]> git.ipfire.org Git - thirdparty/qemu.git/blob - exec.c
translate-all: Change tb_flush() env argument to cpu
[thirdparty/qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #ifndef _WIN32
21 #include <sys/types.h>
22 #include <sys/mman.h>
23 #endif
24
25 #include "qemu-common.h"
26 #include "cpu.h"
27 #include "tcg.h"
28 #include "hw/hw.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #endif
32 #include "hw/qdev.h"
33 #include "qemu/osdep.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/xen/xen.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "exec/memory.h"
41 #include "sysemu/dma.h"
42 #include "exec/address-spaces.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #else /* !CONFIG_USER_ONLY */
46 #include "sysemu/xen-mapcache.h"
47 #include "trace.h"
48 #endif
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "exec/cputlb.h"
53 #include "translate-all.h"
54
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
57
58 #include "qemu/range.h"
59
60 //#define DEBUG_SUBPAGE
61
62 #if !defined(CONFIG_USER_ONLY)
63 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
64 * are protected by the ramlist lock.
65 */
66 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
67
68 static MemoryRegion *system_memory;
69 static MemoryRegion *system_io;
70
71 AddressSpace address_space_io;
72 AddressSpace address_space_memory;
73
74 MemoryRegion io_mem_rom, io_mem_notdirty;
75 static MemoryRegion io_mem_unassigned;
76
77 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
78 #define RAM_PREALLOC (1 << 0)
79
80 /* RAM is mmap-ed with MAP_SHARED */
81 #define RAM_SHARED (1 << 1)
82
83 /* Only a portion of RAM (used_length) is actually used, and migrated.
84 * This used_length size can change across reboots.
85 */
86 #define RAM_RESIZEABLE (1 << 2)
87
88 #endif
89
90 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
91 /* current CPU in the current thread. It is only valid inside
92 cpu_exec() */
93 DEFINE_TLS(CPUState *, current_cpu);
94 /* 0 = Do not count executed instructions.
95 1 = Precise instruction counting.
96 2 = Adaptive rate instruction counting. */
97 int use_icount;
98
99 #if !defined(CONFIG_USER_ONLY)
100
101 typedef struct PhysPageEntry PhysPageEntry;
102
103 struct PhysPageEntry {
104 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
105 uint32_t skip : 6;
106 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
107 uint32_t ptr : 26;
108 };
109
110 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
111
112 /* Size of the L2 (and L3, etc) page tables. */
113 #define ADDR_SPACE_BITS 64
114
115 #define P_L2_BITS 9
116 #define P_L2_SIZE (1 << P_L2_BITS)
117
118 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
119
120 typedef PhysPageEntry Node[P_L2_SIZE];
121
122 typedef struct PhysPageMap {
123 struct rcu_head rcu;
124
125 unsigned sections_nb;
126 unsigned sections_nb_alloc;
127 unsigned nodes_nb;
128 unsigned nodes_nb_alloc;
129 Node *nodes;
130 MemoryRegionSection *sections;
131 } PhysPageMap;
132
133 struct AddressSpaceDispatch {
134 struct rcu_head rcu;
135
136 /* This is a multi-level map on the physical address space.
137 * The bottom level has pointers to MemoryRegionSections.
138 */
139 PhysPageEntry phys_map;
140 PhysPageMap map;
141 AddressSpace *as;
142 };
143
144 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
145 typedef struct subpage_t {
146 MemoryRegion iomem;
147 AddressSpace *as;
148 hwaddr base;
149 uint16_t sub_section[TARGET_PAGE_SIZE];
150 } subpage_t;
151
152 #define PHYS_SECTION_UNASSIGNED 0
153 #define PHYS_SECTION_NOTDIRTY 1
154 #define PHYS_SECTION_ROM 2
155 #define PHYS_SECTION_WATCH 3
156
157 static void io_mem_init(void);
158 static void memory_map_init(void);
159 static void tcg_commit(MemoryListener *listener);
160
161 static MemoryRegion io_mem_watch;
162 #endif
163
164 #if !defined(CONFIG_USER_ONLY)
165
166 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
167 {
168 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
169 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
170 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
171 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
172 }
173 }
174
175 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
176 {
177 unsigned i;
178 uint32_t ret;
179 PhysPageEntry e;
180 PhysPageEntry *p;
181
182 ret = map->nodes_nb++;
183 p = map->nodes[ret];
184 assert(ret != PHYS_MAP_NODE_NIL);
185 assert(ret != map->nodes_nb_alloc);
186
187 e.skip = leaf ? 0 : 1;
188 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
189 for (i = 0; i < P_L2_SIZE; ++i) {
190 memcpy(&p[i], &e, sizeof(e));
191 }
192 return ret;
193 }
194
195 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
196 hwaddr *index, hwaddr *nb, uint16_t leaf,
197 int level)
198 {
199 PhysPageEntry *p;
200 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
201
202 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
203 lp->ptr = phys_map_node_alloc(map, level == 0);
204 }
205 p = map->nodes[lp->ptr];
206 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
207
208 while (*nb && lp < &p[P_L2_SIZE]) {
209 if ((*index & (step - 1)) == 0 && *nb >= step) {
210 lp->skip = 0;
211 lp->ptr = leaf;
212 *index += step;
213 *nb -= step;
214 } else {
215 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
216 }
217 ++lp;
218 }
219 }
220
221 static void phys_page_set(AddressSpaceDispatch *d,
222 hwaddr index, hwaddr nb,
223 uint16_t leaf)
224 {
225 /* Wildly overreserve - it doesn't matter much. */
226 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
227
228 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
229 }
230
231 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
232 * and update our entry so we can skip it and go directly to the destination.
233 */
234 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
235 {
236 unsigned valid_ptr = P_L2_SIZE;
237 int valid = 0;
238 PhysPageEntry *p;
239 int i;
240
241 if (lp->ptr == PHYS_MAP_NODE_NIL) {
242 return;
243 }
244
245 p = nodes[lp->ptr];
246 for (i = 0; i < P_L2_SIZE; i++) {
247 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
248 continue;
249 }
250
251 valid_ptr = i;
252 valid++;
253 if (p[i].skip) {
254 phys_page_compact(&p[i], nodes, compacted);
255 }
256 }
257
258 /* We can only compress if there's only one child. */
259 if (valid != 1) {
260 return;
261 }
262
263 assert(valid_ptr < P_L2_SIZE);
264
265 /* Don't compress if it won't fit in the # of bits we have. */
266 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
267 return;
268 }
269
270 lp->ptr = p[valid_ptr].ptr;
271 if (!p[valid_ptr].skip) {
272 /* If our only child is a leaf, make this a leaf. */
273 /* By design, we should have made this node a leaf to begin with so we
274 * should never reach here.
275 * But since it's so simple to handle this, let's do it just in case we
276 * change this rule.
277 */
278 lp->skip = 0;
279 } else {
280 lp->skip += p[valid_ptr].skip;
281 }
282 }
283
284 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
285 {
286 DECLARE_BITMAP(compacted, nodes_nb);
287
288 if (d->phys_map.skip) {
289 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
290 }
291 }
292
293 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
294 Node *nodes, MemoryRegionSection *sections)
295 {
296 PhysPageEntry *p;
297 hwaddr index = addr >> TARGET_PAGE_BITS;
298 int i;
299
300 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
301 if (lp.ptr == PHYS_MAP_NODE_NIL) {
302 return &sections[PHYS_SECTION_UNASSIGNED];
303 }
304 p = nodes[lp.ptr];
305 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
306 }
307
308 if (sections[lp.ptr].size.hi ||
309 range_covers_byte(sections[lp.ptr].offset_within_address_space,
310 sections[lp.ptr].size.lo, addr)) {
311 return &sections[lp.ptr];
312 } else {
313 return &sections[PHYS_SECTION_UNASSIGNED];
314 }
315 }
316
317 bool memory_region_is_unassigned(MemoryRegion *mr)
318 {
319 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
320 && mr != &io_mem_watch;
321 }
322
323 /* Called from RCU critical section */
324 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
325 hwaddr addr,
326 bool resolve_subpage)
327 {
328 MemoryRegionSection *section;
329 subpage_t *subpage;
330
331 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
332 if (resolve_subpage && section->mr->subpage) {
333 subpage = container_of(section->mr, subpage_t, iomem);
334 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
335 }
336 return section;
337 }
338
339 /* Called from RCU critical section */
340 static MemoryRegionSection *
341 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
342 hwaddr *plen, bool resolve_subpage)
343 {
344 MemoryRegionSection *section;
345 MemoryRegion *mr;
346 Int128 diff;
347
348 section = address_space_lookup_region(d, addr, resolve_subpage);
349 /* Compute offset within MemoryRegionSection */
350 addr -= section->offset_within_address_space;
351
352 /* Compute offset within MemoryRegion */
353 *xlat = addr + section->offset_within_region;
354
355 mr = section->mr;
356
357 /* MMIO registers can be expected to perform full-width accesses based only
358 * on their address, without considering adjacent registers that could
359 * decode to completely different MemoryRegions. When such registers
360 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
361 * regions overlap wildly. For this reason we cannot clamp the accesses
362 * here.
363 *
364 * If the length is small (as is the case for address_space_ldl/stl),
365 * everything works fine. If the incoming length is large, however,
366 * the caller really has to do the clamping through memory_access_size.
367 */
368 if (memory_region_is_ram(mr)) {
369 diff = int128_sub(section->size, int128_make64(addr));
370 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
371 }
372 return section;
373 }
374
375 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
376 {
377 if (memory_region_is_ram(mr)) {
378 return !(is_write && mr->readonly);
379 }
380 if (memory_region_is_romd(mr)) {
381 return !is_write;
382 }
383
384 return false;
385 }
386
387 /* Called from RCU critical section */
388 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
389 hwaddr *xlat, hwaddr *plen,
390 bool is_write)
391 {
392 IOMMUTLBEntry iotlb;
393 MemoryRegionSection *section;
394 MemoryRegion *mr;
395
396 for (;;) {
397 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
398 section = address_space_translate_internal(d, addr, &addr, plen, true);
399 mr = section->mr;
400
401 if (!mr->iommu_ops) {
402 break;
403 }
404
405 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
406 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
407 | (addr & iotlb.addr_mask));
408 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
409 if (!(iotlb.perm & (1 << is_write))) {
410 mr = &io_mem_unassigned;
411 break;
412 }
413
414 as = iotlb.target_as;
415 }
416
417 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
418 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
419 *plen = MIN(page, *plen);
420 }
421
422 *xlat = addr;
423 return mr;
424 }
425
426 /* Called from RCU critical section */
427 MemoryRegionSection *
428 address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
429 hwaddr *xlat, hwaddr *plen)
430 {
431 MemoryRegionSection *section;
432 section = address_space_translate_internal(cpu->memory_dispatch,
433 addr, xlat, plen, false);
434
435 assert(!section->mr->iommu_ops);
436 return section;
437 }
438 #endif
439
440 #if !defined(CONFIG_USER_ONLY)
441
442 static int cpu_common_post_load(void *opaque, int version_id)
443 {
444 CPUState *cpu = opaque;
445
446 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
447 version_id is increased. */
448 cpu->interrupt_request &= ~0x01;
449 tlb_flush(cpu, 1);
450
451 return 0;
452 }
453
454 static int cpu_common_pre_load(void *opaque)
455 {
456 CPUState *cpu = opaque;
457
458 cpu->exception_index = -1;
459
460 return 0;
461 }
462
463 static bool cpu_common_exception_index_needed(void *opaque)
464 {
465 CPUState *cpu = opaque;
466
467 return tcg_enabled() && cpu->exception_index != -1;
468 }
469
470 static const VMStateDescription vmstate_cpu_common_exception_index = {
471 .name = "cpu_common/exception_index",
472 .version_id = 1,
473 .minimum_version_id = 1,
474 .needed = cpu_common_exception_index_needed,
475 .fields = (VMStateField[]) {
476 VMSTATE_INT32(exception_index, CPUState),
477 VMSTATE_END_OF_LIST()
478 }
479 };
480
481 const VMStateDescription vmstate_cpu_common = {
482 .name = "cpu_common",
483 .version_id = 1,
484 .minimum_version_id = 1,
485 .pre_load = cpu_common_pre_load,
486 .post_load = cpu_common_post_load,
487 .fields = (VMStateField[]) {
488 VMSTATE_UINT32(halted, CPUState),
489 VMSTATE_UINT32(interrupt_request, CPUState),
490 VMSTATE_END_OF_LIST()
491 },
492 .subsections = (const VMStateDescription*[]) {
493 &vmstate_cpu_common_exception_index,
494 NULL
495 }
496 };
497
498 #endif
499
500 CPUState *qemu_get_cpu(int index)
501 {
502 CPUState *cpu;
503
504 CPU_FOREACH(cpu) {
505 if (cpu->cpu_index == index) {
506 return cpu;
507 }
508 }
509
510 return NULL;
511 }
512
513 #if !defined(CONFIG_USER_ONLY)
514 void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
515 {
516 /* We only support one address space per cpu at the moment. */
517 assert(cpu->as == as);
518
519 if (cpu->tcg_as_listener) {
520 memory_listener_unregister(cpu->tcg_as_listener);
521 } else {
522 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
523 }
524 cpu->tcg_as_listener->commit = tcg_commit;
525 memory_listener_register(cpu->tcg_as_listener, as);
526 }
527 #endif
528
529 #ifndef CONFIG_USER_ONLY
530 static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
531
532 static int cpu_get_free_index(Error **errp)
533 {
534 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
535
536 if (cpu >= MAX_CPUMASK_BITS) {
537 error_setg(errp, "Trying to use more CPUs than max of %d",
538 MAX_CPUMASK_BITS);
539 return -1;
540 }
541
542 bitmap_set(cpu_index_map, cpu, 1);
543 return cpu;
544 }
545
546 void cpu_exec_exit(CPUState *cpu)
547 {
548 if (cpu->cpu_index == -1) {
549 /* cpu_index was never allocated by this @cpu or was already freed. */
550 return;
551 }
552
553 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
554 cpu->cpu_index = -1;
555 }
556 #else
557
558 static int cpu_get_free_index(Error **errp)
559 {
560 CPUState *some_cpu;
561 int cpu_index = 0;
562
563 CPU_FOREACH(some_cpu) {
564 cpu_index++;
565 }
566 return cpu_index;
567 }
568
569 void cpu_exec_exit(CPUState *cpu)
570 {
571 }
572 #endif
573
574 void cpu_exec_init(CPUArchState *env, Error **errp)
575 {
576 CPUState *cpu = ENV_GET_CPU(env);
577 CPUClass *cc = CPU_GET_CLASS(cpu);
578 int cpu_index;
579 Error *local_err = NULL;
580
581 #ifndef CONFIG_USER_ONLY
582 cpu->as = &address_space_memory;
583 cpu->thread_id = qemu_get_thread_id();
584 cpu_reload_memory_map(cpu);
585 #endif
586
587 #if defined(CONFIG_USER_ONLY)
588 cpu_list_lock();
589 #endif
590 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
591 if (local_err) {
592 error_propagate(errp, local_err);
593 #if defined(CONFIG_USER_ONLY)
594 cpu_list_unlock();
595 #endif
596 return;
597 }
598 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
599 #if defined(CONFIG_USER_ONLY)
600 cpu_list_unlock();
601 #endif
602 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
603 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
604 }
605 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
606 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
607 cpu_save, cpu_load, env);
608 assert(cc->vmsd == NULL);
609 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
610 #endif
611 if (cc->vmsd != NULL) {
612 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
613 }
614 }
615
616 #if defined(CONFIG_USER_ONLY)
617 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
618 {
619 tb_invalidate_phys_page_range(pc, pc + 1, 0);
620 }
621 #else
622 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
623 {
624 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
625 if (phys != -1) {
626 tb_invalidate_phys_addr(cpu->as,
627 phys | (pc & ~TARGET_PAGE_MASK));
628 }
629 }
630 #endif
631
632 #if defined(CONFIG_USER_ONLY)
633 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
634
635 {
636 }
637
638 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
639 int flags)
640 {
641 return -ENOSYS;
642 }
643
644 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
645 {
646 }
647
648 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
649 int flags, CPUWatchpoint **watchpoint)
650 {
651 return -ENOSYS;
652 }
653 #else
654 /* Add a watchpoint. */
655 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
656 int flags, CPUWatchpoint **watchpoint)
657 {
658 CPUWatchpoint *wp;
659
660 /* forbid ranges which are empty or run off the end of the address space */
661 if (len == 0 || (addr + len - 1) < addr) {
662 error_report("tried to set invalid watchpoint at %"
663 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
664 return -EINVAL;
665 }
666 wp = g_malloc(sizeof(*wp));
667
668 wp->vaddr = addr;
669 wp->len = len;
670 wp->flags = flags;
671
672 /* keep all GDB-injected watchpoints in front */
673 if (flags & BP_GDB) {
674 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
675 } else {
676 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
677 }
678
679 tlb_flush_page(cpu, addr);
680
681 if (watchpoint)
682 *watchpoint = wp;
683 return 0;
684 }
685
686 /* Remove a specific watchpoint. */
687 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
688 int flags)
689 {
690 CPUWatchpoint *wp;
691
692 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
693 if (addr == wp->vaddr && len == wp->len
694 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
695 cpu_watchpoint_remove_by_ref(cpu, wp);
696 return 0;
697 }
698 }
699 return -ENOENT;
700 }
701
702 /* Remove a specific watchpoint by reference. */
703 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
704 {
705 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
706
707 tlb_flush_page(cpu, watchpoint->vaddr);
708
709 g_free(watchpoint);
710 }
711
712 /* Remove all matching watchpoints. */
713 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
714 {
715 CPUWatchpoint *wp, *next;
716
717 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
718 if (wp->flags & mask) {
719 cpu_watchpoint_remove_by_ref(cpu, wp);
720 }
721 }
722 }
723
724 /* Return true if this watchpoint address matches the specified
725 * access (ie the address range covered by the watchpoint overlaps
726 * partially or completely with the address range covered by the
727 * access).
728 */
729 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
730 vaddr addr,
731 vaddr len)
732 {
733 /* We know the lengths are non-zero, but a little caution is
734 * required to avoid errors in the case where the range ends
735 * exactly at the top of the address space and so addr + len
736 * wraps round to zero.
737 */
738 vaddr wpend = wp->vaddr + wp->len - 1;
739 vaddr addrend = addr + len - 1;
740
741 return !(addr > wpend || wp->vaddr > addrend);
742 }
743
744 #endif
745
746 /* Add a breakpoint. */
747 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
748 CPUBreakpoint **breakpoint)
749 {
750 CPUBreakpoint *bp;
751
752 bp = g_malloc(sizeof(*bp));
753
754 bp->pc = pc;
755 bp->flags = flags;
756
757 /* keep all GDB-injected breakpoints in front */
758 if (flags & BP_GDB) {
759 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
760 } else {
761 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
762 }
763
764 breakpoint_invalidate(cpu, pc);
765
766 if (breakpoint) {
767 *breakpoint = bp;
768 }
769 return 0;
770 }
771
772 /* Remove a specific breakpoint. */
773 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
774 {
775 CPUBreakpoint *bp;
776
777 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
778 if (bp->pc == pc && bp->flags == flags) {
779 cpu_breakpoint_remove_by_ref(cpu, bp);
780 return 0;
781 }
782 }
783 return -ENOENT;
784 }
785
786 /* Remove a specific breakpoint by reference. */
787 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
788 {
789 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
790
791 breakpoint_invalidate(cpu, breakpoint->pc);
792
793 g_free(breakpoint);
794 }
795
796 /* Remove all matching breakpoints. */
797 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
798 {
799 CPUBreakpoint *bp, *next;
800
801 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
802 if (bp->flags & mask) {
803 cpu_breakpoint_remove_by_ref(cpu, bp);
804 }
805 }
806 }
807
808 /* enable or disable single step mode. EXCP_DEBUG is returned by the
809 CPU loop after each instruction */
810 void cpu_single_step(CPUState *cpu, int enabled)
811 {
812 if (cpu->singlestep_enabled != enabled) {
813 cpu->singlestep_enabled = enabled;
814 if (kvm_enabled()) {
815 kvm_update_guest_debug(cpu, 0);
816 } else {
817 /* must flush all the translated code to avoid inconsistencies */
818 /* XXX: only flush what is necessary */
819 tb_flush(cpu);
820 }
821 }
822 }
823
824 void cpu_abort(CPUState *cpu, const char *fmt, ...)
825 {
826 va_list ap;
827 va_list ap2;
828
829 va_start(ap, fmt);
830 va_copy(ap2, ap);
831 fprintf(stderr, "qemu: fatal: ");
832 vfprintf(stderr, fmt, ap);
833 fprintf(stderr, "\n");
834 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
835 if (qemu_log_enabled()) {
836 qemu_log("qemu: fatal: ");
837 qemu_log_vprintf(fmt, ap2);
838 qemu_log("\n");
839 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
840 qemu_log_flush();
841 qemu_log_close();
842 }
843 va_end(ap2);
844 va_end(ap);
845 #if defined(CONFIG_USER_ONLY)
846 {
847 struct sigaction act;
848 sigfillset(&act.sa_mask);
849 act.sa_handler = SIG_DFL;
850 sigaction(SIGABRT, &act, NULL);
851 }
852 #endif
853 abort();
854 }
855
856 #if !defined(CONFIG_USER_ONLY)
857 /* Called from RCU critical section */
858 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
859 {
860 RAMBlock *block;
861
862 block = atomic_rcu_read(&ram_list.mru_block);
863 if (block && addr - block->offset < block->max_length) {
864 goto found;
865 }
866 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
867 if (addr - block->offset < block->max_length) {
868 goto found;
869 }
870 }
871
872 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
873 abort();
874
875 found:
876 /* It is safe to write mru_block outside the iothread lock. This
877 * is what happens:
878 *
879 * mru_block = xxx
880 * rcu_read_unlock()
881 * xxx removed from list
882 * rcu_read_lock()
883 * read mru_block
884 * mru_block = NULL;
885 * call_rcu(reclaim_ramblock, xxx);
886 * rcu_read_unlock()
887 *
888 * atomic_rcu_set is not needed here. The block was already published
889 * when it was placed into the list. Here we're just making an extra
890 * copy of the pointer.
891 */
892 ram_list.mru_block = block;
893 return block;
894 }
895
896 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
897 {
898 ram_addr_t start1;
899 RAMBlock *block;
900 ram_addr_t end;
901
902 end = TARGET_PAGE_ALIGN(start + length);
903 start &= TARGET_PAGE_MASK;
904
905 rcu_read_lock();
906 block = qemu_get_ram_block(start);
907 assert(block == qemu_get_ram_block(end - 1));
908 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
909 cpu_tlb_reset_dirty_all(start1, length);
910 rcu_read_unlock();
911 }
912
913 /* Note: start and end must be within the same ram block. */
914 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
915 ram_addr_t length,
916 unsigned client)
917 {
918 unsigned long end, page;
919 bool dirty;
920
921 if (length == 0) {
922 return false;
923 }
924
925 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
926 page = start >> TARGET_PAGE_BITS;
927 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
928 page, end - page);
929
930 if (dirty && tcg_enabled()) {
931 tlb_reset_dirty_range_all(start, length);
932 }
933
934 return dirty;
935 }
936
937 /* Called from RCU critical section */
938 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
939 MemoryRegionSection *section,
940 target_ulong vaddr,
941 hwaddr paddr, hwaddr xlat,
942 int prot,
943 target_ulong *address)
944 {
945 hwaddr iotlb;
946 CPUWatchpoint *wp;
947
948 if (memory_region_is_ram(section->mr)) {
949 /* Normal RAM. */
950 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
951 + xlat;
952 if (!section->readonly) {
953 iotlb |= PHYS_SECTION_NOTDIRTY;
954 } else {
955 iotlb |= PHYS_SECTION_ROM;
956 }
957 } else {
958 iotlb = section - section->address_space->dispatch->map.sections;
959 iotlb += xlat;
960 }
961
962 /* Make accesses to pages with watchpoints go via the
963 watchpoint trap routines. */
964 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
965 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
966 /* Avoid trapping reads of pages with a write breakpoint. */
967 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
968 iotlb = PHYS_SECTION_WATCH + paddr;
969 *address |= TLB_MMIO;
970 break;
971 }
972 }
973 }
974
975 return iotlb;
976 }
977 #endif /* defined(CONFIG_USER_ONLY) */
978
979 #if !defined(CONFIG_USER_ONLY)
980
981 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
982 uint16_t section);
983 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
984
985 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
986 qemu_anon_ram_alloc;
987
988 /*
989 * Set a custom physical guest memory alloator.
990 * Accelerators with unusual needs may need this. Hopefully, we can
991 * get rid of it eventually.
992 */
993 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
994 {
995 phys_mem_alloc = alloc;
996 }
997
998 static uint16_t phys_section_add(PhysPageMap *map,
999 MemoryRegionSection *section)
1000 {
1001 /* The physical section number is ORed with a page-aligned
1002 * pointer to produce the iotlb entries. Thus it should
1003 * never overflow into the page-aligned value.
1004 */
1005 assert(map->sections_nb < TARGET_PAGE_SIZE);
1006
1007 if (map->sections_nb == map->sections_nb_alloc) {
1008 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1009 map->sections = g_renew(MemoryRegionSection, map->sections,
1010 map->sections_nb_alloc);
1011 }
1012 map->sections[map->sections_nb] = *section;
1013 memory_region_ref(section->mr);
1014 return map->sections_nb++;
1015 }
1016
1017 static void phys_section_destroy(MemoryRegion *mr)
1018 {
1019 memory_region_unref(mr);
1020
1021 if (mr->subpage) {
1022 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1023 object_unref(OBJECT(&subpage->iomem));
1024 g_free(subpage);
1025 }
1026 }
1027
1028 static void phys_sections_free(PhysPageMap *map)
1029 {
1030 while (map->sections_nb > 0) {
1031 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1032 phys_section_destroy(section->mr);
1033 }
1034 g_free(map->sections);
1035 g_free(map->nodes);
1036 }
1037
1038 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
1039 {
1040 subpage_t *subpage;
1041 hwaddr base = section->offset_within_address_space
1042 & TARGET_PAGE_MASK;
1043 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
1044 d->map.nodes, d->map.sections);
1045 MemoryRegionSection subsection = {
1046 .offset_within_address_space = base,
1047 .size = int128_make64(TARGET_PAGE_SIZE),
1048 };
1049 hwaddr start, end;
1050
1051 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1052
1053 if (!(existing->mr->subpage)) {
1054 subpage = subpage_init(d->as, base);
1055 subsection.address_space = d->as;
1056 subsection.mr = &subpage->iomem;
1057 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1058 phys_section_add(&d->map, &subsection));
1059 } else {
1060 subpage = container_of(existing->mr, subpage_t, iomem);
1061 }
1062 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1063 end = start + int128_get64(section->size) - 1;
1064 subpage_register(subpage, start, end,
1065 phys_section_add(&d->map, section));
1066 }
1067
1068
1069 static void register_multipage(AddressSpaceDispatch *d,
1070 MemoryRegionSection *section)
1071 {
1072 hwaddr start_addr = section->offset_within_address_space;
1073 uint16_t section_index = phys_section_add(&d->map, section);
1074 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1075 TARGET_PAGE_BITS));
1076
1077 assert(num_pages);
1078 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1079 }
1080
1081 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
1082 {
1083 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1084 AddressSpaceDispatch *d = as->next_dispatch;
1085 MemoryRegionSection now = *section, remain = *section;
1086 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1087
1088 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1089 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1090 - now.offset_within_address_space;
1091
1092 now.size = int128_min(int128_make64(left), now.size);
1093 register_subpage(d, &now);
1094 } else {
1095 now.size = int128_zero();
1096 }
1097 while (int128_ne(remain.size, now.size)) {
1098 remain.size = int128_sub(remain.size, now.size);
1099 remain.offset_within_address_space += int128_get64(now.size);
1100 remain.offset_within_region += int128_get64(now.size);
1101 now = remain;
1102 if (int128_lt(remain.size, page_size)) {
1103 register_subpage(d, &now);
1104 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1105 now.size = page_size;
1106 register_subpage(d, &now);
1107 } else {
1108 now.size = int128_and(now.size, int128_neg(page_size));
1109 register_multipage(d, &now);
1110 }
1111 }
1112 }
1113
1114 void qemu_flush_coalesced_mmio_buffer(void)
1115 {
1116 if (kvm_enabled())
1117 kvm_flush_coalesced_mmio_buffer();
1118 }
1119
1120 void qemu_mutex_lock_ramlist(void)
1121 {
1122 qemu_mutex_lock(&ram_list.mutex);
1123 }
1124
1125 void qemu_mutex_unlock_ramlist(void)
1126 {
1127 qemu_mutex_unlock(&ram_list.mutex);
1128 }
1129
1130 #ifdef __linux__
1131
1132 #include <sys/vfs.h>
1133
1134 #define HUGETLBFS_MAGIC 0x958458f6
1135
1136 static long gethugepagesize(const char *path, Error **errp)
1137 {
1138 struct statfs fs;
1139 int ret;
1140
1141 do {
1142 ret = statfs(path, &fs);
1143 } while (ret != 0 && errno == EINTR);
1144
1145 if (ret != 0) {
1146 error_setg_errno(errp, errno, "failed to get page size of file %s",
1147 path);
1148 return 0;
1149 }
1150
1151 if (fs.f_type != HUGETLBFS_MAGIC)
1152 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
1153
1154 return fs.f_bsize;
1155 }
1156
1157 static void *file_ram_alloc(RAMBlock *block,
1158 ram_addr_t memory,
1159 const char *path,
1160 Error **errp)
1161 {
1162 char *filename;
1163 char *sanitized_name;
1164 char *c;
1165 void *area = NULL;
1166 int fd;
1167 uint64_t hpagesize;
1168 Error *local_err = NULL;
1169
1170 hpagesize = gethugepagesize(path, &local_err);
1171 if (local_err) {
1172 error_propagate(errp, local_err);
1173 goto error;
1174 }
1175 block->mr->align = hpagesize;
1176
1177 if (memory < hpagesize) {
1178 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1179 "or larger than huge page size 0x%" PRIx64,
1180 memory, hpagesize);
1181 goto error;
1182 }
1183
1184 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1185 error_setg(errp,
1186 "host lacks kvm mmu notifiers, -mem-path unsupported");
1187 goto error;
1188 }
1189
1190 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1191 sanitized_name = g_strdup(memory_region_name(block->mr));
1192 for (c = sanitized_name; *c != '\0'; c++) {
1193 if (*c == '/')
1194 *c = '_';
1195 }
1196
1197 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1198 sanitized_name);
1199 g_free(sanitized_name);
1200
1201 fd = mkstemp(filename);
1202 if (fd < 0) {
1203 error_setg_errno(errp, errno,
1204 "unable to create backing store for hugepages");
1205 g_free(filename);
1206 goto error;
1207 }
1208 unlink(filename);
1209 g_free(filename);
1210
1211 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1212
1213 /*
1214 * ftruncate is not supported by hugetlbfs in older
1215 * hosts, so don't bother bailing out on errors.
1216 * If anything goes wrong with it under other filesystems,
1217 * mmap will fail.
1218 */
1219 if (ftruncate(fd, memory)) {
1220 perror("ftruncate");
1221 }
1222
1223 area = mmap(0, memory, PROT_READ | PROT_WRITE,
1224 (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE),
1225 fd, 0);
1226 if (area == MAP_FAILED) {
1227 error_setg_errno(errp, errno,
1228 "unable to map backing store for hugepages");
1229 close(fd);
1230 goto error;
1231 }
1232
1233 if (mem_prealloc) {
1234 os_mem_prealloc(fd, area, memory);
1235 }
1236
1237 block->fd = fd;
1238 return area;
1239
1240 error:
1241 if (mem_prealloc) {
1242 error_report("%s", error_get_pretty(*errp));
1243 exit(1);
1244 }
1245 return NULL;
1246 }
1247 #endif
1248
1249 /* Called with the ramlist lock held. */
1250 static ram_addr_t find_ram_offset(ram_addr_t size)
1251 {
1252 RAMBlock *block, *next_block;
1253 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1254
1255 assert(size != 0); /* it would hand out same offset multiple times */
1256
1257 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1258 return 0;
1259 }
1260
1261 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1262 ram_addr_t end, next = RAM_ADDR_MAX;
1263
1264 end = block->offset + block->max_length;
1265
1266 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
1267 if (next_block->offset >= end) {
1268 next = MIN(next, next_block->offset);
1269 }
1270 }
1271 if (next - end >= size && next - end < mingap) {
1272 offset = end;
1273 mingap = next - end;
1274 }
1275 }
1276
1277 if (offset == RAM_ADDR_MAX) {
1278 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1279 (uint64_t)size);
1280 abort();
1281 }
1282
1283 return offset;
1284 }
1285
1286 ram_addr_t last_ram_offset(void)
1287 {
1288 RAMBlock *block;
1289 ram_addr_t last = 0;
1290
1291 rcu_read_lock();
1292 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1293 last = MAX(last, block->offset + block->max_length);
1294 }
1295 rcu_read_unlock();
1296 return last;
1297 }
1298
1299 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1300 {
1301 int ret;
1302
1303 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1304 if (!machine_dump_guest_core(current_machine)) {
1305 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1306 if (ret) {
1307 perror("qemu_madvise");
1308 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1309 "but dump_guest_core=off specified\n");
1310 }
1311 }
1312 }
1313
1314 /* Called within an RCU critical section, or while the ramlist lock
1315 * is held.
1316 */
1317 static RAMBlock *find_ram_block(ram_addr_t addr)
1318 {
1319 RAMBlock *block;
1320
1321 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1322 if (block->offset == addr) {
1323 return block;
1324 }
1325 }
1326
1327 return NULL;
1328 }
1329
1330 /* Called with iothread lock held. */
1331 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1332 {
1333 RAMBlock *new_block, *block;
1334
1335 rcu_read_lock();
1336 new_block = find_ram_block(addr);
1337 assert(new_block);
1338 assert(!new_block->idstr[0]);
1339
1340 if (dev) {
1341 char *id = qdev_get_dev_path(dev);
1342 if (id) {
1343 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1344 g_free(id);
1345 }
1346 }
1347 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1348
1349 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1350 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1351 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1352 new_block->idstr);
1353 abort();
1354 }
1355 }
1356 rcu_read_unlock();
1357 }
1358
1359 /* Called with iothread lock held. */
1360 void qemu_ram_unset_idstr(ram_addr_t addr)
1361 {
1362 RAMBlock *block;
1363
1364 /* FIXME: arch_init.c assumes that this is not called throughout
1365 * migration. Ignore the problem since hot-unplug during migration
1366 * does not work anyway.
1367 */
1368
1369 rcu_read_lock();
1370 block = find_ram_block(addr);
1371 if (block) {
1372 memset(block->idstr, 0, sizeof(block->idstr));
1373 }
1374 rcu_read_unlock();
1375 }
1376
1377 static int memory_try_enable_merging(void *addr, size_t len)
1378 {
1379 if (!machine_mem_merge(current_machine)) {
1380 /* disabled by the user */
1381 return 0;
1382 }
1383
1384 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1385 }
1386
1387 /* Only legal before guest might have detected the memory size: e.g. on
1388 * incoming migration, or right after reset.
1389 *
1390 * As memory core doesn't know how is memory accessed, it is up to
1391 * resize callback to update device state and/or add assertions to detect
1392 * misuse, if necessary.
1393 */
1394 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1395 {
1396 RAMBlock *block = find_ram_block(base);
1397
1398 assert(block);
1399
1400 newsize = TARGET_PAGE_ALIGN(newsize);
1401
1402 if (block->used_length == newsize) {
1403 return 0;
1404 }
1405
1406 if (!(block->flags & RAM_RESIZEABLE)) {
1407 error_setg_errno(errp, EINVAL,
1408 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1409 " in != 0x" RAM_ADDR_FMT, block->idstr,
1410 newsize, block->used_length);
1411 return -EINVAL;
1412 }
1413
1414 if (block->max_length < newsize) {
1415 error_setg_errno(errp, EINVAL,
1416 "Length too large: %s: 0x" RAM_ADDR_FMT
1417 " > 0x" RAM_ADDR_FMT, block->idstr,
1418 newsize, block->max_length);
1419 return -EINVAL;
1420 }
1421
1422 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1423 block->used_length = newsize;
1424 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1425 DIRTY_CLIENTS_ALL);
1426 memory_region_set_size(block->mr, newsize);
1427 if (block->resized) {
1428 block->resized(block->idstr, newsize, block->host);
1429 }
1430 return 0;
1431 }
1432
1433 static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
1434 {
1435 RAMBlock *block;
1436 RAMBlock *last_block = NULL;
1437 ram_addr_t old_ram_size, new_ram_size;
1438
1439 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1440
1441 qemu_mutex_lock_ramlist();
1442 new_block->offset = find_ram_offset(new_block->max_length);
1443
1444 if (!new_block->host) {
1445 if (xen_enabled()) {
1446 xen_ram_alloc(new_block->offset, new_block->max_length,
1447 new_block->mr);
1448 } else {
1449 new_block->host = phys_mem_alloc(new_block->max_length,
1450 &new_block->mr->align);
1451 if (!new_block->host) {
1452 error_setg_errno(errp, errno,
1453 "cannot set up guest memory '%s'",
1454 memory_region_name(new_block->mr));
1455 qemu_mutex_unlock_ramlist();
1456 return -1;
1457 }
1458 memory_try_enable_merging(new_block->host, new_block->max_length);
1459 }
1460 }
1461
1462 new_ram_size = MAX(old_ram_size,
1463 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1464 if (new_ram_size > old_ram_size) {
1465 migration_bitmap_extend(old_ram_size, new_ram_size);
1466 }
1467 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1468 * QLIST (which has an RCU-friendly variant) does not have insertion at
1469 * tail, so save the last element in last_block.
1470 */
1471 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1472 last_block = block;
1473 if (block->max_length < new_block->max_length) {
1474 break;
1475 }
1476 }
1477 if (block) {
1478 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1479 } else if (last_block) {
1480 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1481 } else { /* list is empty */
1482 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1483 }
1484 ram_list.mru_block = NULL;
1485
1486 /* Write list before version */
1487 smp_wmb();
1488 ram_list.version++;
1489 qemu_mutex_unlock_ramlist();
1490
1491 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1492
1493 if (new_ram_size > old_ram_size) {
1494 int i;
1495
1496 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1497 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1498 ram_list.dirty_memory[i] =
1499 bitmap_zero_extend(ram_list.dirty_memory[i],
1500 old_ram_size, new_ram_size);
1501 }
1502 }
1503 cpu_physical_memory_set_dirty_range(new_block->offset,
1504 new_block->used_length,
1505 DIRTY_CLIENTS_ALL);
1506
1507 if (new_block->host) {
1508 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1509 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1510 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1511 if (kvm_enabled()) {
1512 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1513 }
1514 }
1515
1516 return new_block->offset;
1517 }
1518
1519 #ifdef __linux__
1520 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1521 bool share, const char *mem_path,
1522 Error **errp)
1523 {
1524 RAMBlock *new_block;
1525 ram_addr_t addr;
1526 Error *local_err = NULL;
1527
1528 if (xen_enabled()) {
1529 error_setg(errp, "-mem-path not supported with Xen");
1530 return -1;
1531 }
1532
1533 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1534 /*
1535 * file_ram_alloc() needs to allocate just like
1536 * phys_mem_alloc, but we haven't bothered to provide
1537 * a hook there.
1538 */
1539 error_setg(errp,
1540 "-mem-path not supported with this accelerator");
1541 return -1;
1542 }
1543
1544 size = TARGET_PAGE_ALIGN(size);
1545 new_block = g_malloc0(sizeof(*new_block));
1546 new_block->mr = mr;
1547 new_block->used_length = size;
1548 new_block->max_length = size;
1549 new_block->flags = share ? RAM_SHARED : 0;
1550 new_block->host = file_ram_alloc(new_block, size,
1551 mem_path, errp);
1552 if (!new_block->host) {
1553 g_free(new_block);
1554 return -1;
1555 }
1556
1557 addr = ram_block_add(new_block, &local_err);
1558 if (local_err) {
1559 g_free(new_block);
1560 error_propagate(errp, local_err);
1561 return -1;
1562 }
1563 return addr;
1564 }
1565 #endif
1566
1567 static
1568 ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1569 void (*resized)(const char*,
1570 uint64_t length,
1571 void *host),
1572 void *host, bool resizeable,
1573 MemoryRegion *mr, Error **errp)
1574 {
1575 RAMBlock *new_block;
1576 ram_addr_t addr;
1577 Error *local_err = NULL;
1578
1579 size = TARGET_PAGE_ALIGN(size);
1580 max_size = TARGET_PAGE_ALIGN(max_size);
1581 new_block = g_malloc0(sizeof(*new_block));
1582 new_block->mr = mr;
1583 new_block->resized = resized;
1584 new_block->used_length = size;
1585 new_block->max_length = max_size;
1586 assert(max_size >= size);
1587 new_block->fd = -1;
1588 new_block->host = host;
1589 if (host) {
1590 new_block->flags |= RAM_PREALLOC;
1591 }
1592 if (resizeable) {
1593 new_block->flags |= RAM_RESIZEABLE;
1594 }
1595 addr = ram_block_add(new_block, &local_err);
1596 if (local_err) {
1597 g_free(new_block);
1598 error_propagate(errp, local_err);
1599 return -1;
1600 }
1601 return addr;
1602 }
1603
1604 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1605 MemoryRegion *mr, Error **errp)
1606 {
1607 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1608 }
1609
1610 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
1611 {
1612 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1613 }
1614
1615 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1616 void (*resized)(const char*,
1617 uint64_t length,
1618 void *host),
1619 MemoryRegion *mr, Error **errp)
1620 {
1621 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
1622 }
1623
1624 void qemu_ram_free_from_ptr(ram_addr_t addr)
1625 {
1626 RAMBlock *block;
1627
1628 qemu_mutex_lock_ramlist();
1629 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1630 if (addr == block->offset) {
1631 QLIST_REMOVE_RCU(block, next);
1632 ram_list.mru_block = NULL;
1633 /* Write list before version */
1634 smp_wmb();
1635 ram_list.version++;
1636 g_free_rcu(block, rcu);
1637 break;
1638 }
1639 }
1640 qemu_mutex_unlock_ramlist();
1641 }
1642
1643 static void reclaim_ramblock(RAMBlock *block)
1644 {
1645 if (block->flags & RAM_PREALLOC) {
1646 ;
1647 } else if (xen_enabled()) {
1648 xen_invalidate_map_cache_entry(block->host);
1649 #ifndef _WIN32
1650 } else if (block->fd >= 0) {
1651 munmap(block->host, block->max_length);
1652 close(block->fd);
1653 #endif
1654 } else {
1655 qemu_anon_ram_free(block->host, block->max_length);
1656 }
1657 g_free(block);
1658 }
1659
1660 void qemu_ram_free(ram_addr_t addr)
1661 {
1662 RAMBlock *block;
1663
1664 qemu_mutex_lock_ramlist();
1665 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1666 if (addr == block->offset) {
1667 QLIST_REMOVE_RCU(block, next);
1668 ram_list.mru_block = NULL;
1669 /* Write list before version */
1670 smp_wmb();
1671 ram_list.version++;
1672 call_rcu(block, reclaim_ramblock, rcu);
1673 break;
1674 }
1675 }
1676 qemu_mutex_unlock_ramlist();
1677 }
1678
1679 #ifndef _WIN32
1680 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1681 {
1682 RAMBlock *block;
1683 ram_addr_t offset;
1684 int flags;
1685 void *area, *vaddr;
1686
1687 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1688 offset = addr - block->offset;
1689 if (offset < block->max_length) {
1690 vaddr = ramblock_ptr(block, offset);
1691 if (block->flags & RAM_PREALLOC) {
1692 ;
1693 } else if (xen_enabled()) {
1694 abort();
1695 } else {
1696 flags = MAP_FIXED;
1697 if (block->fd >= 0) {
1698 flags |= (block->flags & RAM_SHARED ?
1699 MAP_SHARED : MAP_PRIVATE);
1700 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1701 flags, block->fd, offset);
1702 } else {
1703 /*
1704 * Remap needs to match alloc. Accelerators that
1705 * set phys_mem_alloc never remap. If they did,
1706 * we'd need a remap hook here.
1707 */
1708 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1709
1710 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1711 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1712 flags, -1, 0);
1713 }
1714 if (area != vaddr) {
1715 fprintf(stderr, "Could not remap addr: "
1716 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1717 length, addr);
1718 exit(1);
1719 }
1720 memory_try_enable_merging(vaddr, length);
1721 qemu_ram_setup_dump(vaddr, length);
1722 }
1723 }
1724 }
1725 }
1726 #endif /* !_WIN32 */
1727
1728 int qemu_get_ram_fd(ram_addr_t addr)
1729 {
1730 RAMBlock *block;
1731 int fd;
1732
1733 rcu_read_lock();
1734 block = qemu_get_ram_block(addr);
1735 fd = block->fd;
1736 rcu_read_unlock();
1737 return fd;
1738 }
1739
1740 void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1741 {
1742 RAMBlock *block;
1743 void *ptr;
1744
1745 rcu_read_lock();
1746 block = qemu_get_ram_block(addr);
1747 ptr = ramblock_ptr(block, 0);
1748 rcu_read_unlock();
1749 return ptr;
1750 }
1751
1752 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1753 * This should not be used for general purpose DMA. Use address_space_map
1754 * or address_space_rw instead. For local memory (e.g. video ram) that the
1755 * device owns, use memory_region_get_ram_ptr.
1756 *
1757 * By the time this function returns, the returned pointer is not protected
1758 * by RCU anymore. If the caller is not within an RCU critical section and
1759 * does not hold the iothread lock, it must have other means of protecting the
1760 * pointer, such as a reference to the region that includes the incoming
1761 * ram_addr_t.
1762 */
1763 void *qemu_get_ram_ptr(ram_addr_t addr)
1764 {
1765 RAMBlock *block;
1766 void *ptr;
1767
1768 rcu_read_lock();
1769 block = qemu_get_ram_block(addr);
1770
1771 if (xen_enabled() && block->host == NULL) {
1772 /* We need to check if the requested address is in the RAM
1773 * because we don't want to map the entire memory in QEMU.
1774 * In that case just map until the end of the page.
1775 */
1776 if (block->offset == 0) {
1777 ptr = xen_map_cache(addr, 0, 0);
1778 goto unlock;
1779 }
1780
1781 block->host = xen_map_cache(block->offset, block->max_length, 1);
1782 }
1783 ptr = ramblock_ptr(block, addr - block->offset);
1784
1785 unlock:
1786 rcu_read_unlock();
1787 return ptr;
1788 }
1789
1790 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1791 * but takes a size argument.
1792 *
1793 * By the time this function returns, the returned pointer is not protected
1794 * by RCU anymore. If the caller is not within an RCU critical section and
1795 * does not hold the iothread lock, it must have other means of protecting the
1796 * pointer, such as a reference to the region that includes the incoming
1797 * ram_addr_t.
1798 */
1799 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1800 {
1801 void *ptr;
1802 if (*size == 0) {
1803 return NULL;
1804 }
1805 if (xen_enabled()) {
1806 return xen_map_cache(addr, *size, 1);
1807 } else {
1808 RAMBlock *block;
1809 rcu_read_lock();
1810 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1811 if (addr - block->offset < block->max_length) {
1812 if (addr - block->offset + *size > block->max_length)
1813 *size = block->max_length - addr + block->offset;
1814 ptr = ramblock_ptr(block, addr - block->offset);
1815 rcu_read_unlock();
1816 return ptr;
1817 }
1818 }
1819
1820 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1821 abort();
1822 }
1823 }
1824
1825 /* Some of the softmmu routines need to translate from a host pointer
1826 * (typically a TLB entry) back to a ram offset.
1827 *
1828 * By the time this function returns, the returned pointer is not protected
1829 * by RCU anymore. If the caller is not within an RCU critical section and
1830 * does not hold the iothread lock, it must have other means of protecting the
1831 * pointer, such as a reference to the region that includes the incoming
1832 * ram_addr_t.
1833 */
1834 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1835 {
1836 RAMBlock *block;
1837 uint8_t *host = ptr;
1838 MemoryRegion *mr;
1839
1840 if (xen_enabled()) {
1841 rcu_read_lock();
1842 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1843 mr = qemu_get_ram_block(*ram_addr)->mr;
1844 rcu_read_unlock();
1845 return mr;
1846 }
1847
1848 rcu_read_lock();
1849 block = atomic_rcu_read(&ram_list.mru_block);
1850 if (block && block->host && host - block->host < block->max_length) {
1851 goto found;
1852 }
1853
1854 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1855 /* This case append when the block is not mapped. */
1856 if (block->host == NULL) {
1857 continue;
1858 }
1859 if (host - block->host < block->max_length) {
1860 goto found;
1861 }
1862 }
1863
1864 rcu_read_unlock();
1865 return NULL;
1866
1867 found:
1868 *ram_addr = block->offset + (host - block->host);
1869 mr = block->mr;
1870 rcu_read_unlock();
1871 return mr;
1872 }
1873
1874 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1875 uint64_t val, unsigned size)
1876 {
1877 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1878 tb_invalidate_phys_page_fast(ram_addr, size);
1879 }
1880 switch (size) {
1881 case 1:
1882 stb_p(qemu_get_ram_ptr(ram_addr), val);
1883 break;
1884 case 2:
1885 stw_p(qemu_get_ram_ptr(ram_addr), val);
1886 break;
1887 case 4:
1888 stl_p(qemu_get_ram_ptr(ram_addr), val);
1889 break;
1890 default:
1891 abort();
1892 }
1893 /* Set both VGA and migration bits for simplicity and to remove
1894 * the notdirty callback faster.
1895 */
1896 cpu_physical_memory_set_dirty_range(ram_addr, size,
1897 DIRTY_CLIENTS_NOCODE);
1898 /* we remove the notdirty callback only if the code has been
1899 flushed */
1900 if (!cpu_physical_memory_is_clean(ram_addr)) {
1901 CPUArchState *env = current_cpu->env_ptr;
1902 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
1903 }
1904 }
1905
1906 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1907 unsigned size, bool is_write)
1908 {
1909 return is_write;
1910 }
1911
1912 static const MemoryRegionOps notdirty_mem_ops = {
1913 .write = notdirty_mem_write,
1914 .valid.accepts = notdirty_mem_accepts,
1915 .endianness = DEVICE_NATIVE_ENDIAN,
1916 };
1917
1918 /* Generate a debug exception if a watchpoint has been hit. */
1919 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
1920 {
1921 CPUState *cpu = current_cpu;
1922 CPUArchState *env = cpu->env_ptr;
1923 target_ulong pc, cs_base;
1924 target_ulong vaddr;
1925 CPUWatchpoint *wp;
1926 int cpu_flags;
1927
1928 if (cpu->watchpoint_hit) {
1929 /* We re-entered the check after replacing the TB. Now raise
1930 * the debug interrupt so that is will trigger after the
1931 * current instruction. */
1932 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
1933 return;
1934 }
1935 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1936 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1937 if (cpu_watchpoint_address_matches(wp, vaddr, len)
1938 && (wp->flags & flags)) {
1939 if (flags == BP_MEM_READ) {
1940 wp->flags |= BP_WATCHPOINT_HIT_READ;
1941 } else {
1942 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
1943 }
1944 wp->hitaddr = vaddr;
1945 wp->hitattrs = attrs;
1946 if (!cpu->watchpoint_hit) {
1947 cpu->watchpoint_hit = wp;
1948 tb_check_watchpoint(cpu);
1949 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1950 cpu->exception_index = EXCP_DEBUG;
1951 cpu_loop_exit(cpu);
1952 } else {
1953 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1954 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
1955 cpu_resume_from_signal(cpu, NULL);
1956 }
1957 }
1958 } else {
1959 wp->flags &= ~BP_WATCHPOINT_HIT;
1960 }
1961 }
1962 }
1963
1964 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1965 so these check for a hit then pass through to the normal out-of-line
1966 phys routines. */
1967 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
1968 unsigned size, MemTxAttrs attrs)
1969 {
1970 MemTxResult res;
1971 uint64_t data;
1972
1973 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1974 switch (size) {
1975 case 1:
1976 data = address_space_ldub(&address_space_memory, addr, attrs, &res);
1977 break;
1978 case 2:
1979 data = address_space_lduw(&address_space_memory, addr, attrs, &res);
1980 break;
1981 case 4:
1982 data = address_space_ldl(&address_space_memory, addr, attrs, &res);
1983 break;
1984 default: abort();
1985 }
1986 *pdata = data;
1987 return res;
1988 }
1989
1990 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
1991 uint64_t val, unsigned size,
1992 MemTxAttrs attrs)
1993 {
1994 MemTxResult res;
1995
1996 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1997 switch (size) {
1998 case 1:
1999 address_space_stb(&address_space_memory, addr, val, attrs, &res);
2000 break;
2001 case 2:
2002 address_space_stw(&address_space_memory, addr, val, attrs, &res);
2003 break;
2004 case 4:
2005 address_space_stl(&address_space_memory, addr, val, attrs, &res);
2006 break;
2007 default: abort();
2008 }
2009 return res;
2010 }
2011
2012 static const MemoryRegionOps watch_mem_ops = {
2013 .read_with_attrs = watch_mem_read,
2014 .write_with_attrs = watch_mem_write,
2015 .endianness = DEVICE_NATIVE_ENDIAN,
2016 };
2017
2018 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2019 unsigned len, MemTxAttrs attrs)
2020 {
2021 subpage_t *subpage = opaque;
2022 uint8_t buf[8];
2023 MemTxResult res;
2024
2025 #if defined(DEBUG_SUBPAGE)
2026 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2027 subpage, len, addr);
2028 #endif
2029 res = address_space_read(subpage->as, addr + subpage->base,
2030 attrs, buf, len);
2031 if (res) {
2032 return res;
2033 }
2034 switch (len) {
2035 case 1:
2036 *data = ldub_p(buf);
2037 return MEMTX_OK;
2038 case 2:
2039 *data = lduw_p(buf);
2040 return MEMTX_OK;
2041 case 4:
2042 *data = ldl_p(buf);
2043 return MEMTX_OK;
2044 case 8:
2045 *data = ldq_p(buf);
2046 return MEMTX_OK;
2047 default:
2048 abort();
2049 }
2050 }
2051
2052 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2053 uint64_t value, unsigned len, MemTxAttrs attrs)
2054 {
2055 subpage_t *subpage = opaque;
2056 uint8_t buf[8];
2057
2058 #if defined(DEBUG_SUBPAGE)
2059 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2060 " value %"PRIx64"\n",
2061 __func__, subpage, len, addr, value);
2062 #endif
2063 switch (len) {
2064 case 1:
2065 stb_p(buf, value);
2066 break;
2067 case 2:
2068 stw_p(buf, value);
2069 break;
2070 case 4:
2071 stl_p(buf, value);
2072 break;
2073 case 8:
2074 stq_p(buf, value);
2075 break;
2076 default:
2077 abort();
2078 }
2079 return address_space_write(subpage->as, addr + subpage->base,
2080 attrs, buf, len);
2081 }
2082
2083 static bool subpage_accepts(void *opaque, hwaddr addr,
2084 unsigned len, bool is_write)
2085 {
2086 subpage_t *subpage = opaque;
2087 #if defined(DEBUG_SUBPAGE)
2088 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2089 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2090 #endif
2091
2092 return address_space_access_valid(subpage->as, addr + subpage->base,
2093 len, is_write);
2094 }
2095
2096 static const MemoryRegionOps subpage_ops = {
2097 .read_with_attrs = subpage_read,
2098 .write_with_attrs = subpage_write,
2099 .impl.min_access_size = 1,
2100 .impl.max_access_size = 8,
2101 .valid.min_access_size = 1,
2102 .valid.max_access_size = 8,
2103 .valid.accepts = subpage_accepts,
2104 .endianness = DEVICE_NATIVE_ENDIAN,
2105 };
2106
2107 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2108 uint16_t section)
2109 {
2110 int idx, eidx;
2111
2112 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2113 return -1;
2114 idx = SUBPAGE_IDX(start);
2115 eidx = SUBPAGE_IDX(end);
2116 #if defined(DEBUG_SUBPAGE)
2117 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2118 __func__, mmio, start, end, idx, eidx, section);
2119 #endif
2120 for (; idx <= eidx; idx++) {
2121 mmio->sub_section[idx] = section;
2122 }
2123
2124 return 0;
2125 }
2126
2127 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
2128 {
2129 subpage_t *mmio;
2130
2131 mmio = g_malloc0(sizeof(subpage_t));
2132
2133 mmio->as = as;
2134 mmio->base = base;
2135 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2136 NULL, TARGET_PAGE_SIZE);
2137 mmio->iomem.subpage = true;
2138 #if defined(DEBUG_SUBPAGE)
2139 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2140 mmio, base, TARGET_PAGE_SIZE);
2141 #endif
2142 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2143
2144 return mmio;
2145 }
2146
2147 static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2148 MemoryRegion *mr)
2149 {
2150 assert(as);
2151 MemoryRegionSection section = {
2152 .address_space = as,
2153 .mr = mr,
2154 .offset_within_address_space = 0,
2155 .offset_within_region = 0,
2156 .size = int128_2_64(),
2157 };
2158
2159 return phys_section_add(map, &section);
2160 }
2161
2162 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
2163 {
2164 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch);
2165 MemoryRegionSection *sections = d->map.sections;
2166
2167 return sections[index & ~TARGET_PAGE_MASK].mr;
2168 }
2169
2170 static void io_mem_init(void)
2171 {
2172 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2173 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2174 NULL, UINT64_MAX);
2175 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2176 NULL, UINT64_MAX);
2177 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2178 NULL, UINT64_MAX);
2179 }
2180
2181 static void mem_begin(MemoryListener *listener)
2182 {
2183 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2184 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2185 uint16_t n;
2186
2187 n = dummy_section(&d->map, as, &io_mem_unassigned);
2188 assert(n == PHYS_SECTION_UNASSIGNED);
2189 n = dummy_section(&d->map, as, &io_mem_notdirty);
2190 assert(n == PHYS_SECTION_NOTDIRTY);
2191 n = dummy_section(&d->map, as, &io_mem_rom);
2192 assert(n == PHYS_SECTION_ROM);
2193 n = dummy_section(&d->map, as, &io_mem_watch);
2194 assert(n == PHYS_SECTION_WATCH);
2195
2196 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2197 d->as = as;
2198 as->next_dispatch = d;
2199 }
2200
2201 static void address_space_dispatch_free(AddressSpaceDispatch *d)
2202 {
2203 phys_sections_free(&d->map);
2204 g_free(d);
2205 }
2206
2207 static void mem_commit(MemoryListener *listener)
2208 {
2209 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
2210 AddressSpaceDispatch *cur = as->dispatch;
2211 AddressSpaceDispatch *next = as->next_dispatch;
2212
2213 phys_page_compact_all(next, next->map.nodes_nb);
2214
2215 atomic_rcu_set(&as->dispatch, next);
2216 if (cur) {
2217 call_rcu(cur, address_space_dispatch_free, rcu);
2218 }
2219 }
2220
2221 static void tcg_commit(MemoryListener *listener)
2222 {
2223 CPUState *cpu;
2224
2225 /* since each CPU stores ram addresses in its TLB cache, we must
2226 reset the modified entries */
2227 /* XXX: slow ! */
2228 CPU_FOREACH(cpu) {
2229 /* FIXME: Disentangle the cpu.h circular files deps so we can
2230 directly get the right CPU from listener. */
2231 if (cpu->tcg_as_listener != listener) {
2232 continue;
2233 }
2234 cpu_reload_memory_map(cpu);
2235 }
2236 }
2237
2238 void address_space_init_dispatch(AddressSpace *as)
2239 {
2240 as->dispatch = NULL;
2241 as->dispatch_listener = (MemoryListener) {
2242 .begin = mem_begin,
2243 .commit = mem_commit,
2244 .region_add = mem_add,
2245 .region_nop = mem_add,
2246 .priority = 0,
2247 };
2248 memory_listener_register(&as->dispatch_listener, as);
2249 }
2250
2251 void address_space_unregister(AddressSpace *as)
2252 {
2253 memory_listener_unregister(&as->dispatch_listener);
2254 }
2255
2256 void address_space_destroy_dispatch(AddressSpace *as)
2257 {
2258 AddressSpaceDispatch *d = as->dispatch;
2259
2260 atomic_rcu_set(&as->dispatch, NULL);
2261 if (d) {
2262 call_rcu(d, address_space_dispatch_free, rcu);
2263 }
2264 }
2265
2266 static void memory_map_init(void)
2267 {
2268 system_memory = g_malloc(sizeof(*system_memory));
2269
2270 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2271 address_space_init(&address_space_memory, system_memory, "memory");
2272
2273 system_io = g_malloc(sizeof(*system_io));
2274 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2275 65536);
2276 address_space_init(&address_space_io, system_io, "I/O");
2277 }
2278
2279 MemoryRegion *get_system_memory(void)
2280 {
2281 return system_memory;
2282 }
2283
2284 MemoryRegion *get_system_io(void)
2285 {
2286 return system_io;
2287 }
2288
2289 #endif /* !defined(CONFIG_USER_ONLY) */
2290
2291 /* physical memory access (slow version, mainly for debug) */
2292 #if defined(CONFIG_USER_ONLY)
2293 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2294 uint8_t *buf, int len, int is_write)
2295 {
2296 int l, flags;
2297 target_ulong page;
2298 void * p;
2299
2300 while (len > 0) {
2301 page = addr & TARGET_PAGE_MASK;
2302 l = (page + TARGET_PAGE_SIZE) - addr;
2303 if (l > len)
2304 l = len;
2305 flags = page_get_flags(page);
2306 if (!(flags & PAGE_VALID))
2307 return -1;
2308 if (is_write) {
2309 if (!(flags & PAGE_WRITE))
2310 return -1;
2311 /* XXX: this code should not depend on lock_user */
2312 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2313 return -1;
2314 memcpy(p, buf, l);
2315 unlock_user(p, addr, l);
2316 } else {
2317 if (!(flags & PAGE_READ))
2318 return -1;
2319 /* XXX: this code should not depend on lock_user */
2320 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2321 return -1;
2322 memcpy(buf, p, l);
2323 unlock_user(p, addr, 0);
2324 }
2325 len -= l;
2326 buf += l;
2327 addr += l;
2328 }
2329 return 0;
2330 }
2331
2332 #else
2333
2334 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2335 hwaddr length)
2336 {
2337 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2338 /* No early return if dirty_log_mask is or becomes 0, because
2339 * cpu_physical_memory_set_dirty_range will still call
2340 * xen_modified_memory.
2341 */
2342 if (dirty_log_mask) {
2343 dirty_log_mask =
2344 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2345 }
2346 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2347 tb_invalidate_phys_range(addr, addr + length);
2348 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2349 }
2350 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2351 }
2352
2353 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2354 {
2355 unsigned access_size_max = mr->ops->valid.max_access_size;
2356
2357 /* Regions are assumed to support 1-4 byte accesses unless
2358 otherwise specified. */
2359 if (access_size_max == 0) {
2360 access_size_max = 4;
2361 }
2362
2363 /* Bound the maximum access by the alignment of the address. */
2364 if (!mr->ops->impl.unaligned) {
2365 unsigned align_size_max = addr & -addr;
2366 if (align_size_max != 0 && align_size_max < access_size_max) {
2367 access_size_max = align_size_max;
2368 }
2369 }
2370
2371 /* Don't attempt accesses larger than the maximum. */
2372 if (l > access_size_max) {
2373 l = access_size_max;
2374 }
2375 if (l & (l - 1)) {
2376 l = 1 << (qemu_fls(l) - 1);
2377 }
2378
2379 return l;
2380 }
2381
2382 static bool prepare_mmio_access(MemoryRegion *mr)
2383 {
2384 bool unlocked = !qemu_mutex_iothread_locked();
2385 bool release_lock = false;
2386
2387 if (unlocked && mr->global_locking) {
2388 qemu_mutex_lock_iothread();
2389 unlocked = false;
2390 release_lock = true;
2391 }
2392 if (mr->flush_coalesced_mmio) {
2393 if (unlocked) {
2394 qemu_mutex_lock_iothread();
2395 }
2396 qemu_flush_coalesced_mmio_buffer();
2397 if (unlocked) {
2398 qemu_mutex_unlock_iothread();
2399 }
2400 }
2401
2402 return release_lock;
2403 }
2404
2405 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2406 uint8_t *buf, int len, bool is_write)
2407 {
2408 hwaddr l;
2409 uint8_t *ptr;
2410 uint64_t val;
2411 hwaddr addr1;
2412 MemoryRegion *mr;
2413 MemTxResult result = MEMTX_OK;
2414 bool release_lock = false;
2415
2416 rcu_read_lock();
2417 while (len > 0) {
2418 l = len;
2419 mr = address_space_translate(as, addr, &addr1, &l, is_write);
2420
2421 if (is_write) {
2422 if (!memory_access_is_direct(mr, is_write)) {
2423 release_lock |= prepare_mmio_access(mr);
2424 l = memory_access_size(mr, l, addr1);
2425 /* XXX: could force current_cpu to NULL to avoid
2426 potential bugs */
2427 switch (l) {
2428 case 8:
2429 /* 64 bit write access */
2430 val = ldq_p(buf);
2431 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2432 attrs);
2433 break;
2434 case 4:
2435 /* 32 bit write access */
2436 val = ldl_p(buf);
2437 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2438 attrs);
2439 break;
2440 case 2:
2441 /* 16 bit write access */
2442 val = lduw_p(buf);
2443 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2444 attrs);
2445 break;
2446 case 1:
2447 /* 8 bit write access */
2448 val = ldub_p(buf);
2449 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2450 attrs);
2451 break;
2452 default:
2453 abort();
2454 }
2455 } else {
2456 addr1 += memory_region_get_ram_addr(mr);
2457 /* RAM case */
2458 ptr = qemu_get_ram_ptr(addr1);
2459 memcpy(ptr, buf, l);
2460 invalidate_and_set_dirty(mr, addr1, l);
2461 }
2462 } else {
2463 if (!memory_access_is_direct(mr, is_write)) {
2464 /* I/O case */
2465 release_lock |= prepare_mmio_access(mr);
2466 l = memory_access_size(mr, l, addr1);
2467 switch (l) {
2468 case 8:
2469 /* 64 bit read access */
2470 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2471 attrs);
2472 stq_p(buf, val);
2473 break;
2474 case 4:
2475 /* 32 bit read access */
2476 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2477 attrs);
2478 stl_p(buf, val);
2479 break;
2480 case 2:
2481 /* 16 bit read access */
2482 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2483 attrs);
2484 stw_p(buf, val);
2485 break;
2486 case 1:
2487 /* 8 bit read access */
2488 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2489 attrs);
2490 stb_p(buf, val);
2491 break;
2492 default:
2493 abort();
2494 }
2495 } else {
2496 /* RAM case */
2497 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2498 memcpy(buf, ptr, l);
2499 }
2500 }
2501
2502 if (release_lock) {
2503 qemu_mutex_unlock_iothread();
2504 release_lock = false;
2505 }
2506
2507 len -= l;
2508 buf += l;
2509 addr += l;
2510 }
2511 rcu_read_unlock();
2512
2513 return result;
2514 }
2515
2516 MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2517 const uint8_t *buf, int len)
2518 {
2519 return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true);
2520 }
2521
2522 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2523 uint8_t *buf, int len)
2524 {
2525 return address_space_rw(as, addr, attrs, buf, len, false);
2526 }
2527
2528
2529 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2530 int len, int is_write)
2531 {
2532 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2533 buf, len, is_write);
2534 }
2535
2536 enum write_rom_type {
2537 WRITE_DATA,
2538 FLUSH_CACHE,
2539 };
2540
2541 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
2542 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2543 {
2544 hwaddr l;
2545 uint8_t *ptr;
2546 hwaddr addr1;
2547 MemoryRegion *mr;
2548
2549 rcu_read_lock();
2550 while (len > 0) {
2551 l = len;
2552 mr = address_space_translate(as, addr, &addr1, &l, true);
2553
2554 if (!(memory_region_is_ram(mr) ||
2555 memory_region_is_romd(mr))) {
2556 l = memory_access_size(mr, l, addr1);
2557 } else {
2558 addr1 += memory_region_get_ram_addr(mr);
2559 /* ROM/RAM case */
2560 ptr = qemu_get_ram_ptr(addr1);
2561 switch (type) {
2562 case WRITE_DATA:
2563 memcpy(ptr, buf, l);
2564 invalidate_and_set_dirty(mr, addr1, l);
2565 break;
2566 case FLUSH_CACHE:
2567 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2568 break;
2569 }
2570 }
2571 len -= l;
2572 buf += l;
2573 addr += l;
2574 }
2575 rcu_read_unlock();
2576 }
2577
2578 /* used for ROM loading : can write in RAM and ROM */
2579 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
2580 const uint8_t *buf, int len)
2581 {
2582 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
2583 }
2584
2585 void cpu_flush_icache_range(hwaddr start, int len)
2586 {
2587 /*
2588 * This function should do the same thing as an icache flush that was
2589 * triggered from within the guest. For TCG we are always cache coherent,
2590 * so there is no need to flush anything. For KVM / Xen we need to flush
2591 * the host's instruction cache at least.
2592 */
2593 if (tcg_enabled()) {
2594 return;
2595 }
2596
2597 cpu_physical_memory_write_rom_internal(&address_space_memory,
2598 start, NULL, len, FLUSH_CACHE);
2599 }
2600
2601 typedef struct {
2602 MemoryRegion *mr;
2603 void *buffer;
2604 hwaddr addr;
2605 hwaddr len;
2606 bool in_use;
2607 } BounceBuffer;
2608
2609 static BounceBuffer bounce;
2610
2611 typedef struct MapClient {
2612 QEMUBH *bh;
2613 QLIST_ENTRY(MapClient) link;
2614 } MapClient;
2615
2616 QemuMutex map_client_list_lock;
2617 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2618 = QLIST_HEAD_INITIALIZER(map_client_list);
2619
2620 static void cpu_unregister_map_client_do(MapClient *client)
2621 {
2622 QLIST_REMOVE(client, link);
2623 g_free(client);
2624 }
2625
2626 static void cpu_notify_map_clients_locked(void)
2627 {
2628 MapClient *client;
2629
2630 while (!QLIST_EMPTY(&map_client_list)) {
2631 client = QLIST_FIRST(&map_client_list);
2632 qemu_bh_schedule(client->bh);
2633 cpu_unregister_map_client_do(client);
2634 }
2635 }
2636
2637 void cpu_register_map_client(QEMUBH *bh)
2638 {
2639 MapClient *client = g_malloc(sizeof(*client));
2640
2641 qemu_mutex_lock(&map_client_list_lock);
2642 client->bh = bh;
2643 QLIST_INSERT_HEAD(&map_client_list, client, link);
2644 if (!atomic_read(&bounce.in_use)) {
2645 cpu_notify_map_clients_locked();
2646 }
2647 qemu_mutex_unlock(&map_client_list_lock);
2648 }
2649
2650 void cpu_exec_init_all(void)
2651 {
2652 qemu_mutex_init(&ram_list.mutex);
2653 memory_map_init();
2654 io_mem_init();
2655 qemu_mutex_init(&map_client_list_lock);
2656 }
2657
2658 void cpu_unregister_map_client(QEMUBH *bh)
2659 {
2660 MapClient *client;
2661
2662 qemu_mutex_lock(&map_client_list_lock);
2663 QLIST_FOREACH(client, &map_client_list, link) {
2664 if (client->bh == bh) {
2665 cpu_unregister_map_client_do(client);
2666 break;
2667 }
2668 }
2669 qemu_mutex_unlock(&map_client_list_lock);
2670 }
2671
2672 static void cpu_notify_map_clients(void)
2673 {
2674 qemu_mutex_lock(&map_client_list_lock);
2675 cpu_notify_map_clients_locked();
2676 qemu_mutex_unlock(&map_client_list_lock);
2677 }
2678
2679 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2680 {
2681 MemoryRegion *mr;
2682 hwaddr l, xlat;
2683
2684 rcu_read_lock();
2685 while (len > 0) {
2686 l = len;
2687 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2688 if (!memory_access_is_direct(mr, is_write)) {
2689 l = memory_access_size(mr, l, addr);
2690 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2691 return false;
2692 }
2693 }
2694
2695 len -= l;
2696 addr += l;
2697 }
2698 rcu_read_unlock();
2699 return true;
2700 }
2701
2702 /* Map a physical memory region into a host virtual address.
2703 * May map a subset of the requested range, given by and returned in *plen.
2704 * May return NULL if resources needed to perform the mapping are exhausted.
2705 * Use only for reads OR writes - not for read-modify-write operations.
2706 * Use cpu_register_map_client() to know when retrying the map operation is
2707 * likely to succeed.
2708 */
2709 void *address_space_map(AddressSpace *as,
2710 hwaddr addr,
2711 hwaddr *plen,
2712 bool is_write)
2713 {
2714 hwaddr len = *plen;
2715 hwaddr done = 0;
2716 hwaddr l, xlat, base;
2717 MemoryRegion *mr, *this_mr;
2718 ram_addr_t raddr;
2719
2720 if (len == 0) {
2721 return NULL;
2722 }
2723
2724 l = len;
2725 rcu_read_lock();
2726 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2727
2728 if (!memory_access_is_direct(mr, is_write)) {
2729 if (atomic_xchg(&bounce.in_use, true)) {
2730 rcu_read_unlock();
2731 return NULL;
2732 }
2733 /* Avoid unbounded allocations */
2734 l = MIN(l, TARGET_PAGE_SIZE);
2735 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2736 bounce.addr = addr;
2737 bounce.len = l;
2738
2739 memory_region_ref(mr);
2740 bounce.mr = mr;
2741 if (!is_write) {
2742 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2743 bounce.buffer, l);
2744 }
2745
2746 rcu_read_unlock();
2747 *plen = l;
2748 return bounce.buffer;
2749 }
2750
2751 base = xlat;
2752 raddr = memory_region_get_ram_addr(mr);
2753
2754 for (;;) {
2755 len -= l;
2756 addr += l;
2757 done += l;
2758 if (len == 0) {
2759 break;
2760 }
2761
2762 l = len;
2763 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2764 if (this_mr != mr || xlat != base + done) {
2765 break;
2766 }
2767 }
2768
2769 memory_region_ref(mr);
2770 rcu_read_unlock();
2771 *plen = done;
2772 return qemu_ram_ptr_length(raddr + base, plen);
2773 }
2774
2775 /* Unmaps a memory region previously mapped by address_space_map().
2776 * Will also mark the memory as dirty if is_write == 1. access_len gives
2777 * the amount of memory that was actually read or written by the caller.
2778 */
2779 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2780 int is_write, hwaddr access_len)
2781 {
2782 if (buffer != bounce.buffer) {
2783 MemoryRegion *mr;
2784 ram_addr_t addr1;
2785
2786 mr = qemu_ram_addr_from_host(buffer, &addr1);
2787 assert(mr != NULL);
2788 if (is_write) {
2789 invalidate_and_set_dirty(mr, addr1, access_len);
2790 }
2791 if (xen_enabled()) {
2792 xen_invalidate_map_cache_entry(buffer);
2793 }
2794 memory_region_unref(mr);
2795 return;
2796 }
2797 if (is_write) {
2798 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2799 bounce.buffer, access_len);
2800 }
2801 qemu_vfree(bounce.buffer);
2802 bounce.buffer = NULL;
2803 memory_region_unref(bounce.mr);
2804 atomic_mb_set(&bounce.in_use, false);
2805 cpu_notify_map_clients();
2806 }
2807
2808 void *cpu_physical_memory_map(hwaddr addr,
2809 hwaddr *plen,
2810 int is_write)
2811 {
2812 return address_space_map(&address_space_memory, addr, plen, is_write);
2813 }
2814
2815 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2816 int is_write, hwaddr access_len)
2817 {
2818 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2819 }
2820
2821 /* warning: addr must be aligned */
2822 static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2823 MemTxAttrs attrs,
2824 MemTxResult *result,
2825 enum device_endian endian)
2826 {
2827 uint8_t *ptr;
2828 uint64_t val;
2829 MemoryRegion *mr;
2830 hwaddr l = 4;
2831 hwaddr addr1;
2832 MemTxResult r;
2833 bool release_lock = false;
2834
2835 rcu_read_lock();
2836 mr = address_space_translate(as, addr, &addr1, &l, false);
2837 if (l < 4 || !memory_access_is_direct(mr, false)) {
2838 release_lock |= prepare_mmio_access(mr);
2839
2840 /* I/O case */
2841 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
2842 #if defined(TARGET_WORDS_BIGENDIAN)
2843 if (endian == DEVICE_LITTLE_ENDIAN) {
2844 val = bswap32(val);
2845 }
2846 #else
2847 if (endian == DEVICE_BIG_ENDIAN) {
2848 val = bswap32(val);
2849 }
2850 #endif
2851 } else {
2852 /* RAM case */
2853 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2854 & TARGET_PAGE_MASK)
2855 + addr1);
2856 switch (endian) {
2857 case DEVICE_LITTLE_ENDIAN:
2858 val = ldl_le_p(ptr);
2859 break;
2860 case DEVICE_BIG_ENDIAN:
2861 val = ldl_be_p(ptr);
2862 break;
2863 default:
2864 val = ldl_p(ptr);
2865 break;
2866 }
2867 r = MEMTX_OK;
2868 }
2869 if (result) {
2870 *result = r;
2871 }
2872 if (release_lock) {
2873 qemu_mutex_unlock_iothread();
2874 }
2875 rcu_read_unlock();
2876 return val;
2877 }
2878
2879 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
2880 MemTxAttrs attrs, MemTxResult *result)
2881 {
2882 return address_space_ldl_internal(as, addr, attrs, result,
2883 DEVICE_NATIVE_ENDIAN);
2884 }
2885
2886 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
2887 MemTxAttrs attrs, MemTxResult *result)
2888 {
2889 return address_space_ldl_internal(as, addr, attrs, result,
2890 DEVICE_LITTLE_ENDIAN);
2891 }
2892
2893 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
2894 MemTxAttrs attrs, MemTxResult *result)
2895 {
2896 return address_space_ldl_internal(as, addr, attrs, result,
2897 DEVICE_BIG_ENDIAN);
2898 }
2899
2900 uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
2901 {
2902 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2903 }
2904
2905 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
2906 {
2907 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2908 }
2909
2910 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
2911 {
2912 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2913 }
2914
2915 /* warning: addr must be aligned */
2916 static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
2917 MemTxAttrs attrs,
2918 MemTxResult *result,
2919 enum device_endian endian)
2920 {
2921 uint8_t *ptr;
2922 uint64_t val;
2923 MemoryRegion *mr;
2924 hwaddr l = 8;
2925 hwaddr addr1;
2926 MemTxResult r;
2927 bool release_lock = false;
2928
2929 rcu_read_lock();
2930 mr = address_space_translate(as, addr, &addr1, &l,
2931 false);
2932 if (l < 8 || !memory_access_is_direct(mr, false)) {
2933 release_lock |= prepare_mmio_access(mr);
2934
2935 /* I/O case */
2936 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
2937 #if defined(TARGET_WORDS_BIGENDIAN)
2938 if (endian == DEVICE_LITTLE_ENDIAN) {
2939 val = bswap64(val);
2940 }
2941 #else
2942 if (endian == DEVICE_BIG_ENDIAN) {
2943 val = bswap64(val);
2944 }
2945 #endif
2946 } else {
2947 /* RAM case */
2948 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2949 & TARGET_PAGE_MASK)
2950 + addr1);
2951 switch (endian) {
2952 case DEVICE_LITTLE_ENDIAN:
2953 val = ldq_le_p(ptr);
2954 break;
2955 case DEVICE_BIG_ENDIAN:
2956 val = ldq_be_p(ptr);
2957 break;
2958 default:
2959 val = ldq_p(ptr);
2960 break;
2961 }
2962 r = MEMTX_OK;
2963 }
2964 if (result) {
2965 *result = r;
2966 }
2967 if (release_lock) {
2968 qemu_mutex_unlock_iothread();
2969 }
2970 rcu_read_unlock();
2971 return val;
2972 }
2973
2974 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
2975 MemTxAttrs attrs, MemTxResult *result)
2976 {
2977 return address_space_ldq_internal(as, addr, attrs, result,
2978 DEVICE_NATIVE_ENDIAN);
2979 }
2980
2981 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
2982 MemTxAttrs attrs, MemTxResult *result)
2983 {
2984 return address_space_ldq_internal(as, addr, attrs, result,
2985 DEVICE_LITTLE_ENDIAN);
2986 }
2987
2988 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
2989 MemTxAttrs attrs, MemTxResult *result)
2990 {
2991 return address_space_ldq_internal(as, addr, attrs, result,
2992 DEVICE_BIG_ENDIAN);
2993 }
2994
2995 uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
2996 {
2997 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
2998 }
2999
3000 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
3001 {
3002 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3003 }
3004
3005 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
3006 {
3007 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3008 }
3009
3010 /* XXX: optimize */
3011 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3012 MemTxAttrs attrs, MemTxResult *result)
3013 {
3014 uint8_t val;
3015 MemTxResult r;
3016
3017 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3018 if (result) {
3019 *result = r;
3020 }
3021 return val;
3022 }
3023
3024 uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3025 {
3026 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3027 }
3028
3029 /* warning: addr must be aligned */
3030 static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3031 hwaddr addr,
3032 MemTxAttrs attrs,
3033 MemTxResult *result,
3034 enum device_endian endian)
3035 {
3036 uint8_t *ptr;
3037 uint64_t val;
3038 MemoryRegion *mr;
3039 hwaddr l = 2;
3040 hwaddr addr1;
3041 MemTxResult r;
3042 bool release_lock = false;
3043
3044 rcu_read_lock();
3045 mr = address_space_translate(as, addr, &addr1, &l,
3046 false);
3047 if (l < 2 || !memory_access_is_direct(mr, false)) {
3048 release_lock |= prepare_mmio_access(mr);
3049
3050 /* I/O case */
3051 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
3052 #if defined(TARGET_WORDS_BIGENDIAN)
3053 if (endian == DEVICE_LITTLE_ENDIAN) {
3054 val = bswap16(val);
3055 }
3056 #else
3057 if (endian == DEVICE_BIG_ENDIAN) {
3058 val = bswap16(val);
3059 }
3060 #endif
3061 } else {
3062 /* RAM case */
3063 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
3064 & TARGET_PAGE_MASK)
3065 + addr1);
3066 switch (endian) {
3067 case DEVICE_LITTLE_ENDIAN:
3068 val = lduw_le_p(ptr);
3069 break;
3070 case DEVICE_BIG_ENDIAN:
3071 val = lduw_be_p(ptr);
3072 break;
3073 default:
3074 val = lduw_p(ptr);
3075 break;
3076 }
3077 r = MEMTX_OK;
3078 }
3079 if (result) {
3080 *result = r;
3081 }
3082 if (release_lock) {
3083 qemu_mutex_unlock_iothread();
3084 }
3085 rcu_read_unlock();
3086 return val;
3087 }
3088
3089 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3090 MemTxAttrs attrs, MemTxResult *result)
3091 {
3092 return address_space_lduw_internal(as, addr, attrs, result,
3093 DEVICE_NATIVE_ENDIAN);
3094 }
3095
3096 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3097 MemTxAttrs attrs, MemTxResult *result)
3098 {
3099 return address_space_lduw_internal(as, addr, attrs, result,
3100 DEVICE_LITTLE_ENDIAN);
3101 }
3102
3103 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3104 MemTxAttrs attrs, MemTxResult *result)
3105 {
3106 return address_space_lduw_internal(as, addr, attrs, result,
3107 DEVICE_BIG_ENDIAN);
3108 }
3109
3110 uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
3111 {
3112 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3113 }
3114
3115 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
3116 {
3117 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3118 }
3119
3120 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
3121 {
3122 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3123 }
3124
3125 /* warning: addr must be aligned. The ram page is not masked as dirty
3126 and the code inside is not invalidated. It is useful if the dirty
3127 bits are used to track modified PTEs */
3128 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3129 MemTxAttrs attrs, MemTxResult *result)
3130 {
3131 uint8_t *ptr;
3132 MemoryRegion *mr;
3133 hwaddr l = 4;
3134 hwaddr addr1;
3135 MemTxResult r;
3136 uint8_t dirty_log_mask;
3137 bool release_lock = false;
3138
3139 rcu_read_lock();
3140 mr = address_space_translate(as, addr, &addr1, &l,
3141 true);
3142 if (l < 4 || !memory_access_is_direct(mr, true)) {
3143 release_lock |= prepare_mmio_access(mr);
3144
3145 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3146 } else {
3147 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3148 ptr = qemu_get_ram_ptr(addr1);
3149 stl_p(ptr, val);
3150
3151 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3152 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3153 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
3154 r = MEMTX_OK;
3155 }
3156 if (result) {
3157 *result = r;
3158 }
3159 if (release_lock) {
3160 qemu_mutex_unlock_iothread();
3161 }
3162 rcu_read_unlock();
3163 }
3164
3165 void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3166 {
3167 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3168 }
3169
3170 /* warning: addr must be aligned */
3171 static inline void address_space_stl_internal(AddressSpace *as,
3172 hwaddr addr, uint32_t val,
3173 MemTxAttrs attrs,
3174 MemTxResult *result,
3175 enum device_endian endian)
3176 {
3177 uint8_t *ptr;
3178 MemoryRegion *mr;
3179 hwaddr l = 4;
3180 hwaddr addr1;
3181 MemTxResult r;
3182 bool release_lock = false;
3183
3184 rcu_read_lock();
3185 mr = address_space_translate(as, addr, &addr1, &l,
3186 true);
3187 if (l < 4 || !memory_access_is_direct(mr, true)) {
3188 release_lock |= prepare_mmio_access(mr);
3189
3190 #if defined(TARGET_WORDS_BIGENDIAN)
3191 if (endian == DEVICE_LITTLE_ENDIAN) {
3192 val = bswap32(val);
3193 }
3194 #else
3195 if (endian == DEVICE_BIG_ENDIAN) {
3196 val = bswap32(val);
3197 }
3198 #endif
3199 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
3200 } else {
3201 /* RAM case */
3202 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3203 ptr = qemu_get_ram_ptr(addr1);
3204 switch (endian) {
3205 case DEVICE_LITTLE_ENDIAN:
3206 stl_le_p(ptr, val);
3207 break;
3208 case DEVICE_BIG_ENDIAN:
3209 stl_be_p(ptr, val);
3210 break;
3211 default:
3212 stl_p(ptr, val);
3213 break;
3214 }
3215 invalidate_and_set_dirty(mr, addr1, 4);
3216 r = MEMTX_OK;
3217 }
3218 if (result) {
3219 *result = r;
3220 }
3221 if (release_lock) {
3222 qemu_mutex_unlock_iothread();
3223 }
3224 rcu_read_unlock();
3225 }
3226
3227 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3228 MemTxAttrs attrs, MemTxResult *result)
3229 {
3230 address_space_stl_internal(as, addr, val, attrs, result,
3231 DEVICE_NATIVE_ENDIAN);
3232 }
3233
3234 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3235 MemTxAttrs attrs, MemTxResult *result)
3236 {
3237 address_space_stl_internal(as, addr, val, attrs, result,
3238 DEVICE_LITTLE_ENDIAN);
3239 }
3240
3241 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3242 MemTxAttrs attrs, MemTxResult *result)
3243 {
3244 address_space_stl_internal(as, addr, val, attrs, result,
3245 DEVICE_BIG_ENDIAN);
3246 }
3247
3248 void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3249 {
3250 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3251 }
3252
3253 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3254 {
3255 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3256 }
3257
3258 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3259 {
3260 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3261 }
3262
3263 /* XXX: optimize */
3264 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3265 MemTxAttrs attrs, MemTxResult *result)
3266 {
3267 uint8_t v = val;
3268 MemTxResult r;
3269
3270 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3271 if (result) {
3272 *result = r;
3273 }
3274 }
3275
3276 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3277 {
3278 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3279 }
3280
3281 /* warning: addr must be aligned */
3282 static inline void address_space_stw_internal(AddressSpace *as,
3283 hwaddr addr, uint32_t val,
3284 MemTxAttrs attrs,
3285 MemTxResult *result,
3286 enum device_endian endian)
3287 {
3288 uint8_t *ptr;
3289 MemoryRegion *mr;
3290 hwaddr l = 2;
3291 hwaddr addr1;
3292 MemTxResult r;
3293 bool release_lock = false;
3294
3295 rcu_read_lock();
3296 mr = address_space_translate(as, addr, &addr1, &l, true);
3297 if (l < 2 || !memory_access_is_direct(mr, true)) {
3298 release_lock |= prepare_mmio_access(mr);
3299
3300 #if defined(TARGET_WORDS_BIGENDIAN)
3301 if (endian == DEVICE_LITTLE_ENDIAN) {
3302 val = bswap16(val);
3303 }
3304 #else
3305 if (endian == DEVICE_BIG_ENDIAN) {
3306 val = bswap16(val);
3307 }
3308 #endif
3309 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
3310 } else {
3311 /* RAM case */
3312 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3313 ptr = qemu_get_ram_ptr(addr1);
3314 switch (endian) {
3315 case DEVICE_LITTLE_ENDIAN:
3316 stw_le_p(ptr, val);
3317 break;
3318 case DEVICE_BIG_ENDIAN:
3319 stw_be_p(ptr, val);
3320 break;
3321 default:
3322 stw_p(ptr, val);
3323 break;
3324 }
3325 invalidate_and_set_dirty(mr, addr1, 2);
3326 r = MEMTX_OK;
3327 }
3328 if (result) {
3329 *result = r;
3330 }
3331 if (release_lock) {
3332 qemu_mutex_unlock_iothread();
3333 }
3334 rcu_read_unlock();
3335 }
3336
3337 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3338 MemTxAttrs attrs, MemTxResult *result)
3339 {
3340 address_space_stw_internal(as, addr, val, attrs, result,
3341 DEVICE_NATIVE_ENDIAN);
3342 }
3343
3344 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3345 MemTxAttrs attrs, MemTxResult *result)
3346 {
3347 address_space_stw_internal(as, addr, val, attrs, result,
3348 DEVICE_LITTLE_ENDIAN);
3349 }
3350
3351 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3352 MemTxAttrs attrs, MemTxResult *result)
3353 {
3354 address_space_stw_internal(as, addr, val, attrs, result,
3355 DEVICE_BIG_ENDIAN);
3356 }
3357
3358 void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3359 {
3360 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3361 }
3362
3363 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3364 {
3365 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3366 }
3367
3368 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3369 {
3370 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3371 }
3372
3373 /* XXX: optimize */
3374 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3375 MemTxAttrs attrs, MemTxResult *result)
3376 {
3377 MemTxResult r;
3378 val = tswap64(val);
3379 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3380 if (result) {
3381 *result = r;
3382 }
3383 }
3384
3385 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3386 MemTxAttrs attrs, MemTxResult *result)
3387 {
3388 MemTxResult r;
3389 val = cpu_to_le64(val);
3390 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3391 if (result) {
3392 *result = r;
3393 }
3394 }
3395 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3396 MemTxAttrs attrs, MemTxResult *result)
3397 {
3398 MemTxResult r;
3399 val = cpu_to_be64(val);
3400 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3401 if (result) {
3402 *result = r;
3403 }
3404 }
3405
3406 void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3407 {
3408 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3409 }
3410
3411 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3412 {
3413 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3414 }
3415
3416 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3417 {
3418 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3419 }
3420
3421 /* virtual memory access for debug (includes writing to ROM) */
3422 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3423 uint8_t *buf, int len, int is_write)
3424 {
3425 int l;
3426 hwaddr phys_addr;
3427 target_ulong page;
3428
3429 while (len > 0) {
3430 page = addr & TARGET_PAGE_MASK;
3431 phys_addr = cpu_get_phys_page_debug(cpu, page);
3432 /* if no physical page mapped, return an error */
3433 if (phys_addr == -1)
3434 return -1;
3435 l = (page + TARGET_PAGE_SIZE) - addr;
3436 if (l > len)
3437 l = len;
3438 phys_addr += (addr & ~TARGET_PAGE_MASK);
3439 if (is_write) {
3440 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3441 } else {
3442 address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED,
3443 buf, l, 0);
3444 }
3445 len -= l;
3446 buf += l;
3447 addr += l;
3448 }
3449 return 0;
3450 }
3451 #endif
3452
3453 /*
3454 * A helper function for the _utterly broken_ virtio device model to find out if
3455 * it's running on a big endian machine. Don't do this at home kids!
3456 */
3457 bool target_words_bigendian(void);
3458 bool target_words_bigendian(void)
3459 {
3460 #if defined(TARGET_WORDS_BIGENDIAN)
3461 return true;
3462 #else
3463 return false;
3464 #endif
3465 }
3466
3467 #ifndef CONFIG_USER_ONLY
3468 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3469 {
3470 MemoryRegion*mr;
3471 hwaddr l = 1;
3472 bool res;
3473
3474 rcu_read_lock();
3475 mr = address_space_translate(&address_space_memory,
3476 phys_addr, &phys_addr, &l, false);
3477
3478 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3479 rcu_read_unlock();
3480 return res;
3481 }
3482
3483 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3484 {
3485 RAMBlock *block;
3486 int ret = 0;
3487
3488 rcu_read_lock();
3489 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
3490 ret = func(block->idstr, block->host, block->offset,
3491 block->used_length, opaque);
3492 if (ret) {
3493 break;
3494 }
3495 }
3496 rcu_read_unlock();
3497 return ret;
3498 }
3499 #endif