]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/usb/host/xhci.c
gpu: host1x: Use SMMU on Tegra124 and Tegra210
[thirdparty/linux.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 struct xhci_segment *seg = ring->first_seg;
44
45 if (!td || !td->start_seg)
46 return false;
47 do {
48 if (seg == td->start_seg)
49 return true;
50 seg = seg->next;
51 } while (seg && seg != ring->first_seg);
52
53 return false;
54 }
55
56 /*
57 * xhci_handshake - spin reading hc until handshake completes or fails
58 * @ptr: address of hc register to be read
59 * @mask: bits to look at in result of read
60 * @done: value of those bits when handshake succeeds
61 * @usec: timeout in microseconds
62 *
63 * Returns negative errno, or zero on success
64 *
65 * Success happens when the "mask" bits have the specified value (hardware
66 * handshake done). There are two failure modes: "usec" have passed (major
67 * hardware flakeout), or the register reads as all-ones (hardware removed).
68 */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 u32 result;
72 int ret;
73
74 ret = readl_poll_timeout_atomic(ptr, result,
75 (result & mask) == done ||
76 result == U32_MAX,
77 1, usec);
78 if (result == U32_MAX) /* card removed */
79 return -ENODEV;
80
81 return ret;
82 }
83
84 /*
85 * Disable interrupts and begin the xHCI halting process.
86 */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 u32 halted;
90 u32 cmd;
91 u32 mask;
92
93 mask = ~(XHCI_IRQS);
94 halted = readl(&xhci->op_regs->status) & STS_HALT;
95 if (!halted)
96 mask &= ~CMD_RUN;
97
98 cmd = readl(&xhci->op_regs->command);
99 cmd &= mask;
100 writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104 * Force HC into halt state.
105 *
106 * Disable any IRQs and clear the run/stop bit.
107 * HC will complete any current and actively pipelined transactions, and
108 * should halt within 16 ms of the run/stop bit being cleared.
109 * Read HC Halted bit in the status register to see when the HC is finished.
110 */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 int ret;
114 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 xhci_quiesce(xhci);
116
117 ret = xhci_handshake(&xhci->op_regs->status,
118 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 if (ret) {
120 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 return ret;
122 }
123 xhci->xhc_state |= XHCI_STATE_HALTED;
124 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 return ret;
126 }
127
128 /*
129 * Set the run bit and wait for the host to be running.
130 */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 u32 temp;
134 int ret;
135
136 temp = readl(&xhci->op_regs->command);
137 temp |= (CMD_RUN);
138 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 temp);
140 writel(temp, &xhci->op_regs->command);
141
142 /*
143 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 * running.
145 */
146 ret = xhci_handshake(&xhci->op_regs->status,
147 STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 if (ret == -ETIMEDOUT)
149 xhci_err(xhci, "Host took too long to start, "
150 "waited %u microseconds.\n",
151 XHCI_MAX_HALT_USEC);
152 if (!ret)
153 /* clear state flags. Including dying, halted or removing */
154 xhci->xhc_state = 0;
155
156 return ret;
157 }
158
159 /*
160 * Reset a halted HC.
161 *
162 * This resets pipelines, timers, counters, state machines, etc.
163 * Transactions will be terminated immediately, and operational registers
164 * will be set to their defaults.
165 */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 u32 command;
169 u32 state;
170 int ret;
171
172 state = readl(&xhci->op_regs->status);
173
174 if (state == ~(u32)0) {
175 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 return -ENODEV;
177 }
178
179 if ((state & STS_HALT) == 0) {
180 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 return 0;
182 }
183
184 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 command = readl(&xhci->op_regs->command);
186 command |= CMD_RESET;
187 writel(command, &xhci->op_regs->command);
188
189 /* Existing Intel xHCI controllers require a delay of 1 mS,
190 * after setting the CMD_RESET bit, and before accessing any
191 * HC registers. This allows the HC to complete the
192 * reset operation and be ready for HC register access.
193 * Without this delay, the subsequent HC register access,
194 * may result in a system hang very rarely.
195 */
196 if (xhci->quirks & XHCI_INTEL_HOST)
197 udelay(1000);
198
199 ret = xhci_handshake(&xhci->op_regs->command,
200 CMD_RESET, 0, 10 * 1000 * 1000);
201 if (ret)
202 return ret;
203
204 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 "Wait for controller to be ready for doorbell rings");
209 /*
210 * xHCI cannot write to any doorbells or operational registers other
211 * than status until the "Controller Not Ready" flag is cleared.
212 */
213 ret = xhci_handshake(&xhci->op_regs->status,
214 STS_CNR, 0, 10 * 1000 * 1000);
215
216 xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223 return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 int err, i;
230 u64 val;
231
232 /*
233 * Some Renesas controllers get into a weird state if they are
234 * reset while programmed with 64bit addresses (they will preserve
235 * the top half of the address in internal, non visible
236 * registers). You end up with half the address coming from the
237 * kernel, and the other half coming from the firmware. Also,
238 * changing the programming leads to extra accesses even if the
239 * controller is supposed to be halted. The controller ends up with
240 * a fatal fault, and is then ripe for being properly reset.
241 *
242 * Special care is taken to only apply this if the device is behind
243 * an iommu. Doing anything when there is no iommu is definitely
244 * unsafe...
245 */
246 if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 return;
248
249 xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251 /* Clear HSEIE so that faults do not get signaled */
252 val = readl(&xhci->op_regs->command);
253 val &= ~CMD_HSEIE;
254 writel(val, &xhci->op_regs->command);
255
256 /* Clear HSE (aka FATAL) */
257 val = readl(&xhci->op_regs->status);
258 val |= STS_FATAL;
259 writel(val, &xhci->op_regs->status);
260
261 /* Now zero the registers, and brace for impact */
262 val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 if (upper_32_bits(val))
264 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 if (upper_32_bits(val))
267 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269 for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 struct xhci_intr_reg __iomem *ir;
271
272 ir = &xhci->run_regs->ir_set[i];
273 val = xhci_read_64(xhci, &ir->erst_base);
274 if (upper_32_bits(val))
275 xhci_write_64(xhci, 0, &ir->erst_base);
276 val= xhci_read_64(xhci, &ir->erst_dequeue);
277 if (upper_32_bits(val))
278 xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 }
280
281 /* Wait for the fault to appear. It will be cleared on reset */
282 err = xhci_handshake(&xhci->op_regs->status,
283 STS_FATAL, STS_FATAL,
284 XHCI_MAX_HALT_USEC);
285 if (!err)
286 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291 * Set up MSI
292 */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 int ret;
296 /*
297 * TODO:Check with MSI Soc for sysdev
298 */
299 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301 ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 if (ret < 0) {
303 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 "failed to allocate MSI entry");
305 return ret;
306 }
307
308 ret = request_irq(pdev->irq, xhci_msi_irq,
309 0, "xhci_hcd", xhci_to_hcd(xhci));
310 if (ret) {
311 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 "disable MSI interrupt");
313 pci_free_irq_vectors(pdev);
314 }
315
316 return ret;
317 }
318
319 /*
320 * Set up MSI-X
321 */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 int i, ret = 0;
325 struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328 /*
329 * calculate number of msi-x vectors supported.
330 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 * with max number of interrupters based on the xhci HCSPARAMS1.
332 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 * Add additional 1 vector to ensure always available interrupt.
334 */
335 xhci->msix_count = min(num_online_cpus() + 1,
336 HCS_MAX_INTRS(xhci->hcs_params1));
337
338 ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 PCI_IRQ_MSIX);
340 if (ret < 0) {
341 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 "Failed to enable MSI-X");
343 return ret;
344 }
345
346 for (i = 0; i < xhci->msix_count; i++) {
347 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 "xhci_hcd", xhci_to_hcd(xhci));
349 if (ret)
350 goto disable_msix;
351 }
352
353 hcd->msix_enabled = 1;
354 return ret;
355
356 disable_msix:
357 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 while (--i >= 0)
359 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 pci_free_irq_vectors(pdev);
361 return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370 if (xhci->quirks & XHCI_PLAT)
371 return;
372
373 /* return if using legacy interrupt */
374 if (hcd->irq > 0)
375 return;
376
377 if (hcd->msix_enabled) {
378 int i;
379
380 for (i = 0; i < xhci->msix_count; i++)
381 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 } else {
383 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 }
385
386 pci_free_irq_vectors(pdev);
387 hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394 if (hcd->msix_enabled) {
395 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 int i;
397
398 for (i = 0; i < xhci->msix_count; i++)
399 synchronize_irq(pci_irq_vector(pdev, i));
400 }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 struct pci_dev *pdev;
407 int ret;
408
409 /* The xhci platform device has set up IRQs through usb_add_hcd. */
410 if (xhci->quirks & XHCI_PLAT)
411 return 0;
412
413 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 /*
415 * Some Fresco Logic host controllers advertise MSI, but fail to
416 * generate interrupts. Don't even try to enable MSI.
417 */
418 if (xhci->quirks & XHCI_BROKEN_MSI)
419 goto legacy_irq;
420
421 /* unregister the legacy interrupt */
422 if (hcd->irq)
423 free_irq(hcd->irq, hcd);
424 hcd->irq = 0;
425
426 ret = xhci_setup_msix(xhci);
427 if (ret)
428 /* fall back to msi*/
429 ret = xhci_setup_msi(xhci);
430
431 if (!ret) {
432 hcd->msi_enabled = 1;
433 return 0;
434 }
435
436 if (!pdev->irq) {
437 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 return -EINVAL;
439 }
440
441 legacy_irq:
442 if (!strlen(hcd->irq_descr))
443 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 hcd->driver->description, hcd->self.busnum);
445
446 /* fall back to legacy interrupt*/
447 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 hcd->irq_descr, hcd);
449 if (ret) {
450 xhci_err(xhci, "request interrupt %d failed\n",
451 pdev->irq);
452 return ret;
453 }
454 hcd->irq = pdev->irq;
455 return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 struct xhci_hcd *xhci;
478 struct usb_hcd *hcd;
479 struct xhci_hub *rhub;
480 u32 temp;
481 int i;
482
483 xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 rhub = &xhci->usb3_rhub;
485
486 for (i = 0; i < rhub->num_ports; i++) {
487 temp = readl(rhub->ports[i]->addr);
488 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 /*
490 * Compliance Mode Detected. Letting USB Core
491 * handle the Warm Reset
492 */
493 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 "Compliance mode detected->port %d",
495 i + 1);
496 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 "Attempting compliance mode recovery");
498 hcd = xhci->shared_hcd;
499
500 if (hcd->state == HC_STATE_SUSPENDED)
501 usb_hcd_resume_root_hub(hcd);
502
503 usb_hcd_poll_rh_status(hcd);
504 }
505 }
506
507 if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 mod_timer(&xhci->comp_mode_recovery_timer,
509 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514 * that causes ports behind that hardware to enter compliance mode sometimes.
515 * The quirk creates a timer that polls every 2 seconds the link state of
516 * each host controller's port and recovers it by issuing a Warm reset
517 * if Compliance mode is detected, otherwise the port will become "dead" (no
518 * device connections or disconnections will be detected anymore). Becasue no
519 * status event is generated when entering compliance mode (per xhci spec),
520 * this quirk is needed on systems that have the failing hardware installed.
521 */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 xhci->port_status_u0 = 0;
525 timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 0);
527 xhci->comp_mode_recovery_timer.expires = jiffies +
528 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530 add_timer(&xhci->comp_mode_recovery_timer);
531 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 "Compliance mode recovery timer initialized");
533 }
534
535 /*
536 * This function identifies the systems that have installed the SN65LVPE502CP
537 * USB3.0 re-driver and that need the Compliance Mode Quirk.
538 * Systems:
539 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540 */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 const char *dmi_product_name, *dmi_sys_vendor;
544
545 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 if (!dmi_product_name || !dmi_sys_vendor)
548 return false;
549
550 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 return false;
552
553 if (strstr(dmi_product_name, "Z420") ||
554 strstr(dmi_product_name, "Z620") ||
555 strstr(dmi_product_name, "Z820") ||
556 strstr(dmi_product_name, "Z1 Workstation"))
557 return true;
558
559 return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569 * Initialize memory for HCD and xHC (one-time init).
570 *
571 * Program the PAGESIZE register, initialize the device context array, create
572 * device contexts (?), set up a command ring segment (or two?), create event
573 * ring (one for now).
574 */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 int retval = 0;
579
580 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 spin_lock_init(&xhci->lock);
582 if (xhci->hci_version == 0x95 && link_quirk) {
583 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 "QUIRK: Not clearing Link TRB chain bits.");
585 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 } else {
587 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 "xHCI doesn't need link TRB QUIRK");
589 }
590 retval = xhci_mem_init(xhci, GFP_KERNEL);
591 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593 /* Initializing Compliance Mode Recovery Data If Needed */
594 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 compliance_mode_recovery_timer_init(xhci);
597 }
598
599 return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 if (xhci_start(xhci)) {
608 xhci_halt(xhci);
609 return -ENODEV;
610 }
611 xhci->shared_hcd->state = HC_STATE_RUNNING;
612 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614 if (xhci->quirks & XHCI_NEC_HOST)
615 xhci_ring_cmd_db(xhci);
616
617 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 "Finished xhci_run for USB3 roothub");
619 return 0;
620 }
621
622 /*
623 * Start the HC after it was halted.
624 *
625 * This function is called by the USB core when the HC driver is added.
626 * Its opposite is xhci_stop().
627 *
628 * xhci_init() must be called once before this function can be called.
629 * Reset the HC, enable device slot contexts, program DCBAAP, and
630 * set command ring pointer and event ring pointer.
631 *
632 * Setup MSI-X vectors and enable interrupts.
633 */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 u32 temp;
637 u64 temp_64;
638 int ret;
639 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641 /* Start the xHCI host controller running only after the USB 2.0 roothub
642 * is setup.
643 */
644
645 hcd->uses_new_polling = 1;
646 if (!usb_hcd_is_primary_hcd(hcd))
647 return xhci_run_finished(xhci);
648
649 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651 ret = xhci_try_enable_msi(hcd);
652 if (ret)
653 return ret;
654
655 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 temp_64 &= ~ERST_PTR_MASK;
657 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 "// Set the interrupt modulation register");
662 temp = readl(&xhci->ir_set->irq_control);
663 temp &= ~ER_IRQ_INTERVAL_MASK;
664 temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 writel(temp, &xhci->ir_set->irq_control);
666
667 /* Set the HCD state before we enable the irqs */
668 temp = readl(&xhci->op_regs->command);
669 temp |= (CMD_EIE);
670 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 "// Enable interrupts, cmd = 0x%x.", temp);
672 writel(temp, &xhci->op_regs->command);
673
674 temp = readl(&xhci->ir_set->irq_pending);
675 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680 if (xhci->quirks & XHCI_NEC_HOST) {
681 struct xhci_command *command;
682
683 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 if (!command)
685 return -ENOMEM;
686
687 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 TRB_TYPE(TRB_NEC_GET_FW));
689 if (ret)
690 xhci_free_command(xhci, command);
691 }
692 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 "Finished xhci_run for USB2 roothub");
694
695 xhci_dbc_init(xhci);
696
697 xhci_debugfs_init(xhci);
698
699 return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704 * Stop xHCI driver.
705 *
706 * This function is called by the USB core when the HC driver is removed.
707 * Its opposite is xhci_run().
708 *
709 * Disable device contexts, disable IRQs, and quiesce the HC.
710 * Reset the HC, finish any completed transactions, and cleanup memory.
711 */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 u32 temp;
715 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717 mutex_lock(&xhci->mutex);
718
719 /* Only halt host and free memory after both hcds are removed */
720 if (!usb_hcd_is_primary_hcd(hcd)) {
721 mutex_unlock(&xhci->mutex);
722 return;
723 }
724
725 xhci_dbc_exit(xhci);
726
727 spin_lock_irq(&xhci->lock);
728 xhci->xhc_state |= XHCI_STATE_HALTED;
729 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 xhci_halt(xhci);
731 xhci_reset(xhci);
732 spin_unlock_irq(&xhci->lock);
733
734 xhci_cleanup_msix(xhci);
735
736 /* Deleting Compliance Mode Recovery Timer */
737 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 (!(xhci_all_ports_seen_u0(xhci)))) {
739 del_timer_sync(&xhci->comp_mode_recovery_timer);
740 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 "%s: compliance mode recovery timer deleted",
742 __func__);
743 }
744
745 if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 usb_amd_dev_put();
747
748 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 "// Disabling event ring interrupts");
750 temp = readl(&xhci->op_regs->status);
751 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 temp = readl(&xhci->ir_set->irq_pending);
753 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 xhci_mem_cleanup(xhci);
757 xhci_debugfs_exit(xhci);
758 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 "xhci_stop completed - status = %x",
760 readl(&xhci->op_regs->status));
761 mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765 * Shutdown HC (not bus-specific)
766 *
767 * This is called when the machine is rebooting or halting. We assume that the
768 * machine will be powered off, and the HC's internal state will be reset.
769 * Don't bother to free memory.
770 *
771 * This will only ever be called with the main usb_hcd (the USB3 roothub).
772 */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780 spin_lock_irq(&xhci->lock);
781 xhci_halt(xhci);
782 /* Workaround for spurious wakeups at shutdown with HSW */
783 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 xhci_reset(xhci);
785 spin_unlock_irq(&xhci->lock);
786
787 xhci_cleanup_msix(xhci);
788
789 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 "xhci_shutdown completed - status = %x",
791 readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 xhci->s3.command = readl(&xhci->op_regs->command);
799 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 writel(xhci->s3.command, &xhci->op_regs->command);
812 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 u64 val_64;
825
826 /* step 2: initialize command ring buffer */
827 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 xhci->cmd_ring->dequeue) &
831 (u64) ~CMD_RING_RSVD_BITS) |
832 xhci->cmd_ring->cycle_state;
833 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 "// Setting command ring address to 0x%llx",
835 (long unsigned long) val_64);
836 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840 * The whole command ring must be cleared to zero when we suspend the host.
841 *
842 * The host doesn't save the command ring pointer in the suspend well, so we
843 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
844 * aligned, because of the reserved bits in the command ring dequeue pointer
845 * register. Therefore, we can't just set the dequeue pointer back in the
846 * middle of the ring (TRBs are 16-byte aligned).
847 */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 struct xhci_ring *ring;
851 struct xhci_segment *seg;
852
853 ring = xhci->cmd_ring;
854 seg = ring->deq_seg;
855 do {
856 memset(seg->trbs, 0,
857 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 cpu_to_le32(~TRB_CYCLE);
860 seg = seg->next;
861 } while (seg != ring->deq_seg);
862
863 /* Reset the software enqueue and dequeue pointers */
864 ring->deq_seg = ring->first_seg;
865 ring->dequeue = ring->first_seg->trbs;
866 ring->enq_seg = ring->deq_seg;
867 ring->enqueue = ring->dequeue;
868
869 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 /*
871 * Ring is now zeroed, so the HW should look for change of ownership
872 * when the cycle bit is set to 1.
873 */
874 ring->cycle_state = 1;
875
876 /*
877 * Reset the hardware dequeue pointer.
878 * Yes, this will need to be re-written after resume, but we're paranoid
879 * and want to make sure the hardware doesn't access bogus memory
880 * because, say, the BIOS or an SMI started the host without changing
881 * the command ring pointers.
882 */
883 xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888 struct xhci_port **ports;
889 int port_index;
890 unsigned long flags;
891 u32 t1, t2, portsc;
892
893 spin_lock_irqsave(&xhci->lock, flags);
894
895 /* disable usb3 ports Wake bits */
896 port_index = xhci->usb3_rhub.num_ports;
897 ports = xhci->usb3_rhub.ports;
898 while (port_index--) {
899 t1 = readl(ports[port_index]->addr);
900 portsc = t1;
901 t1 = xhci_port_state_to_neutral(t1);
902 t2 = t1 & ~PORT_WAKE_BITS;
903 if (t1 != t2) {
904 writel(t2, ports[port_index]->addr);
905 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906 xhci->usb3_rhub.hcd->self.busnum,
907 port_index + 1, portsc, t2);
908 }
909 }
910
911 /* disable usb2 ports Wake bits */
912 port_index = xhci->usb2_rhub.num_ports;
913 ports = xhci->usb2_rhub.ports;
914 while (port_index--) {
915 t1 = readl(ports[port_index]->addr);
916 portsc = t1;
917 t1 = xhci_port_state_to_neutral(t1);
918 t2 = t1 & ~PORT_WAKE_BITS;
919 if (t1 != t2) {
920 writel(t2, ports[port_index]->addr);
921 xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922 xhci->usb2_rhub.hcd->self.busnum,
923 port_index + 1, portsc, t2);
924 }
925 }
926 spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931 struct xhci_port **ports;
932 int port_index;
933 u32 status;
934 u32 portsc;
935
936 status = readl(&xhci->op_regs->status);
937 if (status & STS_EINT)
938 return true;
939 /*
940 * Checking STS_EINT is not enough as there is a lag between a change
941 * bit being set and the Port Status Change Event that it generated
942 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943 */
944
945 port_index = xhci->usb2_rhub.num_ports;
946 ports = xhci->usb2_rhub.ports;
947 while (port_index--) {
948 portsc = readl(ports[port_index]->addr);
949 if (portsc & PORT_CHANGE_MASK ||
950 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951 return true;
952 }
953 port_index = xhci->usb3_rhub.num_ports;
954 ports = xhci->usb3_rhub.ports;
955 while (port_index--) {
956 portsc = readl(ports[port_index]->addr);
957 if (portsc & PORT_CHANGE_MASK ||
958 (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959 return true;
960 }
961 return false;
962 }
963
964 /*
965 * Stop HC (not bus-specific)
966 *
967 * This is called when the machine transition into S3/S4 mode.
968 *
969 */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972 int rc = 0;
973 unsigned int delay = XHCI_MAX_HALT_USEC * 2;
974 struct usb_hcd *hcd = xhci_to_hcd(xhci);
975 u32 command;
976 u32 res;
977
978 if (!hcd->state)
979 return 0;
980
981 if (hcd->state != HC_STATE_SUSPENDED ||
982 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983 return -EINVAL;
984
985 xhci_dbc_suspend(xhci);
986
987 /* Clear root port wake on bits if wakeup not allowed. */
988 if (!do_wakeup)
989 xhci_disable_port_wake_on_bits(xhci);
990
991 /* Don't poll the roothubs on bus suspend. */
992 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
993 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
994 del_timer_sync(&hcd->rh_timer);
995 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
996 del_timer_sync(&xhci->shared_hcd->rh_timer);
997
998 if (xhci->quirks & XHCI_SUSPEND_DELAY)
999 usleep_range(1000, 1500);
1000
1001 spin_lock_irq(&xhci->lock);
1002 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1004 /* step 1: stop endpoint */
1005 /* skipped assuming that port suspend has done */
1006
1007 /* step 2: clear Run/Stop bit */
1008 command = readl(&xhci->op_regs->command);
1009 command &= ~CMD_RUN;
1010 writel(command, &xhci->op_regs->command);
1011
1012 /* Some chips from Fresco Logic need an extraordinary delay */
1013 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1014
1015 if (xhci_handshake(&xhci->op_regs->status,
1016 STS_HALT, STS_HALT, delay)) {
1017 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1018 spin_unlock_irq(&xhci->lock);
1019 return -ETIMEDOUT;
1020 }
1021 xhci_clear_command_ring(xhci);
1022
1023 /* step 3: save registers */
1024 xhci_save_registers(xhci);
1025
1026 /* step 4: set CSS flag */
1027 command = readl(&xhci->op_regs->command);
1028 command |= CMD_CSS;
1029 writel(command, &xhci->op_regs->command);
1030 xhci->broken_suspend = 0;
1031 if (xhci_handshake(&xhci->op_regs->status,
1032 STS_SAVE, 0, 20 * 1000)) {
1033 /*
1034 * AMD SNPS xHC 3.0 occasionally does not clear the
1035 * SSS bit of USBSTS and when driver tries to poll
1036 * to see if the xHC clears BIT(8) which never happens
1037 * and driver assumes that controller is not responding
1038 * and times out. To workaround this, its good to check
1039 * if SRE and HCE bits are not set (as per xhci
1040 * Section 5.4.2) and bypass the timeout.
1041 */
1042 res = readl(&xhci->op_regs->status);
1043 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1044 (((res & STS_SRE) == 0) &&
1045 ((res & STS_HCE) == 0))) {
1046 xhci->broken_suspend = 1;
1047 } else {
1048 xhci_warn(xhci, "WARN: xHC save state timeout\n");
1049 spin_unlock_irq(&xhci->lock);
1050 return -ETIMEDOUT;
1051 }
1052 }
1053 spin_unlock_irq(&xhci->lock);
1054
1055 /*
1056 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1057 * is about to be suspended.
1058 */
1059 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1060 (!(xhci_all_ports_seen_u0(xhci)))) {
1061 del_timer_sync(&xhci->comp_mode_recovery_timer);
1062 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1063 "%s: compliance mode recovery timer deleted",
1064 __func__);
1065 }
1066
1067 /* step 5: remove core well power */
1068 /* synchronize irq when using MSI-X */
1069 xhci_msix_sync_irqs(xhci);
1070
1071 return rc;
1072 }
1073 EXPORT_SYMBOL_GPL(xhci_suspend);
1074
1075 /*
1076 * start xHC (not bus-specific)
1077 *
1078 * This is called when the machine transition from S3/S4 mode.
1079 *
1080 */
1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1082 {
1083 u32 command, temp = 0;
1084 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1085 struct usb_hcd *secondary_hcd;
1086 int retval = 0;
1087 bool comp_timer_running = false;
1088
1089 if (!hcd->state)
1090 return 0;
1091
1092 /* Wait a bit if either of the roothubs need to settle from the
1093 * transition into bus suspend.
1094 */
1095
1096 if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1097 time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1098 msleep(100);
1099
1100 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1101 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1102
1103 spin_lock_irq(&xhci->lock);
1104 if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1105 hibernated = true;
1106
1107 if (!hibernated) {
1108 /*
1109 * Some controllers might lose power during suspend, so wait
1110 * for controller not ready bit to clear, just as in xHC init.
1111 */
1112 retval = xhci_handshake(&xhci->op_regs->status,
1113 STS_CNR, 0, 10 * 1000 * 1000);
1114 if (retval) {
1115 xhci_warn(xhci, "Controller not ready at resume %d\n",
1116 retval);
1117 spin_unlock_irq(&xhci->lock);
1118 return retval;
1119 }
1120 /* step 1: restore register */
1121 xhci_restore_registers(xhci);
1122 /* step 2: initialize command ring buffer */
1123 xhci_set_cmd_ring_deq(xhci);
1124 /* step 3: restore state and start state*/
1125 /* step 3: set CRS flag */
1126 command = readl(&xhci->op_regs->command);
1127 command |= CMD_CRS;
1128 writel(command, &xhci->op_regs->command);
1129 /*
1130 * Some controllers take up to 55+ ms to complete the controller
1131 * restore so setting the timeout to 100ms. Xhci specification
1132 * doesn't mention any timeout value.
1133 */
1134 if (xhci_handshake(&xhci->op_regs->status,
1135 STS_RESTORE, 0, 100 * 1000)) {
1136 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1137 spin_unlock_irq(&xhci->lock);
1138 return -ETIMEDOUT;
1139 }
1140 temp = readl(&xhci->op_regs->status);
1141 }
1142
1143 /* If restore operation fails, re-initialize the HC during resume */
1144 if ((temp & STS_SRE) || hibernated) {
1145
1146 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147 !(xhci_all_ports_seen_u0(xhci))) {
1148 del_timer_sync(&xhci->comp_mode_recovery_timer);
1149 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150 "Compliance Mode Recovery Timer deleted!");
1151 }
1152
1153 /* Let the USB core know _both_ roothubs lost power. */
1154 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1156
1157 xhci_dbg(xhci, "Stop HCD\n");
1158 xhci_halt(xhci);
1159 xhci_zero_64b_regs(xhci);
1160 retval = xhci_reset(xhci);
1161 spin_unlock_irq(&xhci->lock);
1162 if (retval)
1163 return retval;
1164 xhci_cleanup_msix(xhci);
1165
1166 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1167 temp = readl(&xhci->op_regs->status);
1168 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1169 temp = readl(&xhci->ir_set->irq_pending);
1170 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1171
1172 xhci_dbg(xhci, "cleaning up memory\n");
1173 xhci_mem_cleanup(xhci);
1174 xhci_debugfs_exit(xhci);
1175 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1176 readl(&xhci->op_regs->status));
1177
1178 /* USB core calls the PCI reinit and start functions twice:
1179 * first with the primary HCD, and then with the secondary HCD.
1180 * If we don't do the same, the host will never be started.
1181 */
1182 if (!usb_hcd_is_primary_hcd(hcd))
1183 secondary_hcd = hcd;
1184 else
1185 secondary_hcd = xhci->shared_hcd;
1186
1187 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1188 retval = xhci_init(hcd->primary_hcd);
1189 if (retval)
1190 return retval;
1191 comp_timer_running = true;
1192
1193 xhci_dbg(xhci, "Start the primary HCD\n");
1194 retval = xhci_run(hcd->primary_hcd);
1195 if (!retval) {
1196 xhci_dbg(xhci, "Start the secondary HCD\n");
1197 retval = xhci_run(secondary_hcd);
1198 }
1199 hcd->state = HC_STATE_SUSPENDED;
1200 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1201 goto done;
1202 }
1203
1204 /* step 4: set Run/Stop bit */
1205 command = readl(&xhci->op_regs->command);
1206 command |= CMD_RUN;
1207 writel(command, &xhci->op_regs->command);
1208 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1209 0, 250 * 1000);
1210
1211 /* step 5: walk topology and initialize portsc,
1212 * portpmsc and portli
1213 */
1214 /* this is done in bus_resume */
1215
1216 /* step 6: restart each of the previously
1217 * Running endpoints by ringing their doorbells
1218 */
1219
1220 spin_unlock_irq(&xhci->lock);
1221
1222 xhci_dbc_resume(xhci);
1223
1224 done:
1225 if (retval == 0) {
1226 /* Resume root hubs only when have pending events. */
1227 if (xhci_pending_portevent(xhci)) {
1228 usb_hcd_resume_root_hub(xhci->shared_hcd);
1229 usb_hcd_resume_root_hub(hcd);
1230 }
1231 }
1232
1233 /*
1234 * If system is subject to the Quirk, Compliance Mode Timer needs to
1235 * be re-initialized Always after a system resume. Ports are subject
1236 * to suffer the Compliance Mode issue again. It doesn't matter if
1237 * ports have entered previously to U0 before system's suspension.
1238 */
1239 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1240 compliance_mode_recovery_timer_init(xhci);
1241
1242 if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1243 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1244
1245 /* Re-enable port polling. */
1246 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1247 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1248 usb_hcd_poll_rh_status(xhci->shared_hcd);
1249 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1250 usb_hcd_poll_rh_status(hcd);
1251
1252 return retval;
1253 }
1254 EXPORT_SYMBOL_GPL(xhci_resume);
1255 #endif /* CONFIG_PM */
1256
1257 /*-------------------------------------------------------------------------*/
1258
1259 /*
1260 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1261 * we'll copy the actual data into the TRB address register. This is limited to
1262 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1263 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1264 */
1265 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1266 gfp_t mem_flags)
1267 {
1268 if (xhci_urb_suitable_for_idt(urb))
1269 return 0;
1270
1271 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1272 }
1273
1274 /**
1275 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1276 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1277 * value to right shift 1 for the bitmask.
1278 *
1279 * Index = (epnum * 2) + direction - 1,
1280 * where direction = 0 for OUT, 1 for IN.
1281 * For control endpoints, the IN index is used (OUT index is unused), so
1282 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1283 */
1284 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1285 {
1286 unsigned int index;
1287 if (usb_endpoint_xfer_control(desc))
1288 index = (unsigned int) (usb_endpoint_num(desc)*2);
1289 else
1290 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1291 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1292 return index;
1293 }
1294
1295 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1296 * address from the XHCI endpoint index.
1297 */
1298 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1299 {
1300 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1301 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1302 return direction | number;
1303 }
1304
1305 /* Find the flag for this endpoint (for use in the control context). Use the
1306 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1307 * bit 1, etc.
1308 */
1309 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1310 {
1311 return 1 << (xhci_get_endpoint_index(desc) + 1);
1312 }
1313
1314 /* Find the flag for this endpoint (for use in the control context). Use the
1315 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1316 * bit 1, etc.
1317 */
1318 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1319 {
1320 return 1 << (ep_index + 1);
1321 }
1322
1323 /* Compute the last valid endpoint context index. Basically, this is the
1324 * endpoint index plus one. For slot contexts with more than valid endpoint,
1325 * we find the most significant bit set in the added contexts flags.
1326 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1327 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1328 */
1329 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1330 {
1331 return fls(added_ctxs) - 1;
1332 }
1333
1334 /* Returns 1 if the arguments are OK;
1335 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1336 */
1337 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1338 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1339 const char *func) {
1340 struct xhci_hcd *xhci;
1341 struct xhci_virt_device *virt_dev;
1342
1343 if (!hcd || (check_ep && !ep) || !udev) {
1344 pr_debug("xHCI %s called with invalid args\n", func);
1345 return -EINVAL;
1346 }
1347 if (!udev->parent) {
1348 pr_debug("xHCI %s called for root hub\n", func);
1349 return 0;
1350 }
1351
1352 xhci = hcd_to_xhci(hcd);
1353 if (check_virt_dev) {
1354 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1355 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1356 func);
1357 return -EINVAL;
1358 }
1359
1360 virt_dev = xhci->devs[udev->slot_id];
1361 if (virt_dev->udev != udev) {
1362 xhci_dbg(xhci, "xHCI %s called with udev and "
1363 "virt_dev does not match\n", func);
1364 return -EINVAL;
1365 }
1366 }
1367
1368 if (xhci->xhc_state & XHCI_STATE_HALTED)
1369 return -ENODEV;
1370
1371 return 1;
1372 }
1373
1374 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1375 struct usb_device *udev, struct xhci_command *command,
1376 bool ctx_change, bool must_succeed);
1377
1378 /*
1379 * Full speed devices may have a max packet size greater than 8 bytes, but the
1380 * USB core doesn't know that until it reads the first 8 bytes of the
1381 * descriptor. If the usb_device's max packet size changes after that point,
1382 * we need to issue an evaluate context command and wait on it.
1383 */
1384 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1385 unsigned int ep_index, struct urb *urb)
1386 {
1387 struct xhci_container_ctx *out_ctx;
1388 struct xhci_input_control_ctx *ctrl_ctx;
1389 struct xhci_ep_ctx *ep_ctx;
1390 struct xhci_command *command;
1391 int max_packet_size;
1392 int hw_max_packet_size;
1393 int ret = 0;
1394
1395 out_ctx = xhci->devs[slot_id]->out_ctx;
1396 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1397 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1398 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1399 if (hw_max_packet_size != max_packet_size) {
1400 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1401 "Max Packet Size for ep 0 changed.");
1402 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1403 "Max packet size in usb_device = %d",
1404 max_packet_size);
1405 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1406 "Max packet size in xHCI HW = %d",
1407 hw_max_packet_size);
1408 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1409 "Issuing evaluate context command.");
1410
1411 /* Set up the input context flags for the command */
1412 /* FIXME: This won't work if a non-default control endpoint
1413 * changes max packet sizes.
1414 */
1415
1416 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1417 if (!command)
1418 return -ENOMEM;
1419
1420 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1421 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1422 if (!ctrl_ctx) {
1423 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1424 __func__);
1425 ret = -ENOMEM;
1426 goto command_cleanup;
1427 }
1428 /* Set up the modified control endpoint 0 */
1429 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1430 xhci->devs[slot_id]->out_ctx, ep_index);
1431
1432 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1433 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1434 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1435
1436 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1437 ctrl_ctx->drop_flags = 0;
1438
1439 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1440 true, false);
1441
1442 /* Clean up the input context for later use by bandwidth
1443 * functions.
1444 */
1445 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1446 command_cleanup:
1447 kfree(command->completion);
1448 kfree(command);
1449 }
1450 return ret;
1451 }
1452
1453 /*
1454 * non-error returns are a promise to giveback() the urb later
1455 * we drop ownership so next owner (or urb unlink) can get it
1456 */
1457 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1458 {
1459 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1460 unsigned long flags;
1461 int ret = 0;
1462 unsigned int slot_id, ep_index;
1463 unsigned int *ep_state;
1464 struct urb_priv *urb_priv;
1465 int num_tds;
1466
1467 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1468 true, true, __func__) <= 0)
1469 return -EINVAL;
1470
1471 slot_id = urb->dev->slot_id;
1472 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1473 ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1474
1475 if (!HCD_HW_ACCESSIBLE(hcd)) {
1476 if (!in_interrupt())
1477 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1478 return -ESHUTDOWN;
1479 }
1480 if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1481 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1482 return -ENODEV;
1483 }
1484
1485 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1486 num_tds = urb->number_of_packets;
1487 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1488 urb->transfer_buffer_length > 0 &&
1489 urb->transfer_flags & URB_ZERO_PACKET &&
1490 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1491 num_tds = 2;
1492 else
1493 num_tds = 1;
1494
1495 urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1496 if (!urb_priv)
1497 return -ENOMEM;
1498
1499 urb_priv->num_tds = num_tds;
1500 urb_priv->num_tds_done = 0;
1501 urb->hcpriv = urb_priv;
1502
1503 trace_xhci_urb_enqueue(urb);
1504
1505 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1506 /* Check to see if the max packet size for the default control
1507 * endpoint changed during FS device enumeration
1508 */
1509 if (urb->dev->speed == USB_SPEED_FULL) {
1510 ret = xhci_check_maxpacket(xhci, slot_id,
1511 ep_index, urb);
1512 if (ret < 0) {
1513 xhci_urb_free_priv(urb_priv);
1514 urb->hcpriv = NULL;
1515 return ret;
1516 }
1517 }
1518 }
1519
1520 spin_lock_irqsave(&xhci->lock, flags);
1521
1522 if (xhci->xhc_state & XHCI_STATE_DYING) {
1523 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1524 urb->ep->desc.bEndpointAddress, urb);
1525 ret = -ESHUTDOWN;
1526 goto free_priv;
1527 }
1528 if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1529 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1530 *ep_state);
1531 ret = -EINVAL;
1532 goto free_priv;
1533 }
1534 if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1535 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1536 ret = -EINVAL;
1537 goto free_priv;
1538 }
1539
1540 switch (usb_endpoint_type(&urb->ep->desc)) {
1541
1542 case USB_ENDPOINT_XFER_CONTROL:
1543 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1544 slot_id, ep_index);
1545 break;
1546 case USB_ENDPOINT_XFER_BULK:
1547 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1548 slot_id, ep_index);
1549 break;
1550 case USB_ENDPOINT_XFER_INT:
1551 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1552 slot_id, ep_index);
1553 break;
1554 case USB_ENDPOINT_XFER_ISOC:
1555 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1556 slot_id, ep_index);
1557 }
1558
1559 if (ret) {
1560 free_priv:
1561 xhci_urb_free_priv(urb_priv);
1562 urb->hcpriv = NULL;
1563 }
1564 spin_unlock_irqrestore(&xhci->lock, flags);
1565 return ret;
1566 }
1567
1568 /*
1569 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1570 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1571 * should pick up where it left off in the TD, unless a Set Transfer Ring
1572 * Dequeue Pointer is issued.
1573 *
1574 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1575 * the ring. Since the ring is a contiguous structure, they can't be physically
1576 * removed. Instead, there are two options:
1577 *
1578 * 1) If the HC is in the middle of processing the URB to be canceled, we
1579 * simply move the ring's dequeue pointer past those TRBs using the Set
1580 * Transfer Ring Dequeue Pointer command. This will be the common case,
1581 * when drivers timeout on the last submitted URB and attempt to cancel.
1582 *
1583 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1584 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1585 * HC will need to invalidate the any TRBs it has cached after the stop
1586 * endpoint command, as noted in the xHCI 0.95 errata.
1587 *
1588 * 3) The TD may have completed by the time the Stop Endpoint Command
1589 * completes, so software needs to handle that case too.
1590 *
1591 * This function should protect against the TD enqueueing code ringing the
1592 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1593 * It also needs to account for multiple cancellations on happening at the same
1594 * time for the same endpoint.
1595 *
1596 * Note that this function can be called in any context, or so says
1597 * usb_hcd_unlink_urb()
1598 */
1599 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1600 {
1601 unsigned long flags;
1602 int ret, i;
1603 u32 temp;
1604 struct xhci_hcd *xhci;
1605 struct urb_priv *urb_priv;
1606 struct xhci_td *td;
1607 unsigned int ep_index;
1608 struct xhci_ring *ep_ring;
1609 struct xhci_virt_ep *ep;
1610 struct xhci_command *command;
1611 struct xhci_virt_device *vdev;
1612
1613 xhci = hcd_to_xhci(hcd);
1614 spin_lock_irqsave(&xhci->lock, flags);
1615
1616 trace_xhci_urb_dequeue(urb);
1617
1618 /* Make sure the URB hasn't completed or been unlinked already */
1619 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1620 if (ret)
1621 goto done;
1622
1623 /* give back URB now if we can't queue it for cancel */
1624 vdev = xhci->devs[urb->dev->slot_id];
1625 urb_priv = urb->hcpriv;
1626 if (!vdev || !urb_priv)
1627 goto err_giveback;
1628
1629 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1630 ep = &vdev->eps[ep_index];
1631 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1632 if (!ep || !ep_ring)
1633 goto err_giveback;
1634
1635 /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1636 temp = readl(&xhci->op_regs->status);
1637 if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1638 xhci_hc_died(xhci);
1639 goto done;
1640 }
1641
1642 /*
1643 * check ring is not re-allocated since URB was enqueued. If it is, then
1644 * make sure none of the ring related pointers in this URB private data
1645 * are touched, such as td_list, otherwise we overwrite freed data
1646 */
1647 if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1648 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1649 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1650 td = &urb_priv->td[i];
1651 if (!list_empty(&td->cancelled_td_list))
1652 list_del_init(&td->cancelled_td_list);
1653 }
1654 goto err_giveback;
1655 }
1656
1657 if (xhci->xhc_state & XHCI_STATE_HALTED) {
1658 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1659 "HC halted, freeing TD manually.");
1660 for (i = urb_priv->num_tds_done;
1661 i < urb_priv->num_tds;
1662 i++) {
1663 td = &urb_priv->td[i];
1664 if (!list_empty(&td->td_list))
1665 list_del_init(&td->td_list);
1666 if (!list_empty(&td->cancelled_td_list))
1667 list_del_init(&td->cancelled_td_list);
1668 }
1669 goto err_giveback;
1670 }
1671
1672 i = urb_priv->num_tds_done;
1673 if (i < urb_priv->num_tds)
1674 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1675 "Cancel URB %p, dev %s, ep 0x%x, "
1676 "starting at offset 0x%llx",
1677 urb, urb->dev->devpath,
1678 urb->ep->desc.bEndpointAddress,
1679 (unsigned long long) xhci_trb_virt_to_dma(
1680 urb_priv->td[i].start_seg,
1681 urb_priv->td[i].first_trb));
1682
1683 for (; i < urb_priv->num_tds; i++) {
1684 td = &urb_priv->td[i];
1685 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1686 }
1687
1688 /* Queue a stop endpoint command, but only if this is
1689 * the first cancellation to be handled.
1690 */
1691 if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1692 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1693 if (!command) {
1694 ret = -ENOMEM;
1695 goto done;
1696 }
1697 ep->ep_state |= EP_STOP_CMD_PENDING;
1698 ep->stop_cmd_timer.expires = jiffies +
1699 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1700 add_timer(&ep->stop_cmd_timer);
1701 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1702 ep_index, 0);
1703 xhci_ring_cmd_db(xhci);
1704 }
1705 done:
1706 spin_unlock_irqrestore(&xhci->lock, flags);
1707 return ret;
1708
1709 err_giveback:
1710 if (urb_priv)
1711 xhci_urb_free_priv(urb_priv);
1712 usb_hcd_unlink_urb_from_ep(hcd, urb);
1713 spin_unlock_irqrestore(&xhci->lock, flags);
1714 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1715 return ret;
1716 }
1717
1718 /* Drop an endpoint from a new bandwidth configuration for this device.
1719 * Only one call to this function is allowed per endpoint before
1720 * check_bandwidth() or reset_bandwidth() must be called.
1721 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1722 * add the endpoint to the schedule with possibly new parameters denoted by a
1723 * different endpoint descriptor in usb_host_endpoint.
1724 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1725 * not allowed.
1726 *
1727 * The USB core will not allow URBs to be queued to an endpoint that is being
1728 * disabled, so there's no need for mutual exclusion to protect
1729 * the xhci->devs[slot_id] structure.
1730 */
1731 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1732 struct usb_host_endpoint *ep)
1733 {
1734 struct xhci_hcd *xhci;
1735 struct xhci_container_ctx *in_ctx, *out_ctx;
1736 struct xhci_input_control_ctx *ctrl_ctx;
1737 unsigned int ep_index;
1738 struct xhci_ep_ctx *ep_ctx;
1739 u32 drop_flag;
1740 u32 new_add_flags, new_drop_flags;
1741 int ret;
1742
1743 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1744 if (ret <= 0)
1745 return ret;
1746 xhci = hcd_to_xhci(hcd);
1747 if (xhci->xhc_state & XHCI_STATE_DYING)
1748 return -ENODEV;
1749
1750 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1751 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1752 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1753 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1754 __func__, drop_flag);
1755 return 0;
1756 }
1757
1758 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1759 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1760 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1761 if (!ctrl_ctx) {
1762 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1763 __func__);
1764 return 0;
1765 }
1766
1767 ep_index = xhci_get_endpoint_index(&ep->desc);
1768 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1769 /* If the HC already knows the endpoint is disabled,
1770 * or the HCD has noted it is disabled, ignore this request
1771 */
1772 if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1773 le32_to_cpu(ctrl_ctx->drop_flags) &
1774 xhci_get_endpoint_flag(&ep->desc)) {
1775 /* Do not warn when called after a usb_device_reset */
1776 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1777 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1778 __func__, ep);
1779 return 0;
1780 }
1781
1782 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1783 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1784
1785 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1786 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1787
1788 xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1789
1790 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1791
1792 if (xhci->quirks & XHCI_MTK_HOST)
1793 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1794
1795 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1796 (unsigned int) ep->desc.bEndpointAddress,
1797 udev->slot_id,
1798 (unsigned int) new_drop_flags,
1799 (unsigned int) new_add_flags);
1800 return 0;
1801 }
1802
1803 /* Add an endpoint to a new possible bandwidth configuration for this device.
1804 * Only one call to this function is allowed per endpoint before
1805 * check_bandwidth() or reset_bandwidth() must be called.
1806 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1807 * add the endpoint to the schedule with possibly new parameters denoted by a
1808 * different endpoint descriptor in usb_host_endpoint.
1809 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1810 * not allowed.
1811 *
1812 * The USB core will not allow URBs to be queued to an endpoint until the
1813 * configuration or alt setting is installed in the device, so there's no need
1814 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1815 */
1816 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1817 struct usb_host_endpoint *ep)
1818 {
1819 struct xhci_hcd *xhci;
1820 struct xhci_container_ctx *in_ctx;
1821 unsigned int ep_index;
1822 struct xhci_input_control_ctx *ctrl_ctx;
1823 struct xhci_ep_ctx *ep_ctx;
1824 u32 added_ctxs;
1825 u32 new_add_flags, new_drop_flags;
1826 struct xhci_virt_device *virt_dev;
1827 int ret = 0;
1828
1829 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1830 if (ret <= 0) {
1831 /* So we won't queue a reset ep command for a root hub */
1832 ep->hcpriv = NULL;
1833 return ret;
1834 }
1835 xhci = hcd_to_xhci(hcd);
1836 if (xhci->xhc_state & XHCI_STATE_DYING)
1837 return -ENODEV;
1838
1839 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1840 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1841 /* FIXME when we have to issue an evaluate endpoint command to
1842 * deal with ep0 max packet size changing once we get the
1843 * descriptors
1844 */
1845 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1846 __func__, added_ctxs);
1847 return 0;
1848 }
1849
1850 virt_dev = xhci->devs[udev->slot_id];
1851 in_ctx = virt_dev->in_ctx;
1852 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1853 if (!ctrl_ctx) {
1854 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1855 __func__);
1856 return 0;
1857 }
1858
1859 ep_index = xhci_get_endpoint_index(&ep->desc);
1860 /* If this endpoint is already in use, and the upper layers are trying
1861 * to add it again without dropping it, reject the addition.
1862 */
1863 if (virt_dev->eps[ep_index].ring &&
1864 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1865 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1866 "without dropping it.\n",
1867 (unsigned int) ep->desc.bEndpointAddress);
1868 return -EINVAL;
1869 }
1870
1871 /* If the HCD has already noted the endpoint is enabled,
1872 * ignore this request.
1873 */
1874 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1875 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1876 __func__, ep);
1877 return 0;
1878 }
1879
1880 /*
1881 * Configuration and alternate setting changes must be done in
1882 * process context, not interrupt context (or so documenation
1883 * for usb_set_interface() and usb_set_configuration() claim).
1884 */
1885 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1886 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1887 __func__, ep->desc.bEndpointAddress);
1888 return -ENOMEM;
1889 }
1890
1891 if (xhci->quirks & XHCI_MTK_HOST) {
1892 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1893 if (ret < 0) {
1894 xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1895 virt_dev->eps[ep_index].new_ring = NULL;
1896 return ret;
1897 }
1898 }
1899
1900 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1901 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1902
1903 /* If xhci_endpoint_disable() was called for this endpoint, but the
1904 * xHC hasn't been notified yet through the check_bandwidth() call,
1905 * this re-adds a new state for the endpoint from the new endpoint
1906 * descriptors. We must drop and re-add this endpoint, so we leave the
1907 * drop flags alone.
1908 */
1909 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1910
1911 /* Store the usb_device pointer for later use */
1912 ep->hcpriv = udev;
1913
1914 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1915 trace_xhci_add_endpoint(ep_ctx);
1916
1917 xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1918
1919 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1920 (unsigned int) ep->desc.bEndpointAddress,
1921 udev->slot_id,
1922 (unsigned int) new_drop_flags,
1923 (unsigned int) new_add_flags);
1924 return 0;
1925 }
1926
1927 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1928 {
1929 struct xhci_input_control_ctx *ctrl_ctx;
1930 struct xhci_ep_ctx *ep_ctx;
1931 struct xhci_slot_ctx *slot_ctx;
1932 int i;
1933
1934 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1935 if (!ctrl_ctx) {
1936 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1937 __func__);
1938 return;
1939 }
1940
1941 /* When a device's add flag and drop flag are zero, any subsequent
1942 * configure endpoint command will leave that endpoint's state
1943 * untouched. Make sure we don't leave any old state in the input
1944 * endpoint contexts.
1945 */
1946 ctrl_ctx->drop_flags = 0;
1947 ctrl_ctx->add_flags = 0;
1948 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1949 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1950 /* Endpoint 0 is always valid */
1951 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1952 for (i = 1; i < 31; i++) {
1953 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1954 ep_ctx->ep_info = 0;
1955 ep_ctx->ep_info2 = 0;
1956 ep_ctx->deq = 0;
1957 ep_ctx->tx_info = 0;
1958 }
1959 }
1960
1961 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1962 struct usb_device *udev, u32 *cmd_status)
1963 {
1964 int ret;
1965
1966 switch (*cmd_status) {
1967 case COMP_COMMAND_ABORTED:
1968 case COMP_COMMAND_RING_STOPPED:
1969 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1970 ret = -ETIME;
1971 break;
1972 case COMP_RESOURCE_ERROR:
1973 dev_warn(&udev->dev,
1974 "Not enough host controller resources for new device state.\n");
1975 ret = -ENOMEM;
1976 /* FIXME: can we allocate more resources for the HC? */
1977 break;
1978 case COMP_BANDWIDTH_ERROR:
1979 case COMP_SECONDARY_BANDWIDTH_ERROR:
1980 dev_warn(&udev->dev,
1981 "Not enough bandwidth for new device state.\n");
1982 ret = -ENOSPC;
1983 /* FIXME: can we go back to the old state? */
1984 break;
1985 case COMP_TRB_ERROR:
1986 /* the HCD set up something wrong */
1987 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1988 "add flag = 1, "
1989 "and endpoint is not disabled.\n");
1990 ret = -EINVAL;
1991 break;
1992 case COMP_INCOMPATIBLE_DEVICE_ERROR:
1993 dev_warn(&udev->dev,
1994 "ERROR: Incompatible device for endpoint configure command.\n");
1995 ret = -ENODEV;
1996 break;
1997 case COMP_SUCCESS:
1998 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1999 "Successful Endpoint Configure command");
2000 ret = 0;
2001 break;
2002 default:
2003 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2004 *cmd_status);
2005 ret = -EINVAL;
2006 break;
2007 }
2008 return ret;
2009 }
2010
2011 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2012 struct usb_device *udev, u32 *cmd_status)
2013 {
2014 int ret;
2015
2016 switch (*cmd_status) {
2017 case COMP_COMMAND_ABORTED:
2018 case COMP_COMMAND_RING_STOPPED:
2019 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2020 ret = -ETIME;
2021 break;
2022 case COMP_PARAMETER_ERROR:
2023 dev_warn(&udev->dev,
2024 "WARN: xHCI driver setup invalid evaluate context command.\n");
2025 ret = -EINVAL;
2026 break;
2027 case COMP_SLOT_NOT_ENABLED_ERROR:
2028 dev_warn(&udev->dev,
2029 "WARN: slot not enabled for evaluate context command.\n");
2030 ret = -EINVAL;
2031 break;
2032 case COMP_CONTEXT_STATE_ERROR:
2033 dev_warn(&udev->dev,
2034 "WARN: invalid context state for evaluate context command.\n");
2035 ret = -EINVAL;
2036 break;
2037 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2038 dev_warn(&udev->dev,
2039 "ERROR: Incompatible device for evaluate context command.\n");
2040 ret = -ENODEV;
2041 break;
2042 case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2043 /* Max Exit Latency too large error */
2044 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2045 ret = -EINVAL;
2046 break;
2047 case COMP_SUCCESS:
2048 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2049 "Successful evaluate context command");
2050 ret = 0;
2051 break;
2052 default:
2053 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2054 *cmd_status);
2055 ret = -EINVAL;
2056 break;
2057 }
2058 return ret;
2059 }
2060
2061 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2062 struct xhci_input_control_ctx *ctrl_ctx)
2063 {
2064 u32 valid_add_flags;
2065 u32 valid_drop_flags;
2066
2067 /* Ignore the slot flag (bit 0), and the default control endpoint flag
2068 * (bit 1). The default control endpoint is added during the Address
2069 * Device command and is never removed until the slot is disabled.
2070 */
2071 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2072 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2073
2074 /* Use hweight32 to count the number of ones in the add flags, or
2075 * number of endpoints added. Don't count endpoints that are changed
2076 * (both added and dropped).
2077 */
2078 return hweight32(valid_add_flags) -
2079 hweight32(valid_add_flags & valid_drop_flags);
2080 }
2081
2082 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2083 struct xhci_input_control_ctx *ctrl_ctx)
2084 {
2085 u32 valid_add_flags;
2086 u32 valid_drop_flags;
2087
2088 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2089 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2090
2091 return hweight32(valid_drop_flags) -
2092 hweight32(valid_add_flags & valid_drop_flags);
2093 }
2094
2095 /*
2096 * We need to reserve the new number of endpoints before the configure endpoint
2097 * command completes. We can't subtract the dropped endpoints from the number
2098 * of active endpoints until the command completes because we can oversubscribe
2099 * the host in this case:
2100 *
2101 * - the first configure endpoint command drops more endpoints than it adds
2102 * - a second configure endpoint command that adds more endpoints is queued
2103 * - the first configure endpoint command fails, so the config is unchanged
2104 * - the second command may succeed, even though there isn't enough resources
2105 *
2106 * Must be called with xhci->lock held.
2107 */
2108 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2109 struct xhci_input_control_ctx *ctrl_ctx)
2110 {
2111 u32 added_eps;
2112
2113 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2114 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2115 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2116 "Not enough ep ctxs: "
2117 "%u active, need to add %u, limit is %u.",
2118 xhci->num_active_eps, added_eps,
2119 xhci->limit_active_eps);
2120 return -ENOMEM;
2121 }
2122 xhci->num_active_eps += added_eps;
2123 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2124 "Adding %u ep ctxs, %u now active.", added_eps,
2125 xhci->num_active_eps);
2126 return 0;
2127 }
2128
2129 /*
2130 * The configure endpoint was failed by the xHC for some other reason, so we
2131 * need to revert the resources that failed configuration would have used.
2132 *
2133 * Must be called with xhci->lock held.
2134 */
2135 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2136 struct xhci_input_control_ctx *ctrl_ctx)
2137 {
2138 u32 num_failed_eps;
2139
2140 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2141 xhci->num_active_eps -= num_failed_eps;
2142 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143 "Removing %u failed ep ctxs, %u now active.",
2144 num_failed_eps,
2145 xhci->num_active_eps);
2146 }
2147
2148 /*
2149 * Now that the command has completed, clean up the active endpoint count by
2150 * subtracting out the endpoints that were dropped (but not changed).
2151 *
2152 * Must be called with xhci->lock held.
2153 */
2154 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2155 struct xhci_input_control_ctx *ctrl_ctx)
2156 {
2157 u32 num_dropped_eps;
2158
2159 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2160 xhci->num_active_eps -= num_dropped_eps;
2161 if (num_dropped_eps)
2162 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2163 "Removing %u dropped ep ctxs, %u now active.",
2164 num_dropped_eps,
2165 xhci->num_active_eps);
2166 }
2167
2168 static unsigned int xhci_get_block_size(struct usb_device *udev)
2169 {
2170 switch (udev->speed) {
2171 case USB_SPEED_LOW:
2172 case USB_SPEED_FULL:
2173 return FS_BLOCK;
2174 case USB_SPEED_HIGH:
2175 return HS_BLOCK;
2176 case USB_SPEED_SUPER:
2177 case USB_SPEED_SUPER_PLUS:
2178 return SS_BLOCK;
2179 case USB_SPEED_UNKNOWN:
2180 case USB_SPEED_WIRELESS:
2181 default:
2182 /* Should never happen */
2183 return 1;
2184 }
2185 }
2186
2187 static unsigned int
2188 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2189 {
2190 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2191 return LS_OVERHEAD;
2192 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2193 return FS_OVERHEAD;
2194 return HS_OVERHEAD;
2195 }
2196
2197 /* If we are changing a LS/FS device under a HS hub,
2198 * make sure (if we are activating a new TT) that the HS bus has enough
2199 * bandwidth for this new TT.
2200 */
2201 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2202 struct xhci_virt_device *virt_dev,
2203 int old_active_eps)
2204 {
2205 struct xhci_interval_bw_table *bw_table;
2206 struct xhci_tt_bw_info *tt_info;
2207
2208 /* Find the bandwidth table for the root port this TT is attached to. */
2209 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2210 tt_info = virt_dev->tt_info;
2211 /* If this TT already had active endpoints, the bandwidth for this TT
2212 * has already been added. Removing all periodic endpoints (and thus
2213 * making the TT enactive) will only decrease the bandwidth used.
2214 */
2215 if (old_active_eps)
2216 return 0;
2217 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2218 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2219 return -ENOMEM;
2220 return 0;
2221 }
2222 /* Not sure why we would have no new active endpoints...
2223 *
2224 * Maybe because of an Evaluate Context change for a hub update or a
2225 * control endpoint 0 max packet size change?
2226 * FIXME: skip the bandwidth calculation in that case.
2227 */
2228 return 0;
2229 }
2230
2231 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2232 struct xhci_virt_device *virt_dev)
2233 {
2234 unsigned int bw_reserved;
2235
2236 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2237 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2238 return -ENOMEM;
2239
2240 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2241 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2242 return -ENOMEM;
2243
2244 return 0;
2245 }
2246
2247 /*
2248 * This algorithm is a very conservative estimate of the worst-case scheduling
2249 * scenario for any one interval. The hardware dynamically schedules the
2250 * packets, so we can't tell which microframe could be the limiting factor in
2251 * the bandwidth scheduling. This only takes into account periodic endpoints.
2252 *
2253 * Obviously, we can't solve an NP complete problem to find the minimum worst
2254 * case scenario. Instead, we come up with an estimate that is no less than
2255 * the worst case bandwidth used for any one microframe, but may be an
2256 * over-estimate.
2257 *
2258 * We walk the requirements for each endpoint by interval, starting with the
2259 * smallest interval, and place packets in the schedule where there is only one
2260 * possible way to schedule packets for that interval. In order to simplify
2261 * this algorithm, we record the largest max packet size for each interval, and
2262 * assume all packets will be that size.
2263 *
2264 * For interval 0, we obviously must schedule all packets for each interval.
2265 * The bandwidth for interval 0 is just the amount of data to be transmitted
2266 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2267 * the number of packets).
2268 *
2269 * For interval 1, we have two possible microframes to schedule those packets
2270 * in. For this algorithm, if we can schedule the same number of packets for
2271 * each possible scheduling opportunity (each microframe), we will do so. The
2272 * remaining number of packets will be saved to be transmitted in the gaps in
2273 * the next interval's scheduling sequence.
2274 *
2275 * As we move those remaining packets to be scheduled with interval 2 packets,
2276 * we have to double the number of remaining packets to transmit. This is
2277 * because the intervals are actually powers of 2, and we would be transmitting
2278 * the previous interval's packets twice in this interval. We also have to be
2279 * sure that when we look at the largest max packet size for this interval, we
2280 * also look at the largest max packet size for the remaining packets and take
2281 * the greater of the two.
2282 *
2283 * The algorithm continues to evenly distribute packets in each scheduling
2284 * opportunity, and push the remaining packets out, until we get to the last
2285 * interval. Then those packets and their associated overhead are just added
2286 * to the bandwidth used.
2287 */
2288 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2289 struct xhci_virt_device *virt_dev,
2290 int old_active_eps)
2291 {
2292 unsigned int bw_reserved;
2293 unsigned int max_bandwidth;
2294 unsigned int bw_used;
2295 unsigned int block_size;
2296 struct xhci_interval_bw_table *bw_table;
2297 unsigned int packet_size = 0;
2298 unsigned int overhead = 0;
2299 unsigned int packets_transmitted = 0;
2300 unsigned int packets_remaining = 0;
2301 unsigned int i;
2302
2303 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2304 return xhci_check_ss_bw(xhci, virt_dev);
2305
2306 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2307 max_bandwidth = HS_BW_LIMIT;
2308 /* Convert percent of bus BW reserved to blocks reserved */
2309 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2310 } else {
2311 max_bandwidth = FS_BW_LIMIT;
2312 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2313 }
2314
2315 bw_table = virt_dev->bw_table;
2316 /* We need to translate the max packet size and max ESIT payloads into
2317 * the units the hardware uses.
2318 */
2319 block_size = xhci_get_block_size(virt_dev->udev);
2320
2321 /* If we are manipulating a LS/FS device under a HS hub, double check
2322 * that the HS bus has enough bandwidth if we are activing a new TT.
2323 */
2324 if (virt_dev->tt_info) {
2325 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2326 "Recalculating BW for rootport %u",
2327 virt_dev->real_port);
2328 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2329 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2330 "newly activated TT.\n");
2331 return -ENOMEM;
2332 }
2333 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2334 "Recalculating BW for TT slot %u port %u",
2335 virt_dev->tt_info->slot_id,
2336 virt_dev->tt_info->ttport);
2337 } else {
2338 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2339 "Recalculating BW for rootport %u",
2340 virt_dev->real_port);
2341 }
2342
2343 /* Add in how much bandwidth will be used for interval zero, or the
2344 * rounded max ESIT payload + number of packets * largest overhead.
2345 */
2346 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2347 bw_table->interval_bw[0].num_packets *
2348 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2349
2350 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2351 unsigned int bw_added;
2352 unsigned int largest_mps;
2353 unsigned int interval_overhead;
2354
2355 /*
2356 * How many packets could we transmit in this interval?
2357 * If packets didn't fit in the previous interval, we will need
2358 * to transmit that many packets twice within this interval.
2359 */
2360 packets_remaining = 2 * packets_remaining +
2361 bw_table->interval_bw[i].num_packets;
2362
2363 /* Find the largest max packet size of this or the previous
2364 * interval.
2365 */
2366 if (list_empty(&bw_table->interval_bw[i].endpoints))
2367 largest_mps = 0;
2368 else {
2369 struct xhci_virt_ep *virt_ep;
2370 struct list_head *ep_entry;
2371
2372 ep_entry = bw_table->interval_bw[i].endpoints.next;
2373 virt_ep = list_entry(ep_entry,
2374 struct xhci_virt_ep, bw_endpoint_list);
2375 /* Convert to blocks, rounding up */
2376 largest_mps = DIV_ROUND_UP(
2377 virt_ep->bw_info.max_packet_size,
2378 block_size);
2379 }
2380 if (largest_mps > packet_size)
2381 packet_size = largest_mps;
2382
2383 /* Use the larger overhead of this or the previous interval. */
2384 interval_overhead = xhci_get_largest_overhead(
2385 &bw_table->interval_bw[i]);
2386 if (interval_overhead > overhead)
2387 overhead = interval_overhead;
2388
2389 /* How many packets can we evenly distribute across
2390 * (1 << (i + 1)) possible scheduling opportunities?
2391 */
2392 packets_transmitted = packets_remaining >> (i + 1);
2393
2394 /* Add in the bandwidth used for those scheduled packets */
2395 bw_added = packets_transmitted * (overhead + packet_size);
2396
2397 /* How many packets do we have remaining to transmit? */
2398 packets_remaining = packets_remaining % (1 << (i + 1));
2399
2400 /* What largest max packet size should those packets have? */
2401 /* If we've transmitted all packets, don't carry over the
2402 * largest packet size.
2403 */
2404 if (packets_remaining == 0) {
2405 packet_size = 0;
2406 overhead = 0;
2407 } else if (packets_transmitted > 0) {
2408 /* Otherwise if we do have remaining packets, and we've
2409 * scheduled some packets in this interval, take the
2410 * largest max packet size from endpoints with this
2411 * interval.
2412 */
2413 packet_size = largest_mps;
2414 overhead = interval_overhead;
2415 }
2416 /* Otherwise carry over packet_size and overhead from the last
2417 * time we had a remainder.
2418 */
2419 bw_used += bw_added;
2420 if (bw_used > max_bandwidth) {
2421 xhci_warn(xhci, "Not enough bandwidth. "
2422 "Proposed: %u, Max: %u\n",
2423 bw_used, max_bandwidth);
2424 return -ENOMEM;
2425 }
2426 }
2427 /*
2428 * Ok, we know we have some packets left over after even-handedly
2429 * scheduling interval 15. We don't know which microframes they will
2430 * fit into, so we over-schedule and say they will be scheduled every
2431 * microframe.
2432 */
2433 if (packets_remaining > 0)
2434 bw_used += overhead + packet_size;
2435
2436 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2437 unsigned int port_index = virt_dev->real_port - 1;
2438
2439 /* OK, we're manipulating a HS device attached to a
2440 * root port bandwidth domain. Include the number of active TTs
2441 * in the bandwidth used.
2442 */
2443 bw_used += TT_HS_OVERHEAD *
2444 xhci->rh_bw[port_index].num_active_tts;
2445 }
2446
2447 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2448 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2449 "Available: %u " "percent",
2450 bw_used, max_bandwidth, bw_reserved,
2451 (max_bandwidth - bw_used - bw_reserved) * 100 /
2452 max_bandwidth);
2453
2454 bw_used += bw_reserved;
2455 if (bw_used > max_bandwidth) {
2456 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2457 bw_used, max_bandwidth);
2458 return -ENOMEM;
2459 }
2460
2461 bw_table->bw_used = bw_used;
2462 return 0;
2463 }
2464
2465 static bool xhci_is_async_ep(unsigned int ep_type)
2466 {
2467 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2468 ep_type != ISOC_IN_EP &&
2469 ep_type != INT_IN_EP);
2470 }
2471
2472 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2473 {
2474 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2475 }
2476
2477 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2478 {
2479 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2480
2481 if (ep_bw->ep_interval == 0)
2482 return SS_OVERHEAD_BURST +
2483 (ep_bw->mult * ep_bw->num_packets *
2484 (SS_OVERHEAD + mps));
2485 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2486 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2487 1 << ep_bw->ep_interval);
2488
2489 }
2490
2491 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2492 struct xhci_bw_info *ep_bw,
2493 struct xhci_interval_bw_table *bw_table,
2494 struct usb_device *udev,
2495 struct xhci_virt_ep *virt_ep,
2496 struct xhci_tt_bw_info *tt_info)
2497 {
2498 struct xhci_interval_bw *interval_bw;
2499 int normalized_interval;
2500
2501 if (xhci_is_async_ep(ep_bw->type))
2502 return;
2503
2504 if (udev->speed >= USB_SPEED_SUPER) {
2505 if (xhci_is_sync_in_ep(ep_bw->type))
2506 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2507 xhci_get_ss_bw_consumed(ep_bw);
2508 else
2509 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2510 xhci_get_ss_bw_consumed(ep_bw);
2511 return;
2512 }
2513
2514 /* SuperSpeed endpoints never get added to intervals in the table, so
2515 * this check is only valid for HS/FS/LS devices.
2516 */
2517 if (list_empty(&virt_ep->bw_endpoint_list))
2518 return;
2519 /* For LS/FS devices, we need to translate the interval expressed in
2520 * microframes to frames.
2521 */
2522 if (udev->speed == USB_SPEED_HIGH)
2523 normalized_interval = ep_bw->ep_interval;
2524 else
2525 normalized_interval = ep_bw->ep_interval - 3;
2526
2527 if (normalized_interval == 0)
2528 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2529 interval_bw = &bw_table->interval_bw[normalized_interval];
2530 interval_bw->num_packets -= ep_bw->num_packets;
2531 switch (udev->speed) {
2532 case USB_SPEED_LOW:
2533 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2534 break;
2535 case USB_SPEED_FULL:
2536 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2537 break;
2538 case USB_SPEED_HIGH:
2539 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2540 break;
2541 case USB_SPEED_SUPER:
2542 case USB_SPEED_SUPER_PLUS:
2543 case USB_SPEED_UNKNOWN:
2544 case USB_SPEED_WIRELESS:
2545 /* Should never happen because only LS/FS/HS endpoints will get
2546 * added to the endpoint list.
2547 */
2548 return;
2549 }
2550 if (tt_info)
2551 tt_info->active_eps -= 1;
2552 list_del_init(&virt_ep->bw_endpoint_list);
2553 }
2554
2555 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2556 struct xhci_bw_info *ep_bw,
2557 struct xhci_interval_bw_table *bw_table,
2558 struct usb_device *udev,
2559 struct xhci_virt_ep *virt_ep,
2560 struct xhci_tt_bw_info *tt_info)
2561 {
2562 struct xhci_interval_bw *interval_bw;
2563 struct xhci_virt_ep *smaller_ep;
2564 int normalized_interval;
2565
2566 if (xhci_is_async_ep(ep_bw->type))
2567 return;
2568
2569 if (udev->speed == USB_SPEED_SUPER) {
2570 if (xhci_is_sync_in_ep(ep_bw->type))
2571 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2572 xhci_get_ss_bw_consumed(ep_bw);
2573 else
2574 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2575 xhci_get_ss_bw_consumed(ep_bw);
2576 return;
2577 }
2578
2579 /* For LS/FS devices, we need to translate the interval expressed in
2580 * microframes to frames.
2581 */
2582 if (udev->speed == USB_SPEED_HIGH)
2583 normalized_interval = ep_bw->ep_interval;
2584 else
2585 normalized_interval = ep_bw->ep_interval - 3;
2586
2587 if (normalized_interval == 0)
2588 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2589 interval_bw = &bw_table->interval_bw[normalized_interval];
2590 interval_bw->num_packets += ep_bw->num_packets;
2591 switch (udev->speed) {
2592 case USB_SPEED_LOW:
2593 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2594 break;
2595 case USB_SPEED_FULL:
2596 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2597 break;
2598 case USB_SPEED_HIGH:
2599 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2600 break;
2601 case USB_SPEED_SUPER:
2602 case USB_SPEED_SUPER_PLUS:
2603 case USB_SPEED_UNKNOWN:
2604 case USB_SPEED_WIRELESS:
2605 /* Should never happen because only LS/FS/HS endpoints will get
2606 * added to the endpoint list.
2607 */
2608 return;
2609 }
2610
2611 if (tt_info)
2612 tt_info->active_eps += 1;
2613 /* Insert the endpoint into the list, largest max packet size first. */
2614 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2615 bw_endpoint_list) {
2616 if (ep_bw->max_packet_size >=
2617 smaller_ep->bw_info.max_packet_size) {
2618 /* Add the new ep before the smaller endpoint */
2619 list_add_tail(&virt_ep->bw_endpoint_list,
2620 &smaller_ep->bw_endpoint_list);
2621 return;
2622 }
2623 }
2624 /* Add the new endpoint at the end of the list. */
2625 list_add_tail(&virt_ep->bw_endpoint_list,
2626 &interval_bw->endpoints);
2627 }
2628
2629 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2630 struct xhci_virt_device *virt_dev,
2631 int old_active_eps)
2632 {
2633 struct xhci_root_port_bw_info *rh_bw_info;
2634 if (!virt_dev->tt_info)
2635 return;
2636
2637 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2638 if (old_active_eps == 0 &&
2639 virt_dev->tt_info->active_eps != 0) {
2640 rh_bw_info->num_active_tts += 1;
2641 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2642 } else if (old_active_eps != 0 &&
2643 virt_dev->tt_info->active_eps == 0) {
2644 rh_bw_info->num_active_tts -= 1;
2645 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2646 }
2647 }
2648
2649 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2650 struct xhci_virt_device *virt_dev,
2651 struct xhci_container_ctx *in_ctx)
2652 {
2653 struct xhci_bw_info ep_bw_info[31];
2654 int i;
2655 struct xhci_input_control_ctx *ctrl_ctx;
2656 int old_active_eps = 0;
2657
2658 if (virt_dev->tt_info)
2659 old_active_eps = virt_dev->tt_info->active_eps;
2660
2661 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2662 if (!ctrl_ctx) {
2663 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2664 __func__);
2665 return -ENOMEM;
2666 }
2667
2668 for (i = 0; i < 31; i++) {
2669 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2670 continue;
2671
2672 /* Make a copy of the BW info in case we need to revert this */
2673 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2674 sizeof(ep_bw_info[i]));
2675 /* Drop the endpoint from the interval table if the endpoint is
2676 * being dropped or changed.
2677 */
2678 if (EP_IS_DROPPED(ctrl_ctx, i))
2679 xhci_drop_ep_from_interval_table(xhci,
2680 &virt_dev->eps[i].bw_info,
2681 virt_dev->bw_table,
2682 virt_dev->udev,
2683 &virt_dev->eps[i],
2684 virt_dev->tt_info);
2685 }
2686 /* Overwrite the information stored in the endpoints' bw_info */
2687 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2688 for (i = 0; i < 31; i++) {
2689 /* Add any changed or added endpoints to the interval table */
2690 if (EP_IS_ADDED(ctrl_ctx, i))
2691 xhci_add_ep_to_interval_table(xhci,
2692 &virt_dev->eps[i].bw_info,
2693 virt_dev->bw_table,
2694 virt_dev->udev,
2695 &virt_dev->eps[i],
2696 virt_dev->tt_info);
2697 }
2698
2699 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2700 /* Ok, this fits in the bandwidth we have.
2701 * Update the number of active TTs.
2702 */
2703 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2704 return 0;
2705 }
2706
2707 /* We don't have enough bandwidth for this, revert the stored info. */
2708 for (i = 0; i < 31; i++) {
2709 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2710 continue;
2711
2712 /* Drop the new copies of any added or changed endpoints from
2713 * the interval table.
2714 */
2715 if (EP_IS_ADDED(ctrl_ctx, i)) {
2716 xhci_drop_ep_from_interval_table(xhci,
2717 &virt_dev->eps[i].bw_info,
2718 virt_dev->bw_table,
2719 virt_dev->udev,
2720 &virt_dev->eps[i],
2721 virt_dev->tt_info);
2722 }
2723 /* Revert the endpoint back to its old information */
2724 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2725 sizeof(ep_bw_info[i]));
2726 /* Add any changed or dropped endpoints back into the table */
2727 if (EP_IS_DROPPED(ctrl_ctx, i))
2728 xhci_add_ep_to_interval_table(xhci,
2729 &virt_dev->eps[i].bw_info,
2730 virt_dev->bw_table,
2731 virt_dev->udev,
2732 &virt_dev->eps[i],
2733 virt_dev->tt_info);
2734 }
2735 return -ENOMEM;
2736 }
2737
2738
2739 /* Issue a configure endpoint command or evaluate context command
2740 * and wait for it to finish.
2741 */
2742 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2743 struct usb_device *udev,
2744 struct xhci_command *command,
2745 bool ctx_change, bool must_succeed)
2746 {
2747 int ret;
2748 unsigned long flags;
2749 struct xhci_input_control_ctx *ctrl_ctx;
2750 struct xhci_virt_device *virt_dev;
2751 struct xhci_slot_ctx *slot_ctx;
2752
2753 if (!command)
2754 return -EINVAL;
2755
2756 spin_lock_irqsave(&xhci->lock, flags);
2757
2758 if (xhci->xhc_state & XHCI_STATE_DYING) {
2759 spin_unlock_irqrestore(&xhci->lock, flags);
2760 return -ESHUTDOWN;
2761 }
2762
2763 virt_dev = xhci->devs[udev->slot_id];
2764
2765 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2766 if (!ctrl_ctx) {
2767 spin_unlock_irqrestore(&xhci->lock, flags);
2768 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2769 __func__);
2770 return -ENOMEM;
2771 }
2772
2773 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2774 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2775 spin_unlock_irqrestore(&xhci->lock, flags);
2776 xhci_warn(xhci, "Not enough host resources, "
2777 "active endpoint contexts = %u\n",
2778 xhci->num_active_eps);
2779 return -ENOMEM;
2780 }
2781 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2782 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2783 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2784 xhci_free_host_resources(xhci, ctrl_ctx);
2785 spin_unlock_irqrestore(&xhci->lock, flags);
2786 xhci_warn(xhci, "Not enough bandwidth\n");
2787 return -ENOMEM;
2788 }
2789
2790 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2791
2792 trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2793 trace_xhci_configure_endpoint(slot_ctx);
2794
2795 if (!ctx_change)
2796 ret = xhci_queue_configure_endpoint(xhci, command,
2797 command->in_ctx->dma,
2798 udev->slot_id, must_succeed);
2799 else
2800 ret = xhci_queue_evaluate_context(xhci, command,
2801 command->in_ctx->dma,
2802 udev->slot_id, must_succeed);
2803 if (ret < 0) {
2804 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2805 xhci_free_host_resources(xhci, ctrl_ctx);
2806 spin_unlock_irqrestore(&xhci->lock, flags);
2807 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2808 "FIXME allocate a new ring segment");
2809 return -ENOMEM;
2810 }
2811 xhci_ring_cmd_db(xhci);
2812 spin_unlock_irqrestore(&xhci->lock, flags);
2813
2814 /* Wait for the configure endpoint command to complete */
2815 wait_for_completion(command->completion);
2816
2817 if (!ctx_change)
2818 ret = xhci_configure_endpoint_result(xhci, udev,
2819 &command->status);
2820 else
2821 ret = xhci_evaluate_context_result(xhci, udev,
2822 &command->status);
2823
2824 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2825 spin_lock_irqsave(&xhci->lock, flags);
2826 /* If the command failed, remove the reserved resources.
2827 * Otherwise, clean up the estimate to include dropped eps.
2828 */
2829 if (ret)
2830 xhci_free_host_resources(xhci, ctrl_ctx);
2831 else
2832 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2833 spin_unlock_irqrestore(&xhci->lock, flags);
2834 }
2835 return ret;
2836 }
2837
2838 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2839 struct xhci_virt_device *vdev, int i)
2840 {
2841 struct xhci_virt_ep *ep = &vdev->eps[i];
2842
2843 if (ep->ep_state & EP_HAS_STREAMS) {
2844 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2845 xhci_get_endpoint_address(i));
2846 xhci_free_stream_info(xhci, ep->stream_info);
2847 ep->stream_info = NULL;
2848 ep->ep_state &= ~EP_HAS_STREAMS;
2849 }
2850 }
2851
2852 /* Called after one or more calls to xhci_add_endpoint() or
2853 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2854 * to call xhci_reset_bandwidth().
2855 *
2856 * Since we are in the middle of changing either configuration or
2857 * installing a new alt setting, the USB core won't allow URBs to be
2858 * enqueued for any endpoint on the old config or interface. Nothing
2859 * else should be touching the xhci->devs[slot_id] structure, so we
2860 * don't need to take the xhci->lock for manipulating that.
2861 */
2862 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2863 {
2864 int i;
2865 int ret = 0;
2866 struct xhci_hcd *xhci;
2867 struct xhci_virt_device *virt_dev;
2868 struct xhci_input_control_ctx *ctrl_ctx;
2869 struct xhci_slot_ctx *slot_ctx;
2870 struct xhci_command *command;
2871
2872 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2873 if (ret <= 0)
2874 return ret;
2875 xhci = hcd_to_xhci(hcd);
2876 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2877 (xhci->xhc_state & XHCI_STATE_REMOVING))
2878 return -ENODEV;
2879
2880 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2881 virt_dev = xhci->devs[udev->slot_id];
2882
2883 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2884 if (!command)
2885 return -ENOMEM;
2886
2887 command->in_ctx = virt_dev->in_ctx;
2888
2889 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2890 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2891 if (!ctrl_ctx) {
2892 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2893 __func__);
2894 ret = -ENOMEM;
2895 goto command_cleanup;
2896 }
2897 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2898 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2899 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2900
2901 /* Don't issue the command if there's no endpoints to update. */
2902 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2903 ctrl_ctx->drop_flags == 0) {
2904 ret = 0;
2905 goto command_cleanup;
2906 }
2907 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2908 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2909 for (i = 31; i >= 1; i--) {
2910 __le32 le32 = cpu_to_le32(BIT(i));
2911
2912 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2913 || (ctrl_ctx->add_flags & le32) || i == 1) {
2914 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2915 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2916 break;
2917 }
2918 }
2919
2920 ret = xhci_configure_endpoint(xhci, udev, command,
2921 false, false);
2922 if (ret)
2923 /* Callee should call reset_bandwidth() */
2924 goto command_cleanup;
2925
2926 /* Free any rings that were dropped, but not changed. */
2927 for (i = 1; i < 31; i++) {
2928 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2929 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2930 xhci_free_endpoint_ring(xhci, virt_dev, i);
2931 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2932 }
2933 }
2934 xhci_zero_in_ctx(xhci, virt_dev);
2935 /*
2936 * Install any rings for completely new endpoints or changed endpoints,
2937 * and free any old rings from changed endpoints.
2938 */
2939 for (i = 1; i < 31; i++) {
2940 if (!virt_dev->eps[i].new_ring)
2941 continue;
2942 /* Only free the old ring if it exists.
2943 * It may not if this is the first add of an endpoint.
2944 */
2945 if (virt_dev->eps[i].ring) {
2946 xhci_free_endpoint_ring(xhci, virt_dev, i);
2947 }
2948 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2949 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2950 virt_dev->eps[i].new_ring = NULL;
2951 }
2952 command_cleanup:
2953 kfree(command->completion);
2954 kfree(command);
2955
2956 return ret;
2957 }
2958
2959 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2960 {
2961 struct xhci_hcd *xhci;
2962 struct xhci_virt_device *virt_dev;
2963 int i, ret;
2964
2965 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2966 if (ret <= 0)
2967 return;
2968 xhci = hcd_to_xhci(hcd);
2969
2970 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2971 virt_dev = xhci->devs[udev->slot_id];
2972 /* Free any rings allocated for added endpoints */
2973 for (i = 0; i < 31; i++) {
2974 if (virt_dev->eps[i].new_ring) {
2975 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2976 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2977 virt_dev->eps[i].new_ring = NULL;
2978 }
2979 }
2980 xhci_zero_in_ctx(xhci, virt_dev);
2981 }
2982
2983 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2984 struct xhci_container_ctx *in_ctx,
2985 struct xhci_container_ctx *out_ctx,
2986 struct xhci_input_control_ctx *ctrl_ctx,
2987 u32 add_flags, u32 drop_flags)
2988 {
2989 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2990 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2991 xhci_slot_copy(xhci, in_ctx, out_ctx);
2992 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2993 }
2994
2995 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2996 unsigned int slot_id, unsigned int ep_index,
2997 struct xhci_dequeue_state *deq_state)
2998 {
2999 struct xhci_input_control_ctx *ctrl_ctx;
3000 struct xhci_container_ctx *in_ctx;
3001 struct xhci_ep_ctx *ep_ctx;
3002 u32 added_ctxs;
3003 dma_addr_t addr;
3004
3005 in_ctx = xhci->devs[slot_id]->in_ctx;
3006 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3007 if (!ctrl_ctx) {
3008 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3009 __func__);
3010 return;
3011 }
3012
3013 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3014 xhci->devs[slot_id]->out_ctx, ep_index);
3015 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3016 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3017 deq_state->new_deq_ptr);
3018 if (addr == 0) {
3019 xhci_warn(xhci, "WARN Cannot submit config ep after "
3020 "reset ep command\n");
3021 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3022 deq_state->new_deq_seg,
3023 deq_state->new_deq_ptr);
3024 return;
3025 }
3026 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3027
3028 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3029 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3030 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3031 added_ctxs, added_ctxs);
3032 }
3033
3034 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3035 unsigned int stream_id, struct xhci_td *td)
3036 {
3037 struct xhci_dequeue_state deq_state;
3038 struct usb_device *udev = td->urb->dev;
3039
3040 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3041 "Cleaning up stalled endpoint ring");
3042 /* We need to move the HW's dequeue pointer past this TD,
3043 * or it will attempt to resend it on the next doorbell ring.
3044 */
3045 xhci_find_new_dequeue_state(xhci, udev->slot_id,
3046 ep_index, stream_id, td, &deq_state);
3047
3048 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3049 return;
3050
3051 /* HW with the reset endpoint quirk will use the saved dequeue state to
3052 * issue a configure endpoint command later.
3053 */
3054 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3055 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3056 "Queueing new dequeue state");
3057 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3058 ep_index, &deq_state);
3059 } else {
3060 /* Better hope no one uses the input context between now and the
3061 * reset endpoint completion!
3062 * XXX: No idea how this hardware will react when stream rings
3063 * are enabled.
3064 */
3065 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3066 "Setting up input context for "
3067 "configure endpoint command");
3068 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3069 ep_index, &deq_state);
3070 }
3071 }
3072
3073 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3074 struct usb_host_endpoint *host_ep)
3075 {
3076 struct xhci_hcd *xhci;
3077 struct xhci_virt_device *vdev;
3078 struct xhci_virt_ep *ep;
3079 struct usb_device *udev;
3080 unsigned long flags;
3081 unsigned int ep_index;
3082
3083 xhci = hcd_to_xhci(hcd);
3084 rescan:
3085 spin_lock_irqsave(&xhci->lock, flags);
3086
3087 udev = (struct usb_device *)host_ep->hcpriv;
3088 if (!udev || !udev->slot_id)
3089 goto done;
3090
3091 vdev = xhci->devs[udev->slot_id];
3092 if (!vdev)
3093 goto done;
3094
3095 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3096 ep = &vdev->eps[ep_index];
3097 if (!ep)
3098 goto done;
3099
3100 /* wait for hub_tt_work to finish clearing hub TT */
3101 if (ep->ep_state & EP_CLEARING_TT) {
3102 spin_unlock_irqrestore(&xhci->lock, flags);
3103 schedule_timeout_uninterruptible(1);
3104 goto rescan;
3105 }
3106
3107 if (ep->ep_state)
3108 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3109 ep->ep_state);
3110 done:
3111 host_ep->hcpriv = NULL;
3112 spin_unlock_irqrestore(&xhci->lock, flags);
3113 }
3114
3115 /*
3116 * Called after usb core issues a clear halt control message.
3117 * The host side of the halt should already be cleared by a reset endpoint
3118 * command issued when the STALL event was received.
3119 *
3120 * The reset endpoint command may only be issued to endpoints in the halted
3121 * state. For software that wishes to reset the data toggle or sequence number
3122 * of an endpoint that isn't in the halted state this function will issue a
3123 * configure endpoint command with the Drop and Add bits set for the target
3124 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3125 */
3126
3127 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3128 struct usb_host_endpoint *host_ep)
3129 {
3130 struct xhci_hcd *xhci;
3131 struct usb_device *udev;
3132 struct xhci_virt_device *vdev;
3133 struct xhci_virt_ep *ep;
3134 struct xhci_input_control_ctx *ctrl_ctx;
3135 struct xhci_command *stop_cmd, *cfg_cmd;
3136 unsigned int ep_index;
3137 unsigned long flags;
3138 u32 ep_flag;
3139 int err;
3140
3141 xhci = hcd_to_xhci(hcd);
3142 if (!host_ep->hcpriv)
3143 return;
3144 udev = (struct usb_device *) host_ep->hcpriv;
3145 vdev = xhci->devs[udev->slot_id];
3146
3147 /*
3148 * vdev may be lost due to xHC restore error and re-initialization
3149 * during S3/S4 resume. A new vdev will be allocated later by
3150 * xhci_discover_or_reset_device()
3151 */
3152 if (!udev->slot_id || !vdev)
3153 return;
3154 ep_index = xhci_get_endpoint_index(&host_ep->desc);
3155 ep = &vdev->eps[ep_index];
3156 if (!ep)
3157 return;
3158
3159 /* Bail out if toggle is already being cleared by a endpoint reset */
3160 if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3161 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3162 return;
3163 }
3164 /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3165 if (usb_endpoint_xfer_control(&host_ep->desc) ||
3166 usb_endpoint_xfer_isoc(&host_ep->desc))
3167 return;
3168
3169 ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3170
3171 if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3172 return;
3173
3174 stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3175 if (!stop_cmd)
3176 return;
3177
3178 cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3179 if (!cfg_cmd)
3180 goto cleanup;
3181
3182 spin_lock_irqsave(&xhci->lock, flags);
3183
3184 /* block queuing new trbs and ringing ep doorbell */
3185 ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3186
3187 /*
3188 * Make sure endpoint ring is empty before resetting the toggle/seq.
3189 * Driver is required to synchronously cancel all transfer request.
3190 * Stop the endpoint to force xHC to update the output context
3191 */
3192
3193 if (!list_empty(&ep->ring->td_list)) {
3194 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3195 spin_unlock_irqrestore(&xhci->lock, flags);
3196 xhci_free_command(xhci, cfg_cmd);
3197 goto cleanup;
3198 }
3199
3200 err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3201 ep_index, 0);
3202 if (err < 0) {
3203 spin_unlock_irqrestore(&xhci->lock, flags);
3204 xhci_free_command(xhci, cfg_cmd);
3205 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3206 __func__, err);
3207 goto cleanup;
3208 }
3209
3210 xhci_ring_cmd_db(xhci);
3211 spin_unlock_irqrestore(&xhci->lock, flags);
3212
3213 wait_for_completion(stop_cmd->completion);
3214
3215 spin_lock_irqsave(&xhci->lock, flags);
3216
3217 /* config ep command clears toggle if add and drop ep flags are set */
3218 ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3219 xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3220 ctrl_ctx, ep_flag, ep_flag);
3221 xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3222
3223 err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3224 udev->slot_id, false);
3225 if (err < 0) {
3226 spin_unlock_irqrestore(&xhci->lock, flags);
3227 xhci_free_command(xhci, cfg_cmd);
3228 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3229 __func__, err);
3230 goto cleanup;
3231 }
3232
3233 xhci_ring_cmd_db(xhci);
3234 spin_unlock_irqrestore(&xhci->lock, flags);
3235
3236 wait_for_completion(cfg_cmd->completion);
3237
3238 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3239 xhci_free_command(xhci, cfg_cmd);
3240 cleanup:
3241 xhci_free_command(xhci, stop_cmd);
3242 }
3243
3244 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3245 struct usb_device *udev, struct usb_host_endpoint *ep,
3246 unsigned int slot_id)
3247 {
3248 int ret;
3249 unsigned int ep_index;
3250 unsigned int ep_state;
3251
3252 if (!ep)
3253 return -EINVAL;
3254 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3255 if (ret <= 0)
3256 return -EINVAL;
3257 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3258 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3259 " descriptor for ep 0x%x does not support streams\n",
3260 ep->desc.bEndpointAddress);
3261 return -EINVAL;
3262 }
3263
3264 ep_index = xhci_get_endpoint_index(&ep->desc);
3265 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3266 if (ep_state & EP_HAS_STREAMS ||
3267 ep_state & EP_GETTING_STREAMS) {
3268 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3269 "already has streams set up.\n",
3270 ep->desc.bEndpointAddress);
3271 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3272 "dynamic stream context array reallocation.\n");
3273 return -EINVAL;
3274 }
3275 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3276 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3277 "endpoint 0x%x; URBs are pending.\n",
3278 ep->desc.bEndpointAddress);
3279 return -EINVAL;
3280 }
3281 return 0;
3282 }
3283
3284 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3285 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3286 {
3287 unsigned int max_streams;
3288
3289 /* The stream context array size must be a power of two */
3290 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3291 /*
3292 * Find out how many primary stream array entries the host controller
3293 * supports. Later we may use secondary stream arrays (similar to 2nd
3294 * level page entries), but that's an optional feature for xHCI host
3295 * controllers. xHCs must support at least 4 stream IDs.
3296 */
3297 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3298 if (*num_stream_ctxs > max_streams) {
3299 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3300 max_streams);
3301 *num_stream_ctxs = max_streams;
3302 *num_streams = max_streams;
3303 }
3304 }
3305
3306 /* Returns an error code if one of the endpoint already has streams.
3307 * This does not change any data structures, it only checks and gathers
3308 * information.
3309 */
3310 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3311 struct usb_device *udev,
3312 struct usb_host_endpoint **eps, unsigned int num_eps,
3313 unsigned int *num_streams, u32 *changed_ep_bitmask)
3314 {
3315 unsigned int max_streams;
3316 unsigned int endpoint_flag;
3317 int i;
3318 int ret;
3319
3320 for (i = 0; i < num_eps; i++) {
3321 ret = xhci_check_streams_endpoint(xhci, udev,
3322 eps[i], udev->slot_id);
3323 if (ret < 0)
3324 return ret;
3325
3326 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3327 if (max_streams < (*num_streams - 1)) {
3328 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3329 eps[i]->desc.bEndpointAddress,
3330 max_streams);
3331 *num_streams = max_streams+1;
3332 }
3333
3334 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3335 if (*changed_ep_bitmask & endpoint_flag)
3336 return -EINVAL;
3337 *changed_ep_bitmask |= endpoint_flag;
3338 }
3339 return 0;
3340 }
3341
3342 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3343 struct usb_device *udev,
3344 struct usb_host_endpoint **eps, unsigned int num_eps)
3345 {
3346 u32 changed_ep_bitmask = 0;
3347 unsigned int slot_id;
3348 unsigned int ep_index;
3349 unsigned int ep_state;
3350 int i;
3351
3352 slot_id = udev->slot_id;
3353 if (!xhci->devs[slot_id])
3354 return 0;
3355
3356 for (i = 0; i < num_eps; i++) {
3357 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3358 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3359 /* Are streams already being freed for the endpoint? */
3360 if (ep_state & EP_GETTING_NO_STREAMS) {
3361 xhci_warn(xhci, "WARN Can't disable streams for "
3362 "endpoint 0x%x, "
3363 "streams are being disabled already\n",
3364 eps[i]->desc.bEndpointAddress);
3365 return 0;
3366 }
3367 /* Are there actually any streams to free? */
3368 if (!(ep_state & EP_HAS_STREAMS) &&
3369 !(ep_state & EP_GETTING_STREAMS)) {
3370 xhci_warn(xhci, "WARN Can't disable streams for "
3371 "endpoint 0x%x, "
3372 "streams are already disabled!\n",
3373 eps[i]->desc.bEndpointAddress);
3374 xhci_warn(xhci, "WARN xhci_free_streams() called "
3375 "with non-streams endpoint\n");
3376 return 0;
3377 }
3378 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3379 }
3380 return changed_ep_bitmask;
3381 }
3382
3383 /*
3384 * The USB device drivers use this function (through the HCD interface in USB
3385 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3386 * coordinate mass storage command queueing across multiple endpoints (basically
3387 * a stream ID == a task ID).
3388 *
3389 * Setting up streams involves allocating the same size stream context array
3390 * for each endpoint and issuing a configure endpoint command for all endpoints.
3391 *
3392 * Don't allow the call to succeed if one endpoint only supports one stream
3393 * (which means it doesn't support streams at all).
3394 *
3395 * Drivers may get less stream IDs than they asked for, if the host controller
3396 * hardware or endpoints claim they can't support the number of requested
3397 * stream IDs.
3398 */
3399 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3400 struct usb_host_endpoint **eps, unsigned int num_eps,
3401 unsigned int num_streams, gfp_t mem_flags)
3402 {
3403 int i, ret;
3404 struct xhci_hcd *xhci;
3405 struct xhci_virt_device *vdev;
3406 struct xhci_command *config_cmd;
3407 struct xhci_input_control_ctx *ctrl_ctx;
3408 unsigned int ep_index;
3409 unsigned int num_stream_ctxs;
3410 unsigned int max_packet;
3411 unsigned long flags;
3412 u32 changed_ep_bitmask = 0;
3413
3414 if (!eps)
3415 return -EINVAL;
3416
3417 /* Add one to the number of streams requested to account for
3418 * stream 0 that is reserved for xHCI usage.
3419 */
3420 num_streams += 1;
3421 xhci = hcd_to_xhci(hcd);
3422 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3423 num_streams);
3424
3425 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3426 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3427 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3428 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3429 return -ENOSYS;
3430 }
3431
3432 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3433 if (!config_cmd)
3434 return -ENOMEM;
3435
3436 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3437 if (!ctrl_ctx) {
3438 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3439 __func__);
3440 xhci_free_command(xhci, config_cmd);
3441 return -ENOMEM;
3442 }
3443
3444 /* Check to make sure all endpoints are not already configured for
3445 * streams. While we're at it, find the maximum number of streams that
3446 * all the endpoints will support and check for duplicate endpoints.
3447 */
3448 spin_lock_irqsave(&xhci->lock, flags);
3449 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3450 num_eps, &num_streams, &changed_ep_bitmask);
3451 if (ret < 0) {
3452 xhci_free_command(xhci, config_cmd);
3453 spin_unlock_irqrestore(&xhci->lock, flags);
3454 return ret;
3455 }
3456 if (num_streams <= 1) {
3457 xhci_warn(xhci, "WARN: endpoints can't handle "
3458 "more than one stream.\n");
3459 xhci_free_command(xhci, config_cmd);
3460 spin_unlock_irqrestore(&xhci->lock, flags);
3461 return -EINVAL;
3462 }
3463 vdev = xhci->devs[udev->slot_id];
3464 /* Mark each endpoint as being in transition, so
3465 * xhci_urb_enqueue() will reject all URBs.
3466 */
3467 for (i = 0; i < num_eps; i++) {
3468 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3469 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3470 }
3471 spin_unlock_irqrestore(&xhci->lock, flags);
3472
3473 /* Setup internal data structures and allocate HW data structures for
3474 * streams (but don't install the HW structures in the input context
3475 * until we're sure all memory allocation succeeded).
3476 */
3477 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3478 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3479 num_stream_ctxs, num_streams);
3480
3481 for (i = 0; i < num_eps; i++) {
3482 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3483 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3484 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3485 num_stream_ctxs,
3486 num_streams,
3487 max_packet, mem_flags);
3488 if (!vdev->eps[ep_index].stream_info)
3489 goto cleanup;
3490 /* Set maxPstreams in endpoint context and update deq ptr to
3491 * point to stream context array. FIXME
3492 */
3493 }
3494
3495 /* Set up the input context for a configure endpoint command. */
3496 for (i = 0; i < num_eps; i++) {
3497 struct xhci_ep_ctx *ep_ctx;
3498
3499 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3500 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3501
3502 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3503 vdev->out_ctx, ep_index);
3504 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3505 vdev->eps[ep_index].stream_info);
3506 }
3507 /* Tell the HW to drop its old copy of the endpoint context info
3508 * and add the updated copy from the input context.
3509 */
3510 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3511 vdev->out_ctx, ctrl_ctx,
3512 changed_ep_bitmask, changed_ep_bitmask);
3513
3514 /* Issue and wait for the configure endpoint command */
3515 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3516 false, false);
3517
3518 /* xHC rejected the configure endpoint command for some reason, so we
3519 * leave the old ring intact and free our internal streams data
3520 * structure.
3521 */
3522 if (ret < 0)
3523 goto cleanup;
3524
3525 spin_lock_irqsave(&xhci->lock, flags);
3526 for (i = 0; i < num_eps; i++) {
3527 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3528 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3529 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3530 udev->slot_id, ep_index);
3531 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3532 }
3533 xhci_free_command(xhci, config_cmd);
3534 spin_unlock_irqrestore(&xhci->lock, flags);
3535
3536 /* Subtract 1 for stream 0, which drivers can't use */
3537 return num_streams - 1;
3538
3539 cleanup:
3540 /* If it didn't work, free the streams! */
3541 for (i = 0; i < num_eps; i++) {
3542 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3544 vdev->eps[ep_index].stream_info = NULL;
3545 /* FIXME Unset maxPstreams in endpoint context and
3546 * update deq ptr to point to normal string ring.
3547 */
3548 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3549 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3550 xhci_endpoint_zero(xhci, vdev, eps[i]);
3551 }
3552 xhci_free_command(xhci, config_cmd);
3553 return -ENOMEM;
3554 }
3555
3556 /* Transition the endpoint from using streams to being a "normal" endpoint
3557 * without streams.
3558 *
3559 * Modify the endpoint context state, submit a configure endpoint command,
3560 * and free all endpoint rings for streams if that completes successfully.
3561 */
3562 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3563 struct usb_host_endpoint **eps, unsigned int num_eps,
3564 gfp_t mem_flags)
3565 {
3566 int i, ret;
3567 struct xhci_hcd *xhci;
3568 struct xhci_virt_device *vdev;
3569 struct xhci_command *command;
3570 struct xhci_input_control_ctx *ctrl_ctx;
3571 unsigned int ep_index;
3572 unsigned long flags;
3573 u32 changed_ep_bitmask;
3574
3575 xhci = hcd_to_xhci(hcd);
3576 vdev = xhci->devs[udev->slot_id];
3577
3578 /* Set up a configure endpoint command to remove the streams rings */
3579 spin_lock_irqsave(&xhci->lock, flags);
3580 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3581 udev, eps, num_eps);
3582 if (changed_ep_bitmask == 0) {
3583 spin_unlock_irqrestore(&xhci->lock, flags);
3584 return -EINVAL;
3585 }
3586
3587 /* Use the xhci_command structure from the first endpoint. We may have
3588 * allocated too many, but the driver may call xhci_free_streams() for
3589 * each endpoint it grouped into one call to xhci_alloc_streams().
3590 */
3591 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3592 command = vdev->eps[ep_index].stream_info->free_streams_command;
3593 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3594 if (!ctrl_ctx) {
3595 spin_unlock_irqrestore(&xhci->lock, flags);
3596 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3597 __func__);
3598 return -EINVAL;
3599 }
3600
3601 for (i = 0; i < num_eps; i++) {
3602 struct xhci_ep_ctx *ep_ctx;
3603
3604 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3606 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3607 EP_GETTING_NO_STREAMS;
3608
3609 xhci_endpoint_copy(xhci, command->in_ctx,
3610 vdev->out_ctx, ep_index);
3611 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3612 &vdev->eps[ep_index]);
3613 }
3614 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3615 vdev->out_ctx, ctrl_ctx,
3616 changed_ep_bitmask, changed_ep_bitmask);
3617 spin_unlock_irqrestore(&xhci->lock, flags);
3618
3619 /* Issue and wait for the configure endpoint command,
3620 * which must succeed.
3621 */
3622 ret = xhci_configure_endpoint(xhci, udev, command,
3623 false, true);
3624
3625 /* xHC rejected the configure endpoint command for some reason, so we
3626 * leave the streams rings intact.
3627 */
3628 if (ret < 0)
3629 return ret;
3630
3631 spin_lock_irqsave(&xhci->lock, flags);
3632 for (i = 0; i < num_eps; i++) {
3633 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3634 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3635 vdev->eps[ep_index].stream_info = NULL;
3636 /* FIXME Unset maxPstreams in endpoint context and
3637 * update deq ptr to point to normal string ring.
3638 */
3639 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3640 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3641 }
3642 spin_unlock_irqrestore(&xhci->lock, flags);
3643
3644 return 0;
3645 }
3646
3647 /*
3648 * Deletes endpoint resources for endpoints that were active before a Reset
3649 * Device command, or a Disable Slot command. The Reset Device command leaves
3650 * the control endpoint intact, whereas the Disable Slot command deletes it.
3651 *
3652 * Must be called with xhci->lock held.
3653 */
3654 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3655 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3656 {
3657 int i;
3658 unsigned int num_dropped_eps = 0;
3659 unsigned int drop_flags = 0;
3660
3661 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3662 if (virt_dev->eps[i].ring) {
3663 drop_flags |= 1 << i;
3664 num_dropped_eps++;
3665 }
3666 }
3667 xhci->num_active_eps -= num_dropped_eps;
3668 if (num_dropped_eps)
3669 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3670 "Dropped %u ep ctxs, flags = 0x%x, "
3671 "%u now active.",
3672 num_dropped_eps, drop_flags,
3673 xhci->num_active_eps);
3674 }
3675
3676 /*
3677 * This submits a Reset Device Command, which will set the device state to 0,
3678 * set the device address to 0, and disable all the endpoints except the default
3679 * control endpoint. The USB core should come back and call
3680 * xhci_address_device(), and then re-set up the configuration. If this is
3681 * called because of a usb_reset_and_verify_device(), then the old alternate
3682 * settings will be re-installed through the normal bandwidth allocation
3683 * functions.
3684 *
3685 * Wait for the Reset Device command to finish. Remove all structures
3686 * associated with the endpoints that were disabled. Clear the input device
3687 * structure? Reset the control endpoint 0 max packet size?
3688 *
3689 * If the virt_dev to be reset does not exist or does not match the udev,
3690 * it means the device is lost, possibly due to the xHC restore error and
3691 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3692 * re-allocate the device.
3693 */
3694 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3695 struct usb_device *udev)
3696 {
3697 int ret, i;
3698 unsigned long flags;
3699 struct xhci_hcd *xhci;
3700 unsigned int slot_id;
3701 struct xhci_virt_device *virt_dev;
3702 struct xhci_command *reset_device_cmd;
3703 struct xhci_slot_ctx *slot_ctx;
3704 int old_active_eps = 0;
3705
3706 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3707 if (ret <= 0)
3708 return ret;
3709 xhci = hcd_to_xhci(hcd);
3710 slot_id = udev->slot_id;
3711 virt_dev = xhci->devs[slot_id];
3712 if (!virt_dev) {
3713 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3714 "not exist. Re-allocate the device\n", slot_id);
3715 ret = xhci_alloc_dev(hcd, udev);
3716 if (ret == 1)
3717 return 0;
3718 else
3719 return -EINVAL;
3720 }
3721
3722 if (virt_dev->tt_info)
3723 old_active_eps = virt_dev->tt_info->active_eps;
3724
3725 if (virt_dev->udev != udev) {
3726 /* If the virt_dev and the udev does not match, this virt_dev
3727 * may belong to another udev.
3728 * Re-allocate the device.
3729 */
3730 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3731 "not match the udev. Re-allocate the device\n",
3732 slot_id);
3733 ret = xhci_alloc_dev(hcd, udev);
3734 if (ret == 1)
3735 return 0;
3736 else
3737 return -EINVAL;
3738 }
3739
3740 /* If device is not setup, there is no point in resetting it */
3741 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3742 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3743 SLOT_STATE_DISABLED)
3744 return 0;
3745
3746 trace_xhci_discover_or_reset_device(slot_ctx);
3747
3748 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3749 /* Allocate the command structure that holds the struct completion.
3750 * Assume we're in process context, since the normal device reset
3751 * process has to wait for the device anyway. Storage devices are
3752 * reset as part of error handling, so use GFP_NOIO instead of
3753 * GFP_KERNEL.
3754 */
3755 reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3756 if (!reset_device_cmd) {
3757 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3758 return -ENOMEM;
3759 }
3760
3761 /* Attempt to submit the Reset Device command to the command ring */
3762 spin_lock_irqsave(&xhci->lock, flags);
3763
3764 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3765 if (ret) {
3766 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3767 spin_unlock_irqrestore(&xhci->lock, flags);
3768 goto command_cleanup;
3769 }
3770 xhci_ring_cmd_db(xhci);
3771 spin_unlock_irqrestore(&xhci->lock, flags);
3772
3773 /* Wait for the Reset Device command to finish */
3774 wait_for_completion(reset_device_cmd->completion);
3775
3776 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3777 * unless we tried to reset a slot ID that wasn't enabled,
3778 * or the device wasn't in the addressed or configured state.
3779 */
3780 ret = reset_device_cmd->status;
3781 switch (ret) {
3782 case COMP_COMMAND_ABORTED:
3783 case COMP_COMMAND_RING_STOPPED:
3784 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3785 ret = -ETIME;
3786 goto command_cleanup;
3787 case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3788 case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3789 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3790 slot_id,
3791 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3792 xhci_dbg(xhci, "Not freeing device rings.\n");
3793 /* Don't treat this as an error. May change my mind later. */
3794 ret = 0;
3795 goto command_cleanup;
3796 case COMP_SUCCESS:
3797 xhci_dbg(xhci, "Successful reset device command.\n");
3798 break;
3799 default:
3800 if (xhci_is_vendor_info_code(xhci, ret))
3801 break;
3802 xhci_warn(xhci, "Unknown completion code %u for "
3803 "reset device command.\n", ret);
3804 ret = -EINVAL;
3805 goto command_cleanup;
3806 }
3807
3808 /* Free up host controller endpoint resources */
3809 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3810 spin_lock_irqsave(&xhci->lock, flags);
3811 /* Don't delete the default control endpoint resources */
3812 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3813 spin_unlock_irqrestore(&xhci->lock, flags);
3814 }
3815
3816 /* Everything but endpoint 0 is disabled, so free the rings. */
3817 for (i = 1; i < 31; i++) {
3818 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3819
3820 if (ep->ep_state & EP_HAS_STREAMS) {
3821 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3822 xhci_get_endpoint_address(i));
3823 xhci_free_stream_info(xhci, ep->stream_info);
3824 ep->stream_info = NULL;
3825 ep->ep_state &= ~EP_HAS_STREAMS;
3826 }
3827
3828 if (ep->ring) {
3829 xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3830 xhci_free_endpoint_ring(xhci, virt_dev, i);
3831 }
3832 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3833 xhci_drop_ep_from_interval_table(xhci,
3834 &virt_dev->eps[i].bw_info,
3835 virt_dev->bw_table,
3836 udev,
3837 &virt_dev->eps[i],
3838 virt_dev->tt_info);
3839 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3840 }
3841 /* If necessary, update the number of active TTs on this root port */
3842 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3843 virt_dev->flags = 0;
3844 ret = 0;
3845
3846 command_cleanup:
3847 xhci_free_command(xhci, reset_device_cmd);
3848 return ret;
3849 }
3850
3851 /*
3852 * At this point, the struct usb_device is about to go away, the device has
3853 * disconnected, and all traffic has been stopped and the endpoints have been
3854 * disabled. Free any HC data structures associated with that device.
3855 */
3856 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3857 {
3858 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3859 struct xhci_virt_device *virt_dev;
3860 struct xhci_slot_ctx *slot_ctx;
3861 int i, ret;
3862
3863 #ifndef CONFIG_USB_DEFAULT_PERSIST
3864 /*
3865 * We called pm_runtime_get_noresume when the device was attached.
3866 * Decrement the counter here to allow controller to runtime suspend
3867 * if no devices remain.
3868 */
3869 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3870 pm_runtime_put_noidle(hcd->self.controller);
3871 #endif
3872
3873 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3874 /* If the host is halted due to driver unload, we still need to free the
3875 * device.
3876 */
3877 if (ret <= 0 && ret != -ENODEV)
3878 return;
3879
3880 virt_dev = xhci->devs[udev->slot_id];
3881 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3882 trace_xhci_free_dev(slot_ctx);
3883
3884 /* Stop any wayward timer functions (which may grab the lock) */
3885 for (i = 0; i < 31; i++) {
3886 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3887 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3888 }
3889 virt_dev->udev = NULL;
3890 ret = xhci_disable_slot(xhci, udev->slot_id);
3891 if (ret)
3892 xhci_free_virt_device(xhci, udev->slot_id);
3893 }
3894
3895 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3896 {
3897 struct xhci_command *command;
3898 unsigned long flags;
3899 u32 state;
3900 int ret = 0;
3901
3902 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3903 if (!command)
3904 return -ENOMEM;
3905
3906 xhci_debugfs_remove_slot(xhci, slot_id);
3907
3908 spin_lock_irqsave(&xhci->lock, flags);
3909 /* Don't disable the slot if the host controller is dead. */
3910 state = readl(&xhci->op_regs->status);
3911 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3912 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3913 spin_unlock_irqrestore(&xhci->lock, flags);
3914 kfree(command);
3915 return -ENODEV;
3916 }
3917
3918 ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3919 slot_id);
3920 if (ret) {
3921 spin_unlock_irqrestore(&xhci->lock, flags);
3922 kfree(command);
3923 return ret;
3924 }
3925 xhci_ring_cmd_db(xhci);
3926 spin_unlock_irqrestore(&xhci->lock, flags);
3927 return ret;
3928 }
3929
3930 /*
3931 * Checks if we have enough host controller resources for the default control
3932 * endpoint.
3933 *
3934 * Must be called with xhci->lock held.
3935 */
3936 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3937 {
3938 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3939 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3940 "Not enough ep ctxs: "
3941 "%u active, need to add 1, limit is %u.",
3942 xhci->num_active_eps, xhci->limit_active_eps);
3943 return -ENOMEM;
3944 }
3945 xhci->num_active_eps += 1;
3946 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3947 "Adding 1 ep ctx, %u now active.",
3948 xhci->num_active_eps);
3949 return 0;
3950 }
3951
3952
3953 /*
3954 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3955 * timed out, or allocating memory failed. Returns 1 on success.
3956 */
3957 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3958 {
3959 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3960 struct xhci_virt_device *vdev;
3961 struct xhci_slot_ctx *slot_ctx;
3962 unsigned long flags;
3963 int ret, slot_id;
3964 struct xhci_command *command;
3965
3966 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3967 if (!command)
3968 return 0;
3969
3970 spin_lock_irqsave(&xhci->lock, flags);
3971 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3972 if (ret) {
3973 spin_unlock_irqrestore(&xhci->lock, flags);
3974 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3975 xhci_free_command(xhci, command);
3976 return 0;
3977 }
3978 xhci_ring_cmd_db(xhci);
3979 spin_unlock_irqrestore(&xhci->lock, flags);
3980
3981 wait_for_completion(command->completion);
3982 slot_id = command->slot_id;
3983
3984 if (!slot_id || command->status != COMP_SUCCESS) {
3985 xhci_err(xhci, "Error while assigning device slot ID\n");
3986 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3987 HCS_MAX_SLOTS(
3988 readl(&xhci->cap_regs->hcs_params1)));
3989 xhci_free_command(xhci, command);
3990 return 0;
3991 }
3992
3993 xhci_free_command(xhci, command);
3994
3995 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3996 spin_lock_irqsave(&xhci->lock, flags);
3997 ret = xhci_reserve_host_control_ep_resources(xhci);
3998 if (ret) {
3999 spin_unlock_irqrestore(&xhci->lock, flags);
4000 xhci_warn(xhci, "Not enough host resources, "
4001 "active endpoint contexts = %u\n",
4002 xhci->num_active_eps);
4003 goto disable_slot;
4004 }
4005 spin_unlock_irqrestore(&xhci->lock, flags);
4006 }
4007 /* Use GFP_NOIO, since this function can be called from
4008 * xhci_discover_or_reset_device(), which may be called as part of
4009 * mass storage driver error handling.
4010 */
4011 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4012 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4013 goto disable_slot;
4014 }
4015 vdev = xhci->devs[slot_id];
4016 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4017 trace_xhci_alloc_dev(slot_ctx);
4018
4019 udev->slot_id = slot_id;
4020
4021 xhci_debugfs_create_slot(xhci, slot_id);
4022
4023 #ifndef CONFIG_USB_DEFAULT_PERSIST
4024 /*
4025 * If resetting upon resume, we can't put the controller into runtime
4026 * suspend if there is a device attached.
4027 */
4028 if (xhci->quirks & XHCI_RESET_ON_RESUME)
4029 pm_runtime_get_noresume(hcd->self.controller);
4030 #endif
4031
4032 /* Is this a LS or FS device under a HS hub? */
4033 /* Hub or peripherial? */
4034 return 1;
4035
4036 disable_slot:
4037 ret = xhci_disable_slot(xhci, udev->slot_id);
4038 if (ret)
4039 xhci_free_virt_device(xhci, udev->slot_id);
4040
4041 return 0;
4042 }
4043
4044 /*
4045 * Issue an Address Device command and optionally send a corresponding
4046 * SetAddress request to the device.
4047 */
4048 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4049 enum xhci_setup_dev setup)
4050 {
4051 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4052 unsigned long flags;
4053 struct xhci_virt_device *virt_dev;
4054 int ret = 0;
4055 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4056 struct xhci_slot_ctx *slot_ctx;
4057 struct xhci_input_control_ctx *ctrl_ctx;
4058 u64 temp_64;
4059 struct xhci_command *command = NULL;
4060
4061 mutex_lock(&xhci->mutex);
4062
4063 if (xhci->xhc_state) { /* dying, removing or halted */
4064 ret = -ESHUTDOWN;
4065 goto out;
4066 }
4067
4068 if (!udev->slot_id) {
4069 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4070 "Bad Slot ID %d", udev->slot_id);
4071 ret = -EINVAL;
4072 goto out;
4073 }
4074
4075 virt_dev = xhci->devs[udev->slot_id];
4076
4077 if (WARN_ON(!virt_dev)) {
4078 /*
4079 * In plug/unplug torture test with an NEC controller,
4080 * a zero-dereference was observed once due to virt_dev = 0.
4081 * Print useful debug rather than crash if it is observed again!
4082 */
4083 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4084 udev->slot_id);
4085 ret = -EINVAL;
4086 goto out;
4087 }
4088 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4089 trace_xhci_setup_device_slot(slot_ctx);
4090
4091 if (setup == SETUP_CONTEXT_ONLY) {
4092 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4093 SLOT_STATE_DEFAULT) {
4094 xhci_dbg(xhci, "Slot already in default state\n");
4095 goto out;
4096 }
4097 }
4098
4099 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4100 if (!command) {
4101 ret = -ENOMEM;
4102 goto out;
4103 }
4104
4105 command->in_ctx = virt_dev->in_ctx;
4106
4107 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4108 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4109 if (!ctrl_ctx) {
4110 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4111 __func__);
4112 ret = -EINVAL;
4113 goto out;
4114 }
4115 /*
4116 * If this is the first Set Address since device plug-in or
4117 * virt_device realloaction after a resume with an xHCI power loss,
4118 * then set up the slot context.
4119 */
4120 if (!slot_ctx->dev_info)
4121 xhci_setup_addressable_virt_dev(xhci, udev);
4122 /* Otherwise, update the control endpoint ring enqueue pointer. */
4123 else
4124 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4125 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4126 ctrl_ctx->drop_flags = 0;
4127
4128 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4129 le32_to_cpu(slot_ctx->dev_info) >> 27);
4130
4131 trace_xhci_address_ctrl_ctx(ctrl_ctx);
4132 spin_lock_irqsave(&xhci->lock, flags);
4133 trace_xhci_setup_device(virt_dev);
4134 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4135 udev->slot_id, setup);
4136 if (ret) {
4137 spin_unlock_irqrestore(&xhci->lock, flags);
4138 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4139 "FIXME: allocate a command ring segment");
4140 goto out;
4141 }
4142 xhci_ring_cmd_db(xhci);
4143 spin_unlock_irqrestore(&xhci->lock, flags);
4144
4145 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4146 wait_for_completion(command->completion);
4147
4148 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4149 * the SetAddress() "recovery interval" required by USB and aborting the
4150 * command on a timeout.
4151 */
4152 switch (command->status) {
4153 case COMP_COMMAND_ABORTED:
4154 case COMP_COMMAND_RING_STOPPED:
4155 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4156 ret = -ETIME;
4157 break;
4158 case COMP_CONTEXT_STATE_ERROR:
4159 case COMP_SLOT_NOT_ENABLED_ERROR:
4160 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4161 act, udev->slot_id);
4162 ret = -EINVAL;
4163 break;
4164 case COMP_USB_TRANSACTION_ERROR:
4165 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4166
4167 mutex_unlock(&xhci->mutex);
4168 ret = xhci_disable_slot(xhci, udev->slot_id);
4169 if (!ret)
4170 xhci_alloc_dev(hcd, udev);
4171 kfree(command->completion);
4172 kfree(command);
4173 return -EPROTO;
4174 case COMP_INCOMPATIBLE_DEVICE_ERROR:
4175 dev_warn(&udev->dev,
4176 "ERROR: Incompatible device for setup %s command\n", act);
4177 ret = -ENODEV;
4178 break;
4179 case COMP_SUCCESS:
4180 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4181 "Successful setup %s command", act);
4182 break;
4183 default:
4184 xhci_err(xhci,
4185 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4186 act, command->status);
4187 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4188 ret = -EINVAL;
4189 break;
4190 }
4191 if (ret)
4192 goto out;
4193 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4194 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4195 "Op regs DCBAA ptr = %#016llx", temp_64);
4196 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4197 "Slot ID %d dcbaa entry @%p = %#016llx",
4198 udev->slot_id,
4199 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4200 (unsigned long long)
4201 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4202 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4203 "Output Context DMA address = %#08llx",
4204 (unsigned long long)virt_dev->out_ctx->dma);
4205 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4206 le32_to_cpu(slot_ctx->dev_info) >> 27);
4207 /*
4208 * USB core uses address 1 for the roothubs, so we add one to the
4209 * address given back to us by the HC.
4210 */
4211 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4212 le32_to_cpu(slot_ctx->dev_info) >> 27);
4213 /* Zero the input context control for later use */
4214 ctrl_ctx->add_flags = 0;
4215 ctrl_ctx->drop_flags = 0;
4216 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4217 udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4218
4219 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4220 "Internal device address = %d",
4221 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4222 out:
4223 mutex_unlock(&xhci->mutex);
4224 if (command) {
4225 kfree(command->completion);
4226 kfree(command);
4227 }
4228 return ret;
4229 }
4230
4231 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4232 {
4233 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4234 }
4235
4236 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4237 {
4238 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4239 }
4240
4241 /*
4242 * Transfer the port index into real index in the HW port status
4243 * registers. Caculate offset between the port's PORTSC register
4244 * and port status base. Divide the number of per port register
4245 * to get the real index. The raw port number bases 1.
4246 */
4247 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4248 {
4249 struct xhci_hub *rhub;
4250
4251 rhub = xhci_get_rhub(hcd);
4252 return rhub->ports[port1 - 1]->hw_portnum + 1;
4253 }
4254
4255 /*
4256 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4257 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4258 */
4259 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4260 struct usb_device *udev, u16 max_exit_latency)
4261 {
4262 struct xhci_virt_device *virt_dev;
4263 struct xhci_command *command;
4264 struct xhci_input_control_ctx *ctrl_ctx;
4265 struct xhci_slot_ctx *slot_ctx;
4266 unsigned long flags;
4267 int ret;
4268
4269 spin_lock_irqsave(&xhci->lock, flags);
4270
4271 virt_dev = xhci->devs[udev->slot_id];
4272
4273 /*
4274 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4275 * xHC was re-initialized. Exit latency will be set later after
4276 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4277 */
4278
4279 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4280 spin_unlock_irqrestore(&xhci->lock, flags);
4281 return 0;
4282 }
4283
4284 /* Attempt to issue an Evaluate Context command to change the MEL. */
4285 command = xhci->lpm_command;
4286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4287 if (!ctrl_ctx) {
4288 spin_unlock_irqrestore(&xhci->lock, flags);
4289 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4290 __func__);
4291 return -ENOMEM;
4292 }
4293
4294 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4295 spin_unlock_irqrestore(&xhci->lock, flags);
4296
4297 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4298 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4299 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4300 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4301 slot_ctx->dev_state = 0;
4302
4303 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4304 "Set up evaluate context for LPM MEL change.");
4305
4306 /* Issue and wait for the evaluate context command. */
4307 ret = xhci_configure_endpoint(xhci, udev, command,
4308 true, true);
4309
4310 if (!ret) {
4311 spin_lock_irqsave(&xhci->lock, flags);
4312 virt_dev->current_mel = max_exit_latency;
4313 spin_unlock_irqrestore(&xhci->lock, flags);
4314 }
4315 return ret;
4316 }
4317
4318 #ifdef CONFIG_PM
4319
4320 /* BESL to HIRD Encoding array for USB2 LPM */
4321 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4322 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4323
4324 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4325 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4326 struct usb_device *udev)
4327 {
4328 int u2del, besl, besl_host;
4329 int besl_device = 0;
4330 u32 field;
4331
4332 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4333 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4334
4335 if (field & USB_BESL_SUPPORT) {
4336 for (besl_host = 0; besl_host < 16; besl_host++) {
4337 if (xhci_besl_encoding[besl_host] >= u2del)
4338 break;
4339 }
4340 /* Use baseline BESL value as default */
4341 if (field & USB_BESL_BASELINE_VALID)
4342 besl_device = USB_GET_BESL_BASELINE(field);
4343 else if (field & USB_BESL_DEEP_VALID)
4344 besl_device = USB_GET_BESL_DEEP(field);
4345 } else {
4346 if (u2del <= 50)
4347 besl_host = 0;
4348 else
4349 besl_host = (u2del - 51) / 75 + 1;
4350 }
4351
4352 besl = besl_host + besl_device;
4353 if (besl > 15)
4354 besl = 15;
4355
4356 return besl;
4357 }
4358
4359 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4360 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4361 {
4362 u32 field;
4363 int l1;
4364 int besld = 0;
4365 int hirdm = 0;
4366
4367 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4368
4369 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4370 l1 = udev->l1_params.timeout / 256;
4371
4372 /* device has preferred BESLD */
4373 if (field & USB_BESL_DEEP_VALID) {
4374 besld = USB_GET_BESL_DEEP(field);
4375 hirdm = 1;
4376 }
4377
4378 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4379 }
4380
4381 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4382 struct usb_device *udev, int enable)
4383 {
4384 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4385 struct xhci_port **ports;
4386 __le32 __iomem *pm_addr, *hlpm_addr;
4387 u32 pm_val, hlpm_val, field;
4388 unsigned int port_num;
4389 unsigned long flags;
4390 int hird, exit_latency;
4391 int ret;
4392
4393 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4394 !udev->lpm_capable)
4395 return -EPERM;
4396
4397 if (!udev->parent || udev->parent->parent ||
4398 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4399 return -EPERM;
4400
4401 if (udev->usb2_hw_lpm_capable != 1)
4402 return -EPERM;
4403
4404 spin_lock_irqsave(&xhci->lock, flags);
4405
4406 ports = xhci->usb2_rhub.ports;
4407 port_num = udev->portnum - 1;
4408 pm_addr = ports[port_num]->addr + PORTPMSC;
4409 pm_val = readl(pm_addr);
4410 hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4411
4412 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4413 enable ? "enable" : "disable", port_num + 1);
4414
4415 if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4416 /* Host supports BESL timeout instead of HIRD */
4417 if (udev->usb2_hw_lpm_besl_capable) {
4418 /* if device doesn't have a preferred BESL value use a
4419 * default one which works with mixed HIRD and BESL
4420 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4421 */
4422 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4423 if ((field & USB_BESL_SUPPORT) &&
4424 (field & USB_BESL_BASELINE_VALID))
4425 hird = USB_GET_BESL_BASELINE(field);
4426 else
4427 hird = udev->l1_params.besl;
4428
4429 exit_latency = xhci_besl_encoding[hird];
4430 spin_unlock_irqrestore(&xhci->lock, flags);
4431
4432 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4433 * input context for link powermanagement evaluate
4434 * context commands. It is protected by hcd->bandwidth
4435 * mutex and is shared by all devices. We need to set
4436 * the max ext latency in USB 2 BESL LPM as well, so
4437 * use the same mutex and xhci_change_max_exit_latency()
4438 */
4439 mutex_lock(hcd->bandwidth_mutex);
4440 ret = xhci_change_max_exit_latency(xhci, udev,
4441 exit_latency);
4442 mutex_unlock(hcd->bandwidth_mutex);
4443
4444 if (ret < 0)
4445 return ret;
4446 spin_lock_irqsave(&xhci->lock, flags);
4447
4448 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4449 writel(hlpm_val, hlpm_addr);
4450 /* flush write */
4451 readl(hlpm_addr);
4452 } else {
4453 hird = xhci_calculate_hird_besl(xhci, udev);
4454 }
4455
4456 pm_val &= ~PORT_HIRD_MASK;
4457 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4458 writel(pm_val, pm_addr);
4459 pm_val = readl(pm_addr);
4460 pm_val |= PORT_HLE;
4461 writel(pm_val, pm_addr);
4462 /* flush write */
4463 readl(pm_addr);
4464 } else {
4465 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4466 writel(pm_val, pm_addr);
4467 /* flush write */
4468 readl(pm_addr);
4469 if (udev->usb2_hw_lpm_besl_capable) {
4470 spin_unlock_irqrestore(&xhci->lock, flags);
4471 mutex_lock(hcd->bandwidth_mutex);
4472 xhci_change_max_exit_latency(xhci, udev, 0);
4473 mutex_unlock(hcd->bandwidth_mutex);
4474 return 0;
4475 }
4476 }
4477
4478 spin_unlock_irqrestore(&xhci->lock, flags);
4479 return 0;
4480 }
4481
4482 /* check if a usb2 port supports a given extened capability protocol
4483 * only USB2 ports extended protocol capability values are cached.
4484 * Return 1 if capability is supported
4485 */
4486 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4487 unsigned capability)
4488 {
4489 u32 port_offset, port_count;
4490 int i;
4491
4492 for (i = 0; i < xhci->num_ext_caps; i++) {
4493 if (xhci->ext_caps[i] & capability) {
4494 /* port offsets starts at 1 */
4495 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4496 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4497 if (port >= port_offset &&
4498 port < port_offset + port_count)
4499 return 1;
4500 }
4501 }
4502 return 0;
4503 }
4504
4505 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4506 {
4507 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4508 int portnum = udev->portnum - 1;
4509
4510 if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4511 return 0;
4512
4513 /* we only support lpm for non-hub device connected to root hub yet */
4514 if (!udev->parent || udev->parent->parent ||
4515 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4516 return 0;
4517
4518 if (xhci->hw_lpm_support == 1 &&
4519 xhci_check_usb2_port_capability(
4520 xhci, portnum, XHCI_HLC)) {
4521 udev->usb2_hw_lpm_capable = 1;
4522 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4523 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4524 if (xhci_check_usb2_port_capability(xhci, portnum,
4525 XHCI_BLC))
4526 udev->usb2_hw_lpm_besl_capable = 1;
4527 }
4528
4529 return 0;
4530 }
4531
4532 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4533
4534 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4535 static unsigned long long xhci_service_interval_to_ns(
4536 struct usb_endpoint_descriptor *desc)
4537 {
4538 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4539 }
4540
4541 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4542 enum usb3_link_state state)
4543 {
4544 unsigned long long sel;
4545 unsigned long long pel;
4546 unsigned int max_sel_pel;
4547 char *state_name;
4548
4549 switch (state) {
4550 case USB3_LPM_U1:
4551 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4552 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4553 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4554 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4555 state_name = "U1";
4556 break;
4557 case USB3_LPM_U2:
4558 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4559 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4560 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4561 state_name = "U2";
4562 break;
4563 default:
4564 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4565 __func__);
4566 return USB3_LPM_DISABLED;
4567 }
4568
4569 if (sel <= max_sel_pel && pel <= max_sel_pel)
4570 return USB3_LPM_DEVICE_INITIATED;
4571
4572 if (sel > max_sel_pel)
4573 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4574 "due to long SEL %llu ms\n",
4575 state_name, sel);
4576 else
4577 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4578 "due to long PEL %llu ms\n",
4579 state_name, pel);
4580 return USB3_LPM_DISABLED;
4581 }
4582
4583 /* The U1 timeout should be the maximum of the following values:
4584 * - For control endpoints, U1 system exit latency (SEL) * 3
4585 * - For bulk endpoints, U1 SEL * 5
4586 * - For interrupt endpoints:
4587 * - Notification EPs, U1 SEL * 3
4588 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4589 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4590 */
4591 static unsigned long long xhci_calculate_intel_u1_timeout(
4592 struct usb_device *udev,
4593 struct usb_endpoint_descriptor *desc)
4594 {
4595 unsigned long long timeout_ns;
4596 int ep_type;
4597 int intr_type;
4598
4599 ep_type = usb_endpoint_type(desc);
4600 switch (ep_type) {
4601 case USB_ENDPOINT_XFER_CONTROL:
4602 timeout_ns = udev->u1_params.sel * 3;
4603 break;
4604 case USB_ENDPOINT_XFER_BULK:
4605 timeout_ns = udev->u1_params.sel * 5;
4606 break;
4607 case USB_ENDPOINT_XFER_INT:
4608 intr_type = usb_endpoint_interrupt_type(desc);
4609 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4610 timeout_ns = udev->u1_params.sel * 3;
4611 break;
4612 }
4613 /* Otherwise the calculation is the same as isoc eps */
4614 /* fall through */
4615 case USB_ENDPOINT_XFER_ISOC:
4616 timeout_ns = xhci_service_interval_to_ns(desc);
4617 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4618 if (timeout_ns < udev->u1_params.sel * 2)
4619 timeout_ns = udev->u1_params.sel * 2;
4620 break;
4621 default:
4622 return 0;
4623 }
4624
4625 return timeout_ns;
4626 }
4627
4628 /* Returns the hub-encoded U1 timeout value. */
4629 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4630 struct usb_device *udev,
4631 struct usb_endpoint_descriptor *desc)
4632 {
4633 unsigned long long timeout_ns;
4634
4635 /* Prevent U1 if service interval is shorter than U1 exit latency */
4636 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4637 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4638 dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4639 return USB3_LPM_DISABLED;
4640 }
4641 }
4642
4643 if (xhci->quirks & XHCI_INTEL_HOST)
4644 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4645 else
4646 timeout_ns = udev->u1_params.sel;
4647
4648 /* The U1 timeout is encoded in 1us intervals.
4649 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4650 */
4651 if (timeout_ns == USB3_LPM_DISABLED)
4652 timeout_ns = 1;
4653 else
4654 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4655
4656 /* If the necessary timeout value is bigger than what we can set in the
4657 * USB 3.0 hub, we have to disable hub-initiated U1.
4658 */
4659 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4660 return timeout_ns;
4661 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4662 "due to long timeout %llu ms\n", timeout_ns);
4663 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4664 }
4665
4666 /* The U2 timeout should be the maximum of:
4667 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4668 * - largest bInterval of any active periodic endpoint (to avoid going
4669 * into lower power link states between intervals).
4670 * - the U2 Exit Latency of the device
4671 */
4672 static unsigned long long xhci_calculate_intel_u2_timeout(
4673 struct usb_device *udev,
4674 struct usb_endpoint_descriptor *desc)
4675 {
4676 unsigned long long timeout_ns;
4677 unsigned long long u2_del_ns;
4678
4679 timeout_ns = 10 * 1000 * 1000;
4680
4681 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4682 (xhci_service_interval_to_ns(desc) > timeout_ns))
4683 timeout_ns = xhci_service_interval_to_ns(desc);
4684
4685 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4686 if (u2_del_ns > timeout_ns)
4687 timeout_ns = u2_del_ns;
4688
4689 return timeout_ns;
4690 }
4691
4692 /* Returns the hub-encoded U2 timeout value. */
4693 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4694 struct usb_device *udev,
4695 struct usb_endpoint_descriptor *desc)
4696 {
4697 unsigned long long timeout_ns;
4698
4699 /* Prevent U2 if service interval is shorter than U2 exit latency */
4700 if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4701 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4702 dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4703 return USB3_LPM_DISABLED;
4704 }
4705 }
4706
4707 if (xhci->quirks & XHCI_INTEL_HOST)
4708 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4709 else
4710 timeout_ns = udev->u2_params.sel;
4711
4712 /* The U2 timeout is encoded in 256us intervals */
4713 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4714 /* If the necessary timeout value is bigger than what we can set in the
4715 * USB 3.0 hub, we have to disable hub-initiated U2.
4716 */
4717 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4718 return timeout_ns;
4719 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4720 "due to long timeout %llu ms\n", timeout_ns);
4721 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4722 }
4723
4724 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4725 struct usb_device *udev,
4726 struct usb_endpoint_descriptor *desc,
4727 enum usb3_link_state state,
4728 u16 *timeout)
4729 {
4730 if (state == USB3_LPM_U1)
4731 return xhci_calculate_u1_timeout(xhci, udev, desc);
4732 else if (state == USB3_LPM_U2)
4733 return xhci_calculate_u2_timeout(xhci, udev, desc);
4734
4735 return USB3_LPM_DISABLED;
4736 }
4737
4738 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4739 struct usb_device *udev,
4740 struct usb_endpoint_descriptor *desc,
4741 enum usb3_link_state state,
4742 u16 *timeout)
4743 {
4744 u16 alt_timeout;
4745
4746 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4747 desc, state, timeout);
4748
4749 /* If we found we can't enable hub-initiated LPM, and
4750 * the U1 or U2 exit latency was too high to allow
4751 * device-initiated LPM as well, then we will disable LPM
4752 * for this device, so stop searching any further.
4753 */
4754 if (alt_timeout == USB3_LPM_DISABLED) {
4755 *timeout = alt_timeout;
4756 return -E2BIG;
4757 }
4758 if (alt_timeout > *timeout)
4759 *timeout = alt_timeout;
4760 return 0;
4761 }
4762
4763 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4764 struct usb_device *udev,
4765 struct usb_host_interface *alt,
4766 enum usb3_link_state state,
4767 u16 *timeout)
4768 {
4769 int j;
4770
4771 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4772 if (xhci_update_timeout_for_endpoint(xhci, udev,
4773 &alt->endpoint[j].desc, state, timeout))
4774 return -E2BIG;
4775 continue;
4776 }
4777 return 0;
4778 }
4779
4780 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4781 enum usb3_link_state state)
4782 {
4783 struct usb_device *parent;
4784 unsigned int num_hubs;
4785
4786 if (state == USB3_LPM_U2)
4787 return 0;
4788
4789 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4790 for (parent = udev->parent, num_hubs = 0; parent->parent;
4791 parent = parent->parent)
4792 num_hubs++;
4793
4794 if (num_hubs < 2)
4795 return 0;
4796
4797 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4798 " below second-tier hub.\n");
4799 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4800 "to decrease power consumption.\n");
4801 return -E2BIG;
4802 }
4803
4804 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4805 struct usb_device *udev,
4806 enum usb3_link_state state)
4807 {
4808 if (xhci->quirks & XHCI_INTEL_HOST)
4809 return xhci_check_intel_tier_policy(udev, state);
4810 else
4811 return 0;
4812 }
4813
4814 /* Returns the U1 or U2 timeout that should be enabled.
4815 * If the tier check or timeout setting functions return with a non-zero exit
4816 * code, that means the timeout value has been finalized and we shouldn't look
4817 * at any more endpoints.
4818 */
4819 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4820 struct usb_device *udev, enum usb3_link_state state)
4821 {
4822 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4823 struct usb_host_config *config;
4824 char *state_name;
4825 int i;
4826 u16 timeout = USB3_LPM_DISABLED;
4827
4828 if (state == USB3_LPM_U1)
4829 state_name = "U1";
4830 else if (state == USB3_LPM_U2)
4831 state_name = "U2";
4832 else {
4833 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4834 state);
4835 return timeout;
4836 }
4837
4838 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4839 return timeout;
4840
4841 /* Gather some information about the currently installed configuration
4842 * and alternate interface settings.
4843 */
4844 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4845 state, &timeout))
4846 return timeout;
4847
4848 config = udev->actconfig;
4849 if (!config)
4850 return timeout;
4851
4852 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4853 struct usb_driver *driver;
4854 struct usb_interface *intf = config->interface[i];
4855
4856 if (!intf)
4857 continue;
4858
4859 /* Check if any currently bound drivers want hub-initiated LPM
4860 * disabled.
4861 */
4862 if (intf->dev.driver) {
4863 driver = to_usb_driver(intf->dev.driver);
4864 if (driver && driver->disable_hub_initiated_lpm) {
4865 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4866 state_name, driver->name);
4867 timeout = xhci_get_timeout_no_hub_lpm(udev,
4868 state);
4869 if (timeout == USB3_LPM_DISABLED)
4870 return timeout;
4871 }
4872 }
4873
4874 /* Not sure how this could happen... */
4875 if (!intf->cur_altsetting)
4876 continue;
4877
4878 if (xhci_update_timeout_for_interface(xhci, udev,
4879 intf->cur_altsetting,
4880 state, &timeout))
4881 return timeout;
4882 }
4883 return timeout;
4884 }
4885
4886 static int calculate_max_exit_latency(struct usb_device *udev,
4887 enum usb3_link_state state_changed,
4888 u16 hub_encoded_timeout)
4889 {
4890 unsigned long long u1_mel_us = 0;
4891 unsigned long long u2_mel_us = 0;
4892 unsigned long long mel_us = 0;
4893 bool disabling_u1;
4894 bool disabling_u2;
4895 bool enabling_u1;
4896 bool enabling_u2;
4897
4898 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4899 hub_encoded_timeout == USB3_LPM_DISABLED);
4900 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4901 hub_encoded_timeout == USB3_LPM_DISABLED);
4902
4903 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4904 hub_encoded_timeout != USB3_LPM_DISABLED);
4905 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4906 hub_encoded_timeout != USB3_LPM_DISABLED);
4907
4908 /* If U1 was already enabled and we're not disabling it,
4909 * or we're going to enable U1, account for the U1 max exit latency.
4910 */
4911 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4912 enabling_u1)
4913 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4914 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4915 enabling_u2)
4916 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4917
4918 if (u1_mel_us > u2_mel_us)
4919 mel_us = u1_mel_us;
4920 else
4921 mel_us = u2_mel_us;
4922 /* xHCI host controller max exit latency field is only 16 bits wide. */
4923 if (mel_us > MAX_EXIT) {
4924 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4925 "is too big.\n", mel_us);
4926 return -E2BIG;
4927 }
4928 return mel_us;
4929 }
4930
4931 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4932 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4933 struct usb_device *udev, enum usb3_link_state state)
4934 {
4935 struct xhci_hcd *xhci;
4936 u16 hub_encoded_timeout;
4937 int mel;
4938 int ret;
4939
4940 xhci = hcd_to_xhci(hcd);
4941 /* The LPM timeout values are pretty host-controller specific, so don't
4942 * enable hub-initiated timeouts unless the vendor has provided
4943 * information about their timeout algorithm.
4944 */
4945 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4946 !xhci->devs[udev->slot_id])
4947 return USB3_LPM_DISABLED;
4948
4949 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4950 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4951 if (mel < 0) {
4952 /* Max Exit Latency is too big, disable LPM. */
4953 hub_encoded_timeout = USB3_LPM_DISABLED;
4954 mel = 0;
4955 }
4956
4957 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4958 if (ret)
4959 return ret;
4960 return hub_encoded_timeout;
4961 }
4962
4963 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4964 struct usb_device *udev, enum usb3_link_state state)
4965 {
4966 struct xhci_hcd *xhci;
4967 u16 mel;
4968
4969 xhci = hcd_to_xhci(hcd);
4970 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4971 !xhci->devs[udev->slot_id])
4972 return 0;
4973
4974 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4975 return xhci_change_max_exit_latency(xhci, udev, mel);
4976 }
4977 #else /* CONFIG_PM */
4978
4979 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4980 struct usb_device *udev, int enable)
4981 {
4982 return 0;
4983 }
4984
4985 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4986 {
4987 return 0;
4988 }
4989
4990 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4991 struct usb_device *udev, enum usb3_link_state state)
4992 {
4993 return USB3_LPM_DISABLED;
4994 }
4995
4996 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4997 struct usb_device *udev, enum usb3_link_state state)
4998 {
4999 return 0;
5000 }
5001 #endif /* CONFIG_PM */
5002
5003 /*-------------------------------------------------------------------------*/
5004
5005 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5006 * internal data structures for the device.
5007 */
5008 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5009 struct usb_tt *tt, gfp_t mem_flags)
5010 {
5011 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5012 struct xhci_virt_device *vdev;
5013 struct xhci_command *config_cmd;
5014 struct xhci_input_control_ctx *ctrl_ctx;
5015 struct xhci_slot_ctx *slot_ctx;
5016 unsigned long flags;
5017 unsigned think_time;
5018 int ret;
5019
5020 /* Ignore root hubs */
5021 if (!hdev->parent)
5022 return 0;
5023
5024 vdev = xhci->devs[hdev->slot_id];
5025 if (!vdev) {
5026 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5027 return -EINVAL;
5028 }
5029
5030 config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5031 if (!config_cmd)
5032 return -ENOMEM;
5033
5034 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5035 if (!ctrl_ctx) {
5036 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5037 __func__);
5038 xhci_free_command(xhci, config_cmd);
5039 return -ENOMEM;
5040 }
5041
5042 spin_lock_irqsave(&xhci->lock, flags);
5043 if (hdev->speed == USB_SPEED_HIGH &&
5044 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5045 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5046 xhci_free_command(xhci, config_cmd);
5047 spin_unlock_irqrestore(&xhci->lock, flags);
5048 return -ENOMEM;
5049 }
5050
5051 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5052 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5053 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5054 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5055 /*
5056 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5057 * but it may be already set to 1 when setup an xHCI virtual
5058 * device, so clear it anyway.
5059 */
5060 if (tt->multi)
5061 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5062 else if (hdev->speed == USB_SPEED_FULL)
5063 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5064
5065 if (xhci->hci_version > 0x95) {
5066 xhci_dbg(xhci, "xHCI version %x needs hub "
5067 "TT think time and number of ports\n",
5068 (unsigned int) xhci->hci_version);
5069 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5070 /* Set TT think time - convert from ns to FS bit times.
5071 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5072 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5073 *
5074 * xHCI 1.0: this field shall be 0 if the device is not a
5075 * High-spped hub.
5076 */
5077 think_time = tt->think_time;
5078 if (think_time != 0)
5079 think_time = (think_time / 666) - 1;
5080 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5081 slot_ctx->tt_info |=
5082 cpu_to_le32(TT_THINK_TIME(think_time));
5083 } else {
5084 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5085 "TT think time or number of ports\n",
5086 (unsigned int) xhci->hci_version);
5087 }
5088 slot_ctx->dev_state = 0;
5089 spin_unlock_irqrestore(&xhci->lock, flags);
5090
5091 xhci_dbg(xhci, "Set up %s for hub device.\n",
5092 (xhci->hci_version > 0x95) ?
5093 "configure endpoint" : "evaluate context");
5094
5095 /* Issue and wait for the configure endpoint or
5096 * evaluate context command.
5097 */
5098 if (xhci->hci_version > 0x95)
5099 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5100 false, false);
5101 else
5102 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5103 true, false);
5104
5105 xhci_free_command(xhci, config_cmd);
5106 return ret;
5107 }
5108
5109 static int xhci_get_frame(struct usb_hcd *hcd)
5110 {
5111 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5112 /* EHCI mods by the periodic size. Why? */
5113 return readl(&xhci->run_regs->microframe_index) >> 3;
5114 }
5115
5116 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5117 {
5118 struct xhci_hcd *xhci;
5119 /*
5120 * TODO: Check with DWC3 clients for sysdev according to
5121 * quirks
5122 */
5123 struct device *dev = hcd->self.sysdev;
5124 unsigned int minor_rev;
5125 int retval;
5126
5127 /* Accept arbitrarily long scatter-gather lists */
5128 hcd->self.sg_tablesize = ~0;
5129
5130 /* support to build packet from discontinuous buffers */
5131 hcd->self.no_sg_constraint = 1;
5132
5133 /* XHCI controllers don't stop the ep queue on short packets :| */
5134 hcd->self.no_stop_on_short = 1;
5135
5136 xhci = hcd_to_xhci(hcd);
5137
5138 if (usb_hcd_is_primary_hcd(hcd)) {
5139 xhci->main_hcd = hcd;
5140 xhci->usb2_rhub.hcd = hcd;
5141 /* Mark the first roothub as being USB 2.0.
5142 * The xHCI driver will register the USB 3.0 roothub.
5143 */
5144 hcd->speed = HCD_USB2;
5145 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5146 /*
5147 * USB 2.0 roothub under xHCI has an integrated TT,
5148 * (rate matching hub) as opposed to having an OHCI/UHCI
5149 * companion controller.
5150 */
5151 hcd->has_tt = 1;
5152 } else {
5153 /*
5154 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5155 * should return 0x31 for sbrn, or that the minor revision
5156 * is a two digit BCD containig minor and sub-minor numbers.
5157 * This was later clarified in xHCI 1.2.
5158 *
5159 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5160 * minor revision set to 0x1 instead of 0x10.
5161 */
5162 if (xhci->usb3_rhub.min_rev == 0x1)
5163 minor_rev = 1;
5164 else
5165 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5166
5167 switch (minor_rev) {
5168 case 2:
5169 hcd->speed = HCD_USB32;
5170 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5171 hcd->self.root_hub->rx_lanes = 2;
5172 hcd->self.root_hub->tx_lanes = 2;
5173 break;
5174 case 1:
5175 hcd->speed = HCD_USB31;
5176 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5177 break;
5178 }
5179 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5180 minor_rev,
5181 minor_rev ? "Enhanced " : "");
5182
5183 xhci->usb3_rhub.hcd = hcd;
5184 /* xHCI private pointer was set in xhci_pci_probe for the second
5185 * registered roothub.
5186 */
5187 return 0;
5188 }
5189
5190 mutex_init(&xhci->mutex);
5191 xhci->cap_regs = hcd->regs;
5192 xhci->op_regs = hcd->regs +
5193 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5194 xhci->run_regs = hcd->regs +
5195 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5196 /* Cache read-only capability registers */
5197 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5198 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5199 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5200 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5201 xhci->hci_version = HC_VERSION(xhci->hcc_params);
5202 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5203 if (xhci->hci_version > 0x100)
5204 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5205
5206 xhci->quirks |= quirks;
5207
5208 get_quirks(dev, xhci);
5209
5210 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5211 * success event after a short transfer. This quirk will ignore such
5212 * spurious event.
5213 */
5214 if (xhci->hci_version > 0x96)
5215 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5216
5217 /* Make sure the HC is halted. */
5218 retval = xhci_halt(xhci);
5219 if (retval)
5220 return retval;
5221
5222 xhci_zero_64b_regs(xhci);
5223
5224 xhci_dbg(xhci, "Resetting HCD\n");
5225 /* Reset the internal HC memory state and registers. */
5226 retval = xhci_reset(xhci);
5227 if (retval)
5228 return retval;
5229 xhci_dbg(xhci, "Reset complete\n");
5230
5231 /*
5232 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5233 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5234 * address memory pointers actually. So, this driver clears the AC64
5235 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5236 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5237 */
5238 if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5239 xhci->hcc_params &= ~BIT(0);
5240
5241 /* Set dma_mask and coherent_dma_mask to 64-bits,
5242 * if xHC supports 64-bit addressing */
5243 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5244 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5245 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5246 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5247 } else {
5248 /*
5249 * This is to avoid error in cases where a 32-bit USB
5250 * controller is used on a 64-bit capable system.
5251 */
5252 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5253 if (retval)
5254 return retval;
5255 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5256 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5257 }
5258
5259 xhci_dbg(xhci, "Calling HCD init\n");
5260 /* Initialize HCD and host controller data structures. */
5261 retval = xhci_init(hcd);
5262 if (retval)
5263 return retval;
5264 xhci_dbg(xhci, "Called HCD init\n");
5265
5266 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5267 xhci->hcc_params, xhci->hci_version, xhci->quirks);
5268
5269 return 0;
5270 }
5271 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5272
5273 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5274 struct usb_host_endpoint *ep)
5275 {
5276 struct xhci_hcd *xhci;
5277 struct usb_device *udev;
5278 unsigned int slot_id;
5279 unsigned int ep_index;
5280 unsigned long flags;
5281
5282 xhci = hcd_to_xhci(hcd);
5283
5284 spin_lock_irqsave(&xhci->lock, flags);
5285 udev = (struct usb_device *)ep->hcpriv;
5286 slot_id = udev->slot_id;
5287 ep_index = xhci_get_endpoint_index(&ep->desc);
5288
5289 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5290 xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5291 spin_unlock_irqrestore(&xhci->lock, flags);
5292 }
5293
5294 static const struct hc_driver xhci_hc_driver = {
5295 .description = "xhci-hcd",
5296 .product_desc = "xHCI Host Controller",
5297 .hcd_priv_size = sizeof(struct xhci_hcd),
5298
5299 /*
5300 * generic hardware linkage
5301 */
5302 .irq = xhci_irq,
5303 .flags = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5304 HCD_BH,
5305
5306 /*
5307 * basic lifecycle operations
5308 */
5309 .reset = NULL, /* set in xhci_init_driver() */
5310 .start = xhci_run,
5311 .stop = xhci_stop,
5312 .shutdown = xhci_shutdown,
5313
5314 /*
5315 * managing i/o requests and associated device resources
5316 */
5317 .map_urb_for_dma = xhci_map_urb_for_dma,
5318 .urb_enqueue = xhci_urb_enqueue,
5319 .urb_dequeue = xhci_urb_dequeue,
5320 .alloc_dev = xhci_alloc_dev,
5321 .free_dev = xhci_free_dev,
5322 .alloc_streams = xhci_alloc_streams,
5323 .free_streams = xhci_free_streams,
5324 .add_endpoint = xhci_add_endpoint,
5325 .drop_endpoint = xhci_drop_endpoint,
5326 .endpoint_disable = xhci_endpoint_disable,
5327 .endpoint_reset = xhci_endpoint_reset,
5328 .check_bandwidth = xhci_check_bandwidth,
5329 .reset_bandwidth = xhci_reset_bandwidth,
5330 .address_device = xhci_address_device,
5331 .enable_device = xhci_enable_device,
5332 .update_hub_device = xhci_update_hub_device,
5333 .reset_device = xhci_discover_or_reset_device,
5334
5335 /*
5336 * scheduling support
5337 */
5338 .get_frame_number = xhci_get_frame,
5339
5340 /*
5341 * root hub support
5342 */
5343 .hub_control = xhci_hub_control,
5344 .hub_status_data = xhci_hub_status_data,
5345 .bus_suspend = xhci_bus_suspend,
5346 .bus_resume = xhci_bus_resume,
5347 .get_resuming_ports = xhci_get_resuming_ports,
5348
5349 /*
5350 * call back when device connected and addressed
5351 */
5352 .update_device = xhci_update_device,
5353 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5354 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5355 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5356 .find_raw_port_number = xhci_find_raw_port_number,
5357 .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5358 };
5359
5360 void xhci_init_driver(struct hc_driver *drv,
5361 const struct xhci_driver_overrides *over)
5362 {
5363 BUG_ON(!over);
5364
5365 /* Copy the generic table to drv then apply the overrides */
5366 *drv = xhci_hc_driver;
5367
5368 if (over) {
5369 drv->hcd_priv_size += over->extra_priv_size;
5370 if (over->reset)
5371 drv->reset = over->reset;
5372 if (over->start)
5373 drv->start = over->start;
5374 }
5375 }
5376 EXPORT_SYMBOL_GPL(xhci_init_driver);
5377
5378 MODULE_DESCRIPTION(DRIVER_DESC);
5379 MODULE_AUTHOR(DRIVER_AUTHOR);
5380 MODULE_LICENSE("GPL");
5381
5382 static int __init xhci_hcd_init(void)
5383 {
5384 /*
5385 * Check the compiler generated sizes of structures that must be laid
5386 * out in specific ways for hardware access.
5387 */
5388 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5389 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5390 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5391 /* xhci_device_control has eight fields, and also
5392 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5393 */
5394 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5395 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5396 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5397 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5398 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5399 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5400 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5401
5402 if (usb_disabled())
5403 return -ENODEV;
5404
5405 xhci_debugfs_create_root();
5406
5407 return 0;
5408 }
5409
5410 /*
5411 * If an init function is provided, an exit function must also be provided
5412 * to allow module unload.
5413 */
5414 static void __exit xhci_hcd_fini(void)
5415 {
5416 xhci_debugfs_remove_root();
5417 }
5418
5419 module_init(xhci_hcd_init);
5420 module_exit(xhci_hcd_fini);