]> git.ipfire.org Git - thirdparty/openssl.git/blob - engines/e_dasync.c
018175c9e481651fce31ad212f899ff0d166bddf
[thirdparty/openssl.git] / engines / e_dasync.c
1 /*
2 * Written by Matt Caswell (matt@openssl.org) for the OpenSSL project.
3 */
4 /* ====================================================================
5 * Copyright (c) 2015 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 */
52
53 #include <stdio.h>
54 #include <string.h>
55
56 #include <openssl/engine.h>
57 #include <openssl/sha.h>
58 #include <openssl/rsa.h>
59 #include <openssl/evp.h>
60 #include <openssl/async.h>
61 #include <openssl/bn.h>
62 #include <openssl/crypto.h>
63 #include <openssl/ssl.h>
64 #include <openssl/modes.h>
65
66 #if (defined(OPENSSL_SYS_UNIX) || defined(OPENSSL_SYS_CYGWIN)) && defined(OPENSSL_THREADS)
67 # undef ASYNC_POSIX
68 # define ASYNC_POSIX
69 # include <unistd.h>
70 #elif defined(_WIN32)
71 # undef ASYNC_WIN
72 # define ASYNC_WIN
73 # include <windows.h>
74 #endif
75
76 #define DASYNC_LIB_NAME "DASYNC"
77 #include "e_dasync_err.c"
78
79 /* Engine Id and Name */
80 static const char *engine_dasync_id = "dasync";
81 static const char *engine_dasync_name = "Dummy Async engine support";
82
83
84 /* Engine Lifetime functions */
85 static int dasync_destroy(ENGINE *e);
86 static int dasync_init(ENGINE *e);
87 static int dasync_finish(ENGINE *e);
88 void engine_load_dasync_internal(void);
89
90
91 /* Set up digests. Just SHA1 for now */
92 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
93 const int **nids, int nid);
94
95 static void dummy_pause_job(void);
96
97 /* SHA1 */
98 static int dasync_sha1_init(EVP_MD_CTX *ctx);
99 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
100 size_t count);
101 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md);
102
103 static EVP_MD *_hidden_sha1_md = NULL;
104 static const EVP_MD *dasync_sha1(void)
105 {
106 if (_hidden_sha1_md == NULL) {
107 EVP_MD *md;
108
109 if ((md = EVP_MD_meth_new(NID_sha1, NID_sha1WithRSAEncryption)) == NULL
110 || !EVP_MD_meth_set_result_size(md, SHA_DIGEST_LENGTH)
111 || !EVP_MD_meth_set_input_blocksize(md, SHA_CBLOCK)
112 || !EVP_MD_meth_set_app_datasize(md,
113 sizeof(EVP_MD *) + sizeof(SHA_CTX))
114 || !EVP_MD_meth_set_flags(md, EVP_MD_FLAG_DIGALGID_ABSENT)
115 || !EVP_MD_meth_set_init(md, dasync_sha1_init)
116 || !EVP_MD_meth_set_update(md, dasync_sha1_update)
117 || !EVP_MD_meth_set_final(md, dasync_sha1_final)) {
118 EVP_MD_meth_free(md);
119 md = NULL;
120 }
121 _hidden_sha1_md = md;
122 }
123 return _hidden_sha1_md;
124 }
125 static void destroy_digests(void)
126 {
127 EVP_MD_meth_free(_hidden_sha1_md);
128 _hidden_sha1_md = NULL;
129 }
130 static int dasync_digest_nids(const int **nids)
131 {
132 static int digest_nids[2] = { 0, 0 };
133 static int pos = 0;
134 static int init = 0;
135
136 if (!init) {
137 const EVP_MD *md;
138 if ((md = dasync_sha1()) != NULL)
139 digest_nids[pos++] = EVP_MD_type(md);
140 digest_nids[pos] = 0;
141 init = 1;
142 }
143 *nids = digest_nids;
144 return pos;
145 }
146
147 /* RSA */
148
149 static int dasync_pub_enc(int flen, const unsigned char *from,
150 unsigned char *to, RSA *rsa, int padding);
151 static int dasync_pub_dec(int flen, const unsigned char *from,
152 unsigned char *to, RSA *rsa, int padding);
153 static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
154 unsigned char *to, RSA *rsa, int padding);
155 static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
156 unsigned char *to, RSA *rsa, int padding);
157 static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa,
158 BN_CTX *ctx);
159
160 static int dasync_rsa_init(RSA *rsa);
161 static int dasync_rsa_finish(RSA *rsa);
162
163 static RSA_METHOD dasync_rsa_method = {
164 "Dummy Async RSA method",
165 dasync_pub_enc, /* pub_enc */
166 dasync_pub_dec, /* pub_dec */
167 dasync_rsa_priv_enc, /* priv_enc */
168 dasync_rsa_priv_dec, /* priv_dec */
169 dasync_rsa_mod_exp, /* rsa_mod_exp */
170 BN_mod_exp_mont, /* bn_mod_exp */
171 dasync_rsa_init, /* init */
172 dasync_rsa_finish, /* finish */
173 0, /* flags */
174 NULL, /* app_data */
175 0, /* rsa_sign */
176 0, /* rsa_verify */
177 NULL /* rsa_keygen */
178 };
179
180
181 /* AES */
182
183 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
184 void *ptr);
185
186 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
187 const unsigned char *iv, int enc);
188
189 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
190 const unsigned char *in, size_t inl);
191
192 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx);
193
194 struct aes_128_cbc_pipeline_ctx {
195 void *inner_cipher_data;
196 unsigned char dummy[256];
197 unsigned int numpipes;
198 unsigned char **inbufs;
199 unsigned char **outbufs;
200 size_t *lens;
201 };
202
203 static EVP_CIPHER *_hidden_aes_128_cbc = NULL;
204 static const EVP_CIPHER *dasync_aes_128_cbc(void)
205 {
206 if (_hidden_aes_128_cbc == NULL)
207 _hidden_aes_128_cbc = EVP_CIPHER_meth_new(NID_aes_128_cbc,
208 16 /* block size */,
209 16 /* key len */);
210 if (_hidden_aes_128_cbc == NULL
211 || !EVP_CIPHER_meth_set_iv_length(_hidden_aes_128_cbc,16)
212 || !EVP_CIPHER_meth_set_flags(_hidden_aes_128_cbc,
213 EVP_CIPH_FLAG_DEFAULT_ASN1
214 | EVP_CIPH_CBC_MODE
215 | EVP_CIPH_FLAG_PIPELINE)
216 || !EVP_CIPHER_meth_set_init(_hidden_aes_128_cbc,
217 dasync_aes128_init_key)
218 || !EVP_CIPHER_meth_set_do_cipher(_hidden_aes_128_cbc,
219 dasync_aes128_cbc_cipher)
220 || !EVP_CIPHER_meth_set_cleanup(_hidden_aes_128_cbc,
221 dasync_aes128_cbc_cleanup)
222 || !EVP_CIPHER_meth_set_ctrl(_hidden_aes_128_cbc,
223 dasync_aes128_cbc_ctrl)
224 || !EVP_CIPHER_meth_set_impl_ctx_size(_hidden_aes_128_cbc,
225 sizeof(struct aes_128_cbc_pipeline_ctx))) {
226 EVP_CIPHER_meth_free(_hidden_aes_128_cbc);
227 _hidden_aes_128_cbc = NULL;
228 }
229 return _hidden_aes_128_cbc;
230 }
231
232
233 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
234 const int **nids, int nid);
235
236 # ifdef NID_aes_128_cbc_hmac_sha256
237 static int dasync_cipher_nids[] = {
238 NID_aes_128_cbc,
239 0
240 };
241 # else
242 static int dasync_cipher_nids[] = { 0 };
243 #endif
244
245 static int bind_dasync(ENGINE *e)
246 {
247 /* Ensure the dasync error handling is set up */
248 ERR_load_DASYNC_strings();
249
250 if (!ENGINE_set_id(e, engine_dasync_id)
251 || !ENGINE_set_name(e, engine_dasync_name)
252 || !ENGINE_set_RSA(e, &dasync_rsa_method)
253 || !ENGINE_set_digests(e, dasync_digests)
254 || !ENGINE_set_ciphers(e, dasync_ciphers)
255 || !ENGINE_set_destroy_function(e, dasync_destroy)
256 || !ENGINE_set_init_function(e, dasync_init)
257 || !ENGINE_set_finish_function(e, dasync_finish)) {
258 DASYNCerr(DASYNC_F_BIND_DASYNC, DASYNC_R_INIT_FAILED);
259 return 0;
260 }
261
262 return 1;
263 }
264
265 # ifndef OPENSSL_NO_DYNAMIC_ENGINE
266 static int bind_helper(ENGINE *e, const char *id)
267 {
268 if (id && (strcmp(id, engine_dasync_id) != 0))
269 return 0;
270 if (!bind_dasync(e))
271 return 0;
272 return 1;
273 }
274
275 IMPLEMENT_DYNAMIC_CHECK_FN()
276 IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
277 # endif
278
279 static ENGINE *engine_dasync(void)
280 {
281 ENGINE *ret = ENGINE_new();
282 if (!ret)
283 return NULL;
284 if (!bind_dasync(ret)) {
285 ENGINE_free(ret);
286 return NULL;
287 }
288 return ret;
289 }
290
291 void engine_load_dasync_internal(void)
292 {
293 ENGINE *toadd = engine_dasync();
294 if (!toadd)
295 return;
296 ENGINE_add(toadd);
297 ENGINE_free(toadd);
298 ERR_clear_error();
299 }
300
301 static int dasync_init(ENGINE *e)
302 {
303 return 1;
304 }
305
306
307 static int dasync_finish(ENGINE *e)
308 {
309 return 1;
310 }
311
312
313 static int dasync_destroy(ENGINE *e)
314 {
315 destroy_digests();
316 ERR_unload_DASYNC_strings();
317 return 1;
318 }
319
320 static int dasync_digests(ENGINE *e, const EVP_MD **digest,
321 const int **nids, int nid)
322 {
323 int ok = 1;
324 if (!digest) {
325 /* We are returning a list of supported nids */
326 return dasync_digest_nids(nids);
327 }
328 /* We are being asked for a specific digest */
329 switch (nid) {
330 case NID_sha1:
331 *digest = dasync_sha1();
332 break;
333 default:
334 ok = 0;
335 *digest = NULL;
336 break;
337 }
338 return ok;
339 }
340
341 static int dasync_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
342 const int **nids, int nid)
343 {
344 int ok = 1;
345 if (!cipher) {
346 /* We are returning a list of supported nids */
347 *nids = dasync_cipher_nids;
348 return (sizeof(dasync_cipher_nids) -
349 1) / sizeof(dasync_cipher_nids[0]);
350 }
351 /* We are being asked for a specific cipher */
352 switch (nid) {
353 case NID_aes_128_cbc:
354 *cipher = dasync_aes_128_cbc();
355 break;
356 default:
357 ok = 0;
358 *cipher = NULL;
359 break;
360 }
361 return ok;
362 }
363
364 static void wait_cleanup(ASYNC_WAIT_CTX *ctx, const void *key,
365 OSSL_ASYNC_FD readfd, void *pvwritefd)
366 {
367 OSSL_ASYNC_FD *pwritefd = (OSSL_ASYNC_FD *)pvwritefd;
368 #if defined(ASYNC_WIN)
369 CloseHandle(readfd);
370 CloseHandle(*pwritefd);
371 #elif defined(ASYNC_POSIX)
372 close(readfd);
373 close(*pwritefd);
374 #endif
375 OPENSSL_free(pwritefd);
376 }
377
378 #define DUMMY_CHAR 'X'
379
380 static void dummy_pause_job(void) {
381 ASYNC_JOB *job;
382 ASYNC_WAIT_CTX *waitctx;
383 OSSL_ASYNC_FD pipefds[2] = {0, 0};
384 OSSL_ASYNC_FD *writefd;
385 #if defined(ASYNC_WIN)
386 DWORD numwritten, numread;
387 char buf = DUMMY_CHAR;
388 #elif defined(ASYNC_POSIX)
389 char buf = DUMMY_CHAR;
390 #endif
391
392 if ((job = ASYNC_get_current_job()) == NULL)
393 return;
394
395 waitctx = ASYNC_get_wait_ctx(job);
396
397 if (ASYNC_WAIT_CTX_get_fd(waitctx, engine_dasync_id, &pipefds[0],
398 (void **)&writefd)) {
399 pipefds[1] = *writefd;
400 } else {
401 writefd = OPENSSL_malloc(sizeof(*writefd));
402 if (writefd == NULL)
403 return;
404 #if defined(ASYNC_WIN)
405 if (CreatePipe(&pipefds[0], &pipefds[1], NULL, 256) == 0) {
406 OPENSSL_free(writefd);
407 return;
408 }
409 #elif defined(ASYNC_POSIX)
410 if (pipe(pipefds) != 0) {
411 OPENSSL_free(writefd);
412 return;
413 }
414 #endif
415 *writefd = pipefds[1];
416
417 if(!ASYNC_WAIT_CTX_set_wait_fd(waitctx, engine_dasync_id, pipefds[0],
418 writefd, wait_cleanup)) {
419 wait_cleanup(waitctx, engine_dasync_id, pipefds[0], writefd);
420 return;
421 }
422 }
423 /*
424 * In the Dummy async engine we are cheating. We signal that the job
425 * is complete by waking it before the call to ASYNC_pause_job(). A real
426 * async engine would only wake when the job was actually complete
427 */
428 #if defined(ASYNC_WIN)
429 WriteFile(pipefds[1], &buf, 1, &numwritten, NULL);
430 #elif defined(ASYNC_POSIX)
431 if (write(pipefds[1], &buf, 1) < 0)
432 return;
433 #endif
434
435 /* Ignore errors - we carry on anyway */
436 ASYNC_pause_job();
437
438 /* Clear the wake signal */
439 #if defined(ASYNC_WIN)
440 ReadFile(pipefds[0], &buf, 1, &numread, NULL);
441 #elif defined(ASYNC_POSIX)
442 if (read(pipefds[0], &buf, 1) < 0)
443 return;
444 #endif
445 }
446
447 /*
448 * SHA1 implementation. At the moment we just defer to the standard
449 * implementation
450 */
451 #undef data
452 #define data(ctx) ((SHA_CTX *)EVP_MD_CTX_md_data(ctx))
453 static int dasync_sha1_init(EVP_MD_CTX *ctx)
454 {
455 dummy_pause_job();
456
457 return SHA1_Init(data(ctx));
458 }
459
460 static int dasync_sha1_update(EVP_MD_CTX *ctx, const void *data,
461 size_t count)
462 {
463 dummy_pause_job();
464
465 return SHA1_Update(data(ctx), data, (size_t)count);
466 }
467
468 static int dasync_sha1_final(EVP_MD_CTX *ctx, unsigned char *md)
469 {
470 dummy_pause_job();
471
472 return SHA1_Final(md, data(ctx));
473 }
474
475 /*
476 * RSA implementation
477 */
478
479 static int dasync_pub_enc(int flen, const unsigned char *from,
480 unsigned char *to, RSA *rsa, int padding) {
481 /* Ignore errors - we carry on anyway */
482 dummy_pause_job();
483 return RSA_PKCS1_OpenSSL()->rsa_pub_enc(flen, from, to, rsa, padding);
484 }
485
486 static int dasync_pub_dec(int flen, const unsigned char *from,
487 unsigned char *to, RSA *rsa, int padding) {
488 /* Ignore errors - we carry on anyway */
489 dummy_pause_job();
490 return RSA_PKCS1_OpenSSL()->rsa_pub_dec(flen, from, to, rsa, padding);
491 }
492
493 static int dasync_rsa_priv_enc(int flen, const unsigned char *from,
494 unsigned char *to, RSA *rsa, int padding)
495 {
496 /* Ignore errors - we carry on anyway */
497 dummy_pause_job();
498 return RSA_PKCS1_OpenSSL()->rsa_priv_enc(flen, from, to, rsa, padding);
499 }
500
501 static int dasync_rsa_priv_dec(int flen, const unsigned char *from,
502 unsigned char *to, RSA *rsa, int padding)
503 {
504 /* Ignore errors - we carry on anyway */
505 dummy_pause_job();
506 return RSA_PKCS1_OpenSSL()->rsa_priv_dec(flen, from, to, rsa, padding);
507 }
508
509 static int dasync_rsa_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx)
510 {
511 /* Ignore errors - we carry on anyway */
512 dummy_pause_job();
513 return RSA_PKCS1_OpenSSL()->rsa_mod_exp(r0, I, rsa, ctx);
514 }
515
516 static int dasync_rsa_init(RSA *rsa)
517 {
518 return RSA_PKCS1_OpenSSL()->init(rsa);
519 }
520 static int dasync_rsa_finish(RSA *rsa)
521 {
522 return RSA_PKCS1_OpenSSL()->finish(rsa);
523 }
524
525 /*
526 * AES128 Implementation
527 */
528
529 static int dasync_aes128_cbc_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg,
530 void *ptr)
531 {
532 struct aes_128_cbc_pipeline_ctx *pipe_ctx =
533 (struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
534
535 if (pipe_ctx == NULL)
536 return 0;
537
538 switch (type) {
539 case EVP_CTRL_SET_PIPELINE_OUTPUT_BUFS:
540 pipe_ctx->numpipes = arg;
541 pipe_ctx->outbufs = (unsigned char **)ptr;
542 break;
543
544 case EVP_CTRL_SET_PIPELINE_INPUT_BUFS:
545 pipe_ctx->numpipes = arg;
546 pipe_ctx->inbufs = (unsigned char **)ptr;
547 break;
548
549 case EVP_CTRL_SET_PIPELINE_INPUT_LENS:
550 pipe_ctx->numpipes = arg;
551 pipe_ctx->lens = (size_t *)ptr;
552 break;
553
554 default:
555 return 0;
556 }
557
558 return 1;
559 }
560
561 static int dasync_aes128_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
562 const unsigned char *iv, int enc)
563 {
564 int ret;
565 struct aes_128_cbc_pipeline_ctx *pipe_ctx =
566 (struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
567
568 if (pipe_ctx->inner_cipher_data == NULL
569 && EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc()) != 0) {
570 pipe_ctx->inner_cipher_data = OPENSSL_zalloc(
571 EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc()));
572 if (pipe_ctx->inner_cipher_data == NULL) {
573 DASYNCerr(DASYNC_F_DASYNC_AES128_INIT_KEY,
574 ERR_R_MALLOC_FAILURE);
575 return 0;
576 }
577 }
578
579 pipe_ctx->numpipes = 0;
580
581 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
582 ret = EVP_CIPHER_meth_get_init(EVP_aes_128_cbc())(ctx, key, iv, enc);
583 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
584
585 return ret;
586 }
587
588 static int dasync_aes128_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
589 const unsigned char *in, size_t inl)
590 {
591 int ret = 1;
592 unsigned int i, pipes;
593 struct aes_128_cbc_pipeline_ctx *pipe_ctx =
594 (struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
595
596 pipes = pipe_ctx->numpipes;
597 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx->inner_cipher_data);
598 if (pipes == 0) {
599 ret = EVP_CIPHER_meth_get_do_cipher(EVP_aes_128_cbc())
600 (ctx, out, in, inl);
601 } else {
602 for (i = 0; i < pipes; i++) {
603 ret = ret && EVP_CIPHER_meth_get_do_cipher(EVP_aes_128_cbc())
604 (ctx, pipe_ctx->outbufs[i],
605 pipe_ctx->inbufs[i],
606 pipe_ctx->lens[i]);
607 }
608 pipe_ctx->numpipes = 0;
609 }
610 EVP_CIPHER_CTX_set_cipher_data(ctx, pipe_ctx);
611 return ret;
612 }
613
614 static int dasync_aes128_cbc_cleanup(EVP_CIPHER_CTX *ctx)
615 {
616 struct aes_128_cbc_pipeline_ctx *pipe_ctx =
617 (struct aes_128_cbc_pipeline_ctx *)EVP_CIPHER_CTX_cipher_data(ctx);
618
619 OPENSSL_clear_free(pipe_ctx->inner_cipher_data,
620 EVP_CIPHER_impl_ctx_size(EVP_aes_128_cbc()));
621
622 return 1;
623 }