]> git.ipfire.org Git - thirdparty/u-boot.git/blob - drivers/usb/host/xhci.c
Merge https://source.denx.de/u-boot/custodians/u-boot-usb
[thirdparty/u-boot.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * USB HOST XHCI Controller stack
4 *
5 * Based on xHCI host controller driver in linux-kernel
6 * by Sarah Sharp.
7 *
8 * Copyright (C) 2008 Intel Corp.
9 * Author: Sarah Sharp
10 *
11 * Copyright (C) 2013 Samsung Electronics Co.Ltd
12 * Authors: Vivek Gautam <gautam.vivek@samsung.com>
13 * Vikas Sajjan <vikas.sajjan@samsung.com>
14 */
15
16 /**
17 * This file gives the xhci stack for usb3.0 looking into
18 * xhci specification Rev1.0 (5/21/10).
19 * The quirk devices support hasn't been given yet.
20 */
21
22 #include <common.h>
23 #include <cpu_func.h>
24 #include <dm.h>
25 #include <dm/device_compat.h>
26 #include <log.h>
27 #include <malloc.h>
28 #include <usb.h>
29 #include <usb/xhci.h>
30 #include <watchdog.h>
31 #include <asm/byteorder.h>
32 #include <asm/cache.h>
33 #include <asm/unaligned.h>
34 #include <linux/bitops.h>
35 #include <linux/bug.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/iopoll.h>
39
40 static struct descriptor {
41 struct usb_hub_descriptor hub;
42 struct usb_device_descriptor device;
43 struct usb_config_descriptor config;
44 struct usb_interface_descriptor interface;
45 struct usb_endpoint_descriptor endpoint;
46 struct usb_ss_ep_comp_descriptor ep_companion;
47 } __attribute__ ((packed)) descriptor = {
48 {
49 0xc, /* bDescLength */
50 0x2a, /* bDescriptorType: hub descriptor */
51 2, /* bNrPorts -- runtime modified */
52 cpu_to_le16(0x8), /* wHubCharacteristics */
53 10, /* bPwrOn2PwrGood */
54 0, /* bHubCntrCurrent */
55 { /* Device removable */
56 } /* at most 7 ports! XXX */
57 },
58 {
59 0x12, /* bLength */
60 1, /* bDescriptorType: UDESC_DEVICE */
61 cpu_to_le16(0x0300), /* bcdUSB: v3.0 */
62 9, /* bDeviceClass: UDCLASS_HUB */
63 0, /* bDeviceSubClass: UDSUBCLASS_HUB */
64 3, /* bDeviceProtocol: UDPROTO_SSHUBSTT */
65 9, /* bMaxPacketSize: 512 bytes 2^9 */
66 0x0000, /* idVendor */
67 0x0000, /* idProduct */
68 cpu_to_le16(0x0100), /* bcdDevice */
69 1, /* iManufacturer */
70 2, /* iProduct */
71 0, /* iSerialNumber */
72 1 /* bNumConfigurations: 1 */
73 },
74 {
75 0x9,
76 2, /* bDescriptorType: UDESC_CONFIG */
77 cpu_to_le16(0x1f), /* includes SS endpoint descriptor */
78 1, /* bNumInterface */
79 1, /* bConfigurationValue */
80 0, /* iConfiguration */
81 0x40, /* bmAttributes: UC_SELF_POWER */
82 0 /* bMaxPower */
83 },
84 {
85 0x9, /* bLength */
86 4, /* bDescriptorType: UDESC_INTERFACE */
87 0, /* bInterfaceNumber */
88 0, /* bAlternateSetting */
89 1, /* bNumEndpoints */
90 9, /* bInterfaceClass: UICLASS_HUB */
91 0, /* bInterfaceSubClass: UISUBCLASS_HUB */
92 0, /* bInterfaceProtocol: UIPROTO_HSHUBSTT */
93 0 /* iInterface */
94 },
95 {
96 0x7, /* bLength */
97 5, /* bDescriptorType: UDESC_ENDPOINT */
98 0x81, /* bEndpointAddress: IN endpoint 1 */
99 3, /* bmAttributes: UE_INTERRUPT */
100 8, /* wMaxPacketSize */
101 255 /* bInterval */
102 },
103 {
104 0x06, /* ss_bLength */
105 0x30, /* ss_bDescriptorType: SS EP Companion */
106 0x00, /* ss_bMaxBurst: allows 1 TX between ACKs */
107 /* ss_bmAttributes: 1 packet per service interval */
108 0x00,
109 /* ss_wBytesPerInterval: 15 bits for max 15 ports */
110 cpu_to_le16(0x02),
111 },
112 };
113
114 struct xhci_ctrl *xhci_get_ctrl(struct usb_device *udev)
115 {
116 struct udevice *dev;
117
118 /* Find the USB controller */
119 for (dev = udev->dev;
120 device_get_uclass_id(dev) != UCLASS_USB;
121 dev = dev->parent)
122 ;
123 return dev_get_priv(dev);
124 }
125
126 /**
127 * Waits for as per specified amount of time
128 * for the "result" to match with "done"
129 *
130 * @param ptr pointer to the register to be read
131 * @param mask mask for the value read
132 * @param done value to be campared with result
133 * @param usec time to wait till
134 * Return: 0 if handshake is success else < 0 on failure
135 */
136 static int
137 handshake(uint32_t volatile *ptr, uint32_t mask, uint32_t done, int usec)
138 {
139 uint32_t result;
140 int ret;
141
142 ret = readx_poll_sleep_timeout(xhci_readl, ptr, result,
143 (result & mask) == done || result == U32_MAX,
144 1, usec);
145 if (result == U32_MAX) /* card removed */
146 return -ENODEV;
147
148 return ret;
149 }
150
151 /**
152 * Set the run bit and wait for the host to be running.
153 *
154 * @param hcor pointer to host controller operation registers
155 * Return: status of the Handshake
156 */
157 static int xhci_start(struct xhci_hcor *hcor)
158 {
159 u32 temp;
160 int ret;
161
162 puts("Starting the controller\n");
163 temp = xhci_readl(&hcor->or_usbcmd);
164 temp |= (CMD_RUN);
165 xhci_writel(&hcor->or_usbcmd, temp);
166
167 /*
168 * Wait for the HCHalted Status bit to be 0 to indicate the host is
169 * running.
170 */
171 ret = handshake(&hcor->or_usbsts, STS_HALT, 0, XHCI_MAX_HALT_USEC);
172 if (ret)
173 debug("Host took too long to start, "
174 "waited %u microseconds.\n",
175 XHCI_MAX_HALT_USEC);
176 return ret;
177 }
178
179 /**
180 * Resets the XHCI Controller
181 *
182 * @param hcor pointer to host controller operation registers
183 * Return: -EBUSY if XHCI Controller is not halted else status of handshake
184 */
185 static int xhci_reset(struct xhci_hcor *hcor)
186 {
187 u32 cmd;
188 u32 state;
189 int ret;
190
191 /* Halting the Host first */
192 debug("// Halt the HC: %p\n", hcor);
193 state = xhci_readl(&hcor->or_usbsts) & STS_HALT;
194 if (!state) {
195 cmd = xhci_readl(&hcor->or_usbcmd);
196 cmd &= ~CMD_RUN;
197 xhci_writel(&hcor->or_usbcmd, cmd);
198 }
199
200 ret = handshake(&hcor->or_usbsts,
201 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
202 if (ret) {
203 printf("Host not halted after %u microseconds.\n",
204 XHCI_MAX_HALT_USEC);
205 return -EBUSY;
206 }
207
208 debug("// Reset the HC\n");
209 cmd = xhci_readl(&hcor->or_usbcmd);
210 cmd |= CMD_RESET;
211 xhci_writel(&hcor->or_usbcmd, cmd);
212
213 ret = handshake(&hcor->or_usbcmd, CMD_RESET, 0, XHCI_MAX_RESET_USEC);
214 if (ret)
215 return ret;
216
217 /*
218 * xHCI cannot write to any doorbells or operational registers other
219 * than status until the "Controller Not Ready" flag is cleared.
220 */
221 return handshake(&hcor->or_usbsts, STS_CNR, 0, XHCI_MAX_RESET_USEC);
222 }
223
224 /**
225 * Used for passing endpoint bitmasks between the core and HCDs.
226 * Find the index for an endpoint given its descriptor.
227 * Use the return value to right shift 1 for the bitmask.
228 *
229 * Index = (epnum * 2) + direction - 1,
230 * where direction = 0 for OUT, 1 for IN.
231 * For control endpoints, the IN index is used (OUT index is unused), so
232 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
233 *
234 * @param desc USB enpdoint Descriptor
235 * Return: index of the Endpoint
236 */
237 static unsigned int xhci_get_ep_index(struct usb_endpoint_descriptor *desc)
238 {
239 unsigned int index;
240
241 if (usb_endpoint_xfer_control(desc))
242 index = (unsigned int)(usb_endpoint_num(desc) * 2);
243 else
244 index = (unsigned int)((usb_endpoint_num(desc) * 2) -
245 (usb_endpoint_dir_in(desc) ? 0 : 1));
246
247 return index;
248 }
249
250 /*
251 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
252 * microframes, rounded down to nearest power of 2.
253 */
254 static unsigned int xhci_microframes_to_exponent(unsigned int desc_interval,
255 unsigned int min_exponent,
256 unsigned int max_exponent)
257 {
258 unsigned int interval;
259
260 interval = fls(desc_interval) - 1;
261 interval = clamp_val(interval, min_exponent, max_exponent);
262 if ((1 << interval) != desc_interval)
263 debug("rounding interval to %d microframes, "\
264 "ep desc says %d microframes\n",
265 1 << interval, desc_interval);
266
267 return interval;
268 }
269
270 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
271 struct usb_endpoint_descriptor *endpt_desc)
272 {
273 if (endpt_desc->bInterval == 0)
274 return 0;
275
276 return xhci_microframes_to_exponent(endpt_desc->bInterval, 0, 15);
277 }
278
279 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
280 struct usb_endpoint_descriptor *endpt_desc)
281 {
282 return xhci_microframes_to_exponent(endpt_desc->bInterval * 8, 3, 10);
283 }
284
285 /*
286 * Convert interval expressed as 2^(bInterval - 1) == interval into
287 * straight exponent value 2^n == interval.
288 */
289 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
290 struct usb_endpoint_descriptor *endpt_desc)
291 {
292 unsigned int interval;
293
294 interval = clamp_val(endpt_desc->bInterval, 1, 16) - 1;
295 if (interval != endpt_desc->bInterval - 1)
296 debug("ep %#x - rounding interval to %d %sframes\n",
297 endpt_desc->bEndpointAddress, 1 << interval,
298 udev->speed == USB_SPEED_FULL ? "" : "micro");
299
300 if (udev->speed == USB_SPEED_FULL) {
301 /*
302 * Full speed isoc endpoints specify interval in frames,
303 * not microframes. We are using microframes everywhere,
304 * so adjust accordingly.
305 */
306 interval += 3; /* 1 frame = 2^3 uframes */
307 }
308
309 return interval;
310 }
311
312 /*
313 * Return the polling or NAK interval.
314 *
315 * The polling interval is expressed in "microframes". If xHCI's Interval field
316 * is set to N, it will service the endpoint every 2^(Interval)*125us.
317 *
318 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
319 * is set to 0.
320 */
321 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
322 struct usb_endpoint_descriptor *endpt_desc)
323 {
324 unsigned int interval = 0;
325
326 switch (udev->speed) {
327 case USB_SPEED_HIGH:
328 /* Max NAK rate */
329 if (usb_endpoint_xfer_control(endpt_desc) ||
330 usb_endpoint_xfer_bulk(endpt_desc)) {
331 interval = xhci_parse_microframe_interval(udev,
332 endpt_desc);
333 break;
334 }
335 /* Fall through - SS and HS isoc/int have same decoding */
336
337 case USB_SPEED_SUPER:
338 if (usb_endpoint_xfer_int(endpt_desc) ||
339 usb_endpoint_xfer_isoc(endpt_desc)) {
340 interval = xhci_parse_exponent_interval(udev,
341 endpt_desc);
342 }
343 break;
344
345 case USB_SPEED_FULL:
346 if (usb_endpoint_xfer_isoc(endpt_desc)) {
347 interval = xhci_parse_exponent_interval(udev,
348 endpt_desc);
349 break;
350 }
351 /*
352 * Fall through for interrupt endpoint interval decoding
353 * since it uses the same rules as low speed interrupt
354 * endpoints.
355 */
356
357 case USB_SPEED_LOW:
358 if (usb_endpoint_xfer_int(endpt_desc) ||
359 usb_endpoint_xfer_isoc(endpt_desc)) {
360 interval = xhci_parse_frame_interval(udev, endpt_desc);
361 }
362 break;
363
364 default:
365 BUG();
366 }
367
368 return interval;
369 }
370
371 /*
372 * The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
373 * High speed endpoint descriptors can define "the number of additional
374 * transaction opportunities per microframe", but that goes in the Max Burst
375 * endpoint context field.
376 */
377 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
378 struct usb_endpoint_descriptor *endpt_desc,
379 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
380 {
381 if (udev->speed < USB_SPEED_SUPER ||
382 !usb_endpoint_xfer_isoc(endpt_desc))
383 return 0;
384
385 return ss_ep_comp_desc->bmAttributes;
386 }
387
388 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
389 struct usb_endpoint_descriptor *endpt_desc,
390 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
391 {
392 /* Super speed and Plus have max burst in ep companion desc */
393 if (udev->speed >= USB_SPEED_SUPER)
394 return ss_ep_comp_desc->bMaxBurst;
395
396 if (udev->speed == USB_SPEED_HIGH &&
397 (usb_endpoint_xfer_isoc(endpt_desc) ||
398 usb_endpoint_xfer_int(endpt_desc)))
399 return usb_endpoint_maxp_mult(endpt_desc) - 1;
400
401 return 0;
402 }
403
404 /*
405 * Return the maximum endpoint service interval time (ESIT) payload.
406 * Basically, this is the maxpacket size, multiplied by the burst size
407 * and mult size.
408 */
409 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
410 struct usb_endpoint_descriptor *endpt_desc,
411 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc)
412 {
413 int max_burst;
414 int max_packet;
415
416 /* Only applies for interrupt or isochronous endpoints */
417 if (usb_endpoint_xfer_control(endpt_desc) ||
418 usb_endpoint_xfer_bulk(endpt_desc))
419 return 0;
420
421 /* SuperSpeed Isoc ep with less than 48k per esit */
422 if (udev->speed >= USB_SPEED_SUPER)
423 return le16_to_cpu(ss_ep_comp_desc->wBytesPerInterval);
424
425 max_packet = usb_endpoint_maxp(endpt_desc);
426 max_burst = usb_endpoint_maxp_mult(endpt_desc);
427
428 /* A 0 in max burst means 1 transfer per ESIT */
429 return max_packet * max_burst;
430 }
431
432 /**
433 * Issue a configure endpoint command or evaluate context command
434 * and wait for it to finish.
435 *
436 * @param udev pointer to the Device Data Structure
437 * @param ctx_change flag to indicate the Context has changed or NOT
438 * Return: 0 on success, -1 on failure
439 */
440 static int xhci_configure_endpoints(struct usb_device *udev, bool ctx_change)
441 {
442 struct xhci_container_ctx *in_ctx;
443 struct xhci_virt_device *virt_dev;
444 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
445 union xhci_trb *event;
446
447 virt_dev = ctrl->devs[udev->slot_id];
448 in_ctx = virt_dev->in_ctx;
449
450 xhci_flush_cache((uintptr_t)in_ctx->bytes, in_ctx->size);
451 xhci_queue_command(ctrl, in_ctx->dma, udev->slot_id, 0,
452 ctx_change ? TRB_EVAL_CONTEXT : TRB_CONFIG_EP);
453 event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
454 if (!event)
455 return -ETIMEDOUT;
456
457 BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags))
458 != udev->slot_id);
459
460 switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
461 case COMP_SUCCESS:
462 debug("Successful %s command\n",
463 ctx_change ? "Evaluate Context" : "Configure Endpoint");
464 break;
465 default:
466 printf("ERROR: %s command returned completion code %d.\n",
467 ctx_change ? "Evaluate Context" : "Configure Endpoint",
468 GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
469 return -EINVAL;
470 }
471
472 xhci_acknowledge_event(ctrl);
473
474 return 0;
475 }
476
477 /**
478 * Fill endpoint contexts for interface descriptor ifdesc.
479 *
480 * @param udev pointer to the USB device structure
481 * @param ctrl pointer to the xhci pravte device structure
482 * @param virt_dev pointer to the xhci virtual device structure
483 * @param ifdesc pointer to the USB interface config descriptor
484 * Return: returns the status of xhci_init_ep_contexts_if
485 */
486 static int xhci_init_ep_contexts_if(struct usb_device *udev,
487 struct xhci_ctrl *ctrl,
488 struct xhci_virt_device *virt_dev,
489 struct usb_interface *ifdesc
490 )
491 {
492 struct xhci_ep_ctx *ep_ctx[MAX_EP_CTX_NUM];
493 int cur_ep;
494 int ep_index;
495 unsigned int dir;
496 unsigned int ep_type;
497 u64 trb_64 = 0;
498 u32 max_esit_payload;
499 unsigned int interval;
500 unsigned int mult;
501 unsigned int max_burst;
502 unsigned int avg_trb_len;
503 unsigned int err_count = 0;
504 int num_of_ep = ifdesc->no_of_ep;
505
506 for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
507 struct usb_endpoint_descriptor *endpt_desc = NULL;
508 struct usb_ss_ep_comp_descriptor *ss_ep_comp_desc = NULL;
509
510 endpt_desc = &ifdesc->ep_desc[cur_ep];
511 ss_ep_comp_desc = &ifdesc->ss_ep_comp_desc[cur_ep];
512 trb_64 = 0;
513
514 /*
515 * Get values to fill the endpoint context, mostly from ep
516 * descriptor. The average TRB buffer lengt for bulk endpoints
517 * is unclear as we have no clue on scatter gather list entry
518 * size. For Isoc and Int, set it to max available.
519 * See xHCI 1.1 spec 4.14.1.1 for details.
520 */
521 max_esit_payload = xhci_get_max_esit_payload(udev, endpt_desc,
522 ss_ep_comp_desc);
523 interval = xhci_get_endpoint_interval(udev, endpt_desc);
524 mult = xhci_get_endpoint_mult(udev, endpt_desc,
525 ss_ep_comp_desc);
526 max_burst = xhci_get_endpoint_max_burst(udev, endpt_desc,
527 ss_ep_comp_desc);
528 avg_trb_len = max_esit_payload;
529
530 ep_index = xhci_get_ep_index(endpt_desc);
531 ep_ctx[ep_index] = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx,
532 ep_index);
533
534 /* Allocate the ep rings */
535 virt_dev->eps[ep_index].ring = xhci_ring_alloc(ctrl, 1, true);
536 if (!virt_dev->eps[ep_index].ring)
537 return -ENOMEM;
538
539 /*NOTE: ep_desc[0] actually represents EP1 and so on */
540 dir = (((endpt_desc->bEndpointAddress) & (0x80)) >> 7);
541 ep_type = (((endpt_desc->bmAttributes) & (0x3)) | (dir << 2));
542
543 ep_ctx[ep_index]->ep_info =
544 cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
545 EP_INTERVAL(interval) | EP_MULT(mult));
546
547 ep_ctx[ep_index]->ep_info2 = cpu_to_le32(EP_TYPE(ep_type));
548 ep_ctx[ep_index]->ep_info2 |=
549 cpu_to_le32(MAX_PACKET
550 (get_unaligned(&endpt_desc->wMaxPacketSize)));
551
552 /* Allow 3 retries for everything but isoc, set CErr = 3 */
553 if (!usb_endpoint_xfer_isoc(endpt_desc))
554 err_count = 3;
555 ep_ctx[ep_index]->ep_info2 |=
556 cpu_to_le32(MAX_BURST(max_burst) |
557 ERROR_COUNT(err_count));
558
559 trb_64 = xhci_trb_virt_to_dma(virt_dev->eps[ep_index].ring->enq_seg,
560 virt_dev->eps[ep_index].ring->enqueue);
561 ep_ctx[ep_index]->deq = cpu_to_le64(trb_64 |
562 virt_dev->eps[ep_index].ring->cycle_state);
563
564 /*
565 * xHCI spec 6.2.3:
566 * 'Average TRB Length' should be 8 for control endpoints.
567 */
568 if (usb_endpoint_xfer_control(endpt_desc))
569 avg_trb_len = 8;
570 ep_ctx[ep_index]->tx_info =
571 cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
572 EP_AVG_TRB_LENGTH(avg_trb_len));
573
574 /*
575 * The MediaTek xHCI defines some extra SW parameters which
576 * are put into reserved DWs in Slot and Endpoint Contexts
577 * for synchronous endpoints.
578 */
579 if (ctrl->quirks & XHCI_MTK_HOST) {
580 ep_ctx[ep_index]->reserved[0] =
581 cpu_to_le32(EP_BPKTS(1) | EP_BBM(1));
582 }
583 }
584
585 return 0;
586 }
587
588 /**
589 * Configure the endpoint, programming the device contexts.
590 *
591 * @param udev pointer to the USB device structure
592 * Return: returns the status of the xhci_configure_endpoints
593 */
594 static int xhci_set_configuration(struct usb_device *udev)
595 {
596 struct xhci_container_ctx *out_ctx;
597 struct xhci_container_ctx *in_ctx;
598 struct xhci_input_control_ctx *ctrl_ctx;
599 struct xhci_slot_ctx *slot_ctx;
600 int err;
601 int cur_ep;
602 int max_ep_flag = 0;
603 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
604 int num_of_ep;
605 int ep_flag = 0;
606 int slot_id = udev->slot_id;
607 struct xhci_virt_device *virt_dev = ctrl->devs[slot_id];
608 struct usb_interface *ifdesc;
609 unsigned int ifnum;
610 unsigned int max_ifnum = min((unsigned int)USB_MAX_ACTIVE_INTERFACES,
611 (unsigned int)udev->config.no_of_if);
612
613 out_ctx = virt_dev->out_ctx;
614 in_ctx = virt_dev->in_ctx;
615
616 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
617 /* Initialize the input context control */
618 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
619 ctrl_ctx->drop_flags = 0;
620
621 for (ifnum = 0; ifnum < max_ifnum; ifnum++) {
622 ifdesc = &udev->config.if_desc[ifnum];
623 num_of_ep = ifdesc->no_of_ep;
624 /* EP_FLAG gives values 1 & 4 for EP1OUT and EP2IN */
625 for (cur_ep = 0; cur_ep < num_of_ep; cur_ep++) {
626 ep_flag = xhci_get_ep_index(&ifdesc->ep_desc[cur_ep]);
627 ctrl_ctx->add_flags |= cpu_to_le32(1 << (ep_flag + 1));
628 if (max_ep_flag < ep_flag)
629 max_ep_flag = ep_flag;
630 }
631 }
632
633 xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
634
635 /* slot context */
636 xhci_slot_copy(ctrl, in_ctx, out_ctx);
637 slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
638 slot_ctx->dev_info &= ~(cpu_to_le32(LAST_CTX_MASK));
639 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(max_ep_flag + 1) | 0);
640
641 xhci_endpoint_copy(ctrl, in_ctx, out_ctx, 0);
642
643 /* filling up ep contexts */
644 for (ifnum = 0; ifnum < max_ifnum; ifnum++) {
645 ifdesc = &udev->config.if_desc[ifnum];
646 err = xhci_init_ep_contexts_if(udev, ctrl, virt_dev, ifdesc);
647 if (err < 0)
648 return err;
649 }
650
651 return xhci_configure_endpoints(udev, false);
652 }
653
654 /**
655 * Issue an Address Device command (which will issue a SetAddress request to
656 * the device).
657 *
658 * @param udev pointer to the Device Data Structure
659 * Return: 0 if successful else error code on failure
660 */
661 static int xhci_address_device(struct usb_device *udev, int root_portnr)
662 {
663 int ret = 0;
664 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
665 struct xhci_slot_ctx *slot_ctx;
666 struct xhci_input_control_ctx *ctrl_ctx;
667 struct xhci_virt_device *virt_dev;
668 int slot_id = udev->slot_id;
669 union xhci_trb *event;
670
671 virt_dev = ctrl->devs[slot_id];
672
673 /*
674 * This is the first Set Address since device plug-in
675 * so setting up the slot context.
676 */
677 debug("Setting up addressable devices %p\n", ctrl->dcbaa);
678 xhci_setup_addressable_virt_dev(ctrl, udev, root_portnr);
679
680 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
681 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
682 ctrl_ctx->drop_flags = 0;
683
684 xhci_queue_command(ctrl, virt_dev->in_ctx->dma,
685 slot_id, 0, TRB_ADDR_DEV);
686 event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
687 if (!event)
688 return -ETIMEDOUT;
689
690 BUG_ON(TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags)) != slot_id);
691
692 switch (GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))) {
693 case COMP_CTX_STATE:
694 case COMP_EBADSLT:
695 printf("Setup ERROR: address device command for slot %d.\n",
696 slot_id);
697 ret = -EINVAL;
698 break;
699 case COMP_TX_ERR:
700 puts("Device not responding to set address.\n");
701 ret = -EPROTO;
702 break;
703 case COMP_DEV_ERR:
704 puts("ERROR: Incompatible device"
705 "for address device command.\n");
706 ret = -ENODEV;
707 break;
708 case COMP_SUCCESS:
709 debug("Successful Address Device command\n");
710 udev->status = 0;
711 break;
712 default:
713 printf("ERROR: unexpected command completion code 0x%x.\n",
714 GET_COMP_CODE(le32_to_cpu(event->event_cmd.status)));
715 ret = -EINVAL;
716 break;
717 }
718
719 xhci_acknowledge_event(ctrl);
720
721 if (ret < 0)
722 /*
723 * TODO: Unsuccessful Address Device command shall leave the
724 * slot in default state. So, issue Disable Slot command now.
725 */
726 return ret;
727
728 xhci_inval_cache((uintptr_t)virt_dev->out_ctx->bytes,
729 virt_dev->out_ctx->size);
730 slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->out_ctx);
731
732 debug("xHC internal address is: %d\n",
733 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
734
735 return 0;
736 }
737
738 /**
739 * Issue Enable slot command to the controller to allocate
740 * device slot and assign the slot id. It fails if the xHC
741 * ran out of device slots, the Enable Slot command timed out,
742 * or allocating memory failed.
743 *
744 * @param udev pointer to the Device Data Structure
745 * Return: Returns 0 on succes else return error code on failure
746 */
747 static int _xhci_alloc_device(struct usb_device *udev)
748 {
749 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
750 union xhci_trb *event;
751 int ret;
752
753 /*
754 * Root hub will be first device to be initailized.
755 * If this device is root-hub, don't do any xHC related
756 * stuff.
757 */
758 if (ctrl->rootdev == 0) {
759 udev->speed = USB_SPEED_SUPER;
760 return 0;
761 }
762
763 xhci_queue_command(ctrl, 0, 0, 0, TRB_ENABLE_SLOT);
764 event = xhci_wait_for_event(ctrl, TRB_COMPLETION);
765 if (!event)
766 return -ETIMEDOUT;
767
768 BUG_ON(GET_COMP_CODE(le32_to_cpu(event->event_cmd.status))
769 != COMP_SUCCESS);
770
771 udev->slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->event_cmd.flags));
772
773 xhci_acknowledge_event(ctrl);
774
775 ret = xhci_alloc_virt_device(ctrl, udev->slot_id);
776 if (ret < 0) {
777 /*
778 * TODO: Unsuccessful Address Device command shall leave
779 * the slot in default. So, issue Disable Slot command now.
780 */
781 puts("Could not allocate xHCI USB device data structures\n");
782 return ret;
783 }
784
785 return 0;
786 }
787
788 /*
789 * Full speed devices may have a max packet size greater than 8 bytes, but the
790 * USB core doesn't know that until it reads the first 8 bytes of the
791 * descriptor. If the usb_device's max packet size changes after that point,
792 * we need to issue an evaluate context command and wait on it.
793 *
794 * @param udev pointer to the Device Data Structure
795 * Return: returns the status of the xhci_configure_endpoints
796 */
797 int xhci_check_maxpacket(struct usb_device *udev)
798 {
799 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
800 unsigned int slot_id = udev->slot_id;
801 int ep_index = 0; /* control endpoint */
802 struct xhci_container_ctx *in_ctx;
803 struct xhci_container_ctx *out_ctx;
804 struct xhci_input_control_ctx *ctrl_ctx;
805 struct xhci_ep_ctx *ep_ctx;
806 int max_packet_size;
807 int hw_max_packet_size;
808 int ret = 0;
809
810 out_ctx = ctrl->devs[slot_id]->out_ctx;
811 xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
812
813 ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
814 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
815 max_packet_size = udev->epmaxpacketin[0];
816 if (hw_max_packet_size != max_packet_size) {
817 debug("Max Packet Size for ep 0 changed.\n");
818 debug("Max packet size in usb_device = %d\n", max_packet_size);
819 debug("Max packet size in xHCI HW = %d\n", hw_max_packet_size);
820 debug("Issuing evaluate context command.\n");
821
822 /* Set up the modified control endpoint 0 */
823 xhci_endpoint_copy(ctrl, ctrl->devs[slot_id]->in_ctx,
824 ctrl->devs[slot_id]->out_ctx, ep_index);
825 in_ctx = ctrl->devs[slot_id]->in_ctx;
826 ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
827 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET(MAX_PACKET_MASK));
828 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
829
830 /*
831 * Set up the input context flags for the command
832 * FIXME: This won't work if a non-default control endpoint
833 * changes max packet sizes.
834 */
835 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
836 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
837 ctrl_ctx->drop_flags = 0;
838
839 ret = xhci_configure_endpoints(udev, true);
840 }
841 return ret;
842 }
843
844 /**
845 * Clears the Change bits of the Port Status Register
846 *
847 * @param wValue request value
848 * @param wIndex request index
849 * @param addr address of posrt status register
850 * @param port_status state of port status register
851 * Return: none
852 */
853 static void xhci_clear_port_change_bit(u16 wValue,
854 u16 wIndex, volatile uint32_t *addr, u32 port_status)
855 {
856 char *port_change_bit;
857 u32 status;
858
859 switch (wValue) {
860 case USB_PORT_FEAT_C_RESET:
861 status = PORT_RC;
862 port_change_bit = "reset";
863 break;
864 case USB_PORT_FEAT_C_CONNECTION:
865 status = PORT_CSC;
866 port_change_bit = "connect";
867 break;
868 case USB_PORT_FEAT_C_OVER_CURRENT:
869 status = PORT_OCC;
870 port_change_bit = "over-current";
871 break;
872 case USB_PORT_FEAT_C_ENABLE:
873 status = PORT_PEC;
874 port_change_bit = "enable/disable";
875 break;
876 case USB_PORT_FEAT_C_SUSPEND:
877 status = PORT_PLC;
878 port_change_bit = "suspend/resume";
879 break;
880 default:
881 /* Should never happen */
882 return;
883 }
884
885 /* Change bits are all write 1 to clear */
886 xhci_writel(addr, port_status | status);
887
888 port_status = xhci_readl(addr);
889 debug("clear port %s change, actual port %d status = 0x%x\n",
890 port_change_bit, wIndex, port_status);
891 }
892
893 /**
894 * Save Read Only (RO) bits and save read/write bits where
895 * writing a 0 clears the bit and writing a 1 sets the bit (RWS).
896 * For all other types (RW1S, RW1CS, RW, and RZ), writing a '0' has no effect.
897 *
898 * @param state state of the Port Status and Control Regsiter
899 * Return: a value that would result in the port being in the
900 * same state, if the value was written to the port
901 * status control register.
902 */
903 static u32 xhci_port_state_to_neutral(u32 state)
904 {
905 /* Save read-only status and port state */
906 return (state & XHCI_PORT_RO) | (state & XHCI_PORT_RWS);
907 }
908
909 /**
910 * Submits the Requests to the XHCI Host Controller
911 *
912 * @param udev pointer to the USB device structure
913 * @param pipe contains the DIR_IN or OUT , devnum
914 * @param buffer buffer to be read/written based on the request
915 * Return: returns 0 if successful else -1 on failure
916 */
917 static int xhci_submit_root(struct usb_device *udev, unsigned long pipe,
918 void *buffer, struct devrequest *req)
919 {
920 uint8_t tmpbuf[4];
921 u16 typeReq;
922 void *srcptr = NULL;
923 int len, srclen;
924 uint32_t reg;
925 volatile uint32_t *status_reg;
926 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
927 struct xhci_hccr *hccr = ctrl->hccr;
928 struct xhci_hcor *hcor = ctrl->hcor;
929 int max_ports = HCS_MAX_PORTS(xhci_readl(&hccr->cr_hcsparams1));
930
931 if ((req->requesttype & USB_RT_PORT) &&
932 le16_to_cpu(req->index) > max_ports) {
933 printf("The request port(%d) exceeds maximum port number\n",
934 le16_to_cpu(req->index) - 1);
935 return -EINVAL;
936 }
937
938 status_reg = (volatile uint32_t *)
939 (&hcor->portregs[le16_to_cpu(req->index) - 1].or_portsc);
940 srclen = 0;
941
942 typeReq = req->request | req->requesttype << 8;
943
944 switch (typeReq) {
945 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
946 switch (le16_to_cpu(req->value) >> 8) {
947 case USB_DT_DEVICE:
948 debug("USB_DT_DEVICE request\n");
949 srcptr = &descriptor.device;
950 srclen = 0x12;
951 break;
952 case USB_DT_CONFIG:
953 debug("USB_DT_CONFIG config\n");
954 srcptr = &descriptor.config;
955 srclen = 0x19;
956 break;
957 case USB_DT_STRING:
958 debug("USB_DT_STRING config\n");
959 switch (le16_to_cpu(req->value) & 0xff) {
960 case 0: /* Language */
961 srcptr = "\4\3\11\4";
962 srclen = 4;
963 break;
964 case 1: /* Vendor String */
965 srcptr = "\16\3U\0-\0B\0o\0o\0t\0";
966 srclen = 14;
967 break;
968 case 2: /* Product Name */
969 srcptr = "\52\3X\0H\0C\0I\0 "
970 "\0H\0o\0s\0t\0 "
971 "\0C\0o\0n\0t\0r\0o\0l\0l\0e\0r\0";
972 srclen = 42;
973 break;
974 default:
975 printf("unknown value DT_STRING %x\n",
976 le16_to_cpu(req->value));
977 goto unknown;
978 }
979 break;
980 default:
981 printf("unknown value %x\n", le16_to_cpu(req->value));
982 goto unknown;
983 }
984 break;
985 case USB_REQ_GET_DESCRIPTOR | ((USB_DIR_IN | USB_RT_HUB) << 8):
986 switch (le16_to_cpu(req->value) >> 8) {
987 case USB_DT_HUB:
988 case USB_DT_SS_HUB:
989 debug("USB_DT_HUB config\n");
990 srcptr = &ctrl->hub_desc;
991 srclen = 0x8;
992 break;
993 default:
994 printf("unknown value %x\n", le16_to_cpu(req->value));
995 goto unknown;
996 }
997 break;
998 case USB_REQ_SET_ADDRESS | (USB_RECIP_DEVICE << 8):
999 debug("USB_REQ_SET_ADDRESS\n");
1000 ctrl->rootdev = le16_to_cpu(req->value);
1001 break;
1002 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
1003 /* Do nothing */
1004 break;
1005 case USB_REQ_GET_STATUS | ((USB_DIR_IN | USB_RT_HUB) << 8):
1006 tmpbuf[0] = 1; /* USB_STATUS_SELFPOWERED */
1007 tmpbuf[1] = 0;
1008 srcptr = tmpbuf;
1009 srclen = 2;
1010 break;
1011 case USB_REQ_GET_STATUS | ((USB_RT_PORT | USB_DIR_IN) << 8):
1012 memset(tmpbuf, 0, 4);
1013 reg = xhci_readl(status_reg);
1014 if (reg & PORT_CONNECT) {
1015 tmpbuf[0] |= USB_PORT_STAT_CONNECTION;
1016 switch (reg & DEV_SPEED_MASK) {
1017 case XDEV_FS:
1018 debug("SPEED = FULLSPEED\n");
1019 break;
1020 case XDEV_LS:
1021 debug("SPEED = LOWSPEED\n");
1022 tmpbuf[1] |= USB_PORT_STAT_LOW_SPEED >> 8;
1023 break;
1024 case XDEV_HS:
1025 debug("SPEED = HIGHSPEED\n");
1026 tmpbuf[1] |= USB_PORT_STAT_HIGH_SPEED >> 8;
1027 break;
1028 case XDEV_SS:
1029 debug("SPEED = SUPERSPEED\n");
1030 tmpbuf[1] |= USB_PORT_STAT_SUPER_SPEED >> 8;
1031 break;
1032 }
1033 }
1034 if (reg & PORT_PE)
1035 tmpbuf[0] |= USB_PORT_STAT_ENABLE;
1036 if ((reg & PORT_PLS_MASK) == XDEV_U3)
1037 tmpbuf[0] |= USB_PORT_STAT_SUSPEND;
1038 if (reg & PORT_OC)
1039 tmpbuf[0] |= USB_PORT_STAT_OVERCURRENT;
1040 if (reg & PORT_RESET)
1041 tmpbuf[0] |= USB_PORT_STAT_RESET;
1042 if (reg & PORT_POWER)
1043 /*
1044 * XXX: This Port power bit (for USB 3.0 hub)
1045 * we are faking in USB 2.0 hub port status;
1046 * since there's a change in bit positions in
1047 * two:
1048 * USB 2.0 port status PP is at position[8]
1049 * USB 3.0 port status PP is at position[9]
1050 * So, we are still keeping it at position [8]
1051 */
1052 tmpbuf[1] |= USB_PORT_STAT_POWER >> 8;
1053 if (reg & PORT_CSC)
1054 tmpbuf[2] |= USB_PORT_STAT_C_CONNECTION;
1055 if (reg & PORT_PEC)
1056 tmpbuf[2] |= USB_PORT_STAT_C_ENABLE;
1057 if (reg & PORT_OCC)
1058 tmpbuf[2] |= USB_PORT_STAT_C_OVERCURRENT;
1059 if (reg & PORT_RC)
1060 tmpbuf[2] |= USB_PORT_STAT_C_RESET;
1061
1062 srcptr = tmpbuf;
1063 srclen = 4;
1064 break;
1065 case USB_REQ_SET_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
1066 reg = xhci_readl(status_reg);
1067 reg = xhci_port_state_to_neutral(reg);
1068 switch (le16_to_cpu(req->value)) {
1069 case USB_PORT_FEAT_ENABLE:
1070 reg |= PORT_PE;
1071 xhci_writel(status_reg, reg);
1072 break;
1073 case USB_PORT_FEAT_POWER:
1074 reg |= PORT_POWER;
1075 xhci_writel(status_reg, reg);
1076 break;
1077 case USB_PORT_FEAT_RESET:
1078 reg |= PORT_RESET;
1079 xhci_writel(status_reg, reg);
1080 break;
1081 default:
1082 printf("unknown feature %x\n", le16_to_cpu(req->value));
1083 goto unknown;
1084 }
1085 break;
1086 case USB_REQ_CLEAR_FEATURE | ((USB_DIR_OUT | USB_RT_PORT) << 8):
1087 reg = xhci_readl(status_reg);
1088 reg = xhci_port_state_to_neutral(reg);
1089 switch (le16_to_cpu(req->value)) {
1090 case USB_PORT_FEAT_ENABLE:
1091 reg &= ~PORT_PE;
1092 break;
1093 case USB_PORT_FEAT_POWER:
1094 reg &= ~PORT_POWER;
1095 break;
1096 case USB_PORT_FEAT_C_RESET:
1097 case USB_PORT_FEAT_C_CONNECTION:
1098 case USB_PORT_FEAT_C_OVER_CURRENT:
1099 case USB_PORT_FEAT_C_ENABLE:
1100 xhci_clear_port_change_bit((le16_to_cpu(req->value)),
1101 le16_to_cpu(req->index),
1102 status_reg, reg);
1103 break;
1104 default:
1105 printf("unknown feature %x\n", le16_to_cpu(req->value));
1106 goto unknown;
1107 }
1108 xhci_writel(status_reg, reg);
1109 break;
1110 default:
1111 puts("Unknown request\n");
1112 goto unknown;
1113 }
1114
1115 debug("scrlen = %d\n req->length = %d\n",
1116 srclen, le16_to_cpu(req->length));
1117
1118 len = min(srclen, (int)le16_to_cpu(req->length));
1119
1120 if (srcptr != NULL && len > 0)
1121 memcpy(buffer, srcptr, len);
1122 else
1123 debug("Len is 0\n");
1124
1125 udev->act_len = len;
1126 udev->status = 0;
1127
1128 return 0;
1129
1130 unknown:
1131 udev->act_len = 0;
1132 udev->status = USB_ST_STALLED;
1133
1134 return -ENODEV;
1135 }
1136
1137 /**
1138 * Submits the INT request to XHCI Host cotroller
1139 *
1140 * @param udev pointer to the USB device
1141 * @param pipe contains the DIR_IN or OUT , devnum
1142 * @param buffer buffer to be read/written based on the request
1143 * @param length length of the buffer
1144 * @param interval interval of the interrupt
1145 * Return: 0
1146 */
1147 static int _xhci_submit_int_msg(struct usb_device *udev, unsigned long pipe,
1148 void *buffer, int length, int interval,
1149 bool nonblock)
1150 {
1151 if (usb_pipetype(pipe) != PIPE_INTERRUPT) {
1152 printf("non-interrupt pipe (type=%lu)", usb_pipetype(pipe));
1153 return -EINVAL;
1154 }
1155
1156 /*
1157 * xHCI uses normal TRBs for both bulk and interrupt. When the
1158 * interrupt endpoint is to be serviced, the xHC will consume
1159 * (at most) one TD. A TD (comprised of sg list entries) can
1160 * take several service intervals to transmit.
1161 */
1162 return xhci_bulk_tx(udev, pipe, length, buffer);
1163 }
1164
1165 /**
1166 * submit the BULK type of request to the USB Device
1167 *
1168 * @param udev pointer to the USB device
1169 * @param pipe contains the DIR_IN or OUT , devnum
1170 * @param buffer buffer to be read/written based on the request
1171 * @param length length of the buffer
1172 * Return: returns 0 if successful else -1 on failure
1173 */
1174 static int _xhci_submit_bulk_msg(struct usb_device *udev, unsigned long pipe,
1175 void *buffer, int length)
1176 {
1177 if (usb_pipetype(pipe) != PIPE_BULK) {
1178 printf("non-bulk pipe (type=%lu)", usb_pipetype(pipe));
1179 return -EINVAL;
1180 }
1181
1182 return xhci_bulk_tx(udev, pipe, length, buffer);
1183 }
1184
1185 /**
1186 * submit the control type of request to the Root hub/Device based on the devnum
1187 *
1188 * @param udev pointer to the USB device
1189 * @param pipe contains the DIR_IN or OUT , devnum
1190 * @param buffer buffer to be read/written based on the request
1191 * @param length length of the buffer
1192 * @param setup Request type
1193 * @param root_portnr Root port number that this device is on
1194 * Return: returns 0 if successful else -1 on failure
1195 */
1196 static int _xhci_submit_control_msg(struct usb_device *udev, unsigned long pipe,
1197 void *buffer, int length,
1198 struct devrequest *setup, int root_portnr)
1199 {
1200 struct xhci_ctrl *ctrl = xhci_get_ctrl(udev);
1201 int ret = 0;
1202
1203 if (usb_pipetype(pipe) != PIPE_CONTROL) {
1204 printf("non-control pipe (type=%lu)", usb_pipetype(pipe));
1205 return -EINVAL;
1206 }
1207
1208 if (usb_pipedevice(pipe) == ctrl->rootdev)
1209 return xhci_submit_root(udev, pipe, buffer, setup);
1210
1211 if (setup->request == USB_REQ_SET_ADDRESS &&
1212 (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD)
1213 return xhci_address_device(udev, root_portnr);
1214
1215 if (setup->request == USB_REQ_SET_CONFIGURATION &&
1216 (setup->requesttype & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1217 ret = xhci_set_configuration(udev);
1218 if (ret) {
1219 puts("Failed to configure xHCI endpoint\n");
1220 return ret;
1221 }
1222 }
1223
1224 return xhci_ctrl_tx(udev, pipe, setup, length, buffer);
1225 }
1226
1227 static int xhci_lowlevel_init(struct xhci_ctrl *ctrl)
1228 {
1229 struct xhci_hccr *hccr;
1230 struct xhci_hcor *hcor;
1231 uint32_t val;
1232 uint32_t val2;
1233 uint32_t reg;
1234
1235 hccr = ctrl->hccr;
1236 hcor = ctrl->hcor;
1237 /*
1238 * Program the Number of Device Slots Enabled field in the CONFIG
1239 * register with the max value of slots the HC can handle.
1240 */
1241 val = (xhci_readl(&hccr->cr_hcsparams1) & HCS_SLOTS_MASK);
1242 val2 = xhci_readl(&hcor->or_config);
1243 val |= (val2 & ~HCS_SLOTS_MASK);
1244 xhci_writel(&hcor->or_config, val);
1245
1246 /* initializing xhci data structures */
1247 if (xhci_mem_init(ctrl, hccr, hcor) < 0)
1248 return -ENOMEM;
1249 ctrl->hub_desc = descriptor.hub;
1250
1251 reg = xhci_readl(&hccr->cr_hcsparams1);
1252 ctrl->hub_desc.bNbrPorts = HCS_MAX_PORTS(reg);
1253 printf("Register %x NbrPorts %d\n", reg, ctrl->hub_desc.bNbrPorts);
1254
1255 /* Port Indicators */
1256 reg = xhci_readl(&hccr->cr_hccparams);
1257 if (HCS_INDICATOR(reg))
1258 put_unaligned(get_unaligned(&ctrl->hub_desc.wHubCharacteristics)
1259 | 0x80, &ctrl->hub_desc.wHubCharacteristics);
1260
1261 /* Port Power Control */
1262 if (HCC_PPC(reg))
1263 put_unaligned(get_unaligned(&ctrl->hub_desc.wHubCharacteristics)
1264 | 0x01, &ctrl->hub_desc.wHubCharacteristics);
1265
1266 if (xhci_start(hcor)) {
1267 xhci_reset(hcor);
1268 return -ENODEV;
1269 }
1270
1271 /* Zero'ing IRQ control register and IRQ pending register */
1272 xhci_writel(&ctrl->ir_set->irq_control, 0x0);
1273 xhci_writel(&ctrl->ir_set->irq_pending, 0x0);
1274
1275 reg = HC_VERSION(xhci_readl(&hccr->cr_capbase));
1276 printf("USB XHCI %x.%02x\n", reg >> 8, reg & 0xff);
1277 ctrl->hci_version = reg;
1278
1279 return 0;
1280 }
1281
1282 static int xhci_lowlevel_stop(struct xhci_ctrl *ctrl)
1283 {
1284 u32 temp;
1285
1286 xhci_reset(ctrl->hcor);
1287
1288 debug("// Disabling event ring interrupts\n");
1289 temp = xhci_readl(&ctrl->hcor->or_usbsts);
1290 xhci_writel(&ctrl->hcor->or_usbsts, temp & ~STS_EINT);
1291 temp = xhci_readl(&ctrl->ir_set->irq_pending);
1292 xhci_writel(&ctrl->ir_set->irq_pending, ER_IRQ_DISABLE(temp));
1293
1294 return 0;
1295 }
1296
1297 static int xhci_submit_control_msg(struct udevice *dev, struct usb_device *udev,
1298 unsigned long pipe, void *buffer, int length,
1299 struct devrequest *setup)
1300 {
1301 struct usb_device *uhop;
1302 struct udevice *hub;
1303 int root_portnr = 0;
1304
1305 debug("%s: dev='%s', udev=%p, udev->dev='%s', portnr=%d\n", __func__,
1306 dev->name, udev, udev->dev->name, udev->portnr);
1307 hub = udev->dev;
1308 if (device_get_uclass_id(hub) == UCLASS_USB_HUB) {
1309 /* Figure out our port number on the root hub */
1310 if (usb_hub_is_root_hub(hub)) {
1311 root_portnr = udev->portnr;
1312 } else {
1313 while (!usb_hub_is_root_hub(hub->parent))
1314 hub = hub->parent;
1315 uhop = dev_get_parent_priv(hub);
1316 root_portnr = uhop->portnr;
1317 }
1318 }
1319 /*
1320 struct usb_device *hop = udev;
1321
1322 if (hop->parent)
1323 while (hop->parent->parent)
1324 hop = hop->parent;
1325 */
1326 return _xhci_submit_control_msg(udev, pipe, buffer, length, setup,
1327 root_portnr);
1328 }
1329
1330 static int xhci_submit_bulk_msg(struct udevice *dev, struct usb_device *udev,
1331 unsigned long pipe, void *buffer, int length)
1332 {
1333 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1334 return _xhci_submit_bulk_msg(udev, pipe, buffer, length);
1335 }
1336
1337 static int xhci_submit_int_msg(struct udevice *dev, struct usb_device *udev,
1338 unsigned long pipe, void *buffer, int length,
1339 int interval, bool nonblock)
1340 {
1341 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1342 return _xhci_submit_int_msg(udev, pipe, buffer, length, interval,
1343 nonblock);
1344 }
1345
1346 static int xhci_alloc_device(struct udevice *dev, struct usb_device *udev)
1347 {
1348 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1349 return _xhci_alloc_device(udev);
1350 }
1351
1352 static int xhci_update_hub_device(struct udevice *dev, struct usb_device *udev)
1353 {
1354 struct xhci_ctrl *ctrl = dev_get_priv(dev);
1355 struct usb_hub_device *hub = dev_get_uclass_priv(udev->dev);
1356 struct xhci_virt_device *virt_dev;
1357 struct xhci_input_control_ctx *ctrl_ctx;
1358 struct xhci_container_ctx *out_ctx;
1359 struct xhci_container_ctx *in_ctx;
1360 struct xhci_slot_ctx *slot_ctx;
1361 int slot_id = udev->slot_id;
1362 unsigned think_time;
1363
1364 debug("%s: dev='%s', udev=%p\n", __func__, dev->name, udev);
1365
1366 /* Ignore root hubs */
1367 if (usb_hub_is_root_hub(udev->dev))
1368 return 0;
1369
1370 virt_dev = ctrl->devs[slot_id];
1371 BUG_ON(!virt_dev);
1372
1373 out_ctx = virt_dev->out_ctx;
1374 in_ctx = virt_dev->in_ctx;
1375
1376 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1377 /* Initialize the input context control */
1378 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1379 ctrl_ctx->drop_flags = 0;
1380
1381 xhci_inval_cache((uintptr_t)out_ctx->bytes, out_ctx->size);
1382
1383 /* slot context */
1384 xhci_slot_copy(ctrl, in_ctx, out_ctx);
1385 slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
1386
1387 /* Update hub related fields */
1388 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
1389 /*
1390 * refer to section 6.2.2: MTT should be 0 for full speed hub,
1391 * but it may be already set to 1 when setup an xHCI virtual
1392 * device, so clear it anyway.
1393 */
1394 if (hub->tt.multi)
1395 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1396 else if (udev->speed == USB_SPEED_FULL)
1397 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
1398 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(udev->maxchild));
1399 /*
1400 * Set TT think time - convert from ns to FS bit times.
1401 * Note 8 FS bit times == (8 bits / 12000000 bps) ~= 666ns
1402 *
1403 * 0 = 8 FS bit times, 1 = 16 FS bit times,
1404 * 2 = 24 FS bit times, 3 = 32 FS bit times.
1405 *
1406 * This field shall be 0 if the device is not a high-spped hub.
1407 */
1408 think_time = hub->tt.think_time;
1409 if (think_time != 0)
1410 think_time = (think_time / 666) - 1;
1411 if (udev->speed == USB_SPEED_HIGH)
1412 slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time));
1413 slot_ctx->dev_state = 0;
1414
1415 return xhci_configure_endpoints(udev, false);
1416 }
1417
1418 static int xhci_get_max_xfer_size(struct udevice *dev, size_t *size)
1419 {
1420 /*
1421 * xHCD allocates one segment which includes 64 TRBs for each endpoint
1422 * and the last TRB in this segment is configured as a link TRB to form
1423 * a TRB ring. Each TRB can transfer up to 64K bytes, however data
1424 * buffers referenced by transfer TRBs shall not span 64KB boundaries.
1425 * Hence the maximum number of TRBs we can use in one transfer is 62.
1426 */
1427 *size = (TRBS_PER_SEGMENT - 2) * TRB_MAX_BUFF_SIZE;
1428
1429 return 0;
1430 }
1431
1432 int xhci_register(struct udevice *dev, struct xhci_hccr *hccr,
1433 struct xhci_hcor *hcor)
1434 {
1435 struct xhci_ctrl *ctrl = dev_get_priv(dev);
1436 struct usb_bus_priv *priv = dev_get_uclass_priv(dev);
1437 int ret;
1438
1439 debug("%s: dev='%s', ctrl=%p, hccr=%p, hcor=%p\n", __func__, dev->name,
1440 ctrl, hccr, hcor);
1441
1442 ctrl->dev = dev;
1443
1444 /*
1445 * XHCI needs to issue a Address device command to setup
1446 * proper device context structures, before it can interact
1447 * with the device. So a get_descriptor will fail before any
1448 * of that is done for XHCI unlike EHCI.
1449 */
1450 priv->desc_before_addr = false;
1451
1452 ret = xhci_reset(hcor);
1453 if (ret)
1454 goto err;
1455
1456 ctrl->hccr = hccr;
1457 ctrl->hcor = hcor;
1458 ret = xhci_lowlevel_init(ctrl);
1459 if (ret)
1460 goto err;
1461
1462 return 0;
1463 err:
1464 debug("%s: failed, ret=%d\n", __func__, ret);
1465 return ret;
1466 }
1467
1468 int xhci_deregister(struct udevice *dev)
1469 {
1470 struct xhci_ctrl *ctrl = dev_get_priv(dev);
1471
1472 xhci_lowlevel_stop(ctrl);
1473 xhci_cleanup(ctrl);
1474
1475 return 0;
1476 }
1477
1478 struct dm_usb_ops xhci_usb_ops = {
1479 .control = xhci_submit_control_msg,
1480 .bulk = xhci_submit_bulk_msg,
1481 .interrupt = xhci_submit_int_msg,
1482 .alloc_device = xhci_alloc_device,
1483 .update_hub_device = xhci_update_hub_device,
1484 .get_max_xfer_size = xhci_get_max_xfer_size,
1485 };