]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/usb/host/xhci-ring.c
Merge branch 'for-6.9/wacom' into for-linus
[thirdparty/linux.git] / drivers / usb / host / xhci-ring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 /*
12 * Ring initialization rules:
13 * 1. Each segment is initialized to zero, except for link TRBs.
14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
15 * Consumer Cycle State (CCS), depending on ring function.
16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17 *
18 * Ring behavior rules:
19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
20 * least one free TRB in the ring. This is useful if you want to turn that
21 * into a link TRB and expand the ring.
22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23 * link TRB, then load the pointer with the address in the link TRB. If the
24 * link TRB had its toggle bit set, you may need to update the ring cycle
25 * state (see cycle bit rules). You may have to do this multiple times
26 * until you reach a non-link TRB.
27 * 3. A ring is full if enqueue++ (for the definition of increment above)
28 * equals the dequeue pointer.
29 *
30 * Cycle bit rules:
31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32 * in a link TRB, it must toggle the ring cycle state.
33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 *
36 * Producer rules:
37 * 1. Check if ring is full before you enqueue.
38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39 * Update enqueue pointer between each write (which may update the ring
40 * cycle state).
41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
42 * and endpoint rings. If HC is the producer for the event ring,
43 * and it generates an interrupt according to interrupt modulation rules.
44 *
45 * Consumer rules:
46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
47 * the TRB is owned by the consumer.
48 * 2. Update dequeue pointer (which may update the ring cycle state) and
49 * continue processing TRBs until you reach a TRB which is not owned by you.
50 * 3. Notify the producer. SW is the consumer for the event ring, and it
51 * updates event ring dequeue pointer. HC is the consumer for the command and
52 * endpoint rings; it generates events on the event ring for these.
53 */
54
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60
61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
62 u32 field1, u32 field2,
63 u32 field3, u32 field4, bool command_must_succeed);
64
65 /*
66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
67 * address of the TRB.
68 */
69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
70 union xhci_trb *trb)
71 {
72 unsigned long segment_offset;
73
74 if (!seg || !trb || trb < seg->trbs)
75 return 0;
76 /* offset in TRBs */
77 segment_offset = trb - seg->trbs;
78 if (segment_offset >= TRBS_PER_SEGMENT)
79 return 0;
80 return seg->dma + (segment_offset * sizeof(*trb));
81 }
82
83 static bool trb_is_noop(union xhci_trb *trb)
84 {
85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
86 }
87
88 static bool trb_is_link(union xhci_trb *trb)
89 {
90 return TRB_TYPE_LINK_LE32(trb->link.control);
91 }
92
93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
94 {
95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
96 }
97
98 static bool last_trb_on_ring(struct xhci_ring *ring,
99 struct xhci_segment *seg, union xhci_trb *trb)
100 {
101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
102 }
103
104 static bool link_trb_toggles_cycle(union xhci_trb *trb)
105 {
106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 }
108
109 static bool last_td_in_urb(struct xhci_td *td)
110 {
111 struct urb_priv *urb_priv = td->urb->hcpriv;
112
113 return urb_priv->num_tds_done == urb_priv->num_tds;
114 }
115
116 static void inc_td_cnt(struct urb *urb)
117 {
118 struct urb_priv *urb_priv = urb->hcpriv;
119
120 urb_priv->num_tds_done++;
121 }
122
123 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
124 {
125 if (trb_is_link(trb)) {
126 /* unchain chained link TRBs */
127 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
128 } else {
129 trb->generic.field[0] = 0;
130 trb->generic.field[1] = 0;
131 trb->generic.field[2] = 0;
132 /* Preserve only the cycle bit of this TRB */
133 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
134 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
135 }
136 }
137
138 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
139 * TRB is in a new segment. This does not skip over link TRBs, and it does not
140 * effect the ring dequeue or enqueue pointers.
141 */
142 static void next_trb(struct xhci_hcd *xhci,
143 struct xhci_ring *ring,
144 struct xhci_segment **seg,
145 union xhci_trb **trb)
146 {
147 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) {
148 *seg = (*seg)->next;
149 *trb = ((*seg)->trbs);
150 } else {
151 (*trb)++;
152 }
153 }
154
155 /*
156 * See Cycle bit rules. SW is the consumer for the event ring only.
157 */
158 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
159 {
160 unsigned int link_trb_count = 0;
161
162 /* event ring doesn't have link trbs, check for last trb */
163 if (ring->type == TYPE_EVENT) {
164 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
165 ring->dequeue++;
166 goto out;
167 }
168 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
169 ring->cycle_state ^= 1;
170 ring->deq_seg = ring->deq_seg->next;
171 ring->dequeue = ring->deq_seg->trbs;
172 goto out;
173 }
174
175 /* All other rings have link trbs */
176 if (!trb_is_link(ring->dequeue)) {
177 if (last_trb_on_seg(ring->deq_seg, ring->dequeue))
178 xhci_warn(xhci, "Missing link TRB at end of segment\n");
179 else
180 ring->dequeue++;
181 }
182
183 while (trb_is_link(ring->dequeue)) {
184 ring->deq_seg = ring->deq_seg->next;
185 ring->dequeue = ring->deq_seg->trbs;
186
187 if (link_trb_count++ > ring->num_segs) {
188 xhci_warn(xhci, "Ring is an endless link TRB loop\n");
189 break;
190 }
191 }
192 out:
193 trace_xhci_inc_deq(ring);
194
195 return;
196 }
197
198 /*
199 * See Cycle bit rules. SW is the consumer for the event ring only.
200 *
201 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
202 * chain bit is set), then set the chain bit in all the following link TRBs.
203 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
204 * have their chain bit cleared (so that each Link TRB is a separate TD).
205 *
206 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
207 * set, but other sections talk about dealing with the chain bit set. This was
208 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
209 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
210 *
211 * @more_trbs_coming: Will you enqueue more TRBs before calling
212 * prepare_transfer()?
213 */
214 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
215 bool more_trbs_coming)
216 {
217 u32 chain;
218 union xhci_trb *next;
219 unsigned int link_trb_count = 0;
220
221 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
222
223 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) {
224 xhci_err(xhci, "Tried to move enqueue past ring segment\n");
225 return;
226 }
227
228 next = ++(ring->enqueue);
229
230 /* Update the dequeue pointer further if that was a link TRB */
231 while (trb_is_link(next)) {
232
233 /*
234 * If the caller doesn't plan on enqueueing more TDs before
235 * ringing the doorbell, then we don't want to give the link TRB
236 * to the hardware just yet. We'll give the link TRB back in
237 * prepare_ring() just before we enqueue the TD at the top of
238 * the ring.
239 */
240 if (!chain && !more_trbs_coming)
241 break;
242
243 /* If we're not dealing with 0.95 hardware or isoc rings on
244 * AMD 0.96 host, carry over the chain bit of the previous TRB
245 * (which may mean the chain bit is cleared).
246 */
247 if (!(ring->type == TYPE_ISOC &&
248 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
249 !xhci_link_trb_quirk(xhci)) {
250 next->link.control &= cpu_to_le32(~TRB_CHAIN);
251 next->link.control |= cpu_to_le32(chain);
252 }
253 /* Give this link TRB to the hardware */
254 wmb();
255 next->link.control ^= cpu_to_le32(TRB_CYCLE);
256
257 /* Toggle the cycle bit after the last ring segment. */
258 if (link_trb_toggles_cycle(next))
259 ring->cycle_state ^= 1;
260
261 ring->enq_seg = ring->enq_seg->next;
262 ring->enqueue = ring->enq_seg->trbs;
263 next = ring->enqueue;
264
265 if (link_trb_count++ > ring->num_segs) {
266 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__);
267 break;
268 }
269 }
270
271 trace_xhci_inc_enq(ring);
272 }
273
274 /*
275 * Return number of free normal TRBs from enqueue to dequeue pointer on ring.
276 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment.
277 * Only for transfer and command rings where driver is the producer, not for
278 * event rings.
279 */
280 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
281 {
282 struct xhci_segment *enq_seg = ring->enq_seg;
283 union xhci_trb *enq = ring->enqueue;
284 union xhci_trb *last_on_seg;
285 unsigned int free = 0;
286 int i = 0;
287
288 /* Ring might be empty even if enq != deq if enq is left on a link trb */
289 if (trb_is_link(enq)) {
290 enq_seg = enq_seg->next;
291 enq = enq_seg->trbs;
292 }
293
294 /* Empty ring, common case, don't walk the segments */
295 if (enq == ring->dequeue)
296 return ring->num_segs * (TRBS_PER_SEGMENT - 1);
297
298 do {
299 if (ring->deq_seg == enq_seg && ring->dequeue >= enq)
300 return free + (ring->dequeue - enq);
301 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1];
302 free += last_on_seg - enq;
303 enq_seg = enq_seg->next;
304 enq = enq_seg->trbs;
305 } while (i++ <= ring->num_segs);
306
307 return free;
308 }
309
310 /*
311 * Check to see if there's room to enqueue num_trbs on the ring and make sure
312 * enqueue pointer will not advance into dequeue segment. See rules above.
313 * return number of new segments needed to ensure this.
314 */
315
316 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring,
317 unsigned int num_trbs)
318 {
319 struct xhci_segment *seg;
320 int trbs_past_seg;
321 int enq_used;
322 int new_segs;
323
324 enq_used = ring->enqueue - ring->enq_seg->trbs;
325
326 /* how many trbs will be queued past the enqueue segment? */
327 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1);
328
329 if (trbs_past_seg <= 0)
330 return 0;
331
332 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */
333 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue)
334 return 0;
335
336 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1));
337 seg = ring->enq_seg;
338
339 while (new_segs > 0) {
340 seg = seg->next;
341 if (seg == ring->deq_seg) {
342 xhci_dbg(xhci, "Ring expansion by %d segments needed\n",
343 new_segs);
344 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n",
345 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT);
346 return new_segs;
347 }
348 new_segs--;
349 }
350
351 return 0;
352 }
353
354 /* Ring the host controller doorbell after placing a command on the ring */
355 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
356 {
357 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
358 return;
359
360 xhci_dbg(xhci, "// Ding dong!\n");
361
362 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST);
363
364 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
365 /* Flush PCI posted writes */
366 readl(&xhci->dba->doorbell[0]);
367 }
368
369 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci)
370 {
371 return mod_delayed_work(system_wq, &xhci->cmd_timer,
372 msecs_to_jiffies(xhci->current_cmd->timeout_ms));
373 }
374
375 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
376 {
377 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
378 cmd_list);
379 }
380
381 /*
382 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
383 * If there are other commands waiting then restart the ring and kick the timer.
384 * This must be called with command ring stopped and xhci->lock held.
385 */
386 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
387 struct xhci_command *cur_cmd)
388 {
389 struct xhci_command *i_cmd;
390
391 /* Turn all aborted commands in list to no-ops, then restart */
392 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
393
394 if (i_cmd->status != COMP_COMMAND_ABORTED)
395 continue;
396
397 i_cmd->status = COMP_COMMAND_RING_STOPPED;
398
399 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
400 i_cmd->command_trb);
401
402 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
403
404 /*
405 * caller waiting for completion is called when command
406 * completion event is received for these no-op commands
407 */
408 }
409
410 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
411
412 /* ring command ring doorbell to restart the command ring */
413 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
414 !(xhci->xhc_state & XHCI_STATE_DYING)) {
415 xhci->current_cmd = cur_cmd;
416 xhci_mod_cmd_timer(xhci);
417 xhci_ring_cmd_db(xhci);
418 }
419 }
420
421 /* Must be called with xhci->lock held, releases and aquires lock back */
422 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
423 {
424 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg;
425 union xhci_trb *new_deq = xhci->cmd_ring->dequeue;
426 u64 crcr;
427 int ret;
428
429 xhci_dbg(xhci, "Abort command ring\n");
430
431 reinit_completion(&xhci->cmd_ring_stop_completion);
432
433 /*
434 * The control bits like command stop, abort are located in lower
435 * dword of the command ring control register.
436 * Some controllers require all 64 bits to be written to abort the ring.
437 * Make sure the upper dword is valid, pointing to the next command,
438 * avoiding corrupting the command ring pointer in case the command ring
439 * is stopped by the time the upper dword is written.
440 */
441 next_trb(xhci, NULL, &new_seg, &new_deq);
442 if (trb_is_link(new_deq))
443 next_trb(xhci, NULL, &new_seg, &new_deq);
444
445 crcr = xhci_trb_virt_to_dma(new_seg, new_deq);
446 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring);
447
448 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
449 * completion of the Command Abort operation. If CRR is not negated in 5
450 * seconds then driver handles it as if host died (-ENODEV).
451 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
452 * and try to recover a -ETIMEDOUT with a host controller reset.
453 */
454 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring,
455 CMD_RING_RUNNING, 0, 5 * 1000 * 1000,
456 XHCI_STATE_REMOVING);
457 if (ret < 0) {
458 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
459 xhci_halt(xhci);
460 xhci_hc_died(xhci);
461 return ret;
462 }
463 /*
464 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
465 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
466 * but the completion event in never sent. Wait 2 secs (arbitrary
467 * number) to handle those cases after negation of CMD_RING_RUNNING.
468 */
469 spin_unlock_irqrestore(&xhci->lock, flags);
470 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
471 msecs_to_jiffies(2000));
472 spin_lock_irqsave(&xhci->lock, flags);
473 if (!ret) {
474 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
475 xhci_cleanup_command_queue(xhci);
476 } else {
477 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
478 }
479 return 0;
480 }
481
482 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
483 unsigned int slot_id,
484 unsigned int ep_index,
485 unsigned int stream_id)
486 {
487 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
488 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
489 unsigned int ep_state = ep->ep_state;
490
491 /* Don't ring the doorbell for this endpoint if there are pending
492 * cancellations because we don't want to interrupt processing.
493 * We don't want to restart any stream rings if there's a set dequeue
494 * pointer command pending because the device can choose to start any
495 * stream once the endpoint is on the HW schedule.
496 */
497 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
498 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT))
499 return;
500
501 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id));
502
503 writel(DB_VALUE(ep_index, stream_id), db_addr);
504 /* flush the write */
505 readl(db_addr);
506 }
507
508 /* Ring the doorbell for any rings with pending URBs */
509 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
510 unsigned int slot_id,
511 unsigned int ep_index)
512 {
513 unsigned int stream_id;
514 struct xhci_virt_ep *ep;
515
516 ep = &xhci->devs[slot_id]->eps[ep_index];
517
518 /* A ring has pending URBs if its TD list is not empty */
519 if (!(ep->ep_state & EP_HAS_STREAMS)) {
520 if (ep->ring && !(list_empty(&ep->ring->td_list)))
521 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
522 return;
523 }
524
525 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
526 stream_id++) {
527 struct xhci_stream_info *stream_info = ep->stream_info;
528 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
529 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
530 stream_id);
531 }
532 }
533
534 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
535 unsigned int slot_id,
536 unsigned int ep_index)
537 {
538 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
539 }
540
541 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci,
542 unsigned int slot_id,
543 unsigned int ep_index)
544 {
545 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) {
546 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id);
547 return NULL;
548 }
549 if (ep_index >= EP_CTX_PER_DEV) {
550 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index);
551 return NULL;
552 }
553 if (!xhci->devs[slot_id]) {
554 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id);
555 return NULL;
556 }
557
558 return &xhci->devs[slot_id]->eps[ep_index];
559 }
560
561 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci,
562 struct xhci_virt_ep *ep,
563 unsigned int stream_id)
564 {
565 /* common case, no streams */
566 if (!(ep->ep_state & EP_HAS_STREAMS))
567 return ep->ring;
568
569 if (!ep->stream_info)
570 return NULL;
571
572 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) {
573 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n",
574 stream_id, ep->vdev->slot_id, ep->ep_index);
575 return NULL;
576 }
577
578 return ep->stream_info->stream_rings[stream_id];
579 }
580
581 /* Get the right ring for the given slot_id, ep_index and stream_id.
582 * If the endpoint supports streams, boundary check the URB's stream ID.
583 * If the endpoint doesn't support streams, return the singular endpoint ring.
584 */
585 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
586 unsigned int slot_id, unsigned int ep_index,
587 unsigned int stream_id)
588 {
589 struct xhci_virt_ep *ep;
590
591 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
592 if (!ep)
593 return NULL;
594
595 return xhci_virt_ep_to_ring(xhci, ep, stream_id);
596 }
597
598
599 /*
600 * Get the hw dequeue pointer xHC stopped on, either directly from the
601 * endpoint context, or if streams are in use from the stream context.
602 * The returned hw_dequeue contains the lowest four bits with cycle state
603 * and possbile stream context type.
604 */
605 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
606 unsigned int ep_index, unsigned int stream_id)
607 {
608 struct xhci_ep_ctx *ep_ctx;
609 struct xhci_stream_ctx *st_ctx;
610 struct xhci_virt_ep *ep;
611
612 ep = &vdev->eps[ep_index];
613
614 if (ep->ep_state & EP_HAS_STREAMS) {
615 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
616 return le64_to_cpu(st_ctx->stream_ring);
617 }
618 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
619 return le64_to_cpu(ep_ctx->deq);
620 }
621
622 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci,
623 unsigned int slot_id, unsigned int ep_index,
624 unsigned int stream_id, struct xhci_td *td)
625 {
626 struct xhci_virt_device *dev = xhci->devs[slot_id];
627 struct xhci_virt_ep *ep = &dev->eps[ep_index];
628 struct xhci_ring *ep_ring;
629 struct xhci_command *cmd;
630 struct xhci_segment *new_seg;
631 union xhci_trb *new_deq;
632 int new_cycle;
633 dma_addr_t addr;
634 u64 hw_dequeue;
635 bool cycle_found = false;
636 bool td_last_trb_found = false;
637 u32 trb_sct = 0;
638 int ret;
639
640 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
641 ep_index, stream_id);
642 if (!ep_ring) {
643 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n",
644 stream_id);
645 return -ENODEV;
646 }
647 /*
648 * A cancelled TD can complete with a stall if HW cached the trb.
649 * In this case driver can't find td, but if the ring is empty we
650 * can move the dequeue pointer to the current enqueue position.
651 * We shouldn't hit this anymore as cached cancelled TRBs are given back
652 * after clearing the cache, but be on the safe side and keep it anyway
653 */
654 if (!td) {
655 if (list_empty(&ep_ring->td_list)) {
656 new_seg = ep_ring->enq_seg;
657 new_deq = ep_ring->enqueue;
658 new_cycle = ep_ring->cycle_state;
659 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue");
660 goto deq_found;
661 } else {
662 xhci_warn(xhci, "Can't find new dequeue state, missing td\n");
663 return -EINVAL;
664 }
665 }
666
667 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
668 new_seg = ep_ring->deq_seg;
669 new_deq = ep_ring->dequeue;
670 new_cycle = hw_dequeue & 0x1;
671
672 /*
673 * We want to find the pointer, segment and cycle state of the new trb
674 * (the one after current TD's last_trb). We know the cycle state at
675 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
676 * found.
677 */
678 do {
679 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
680 == (dma_addr_t)(hw_dequeue & ~0xf)) {
681 cycle_found = true;
682 if (td_last_trb_found)
683 break;
684 }
685 if (new_deq == td->last_trb)
686 td_last_trb_found = true;
687
688 if (cycle_found && trb_is_link(new_deq) &&
689 link_trb_toggles_cycle(new_deq))
690 new_cycle ^= 0x1;
691
692 next_trb(xhci, ep_ring, &new_seg, &new_deq);
693
694 /* Search wrapped around, bail out */
695 if (new_deq == ep->ring->dequeue) {
696 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
697 return -EINVAL;
698 }
699
700 } while (!cycle_found || !td_last_trb_found);
701
702 deq_found:
703
704 /* Don't update the ring cycle state for the producer (us). */
705 addr = xhci_trb_virt_to_dma(new_seg, new_deq);
706 if (addr == 0) {
707 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n");
708 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq);
709 return -EINVAL;
710 }
711
712 if ((ep->ep_state & SET_DEQ_PENDING)) {
713 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n",
714 &addr);
715 return -EBUSY;
716 }
717
718 /* This function gets called from contexts where it cannot sleep */
719 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
720 if (!cmd) {
721 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr);
722 return -ENOMEM;
723 }
724
725 if (stream_id)
726 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
727 ret = queue_command(xhci, cmd,
728 lower_32_bits(addr) | trb_sct | new_cycle,
729 upper_32_bits(addr),
730 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) |
731 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false);
732 if (ret < 0) {
733 xhci_free_command(xhci, cmd);
734 return ret;
735 }
736 ep->queued_deq_seg = new_seg;
737 ep->queued_deq_ptr = new_deq;
738
739 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
740 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle);
741
742 /* Stop the TD queueing code from ringing the doorbell until
743 * this command completes. The HC won't set the dequeue pointer
744 * if the ring is running, and ringing the doorbell starts the
745 * ring running.
746 */
747 ep->ep_state |= SET_DEQ_PENDING;
748 xhci_ring_cmd_db(xhci);
749 return 0;
750 }
751
752 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
753 * (The last TRB actually points to the ring enqueue pointer, which is not part
754 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
755 */
756 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
757 struct xhci_td *td, bool flip_cycle)
758 {
759 struct xhci_segment *seg = td->start_seg;
760 union xhci_trb *trb = td->first_trb;
761
762 while (1) {
763 trb_to_noop(trb, TRB_TR_NOOP);
764
765 /* flip cycle if asked to */
766 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
767 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
768
769 if (trb == td->last_trb)
770 break;
771
772 next_trb(xhci, ep_ring, &seg, &trb);
773 }
774 }
775
776 /*
777 * Must be called with xhci->lock held in interrupt context,
778 * releases and re-acquires xhci->lock
779 */
780 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
781 struct xhci_td *cur_td, int status)
782 {
783 struct urb *urb = cur_td->urb;
784 struct urb_priv *urb_priv = urb->hcpriv;
785 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
786
787 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
788 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
789 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
790 if (xhci->quirks & XHCI_AMD_PLL_FIX)
791 usb_amd_quirk_pll_enable();
792 }
793 }
794 xhci_urb_free_priv(urb_priv);
795 usb_hcd_unlink_urb_from_ep(hcd, urb);
796 trace_xhci_urb_giveback(urb);
797 usb_hcd_giveback_urb(hcd, urb, status);
798 }
799
800 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
801 struct xhci_ring *ring, struct xhci_td *td)
802 {
803 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
804 struct xhci_segment *seg = td->bounce_seg;
805 struct urb *urb = td->urb;
806 size_t len;
807
808 if (!ring || !seg || !urb)
809 return;
810
811 if (usb_urb_dir_out(urb)) {
812 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
813 DMA_TO_DEVICE);
814 return;
815 }
816
817 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
818 DMA_FROM_DEVICE);
819 /* for in tranfers we need to copy the data from bounce to sg */
820 if (urb->num_sgs) {
821 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf,
822 seg->bounce_len, seg->bounce_offs);
823 if (len != seg->bounce_len)
824 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n",
825 len, seg->bounce_len);
826 } else {
827 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf,
828 seg->bounce_len);
829 }
830 seg->bounce_len = 0;
831 seg->bounce_offs = 0;
832 }
833
834 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
835 struct xhci_ring *ep_ring, int status)
836 {
837 struct urb *urb = NULL;
838
839 /* Clean up the endpoint's TD list */
840 urb = td->urb;
841
842 /* if a bounce buffer was used to align this td then unmap it */
843 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
844
845 /* Do one last check of the actual transfer length.
846 * If the host controller said we transferred more data than the buffer
847 * length, urb->actual_length will be a very big number (since it's
848 * unsigned). Play it safe and say we didn't transfer anything.
849 */
850 if (urb->actual_length > urb->transfer_buffer_length) {
851 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
852 urb->transfer_buffer_length, urb->actual_length);
853 urb->actual_length = 0;
854 status = 0;
855 }
856 /* TD might be removed from td_list if we are giving back a cancelled URB */
857 if (!list_empty(&td->td_list))
858 list_del_init(&td->td_list);
859 /* Giving back a cancelled URB, or if a slated TD completed anyway */
860 if (!list_empty(&td->cancelled_td_list))
861 list_del_init(&td->cancelled_td_list);
862
863 inc_td_cnt(urb);
864 /* Giveback the urb when all the tds are completed */
865 if (last_td_in_urb(td)) {
866 if ((urb->actual_length != urb->transfer_buffer_length &&
867 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
868 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
869 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
870 urb, urb->actual_length,
871 urb->transfer_buffer_length, status);
872
873 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
874 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
875 status = 0;
876 xhci_giveback_urb_in_irq(xhci, td, status);
877 }
878
879 return 0;
880 }
881
882
883 /* Complete the cancelled URBs we unlinked from td_list. */
884 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep)
885 {
886 struct xhci_ring *ring;
887 struct xhci_td *td, *tmp_td;
888
889 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list,
890 cancelled_td_list) {
891
892 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb);
893
894 if (td->cancel_status == TD_CLEARED) {
895 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n",
896 __func__, td->urb);
897 xhci_td_cleanup(ep->xhci, td, ring, td->status);
898 } else {
899 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n",
900 __func__, td->urb, td->cancel_status);
901 }
902 if (ep->xhci->xhc_state & XHCI_STATE_DYING)
903 return;
904 }
905 }
906
907 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id,
908 unsigned int ep_index, enum xhci_ep_reset_type reset_type)
909 {
910 struct xhci_command *command;
911 int ret = 0;
912
913 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
914 if (!command) {
915 ret = -ENOMEM;
916 goto done;
917 }
918
919 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n",
920 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft",
921 ep_index, slot_id);
922
923 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
924 done:
925 if (ret)
926 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n",
927 slot_id, ep_index, ret);
928 return ret;
929 }
930
931 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci,
932 struct xhci_virt_ep *ep,
933 struct xhci_td *td,
934 enum xhci_ep_reset_type reset_type)
935 {
936 unsigned int slot_id = ep->vdev->slot_id;
937 int err;
938
939 /*
940 * Avoid resetting endpoint if link is inactive. Can cause host hang.
941 * Device will be reset soon to recover the link so don't do anything
942 */
943 if (ep->vdev->flags & VDEV_PORT_ERROR)
944 return -ENODEV;
945
946 /* add td to cancelled list and let reset ep handler take care of it */
947 if (reset_type == EP_HARD_RESET) {
948 ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
949 if (td && list_empty(&td->cancelled_td_list)) {
950 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
951 td->cancel_status = TD_HALTED;
952 }
953 }
954
955 if (ep->ep_state & EP_HALTED) {
956 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n",
957 ep->ep_index);
958 return 0;
959 }
960
961 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type);
962 if (err)
963 return err;
964
965 ep->ep_state |= EP_HALTED;
966
967 xhci_ring_cmd_db(xhci);
968
969 return 0;
970 }
971
972 /*
973 * Fix up the ep ring first, so HW stops executing cancelled TDs.
974 * We have the xHCI lock, so nothing can modify this list until we drop it.
975 * We're also in the event handler, so we can't get re-interrupted if another
976 * Stop Endpoint command completes.
977 *
978 * only call this when ring is not in a running state
979 */
980
981 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep)
982 {
983 struct xhci_hcd *xhci;
984 struct xhci_td *td = NULL;
985 struct xhci_td *tmp_td = NULL;
986 struct xhci_td *cached_td = NULL;
987 struct xhci_ring *ring;
988 u64 hw_deq;
989 unsigned int slot_id = ep->vdev->slot_id;
990 int err;
991
992 xhci = ep->xhci;
993
994 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) {
995 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
996 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p",
997 (unsigned long long)xhci_trb_virt_to_dma(
998 td->start_seg, td->first_trb),
999 td->urb->stream_id, td->urb);
1000 list_del_init(&td->td_list);
1001 ring = xhci_urb_to_transfer_ring(xhci, td->urb);
1002 if (!ring) {
1003 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n",
1004 td->urb, td->urb->stream_id);
1005 continue;
1006 }
1007 /*
1008 * If a ring stopped on the TD we need to cancel then we have to
1009 * move the xHC endpoint ring dequeue pointer past this TD.
1010 * Rings halted due to STALL may show hw_deq is past the stalled
1011 * TD, but still require a set TR Deq command to flush xHC cache.
1012 */
1013 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index,
1014 td->urb->stream_id);
1015 hw_deq &= ~0xf;
1016
1017 if (td->cancel_status == TD_HALTED ||
1018 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) {
1019 switch (td->cancel_status) {
1020 case TD_CLEARED: /* TD is already no-op */
1021 case TD_CLEARING_CACHE: /* set TR deq command already queued */
1022 break;
1023 case TD_DIRTY: /* TD is cached, clear it */
1024 case TD_HALTED:
1025 td->cancel_status = TD_CLEARING_CACHE;
1026 if (cached_td)
1027 /* FIXME stream case, several stopped rings */
1028 xhci_dbg(xhci,
1029 "Move dq past stream %u URB %p instead of stream %u URB %p\n",
1030 td->urb->stream_id, td->urb,
1031 cached_td->urb->stream_id, cached_td->urb);
1032 cached_td = td;
1033 break;
1034 }
1035 } else {
1036 td_to_noop(xhci, ring, td, false);
1037 td->cancel_status = TD_CLEARED;
1038 }
1039 }
1040
1041 /* If there's no need to move the dequeue pointer then we're done */
1042 if (!cached_td)
1043 return 0;
1044
1045 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index,
1046 cached_td->urb->stream_id,
1047 cached_td);
1048 if (err) {
1049 /* Failed to move past cached td, just set cached TDs to no-op */
1050 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) {
1051 if (td->cancel_status != TD_CLEARING_CACHE)
1052 continue;
1053 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n",
1054 td->urb);
1055 td_to_noop(xhci, ring, td, false);
1056 td->cancel_status = TD_CLEARED;
1057 }
1058 }
1059 return 0;
1060 }
1061
1062 /*
1063 * Returns the TD the endpoint ring halted on.
1064 * Only call for non-running rings without streams.
1065 */
1066 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep)
1067 {
1068 struct xhci_td *td;
1069 u64 hw_deq;
1070
1071 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */
1072 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0);
1073 hw_deq &= ~0xf;
1074 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list);
1075 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb,
1076 td->last_trb, hw_deq, false))
1077 return td;
1078 }
1079 return NULL;
1080 }
1081
1082 /*
1083 * When we get a command completion for a Stop Endpoint Command, we need to
1084 * unlink any cancelled TDs from the ring. There are two ways to do that:
1085 *
1086 * 1. If the HW was in the middle of processing the TD that needs to be
1087 * cancelled, then we must move the ring's dequeue pointer past the last TRB
1088 * in the TD with a Set Dequeue Pointer Command.
1089 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
1090 * bit cleared) so that the HW will skip over them.
1091 */
1092 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
1093 union xhci_trb *trb, u32 comp_code)
1094 {
1095 unsigned int ep_index;
1096 struct xhci_virt_ep *ep;
1097 struct xhci_ep_ctx *ep_ctx;
1098 struct xhci_td *td = NULL;
1099 enum xhci_ep_reset_type reset_type;
1100 struct xhci_command *command;
1101 int err;
1102
1103 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
1104 if (!xhci->devs[slot_id])
1105 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n",
1106 slot_id);
1107 return;
1108 }
1109
1110 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1111 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1112 if (!ep)
1113 return;
1114
1115 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
1116
1117 trace_xhci_handle_cmd_stop_ep(ep_ctx);
1118
1119 if (comp_code == COMP_CONTEXT_STATE_ERROR) {
1120 /*
1121 * If stop endpoint command raced with a halting endpoint we need to
1122 * reset the host side endpoint first.
1123 * If the TD we halted on isn't cancelled the TD should be given back
1124 * with a proper error code, and the ring dequeue moved past the TD.
1125 * If streams case we can't find hw_deq, or the TD we halted on so do a
1126 * soft reset.
1127 *
1128 * Proper error code is unknown here, it would be -EPIPE if device side
1129 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error)
1130 * We use -EPROTO, if device is stalled it should return a stall error on
1131 * next transfer, which then will return -EPIPE, and device side stall is
1132 * noted and cleared by class driver.
1133 */
1134 switch (GET_EP_CTX_STATE(ep_ctx)) {
1135 case EP_STATE_HALTED:
1136 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n");
1137 if (ep->ep_state & EP_HAS_STREAMS) {
1138 reset_type = EP_SOFT_RESET;
1139 } else {
1140 reset_type = EP_HARD_RESET;
1141 td = find_halted_td(ep);
1142 if (td)
1143 td->status = -EPROTO;
1144 }
1145 /* reset ep, reset handler cleans up cancelled tds */
1146 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type);
1147 if (err)
1148 break;
1149 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1150 return;
1151 case EP_STATE_RUNNING:
1152 /* Race, HW handled stop ep cmd before ep was running */
1153 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n");
1154
1155 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1156 if (!command) {
1157 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1158 return;
1159 }
1160 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0);
1161 xhci_ring_cmd_db(xhci);
1162
1163 return;
1164 default:
1165 break;
1166 }
1167 }
1168
1169 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */
1170 xhci_invalidate_cancelled_tds(ep);
1171 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1172
1173 /* Otherwise ring the doorbell(s) to restart queued transfers */
1174 xhci_giveback_invalidated_tds(ep);
1175 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1176 }
1177
1178 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
1179 {
1180 struct xhci_td *cur_td;
1181 struct xhci_td *tmp;
1182
1183 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
1184 list_del_init(&cur_td->td_list);
1185
1186 if (!list_empty(&cur_td->cancelled_td_list))
1187 list_del_init(&cur_td->cancelled_td_list);
1188
1189 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
1190
1191 inc_td_cnt(cur_td->urb);
1192 if (last_td_in_urb(cur_td))
1193 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
1194 }
1195 }
1196
1197 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
1198 int slot_id, int ep_index)
1199 {
1200 struct xhci_td *cur_td;
1201 struct xhci_td *tmp;
1202 struct xhci_virt_ep *ep;
1203 struct xhci_ring *ring;
1204
1205 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1206 if (!ep)
1207 return;
1208
1209 if ((ep->ep_state & EP_HAS_STREAMS) ||
1210 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
1211 int stream_id;
1212
1213 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
1214 stream_id++) {
1215 ring = ep->stream_info->stream_rings[stream_id];
1216 if (!ring)
1217 continue;
1218
1219 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1220 "Killing URBs for slot ID %u, ep index %u, stream %u",
1221 slot_id, ep_index, stream_id);
1222 xhci_kill_ring_urbs(xhci, ring);
1223 }
1224 } else {
1225 ring = ep->ring;
1226 if (!ring)
1227 return;
1228 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1229 "Killing URBs for slot ID %u, ep index %u",
1230 slot_id, ep_index);
1231 xhci_kill_ring_urbs(xhci, ring);
1232 }
1233
1234 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
1235 cancelled_td_list) {
1236 list_del_init(&cur_td->cancelled_td_list);
1237 inc_td_cnt(cur_td->urb);
1238
1239 if (last_td_in_urb(cur_td))
1240 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
1241 }
1242 }
1243
1244 /*
1245 * host controller died, register read returns 0xffffffff
1246 * Complete pending commands, mark them ABORTED.
1247 * URBs need to be given back as usb core might be waiting with device locks
1248 * held for the URBs to finish during device disconnect, blocking host remove.
1249 *
1250 * Call with xhci->lock held.
1251 * lock is relased and re-acquired while giving back urb.
1252 */
1253 void xhci_hc_died(struct xhci_hcd *xhci)
1254 {
1255 int i, j;
1256
1257 if (xhci->xhc_state & XHCI_STATE_DYING)
1258 return;
1259
1260 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
1261 xhci->xhc_state |= XHCI_STATE_DYING;
1262
1263 xhci_cleanup_command_queue(xhci);
1264
1265 /* return any pending urbs, remove may be waiting for them */
1266 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1267 if (!xhci->devs[i])
1268 continue;
1269 for (j = 0; j < 31; j++)
1270 xhci_kill_endpoint_urbs(xhci, i, j);
1271 }
1272
1273 /* inform usb core hc died if PCI remove isn't already handling it */
1274 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
1275 usb_hc_died(xhci_to_hcd(xhci));
1276 }
1277
1278 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1279 struct xhci_virt_device *dev,
1280 struct xhci_ring *ep_ring,
1281 unsigned int ep_index)
1282 {
1283 union xhci_trb *dequeue_temp;
1284
1285 dequeue_temp = ep_ring->dequeue;
1286
1287 /* If we get two back-to-back stalls, and the first stalled transfer
1288 * ends just before a link TRB, the dequeue pointer will be left on
1289 * the link TRB by the code in the while loop. So we have to update
1290 * the dequeue pointer one segment further, or we'll jump off
1291 * the segment into la-la-land.
1292 */
1293 if (trb_is_link(ep_ring->dequeue)) {
1294 ep_ring->deq_seg = ep_ring->deq_seg->next;
1295 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1296 }
1297
1298 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1299 /* We have more usable TRBs */
1300 ep_ring->dequeue++;
1301 if (trb_is_link(ep_ring->dequeue)) {
1302 if (ep_ring->dequeue ==
1303 dev->eps[ep_index].queued_deq_ptr)
1304 break;
1305 ep_ring->deq_seg = ep_ring->deq_seg->next;
1306 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1307 }
1308 if (ep_ring->dequeue == dequeue_temp) {
1309 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1310 break;
1311 }
1312 }
1313 }
1314
1315 /*
1316 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1317 * we need to clear the set deq pending flag in the endpoint ring state, so that
1318 * the TD queueing code can ring the doorbell again. We also need to ring the
1319 * endpoint doorbell to restart the ring, but only if there aren't more
1320 * cancellations pending.
1321 */
1322 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1323 union xhci_trb *trb, u32 cmd_comp_code)
1324 {
1325 unsigned int ep_index;
1326 unsigned int stream_id;
1327 struct xhci_ring *ep_ring;
1328 struct xhci_virt_ep *ep;
1329 struct xhci_ep_ctx *ep_ctx;
1330 struct xhci_slot_ctx *slot_ctx;
1331 struct xhci_td *td, *tmp_td;
1332
1333 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1334 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1335 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1336 if (!ep)
1337 return;
1338
1339 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id);
1340 if (!ep_ring) {
1341 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1342 stream_id);
1343 /* XXX: Harmless??? */
1344 goto cleanup;
1345 }
1346
1347 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
1348 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx);
1349 trace_xhci_handle_cmd_set_deq(slot_ctx);
1350 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1351
1352 if (cmd_comp_code != COMP_SUCCESS) {
1353 unsigned int ep_state;
1354 unsigned int slot_state;
1355
1356 switch (cmd_comp_code) {
1357 case COMP_TRB_ERROR:
1358 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1359 break;
1360 case COMP_CONTEXT_STATE_ERROR:
1361 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1362 ep_state = GET_EP_CTX_STATE(ep_ctx);
1363 slot_state = le32_to_cpu(slot_ctx->dev_state);
1364 slot_state = GET_SLOT_STATE(slot_state);
1365 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1366 "Slot state = %u, EP state = %u",
1367 slot_state, ep_state);
1368 break;
1369 case COMP_SLOT_NOT_ENABLED_ERROR:
1370 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1371 slot_id);
1372 break;
1373 default:
1374 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1375 cmd_comp_code);
1376 break;
1377 }
1378 /* OK what do we do now? The endpoint state is hosed, and we
1379 * should never get to this point if the synchronization between
1380 * queueing, and endpoint state are correct. This might happen
1381 * if the device gets disconnected after we've finished
1382 * cancelling URBs, which might not be an error...
1383 */
1384 } else {
1385 u64 deq;
1386 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1387 if (ep->ep_state & EP_HAS_STREAMS) {
1388 struct xhci_stream_ctx *ctx =
1389 &ep->stream_info->stream_ctx_array[stream_id];
1390 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1391 } else {
1392 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1393 }
1394 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1395 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1396 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1397 ep->queued_deq_ptr) == deq) {
1398 /* Update the ring's dequeue segment and dequeue pointer
1399 * to reflect the new position.
1400 */
1401 update_ring_for_set_deq_completion(xhci, ep->vdev,
1402 ep_ring, ep_index);
1403 } else {
1404 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1405 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1406 ep->queued_deq_seg, ep->queued_deq_ptr);
1407 }
1408 }
1409 /* HW cached TDs cleared from cache, give them back */
1410 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list,
1411 cancelled_td_list) {
1412 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb);
1413 if (td->cancel_status == TD_CLEARING_CACHE) {
1414 td->cancel_status = TD_CLEARED;
1415 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n",
1416 __func__, td->urb);
1417 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status);
1418 } else {
1419 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n",
1420 __func__, td->urb, td->cancel_status);
1421 }
1422 }
1423 cleanup:
1424 ep->ep_state &= ~SET_DEQ_PENDING;
1425 ep->queued_deq_seg = NULL;
1426 ep->queued_deq_ptr = NULL;
1427 /* Restart any rings with pending URBs */
1428 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1429 }
1430
1431 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1432 union xhci_trb *trb, u32 cmd_comp_code)
1433 {
1434 struct xhci_virt_ep *ep;
1435 struct xhci_ep_ctx *ep_ctx;
1436 unsigned int ep_index;
1437
1438 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1439 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1440 if (!ep)
1441 return;
1442
1443 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
1444 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1445
1446 /* This command will only fail if the endpoint wasn't halted,
1447 * but we don't care.
1448 */
1449 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1450 "Ignoring reset ep completion code of %u", cmd_comp_code);
1451
1452 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */
1453 xhci_invalidate_cancelled_tds(ep);
1454
1455 /* Clear our internal halted state */
1456 ep->ep_state &= ~EP_HALTED;
1457
1458 xhci_giveback_invalidated_tds(ep);
1459
1460 /* if this was a soft reset, then restart */
1461 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
1462 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1463 }
1464
1465 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1466 struct xhci_command *command, u32 cmd_comp_code)
1467 {
1468 if (cmd_comp_code == COMP_SUCCESS)
1469 command->slot_id = slot_id;
1470 else
1471 command->slot_id = 0;
1472 }
1473
1474 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1475 {
1476 struct xhci_virt_device *virt_dev;
1477 struct xhci_slot_ctx *slot_ctx;
1478
1479 virt_dev = xhci->devs[slot_id];
1480 if (!virt_dev)
1481 return;
1482
1483 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1484 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1485
1486 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1487 /* Delete default control endpoint resources */
1488 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1489 }
1490
1491 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1492 u32 cmd_comp_code)
1493 {
1494 struct xhci_virt_device *virt_dev;
1495 struct xhci_input_control_ctx *ctrl_ctx;
1496 struct xhci_ep_ctx *ep_ctx;
1497 unsigned int ep_index;
1498 u32 add_flags;
1499
1500 /*
1501 * Configure endpoint commands can come from the USB core configuration
1502 * or alt setting changes, or when streams were being configured.
1503 */
1504
1505 virt_dev = xhci->devs[slot_id];
1506 if (!virt_dev)
1507 return;
1508 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1509 if (!ctrl_ctx) {
1510 xhci_warn(xhci, "Could not get input context, bad type.\n");
1511 return;
1512 }
1513
1514 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1515
1516 /* Input ctx add_flags are the endpoint index plus one */
1517 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1518
1519 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1520 trace_xhci_handle_cmd_config_ep(ep_ctx);
1521
1522 return;
1523 }
1524
1525 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1526 {
1527 struct xhci_virt_device *vdev;
1528 struct xhci_slot_ctx *slot_ctx;
1529
1530 vdev = xhci->devs[slot_id];
1531 if (!vdev)
1532 return;
1533 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1534 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1535 }
1536
1537 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id)
1538 {
1539 struct xhci_virt_device *vdev;
1540 struct xhci_slot_ctx *slot_ctx;
1541
1542 vdev = xhci->devs[slot_id];
1543 if (!vdev) {
1544 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n",
1545 slot_id);
1546 return;
1547 }
1548 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1549 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1550
1551 xhci_dbg(xhci, "Completed reset device command.\n");
1552 }
1553
1554 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1555 struct xhci_event_cmd *event)
1556 {
1557 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1558 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1559 return;
1560 }
1561 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1562 "NEC firmware version %2x.%02x",
1563 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1564 NEC_FW_MINOR(le32_to_cpu(event->status)));
1565 }
1566
1567 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1568 {
1569 list_del(&cmd->cmd_list);
1570
1571 if (cmd->completion) {
1572 cmd->status = status;
1573 complete(cmd->completion);
1574 } else {
1575 kfree(cmd);
1576 }
1577 }
1578
1579 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1580 {
1581 struct xhci_command *cur_cmd, *tmp_cmd;
1582 xhci->current_cmd = NULL;
1583 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1584 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1585 }
1586
1587 void xhci_handle_command_timeout(struct work_struct *work)
1588 {
1589 struct xhci_hcd *xhci;
1590 unsigned long flags;
1591 char str[XHCI_MSG_MAX];
1592 u64 hw_ring_state;
1593 u32 cmd_field3;
1594 u32 usbsts;
1595
1596 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1597
1598 spin_lock_irqsave(&xhci->lock, flags);
1599
1600 /*
1601 * If timeout work is pending, or current_cmd is NULL, it means we
1602 * raced with command completion. Command is handled so just return.
1603 */
1604 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1605 spin_unlock_irqrestore(&xhci->lock, flags);
1606 return;
1607 }
1608
1609 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]);
1610 usbsts = readl(&xhci->op_regs->status);
1611 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts));
1612
1613 /* Bail out and tear down xhci if a stop endpoint command failed */
1614 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) {
1615 struct xhci_virt_ep *ep;
1616
1617 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n");
1618
1619 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3),
1620 TRB_TO_EP_INDEX(cmd_field3));
1621 if (ep)
1622 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1623
1624 xhci_halt(xhci);
1625 xhci_hc_died(xhci);
1626 goto time_out_completed;
1627 }
1628
1629 /* mark this command to be cancelled */
1630 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1631
1632 /* Make sure command ring is running before aborting it */
1633 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1634 if (hw_ring_state == ~(u64)0) {
1635 xhci_hc_died(xhci);
1636 goto time_out_completed;
1637 }
1638
1639 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1640 (hw_ring_state & CMD_RING_RUNNING)) {
1641 /* Prevent new doorbell, and start command abort */
1642 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1643 xhci_dbg(xhci, "Command timeout\n");
1644 xhci_abort_cmd_ring(xhci, flags);
1645 goto time_out_completed;
1646 }
1647
1648 /* host removed. Bail out */
1649 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1650 xhci_dbg(xhci, "host removed, ring start fail?\n");
1651 xhci_cleanup_command_queue(xhci);
1652
1653 goto time_out_completed;
1654 }
1655
1656 /* command timeout on stopped ring, ring can't be aborted */
1657 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1658 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1659
1660 time_out_completed:
1661 spin_unlock_irqrestore(&xhci->lock, flags);
1662 return;
1663 }
1664
1665 static void handle_cmd_completion(struct xhci_hcd *xhci,
1666 struct xhci_event_cmd *event)
1667 {
1668 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1669 u64 cmd_dma;
1670 dma_addr_t cmd_dequeue_dma;
1671 u32 cmd_comp_code;
1672 union xhci_trb *cmd_trb;
1673 struct xhci_command *cmd;
1674 u32 cmd_type;
1675
1676 if (slot_id >= MAX_HC_SLOTS) {
1677 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id);
1678 return;
1679 }
1680
1681 cmd_dma = le64_to_cpu(event->cmd_trb);
1682 cmd_trb = xhci->cmd_ring->dequeue;
1683
1684 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1685
1686 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1687 cmd_trb);
1688 /*
1689 * Check whether the completion event is for our internal kept
1690 * command.
1691 */
1692 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1693 xhci_warn(xhci,
1694 "ERROR mismatched command completion event\n");
1695 return;
1696 }
1697
1698 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1699
1700 cancel_delayed_work(&xhci->cmd_timer);
1701
1702 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1703
1704 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1705 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1706 complete_all(&xhci->cmd_ring_stop_completion);
1707 return;
1708 }
1709
1710 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1711 xhci_err(xhci,
1712 "Command completion event does not match command\n");
1713 return;
1714 }
1715
1716 /*
1717 * Host aborted the command ring, check if the current command was
1718 * supposed to be aborted, otherwise continue normally.
1719 * The command ring is stopped now, but the xHC will issue a Command
1720 * Ring Stopped event which will cause us to restart it.
1721 */
1722 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1723 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1724 if (cmd->status == COMP_COMMAND_ABORTED) {
1725 if (xhci->current_cmd == cmd)
1726 xhci->current_cmd = NULL;
1727 goto event_handled;
1728 }
1729 }
1730
1731 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1732 switch (cmd_type) {
1733 case TRB_ENABLE_SLOT:
1734 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1735 break;
1736 case TRB_DISABLE_SLOT:
1737 xhci_handle_cmd_disable_slot(xhci, slot_id);
1738 break;
1739 case TRB_CONFIG_EP:
1740 if (!cmd->completion)
1741 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code);
1742 break;
1743 case TRB_EVAL_CONTEXT:
1744 break;
1745 case TRB_ADDR_DEV:
1746 xhci_handle_cmd_addr_dev(xhci, slot_id);
1747 break;
1748 case TRB_STOP_RING:
1749 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1750 le32_to_cpu(cmd_trb->generic.field[3])));
1751 if (!cmd->completion)
1752 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb,
1753 cmd_comp_code);
1754 break;
1755 case TRB_SET_DEQ:
1756 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1757 le32_to_cpu(cmd_trb->generic.field[3])));
1758 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1759 break;
1760 case TRB_CMD_NOOP:
1761 /* Is this an aborted command turned to NO-OP? */
1762 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1763 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1764 break;
1765 case TRB_RESET_EP:
1766 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1767 le32_to_cpu(cmd_trb->generic.field[3])));
1768 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1769 break;
1770 case TRB_RESET_DEV:
1771 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1772 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1773 */
1774 slot_id = TRB_TO_SLOT_ID(
1775 le32_to_cpu(cmd_trb->generic.field[3]));
1776 xhci_handle_cmd_reset_dev(xhci, slot_id);
1777 break;
1778 case TRB_NEC_GET_FW:
1779 xhci_handle_cmd_nec_get_fw(xhci, event);
1780 break;
1781 default:
1782 /* Skip over unknown commands on the event ring */
1783 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1784 break;
1785 }
1786
1787 /* restart timer if this wasn't the last command */
1788 if (!list_is_singular(&xhci->cmd_list)) {
1789 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1790 struct xhci_command, cmd_list);
1791 xhci_mod_cmd_timer(xhci);
1792 } else if (xhci->current_cmd == cmd) {
1793 xhci->current_cmd = NULL;
1794 }
1795
1796 event_handled:
1797 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1798
1799 inc_deq(xhci, xhci->cmd_ring);
1800 }
1801
1802 static void handle_vendor_event(struct xhci_hcd *xhci,
1803 union xhci_trb *event, u32 trb_type)
1804 {
1805 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1806 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1807 handle_cmd_completion(xhci, &event->event_cmd);
1808 }
1809
1810 static void handle_device_notification(struct xhci_hcd *xhci,
1811 union xhci_trb *event)
1812 {
1813 u32 slot_id;
1814 struct usb_device *udev;
1815
1816 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1817 if (!xhci->devs[slot_id]) {
1818 xhci_warn(xhci, "Device Notification event for "
1819 "unused slot %u\n", slot_id);
1820 return;
1821 }
1822
1823 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1824 slot_id);
1825 udev = xhci->devs[slot_id]->udev;
1826 if (udev && udev->parent)
1827 usb_wakeup_notification(udev->parent, udev->portnum);
1828 }
1829
1830 /*
1831 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
1832 * Controller.
1833 * As per ThunderX2errata-129 USB 2 device may come up as USB 1
1834 * If a connection to a USB 1 device is followed by another connection
1835 * to a USB 2 device.
1836 *
1837 * Reset the PHY after the USB device is disconnected if device speed
1838 * is less than HCD_USB3.
1839 * Retry the reset sequence max of 4 times checking the PLL lock status.
1840 *
1841 */
1842 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
1843 {
1844 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1845 u32 pll_lock_check;
1846 u32 retry_count = 4;
1847
1848 do {
1849 /* Assert PHY reset */
1850 writel(0x6F, hcd->regs + 0x1048);
1851 udelay(10);
1852 /* De-assert the PHY reset */
1853 writel(0x7F, hcd->regs + 0x1048);
1854 udelay(200);
1855 pll_lock_check = readl(hcd->regs + 0x1070);
1856 } while (!(pll_lock_check & 0x1) && --retry_count);
1857 }
1858
1859 static void handle_port_status(struct xhci_hcd *xhci,
1860 struct xhci_interrupter *ir,
1861 union xhci_trb *event)
1862 {
1863 struct usb_hcd *hcd;
1864 u32 port_id;
1865 u32 portsc, cmd_reg;
1866 int max_ports;
1867 int slot_id;
1868 unsigned int hcd_portnum;
1869 struct xhci_bus_state *bus_state;
1870 bool bogus_port_status = false;
1871 struct xhci_port *port;
1872
1873 /* Port status change events always have a successful completion code */
1874 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1875 xhci_warn(xhci,
1876 "WARN: xHC returned failed port status event\n");
1877
1878 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1879 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1880
1881 if ((port_id <= 0) || (port_id > max_ports)) {
1882 xhci_warn(xhci, "Port change event with invalid port ID %d\n",
1883 port_id);
1884 return;
1885 }
1886
1887 port = &xhci->hw_ports[port_id - 1];
1888 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1889 xhci_warn(xhci, "Port change event, no port for port ID %u\n",
1890 port_id);
1891 bogus_port_status = true;
1892 goto cleanup;
1893 }
1894
1895 /* We might get interrupts after shared_hcd is removed */
1896 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
1897 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
1898 bogus_port_status = true;
1899 goto cleanup;
1900 }
1901
1902 hcd = port->rhub->hcd;
1903 bus_state = &port->rhub->bus_state;
1904 hcd_portnum = port->hcd_portnum;
1905 portsc = readl(port->addr);
1906
1907 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n",
1908 hcd->self.busnum, hcd_portnum + 1, port_id, portsc);
1909
1910 trace_xhci_handle_port_status(port, portsc);
1911
1912 if (hcd->state == HC_STATE_SUSPENDED) {
1913 xhci_dbg(xhci, "resume root hub\n");
1914 usb_hcd_resume_root_hub(hcd);
1915 }
1916
1917 if (hcd->speed >= HCD_USB3 &&
1918 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) {
1919 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1920 if (slot_id && xhci->devs[slot_id])
1921 xhci->devs[slot_id]->flags |= VDEV_PORT_ERROR;
1922 }
1923
1924 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1925 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1926
1927 cmd_reg = readl(&xhci->op_regs->command);
1928 if (!(cmd_reg & CMD_RUN)) {
1929 xhci_warn(xhci, "xHC is not running.\n");
1930 goto cleanup;
1931 }
1932
1933 if (DEV_SUPERSPEED_ANY(portsc)) {
1934 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1935 /* Set a flag to say the port signaled remote wakeup,
1936 * so we can tell the difference between the end of
1937 * device and host initiated resume.
1938 */
1939 bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1940 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1941 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1942 xhci_set_link_state(xhci, port, XDEV_U0);
1943 /* Need to wait until the next link state change
1944 * indicates the device is actually in U0.
1945 */
1946 bogus_port_status = true;
1947 goto cleanup;
1948 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1949 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1950 port->resume_timestamp = jiffies +
1951 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1952 set_bit(hcd_portnum, &bus_state->resuming_ports);
1953 /* Do the rest in GetPortStatus after resume time delay.
1954 * Avoid polling roothub status before that so that a
1955 * usb device auto-resume latency around ~40ms.
1956 */
1957 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1958 mod_timer(&hcd->rh_timer,
1959 port->resume_timestamp);
1960 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1961 bogus_port_status = true;
1962 }
1963 }
1964
1965 if ((portsc & PORT_PLC) &&
1966 DEV_SUPERSPEED_ANY(portsc) &&
1967 ((portsc & PORT_PLS_MASK) == XDEV_U0 ||
1968 (portsc & PORT_PLS_MASK) == XDEV_U1 ||
1969 (portsc & PORT_PLS_MASK) == XDEV_U2)) {
1970 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1971 complete(&port->u3exit_done);
1972 /* We've just brought the device into U0/1/2 through either the
1973 * Resume state after a device remote wakeup, or through the
1974 * U3Exit state after a host-initiated resume. If it's a device
1975 * initiated remote wake, don't pass up the link state change,
1976 * so the roothub behavior is consistent with external
1977 * USB 3.0 hub behavior.
1978 */
1979 slot_id = xhci_find_slot_id_by_port(hcd, xhci, hcd_portnum + 1);
1980 if (slot_id && xhci->devs[slot_id])
1981 xhci_ring_device(xhci, slot_id);
1982 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
1983 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1984 usb_wakeup_notification(hcd->self.root_hub,
1985 hcd_portnum + 1);
1986 bogus_port_status = true;
1987 goto cleanup;
1988 }
1989 }
1990
1991 /*
1992 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
1993 * RExit to a disconnect state). If so, let the driver know it's
1994 * out of the RExit state.
1995 */
1996 if (hcd->speed < HCD_USB3 && port->rexit_active) {
1997 complete(&port->rexit_done);
1998 port->rexit_active = false;
1999 bogus_port_status = true;
2000 goto cleanup;
2001 }
2002
2003 if (hcd->speed < HCD_USB3) {
2004 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
2005 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
2006 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
2007 xhci_cavium_reset_phy_quirk(xhci);
2008 }
2009
2010 cleanup:
2011
2012 /* Don't make the USB core poll the roothub if we got a bad port status
2013 * change event. Besides, at that point we can't tell which roothub
2014 * (USB 2.0 or USB 3.0) to kick.
2015 */
2016 if (bogus_port_status)
2017 return;
2018
2019 /*
2020 * xHCI port-status-change events occur when the "or" of all the
2021 * status-change bits in the portsc register changes from 0 to 1.
2022 * New status changes won't cause an event if any other change
2023 * bits are still set. When an event occurs, switch over to
2024 * polling to avoid losing status changes.
2025 */
2026 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
2027 __func__, hcd->self.busnum);
2028 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2029 spin_unlock(&xhci->lock);
2030 /* Pass this up to the core */
2031 usb_hcd_poll_rh_status(hcd);
2032 spin_lock(&xhci->lock);
2033 }
2034
2035 /*
2036 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
2037 * at end_trb, which may be in another segment. If the suspect DMA address is a
2038 * TRB in this TD, this function returns that TRB's segment. Otherwise it
2039 * returns 0.
2040 */
2041 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
2042 struct xhci_segment *start_seg,
2043 union xhci_trb *start_trb,
2044 union xhci_trb *end_trb,
2045 dma_addr_t suspect_dma,
2046 bool debug)
2047 {
2048 dma_addr_t start_dma;
2049 dma_addr_t end_seg_dma;
2050 dma_addr_t end_trb_dma;
2051 struct xhci_segment *cur_seg;
2052
2053 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
2054 cur_seg = start_seg;
2055
2056 do {
2057 if (start_dma == 0)
2058 return NULL;
2059 /* We may get an event for a Link TRB in the middle of a TD */
2060 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
2061 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
2062 /* If the end TRB isn't in this segment, this is set to 0 */
2063 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
2064
2065 if (debug)
2066 xhci_warn(xhci,
2067 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
2068 (unsigned long long)suspect_dma,
2069 (unsigned long long)start_dma,
2070 (unsigned long long)end_trb_dma,
2071 (unsigned long long)cur_seg->dma,
2072 (unsigned long long)end_seg_dma);
2073
2074 if (end_trb_dma > 0) {
2075 /* The end TRB is in this segment, so suspect should be here */
2076 if (start_dma <= end_trb_dma) {
2077 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
2078 return cur_seg;
2079 } else {
2080 /* Case for one segment with
2081 * a TD wrapped around to the top
2082 */
2083 if ((suspect_dma >= start_dma &&
2084 suspect_dma <= end_seg_dma) ||
2085 (suspect_dma >= cur_seg->dma &&
2086 suspect_dma <= end_trb_dma))
2087 return cur_seg;
2088 }
2089 return NULL;
2090 } else {
2091 /* Might still be somewhere in this segment */
2092 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
2093 return cur_seg;
2094 }
2095 cur_seg = cur_seg->next;
2096 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
2097 } while (cur_seg != start_seg);
2098
2099 return NULL;
2100 }
2101
2102 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td,
2103 struct xhci_virt_ep *ep)
2104 {
2105 /*
2106 * As part of low/full-speed endpoint-halt processing
2107 * we must clear the TT buffer (USB 2.0 specification 11.17.5).
2108 */
2109 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) &&
2110 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) &&
2111 !(ep->ep_state & EP_CLEARING_TT)) {
2112 ep->ep_state |= EP_CLEARING_TT;
2113 td->urb->ep->hcpriv = td->urb->dev;
2114 if (usb_hub_clear_tt_buffer(td->urb))
2115 ep->ep_state &= ~EP_CLEARING_TT;
2116 }
2117 }
2118
2119 /* Check if an error has halted the endpoint ring. The class driver will
2120 * cleanup the halt for a non-default control endpoint if we indicate a stall.
2121 * However, a babble and other errors also halt the endpoint ring, and the class
2122 * driver won't clear the halt in that case, so we need to issue a Set Transfer
2123 * Ring Dequeue Pointer command manually.
2124 */
2125 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
2126 struct xhci_ep_ctx *ep_ctx,
2127 unsigned int trb_comp_code)
2128 {
2129 /* TRB completion codes that may require a manual halt cleanup */
2130 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
2131 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
2132 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
2133 /* The 0.95 spec says a babbling control endpoint
2134 * is not halted. The 0.96 spec says it is. Some HW
2135 * claims to be 0.95 compliant, but it halts the control
2136 * endpoint anyway. Check if a babble halted the
2137 * endpoint.
2138 */
2139 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
2140 return 1;
2141
2142 return 0;
2143 }
2144
2145 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
2146 {
2147 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
2148 /* Vendor defined "informational" completion code,
2149 * treat as not-an-error.
2150 */
2151 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
2152 trb_comp_code);
2153 xhci_dbg(xhci, "Treating code as success.\n");
2154 return 1;
2155 }
2156 return 0;
2157 }
2158
2159 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2160 struct xhci_ring *ep_ring, struct xhci_td *td,
2161 u32 trb_comp_code)
2162 {
2163 struct xhci_ep_ctx *ep_ctx;
2164
2165 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
2166
2167 switch (trb_comp_code) {
2168 case COMP_STOPPED_LENGTH_INVALID:
2169 case COMP_STOPPED_SHORT_PACKET:
2170 case COMP_STOPPED:
2171 /*
2172 * The "Stop Endpoint" completion will take care of any
2173 * stopped TDs. A stopped TD may be restarted, so don't update
2174 * the ring dequeue pointer or take this TD off any lists yet.
2175 */
2176 return 0;
2177 case COMP_USB_TRANSACTION_ERROR:
2178 case COMP_BABBLE_DETECTED_ERROR:
2179 case COMP_SPLIT_TRANSACTION_ERROR:
2180 /*
2181 * If endpoint context state is not halted we might be
2182 * racing with a reset endpoint command issued by a unsuccessful
2183 * stop endpoint completion (context error). In that case the
2184 * td should be on the cancelled list, and EP_HALTED flag set.
2185 *
2186 * Or then it's not halted due to the 0.95 spec stating that a
2187 * babbling control endpoint should not halt. The 0.96 spec
2188 * again says it should. Some HW claims to be 0.95 compliant,
2189 * but it halts the control endpoint anyway.
2190 */
2191 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) {
2192 /*
2193 * If EP_HALTED is set and TD is on the cancelled list
2194 * the TD and dequeue pointer will be handled by reset
2195 * ep command completion
2196 */
2197 if ((ep->ep_state & EP_HALTED) &&
2198 !list_empty(&td->cancelled_td_list)) {
2199 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n",
2200 (unsigned long long)xhci_trb_virt_to_dma(
2201 td->start_seg, td->first_trb));
2202 return 0;
2203 }
2204 /* endpoint not halted, don't reset it */
2205 break;
2206 }
2207 /* Almost same procedure as for STALL_ERROR below */
2208 xhci_clear_hub_tt_buffer(xhci, td, ep);
2209 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET);
2210 return 0;
2211 case COMP_STALL_ERROR:
2212 /*
2213 * xhci internal endpoint state will go to a "halt" state for
2214 * any stall, including default control pipe protocol stall.
2215 * To clear the host side halt we need to issue a reset endpoint
2216 * command, followed by a set dequeue command to move past the
2217 * TD.
2218 * Class drivers clear the device side halt from a functional
2219 * stall later. Hub TT buffer should only be cleared for FS/LS
2220 * devices behind HS hubs for functional stalls.
2221 */
2222 if (ep->ep_index != 0)
2223 xhci_clear_hub_tt_buffer(xhci, td, ep);
2224
2225 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET);
2226
2227 return 0; /* xhci_handle_halted_endpoint marked td cancelled */
2228 default:
2229 break;
2230 }
2231
2232 /* Update ring dequeue pointer */
2233 ep_ring->dequeue = td->last_trb;
2234 ep_ring->deq_seg = td->last_trb_seg;
2235 inc_deq(xhci, ep_ring);
2236
2237 return xhci_td_cleanup(xhci, td, ep_ring, td->status);
2238 }
2239
2240 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
2241 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
2242 union xhci_trb *stop_trb)
2243 {
2244 u32 sum;
2245 union xhci_trb *trb = ring->dequeue;
2246 struct xhci_segment *seg = ring->deq_seg;
2247
2248 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
2249 if (!trb_is_noop(trb) && !trb_is_link(trb))
2250 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
2251 }
2252 return sum;
2253 }
2254
2255 /*
2256 * Process control tds, update urb status and actual_length.
2257 */
2258 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2259 struct xhci_ring *ep_ring, struct xhci_td *td,
2260 union xhci_trb *ep_trb, struct xhci_transfer_event *event)
2261 {
2262 struct xhci_ep_ctx *ep_ctx;
2263 u32 trb_comp_code;
2264 u32 remaining, requested;
2265 u32 trb_type;
2266
2267 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2268 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
2269 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2270 requested = td->urb->transfer_buffer_length;
2271 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2272
2273 switch (trb_comp_code) {
2274 case COMP_SUCCESS:
2275 if (trb_type != TRB_STATUS) {
2276 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2277 (trb_type == TRB_DATA) ? "data" : "setup");
2278 td->status = -ESHUTDOWN;
2279 break;
2280 }
2281 td->status = 0;
2282 break;
2283 case COMP_SHORT_PACKET:
2284 td->status = 0;
2285 break;
2286 case COMP_STOPPED_SHORT_PACKET:
2287 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2288 td->urb->actual_length = remaining;
2289 else
2290 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2291 goto finish_td;
2292 case COMP_STOPPED:
2293 switch (trb_type) {
2294 case TRB_SETUP:
2295 td->urb->actual_length = 0;
2296 goto finish_td;
2297 case TRB_DATA:
2298 case TRB_NORMAL:
2299 td->urb->actual_length = requested - remaining;
2300 goto finish_td;
2301 case TRB_STATUS:
2302 td->urb->actual_length = requested;
2303 goto finish_td;
2304 default:
2305 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2306 trb_type);
2307 goto finish_td;
2308 }
2309 case COMP_STOPPED_LENGTH_INVALID:
2310 goto finish_td;
2311 default:
2312 if (!xhci_requires_manual_halt_cleanup(xhci,
2313 ep_ctx, trb_comp_code))
2314 break;
2315 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2316 trb_comp_code, ep->ep_index);
2317 fallthrough;
2318 case COMP_STALL_ERROR:
2319 /* Did we transfer part of the data (middle) phase? */
2320 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2321 td->urb->actual_length = requested - remaining;
2322 else if (!td->urb_length_set)
2323 td->urb->actual_length = 0;
2324 goto finish_td;
2325 }
2326
2327 /* stopped at setup stage, no data transferred */
2328 if (trb_type == TRB_SETUP)
2329 goto finish_td;
2330
2331 /*
2332 * if on data stage then update the actual_length of the URB and flag it
2333 * as set, so it won't be overwritten in the event for the last TRB.
2334 */
2335 if (trb_type == TRB_DATA ||
2336 trb_type == TRB_NORMAL) {
2337 td->urb_length_set = true;
2338 td->urb->actual_length = requested - remaining;
2339 xhci_dbg(xhci, "Waiting for status stage event\n");
2340 return 0;
2341 }
2342
2343 /* at status stage */
2344 if (!td->urb_length_set)
2345 td->urb->actual_length = requested;
2346
2347 finish_td:
2348 return finish_td(xhci, ep, ep_ring, td, trb_comp_code);
2349 }
2350
2351 /*
2352 * Process isochronous tds, update urb packet status and actual_length.
2353 */
2354 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2355 struct xhci_ring *ep_ring, struct xhci_td *td,
2356 union xhci_trb *ep_trb, struct xhci_transfer_event *event)
2357 {
2358 struct urb_priv *urb_priv;
2359 int idx;
2360 struct usb_iso_packet_descriptor *frame;
2361 u32 trb_comp_code;
2362 bool sum_trbs_for_length = false;
2363 u32 remaining, requested, ep_trb_len;
2364 int short_framestatus;
2365
2366 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2367 urb_priv = td->urb->hcpriv;
2368 idx = urb_priv->num_tds_done;
2369 frame = &td->urb->iso_frame_desc[idx];
2370 requested = frame->length;
2371 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2372 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2373 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2374 -EREMOTEIO : 0;
2375
2376 /* handle completion code */
2377 switch (trb_comp_code) {
2378 case COMP_SUCCESS:
2379 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */
2380 if (td->error_mid_td)
2381 break;
2382 if (remaining) {
2383 frame->status = short_framestatus;
2384 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2385 sum_trbs_for_length = true;
2386 break;
2387 }
2388 frame->status = 0;
2389 break;
2390 case COMP_SHORT_PACKET:
2391 frame->status = short_framestatus;
2392 sum_trbs_for_length = true;
2393 break;
2394 case COMP_BANDWIDTH_OVERRUN_ERROR:
2395 frame->status = -ECOMM;
2396 break;
2397 case COMP_BABBLE_DETECTED_ERROR:
2398 sum_trbs_for_length = true;
2399 fallthrough;
2400 case COMP_ISOCH_BUFFER_OVERRUN:
2401 frame->status = -EOVERFLOW;
2402 if (ep_trb != td->last_trb)
2403 td->error_mid_td = true;
2404 break;
2405 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2406 case COMP_STALL_ERROR:
2407 frame->status = -EPROTO;
2408 break;
2409 case COMP_USB_TRANSACTION_ERROR:
2410 frame->status = -EPROTO;
2411 sum_trbs_for_length = true;
2412 if (ep_trb != td->last_trb)
2413 td->error_mid_td = true;
2414 break;
2415 case COMP_STOPPED:
2416 sum_trbs_for_length = true;
2417 break;
2418 case COMP_STOPPED_SHORT_PACKET:
2419 /* field normally containing residue now contains tranferred */
2420 frame->status = short_framestatus;
2421 requested = remaining;
2422 break;
2423 case COMP_STOPPED_LENGTH_INVALID:
2424 requested = 0;
2425 remaining = 0;
2426 break;
2427 default:
2428 sum_trbs_for_length = true;
2429 frame->status = -1;
2430 break;
2431 }
2432
2433 if (td->urb_length_set)
2434 goto finish_td;
2435
2436 if (sum_trbs_for_length)
2437 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) +
2438 ep_trb_len - remaining;
2439 else
2440 frame->actual_length = requested;
2441
2442 td->urb->actual_length += frame->actual_length;
2443
2444 finish_td:
2445 /* Don't give back TD yet if we encountered an error mid TD */
2446 if (td->error_mid_td && ep_trb != td->last_trb) {
2447 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n");
2448 td->urb_length_set = true;
2449 return 0;
2450 }
2451
2452 return finish_td(xhci, ep, ep_ring, td, trb_comp_code);
2453 }
2454
2455 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2456 struct xhci_virt_ep *ep, int status)
2457 {
2458 struct urb_priv *urb_priv;
2459 struct usb_iso_packet_descriptor *frame;
2460 int idx;
2461
2462 urb_priv = td->urb->hcpriv;
2463 idx = urb_priv->num_tds_done;
2464 frame = &td->urb->iso_frame_desc[idx];
2465
2466 /* The transfer is partly done. */
2467 frame->status = -EXDEV;
2468
2469 /* calc actual length */
2470 frame->actual_length = 0;
2471
2472 /* Update ring dequeue pointer */
2473 ep->ring->dequeue = td->last_trb;
2474 ep->ring->deq_seg = td->last_trb_seg;
2475 inc_deq(xhci, ep->ring);
2476
2477 return xhci_td_cleanup(xhci, td, ep->ring, status);
2478 }
2479
2480 /*
2481 * Process bulk and interrupt tds, update urb status and actual_length.
2482 */
2483 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2484 struct xhci_ring *ep_ring, struct xhci_td *td,
2485 union xhci_trb *ep_trb, struct xhci_transfer_event *event)
2486 {
2487 struct xhci_slot_ctx *slot_ctx;
2488 u32 trb_comp_code;
2489 u32 remaining, requested, ep_trb_len;
2490
2491 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx);
2492 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2493 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2494 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2495 requested = td->urb->transfer_buffer_length;
2496
2497 switch (trb_comp_code) {
2498 case COMP_SUCCESS:
2499 ep->err_count = 0;
2500 /* handle success with untransferred data as short packet */
2501 if (ep_trb != td->last_trb || remaining) {
2502 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2503 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2504 td->urb->ep->desc.bEndpointAddress,
2505 requested, remaining);
2506 }
2507 td->status = 0;
2508 break;
2509 case COMP_SHORT_PACKET:
2510 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2511 td->urb->ep->desc.bEndpointAddress,
2512 requested, remaining);
2513 td->status = 0;
2514 break;
2515 case COMP_STOPPED_SHORT_PACKET:
2516 td->urb->actual_length = remaining;
2517 goto finish_td;
2518 case COMP_STOPPED_LENGTH_INVALID:
2519 /* stopped on ep trb with invalid length, exclude it */
2520 ep_trb_len = 0;
2521 remaining = 0;
2522 break;
2523 case COMP_USB_TRANSACTION_ERROR:
2524 if (xhci->quirks & XHCI_NO_SOFT_RETRY ||
2525 (ep->err_count++ > MAX_SOFT_RETRY) ||
2526 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
2527 break;
2528
2529 td->status = 0;
2530
2531 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET);
2532 return 0;
2533 default:
2534 /* do nothing */
2535 break;
2536 }
2537
2538 if (ep_trb == td->last_trb)
2539 td->urb->actual_length = requested - remaining;
2540 else
2541 td->urb->actual_length =
2542 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2543 ep_trb_len - remaining;
2544 finish_td:
2545 if (remaining > requested) {
2546 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2547 remaining);
2548 td->urb->actual_length = 0;
2549 }
2550
2551 return finish_td(xhci, ep, ep_ring, td, trb_comp_code);
2552 }
2553
2554 /*
2555 * If this function returns an error condition, it means it got a Transfer
2556 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2557 * At this point, the host controller is probably hosed and should be reset.
2558 */
2559 static int handle_tx_event(struct xhci_hcd *xhci,
2560 struct xhci_interrupter *ir,
2561 struct xhci_transfer_event *event)
2562 {
2563 struct xhci_virt_ep *ep;
2564 struct xhci_ring *ep_ring;
2565 unsigned int slot_id;
2566 int ep_index;
2567 struct xhci_td *td = NULL;
2568 dma_addr_t ep_trb_dma;
2569 struct xhci_segment *ep_seg;
2570 union xhci_trb *ep_trb;
2571 int status = -EINPROGRESS;
2572 struct xhci_ep_ctx *ep_ctx;
2573 u32 trb_comp_code;
2574 int td_num = 0;
2575 bool handling_skipped_tds = false;
2576
2577 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2578 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2579 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2580 ep_trb_dma = le64_to_cpu(event->buffer);
2581
2582 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
2583 if (!ep) {
2584 xhci_err(xhci, "ERROR Invalid Transfer event\n");
2585 goto err_out;
2586 }
2587
2588 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2589 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
2590
2591 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2592 xhci_err(xhci,
2593 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2594 slot_id, ep_index);
2595 goto err_out;
2596 }
2597
2598 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2599 if (!ep_ring) {
2600 switch (trb_comp_code) {
2601 case COMP_STALL_ERROR:
2602 case COMP_USB_TRANSACTION_ERROR:
2603 case COMP_INVALID_STREAM_TYPE_ERROR:
2604 case COMP_INVALID_STREAM_ID_ERROR:
2605 xhci_dbg(xhci, "Stream transaction error ep %u no id\n",
2606 ep_index);
2607 if (ep->err_count++ > MAX_SOFT_RETRY)
2608 xhci_handle_halted_endpoint(xhci, ep, NULL,
2609 EP_HARD_RESET);
2610 else
2611 xhci_handle_halted_endpoint(xhci, ep, NULL,
2612 EP_SOFT_RESET);
2613 goto cleanup;
2614 case COMP_RING_UNDERRUN:
2615 case COMP_RING_OVERRUN:
2616 case COMP_STOPPED_LENGTH_INVALID:
2617 goto cleanup;
2618 default:
2619 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2620 slot_id, ep_index);
2621 goto err_out;
2622 }
2623 }
2624
2625 /* Count current td numbers if ep->skip is set */
2626 if (ep->skip)
2627 td_num += list_count_nodes(&ep_ring->td_list);
2628
2629 /* Look for common error cases */
2630 switch (trb_comp_code) {
2631 /* Skip codes that require special handling depending on
2632 * transfer type
2633 */
2634 case COMP_SUCCESS:
2635 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2636 break;
2637 if (xhci->quirks & XHCI_TRUST_TX_LENGTH ||
2638 ep_ring->last_td_was_short)
2639 trb_comp_code = COMP_SHORT_PACKET;
2640 else
2641 xhci_warn_ratelimited(xhci,
2642 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2643 slot_id, ep_index);
2644 break;
2645 case COMP_SHORT_PACKET:
2646 break;
2647 /* Completion codes for endpoint stopped state */
2648 case COMP_STOPPED:
2649 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2650 slot_id, ep_index);
2651 break;
2652 case COMP_STOPPED_LENGTH_INVALID:
2653 xhci_dbg(xhci,
2654 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2655 slot_id, ep_index);
2656 break;
2657 case COMP_STOPPED_SHORT_PACKET:
2658 xhci_dbg(xhci,
2659 "Stopped with short packet transfer detected for slot %u ep %u\n",
2660 slot_id, ep_index);
2661 break;
2662 /* Completion codes for endpoint halted state */
2663 case COMP_STALL_ERROR:
2664 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2665 ep_index);
2666 status = -EPIPE;
2667 break;
2668 case COMP_SPLIT_TRANSACTION_ERROR:
2669 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n",
2670 slot_id, ep_index);
2671 status = -EPROTO;
2672 break;
2673 case COMP_USB_TRANSACTION_ERROR:
2674 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2675 slot_id, ep_index);
2676 status = -EPROTO;
2677 break;
2678 case COMP_BABBLE_DETECTED_ERROR:
2679 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2680 slot_id, ep_index);
2681 status = -EOVERFLOW;
2682 break;
2683 /* Completion codes for endpoint error state */
2684 case COMP_TRB_ERROR:
2685 xhci_warn(xhci,
2686 "WARN: TRB error for slot %u ep %u on endpoint\n",
2687 slot_id, ep_index);
2688 status = -EILSEQ;
2689 break;
2690 /* completion codes not indicating endpoint state change */
2691 case COMP_DATA_BUFFER_ERROR:
2692 xhci_warn(xhci,
2693 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2694 slot_id, ep_index);
2695 status = -ENOSR;
2696 break;
2697 case COMP_BANDWIDTH_OVERRUN_ERROR:
2698 xhci_warn(xhci,
2699 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2700 slot_id, ep_index);
2701 break;
2702 case COMP_ISOCH_BUFFER_OVERRUN:
2703 xhci_warn(xhci,
2704 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2705 slot_id, ep_index);
2706 break;
2707 case COMP_RING_UNDERRUN:
2708 /*
2709 * When the Isoch ring is empty, the xHC will generate
2710 * a Ring Overrun Event for IN Isoch endpoint or Ring
2711 * Underrun Event for OUT Isoch endpoint.
2712 */
2713 xhci_dbg(xhci, "underrun event on endpoint\n");
2714 if (!list_empty(&ep_ring->td_list))
2715 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2716 "still with TDs queued?\n",
2717 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2718 ep_index);
2719 goto cleanup;
2720 case COMP_RING_OVERRUN:
2721 xhci_dbg(xhci, "overrun event on endpoint\n");
2722 if (!list_empty(&ep_ring->td_list))
2723 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2724 "still with TDs queued?\n",
2725 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2726 ep_index);
2727 goto cleanup;
2728 case COMP_MISSED_SERVICE_ERROR:
2729 /*
2730 * When encounter missed service error, one or more isoc tds
2731 * may be missed by xHC.
2732 * Set skip flag of the ep_ring; Complete the missed tds as
2733 * short transfer when process the ep_ring next time.
2734 */
2735 ep->skip = true;
2736 xhci_dbg(xhci,
2737 "Miss service interval error for slot %u ep %u, set skip flag\n",
2738 slot_id, ep_index);
2739 goto cleanup;
2740 case COMP_NO_PING_RESPONSE_ERROR:
2741 ep->skip = true;
2742 xhci_dbg(xhci,
2743 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2744 slot_id, ep_index);
2745 goto cleanup;
2746
2747 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2748 /* needs disable slot command to recover */
2749 xhci_warn(xhci,
2750 "WARN: detect an incompatible device for slot %u ep %u",
2751 slot_id, ep_index);
2752 status = -EPROTO;
2753 break;
2754 default:
2755 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2756 status = 0;
2757 break;
2758 }
2759 xhci_warn(xhci,
2760 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2761 trb_comp_code, slot_id, ep_index);
2762 goto cleanup;
2763 }
2764
2765 do {
2766 /* This TRB should be in the TD at the head of this ring's
2767 * TD list.
2768 */
2769 if (list_empty(&ep_ring->td_list)) {
2770 /*
2771 * Don't print wanings if it's due to a stopped endpoint
2772 * generating an extra completion event if the device
2773 * was suspended. Or, a event for the last TRB of a
2774 * short TD we already got a short event for.
2775 * The short TD is already removed from the TD list.
2776 */
2777
2778 if (!(trb_comp_code == COMP_STOPPED ||
2779 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2780 ep_ring->last_td_was_short)) {
2781 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2782 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2783 ep_index);
2784 }
2785 if (ep->skip) {
2786 ep->skip = false;
2787 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2788 slot_id, ep_index);
2789 }
2790 if (trb_comp_code == COMP_STALL_ERROR ||
2791 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2792 trb_comp_code)) {
2793 xhci_handle_halted_endpoint(xhci, ep, NULL,
2794 EP_HARD_RESET);
2795 }
2796 goto cleanup;
2797 }
2798
2799 /* We've skipped all the TDs on the ep ring when ep->skip set */
2800 if (ep->skip && td_num == 0) {
2801 ep->skip = false;
2802 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2803 slot_id, ep_index);
2804 goto cleanup;
2805 }
2806
2807 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2808 td_list);
2809 if (ep->skip)
2810 td_num--;
2811
2812 /* Is this a TRB in the currently executing TD? */
2813 ep_seg = trb_in_td(xhci, ep_ring->deq_seg, ep_ring->dequeue,
2814 td->last_trb, ep_trb_dma, false);
2815
2816 /*
2817 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2818 * is not in the current TD pointed by ep_ring->dequeue because
2819 * that the hardware dequeue pointer still at the previous TRB
2820 * of the current TD. The previous TRB maybe a Link TD or the
2821 * last TRB of the previous TD. The command completion handle
2822 * will take care the rest.
2823 */
2824 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2825 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2826 goto cleanup;
2827 }
2828
2829 if (!ep_seg) {
2830
2831 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2832 skip_isoc_td(xhci, td, ep, status);
2833 goto cleanup;
2834 }
2835
2836 /*
2837 * Some hosts give a spurious success event after a short
2838 * transfer. Ignore it.
2839 */
2840 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2841 ep_ring->last_td_was_short) {
2842 ep_ring->last_td_was_short = false;
2843 goto cleanup;
2844 }
2845
2846 /*
2847 * xhci 4.10.2 states isoc endpoints should continue
2848 * processing the next TD if there was an error mid TD.
2849 * So host like NEC don't generate an event for the last
2850 * isoc TRB even if the IOC flag is set.
2851 * xhci 4.9.1 states that if there are errors in mult-TRB
2852 * TDs xHC should generate an error for that TRB, and if xHC
2853 * proceeds to the next TD it should genete an event for
2854 * any TRB with IOC flag on the way. Other host follow this.
2855 * So this event might be for the next TD.
2856 */
2857 if (td->error_mid_td &&
2858 !list_is_last(&td->td_list, &ep_ring->td_list)) {
2859 struct xhci_td *td_next = list_next_entry(td, td_list);
2860
2861 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb,
2862 td_next->last_trb, ep_trb_dma, false);
2863 if (ep_seg) {
2864 /* give back previous TD, start handling new */
2865 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n");
2866 ep_ring->dequeue = td->last_trb;
2867 ep_ring->deq_seg = td->last_trb_seg;
2868 inc_deq(xhci, ep_ring);
2869 xhci_td_cleanup(xhci, td, ep_ring, td->status);
2870 td = td_next;
2871 }
2872 }
2873
2874 if (!ep_seg) {
2875 /* HC is busted, give up! */
2876 xhci_err(xhci,
2877 "ERROR Transfer event TRB DMA ptr not "
2878 "part of current TD ep_index %d "
2879 "comp_code %u\n", ep_index,
2880 trb_comp_code);
2881 trb_in_td(xhci, ep_ring->deq_seg,
2882 ep_ring->dequeue, td->last_trb,
2883 ep_trb_dma, true);
2884 return -ESHUTDOWN;
2885 }
2886 }
2887 if (trb_comp_code == COMP_SHORT_PACKET)
2888 ep_ring->last_td_was_short = true;
2889 else
2890 ep_ring->last_td_was_short = false;
2891
2892 if (ep->skip) {
2893 xhci_dbg(xhci,
2894 "Found td. Clear skip flag for slot %u ep %u.\n",
2895 slot_id, ep_index);
2896 ep->skip = false;
2897 }
2898
2899 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2900 sizeof(*ep_trb)];
2901
2902 trace_xhci_handle_transfer(ep_ring,
2903 (struct xhci_generic_trb *) ep_trb);
2904
2905 /*
2906 * No-op TRB could trigger interrupts in a case where
2907 * a URB was killed and a STALL_ERROR happens right
2908 * after the endpoint ring stopped. Reset the halted
2909 * endpoint. Otherwise, the endpoint remains stalled
2910 * indefinitely.
2911 */
2912
2913 if (trb_is_noop(ep_trb)) {
2914 if (trb_comp_code == COMP_STALL_ERROR ||
2915 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2916 trb_comp_code))
2917 xhci_handle_halted_endpoint(xhci, ep, td,
2918 EP_HARD_RESET);
2919 goto cleanup;
2920 }
2921
2922 td->status = status;
2923
2924 /* update the urb's actual_length and give back to the core */
2925 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2926 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event);
2927 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2928 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event);
2929 else
2930 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event);
2931 cleanup:
2932 handling_skipped_tds = ep->skip &&
2933 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2934 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2935
2936 /*
2937 * If ep->skip is set, it means there are missed tds on the
2938 * endpoint ring need to take care of.
2939 * Process them as short transfer until reach the td pointed by
2940 * the event.
2941 */
2942 } while (handling_skipped_tds);
2943
2944 return 0;
2945
2946 err_out:
2947 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2948 (unsigned long long) xhci_trb_virt_to_dma(
2949 ir->event_ring->deq_seg,
2950 ir->event_ring->dequeue),
2951 lower_32_bits(le64_to_cpu(event->buffer)),
2952 upper_32_bits(le64_to_cpu(event->buffer)),
2953 le32_to_cpu(event->transfer_len),
2954 le32_to_cpu(event->flags));
2955 return -ENODEV;
2956 }
2957
2958 /*
2959 * This function handles all OS-owned events on the event ring. It may drop
2960 * xhci->lock between event processing (e.g. to pass up port status changes).
2961 * Returns >0 for "possibly more events to process" (caller should call again),
2962 * otherwise 0 if done. In future, <0 returns should indicate error code.
2963 */
2964 static int xhci_handle_event(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
2965 {
2966 union xhci_trb *event;
2967 u32 trb_type;
2968
2969 /* Event ring hasn't been allocated yet. */
2970 if (!ir || !ir->event_ring || !ir->event_ring->dequeue) {
2971 xhci_err(xhci, "ERROR interrupter not ready\n");
2972 return -ENOMEM;
2973 }
2974
2975 event = ir->event_ring->dequeue;
2976 /* Does the HC or OS own the TRB? */
2977 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2978 ir->event_ring->cycle_state)
2979 return 0;
2980
2981 trace_xhci_handle_event(ir->event_ring, &event->generic);
2982
2983 /*
2984 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2985 * speculative reads of the event's flags/data below.
2986 */
2987 rmb();
2988 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags));
2989 /* FIXME: Handle more event types. */
2990
2991 switch (trb_type) {
2992 case TRB_COMPLETION:
2993 handle_cmd_completion(xhci, &event->event_cmd);
2994 break;
2995 case TRB_PORT_STATUS:
2996 handle_port_status(xhci, ir, event);
2997 break;
2998 case TRB_TRANSFER:
2999 handle_tx_event(xhci, ir, &event->trans_event);
3000 break;
3001 case TRB_DEV_NOTE:
3002 handle_device_notification(xhci, event);
3003 break;
3004 default:
3005 if (trb_type >= TRB_VENDOR_DEFINED_LOW)
3006 handle_vendor_event(xhci, event, trb_type);
3007 else
3008 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type);
3009 }
3010 /* Any of the above functions may drop and re-acquire the lock, so check
3011 * to make sure a watchdog timer didn't mark the host as non-responsive.
3012 */
3013 if (xhci->xhc_state & XHCI_STATE_DYING) {
3014 xhci_dbg(xhci, "xHCI host dying, returning from "
3015 "event handler.\n");
3016 return 0;
3017 }
3018
3019 /* Update SW event ring dequeue pointer */
3020 inc_deq(xhci, ir->event_ring);
3021
3022 /* Are there more items on the event ring? Caller will call us again to
3023 * check.
3024 */
3025 return 1;
3026 }
3027
3028 /*
3029 * Update Event Ring Dequeue Pointer:
3030 * - When all events have finished
3031 * - To avoid "Event Ring Full Error" condition
3032 */
3033 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci,
3034 struct xhci_interrupter *ir,
3035 union xhci_trb *event_ring_deq,
3036 bool clear_ehb)
3037 {
3038 u64 temp_64;
3039 dma_addr_t deq;
3040
3041 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
3042 /* If necessary, update the HW's version of the event ring deq ptr. */
3043 if (event_ring_deq != ir->event_ring->dequeue) {
3044 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
3045 ir->event_ring->dequeue);
3046 if (deq == 0)
3047 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n");
3048 /*
3049 * Per 4.9.4, Software writes to the ERDP register shall
3050 * always advance the Event Ring Dequeue Pointer value.
3051 */
3052 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK))
3053 return;
3054
3055 /* Update HC event ring dequeue pointer */
3056 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK;
3057 temp_64 |= deq & ERST_PTR_MASK;
3058 }
3059
3060 /* Clear the event handler busy flag (RW1C) */
3061 if (clear_ehb)
3062 temp_64 |= ERST_EHB;
3063 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue);
3064 }
3065
3066 /*
3067 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
3068 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
3069 * indicators of an event TRB error, but we check the status *first* to be safe.
3070 */
3071 irqreturn_t xhci_irq(struct usb_hcd *hcd)
3072 {
3073 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3074 union xhci_trb *event_ring_deq;
3075 struct xhci_interrupter *ir;
3076 irqreturn_t ret = IRQ_NONE;
3077 u64 temp_64;
3078 u32 status;
3079 int event_loop = 0;
3080
3081 spin_lock(&xhci->lock);
3082 /* Check if the xHC generated the interrupt, or the irq is shared */
3083 status = readl(&xhci->op_regs->status);
3084 if (status == ~(u32)0) {
3085 xhci_hc_died(xhci);
3086 ret = IRQ_HANDLED;
3087 goto out;
3088 }
3089
3090 if (!(status & STS_EINT))
3091 goto out;
3092
3093 if (status & STS_HCE) {
3094 xhci_warn(xhci, "WARNING: Host Controller Error\n");
3095 goto out;
3096 }
3097
3098 if (status & STS_FATAL) {
3099 xhci_warn(xhci, "WARNING: Host System Error\n");
3100 xhci_halt(xhci);
3101 ret = IRQ_HANDLED;
3102 goto out;
3103 }
3104
3105 /*
3106 * Clear the op reg interrupt status first,
3107 * so we can receive interrupts from other MSI-X interrupters.
3108 * Write 1 to clear the interrupt status.
3109 */
3110 status |= STS_EINT;
3111 writel(status, &xhci->op_regs->status);
3112
3113 /* This is the handler of the primary interrupter */
3114 ir = xhci->interrupters[0];
3115 if (!hcd->msi_enabled) {
3116 u32 irq_pending;
3117 irq_pending = readl(&ir->ir_set->irq_pending);
3118 irq_pending |= IMAN_IP;
3119 writel(irq_pending, &ir->ir_set->irq_pending);
3120 }
3121
3122 if (xhci->xhc_state & XHCI_STATE_DYING ||
3123 xhci->xhc_state & XHCI_STATE_HALTED) {
3124 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
3125 "Shouldn't IRQs be disabled?\n");
3126 /* Clear the event handler busy flag (RW1C);
3127 * the event ring should be empty.
3128 */
3129 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
3130 xhci_write_64(xhci, temp_64 | ERST_EHB,
3131 &ir->ir_set->erst_dequeue);
3132 ret = IRQ_HANDLED;
3133 goto out;
3134 }
3135
3136 event_ring_deq = ir->event_ring->dequeue;
3137 /* FIXME this should be a delayed service routine
3138 * that clears the EHB.
3139 */
3140 while (xhci_handle_event(xhci, ir) > 0) {
3141 if (event_loop++ < TRBS_PER_SEGMENT / 2)
3142 continue;
3143 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, false);
3144 event_ring_deq = ir->event_ring->dequeue;
3145
3146 /* ring is half-full, force isoc trbs to interrupt more often */
3147 if (xhci->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN)
3148 xhci->isoc_bei_interval = xhci->isoc_bei_interval / 2;
3149
3150 event_loop = 0;
3151 }
3152
3153 xhci_update_erst_dequeue(xhci, ir, event_ring_deq, true);
3154 ret = IRQ_HANDLED;
3155
3156 out:
3157 spin_unlock(&xhci->lock);
3158
3159 return ret;
3160 }
3161
3162 irqreturn_t xhci_msi_irq(int irq, void *hcd)
3163 {
3164 return xhci_irq(hcd);
3165 }
3166 EXPORT_SYMBOL_GPL(xhci_msi_irq);
3167
3168 /**** Endpoint Ring Operations ****/
3169
3170 /*
3171 * Generic function for queueing a TRB on a ring.
3172 * The caller must have checked to make sure there's room on the ring.
3173 *
3174 * @more_trbs_coming: Will you enqueue more TRBs before calling
3175 * prepare_transfer()?
3176 */
3177 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
3178 bool more_trbs_coming,
3179 u32 field1, u32 field2, u32 field3, u32 field4)
3180 {
3181 struct xhci_generic_trb *trb;
3182
3183 trb = &ring->enqueue->generic;
3184 trb->field[0] = cpu_to_le32(field1);
3185 trb->field[1] = cpu_to_le32(field2);
3186 trb->field[2] = cpu_to_le32(field3);
3187 /* make sure TRB is fully written before giving it to the controller */
3188 wmb();
3189 trb->field[3] = cpu_to_le32(field4);
3190
3191 trace_xhci_queue_trb(ring, trb);
3192
3193 inc_enq(xhci, ring, more_trbs_coming);
3194 }
3195
3196 /*
3197 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
3198 * expand ring if it start to be full.
3199 */
3200 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
3201 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
3202 {
3203 unsigned int link_trb_count = 0;
3204 unsigned int new_segs = 0;
3205
3206 /* Make sure the endpoint has been added to xHC schedule */
3207 switch (ep_state) {
3208 case EP_STATE_DISABLED:
3209 /*
3210 * USB core changed config/interfaces without notifying us,
3211 * or hardware is reporting the wrong state.
3212 */
3213 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
3214 return -ENOENT;
3215 case EP_STATE_ERROR:
3216 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
3217 /* FIXME event handling code for error needs to clear it */
3218 /* XXX not sure if this should be -ENOENT or not */
3219 return -EINVAL;
3220 case EP_STATE_HALTED:
3221 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
3222 break;
3223 case EP_STATE_STOPPED:
3224 case EP_STATE_RUNNING:
3225 break;
3226 default:
3227 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
3228 /*
3229 * FIXME issue Configure Endpoint command to try to get the HC
3230 * back into a known state.
3231 */
3232 return -EINVAL;
3233 }
3234
3235 if (ep_ring != xhci->cmd_ring) {
3236 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs);
3237 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) {
3238 xhci_err(xhci, "Do not support expand command ring\n");
3239 return -ENOMEM;
3240 }
3241
3242 if (new_segs) {
3243 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
3244 "ERROR no room on ep ring, try ring expansion");
3245 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) {
3246 xhci_err(xhci, "Ring expansion failed\n");
3247 return -ENOMEM;
3248 }
3249 }
3250
3251 while (trb_is_link(ep_ring->enqueue)) {
3252 /* If we're not dealing with 0.95 hardware or isoc rings
3253 * on AMD 0.96 host, clear the chain bit.
3254 */
3255 if (!xhci_link_trb_quirk(xhci) &&
3256 !(ep_ring->type == TYPE_ISOC &&
3257 (xhci->quirks & XHCI_AMD_0x96_HOST)))
3258 ep_ring->enqueue->link.control &=
3259 cpu_to_le32(~TRB_CHAIN);
3260 else
3261 ep_ring->enqueue->link.control |=
3262 cpu_to_le32(TRB_CHAIN);
3263
3264 wmb();
3265 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
3266
3267 /* Toggle the cycle bit after the last ring segment. */
3268 if (link_trb_toggles_cycle(ep_ring->enqueue))
3269 ep_ring->cycle_state ^= 1;
3270
3271 ep_ring->enq_seg = ep_ring->enq_seg->next;
3272 ep_ring->enqueue = ep_ring->enq_seg->trbs;
3273
3274 /* prevent infinite loop if all first trbs are link trbs */
3275 if (link_trb_count++ > ep_ring->num_segs) {
3276 xhci_warn(xhci, "Ring is an endless link TRB loop\n");
3277 return -EINVAL;
3278 }
3279 }
3280
3281 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) {
3282 xhci_warn(xhci, "Missing link TRB at end of ring segment\n");
3283 return -EINVAL;
3284 }
3285
3286 return 0;
3287 }
3288
3289 static int prepare_transfer(struct xhci_hcd *xhci,
3290 struct xhci_virt_device *xdev,
3291 unsigned int ep_index,
3292 unsigned int stream_id,
3293 unsigned int num_trbs,
3294 struct urb *urb,
3295 unsigned int td_index,
3296 gfp_t mem_flags)
3297 {
3298 int ret;
3299 struct urb_priv *urb_priv;
3300 struct xhci_td *td;
3301 struct xhci_ring *ep_ring;
3302 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3303
3304 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index,
3305 stream_id);
3306 if (!ep_ring) {
3307 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3308 stream_id);
3309 return -EINVAL;
3310 }
3311
3312 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3313 num_trbs, mem_flags);
3314 if (ret)
3315 return ret;
3316
3317 urb_priv = urb->hcpriv;
3318 td = &urb_priv->td[td_index];
3319
3320 INIT_LIST_HEAD(&td->td_list);
3321 INIT_LIST_HEAD(&td->cancelled_td_list);
3322
3323 if (td_index == 0) {
3324 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3325 if (unlikely(ret))
3326 return ret;
3327 }
3328
3329 td->urb = urb;
3330 /* Add this TD to the tail of the endpoint ring's TD list */
3331 list_add_tail(&td->td_list, &ep_ring->td_list);
3332 td->start_seg = ep_ring->enq_seg;
3333 td->first_trb = ep_ring->enqueue;
3334
3335 return 0;
3336 }
3337
3338 unsigned int count_trbs(u64 addr, u64 len)
3339 {
3340 unsigned int num_trbs;
3341
3342 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3343 TRB_MAX_BUFF_SIZE);
3344 if (num_trbs == 0)
3345 num_trbs++;
3346
3347 return num_trbs;
3348 }
3349
3350 static inline unsigned int count_trbs_needed(struct urb *urb)
3351 {
3352 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
3353 }
3354
3355 static unsigned int count_sg_trbs_needed(struct urb *urb)
3356 {
3357 struct scatterlist *sg;
3358 unsigned int i, len, full_len, num_trbs = 0;
3359
3360 full_len = urb->transfer_buffer_length;
3361
3362 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3363 len = sg_dma_len(sg);
3364 num_trbs += count_trbs(sg_dma_address(sg), len);
3365 len = min_t(unsigned int, len, full_len);
3366 full_len -= len;
3367 if (full_len == 0)
3368 break;
3369 }
3370
3371 return num_trbs;
3372 }
3373
3374 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3375 {
3376 u64 addr, len;
3377
3378 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3379 len = urb->iso_frame_desc[i].length;
3380
3381 return count_trbs(addr, len);
3382 }
3383
3384 static void check_trb_math(struct urb *urb, int running_total)
3385 {
3386 if (unlikely(running_total != urb->transfer_buffer_length))
3387 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3388 "queued %#x (%d), asked for %#x (%d)\n",
3389 __func__,
3390 urb->ep->desc.bEndpointAddress,
3391 running_total, running_total,
3392 urb->transfer_buffer_length,
3393 urb->transfer_buffer_length);
3394 }
3395
3396 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3397 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3398 struct xhci_generic_trb *start_trb)
3399 {
3400 /*
3401 * Pass all the TRBs to the hardware at once and make sure this write
3402 * isn't reordered.
3403 */
3404 wmb();
3405 if (start_cycle)
3406 start_trb->field[3] |= cpu_to_le32(start_cycle);
3407 else
3408 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3409 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3410 }
3411
3412 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3413 struct xhci_ep_ctx *ep_ctx)
3414 {
3415 int xhci_interval;
3416 int ep_interval;
3417
3418 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3419 ep_interval = urb->interval;
3420
3421 /* Convert to microframes */
3422 if (urb->dev->speed == USB_SPEED_LOW ||
3423 urb->dev->speed == USB_SPEED_FULL)
3424 ep_interval *= 8;
3425
3426 /* FIXME change this to a warning and a suggestion to use the new API
3427 * to set the polling interval (once the API is added).
3428 */
3429 if (xhci_interval != ep_interval) {
3430 dev_dbg_ratelimited(&urb->dev->dev,
3431 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3432 ep_interval, ep_interval == 1 ? "" : "s",
3433 xhci_interval, xhci_interval == 1 ? "" : "s");
3434 urb->interval = xhci_interval;
3435 /* Convert back to frames for LS/FS devices */
3436 if (urb->dev->speed == USB_SPEED_LOW ||
3437 urb->dev->speed == USB_SPEED_FULL)
3438 urb->interval /= 8;
3439 }
3440 }
3441
3442 /*
3443 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3444 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3445 * (comprised of sg list entries) can take several service intervals to
3446 * transmit.
3447 */
3448 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3449 struct urb *urb, int slot_id, unsigned int ep_index)
3450 {
3451 struct xhci_ep_ctx *ep_ctx;
3452
3453 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3454 check_interval(xhci, urb, ep_ctx);
3455
3456 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3457 }
3458
3459 /*
3460 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3461 * packets remaining in the TD (*not* including this TRB).
3462 *
3463 * Total TD packet count = total_packet_count =
3464 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3465 *
3466 * Packets transferred up to and including this TRB = packets_transferred =
3467 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3468 *
3469 * TD size = total_packet_count - packets_transferred
3470 *
3471 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3472 * including this TRB, right shifted by 10
3473 *
3474 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3475 * This is taken care of in the TRB_TD_SIZE() macro
3476 *
3477 * The last TRB in a TD must have the TD size set to zero.
3478 */
3479 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3480 int trb_buff_len, unsigned int td_total_len,
3481 struct urb *urb, bool more_trbs_coming)
3482 {
3483 u32 maxp, total_packet_count;
3484
3485 /* MTK xHCI 0.96 contains some features from 1.0 */
3486 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3487 return ((td_total_len - transferred) >> 10);
3488
3489 /* One TRB with a zero-length data packet. */
3490 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3491 trb_buff_len == td_total_len)
3492 return 0;
3493
3494 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3495 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3496 trb_buff_len = 0;
3497
3498 maxp = usb_endpoint_maxp(&urb->ep->desc);
3499 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3500
3501 /* Queueing functions don't count the current TRB into transferred */
3502 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3503 }
3504
3505
3506 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3507 u32 *trb_buff_len, struct xhci_segment *seg)
3508 {
3509 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
3510 unsigned int unalign;
3511 unsigned int max_pkt;
3512 u32 new_buff_len;
3513 size_t len;
3514
3515 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3516 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3517
3518 /* we got lucky, last normal TRB data on segment is packet aligned */
3519 if (unalign == 0)
3520 return 0;
3521
3522 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3523 unalign, *trb_buff_len);
3524
3525 /* is the last nornal TRB alignable by splitting it */
3526 if (*trb_buff_len > unalign) {
3527 *trb_buff_len -= unalign;
3528 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3529 return 0;
3530 }
3531
3532 /*
3533 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3534 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3535 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3536 */
3537 new_buff_len = max_pkt - (enqd_len % max_pkt);
3538
3539 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3540 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3541
3542 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3543 if (usb_urb_dir_out(urb)) {
3544 if (urb->num_sgs) {
3545 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
3546 seg->bounce_buf, new_buff_len, enqd_len);
3547 if (len != new_buff_len)
3548 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n",
3549 len, new_buff_len);
3550 } else {
3551 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len);
3552 }
3553
3554 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3555 max_pkt, DMA_TO_DEVICE);
3556 } else {
3557 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3558 max_pkt, DMA_FROM_DEVICE);
3559 }
3560
3561 if (dma_mapping_error(dev, seg->bounce_dma)) {
3562 /* try without aligning. Some host controllers survive */
3563 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3564 return 0;
3565 }
3566 *trb_buff_len = new_buff_len;
3567 seg->bounce_len = new_buff_len;
3568 seg->bounce_offs = enqd_len;
3569
3570 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3571
3572 return 1;
3573 }
3574
3575 /* This is very similar to what ehci-q.c qtd_fill() does */
3576 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3577 struct urb *urb, int slot_id, unsigned int ep_index)
3578 {
3579 struct xhci_ring *ring;
3580 struct urb_priv *urb_priv;
3581 struct xhci_td *td;
3582 struct xhci_generic_trb *start_trb;
3583 struct scatterlist *sg = NULL;
3584 bool more_trbs_coming = true;
3585 bool need_zero_pkt = false;
3586 bool first_trb = true;
3587 unsigned int num_trbs;
3588 unsigned int start_cycle, num_sgs = 0;
3589 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3590 int sent_len, ret;
3591 u32 field, length_field, remainder;
3592 u64 addr, send_addr;
3593
3594 ring = xhci_urb_to_transfer_ring(xhci, urb);
3595 if (!ring)
3596 return -EINVAL;
3597
3598 full_len = urb->transfer_buffer_length;
3599 /* If we have scatter/gather list, we use it. */
3600 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) {
3601 num_sgs = urb->num_mapped_sgs;
3602 sg = urb->sg;
3603 addr = (u64) sg_dma_address(sg);
3604 block_len = sg_dma_len(sg);
3605 num_trbs = count_sg_trbs_needed(urb);
3606 } else {
3607 num_trbs = count_trbs_needed(urb);
3608 addr = (u64) urb->transfer_dma;
3609 block_len = full_len;
3610 }
3611 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3612 ep_index, urb->stream_id,
3613 num_trbs, urb, 0, mem_flags);
3614 if (unlikely(ret < 0))
3615 return ret;
3616
3617 urb_priv = urb->hcpriv;
3618
3619 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3620 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3621 need_zero_pkt = true;
3622
3623 td = &urb_priv->td[0];
3624
3625 /*
3626 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3627 * until we've finished creating all the other TRBs. The ring's cycle
3628 * state may change as we enqueue the other TRBs, so save it too.
3629 */
3630 start_trb = &ring->enqueue->generic;
3631 start_cycle = ring->cycle_state;
3632 send_addr = addr;
3633
3634 /* Queue the TRBs, even if they are zero-length */
3635 for (enqd_len = 0; first_trb || enqd_len < full_len;
3636 enqd_len += trb_buff_len) {
3637 field = TRB_TYPE(TRB_NORMAL);
3638
3639 /* TRB buffer should not cross 64KB boundaries */
3640 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3641 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3642
3643 if (enqd_len + trb_buff_len > full_len)
3644 trb_buff_len = full_len - enqd_len;
3645
3646 /* Don't change the cycle bit of the first TRB until later */
3647 if (first_trb) {
3648 first_trb = false;
3649 if (start_cycle == 0)
3650 field |= TRB_CYCLE;
3651 } else
3652 field |= ring->cycle_state;
3653
3654 /* Chain all the TRBs together; clear the chain bit in the last
3655 * TRB to indicate it's the last TRB in the chain.
3656 */
3657 if (enqd_len + trb_buff_len < full_len) {
3658 field |= TRB_CHAIN;
3659 if (trb_is_link(ring->enqueue + 1)) {
3660 if (xhci_align_td(xhci, urb, enqd_len,
3661 &trb_buff_len,
3662 ring->enq_seg)) {
3663 send_addr = ring->enq_seg->bounce_dma;
3664 /* assuming TD won't span 2 segs */
3665 td->bounce_seg = ring->enq_seg;
3666 }
3667 }
3668 }
3669 if (enqd_len + trb_buff_len >= full_len) {
3670 field &= ~TRB_CHAIN;
3671 field |= TRB_IOC;
3672 more_trbs_coming = false;
3673 td->last_trb = ring->enqueue;
3674 td->last_trb_seg = ring->enq_seg;
3675 if (xhci_urb_suitable_for_idt(urb)) {
3676 memcpy(&send_addr, urb->transfer_buffer,
3677 trb_buff_len);
3678 le64_to_cpus(&send_addr);
3679 field |= TRB_IDT;
3680 }
3681 }
3682
3683 /* Only set interrupt on short packet for IN endpoints */
3684 if (usb_urb_dir_in(urb))
3685 field |= TRB_ISP;
3686
3687 /* Set the TRB length, TD size, and interrupter fields. */
3688 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3689 full_len, urb, more_trbs_coming);
3690
3691 length_field = TRB_LEN(trb_buff_len) |
3692 TRB_TD_SIZE(remainder) |
3693 TRB_INTR_TARGET(0);
3694
3695 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3696 lower_32_bits(send_addr),
3697 upper_32_bits(send_addr),
3698 length_field,
3699 field);
3700 td->num_trbs++;
3701 addr += trb_buff_len;
3702 sent_len = trb_buff_len;
3703
3704 while (sg && sent_len >= block_len) {
3705 /* New sg entry */
3706 --num_sgs;
3707 sent_len -= block_len;
3708 sg = sg_next(sg);
3709 if (num_sgs != 0 && sg) {
3710 block_len = sg_dma_len(sg);
3711 addr = (u64) sg_dma_address(sg);
3712 addr += sent_len;
3713 }
3714 }
3715 block_len -= sent_len;
3716 send_addr = addr;
3717 }
3718
3719 if (need_zero_pkt) {
3720 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3721 ep_index, urb->stream_id,
3722 1, urb, 1, mem_flags);
3723 urb_priv->td[1].last_trb = ring->enqueue;
3724 urb_priv->td[1].last_trb_seg = ring->enq_seg;
3725 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3726 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3727 urb_priv->td[1].num_trbs++;
3728 }
3729
3730 check_trb_math(urb, enqd_len);
3731 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3732 start_cycle, start_trb);
3733 return 0;
3734 }
3735
3736 /* Caller must have locked xhci->lock */
3737 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3738 struct urb *urb, int slot_id, unsigned int ep_index)
3739 {
3740 struct xhci_ring *ep_ring;
3741 int num_trbs;
3742 int ret;
3743 struct usb_ctrlrequest *setup;
3744 struct xhci_generic_trb *start_trb;
3745 int start_cycle;
3746 u32 field;
3747 struct urb_priv *urb_priv;
3748 struct xhci_td *td;
3749
3750 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3751 if (!ep_ring)
3752 return -EINVAL;
3753
3754 /*
3755 * Need to copy setup packet into setup TRB, so we can't use the setup
3756 * DMA address.
3757 */
3758 if (!urb->setup_packet)
3759 return -EINVAL;
3760
3761 /* 1 TRB for setup, 1 for status */
3762 num_trbs = 2;
3763 /*
3764 * Don't need to check if we need additional event data and normal TRBs,
3765 * since data in control transfers will never get bigger than 16MB
3766 * XXX: can we get a buffer that crosses 64KB boundaries?
3767 */
3768 if (urb->transfer_buffer_length > 0)
3769 num_trbs++;
3770 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3771 ep_index, urb->stream_id,
3772 num_trbs, urb, 0, mem_flags);
3773 if (ret < 0)
3774 return ret;
3775
3776 urb_priv = urb->hcpriv;
3777 td = &urb_priv->td[0];
3778 td->num_trbs = num_trbs;
3779
3780 /*
3781 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3782 * until we've finished creating all the other TRBs. The ring's cycle
3783 * state may change as we enqueue the other TRBs, so save it too.
3784 */
3785 start_trb = &ep_ring->enqueue->generic;
3786 start_cycle = ep_ring->cycle_state;
3787
3788 /* Queue setup TRB - see section 6.4.1.2.1 */
3789 /* FIXME better way to translate setup_packet into two u32 fields? */
3790 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3791 field = 0;
3792 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3793 if (start_cycle == 0)
3794 field |= 0x1;
3795
3796 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3797 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3798 if (urb->transfer_buffer_length > 0) {
3799 if (setup->bRequestType & USB_DIR_IN)
3800 field |= TRB_TX_TYPE(TRB_DATA_IN);
3801 else
3802 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3803 }
3804 }
3805
3806 queue_trb(xhci, ep_ring, true,
3807 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3808 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3809 TRB_LEN(8) | TRB_INTR_TARGET(0),
3810 /* Immediate data in pointer */
3811 field);
3812
3813 /* If there's data, queue data TRBs */
3814 /* Only set interrupt on short packet for IN endpoints */
3815 if (usb_urb_dir_in(urb))
3816 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3817 else
3818 field = TRB_TYPE(TRB_DATA);
3819
3820 if (urb->transfer_buffer_length > 0) {
3821 u32 length_field, remainder;
3822 u64 addr;
3823
3824 if (xhci_urb_suitable_for_idt(urb)) {
3825 memcpy(&addr, urb->transfer_buffer,
3826 urb->transfer_buffer_length);
3827 le64_to_cpus(&addr);
3828 field |= TRB_IDT;
3829 } else {
3830 addr = (u64) urb->transfer_dma;
3831 }
3832
3833 remainder = xhci_td_remainder(xhci, 0,
3834 urb->transfer_buffer_length,
3835 urb->transfer_buffer_length,
3836 urb, 1);
3837 length_field = TRB_LEN(urb->transfer_buffer_length) |
3838 TRB_TD_SIZE(remainder) |
3839 TRB_INTR_TARGET(0);
3840 if (setup->bRequestType & USB_DIR_IN)
3841 field |= TRB_DIR_IN;
3842 queue_trb(xhci, ep_ring, true,
3843 lower_32_bits(addr),
3844 upper_32_bits(addr),
3845 length_field,
3846 field | ep_ring->cycle_state);
3847 }
3848
3849 /* Save the DMA address of the last TRB in the TD */
3850 td->last_trb = ep_ring->enqueue;
3851 td->last_trb_seg = ep_ring->enq_seg;
3852
3853 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3854 /* If the device sent data, the status stage is an OUT transfer */
3855 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3856 field = 0;
3857 else
3858 field = TRB_DIR_IN;
3859 queue_trb(xhci, ep_ring, false,
3860 0,
3861 0,
3862 TRB_INTR_TARGET(0),
3863 /* Event on completion */
3864 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3865
3866 giveback_first_trb(xhci, slot_id, ep_index, 0,
3867 start_cycle, start_trb);
3868 return 0;
3869 }
3870
3871 /*
3872 * The transfer burst count field of the isochronous TRB defines the number of
3873 * bursts that are required to move all packets in this TD. Only SuperSpeed
3874 * devices can burst up to bMaxBurst number of packets per service interval.
3875 * This field is zero based, meaning a value of zero in the field means one
3876 * burst. Basically, for everything but SuperSpeed devices, this field will be
3877 * zero. Only xHCI 1.0 host controllers support this field.
3878 */
3879 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3880 struct urb *urb, unsigned int total_packet_count)
3881 {
3882 unsigned int max_burst;
3883
3884 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3885 return 0;
3886
3887 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3888 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3889 }
3890
3891 /*
3892 * Returns the number of packets in the last "burst" of packets. This field is
3893 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3894 * the last burst packet count is equal to the total number of packets in the
3895 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3896 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3897 * contain 1 to (bMaxBurst + 1) packets.
3898 */
3899 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3900 struct urb *urb, unsigned int total_packet_count)
3901 {
3902 unsigned int max_burst;
3903 unsigned int residue;
3904
3905 if (xhci->hci_version < 0x100)
3906 return 0;
3907
3908 if (urb->dev->speed >= USB_SPEED_SUPER) {
3909 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3910 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3911 residue = total_packet_count % (max_burst + 1);
3912 /* If residue is zero, the last burst contains (max_burst + 1)
3913 * number of packets, but the TLBPC field is zero-based.
3914 */
3915 if (residue == 0)
3916 return max_burst;
3917 return residue - 1;
3918 }
3919 if (total_packet_count == 0)
3920 return 0;
3921 return total_packet_count - 1;
3922 }
3923
3924 /*
3925 * Calculates Frame ID field of the isochronous TRB identifies the
3926 * target frame that the Interval associated with this Isochronous
3927 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3928 *
3929 * Returns actual frame id on success, negative value on error.
3930 */
3931 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3932 struct urb *urb, int index)
3933 {
3934 int start_frame, ist, ret = 0;
3935 int start_frame_id, end_frame_id, current_frame_id;
3936
3937 if (urb->dev->speed == USB_SPEED_LOW ||
3938 urb->dev->speed == USB_SPEED_FULL)
3939 start_frame = urb->start_frame + index * urb->interval;
3940 else
3941 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3942
3943 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3944 *
3945 * If bit [3] of IST is cleared to '0', software can add a TRB no
3946 * later than IST[2:0] Microframes before that TRB is scheduled to
3947 * be executed.
3948 * If bit [3] of IST is set to '1', software can add a TRB no later
3949 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3950 */
3951 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3952 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3953 ist <<= 3;
3954
3955 /* Software shall not schedule an Isoch TD with a Frame ID value that
3956 * is less than the Start Frame ID or greater than the End Frame ID,
3957 * where:
3958 *
3959 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3960 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3961 *
3962 * Both the End Frame ID and Start Frame ID values are calculated
3963 * in microframes. When software determines the valid Frame ID value;
3964 * The End Frame ID value should be rounded down to the nearest Frame
3965 * boundary, and the Start Frame ID value should be rounded up to the
3966 * nearest Frame boundary.
3967 */
3968 current_frame_id = readl(&xhci->run_regs->microframe_index);
3969 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3970 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3971
3972 start_frame &= 0x7ff;
3973 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3974 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3975
3976 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3977 __func__, index, readl(&xhci->run_regs->microframe_index),
3978 start_frame_id, end_frame_id, start_frame);
3979
3980 if (start_frame_id < end_frame_id) {
3981 if (start_frame > end_frame_id ||
3982 start_frame < start_frame_id)
3983 ret = -EINVAL;
3984 } else if (start_frame_id > end_frame_id) {
3985 if ((start_frame > end_frame_id &&
3986 start_frame < start_frame_id))
3987 ret = -EINVAL;
3988 } else {
3989 ret = -EINVAL;
3990 }
3991
3992 if (index == 0) {
3993 if (ret == -EINVAL || start_frame == start_frame_id) {
3994 start_frame = start_frame_id + 1;
3995 if (urb->dev->speed == USB_SPEED_LOW ||
3996 urb->dev->speed == USB_SPEED_FULL)
3997 urb->start_frame = start_frame;
3998 else
3999 urb->start_frame = start_frame << 3;
4000 ret = 0;
4001 }
4002 }
4003
4004 if (ret) {
4005 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
4006 start_frame, current_frame_id, index,
4007 start_frame_id, end_frame_id);
4008 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
4009 return ret;
4010 }
4011
4012 return start_frame;
4013 }
4014
4015 /* Check if we should generate event interrupt for a TD in an isoc URB */
4016 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i)
4017 {
4018 if (xhci->hci_version < 0x100)
4019 return false;
4020 /* always generate an event interrupt for the last TD */
4021 if (i == num_tds - 1)
4022 return false;
4023 /*
4024 * If AVOID_BEI is set the host handles full event rings poorly,
4025 * generate an event at least every 8th TD to clear the event ring
4026 */
4027 if (i && xhci->quirks & XHCI_AVOID_BEI)
4028 return !!(i % xhci->isoc_bei_interval);
4029
4030 return true;
4031 }
4032
4033 /* This is for isoc transfer */
4034 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
4035 struct urb *urb, int slot_id, unsigned int ep_index)
4036 {
4037 struct xhci_ring *ep_ring;
4038 struct urb_priv *urb_priv;
4039 struct xhci_td *td;
4040 int num_tds, trbs_per_td;
4041 struct xhci_generic_trb *start_trb;
4042 bool first_trb;
4043 int start_cycle;
4044 u32 field, length_field;
4045 int running_total, trb_buff_len, td_len, td_remain_len, ret;
4046 u64 start_addr, addr;
4047 int i, j;
4048 bool more_trbs_coming;
4049 struct xhci_virt_ep *xep;
4050 int frame_id;
4051
4052 xep = &xhci->devs[slot_id]->eps[ep_index];
4053 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
4054
4055 num_tds = urb->number_of_packets;
4056 if (num_tds < 1) {
4057 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
4058 return -EINVAL;
4059 }
4060 start_addr = (u64) urb->transfer_dma;
4061 start_trb = &ep_ring->enqueue->generic;
4062 start_cycle = ep_ring->cycle_state;
4063
4064 urb_priv = urb->hcpriv;
4065 /* Queue the TRBs for each TD, even if they are zero-length */
4066 for (i = 0; i < num_tds; i++) {
4067 unsigned int total_pkt_count, max_pkt;
4068 unsigned int burst_count, last_burst_pkt_count;
4069 u32 sia_frame_id;
4070
4071 first_trb = true;
4072 running_total = 0;
4073 addr = start_addr + urb->iso_frame_desc[i].offset;
4074 td_len = urb->iso_frame_desc[i].length;
4075 td_remain_len = td_len;
4076 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
4077 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
4078
4079 /* A zero-length transfer still involves at least one packet. */
4080 if (total_pkt_count == 0)
4081 total_pkt_count++;
4082 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
4083 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
4084 urb, total_pkt_count);
4085
4086 trbs_per_td = count_isoc_trbs_needed(urb, i);
4087
4088 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
4089 urb->stream_id, trbs_per_td, urb, i, mem_flags);
4090 if (ret < 0) {
4091 if (i == 0)
4092 return ret;
4093 goto cleanup;
4094 }
4095 td = &urb_priv->td[i];
4096 td->num_trbs = trbs_per_td;
4097 /* use SIA as default, if frame id is used overwrite it */
4098 sia_frame_id = TRB_SIA;
4099 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
4100 HCC_CFC(xhci->hcc_params)) {
4101 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
4102 if (frame_id >= 0)
4103 sia_frame_id = TRB_FRAME_ID(frame_id);
4104 }
4105 /*
4106 * Set isoc specific data for the first TRB in a TD.
4107 * Prevent HW from getting the TRBs by keeping the cycle state
4108 * inverted in the first TDs isoc TRB.
4109 */
4110 field = TRB_TYPE(TRB_ISOC) |
4111 TRB_TLBPC(last_burst_pkt_count) |
4112 sia_frame_id |
4113 (i ? ep_ring->cycle_state : !start_cycle);
4114
4115 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
4116 if (!xep->use_extended_tbc)
4117 field |= TRB_TBC(burst_count);
4118
4119 /* fill the rest of the TRB fields, and remaining normal TRBs */
4120 for (j = 0; j < trbs_per_td; j++) {
4121 u32 remainder = 0;
4122
4123 /* only first TRB is isoc, overwrite otherwise */
4124 if (!first_trb)
4125 field = TRB_TYPE(TRB_NORMAL) |
4126 ep_ring->cycle_state;
4127
4128 /* Only set interrupt on short packet for IN EPs */
4129 if (usb_urb_dir_in(urb))
4130 field |= TRB_ISP;
4131
4132 /* Set the chain bit for all except the last TRB */
4133 if (j < trbs_per_td - 1) {
4134 more_trbs_coming = true;
4135 field |= TRB_CHAIN;
4136 } else {
4137 more_trbs_coming = false;
4138 td->last_trb = ep_ring->enqueue;
4139 td->last_trb_seg = ep_ring->enq_seg;
4140 field |= TRB_IOC;
4141 if (trb_block_event_intr(xhci, num_tds, i))
4142 field |= TRB_BEI;
4143 }
4144 /* Calculate TRB length */
4145 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
4146 if (trb_buff_len > td_remain_len)
4147 trb_buff_len = td_remain_len;
4148
4149 /* Set the TRB length, TD size, & interrupter fields. */
4150 remainder = xhci_td_remainder(xhci, running_total,
4151 trb_buff_len, td_len,
4152 urb, more_trbs_coming);
4153
4154 length_field = TRB_LEN(trb_buff_len) |
4155 TRB_INTR_TARGET(0);
4156
4157 /* xhci 1.1 with ETE uses TD Size field for TBC */
4158 if (first_trb && xep->use_extended_tbc)
4159 length_field |= TRB_TD_SIZE_TBC(burst_count);
4160 else
4161 length_field |= TRB_TD_SIZE(remainder);
4162 first_trb = false;
4163
4164 queue_trb(xhci, ep_ring, more_trbs_coming,
4165 lower_32_bits(addr),
4166 upper_32_bits(addr),
4167 length_field,
4168 field);
4169 running_total += trb_buff_len;
4170
4171 addr += trb_buff_len;
4172 td_remain_len -= trb_buff_len;
4173 }
4174
4175 /* Check TD length */
4176 if (running_total != td_len) {
4177 xhci_err(xhci, "ISOC TD length unmatch\n");
4178 ret = -EINVAL;
4179 goto cleanup;
4180 }
4181 }
4182
4183 /* store the next frame id */
4184 if (HCC_CFC(xhci->hcc_params))
4185 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
4186
4187 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
4188 if (xhci->quirks & XHCI_AMD_PLL_FIX)
4189 usb_amd_quirk_pll_disable();
4190 }
4191 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
4192
4193 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
4194 start_cycle, start_trb);
4195 return 0;
4196 cleanup:
4197 /* Clean up a partially enqueued isoc transfer. */
4198
4199 for (i--; i >= 0; i--)
4200 list_del_init(&urb_priv->td[i].td_list);
4201
4202 /* Use the first TD as a temporary variable to turn the TDs we've queued
4203 * into No-ops with a software-owned cycle bit. That way the hardware
4204 * won't accidentally start executing bogus TDs when we partially
4205 * overwrite them. td->first_trb and td->start_seg are already set.
4206 */
4207 urb_priv->td[0].last_trb = ep_ring->enqueue;
4208 /* Every TRB except the first & last will have its cycle bit flipped. */
4209 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
4210
4211 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
4212 ep_ring->enqueue = urb_priv->td[0].first_trb;
4213 ep_ring->enq_seg = urb_priv->td[0].start_seg;
4214 ep_ring->cycle_state = start_cycle;
4215 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
4216 return ret;
4217 }
4218
4219 /*
4220 * Check transfer ring to guarantee there is enough room for the urb.
4221 * Update ISO URB start_frame and interval.
4222 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
4223 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
4224 * Contiguous Frame ID is not supported by HC.
4225 */
4226 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
4227 struct urb *urb, int slot_id, unsigned int ep_index)
4228 {
4229 struct xhci_virt_device *xdev;
4230 struct xhci_ring *ep_ring;
4231 struct xhci_ep_ctx *ep_ctx;
4232 int start_frame;
4233 int num_tds, num_trbs, i;
4234 int ret;
4235 struct xhci_virt_ep *xep;
4236 int ist;
4237
4238 xdev = xhci->devs[slot_id];
4239 xep = &xhci->devs[slot_id]->eps[ep_index];
4240 ep_ring = xdev->eps[ep_index].ring;
4241 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
4242
4243 num_trbs = 0;
4244 num_tds = urb->number_of_packets;
4245 for (i = 0; i < num_tds; i++)
4246 num_trbs += count_isoc_trbs_needed(urb, i);
4247
4248 /* Check the ring to guarantee there is enough room for the whole urb.
4249 * Do not insert any td of the urb to the ring if the check failed.
4250 */
4251 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
4252 num_trbs, mem_flags);
4253 if (ret)
4254 return ret;
4255
4256 /*
4257 * Check interval value. This should be done before we start to
4258 * calculate the start frame value.
4259 */
4260 check_interval(xhci, urb, ep_ctx);
4261
4262 /* Calculate the start frame and put it in urb->start_frame. */
4263 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
4264 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
4265 urb->start_frame = xep->next_frame_id;
4266 goto skip_start_over;
4267 }
4268 }
4269
4270 start_frame = readl(&xhci->run_regs->microframe_index);
4271 start_frame &= 0x3fff;
4272 /*
4273 * Round up to the next frame and consider the time before trb really
4274 * gets scheduled by hardare.
4275 */
4276 ist = HCS_IST(xhci->hcs_params2) & 0x7;
4277 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
4278 ist <<= 3;
4279 start_frame += ist + XHCI_CFC_DELAY;
4280 start_frame = roundup(start_frame, 8);
4281
4282 /*
4283 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
4284 * is greate than 8 microframes.
4285 */
4286 if (urb->dev->speed == USB_SPEED_LOW ||
4287 urb->dev->speed == USB_SPEED_FULL) {
4288 start_frame = roundup(start_frame, urb->interval << 3);
4289 urb->start_frame = start_frame >> 3;
4290 } else {
4291 start_frame = roundup(start_frame, urb->interval);
4292 urb->start_frame = start_frame;
4293 }
4294
4295 skip_start_over:
4296
4297 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
4298 }
4299
4300 /**** Command Ring Operations ****/
4301
4302 /* Generic function for queueing a command TRB on the command ring.
4303 * Check to make sure there's room on the command ring for one command TRB.
4304 * Also check that there's room reserved for commands that must not fail.
4305 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
4306 * then only check for the number of reserved spots.
4307 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
4308 * because the command event handler may want to resubmit a failed command.
4309 */
4310 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4311 u32 field1, u32 field2,
4312 u32 field3, u32 field4, bool command_must_succeed)
4313 {
4314 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4315 int ret;
4316
4317 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
4318 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4319 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
4320 return -ESHUTDOWN;
4321 }
4322
4323 if (!command_must_succeed)
4324 reserved_trbs++;
4325
4326 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4327 reserved_trbs, GFP_ATOMIC);
4328 if (ret < 0) {
4329 xhci_err(xhci, "ERR: No room for command on command ring\n");
4330 if (command_must_succeed)
4331 xhci_err(xhci, "ERR: Reserved TRB counting for "
4332 "unfailable commands failed.\n");
4333 return ret;
4334 }
4335
4336 cmd->command_trb = xhci->cmd_ring->enqueue;
4337
4338 /* if there are no other commands queued we start the timeout timer */
4339 if (list_empty(&xhci->cmd_list)) {
4340 xhci->current_cmd = cmd;
4341 xhci_mod_cmd_timer(xhci);
4342 }
4343
4344 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
4345
4346 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4347 field4 | xhci->cmd_ring->cycle_state);
4348 return 0;
4349 }
4350
4351 /* Queue a slot enable or disable request on the command ring */
4352 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
4353 u32 trb_type, u32 slot_id)
4354 {
4355 return queue_command(xhci, cmd, 0, 0, 0,
4356 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4357 }
4358
4359 /* Queue an address device command TRB */
4360 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4361 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
4362 {
4363 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4364 upper_32_bits(in_ctx_ptr), 0,
4365 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4366 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4367 }
4368
4369 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4370 u32 field1, u32 field2, u32 field3, u32 field4)
4371 {
4372 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4373 }
4374
4375 /* Queue a reset device command TRB */
4376 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4377 u32 slot_id)
4378 {
4379 return queue_command(xhci, cmd, 0, 0, 0,
4380 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4381 false);
4382 }
4383
4384 /* Queue a configure endpoint command TRB */
4385 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4386 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4387 u32 slot_id, bool command_must_succeed)
4388 {
4389 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4390 upper_32_bits(in_ctx_ptr), 0,
4391 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4392 command_must_succeed);
4393 }
4394
4395 /* Queue an evaluate context command TRB */
4396 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4397 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4398 {
4399 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4400 upper_32_bits(in_ctx_ptr), 0,
4401 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4402 command_must_succeed);
4403 }
4404
4405 /*
4406 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4407 * activity on an endpoint that is about to be suspended.
4408 */
4409 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4410 int slot_id, unsigned int ep_index, int suspend)
4411 {
4412 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4413 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4414 u32 type = TRB_TYPE(TRB_STOP_RING);
4415 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4416
4417 return queue_command(xhci, cmd, 0, 0, 0,
4418 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4419 }
4420
4421 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4422 int slot_id, unsigned int ep_index,
4423 enum xhci_ep_reset_type reset_type)
4424 {
4425 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4426 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4427 u32 type = TRB_TYPE(TRB_RESET_EP);
4428
4429 if (reset_type == EP_SOFT_RESET)
4430 type |= TRB_TSP;
4431
4432 return queue_command(xhci, cmd, 0, 0, 0,
4433 trb_slot_id | trb_ep_index | type, false);
4434 }