_ring *ring;
3201 struct urb_priv *urb_priv;
3202 struct xhci_td *td;
3203 struct xhci_generic_trb *start_trb;
3204 struct scatterlist *sg = NULL;
3205 bool more_trbs_coming = true;
3206 bool need_zero_pkt = false;
3207 bool first_trb = true;
3208 unsigned int num_trbs;
3209 unsigned int start_cycle, num_sgs = 0;
3210 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3211 int sent_len, ret;
3212 u32 field, length_field, remainder;
3213 u64 addr, send_addr;
3214
3215 ring = xhci_urb_to_transfer_ring(xhci, urb);
3216 if (!ring)
3217 return -EINVAL;
3218
3219 full_len = urb->transfer_buffer_length;
3220 /* If we have scatter/gather list, we use it. */
3221 if (urb->num_sgs) {
3222 num_sgs = urb->num_mapped_sgs;
3223 sg = urb->sg;
3224 addr = (u64) sg_dma_address(sg);
3225 block_len = sg_dma_len(sg);
3226 num_trbs = count_sg_trbs_needed(urb);
3227 } else {
3228 num_trbs = count_trbs_needed(urb);
3229 addr = (u64) urb->transfer_dma;
3230 block_len = full_len;
3231 }
3232 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3233 ep_index, urb->stream_id,
3234 num_trbs, urb, 0, mem_flags);
3235 if (unlikely(ret < 0))
3236 return ret;
3237
3238 urb_priv = urb->hcpriv;
3239
3240 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3241 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3242 need_zero_pkt = true;
3243
3244 td = &urb_priv->td[0];
3245
3246 /*
3247 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3248 * until we've finished creating all the other TRBs. The ring's cycle
3249 * state may change as we enqueue the other TRBs, so save it too.
3250 */
3251 start_trb = &ring->enqueue->generic;
3252 start_cycle = ring->cycle_state;
3253 send_addr = addr;
3254
3255 /* Queue the TRBs, even if they are zero-length */
3256 for (enqd_len = 0; first_trb || enqd_len < full_len;
3257 enqd_len += trb_buff_len) {
3258 field = TRB_TYPE(TRB_NORMAL);
3259
3260 /* TRB buffer should not cross 64KB boundaries */
3261 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3262 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3263
3264 if (enqd_len + trb_buff_len > full_len)
3265 trb_buff_len = full_len - enqd_len;
3266
3267 /* Don't change the cycle bit of the first TRB until later */
3268 if (first_trb) {
3269 first_trb = false;
3270 if (start_cycle == 0)
3271 field |= TRB_CYCLE;
3272 } else
3273 field |= ring->cycle_state;
3274
3275 /* Chain all the TRBs together; clear the chain bit in the last
3276 * TRB to indicate it's the last TRB in the chain.
3277 */
3278 if (enqd_len + trb_buff_len < full_len) {
3279 field |= TRB_CHAIN;
3280 if (trb_is_link(ring->enqueue + 1)) {
3281 if (xhci_align_td(xhci, urb, enqd_len,
3282 &trb_buff_len,
3283 ring->enq_seg)) {
3284 send_addr = ring->enq_seg->bounce_dma;
3285 /* assuming TD won't span 2 segs */
3286 td->bounce_seg = ring->enq_seg;
3287 }
3288 }
3289 }
3290 if (enqd_len + trb_buff_len >= full_len) {
3291 field &= ~TRB_CHAIN;
3292 field |= TRB_IOC;
3293 more_trbs_coming = false;
3294 td->last_trb = ring->enqueue;
3295 }
3296
3297 /* Only set interrupt on short packet for IN endpoints */
3298 if (usb_urb_dir_in(urb))
3299 field |= TRB_ISP;
3300
3301 /* Set the TRB length, TD size, and interrupter fields. */
3302 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3303 full_len, urb, more_trbs_coming);
3304
3305 length_field = TRB_LEN(trb_buff_len) |
3306 TRB_TD_SIZE(remainder) |
3307 TRB_INTR_TARGET(0);
3308
3309 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3310 lower_32_bits(send_addr),
3311 upper_32_bits(send_addr),
3312 length_field,
3313 field);
3314
3315 addr += trb_buff_len;
3316 sent_len = trb_buff_len;
3317
3318 while (sg && sent_len >= block_len) {
3319 /* New sg entry */
3320 --num_sgs;
3321 sent_len -= block_len;
3322 if (num_sgs != 0) {
3323 sg = sg_next(sg);
3324 block_len = sg_dma_len(sg);
3325 addr = (u64) sg_dma_address(sg);
3326 addr += sent_len;
3327 }
3328 }
3329 block_len -= sent_len;
3330 send_addr = addr;
3331 }
3332
3333 if (need_zero_pkt) {
3334 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3335 ep_index, urb->stream_id,
3336 1, urb, 1, mem_flags);
3337 urb_priv->td[1].last_trb = ring->enqueue;
3338 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3339 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3340 }
3341
3342 check_trb_math(urb, enqd_len);
3343 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3344 start_cycle, start_trb);
3345 return 0;
3346 }
3347
3348 /* Caller must have locked xhci->lock */
3349 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3350 struct urb *urb, int slot_id, unsigned int ep_index)
3351 {
3352 struct xhci_ring *ep_ring;
3353 int num_trbs;
3354 int ret;
3355 struct usb_ctrlrequest *setup;
3356 struct xhci_generic_trb *start_trb;
3357 int start_cycle;
3358 u32 field;
3359 struct urb_priv *urb_priv;
3360 struct xhci_td *td;
3361
3362 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3363 if (!ep_ring)
3364 return -EINVAL;
3365
3366 /*
3367 * Need to copy setup packet into setup TRB, so we can't use the setup
3368 * DMA address.
3369 */
3370 if (!urb->setup_packet)
3371 return -EINVAL;
3372
3373 /* 1 TRB for setup, 1 for status */
3374 num_trbs = 2;
3375 /*
3376 * Don't need to check if we need additional event data and normal TRBs,
3377 * since data in control transfers will never get bigger than 16MB
3378 * XXX: can we get a buffer that crosses 64KB boundaries?
3379 */
3380 if (urb->transfer_buffer_length > 0)
3381 num_trbs++;
3382 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3383 ep_index, urb->stream_id,
3384 num_trbs, urb, 0, mem_flags);
3385 if (ret < 0)
3386 return ret;
3387
3388 urb_priv = urb->hcpriv;
3389 td = &urb_priv->td[0];
3390
3391 /*
3392 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3393 * until we've finished creating all the other TRBs. The ring's cycle
3394 * state may change as we enqueue the other TRBs, so save it too.
3395 */
3396 start_trb = &ep_ring->enqueue->generic;
3397 start_cycle = ep_ring->cycle_state;
3398
3399 /* Queue setup TRB - see section 6.4.1.2.1 */
3400 /* FIXME better way to translate setup_packet into two u32 fields? */
3401 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3402 field = 0;
3403 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3404 if (start_cycle == 0)
3405 field |= 0x1;
3406
3407 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3408 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3409 if (urb->transfer_buffer_length > 0) {
3410 if (setup->bRequestType & USB_DIR_IN)
3411 field |= TRB_TX_TYPE(TRB_DATA_IN);
3412 else
3413 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3414 }
3415 }
3416
3417 queue_trb(xhci, ep_ring, true,
3418 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3419 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3420 TRB_LEN(8) | TRB_INTR_TARGET(0),
3421 /* Immediate data in pointer */
3422 field);
3423
3424 /* If there's data, queue data TRBs */
3425 /* Only set interrupt on short packet for IN endpoints */
3426 if (usb_urb_dir_in(urb))
3427 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3428 else
3429 field = TRB_TYPE(TRB_DATA);
3430
3431 if (urb->transfer_buffer_length > 0) {
3432 u32 length_field, remainder;
3433
3434 remainder = xhci_td_remainder(xhci, 0,
3435 urb->transfer_buffer_length,
3436 urb->transfer_buffer_length,
3437 urb, 1);
3438 length_field = TRB_LEN(urb->transfer_buffer_length) |
3439 TRB_TD_SIZE(remainder) |
3440 TRB_INTR_TARGET(0);
3441 if (setup->bRequestType & USB_DIR_IN)
3442 field |= TRB_DIR_IN;
3443 queue_trb(xhci, ep_ring, true,
3444 lower_32_bits(urb->transfer_dma),
3445 upper_32_bits(urb->transfer_dma),
3446 length_field,
3447 field | ep_ring->cycle_state);
3448 }
3449
3450 /* Save the DMA address of the last TRB in the TD */
3451 td->last_trb = ep_ring->enqueue;
3452
3453 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3454 /* If the device sent data, the status stage is an OUT transfer */
3455 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3456 field = 0;
3457 else
3458 field = TRB_DIR_IN;
3459 queue_trb(xhci, ep_ring, false,
3460 0,
3461 0,
3462 TRB_INTR_TARGET(0),
3463 /* Event on completion */
3464 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3465
3466 giveback_first_trb(xhci, slot_id, ep_index, 0,
3467 start_cycle, start_trb);
3468 return 0;
3469 }
3470
3471 /*
3472 * The transfer burst count field of the isochronous TRB defines the number of
3473 * bursts that are required to move all packets in this TD. Only SuperSpeed
3474 * devices can burst up to bMaxBurst number of packets per service interval.
3475 * This field is zero based, meaning a value of zero in the field means one
3476 * burst. Basically, for everything but SuperSpeed devices, this field will be
3477 * zero. Only xHCI 1.0 host controllers support this field.
3478 */
3479 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3480 struct urb *urb, unsigned int total_packet_count)
3481 {
3482 unsigned int max_burst;
3483
3484 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3485 return 0;
3486
3487 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3488 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3489 }
3490
3491 /*
3492 * Returns the number of packets in the last "burst" of packets. This field is
3493 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3494 * the last burst packet count is equal to the total number of packets in the
3495 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3496 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3497 * contain 1 to (bMaxBurst + 1) packets.
3498 */
3499 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3500 struct urb *urb, unsigned int total_packet_count)
3501 {
3502 unsigned int max_burst;
3503 unsigned int residue;
3504
3505 if (xhci->hci_version < 0x100)
3506 return 0;
3507
3508 if (urb->dev->speed >= USB_SPEED_SUPER) {
3509 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3510 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3511 residue = total_packet_count % (max_burst + 1);
3512 /* If residue is zero, the last burst contains (max_burst + 1)
3513 * number of packets, but the TLBPC field is zero-based.
3514 */
3515 if (residue == 0)
3516 return max_burst;
3517 return residue - 1;
3518 }
3519 if (total_packet_count == 0)
3520 return 0;
3521 return total_packet_count - 1;
3522 }
3523
3524 /*
3525 * Calculates Frame ID field of the isochronous TRB identifies the
3526 * target frame that the Interval associated with this Isochronous
3527 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3528 *
3529 * Returns actual frame id on success, negative value on error.
3530 */
3531 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3532 struct urb *urb, int index)
3533 {
3534 int start_frame, ist, ret = 0;
3535 int start_frame_id, end_frame_id, current_frame_id;
3536
3537 if (urb->dev->speed == USB_SPEED_LOW ||
3538 urb->dev->speed == USB_SPEED_FULL)
3539 start_frame = urb->start_frame + index * urb->interval;
3540 else
3541 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3542
3543 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3544 *
3545 * If bit [3] of IST is cleared to '0', software can add a TRB no
3546 * later than IST[2:0] Microframes before that TRB is scheduled to
3547 * be executed.
3548 * If bit [3] of IST is set to '1', software can add a TRB no later
3549 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3550 */
3551 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3552 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3553 ist <<= 3;
3554
3555 /* Software shall not schedule an Isoch TD with a Frame ID value that
3556 * is less than the Start Frame ID or greater than the End Frame ID,
3557 * where:
3558 *
3559 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3560 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3561 *
3562 * Both the End Frame ID and Start Frame ID values are calculated
3563 * in microframes. When software determines the valid Frame ID value;
3564 * The End Frame ID value should be rounded down to the nearest Frame
3565 * boundary, and the Start Frame ID value should be rounded up to the
3566 * nearest Frame boundary.
3567 */
3568 current_frame_id = readl(&xhci->run_regs->microframe_index);
3569 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3570 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3571
3572 start_frame &= 0x7ff;
3573 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3574 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3575
3576 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3577 __func__, index, readl(&xhci->run_regs->microframe_index),
3578 start_frame_id, end_frame_id, start_frame);
3579
3580 if (start_frame_id < end_frame_id) {
3581 if (start_frame > end_frame_id ||
3582 start_frame < start_frame_id)
3583 ret = -EINVAL;
3584 } else if (start_frame_id > end_frame_id) {
3585 if ((start_frame > end_frame_id &&
3586 start_frame < start_frame_id))
3587 ret = -EINVAL;
3588 } else {
3589 ret = -EINVAL;
3590 }
3591
3592 if (index == 0) {
3593 if (ret == -EINVAL || start_frame == start_frame_id) {
3594 start_frame = start_frame_id + 1;
3595 if (urb->dev->speed == USB_SPEED_LOW ||
3596 urb->dev->speed == USB_SPEED_FULL)
3597 urb->start_frame = start_frame;
3598 else
3599 urb->start_frame = start_frame << 3;
3600 ret = 0;
3601 }
3602 }
3603
3604 if (ret) {
3605 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
3606 start_frame, current_frame_id, index,
3607 start_frame_id, end_frame_id);
3608 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
3609 return ret;
3610 }
3611
3612 return start_frame;
3613 }
3614
3615 /* This is for isoc transfer */
3616 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3617 struct urb *urb, int slot_id, unsigned int ep_index)
3618 {
3619 struct xhci_ring *ep_ring;
3620 struct urb_priv *urb_priv;
3621 struct xhci_td *td;
3622 int num_tds, trbs_per_td;
3623 struct xhci_generic_trb *start_trb;
3624 bool first_trb;
3625 int start_cycle;
3626 u32 field, length_field;
3627 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3628 u64 start_addr, addr;
3629 int i, j;
3630 bool more_trbs_coming;
3631 struct xhci_virt_ep *xep;
3632 int frame_id;
3633
3634 xep = &xhci->devs[slot_id]->eps[ep_index];
3635 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3636
3637 num_tds = urb->number_of_packets;
3638 if (num_tds < 1) {
3639 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3640 return -EINVAL;
3641 }
3642 start_addr = (u64) urb->transfer_dma;
3643 start_trb = &ep_ring->enqueue->generic;
3644 start_cycle = ep_ring->cycle_state;
3645
3646 urb_priv = urb->hcpriv;
3647 /* Queue the TRBs for each TD, even if they are zero-length */
3648 for (i = 0; i < num_tds; i++) {
3649 unsigned int total_pkt_count, max_pkt;
3650 unsigned int burst_count, last_burst_pkt_count;
3651 u32 sia_frame_id;
3652
3653 first_trb = true;
3654 running_total = 0;
3655 addr = start_addr + urb->iso_frame_desc[i].offset;
3656 td_len = urb->iso_frame_desc[i].length;
3657 td_remain_len = td_len;
3658 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3659 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
3660
3661 /* A zero-length transfer still involves at least one packet. */
3662 if (total_pkt_count == 0)
3663 total_pkt_count++;
3664 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
3665 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
3666 urb, total_pkt_count);
3667
3668 trbs_per_td = count_isoc_trbs_needed(urb, i);
3669
3670 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3671 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3672 if (ret < 0) {
3673 if (i == 0)
3674 return ret;
3675 goto cleanup;
3676 }
3677 td = &urb_priv->td[i];
3678
3679 /* use SIA as default, if frame id is used overwrite it */
3680 sia_frame_id = TRB_SIA;
3681 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
3682 HCC_CFC(xhci->hcc_params)) {
3683 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
3684 if (frame_id >= 0)
3685 sia_frame_id = TRB_FRAME_ID(frame_id);
3686 }
3687 /*
3688 * Set isoc specific data for the first TRB in a TD.
3689 * Prevent HW from getting the TRBs by keeping the cycle state
3690 * inverted in the first TDs isoc TRB.
3691 */
3692 field = TRB_TYPE(TRB_ISOC) |
3693 TRB_TLBPC(last_burst_pkt_count) |
3694 sia_frame_id |
3695 (i ? ep_ring->cycle_state : !start_cycle);
3696
3697 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
3698 if (!xep->use_extended_tbc)
3699 field |= TRB_TBC(burst_count);
3700
3701 /* fill the rest of the TRB fields, and remaining normal TRBs */
3702 for (j = 0; j < trbs_per_td; j++) {
3703 u32 remainder = 0;
3704
3705 /* only first TRB is isoc, overwrite otherwise */
3706 if (!first_trb)
3707 field = TRB_TYPE(TRB_NORMAL) |
3708 ep_ring->cycle_state;
3709
3710 /* Only set interrupt on short packet for IN EPs */
3711 if (usb_urb_dir_in(urb))
3712 field |= TRB_ISP;
3713
3714 /* Set the chain bit for all except the last TRB */
3715 if (j < trbs_per_td - 1) {
3716 more_trbs_coming = true;
3717 field |= TRB_CHAIN;
3718 } else {
3719 more_trbs_coming = false;
3720 td->last_trb = ep_ring->enqueue;
3721 field |= TRB_IOC;
3722 /* set BEI, except for the last TD */
3723 if (xhci->hci_version >= 0x100 &&
3724 !(xhci->quirks & XHCI_AVOID_BEI) &&
3725 i < num_tds - 1)
3726 field |= TRB_BEI;
3727 }
3728 /* Calculate TRB length */
3729 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3730 if (trb_buff_len > td_remain_len)
3731 trb_buff_len = td_remain_len;
3732
3733 /* Set the TRB length, TD size, & interrupter fields. */
3734 remainder = xhci_td_remainder(xhci, running_total,
3735 trb_buff_len, td_len,
3736 urb, more_trbs_coming);
3737
3738 length_field = TRB_LEN(trb_buff_len) |
3739 TRB_INTR_TARGET(0);
3740
3741 /* xhci 1.1 with ETE uses TD Size field for TBC */
3742 if (first_trb && xep->use_extended_tbc)
3743 length_field |= TRB_TD_SIZE_TBC(burst_count);
3744 else
3745 length_field |= TRB_TD_SIZE(remainder);
3746 first_trb = false;
3747
3748 queue_trb(xhci, ep_ring, more_trbs_coming,
3749 lower_32_bits(addr),
3750 upper_32_bits(addr),
3751 length_field,
3752 field);
3753 running_total += trb_buff_len;
3754
3755 addr += trb_buff_len;
3756 td_remain_len -= trb_buff_len;
3757 }
3758
3759 /* Check TD length */
3760 if (running_total != td_len) {
3761 xhci_err(xhci, "ISOC TD length unmatch\n");
3762 ret = -EINVAL;
3763 goto cleanup;
3764 }
3765 }
3766
3767 /* store the next frame id */
3768 if (HCC_CFC(xhci->hcc_params))
3769 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
3770
3771 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3772 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3773 usb_amd_quirk_pll_disable();
3774 }
3775 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3776
3777 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3778 start_cycle, start_trb);
3779 return 0;
3780 cleanup:
3781 /* Clean up a partially enqueued isoc transfer. */
3782
3783 for (i--; i >= 0; i--)
3784 list_del_init(&urb_priv->td[i].td_list);
3785
3786 /* Use the first TD as a temporary variable to turn the TDs we've queued
3787 * into No-ops with a software-owned cycle bit. That way the hardware
3788 * won't accidentally start executing bogus TDs when we partially
3789 * overwrite them. td->first_trb and td->start_seg are already set.
3790 */
3791 urb_priv->td[0].last_trb = ep_ring->enqueue;
3792 /* Every TRB except the first & last will have its cycle bit flipped. */
3793 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
3794
3795 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3796 ep_ring->enqueue = urb_priv->td[0].first_trb;
3797 ep_ring->enq_seg = urb_priv->td[0].start_seg;
3798 ep_ring->cycle_state = start_cycle;
3799 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3800 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3801 return ret;
3802 }
3803
3804 /*
3805 * Check transfer ring to guarantee there is enough room for the urb.
3806 * Update ISO URB start_frame and interval.
3807 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
3808 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
3809 * Contiguous Frame ID is not supported by HC.
3810 */
3811 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3812 struct urb *urb, int slot_id, unsigned int ep_index)
3813 {
3814 struct xhci_virt_device *xdev;
3815 struct xhci_ring *ep_ring;
3816 struct xhci_ep_ctx *ep_ctx;
3817 int start_frame;
3818 int num_tds, num_trbs, i;
3819 int ret;
3820 struct xhci_virt_ep *xep;
3821 int ist;
3822
3823 xdev = xhci->devs[slot_id];
3824 xep = &xhci->devs[slot_id]->eps[ep_index];
3825 ep_ring = xdev->eps[ep_index].ring;
3826 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3827
3828 num_trbs = 0;
3829 num_tds = urb->number_of_packets;
3830 for (i = 0; i < num_tds; i++)
3831 num_trbs += count_isoc_trbs_needed(urb, i);
3832
3833 /* Check the ring to guarantee there is enough room for the whole urb.
3834 * Do not insert any td of the urb to the ring if the check failed.
3835 */
3836 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3837 num_trbs, mem_flags);
3838 if (ret)
3839 return ret;
3840
3841 /*
3842 * Check interval value. This should be done before we start to
3843 * calculate the start frame value.
3844 */
3845 check_interval(xhci, urb, ep_ctx);
3846
3847 /* Calculate the start frame and put it in urb->start_frame. */
3848 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
3849 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
3850 urb->start_frame = xep->next_frame_id;
3851 goto skip_start_over;
3852 }
3853 }
3854
3855 start_frame = readl(&xhci->run_regs->microframe_index);
3856 start_frame &= 0x3fff;
3857 /*
3858 * Round up to the next frame and consider the time before trb really
3859 * gets scheduled by hardare.
3860 */
3861 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3862 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3863 ist <<= 3;
3864 start_frame += ist + XHCI_CFC_DELAY;
3865 start_frame = roundup(start_frame, 8);
3866
3867 /*
3868 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
3869 * is greate than 8 microframes.
3870 */
3871 if (urb->dev->speed == USB_SPEED_LOW ||
3872 urb->dev->speed == USB_SPEED_FULL) {
3873 start_frame = roundup(start_frame, urb->interval << 3);
3874 urb->start_frame = start_frame >> 3;
3875 } else {
3876 start_frame = roundup(start_frame, urb->interval);
3877 urb->start_frame = start_frame;
3878 }
3879
3880 skip_start_over:
3881 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3882
3883 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3884 }
3885
3886 /**** Command Ring Operations ****/
3887
3888 /* Generic function for queueing a command TRB on the command ring.
3889 * Check to make sure there's room on the command ring for one command TRB.
3890 * Also check that there's room reserved for commands that must not fail.
3891 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3892 * then only check for the number of reserved spots.
3893 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3894 * because the command event handler may want to resubmit a failed command.
3895 */
3896 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3897 u32 field1, u32 field2,
3898 u32 field3, u32 field4, bool command_must_succeed)
3899 {
3900 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3901 int ret;
3902
3903 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3904 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3905 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
3906 return -ESHUTDOWN;
3907 }
3908
3909 if (!command_must_succeed)
3910 reserved_trbs++;
3911
3912 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3913 reserved_trbs, GFP_ATOMIC);
3914 if (ret < 0) {
3915 xhci_err(xhci, "ERR: No room for command on command ring\n");
3916 if (command_must_succeed)
3917 xhci_err(xhci, "ERR: Reserved TRB counting for "
3918 "unfailable commands failed.\n");
3919 return ret;
3920 }
3921
3922 cmd->command_trb = xhci->cmd_ring->enqueue;
3923
3924 /* if there are no other commands queued we start the timeout timer */
3925 if (list_empty(&xhci->cmd_list)) {
3926 xhci->current_cmd = cmd;
3927 xhci_mod_cmd_timer(xhci, XHCI_CMD_DEFAULT_TIMEOUT);
3928 }
3929
3930 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
3931
3932 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3933 field4 | xhci->cmd_ring->cycle_state);
3934 return 0;
3935 }
3936
3937 /* Queue a slot enable or disable request on the command ring */
3938 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
3939 u32 trb_type, u32 slot_id)
3940 {
3941 return queue_command(xhci, cmd, 0, 0, 0,
3942 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3943 }
3944
3945 /* Queue an address device command TRB */
3946 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3947 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
3948 {
3949 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3950 upper_32_bits(in_ctx_ptr), 0,
3951 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
3952 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
3953 }
3954
3955 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
3956 u32 field1, u32 field2, u32 field3, u32 field4)
3957 {
3958 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
3959 }
3960
3961 /* Queue a reset device command TRB */
3962 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
3963 u32 slot_id)
3964 {
3965 return queue_command(xhci, cmd, 0, 0, 0,
3966 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3967 false);
3968 }
3969
3970 /* Queue a configure endpoint command TRB */
3971 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
3972 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
3973 u32 slot_id, bool command_must_succeed)
3974 {
3975 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3976 upper_32_bits(in_ctx_ptr), 0,
3977 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3978 command_must_succeed);
3979 }
3980
3981 /* Queue an evaluate context command TRB */
3982 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
3983 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
3984 {
3985 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
3986 upper_32_bits(in_ctx_ptr), 0,
3987 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3988 command_must_succeed);
3989 }
3990
3991 /*
3992 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3993 * activity on an endpoint that is about to be suspended.
3994 */
3995 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
3996 int slot_id, unsigned int ep_index, int suspend)
3997 {
3998 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3999 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4000 u32 type = TRB_TYPE(TRB_STOP_RING);
4001 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4002
4003 return queue_command(xhci, cmd, 0, 0, 0,
4004 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4005 }
4006
4007 /* Set Transfer Ring Dequeue Pointer command */
4008 void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
4009 unsigned int slot_id, unsigned int ep_index,
4010 struct xhci_dequeue_state *deq_state)
4011 {
4012 dma_addr_t addr;
4013 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4014 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4015 u32 trb_stream_id = STREAM_ID_FOR_TRB(deq_state->stream_id);
4016 u32 trb_sct = 0;
4017 u32 type = TRB_TYPE(TRB_SET_DEQ);
4018 struct xhci_virt_ep *ep;
4019 struct xhci_command *cmd;
4020 int ret;
4021
4022 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
4023 "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), new deq ptr = %p (0x%llx dma), new cycle = %u",
4024 deq_state->new_deq_seg,
4025 (unsigned long long)deq_state->new_deq_seg->dma,
4026 deq_state->new_deq_ptr,
4027 (unsigned long long)xhci_trb_virt_to_dma(
4028 deq_state->new_deq_seg, deq_state->new_deq_ptr),
4029 deq_state->new_cycle_state);
4030
4031 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
4032 deq_state->new_deq_ptr);
4033 if (addr == 0) {
4034 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4035 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
4036 deq_state->new_deq_seg, deq_state->new_deq_ptr);
4037 return;
4038 }
4039 ep = &xhci->devs[slot_id]->eps[ep_index];
4040 if ((ep->ep_state & SET_DEQ_PENDING)) {
4041 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
4042 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4043 return;
4044 }
4045
4046 /* This function gets called from contexts where it cannot sleep */
4047 cmd = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
4048 if (!cmd)
4049 return;
4050
4051 ep->queued_deq_seg = deq_state->new_deq_seg;
4052 ep->queued_deq_ptr = deq_state->new_deq_ptr;
4053 if (deq_state->stream_id)
4054 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
4055 ret = queue_command(xhci, cmd,
4056 lower_32_bits(addr) | trb_sct | deq_state->new_cycle_state,
4057 upper_32_bits(addr), trb_stream_id,
4058 trb_slot_id | trb_ep_index | type, false);
4059 if (ret < 0) {
4060 xhci_free_command(xhci, cmd);
4061 return;
4062 }
4063
4064 /* Stop the TD queueing code from ringing the doorbell until
4065 * this command completes. The HC won't set the dequeue pointer
4066 * if the ring is running, and ringing the doorbell starts the
4067 * ring running.
4068 */
4069 ep->ep_state |= SET_DEQ_PENDING;
4070 }
4071
4072 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4073 int slot_id, unsigned int ep_index,
4074 enum xhci_ep_reset_type reset_type)
4075 {
4076 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4077 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4078 u32 type = TRB_TYPE(TRB_RESET_EP);
4079
4080 if (reset_type == EP_SOFT_RESET)
4081 type |= TRB_TSP;
4082
4083 return queue_command(xhci, cmd, 0, 0, 0,
4084 trb_slot_id | trb_ep_index | type, false);
4085 }