]> git.ipfire.org Git - thirdparty/glibc.git/blob - elf/rtld.c
f65bd80954c3238d0e5a22702415fc6ee9e57952
[thirdparty/glibc.git] / elf / rtld.c
1 /* Run time dynamic linker.
2 Copyright (C) 1995, 1996 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Library General Public License as
7 published by the Free Software Foundation; either version 2 of the
8 License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Library General Public License for more details.
14
15 You should have received a copy of the GNU Library General Public
16 License along with the GNU C Library; see the file COPYING.LIB. If not,
17 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
18 Boston, MA 02111-1307, USA. */
19
20 #include <link.h>
21 #include <stddef.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <unistd.h>
25 #include <sys/mman.h> /* Check if MAP_ANON is defined. */
26 #include "../stdio-common/_itoa.h"
27 #include <assert.h>
28 #include "dynamic-link.h"
29
30
31 /* System-specific function to do initial startup for the dynamic linker.
32 After this, file access calls and getenv must work. This is responsible
33 for setting __libc_enable_secure if we need to be secure (e.g. setuid),
34 and for setting _dl_argc and _dl_argv, and then calling _dl_main. */
35 extern ElfW(Addr) _dl_sysdep_start (void **start_argptr,
36 void (*dl_main) (const ElfW(Phdr) *phdr,
37 ElfW(Half) phent,
38 ElfW(Addr) *user_entry));
39 extern void _dl_sysdep_start_cleanup (void);
40
41 /* System-dependent function to read a file's whole contents
42 in the most convenient manner available. */
43 extern void *_dl_sysdep_read_whole_file (const char *filename,
44 size_t *filesize_ptr,
45 int mmap_prot);
46
47 int _dl_argc;
48 char **_dl_argv;
49 const char *_dl_rpath;
50
51 /* Set nonzero during loading and initialization of executable and
52 libraries, cleared before the executable's entry point runs. This
53 must not be initialized to nonzero, because the unused dynamic
54 linker loaded in for libc.so's "ld.so.1" dep will provide the
55 definition seen by libc.so's initializer; that value must be zero,
56 and will be since that dynamic linker's _dl_start and dl_main will
57 never be called. */
58 int _dl_starting_up;
59
60 static void dl_main (const ElfW(Phdr) *phdr,
61 ElfW(Half) phent,
62 ElfW(Addr) *user_entry);
63
64 struct link_map _dl_rtld_map;
65
66 #ifdef RTLD_START
67 RTLD_START
68 #else
69 #error "sysdeps/MACHINE/dl-machine.h fails to define RTLD_START"
70 #endif
71
72 ElfW(Addr)
73 _dl_start (void *arg)
74 {
75 struct link_map bootstrap_map;
76
77 /* This #define produces dynamic linking inline functions for
78 bootstrap relocation instead of general-purpose relocation. */
79 #define RTLD_BOOTSTRAP
80 #define RESOLVE(sym, flags) bootstrap_map.l_addr
81 #include "dynamic-link.h"
82
83 /* Figure out the run-time load address of the dynamic linker itself. */
84 bootstrap_map.l_addr = elf_machine_load_address ();
85
86 /* Read our own dynamic section and fill in the info array. */
87 bootstrap_map.l_ld = (void *) bootstrap_map.l_addr + elf_machine_dynamic ();
88 elf_get_dynamic_info (bootstrap_map.l_ld, bootstrap_map.l_info);
89
90 #ifdef ELF_MACHINE_BEFORE_RTLD_RELOC
91 ELF_MACHINE_BEFORE_RTLD_RELOC (bootstrap_map.l_info);
92 #endif
93
94 /* Relocate ourselves so we can do normal function calls and
95 data access using the global offset table. */
96
97 ELF_DYNAMIC_RELOCATE (&bootstrap_map, 0);
98
99
100 /* Now life is sane; we can call functions and access global data.
101 Set up to use the operating system facilities, and find out from
102 the operating system's program loader where to find the program
103 header table in core. */
104
105
106 /* Transfer data about ourselves to the permanent link_map structure. */
107 _dl_rtld_map.l_addr = bootstrap_map.l_addr;
108 _dl_rtld_map.l_ld = bootstrap_map.l_ld;
109 memcpy (_dl_rtld_map.l_info, bootstrap_map.l_info,
110 sizeof _dl_rtld_map.l_info);
111 _dl_setup_hash (&_dl_rtld_map);
112
113 /* Cache the DT_RPATH stored in ld.so itself; this will be
114 the default search path. */
115 _dl_rpath = (void *) (_dl_rtld_map.l_addr +
116 _dl_rtld_map.l_info[DT_STRTAB]->d_un.d_ptr +
117 _dl_rtld_map.l_info[DT_RPATH]->d_un.d_val);
118
119 /* Call the OS-dependent function to set up life so we can do things like
120 file access. It will call `dl_main' (below) to do all the real work
121 of the dynamic linker, and then unwind our frame and run the user
122 entry point on the same stack we entered on. */
123 return _dl_sysdep_start (arg, &dl_main);
124 }
125
126
127 /* Now life is peachy; we can do all normal operations.
128 On to the real work. */
129
130 void _start (void);
131
132 unsigned int _dl_skip_args; /* Nonzero if we were run directly. */
133
134 static void
135 dl_main (const ElfW(Phdr) *phdr,
136 ElfW(Half) phent,
137 ElfW(Addr) *user_entry)
138 {
139 const ElfW(Phdr) *ph;
140 struct link_map *l;
141 int lazy;
142 enum { normal, list, verify, trace } mode;
143 struct link_map **preloads;
144 unsigned int npreloads;
145 size_t file_size;
146 char *file;
147
148 mode = getenv ("LD_TRACE_LOADED_OBJECTS") != NULL ? trace : normal;
149
150 /* Set up a flag which tells we are just starting. */
151 _dl_starting_up = 1;
152
153 if (*user_entry == (ElfW(Addr)) &_start)
154 {
155 /* Ho ho. We are not the program interpreter! We are the program
156 itself! This means someone ran ld.so as a command. Well, that
157 might be convenient to do sometimes. We support it by
158 interpreting the args like this:
159
160 ld.so PROGRAM ARGS...
161
162 The first argument is the name of a file containing an ELF
163 executable we will load and run with the following arguments.
164 To simplify life here, PROGRAM is searched for using the
165 normal rules for shared objects, rather than $PATH or anything
166 like that. We just load it and use its entry point; we don't
167 pay attention to its PT_INTERP command (we are the interpreter
168 ourselves). This is an easy way to test a new ld.so before
169 installing it. */
170 if (_dl_argc < 2)
171 _dl_sysdep_fatal ("\
172 Usage: ld.so [--list|--verify] EXECUTABLE-FILE [ARGS-FOR-PROGRAM...]\n\
173 You have invoked `ld.so', the helper program for shared library executables.\n\
174 This program usually lives in the file `/lib/ld.so', and special directives\n\
175 in executable files using ELF shared libraries tell the system's program\n\
176 loader to load the helper program from this file. This helper program loads\n\
177 the shared libraries needed by the program executable, prepares the program\n\
178 to run, and runs it. You may invoke this helper program directly from the\n\
179 command line to load and run an ELF executable file; this is like executing\n\
180 that file itself, but always uses this helper program from the file you\n\
181 specified, instead of the helper program file specified in the executable\n\
182 file you run. This is mostly of use for maintainers to test new versions\n\
183 of this helper program; chances are you did not intend to run this program.\n",
184 NULL);
185
186 /* Note the place where the dynamic linker actually came from. */
187 _dl_rtld_map.l_name = _dl_argv[0];
188
189 if (! strcmp (_dl_argv[1], "--list"))
190 {
191 mode = list;
192
193 ++_dl_skip_args;
194 --_dl_argc;
195 ++_dl_argv;
196 }
197 else if (! strcmp (_dl_argv[1], "--verify"))
198 {
199 mode = verify;
200
201 ++_dl_skip_args;
202 --_dl_argc;
203 ++_dl_argv;
204 }
205
206 ++_dl_skip_args;
207 --_dl_argc;
208 ++_dl_argv;
209
210 if (mode == verify)
211 {
212 void doit (void)
213 {
214 l = _dl_map_object (NULL, _dl_argv[0], lt_library, 0);
215 }
216 char *err_str = NULL;
217 const char *obj_name __attribute__ ((unused));
218
219 (void) _dl_catch_error (&err_str, &obj_name, doit);
220 if (err_str != NULL)
221 {
222 free (err_str);
223 _exit (EXIT_FAILURE);
224 }
225 }
226 else
227 l = _dl_map_object (NULL, _dl_argv[0], lt_library, 0);
228
229 phdr = l->l_phdr;
230 phent = l->l_phnum;
231 l->l_name = (char *) "";
232 *user_entry = l->l_entry;
233 }
234 else
235 {
236 /* Create a link_map for the executable itself.
237 This will be what dlopen on "" returns. */
238 l = _dl_new_object ((char *) "", "", lt_executable);
239 l->l_phdr = phdr;
240 l->l_phnum = phent;
241 l->l_entry = *user_entry;
242 }
243
244 if (l != _dl_loaded)
245 {
246 /* GDB assumes that the first element on the chain is the
247 link_map for the executable itself, and always skips it.
248 Make sure the first one is indeed that one. */
249 l->l_prev->l_next = l->l_next;
250 if (l->l_next)
251 l->l_next->l_prev = l->l_prev;
252 l->l_prev = NULL;
253 l->l_next = _dl_loaded;
254 _dl_loaded->l_prev = l;
255 _dl_loaded = l;
256 }
257
258 /* Scan the program header table for the dynamic section. */
259 for (ph = phdr; ph < &phdr[phent]; ++ph)
260 switch (ph->p_type)
261 {
262 case PT_DYNAMIC:
263 /* This tells us where to find the dynamic section,
264 which tells us everything we need to do. */
265 l->l_ld = (void *) l->l_addr + ph->p_vaddr;
266 break;
267 case PT_INTERP:
268 /* This "interpreter segment" was used by the program loader to
269 find the program interpreter, which is this program itself, the
270 dynamic linker. We note what name finds us, so that a future
271 dlopen call or DT_NEEDED entry, for something that wants to link
272 against the dynamic linker as a shared library, will know that
273 the shared object is already loaded. */
274 _dl_rtld_map.l_libname = (const char *) l->l_addr + ph->p_vaddr;
275 break;
276 }
277 if (! _dl_rtld_map.l_libname && _dl_rtld_map.l_name)
278 /* We were invoked directly, so the program might not have a PT_INTERP. */
279 _dl_rtld_map.l_libname = _dl_rtld_map.l_name;
280 else
281 assert (_dl_rtld_map.l_libname); /* How else did we get here? */
282
283 if (mode == verify)
284 /* We were called just to verify that this is a dynamic executable
285 using us as the program interpreter. */
286 _exit (l->l_ld == NULL ? EXIT_FAILURE : EXIT_SUCCESS);
287
288 /* Extract the contents of the dynamic section for easy access. */
289 elf_get_dynamic_info (l->l_ld, l->l_info);
290 if (l->l_info[DT_HASH])
291 /* Set up our cache of pointers into the hash table. */
292 _dl_setup_hash (l);
293
294 /* Put the link_map for ourselves on the chain so it can be found by
295 name. */
296 if (! _dl_rtld_map.l_name)
297 /* If not invoked directly, the dynamic linker shared object file was
298 found by the PT_INTERP name. */
299 _dl_rtld_map.l_name = (char *) _dl_rtld_map.l_libname;
300 _dl_rtld_map.l_type = lt_library;
301 while (l->l_next)
302 l = l->l_next;
303 l->l_next = &_dl_rtld_map;
304 _dl_rtld_map.l_prev = l;
305
306 /* We have two ways to specify objects to preload: via environment
307 variable and via the file /etc/ld.so.preload. The later can also
308 be used when security is enabled. */
309 preloads = NULL;
310 npreloads = 0;
311
312 if (! __libc_enable_secure)
313 {
314 const char *preloadlist = getenv ("LD_PRELOAD");
315 if (preloadlist)
316 {
317 /* The LD_PRELOAD environment variable gives a colon-separated
318 list of libraries that are loaded before the executable's
319 dependencies and prepended to the global scope list. */
320 char *list = strdupa (preloadlist);
321 char *p;
322 while ((p = strsep (&list, ":")) != NULL)
323 {
324 (void) _dl_map_object (NULL, p, lt_library, 0);
325 ++npreloads;
326 }
327 }
328 }
329
330 /* Read the contents of the file. */
331 file = _dl_sysdep_read_whole_file ("/etc/ld.so.preload", &file_size,
332 PROT_READ | PROT_WRITE);
333 if (file)
334 {
335 /* Parse the file. It contains names of libraries to be loaded,
336 separated by white spaces or `:'. It may also contain
337 comments introduced by `#'. */
338 char *problem;
339 char *runp;
340 size_t rest;
341
342 /* Eliminate comments. */
343 runp = file;
344 rest = file_size;
345 while (rest > 0)
346 {
347 char *comment = memchr (runp, '#', rest);
348 if (comment == NULL)
349 break;
350
351 rest -= comment - runp;
352 do
353 *comment = ' ';
354 while (--rest > 0 && *++comment != '\n');
355 }
356
357 /* We have one problematic case: if we have a name at the end of
358 the file without a trailing terminating characters, we cannot
359 place the \0. Handle the case separately. */
360 if (file[file_size - 1] != ' ' && file[file_size] != '\t'
361 && file[file_size] != '\n')
362 {
363 problem = &file[file_size];
364 while (problem > file && problem[-1] != ' ' && problem[-1] != '\t'
365 && problem[-1] != '\n')
366 --problem;
367
368 if (problem > file)
369 problem[-1] = '\0';
370 }
371 else
372 problem = NULL;
373
374 if (file != problem)
375 {
376 char *p;
377 runp = file;
378 while ((p = strsep (&runp, ": \t\n")) != NULL)
379 {
380 (void) _dl_map_object (NULL, p, lt_library, 0);
381 ++npreloads;
382 }
383 }
384
385 if (problem != NULL)
386 {
387 char *p = strndupa (problem, file_size - (problem - file));
388 (void) _dl_map_object (NULL, p, lt_library, 0);
389 }
390
391 /* We don't need the file anymore. */
392 __munmap (file, file_size);
393 }
394
395 if (npreloads != 0)
396 {
397 /* Set up PRELOADS with a vector of the preloaded libraries. */
398 struct link_map *l;
399 unsigned int i;
400 preloads = __alloca (npreloads * sizeof preloads[0]);
401 l = _dl_rtld_map.l_next; /* End of the chain before preloads. */
402 i = 0;
403 do
404 {
405 preloads[i++] = l;
406 l = l->l_next;
407 } while (l);
408 assert (i == npreloads);
409 }
410
411 /* Load all the libraries specified by DT_NEEDED entries. If LD_PRELOAD
412 specified some libraries to load, these are inserted before the actual
413 dependencies in the executable's searchlist for symbol resolution. */
414 _dl_map_object_deps (l, preloads, npreloads, mode == trace);
415
416 #ifndef MAP_ANON
417 /* We are done mapping things, so close the zero-fill descriptor. */
418 __close (_dl_zerofd);
419 _dl_zerofd = -1;
420 #endif
421
422 /* Remove _dl_rtld_map from the chain. */
423 _dl_rtld_map.l_prev->l_next = _dl_rtld_map.l_next;
424 if (_dl_rtld_map.l_next)
425 _dl_rtld_map.l_next->l_prev = _dl_rtld_map.l_prev;
426
427 if (_dl_rtld_map.l_opencount)
428 {
429 /* Some DT_NEEDED entry referred to the interpreter object itself, so
430 put it back in the list of visible objects. We insert it into the
431 chain in symbol search order because gdb uses the chain's order as
432 its symbol search order. */
433 unsigned int i = 1;
434 while (l->l_searchlist[i] != &_dl_rtld_map)
435 ++i;
436 _dl_rtld_map.l_prev = l->l_searchlist[i - 1];
437 _dl_rtld_map.l_next = (i + 1 < l->l_nsearchlist ?
438 l->l_searchlist[i + 1] : NULL);
439 assert (_dl_rtld_map.l_prev->l_next == _dl_rtld_map.l_next);
440 _dl_rtld_map.l_prev->l_next = &_dl_rtld_map;
441 if (_dl_rtld_map.l_next)
442 {
443 assert (_dl_rtld_map.l_next->l_prev == _dl_rtld_map.l_prev);
444 _dl_rtld_map.l_next->l_prev = &_dl_rtld_map;
445 }
446 }
447
448 if (mode != normal)
449 {
450 /* We were run just to list the shared libraries. It is
451 important that we do this before real relocation, because the
452 functions we call below for output may no longer work properly
453 after relocation. */
454
455 int i;
456
457 if (! _dl_loaded->l_info[DT_NEEDED])
458 _dl_sysdep_message ("\t", "statically linked\n", NULL);
459 else
460 for (l = _dl_loaded->l_next; l; l = l->l_next)
461 if (l->l_opencount == 0)
462 /* The library was not found. */
463 _dl_sysdep_message ("\t", l->l_libname, " => not found\n", NULL);
464 else
465 {
466 char buf[20], *bp;
467 buf[sizeof buf - 1] = '\0';
468 bp = _itoa (l->l_addr, &buf[sizeof buf - 1], 16, 0);
469 while ((size_t) (&buf[sizeof buf - 1] - bp)
470 < sizeof l->l_addr * 2)
471 *--bp = '0';
472 _dl_sysdep_message ("\t", l->l_libname, " => ", l->l_name,
473 " (0x", bp, ")\n", NULL);
474 }
475
476 if (mode != trace)
477 for (i = 1; i < _dl_argc; ++i)
478 {
479 const ElfW(Sym) *ref = NULL;
480 ElfW(Addr) loadbase = _dl_lookup_symbol (_dl_argv[i], &ref,
481 &_dl_default_scope[2],
482 "argument",
483 DL_LOOKUP_NOPLT);
484 char buf[20], *bp;
485 buf[sizeof buf - 1] = '\0';
486 bp = _itoa (ref->st_value, &buf[sizeof buf - 1], 16, 0);
487 while ((size_t) (&buf[sizeof buf - 1] - bp) < sizeof loadbase * 2)
488 *--bp = '0';
489 _dl_sysdep_message (_dl_argv[i], " found at 0x", bp, NULL);
490 buf[sizeof buf - 1] = '\0';
491 bp = _itoa (loadbase, &buf[sizeof buf - 1], 16, 0);
492 while ((size_t) (&buf[sizeof buf - 1] - bp) < sizeof loadbase * 2)
493 *--bp = '0';
494 _dl_sysdep_message (" in object at 0x", bp, "\n", NULL);
495 }
496
497 _exit (0);
498 }
499
500 lazy = !__libc_enable_secure && *(getenv ("LD_BIND_NOW") ?: "") == '\0';
501
502 {
503 /* Now we have all the objects loaded. Relocate them all except for
504 the dynamic linker itself. We do this in reverse order so that copy
505 relocs of earlier objects overwrite the data written by later
506 objects. We do not re-relocate the dynamic linker itself in this
507 loop because that could result in the GOT entries for functions we
508 call being changed, and that would break us. It is safe to relocate
509 the dynamic linker out of order because it has no copy relocs (we
510 know that because it is self-contained). */
511
512 l = _dl_loaded;
513 while (l->l_next)
514 l = l->l_next;
515 do
516 {
517 if (l != &_dl_rtld_map)
518 {
519 _dl_relocate_object (l, _dl_object_relocation_scope (l), lazy);
520 *_dl_global_scope_end = NULL;
521 }
522 l = l->l_prev;
523 } while (l);
524
525 /* Do any necessary cleanups for the startup OS interface code.
526 We do these now so that no calls are made after rtld re-relocation
527 which might be resolved to different functions than we expect.
528 We cannot do this before relocating the other objects because
529 _dl_relocate_object might need to call `mprotect' for DT_TEXTREL. */
530 _dl_sysdep_start_cleanup ();
531
532 if (_dl_rtld_map.l_opencount > 0)
533 /* There was an explicit ref to the dynamic linker as a shared lib.
534 Re-relocate ourselves with user-controlled symbol definitions. */
535 _dl_relocate_object (&_dl_rtld_map, &_dl_default_scope[2], 0);
536 }
537
538 {
539 /* Initialize _r_debug. */
540 struct r_debug *r = _dl_debug_initialize (_dl_rtld_map.l_addr);
541
542 l = _dl_loaded;
543
544 #ifdef ELF_MACHINE_DEBUG_SETUP
545
546 /* Some machines (e.g. MIPS) don't use DT_DEBUG in this way. */
547
548 ELF_MACHINE_DEBUG_SETUP (l, r);
549 ELF_MACHINE_DEBUG_SETUP (&_dl_rtld_map, r);
550
551 #else
552
553 if (l->l_info[DT_DEBUG])
554 /* There is a DT_DEBUG entry in the dynamic section. Fill it in
555 with the run-time address of the r_debug structure */
556 l->l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
557
558 /* Fill in the pointer in the dynamic linker's own dynamic section, in
559 case you run gdb on the dynamic linker directly. */
560 if (_dl_rtld_map.l_info[DT_DEBUG])
561 _dl_rtld_map.l_info[DT_DEBUG]->d_un.d_ptr = (ElfW(Addr)) r;
562
563 #endif
564
565 /* Notify the debugger that all objects are now mapped in. */
566 r->r_state = RT_ADD;
567 _dl_debug_state ();
568 }
569
570 /* Once we return, _dl_sysdep_start will invoke
571 the DT_INIT functions and then *USER_ENTRY. */
572 }