]> git.ipfire.org Git - thirdparty/qemu.git/blob - exec.c
qemu-common: Move tcg_enabled() etc. to sysemu/tcg.h
[thirdparty/qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qapi/error.h"
22
23 #include "qemu/cutils.h"
24 #include "cpu.h"
25 #include "exec/exec-all.h"
26 #include "exec/target_page.h"
27 #include "tcg.h"
28 #include "hw/qdev-core.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/boards.h"
32 #include "hw/xen/xen.h"
33 #endif
34 #include "sysemu/kvm.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/tcg.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #include "qemu/qemu-print.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include "qemu.h"
43 #else /* !CONFIG_USER_ONLY */
44 #include "hw/hw.h"
45 #include "exec/memory.h"
46 #include "exec/ioport.h"
47 #include "sysemu/dma.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/hw_accel.h"
50 #include "exec/address-spaces.h"
51 #include "sysemu/xen-mapcache.h"
52 #include "trace-root.h"
53
54 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93 #endif
94
95 #ifdef TARGET_PAGE_BITS_VARY
96 int target_page_bits;
97 bool target_page_bits_decided;
98 #endif
99
100 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
101
102 /* current CPU in the current thread. It is only valid inside
103 cpu_exec() */
104 __thread CPUState *current_cpu;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
108 int use_icount;
109
110 uintptr_t qemu_host_page_size;
111 intptr_t qemu_host_page_mask;
112
113 bool set_preferred_target_page_bits(int bits)
114 {
115 /* The target page size is the lowest common denominator for all
116 * the CPUs in the system, so we can only make it smaller, never
117 * larger. And we can't make it smaller once we've committed to
118 * a particular size.
119 */
120 #ifdef TARGET_PAGE_BITS_VARY
121 assert(bits >= TARGET_PAGE_BITS_MIN);
122 if (target_page_bits == 0 || target_page_bits > bits) {
123 if (target_page_bits_decided) {
124 return false;
125 }
126 target_page_bits = bits;
127 }
128 #endif
129 return true;
130 }
131
132 #if !defined(CONFIG_USER_ONLY)
133
134 static void finalize_target_page_bits(void)
135 {
136 #ifdef TARGET_PAGE_BITS_VARY
137 if (target_page_bits == 0) {
138 target_page_bits = TARGET_PAGE_BITS_MIN;
139 }
140 target_page_bits_decided = true;
141 #endif
142 }
143
144 typedef struct PhysPageEntry PhysPageEntry;
145
146 struct PhysPageEntry {
147 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
148 uint32_t skip : 6;
149 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 uint32_t ptr : 26;
151 };
152
153 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
154
155 /* Size of the L2 (and L3, etc) page tables. */
156 #define ADDR_SPACE_BITS 64
157
158 #define P_L2_BITS 9
159 #define P_L2_SIZE (1 << P_L2_BITS)
160
161 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
162
163 typedef PhysPageEntry Node[P_L2_SIZE];
164
165 typedef struct PhysPageMap {
166 struct rcu_head rcu;
167
168 unsigned sections_nb;
169 unsigned sections_nb_alloc;
170 unsigned nodes_nb;
171 unsigned nodes_nb_alloc;
172 Node *nodes;
173 MemoryRegionSection *sections;
174 } PhysPageMap;
175
176 struct AddressSpaceDispatch {
177 MemoryRegionSection *mru_section;
178 /* This is a multi-level map on the physical address space.
179 * The bottom level has pointers to MemoryRegionSections.
180 */
181 PhysPageEntry phys_map;
182 PhysPageMap map;
183 };
184
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t {
187 MemoryRegion iomem;
188 FlatView *fv;
189 hwaddr base;
190 uint16_t sub_section[];
191 } subpage_t;
192
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
197
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_commit(MemoryListener *listener);
201
202 static MemoryRegion io_mem_watch;
203
204 /**
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
210 */
211 struct CPUAddressSpace {
212 CPUState *cpu;
213 AddressSpace *as;
214 struct AddressSpaceDispatch *memory_dispatch;
215 MemoryListener tcg_as_listener;
216 };
217
218 struct DirtyBitmapSnapshot {
219 ram_addr_t start;
220 ram_addr_t end;
221 unsigned long dirty[];
222 };
223
224 #endif
225
226 #if !defined(CONFIG_USER_ONLY)
227
228 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
229 {
230 static unsigned alloc_hint = 16;
231 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
232 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
234 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
235 alloc_hint = map->nodes_nb_alloc;
236 }
237 }
238
239 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
240 {
241 unsigned i;
242 uint32_t ret;
243 PhysPageEntry e;
244 PhysPageEntry *p;
245
246 ret = map->nodes_nb++;
247 p = map->nodes[ret];
248 assert(ret != PHYS_MAP_NODE_NIL);
249 assert(ret != map->nodes_nb_alloc);
250
251 e.skip = leaf ? 0 : 1;
252 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
253 for (i = 0; i < P_L2_SIZE; ++i) {
254 memcpy(&p[i], &e, sizeof(e));
255 }
256 return ret;
257 }
258
259 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
260 hwaddr *index, hwaddr *nb, uint16_t leaf,
261 int level)
262 {
263 PhysPageEntry *p;
264 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
265
266 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
267 lp->ptr = phys_map_node_alloc(map, level == 0);
268 }
269 p = map->nodes[lp->ptr];
270 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
271
272 while (*nb && lp < &p[P_L2_SIZE]) {
273 if ((*index & (step - 1)) == 0 && *nb >= step) {
274 lp->skip = 0;
275 lp->ptr = leaf;
276 *index += step;
277 *nb -= step;
278 } else {
279 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
280 }
281 ++lp;
282 }
283 }
284
285 static void phys_page_set(AddressSpaceDispatch *d,
286 hwaddr index, hwaddr nb,
287 uint16_t leaf)
288 {
289 /* Wildly overreserve - it doesn't matter much. */
290 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
291
292 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
293 }
294
295 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
296 * and update our entry so we can skip it and go directly to the destination.
297 */
298 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
299 {
300 unsigned valid_ptr = P_L2_SIZE;
301 int valid = 0;
302 PhysPageEntry *p;
303 int i;
304
305 if (lp->ptr == PHYS_MAP_NODE_NIL) {
306 return;
307 }
308
309 p = nodes[lp->ptr];
310 for (i = 0; i < P_L2_SIZE; i++) {
311 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
312 continue;
313 }
314
315 valid_ptr = i;
316 valid++;
317 if (p[i].skip) {
318 phys_page_compact(&p[i], nodes);
319 }
320 }
321
322 /* We can only compress if there's only one child. */
323 if (valid != 1) {
324 return;
325 }
326
327 assert(valid_ptr < P_L2_SIZE);
328
329 /* Don't compress if it won't fit in the # of bits we have. */
330 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
331 return;
332 }
333
334 lp->ptr = p[valid_ptr].ptr;
335 if (!p[valid_ptr].skip) {
336 /* If our only child is a leaf, make this a leaf. */
337 /* By design, we should have made this node a leaf to begin with so we
338 * should never reach here.
339 * But since it's so simple to handle this, let's do it just in case we
340 * change this rule.
341 */
342 lp->skip = 0;
343 } else {
344 lp->skip += p[valid_ptr].skip;
345 }
346 }
347
348 void address_space_dispatch_compact(AddressSpaceDispatch *d)
349 {
350 if (d->phys_map.skip) {
351 phys_page_compact(&d->phys_map, d->map.nodes);
352 }
353 }
354
355 static inline bool section_covers_addr(const MemoryRegionSection *section,
356 hwaddr addr)
357 {
358 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
359 * the section must cover the entire address space.
360 */
361 return int128_gethi(section->size) ||
362 range_covers_byte(section->offset_within_address_space,
363 int128_getlo(section->size), addr);
364 }
365
366 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
367 {
368 PhysPageEntry lp = d->phys_map, *p;
369 Node *nodes = d->map.nodes;
370 MemoryRegionSection *sections = d->map.sections;
371 hwaddr index = addr >> TARGET_PAGE_BITS;
372 int i;
373
374 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
375 if (lp.ptr == PHYS_MAP_NODE_NIL) {
376 return &sections[PHYS_SECTION_UNASSIGNED];
377 }
378 p = nodes[lp.ptr];
379 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
380 }
381
382 if (section_covers_addr(&sections[lp.ptr], addr)) {
383 return &sections[lp.ptr];
384 } else {
385 return &sections[PHYS_SECTION_UNASSIGNED];
386 }
387 }
388
389 /* Called from RCU critical section */
390 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
391 hwaddr addr,
392 bool resolve_subpage)
393 {
394 MemoryRegionSection *section = atomic_read(&d->mru_section);
395 subpage_t *subpage;
396
397 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
398 !section_covers_addr(section, addr)) {
399 section = phys_page_find(d, addr);
400 atomic_set(&d->mru_section, section);
401 }
402 if (resolve_subpage && section->mr->subpage) {
403 subpage = container_of(section->mr, subpage_t, iomem);
404 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
405 }
406 return section;
407 }
408
409 /* Called from RCU critical section */
410 static MemoryRegionSection *
411 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
412 hwaddr *plen, bool resolve_subpage)
413 {
414 MemoryRegionSection *section;
415 MemoryRegion *mr;
416 Int128 diff;
417
418 section = address_space_lookup_region(d, addr, resolve_subpage);
419 /* Compute offset within MemoryRegionSection */
420 addr -= section->offset_within_address_space;
421
422 /* Compute offset within MemoryRegion */
423 *xlat = addr + section->offset_within_region;
424
425 mr = section->mr;
426
427 /* MMIO registers can be expected to perform full-width accesses based only
428 * on their address, without considering adjacent registers that could
429 * decode to completely different MemoryRegions. When such registers
430 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
431 * regions overlap wildly. For this reason we cannot clamp the accesses
432 * here.
433 *
434 * If the length is small (as is the case for address_space_ldl/stl),
435 * everything works fine. If the incoming length is large, however,
436 * the caller really has to do the clamping through memory_access_size.
437 */
438 if (memory_region_is_ram(mr)) {
439 diff = int128_sub(section->size, int128_make64(addr));
440 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
441 }
442 return section;
443 }
444
445 /**
446 * address_space_translate_iommu - translate an address through an IOMMU
447 * memory region and then through the target address space.
448 *
449 * @iommu_mr: the IOMMU memory region that we start the translation from
450 * @addr: the address to be translated through the MMU
451 * @xlat: the translated address offset within the destination memory region.
452 * It cannot be %NULL.
453 * @plen_out: valid read/write length of the translated address. It
454 * cannot be %NULL.
455 * @page_mask_out: page mask for the translated address. This
456 * should only be meaningful for IOMMU translated
457 * addresses, since there may be huge pages that this bit
458 * would tell. It can be %NULL if we don't care about it.
459 * @is_write: whether the translation operation is for write
460 * @is_mmio: whether this can be MMIO, set true if it can
461 * @target_as: the address space targeted by the IOMMU
462 * @attrs: transaction attributes
463 *
464 * This function is called from RCU critical section. It is the common
465 * part of flatview_do_translate and address_space_translate_cached.
466 */
467 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
468 hwaddr *xlat,
469 hwaddr *plen_out,
470 hwaddr *page_mask_out,
471 bool is_write,
472 bool is_mmio,
473 AddressSpace **target_as,
474 MemTxAttrs attrs)
475 {
476 MemoryRegionSection *section;
477 hwaddr page_mask = (hwaddr)-1;
478
479 do {
480 hwaddr addr = *xlat;
481 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
482 int iommu_idx = 0;
483 IOMMUTLBEntry iotlb;
484
485 if (imrc->attrs_to_index) {
486 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
487 }
488
489 iotlb = imrc->translate(iommu_mr, addr, is_write ?
490 IOMMU_WO : IOMMU_RO, iommu_idx);
491
492 if (!(iotlb.perm & (1 << is_write))) {
493 goto unassigned;
494 }
495
496 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
497 | (addr & iotlb.addr_mask));
498 page_mask &= iotlb.addr_mask;
499 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
500 *target_as = iotlb.target_as;
501
502 section = address_space_translate_internal(
503 address_space_to_dispatch(iotlb.target_as), addr, xlat,
504 plen_out, is_mmio);
505
506 iommu_mr = memory_region_get_iommu(section->mr);
507 } while (unlikely(iommu_mr));
508
509 if (page_mask_out) {
510 *page_mask_out = page_mask;
511 }
512 return *section;
513
514 unassigned:
515 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
516 }
517
518 /**
519 * flatview_do_translate - translate an address in FlatView
520 *
521 * @fv: the flat view that we want to translate on
522 * @addr: the address to be translated in above address space
523 * @xlat: the translated address offset within memory region. It
524 * cannot be @NULL.
525 * @plen_out: valid read/write length of the translated address. It
526 * can be @NULL when we don't care about it.
527 * @page_mask_out: page mask for the translated address. This
528 * should only be meaningful for IOMMU translated
529 * addresses, since there may be huge pages that this bit
530 * would tell. It can be @NULL if we don't care about it.
531 * @is_write: whether the translation operation is for write
532 * @is_mmio: whether this can be MMIO, set true if it can
533 * @target_as: the address space targeted by the IOMMU
534 * @attrs: memory transaction attributes
535 *
536 * This function is called from RCU critical section
537 */
538 static MemoryRegionSection flatview_do_translate(FlatView *fv,
539 hwaddr addr,
540 hwaddr *xlat,
541 hwaddr *plen_out,
542 hwaddr *page_mask_out,
543 bool is_write,
544 bool is_mmio,
545 AddressSpace **target_as,
546 MemTxAttrs attrs)
547 {
548 MemoryRegionSection *section;
549 IOMMUMemoryRegion *iommu_mr;
550 hwaddr plen = (hwaddr)(-1);
551
552 if (!plen_out) {
553 plen_out = &plen;
554 }
555
556 section = address_space_translate_internal(
557 flatview_to_dispatch(fv), addr, xlat,
558 plen_out, is_mmio);
559
560 iommu_mr = memory_region_get_iommu(section->mr);
561 if (unlikely(iommu_mr)) {
562 return address_space_translate_iommu(iommu_mr, xlat,
563 plen_out, page_mask_out,
564 is_write, is_mmio,
565 target_as, attrs);
566 }
567 if (page_mask_out) {
568 /* Not behind an IOMMU, use default page size. */
569 *page_mask_out = ~TARGET_PAGE_MASK;
570 }
571
572 return *section;
573 }
574
575 /* Called from RCU critical section */
576 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
577 bool is_write, MemTxAttrs attrs)
578 {
579 MemoryRegionSection section;
580 hwaddr xlat, page_mask;
581
582 /*
583 * This can never be MMIO, and we don't really care about plen,
584 * but page mask.
585 */
586 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
587 NULL, &page_mask, is_write, false, &as,
588 attrs);
589
590 /* Illegal translation */
591 if (section.mr == &io_mem_unassigned) {
592 goto iotlb_fail;
593 }
594
595 /* Convert memory region offset into address space offset */
596 xlat += section.offset_within_address_space -
597 section.offset_within_region;
598
599 return (IOMMUTLBEntry) {
600 .target_as = as,
601 .iova = addr & ~page_mask,
602 .translated_addr = xlat & ~page_mask,
603 .addr_mask = page_mask,
604 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
605 .perm = IOMMU_RW,
606 };
607
608 iotlb_fail:
609 return (IOMMUTLBEntry) {0};
610 }
611
612 /* Called from RCU critical section */
613 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
614 hwaddr *plen, bool is_write,
615 MemTxAttrs attrs)
616 {
617 MemoryRegion *mr;
618 MemoryRegionSection section;
619 AddressSpace *as = NULL;
620
621 /* This can be MMIO, so setup MMIO bit. */
622 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
623 is_write, true, &as, attrs);
624 mr = section.mr;
625
626 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
627 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
628 *plen = MIN(page, *plen);
629 }
630
631 return mr;
632 }
633
634 typedef struct TCGIOMMUNotifier {
635 IOMMUNotifier n;
636 MemoryRegion *mr;
637 CPUState *cpu;
638 int iommu_idx;
639 bool active;
640 } TCGIOMMUNotifier;
641
642 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
643 {
644 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
645
646 if (!notifier->active) {
647 return;
648 }
649 tlb_flush(notifier->cpu);
650 notifier->active = false;
651 /* We leave the notifier struct on the list to avoid reallocating it later.
652 * Generally the number of IOMMUs a CPU deals with will be small.
653 * In any case we can't unregister the iommu notifier from a notify
654 * callback.
655 */
656 }
657
658 static void tcg_register_iommu_notifier(CPUState *cpu,
659 IOMMUMemoryRegion *iommu_mr,
660 int iommu_idx)
661 {
662 /* Make sure this CPU has an IOMMU notifier registered for this
663 * IOMMU/IOMMU index combination, so that we can flush its TLB
664 * when the IOMMU tells us the mappings we've cached have changed.
665 */
666 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
667 TCGIOMMUNotifier *notifier;
668 int i;
669
670 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
671 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
672 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
673 break;
674 }
675 }
676 if (i == cpu->iommu_notifiers->len) {
677 /* Not found, add a new entry at the end of the array */
678 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
679 notifier = g_new0(TCGIOMMUNotifier, 1);
680 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
681
682 notifier->mr = mr;
683 notifier->iommu_idx = iommu_idx;
684 notifier->cpu = cpu;
685 /* Rather than trying to register interest in the specific part
686 * of the iommu's address space that we've accessed and then
687 * expand it later as subsequent accesses touch more of it, we
688 * just register interest in the whole thing, on the assumption
689 * that iommu reconfiguration will be rare.
690 */
691 iommu_notifier_init(&notifier->n,
692 tcg_iommu_unmap_notify,
693 IOMMU_NOTIFIER_UNMAP,
694 0,
695 HWADDR_MAX,
696 iommu_idx);
697 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
698 }
699
700 if (!notifier->active) {
701 notifier->active = true;
702 }
703 }
704
705 static void tcg_iommu_free_notifier_list(CPUState *cpu)
706 {
707 /* Destroy the CPU's notifier list */
708 int i;
709 TCGIOMMUNotifier *notifier;
710
711 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
712 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
713 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
714 g_free(notifier);
715 }
716 g_array_free(cpu->iommu_notifiers, true);
717 }
718
719 /* Called from RCU critical section */
720 MemoryRegionSection *
721 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
722 hwaddr *xlat, hwaddr *plen,
723 MemTxAttrs attrs, int *prot)
724 {
725 MemoryRegionSection *section;
726 IOMMUMemoryRegion *iommu_mr;
727 IOMMUMemoryRegionClass *imrc;
728 IOMMUTLBEntry iotlb;
729 int iommu_idx;
730 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
731
732 for (;;) {
733 section = address_space_translate_internal(d, addr, &addr, plen, false);
734
735 iommu_mr = memory_region_get_iommu(section->mr);
736 if (!iommu_mr) {
737 break;
738 }
739
740 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
741
742 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
743 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
744 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
745 * doesn't short-cut its translation table walk.
746 */
747 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
748 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
749 | (addr & iotlb.addr_mask));
750 /* Update the caller's prot bits to remove permissions the IOMMU
751 * is giving us a failure response for. If we get down to no
752 * permissions left at all we can give up now.
753 */
754 if (!(iotlb.perm & IOMMU_RO)) {
755 *prot &= ~(PAGE_READ | PAGE_EXEC);
756 }
757 if (!(iotlb.perm & IOMMU_WO)) {
758 *prot &= ~PAGE_WRITE;
759 }
760
761 if (!*prot) {
762 goto translate_fail;
763 }
764
765 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
766 }
767
768 assert(!memory_region_is_iommu(section->mr));
769 *xlat = addr;
770 return section;
771
772 translate_fail:
773 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
774 }
775 #endif
776
777 #if !defined(CONFIG_USER_ONLY)
778
779 static int cpu_common_post_load(void *opaque, int version_id)
780 {
781 CPUState *cpu = opaque;
782
783 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
784 version_id is increased. */
785 cpu->interrupt_request &= ~0x01;
786 tlb_flush(cpu);
787
788 /* loadvm has just updated the content of RAM, bypassing the
789 * usual mechanisms that ensure we flush TBs for writes to
790 * memory we've translated code from. So we must flush all TBs,
791 * which will now be stale.
792 */
793 tb_flush(cpu);
794
795 return 0;
796 }
797
798 static int cpu_common_pre_load(void *opaque)
799 {
800 CPUState *cpu = opaque;
801
802 cpu->exception_index = -1;
803
804 return 0;
805 }
806
807 static bool cpu_common_exception_index_needed(void *opaque)
808 {
809 CPUState *cpu = opaque;
810
811 return tcg_enabled() && cpu->exception_index != -1;
812 }
813
814 static const VMStateDescription vmstate_cpu_common_exception_index = {
815 .name = "cpu_common/exception_index",
816 .version_id = 1,
817 .minimum_version_id = 1,
818 .needed = cpu_common_exception_index_needed,
819 .fields = (VMStateField[]) {
820 VMSTATE_INT32(exception_index, CPUState),
821 VMSTATE_END_OF_LIST()
822 }
823 };
824
825 static bool cpu_common_crash_occurred_needed(void *opaque)
826 {
827 CPUState *cpu = opaque;
828
829 return cpu->crash_occurred;
830 }
831
832 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
833 .name = "cpu_common/crash_occurred",
834 .version_id = 1,
835 .minimum_version_id = 1,
836 .needed = cpu_common_crash_occurred_needed,
837 .fields = (VMStateField[]) {
838 VMSTATE_BOOL(crash_occurred, CPUState),
839 VMSTATE_END_OF_LIST()
840 }
841 };
842
843 const VMStateDescription vmstate_cpu_common = {
844 .name = "cpu_common",
845 .version_id = 1,
846 .minimum_version_id = 1,
847 .pre_load = cpu_common_pre_load,
848 .post_load = cpu_common_post_load,
849 .fields = (VMStateField[]) {
850 VMSTATE_UINT32(halted, CPUState),
851 VMSTATE_UINT32(interrupt_request, CPUState),
852 VMSTATE_END_OF_LIST()
853 },
854 .subsections = (const VMStateDescription*[]) {
855 &vmstate_cpu_common_exception_index,
856 &vmstate_cpu_common_crash_occurred,
857 NULL
858 }
859 };
860
861 #endif
862
863 CPUState *qemu_get_cpu(int index)
864 {
865 CPUState *cpu;
866
867 CPU_FOREACH(cpu) {
868 if (cpu->cpu_index == index) {
869 return cpu;
870 }
871 }
872
873 return NULL;
874 }
875
876 #if !defined(CONFIG_USER_ONLY)
877 void cpu_address_space_init(CPUState *cpu, int asidx,
878 const char *prefix, MemoryRegion *mr)
879 {
880 CPUAddressSpace *newas;
881 AddressSpace *as = g_new0(AddressSpace, 1);
882 char *as_name;
883
884 assert(mr);
885 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
886 address_space_init(as, mr, as_name);
887 g_free(as_name);
888
889 /* Target code should have set num_ases before calling us */
890 assert(asidx < cpu->num_ases);
891
892 if (asidx == 0) {
893 /* address space 0 gets the convenience alias */
894 cpu->as = as;
895 }
896
897 /* KVM cannot currently support multiple address spaces. */
898 assert(asidx == 0 || !kvm_enabled());
899
900 if (!cpu->cpu_ases) {
901 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
902 }
903
904 newas = &cpu->cpu_ases[asidx];
905 newas->cpu = cpu;
906 newas->as = as;
907 if (tcg_enabled()) {
908 newas->tcg_as_listener.commit = tcg_commit;
909 memory_listener_register(&newas->tcg_as_listener, as);
910 }
911 }
912
913 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
914 {
915 /* Return the AddressSpace corresponding to the specified index */
916 return cpu->cpu_ases[asidx].as;
917 }
918 #endif
919
920 void cpu_exec_unrealizefn(CPUState *cpu)
921 {
922 CPUClass *cc = CPU_GET_CLASS(cpu);
923
924 cpu_list_remove(cpu);
925
926 if (cc->vmsd != NULL) {
927 vmstate_unregister(NULL, cc->vmsd, cpu);
928 }
929 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
930 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
931 }
932 #ifndef CONFIG_USER_ONLY
933 tcg_iommu_free_notifier_list(cpu);
934 #endif
935 }
936
937 Property cpu_common_props[] = {
938 #ifndef CONFIG_USER_ONLY
939 /* Create a memory property for softmmu CPU object,
940 * so users can wire up its memory. (This can't go in qom/cpu.c
941 * because that file is compiled only once for both user-mode
942 * and system builds.) The default if no link is set up is to use
943 * the system address space.
944 */
945 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
946 MemoryRegion *),
947 #endif
948 DEFINE_PROP_END_OF_LIST(),
949 };
950
951 void cpu_exec_initfn(CPUState *cpu)
952 {
953 cpu->as = NULL;
954 cpu->num_ases = 0;
955
956 #ifndef CONFIG_USER_ONLY
957 cpu->thread_id = qemu_get_thread_id();
958 cpu->memory = system_memory;
959 object_ref(OBJECT(cpu->memory));
960 #endif
961 }
962
963 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
964 {
965 CPUClass *cc = CPU_GET_CLASS(cpu);
966 static bool tcg_target_initialized;
967
968 cpu_list_add(cpu);
969
970 if (tcg_enabled() && !tcg_target_initialized) {
971 tcg_target_initialized = true;
972 cc->tcg_initialize();
973 }
974 tlb_init(cpu);
975
976 #ifndef CONFIG_USER_ONLY
977 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
978 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
979 }
980 if (cc->vmsd != NULL) {
981 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
982 }
983
984 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
985 #endif
986 }
987
988 const char *parse_cpu_option(const char *cpu_option)
989 {
990 ObjectClass *oc;
991 CPUClass *cc;
992 gchar **model_pieces;
993 const char *cpu_type;
994
995 model_pieces = g_strsplit(cpu_option, ",", 2);
996 if (!model_pieces[0]) {
997 error_report("-cpu option cannot be empty");
998 exit(1);
999 }
1000
1001 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1002 if (oc == NULL) {
1003 error_report("unable to find CPU model '%s'", model_pieces[0]);
1004 g_strfreev(model_pieces);
1005 exit(EXIT_FAILURE);
1006 }
1007
1008 cpu_type = object_class_get_name(oc);
1009 cc = CPU_CLASS(oc);
1010 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1011 g_strfreev(model_pieces);
1012 return cpu_type;
1013 }
1014
1015 #if defined(CONFIG_USER_ONLY)
1016 void tb_invalidate_phys_addr(target_ulong addr)
1017 {
1018 mmap_lock();
1019 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1020 mmap_unlock();
1021 }
1022
1023 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1024 {
1025 tb_invalidate_phys_addr(pc);
1026 }
1027 #else
1028 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1029 {
1030 ram_addr_t ram_addr;
1031 MemoryRegion *mr;
1032 hwaddr l = 1;
1033
1034 if (!tcg_enabled()) {
1035 return;
1036 }
1037
1038 rcu_read_lock();
1039 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1040 if (!(memory_region_is_ram(mr)
1041 || memory_region_is_romd(mr))) {
1042 rcu_read_unlock();
1043 return;
1044 }
1045 ram_addr = memory_region_get_ram_addr(mr) + addr;
1046 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1047 rcu_read_unlock();
1048 }
1049
1050 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1051 {
1052 MemTxAttrs attrs;
1053 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1054 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1055 if (phys != -1) {
1056 /* Locks grabbed by tb_invalidate_phys_addr */
1057 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1058 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1059 }
1060 }
1061 #endif
1062
1063 #if defined(CONFIG_USER_ONLY)
1064 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1065
1066 {
1067 }
1068
1069 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1070 int flags)
1071 {
1072 return -ENOSYS;
1073 }
1074
1075 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1076 {
1077 }
1078
1079 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1080 int flags, CPUWatchpoint **watchpoint)
1081 {
1082 return -ENOSYS;
1083 }
1084 #else
1085 /* Add a watchpoint. */
1086 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1087 int flags, CPUWatchpoint **watchpoint)
1088 {
1089 CPUWatchpoint *wp;
1090
1091 /* forbid ranges which are empty or run off the end of the address space */
1092 if (len == 0 || (addr + len - 1) < addr) {
1093 error_report("tried to set invalid watchpoint at %"
1094 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1095 return -EINVAL;
1096 }
1097 wp = g_malloc(sizeof(*wp));
1098
1099 wp->vaddr = addr;
1100 wp->len = len;
1101 wp->flags = flags;
1102
1103 /* keep all GDB-injected watchpoints in front */
1104 if (flags & BP_GDB) {
1105 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1106 } else {
1107 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1108 }
1109
1110 tlb_flush_page(cpu, addr);
1111
1112 if (watchpoint)
1113 *watchpoint = wp;
1114 return 0;
1115 }
1116
1117 /* Remove a specific watchpoint. */
1118 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1119 int flags)
1120 {
1121 CPUWatchpoint *wp;
1122
1123 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1124 if (addr == wp->vaddr && len == wp->len
1125 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1126 cpu_watchpoint_remove_by_ref(cpu, wp);
1127 return 0;
1128 }
1129 }
1130 return -ENOENT;
1131 }
1132
1133 /* Remove a specific watchpoint by reference. */
1134 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1135 {
1136 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1137
1138 tlb_flush_page(cpu, watchpoint->vaddr);
1139
1140 g_free(watchpoint);
1141 }
1142
1143 /* Remove all matching watchpoints. */
1144 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1145 {
1146 CPUWatchpoint *wp, *next;
1147
1148 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1149 if (wp->flags & mask) {
1150 cpu_watchpoint_remove_by_ref(cpu, wp);
1151 }
1152 }
1153 }
1154
1155 /* Return true if this watchpoint address matches the specified
1156 * access (ie the address range covered by the watchpoint overlaps
1157 * partially or completely with the address range covered by the
1158 * access).
1159 */
1160 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1161 vaddr addr,
1162 vaddr len)
1163 {
1164 /* We know the lengths are non-zero, but a little caution is
1165 * required to avoid errors in the case where the range ends
1166 * exactly at the top of the address space and so addr + len
1167 * wraps round to zero.
1168 */
1169 vaddr wpend = wp->vaddr + wp->len - 1;
1170 vaddr addrend = addr + len - 1;
1171
1172 return !(addr > wpend || wp->vaddr > addrend);
1173 }
1174
1175 #endif
1176
1177 /* Add a breakpoint. */
1178 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1179 CPUBreakpoint **breakpoint)
1180 {
1181 CPUBreakpoint *bp;
1182
1183 bp = g_malloc(sizeof(*bp));
1184
1185 bp->pc = pc;
1186 bp->flags = flags;
1187
1188 /* keep all GDB-injected breakpoints in front */
1189 if (flags & BP_GDB) {
1190 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1191 } else {
1192 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1193 }
1194
1195 breakpoint_invalidate(cpu, pc);
1196
1197 if (breakpoint) {
1198 *breakpoint = bp;
1199 }
1200 return 0;
1201 }
1202
1203 /* Remove a specific breakpoint. */
1204 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1205 {
1206 CPUBreakpoint *bp;
1207
1208 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1209 if (bp->pc == pc && bp->flags == flags) {
1210 cpu_breakpoint_remove_by_ref(cpu, bp);
1211 return 0;
1212 }
1213 }
1214 return -ENOENT;
1215 }
1216
1217 /* Remove a specific breakpoint by reference. */
1218 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1219 {
1220 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1221
1222 breakpoint_invalidate(cpu, breakpoint->pc);
1223
1224 g_free(breakpoint);
1225 }
1226
1227 /* Remove all matching breakpoints. */
1228 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1229 {
1230 CPUBreakpoint *bp, *next;
1231
1232 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1233 if (bp->flags & mask) {
1234 cpu_breakpoint_remove_by_ref(cpu, bp);
1235 }
1236 }
1237 }
1238
1239 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1240 CPU loop after each instruction */
1241 void cpu_single_step(CPUState *cpu, int enabled)
1242 {
1243 if (cpu->singlestep_enabled != enabled) {
1244 cpu->singlestep_enabled = enabled;
1245 if (kvm_enabled()) {
1246 kvm_update_guest_debug(cpu, 0);
1247 } else {
1248 /* must flush all the translated code to avoid inconsistencies */
1249 /* XXX: only flush what is necessary */
1250 tb_flush(cpu);
1251 }
1252 }
1253 }
1254
1255 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1256 {
1257 va_list ap;
1258 va_list ap2;
1259
1260 va_start(ap, fmt);
1261 va_copy(ap2, ap);
1262 fprintf(stderr, "qemu: fatal: ");
1263 vfprintf(stderr, fmt, ap);
1264 fprintf(stderr, "\n");
1265 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1266 if (qemu_log_separate()) {
1267 qemu_log_lock();
1268 qemu_log("qemu: fatal: ");
1269 qemu_log_vprintf(fmt, ap2);
1270 qemu_log("\n");
1271 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1272 qemu_log_flush();
1273 qemu_log_unlock();
1274 qemu_log_close();
1275 }
1276 va_end(ap2);
1277 va_end(ap);
1278 replay_finish();
1279 #if defined(CONFIG_USER_ONLY)
1280 {
1281 struct sigaction act;
1282 sigfillset(&act.sa_mask);
1283 act.sa_handler = SIG_DFL;
1284 act.sa_flags = 0;
1285 sigaction(SIGABRT, &act, NULL);
1286 }
1287 #endif
1288 abort();
1289 }
1290
1291 #if !defined(CONFIG_USER_ONLY)
1292 /* Called from RCU critical section */
1293 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1294 {
1295 RAMBlock *block;
1296
1297 block = atomic_rcu_read(&ram_list.mru_block);
1298 if (block && addr - block->offset < block->max_length) {
1299 return block;
1300 }
1301 RAMBLOCK_FOREACH(block) {
1302 if (addr - block->offset < block->max_length) {
1303 goto found;
1304 }
1305 }
1306
1307 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1308 abort();
1309
1310 found:
1311 /* It is safe to write mru_block outside the iothread lock. This
1312 * is what happens:
1313 *
1314 * mru_block = xxx
1315 * rcu_read_unlock()
1316 * xxx removed from list
1317 * rcu_read_lock()
1318 * read mru_block
1319 * mru_block = NULL;
1320 * call_rcu(reclaim_ramblock, xxx);
1321 * rcu_read_unlock()
1322 *
1323 * atomic_rcu_set is not needed here. The block was already published
1324 * when it was placed into the list. Here we're just making an extra
1325 * copy of the pointer.
1326 */
1327 ram_list.mru_block = block;
1328 return block;
1329 }
1330
1331 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1332 {
1333 CPUState *cpu;
1334 ram_addr_t start1;
1335 RAMBlock *block;
1336 ram_addr_t end;
1337
1338 assert(tcg_enabled());
1339 end = TARGET_PAGE_ALIGN(start + length);
1340 start &= TARGET_PAGE_MASK;
1341
1342 rcu_read_lock();
1343 block = qemu_get_ram_block(start);
1344 assert(block == qemu_get_ram_block(end - 1));
1345 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1346 CPU_FOREACH(cpu) {
1347 tlb_reset_dirty(cpu, start1, length);
1348 }
1349 rcu_read_unlock();
1350 }
1351
1352 /* Note: start and end must be within the same ram block. */
1353 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1354 ram_addr_t length,
1355 unsigned client)
1356 {
1357 DirtyMemoryBlocks *blocks;
1358 unsigned long end, page;
1359 bool dirty = false;
1360
1361 if (length == 0) {
1362 return false;
1363 }
1364
1365 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1366 page = start >> TARGET_PAGE_BITS;
1367
1368 rcu_read_lock();
1369
1370 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1371
1372 while (page < end) {
1373 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1374 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1375 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1376
1377 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1378 offset, num);
1379 page += num;
1380 }
1381
1382 rcu_read_unlock();
1383
1384 if (dirty && tcg_enabled()) {
1385 tlb_reset_dirty_range_all(start, length);
1386 }
1387
1388 return dirty;
1389 }
1390
1391 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1392 (ram_addr_t start, ram_addr_t length, unsigned client)
1393 {
1394 DirtyMemoryBlocks *blocks;
1395 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1396 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1397 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1398 DirtyBitmapSnapshot *snap;
1399 unsigned long page, end, dest;
1400
1401 snap = g_malloc0(sizeof(*snap) +
1402 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1403 snap->start = first;
1404 snap->end = last;
1405
1406 page = first >> TARGET_PAGE_BITS;
1407 end = last >> TARGET_PAGE_BITS;
1408 dest = 0;
1409
1410 rcu_read_lock();
1411
1412 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1413
1414 while (page < end) {
1415 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1416 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1417 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1418
1419 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1420 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1421 offset >>= BITS_PER_LEVEL;
1422
1423 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1424 blocks->blocks[idx] + offset,
1425 num);
1426 page += num;
1427 dest += num >> BITS_PER_LEVEL;
1428 }
1429
1430 rcu_read_unlock();
1431
1432 if (tcg_enabled()) {
1433 tlb_reset_dirty_range_all(start, length);
1434 }
1435
1436 return snap;
1437 }
1438
1439 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1440 ram_addr_t start,
1441 ram_addr_t length)
1442 {
1443 unsigned long page, end;
1444
1445 assert(start >= snap->start);
1446 assert(start + length <= snap->end);
1447
1448 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1449 page = (start - snap->start) >> TARGET_PAGE_BITS;
1450
1451 while (page < end) {
1452 if (test_bit(page, snap->dirty)) {
1453 return true;
1454 }
1455 page++;
1456 }
1457 return false;
1458 }
1459
1460 /* Called from RCU critical section */
1461 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1462 MemoryRegionSection *section,
1463 target_ulong vaddr,
1464 hwaddr paddr, hwaddr xlat,
1465 int prot,
1466 target_ulong *address)
1467 {
1468 hwaddr iotlb;
1469 CPUWatchpoint *wp;
1470
1471 if (memory_region_is_ram(section->mr)) {
1472 /* Normal RAM. */
1473 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1474 if (!section->readonly) {
1475 iotlb |= PHYS_SECTION_NOTDIRTY;
1476 } else {
1477 iotlb |= PHYS_SECTION_ROM;
1478 }
1479 } else {
1480 AddressSpaceDispatch *d;
1481
1482 d = flatview_to_dispatch(section->fv);
1483 iotlb = section - d->map.sections;
1484 iotlb += xlat;
1485 }
1486
1487 /* Make accesses to pages with watchpoints go via the
1488 watchpoint trap routines. */
1489 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1490 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1491 /* Avoid trapping reads of pages with a write breakpoint. */
1492 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1493 iotlb = PHYS_SECTION_WATCH + paddr;
1494 *address |= TLB_MMIO;
1495 break;
1496 }
1497 }
1498 }
1499
1500 return iotlb;
1501 }
1502 #endif /* defined(CONFIG_USER_ONLY) */
1503
1504 #if !defined(CONFIG_USER_ONLY)
1505
1506 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1507 uint16_t section);
1508 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1509
1510 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1511 qemu_anon_ram_alloc;
1512
1513 /*
1514 * Set a custom physical guest memory alloator.
1515 * Accelerators with unusual needs may need this. Hopefully, we can
1516 * get rid of it eventually.
1517 */
1518 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1519 {
1520 phys_mem_alloc = alloc;
1521 }
1522
1523 static uint16_t phys_section_add(PhysPageMap *map,
1524 MemoryRegionSection *section)
1525 {
1526 /* The physical section number is ORed with a page-aligned
1527 * pointer to produce the iotlb entries. Thus it should
1528 * never overflow into the page-aligned value.
1529 */
1530 assert(map->sections_nb < TARGET_PAGE_SIZE);
1531
1532 if (map->sections_nb == map->sections_nb_alloc) {
1533 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1534 map->sections = g_renew(MemoryRegionSection, map->sections,
1535 map->sections_nb_alloc);
1536 }
1537 map->sections[map->sections_nb] = *section;
1538 memory_region_ref(section->mr);
1539 return map->sections_nb++;
1540 }
1541
1542 static void phys_section_destroy(MemoryRegion *mr)
1543 {
1544 bool have_sub_page = mr->subpage;
1545
1546 memory_region_unref(mr);
1547
1548 if (have_sub_page) {
1549 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1550 object_unref(OBJECT(&subpage->iomem));
1551 g_free(subpage);
1552 }
1553 }
1554
1555 static void phys_sections_free(PhysPageMap *map)
1556 {
1557 while (map->sections_nb > 0) {
1558 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1559 phys_section_destroy(section->mr);
1560 }
1561 g_free(map->sections);
1562 g_free(map->nodes);
1563 }
1564
1565 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1566 {
1567 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1568 subpage_t *subpage;
1569 hwaddr base = section->offset_within_address_space
1570 & TARGET_PAGE_MASK;
1571 MemoryRegionSection *existing = phys_page_find(d, base);
1572 MemoryRegionSection subsection = {
1573 .offset_within_address_space = base,
1574 .size = int128_make64(TARGET_PAGE_SIZE),
1575 };
1576 hwaddr start, end;
1577
1578 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1579
1580 if (!(existing->mr->subpage)) {
1581 subpage = subpage_init(fv, base);
1582 subsection.fv = fv;
1583 subsection.mr = &subpage->iomem;
1584 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1585 phys_section_add(&d->map, &subsection));
1586 } else {
1587 subpage = container_of(existing->mr, subpage_t, iomem);
1588 }
1589 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1590 end = start + int128_get64(section->size) - 1;
1591 subpage_register(subpage, start, end,
1592 phys_section_add(&d->map, section));
1593 }
1594
1595
1596 static void register_multipage(FlatView *fv,
1597 MemoryRegionSection *section)
1598 {
1599 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1600 hwaddr start_addr = section->offset_within_address_space;
1601 uint16_t section_index = phys_section_add(&d->map, section);
1602 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1603 TARGET_PAGE_BITS));
1604
1605 assert(num_pages);
1606 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1607 }
1608
1609 /*
1610 * The range in *section* may look like this:
1611 *
1612 * |s|PPPPPPP|s|
1613 *
1614 * where s stands for subpage and P for page.
1615 */
1616 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1617 {
1618 MemoryRegionSection remain = *section;
1619 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1620
1621 /* register first subpage */
1622 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1623 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1624 - remain.offset_within_address_space;
1625
1626 MemoryRegionSection now = remain;
1627 now.size = int128_min(int128_make64(left), now.size);
1628 register_subpage(fv, &now);
1629 if (int128_eq(remain.size, now.size)) {
1630 return;
1631 }
1632 remain.size = int128_sub(remain.size, now.size);
1633 remain.offset_within_address_space += int128_get64(now.size);
1634 remain.offset_within_region += int128_get64(now.size);
1635 }
1636
1637 /* register whole pages */
1638 if (int128_ge(remain.size, page_size)) {
1639 MemoryRegionSection now = remain;
1640 now.size = int128_and(now.size, int128_neg(page_size));
1641 register_multipage(fv, &now);
1642 if (int128_eq(remain.size, now.size)) {
1643 return;
1644 }
1645 remain.size = int128_sub(remain.size, now.size);
1646 remain.offset_within_address_space += int128_get64(now.size);
1647 remain.offset_within_region += int128_get64(now.size);
1648 }
1649
1650 /* register last subpage */
1651 register_subpage(fv, &remain);
1652 }
1653
1654 void qemu_flush_coalesced_mmio_buffer(void)
1655 {
1656 if (kvm_enabled())
1657 kvm_flush_coalesced_mmio_buffer();
1658 }
1659
1660 void qemu_mutex_lock_ramlist(void)
1661 {
1662 qemu_mutex_lock(&ram_list.mutex);
1663 }
1664
1665 void qemu_mutex_unlock_ramlist(void)
1666 {
1667 qemu_mutex_unlock(&ram_list.mutex);
1668 }
1669
1670 void ram_block_dump(Monitor *mon)
1671 {
1672 RAMBlock *block;
1673 char *psize;
1674
1675 rcu_read_lock();
1676 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1677 "Block Name", "PSize", "Offset", "Used", "Total");
1678 RAMBLOCK_FOREACH(block) {
1679 psize = size_to_str(block->page_size);
1680 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1681 " 0x%016" PRIx64 "\n", block->idstr, psize,
1682 (uint64_t)block->offset,
1683 (uint64_t)block->used_length,
1684 (uint64_t)block->max_length);
1685 g_free(psize);
1686 }
1687 rcu_read_unlock();
1688 }
1689
1690 #ifdef __linux__
1691 /*
1692 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1693 * may or may not name the same files / on the same filesystem now as
1694 * when we actually open and map them. Iterate over the file
1695 * descriptors instead, and use qemu_fd_getpagesize().
1696 */
1697 static int find_min_backend_pagesize(Object *obj, void *opaque)
1698 {
1699 long *hpsize_min = opaque;
1700
1701 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1702 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1703 long hpsize = host_memory_backend_pagesize(backend);
1704
1705 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1706 *hpsize_min = hpsize;
1707 }
1708 }
1709
1710 return 0;
1711 }
1712
1713 static int find_max_backend_pagesize(Object *obj, void *opaque)
1714 {
1715 long *hpsize_max = opaque;
1716
1717 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1718 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1719 long hpsize = host_memory_backend_pagesize(backend);
1720
1721 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1722 *hpsize_max = hpsize;
1723 }
1724 }
1725
1726 return 0;
1727 }
1728
1729 /*
1730 * TODO: We assume right now that all mapped host memory backends are
1731 * used as RAM, however some might be used for different purposes.
1732 */
1733 long qemu_minrampagesize(void)
1734 {
1735 long hpsize = LONG_MAX;
1736 long mainrampagesize;
1737 Object *memdev_root;
1738
1739 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1740
1741 /* it's possible we have memory-backend objects with
1742 * hugepage-backed RAM. these may get mapped into system
1743 * address space via -numa parameters or memory hotplug
1744 * hooks. we want to take these into account, but we
1745 * also want to make sure these supported hugepage
1746 * sizes are applicable across the entire range of memory
1747 * we may boot from, so we take the min across all
1748 * backends, and assume normal pages in cases where a
1749 * backend isn't backed by hugepages.
1750 */
1751 memdev_root = object_resolve_path("/objects", NULL);
1752 if (memdev_root) {
1753 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1754 }
1755 if (hpsize == LONG_MAX) {
1756 /* No additional memory regions found ==> Report main RAM page size */
1757 return mainrampagesize;
1758 }
1759
1760 /* If NUMA is disabled or the NUMA nodes are not backed with a
1761 * memory-backend, then there is at least one node using "normal" RAM,
1762 * so if its page size is smaller we have got to report that size instead.
1763 */
1764 if (hpsize > mainrampagesize &&
1765 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1766 static bool warned;
1767 if (!warned) {
1768 error_report("Huge page support disabled (n/a for main memory).");
1769 warned = true;
1770 }
1771 return mainrampagesize;
1772 }
1773
1774 return hpsize;
1775 }
1776
1777 long qemu_maxrampagesize(void)
1778 {
1779 long pagesize = qemu_mempath_getpagesize(mem_path);
1780 Object *memdev_root = object_resolve_path("/objects", NULL);
1781
1782 if (memdev_root) {
1783 object_child_foreach(memdev_root, find_max_backend_pagesize,
1784 &pagesize);
1785 }
1786 return pagesize;
1787 }
1788 #else
1789 long qemu_minrampagesize(void)
1790 {
1791 return getpagesize();
1792 }
1793 long qemu_maxrampagesize(void)
1794 {
1795 return getpagesize();
1796 }
1797 #endif
1798
1799 #ifdef CONFIG_POSIX
1800 static int64_t get_file_size(int fd)
1801 {
1802 int64_t size = lseek(fd, 0, SEEK_END);
1803 if (size < 0) {
1804 return -errno;
1805 }
1806 return size;
1807 }
1808
1809 static int file_ram_open(const char *path,
1810 const char *region_name,
1811 bool *created,
1812 Error **errp)
1813 {
1814 char *filename;
1815 char *sanitized_name;
1816 char *c;
1817 int fd = -1;
1818
1819 *created = false;
1820 for (;;) {
1821 fd = open(path, O_RDWR);
1822 if (fd >= 0) {
1823 /* @path names an existing file, use it */
1824 break;
1825 }
1826 if (errno == ENOENT) {
1827 /* @path names a file that doesn't exist, create it */
1828 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1829 if (fd >= 0) {
1830 *created = true;
1831 break;
1832 }
1833 } else if (errno == EISDIR) {
1834 /* @path names a directory, create a file there */
1835 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1836 sanitized_name = g_strdup(region_name);
1837 for (c = sanitized_name; *c != '\0'; c++) {
1838 if (*c == '/') {
1839 *c = '_';
1840 }
1841 }
1842
1843 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1844 sanitized_name);
1845 g_free(sanitized_name);
1846
1847 fd = mkstemp(filename);
1848 if (fd >= 0) {
1849 unlink(filename);
1850 g_free(filename);
1851 break;
1852 }
1853 g_free(filename);
1854 }
1855 if (errno != EEXIST && errno != EINTR) {
1856 error_setg_errno(errp, errno,
1857 "can't open backing store %s for guest RAM",
1858 path);
1859 return -1;
1860 }
1861 /*
1862 * Try again on EINTR and EEXIST. The latter happens when
1863 * something else creates the file between our two open().
1864 */
1865 }
1866
1867 return fd;
1868 }
1869
1870 static void *file_ram_alloc(RAMBlock *block,
1871 ram_addr_t memory,
1872 int fd,
1873 bool truncate,
1874 Error **errp)
1875 {
1876 void *area;
1877
1878 block->page_size = qemu_fd_getpagesize(fd);
1879 if (block->mr->align % block->page_size) {
1880 error_setg(errp, "alignment 0x%" PRIx64
1881 " must be multiples of page size 0x%zx",
1882 block->mr->align, block->page_size);
1883 return NULL;
1884 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1885 error_setg(errp, "alignment 0x%" PRIx64
1886 " must be a power of two", block->mr->align);
1887 return NULL;
1888 }
1889 block->mr->align = MAX(block->page_size, block->mr->align);
1890 #if defined(__s390x__)
1891 if (kvm_enabled()) {
1892 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1893 }
1894 #endif
1895
1896 if (memory < block->page_size) {
1897 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1898 "or larger than page size 0x%zx",
1899 memory, block->page_size);
1900 return NULL;
1901 }
1902
1903 memory = ROUND_UP(memory, block->page_size);
1904
1905 /*
1906 * ftruncate is not supported by hugetlbfs in older
1907 * hosts, so don't bother bailing out on errors.
1908 * If anything goes wrong with it under other filesystems,
1909 * mmap will fail.
1910 *
1911 * Do not truncate the non-empty backend file to avoid corrupting
1912 * the existing data in the file. Disabling shrinking is not
1913 * enough. For example, the current vNVDIMM implementation stores
1914 * the guest NVDIMM labels at the end of the backend file. If the
1915 * backend file is later extended, QEMU will not be able to find
1916 * those labels. Therefore, extending the non-empty backend file
1917 * is disabled as well.
1918 */
1919 if (truncate && ftruncate(fd, memory)) {
1920 perror("ftruncate");
1921 }
1922
1923 area = qemu_ram_mmap(fd, memory, block->mr->align,
1924 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1925 if (area == MAP_FAILED) {
1926 error_setg_errno(errp, errno,
1927 "unable to map backing store for guest RAM");
1928 return NULL;
1929 }
1930
1931 if (mem_prealloc) {
1932 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1933 if (errp && *errp) {
1934 qemu_ram_munmap(fd, area, memory);
1935 return NULL;
1936 }
1937 }
1938
1939 block->fd = fd;
1940 return area;
1941 }
1942 #endif
1943
1944 /* Allocate space within the ram_addr_t space that governs the
1945 * dirty bitmaps.
1946 * Called with the ramlist lock held.
1947 */
1948 static ram_addr_t find_ram_offset(ram_addr_t size)
1949 {
1950 RAMBlock *block, *next_block;
1951 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1952
1953 assert(size != 0); /* it would hand out same offset multiple times */
1954
1955 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1956 return 0;
1957 }
1958
1959 RAMBLOCK_FOREACH(block) {
1960 ram_addr_t candidate, next = RAM_ADDR_MAX;
1961
1962 /* Align blocks to start on a 'long' in the bitmap
1963 * which makes the bitmap sync'ing take the fast path.
1964 */
1965 candidate = block->offset + block->max_length;
1966 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1967
1968 /* Search for the closest following block
1969 * and find the gap.
1970 */
1971 RAMBLOCK_FOREACH(next_block) {
1972 if (next_block->offset >= candidate) {
1973 next = MIN(next, next_block->offset);
1974 }
1975 }
1976
1977 /* If it fits remember our place and remember the size
1978 * of gap, but keep going so that we might find a smaller
1979 * gap to fill so avoiding fragmentation.
1980 */
1981 if (next - candidate >= size && next - candidate < mingap) {
1982 offset = candidate;
1983 mingap = next - candidate;
1984 }
1985
1986 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1987 }
1988
1989 if (offset == RAM_ADDR_MAX) {
1990 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1991 (uint64_t)size);
1992 abort();
1993 }
1994
1995 trace_find_ram_offset(size, offset);
1996
1997 return offset;
1998 }
1999
2000 static unsigned long last_ram_page(void)
2001 {
2002 RAMBlock *block;
2003 ram_addr_t last = 0;
2004
2005 rcu_read_lock();
2006 RAMBLOCK_FOREACH(block) {
2007 last = MAX(last, block->offset + block->max_length);
2008 }
2009 rcu_read_unlock();
2010 return last >> TARGET_PAGE_BITS;
2011 }
2012
2013 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2014 {
2015 int ret;
2016
2017 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2018 if (!machine_dump_guest_core(current_machine)) {
2019 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2020 if (ret) {
2021 perror("qemu_madvise");
2022 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2023 "but dump_guest_core=off specified\n");
2024 }
2025 }
2026 }
2027
2028 const char *qemu_ram_get_idstr(RAMBlock *rb)
2029 {
2030 return rb->idstr;
2031 }
2032
2033 void *qemu_ram_get_host_addr(RAMBlock *rb)
2034 {
2035 return rb->host;
2036 }
2037
2038 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2039 {
2040 return rb->offset;
2041 }
2042
2043 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2044 {
2045 return rb->used_length;
2046 }
2047
2048 bool qemu_ram_is_shared(RAMBlock *rb)
2049 {
2050 return rb->flags & RAM_SHARED;
2051 }
2052
2053 /* Note: Only set at the start of postcopy */
2054 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2055 {
2056 return rb->flags & RAM_UF_ZEROPAGE;
2057 }
2058
2059 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2060 {
2061 rb->flags |= RAM_UF_ZEROPAGE;
2062 }
2063
2064 bool qemu_ram_is_migratable(RAMBlock *rb)
2065 {
2066 return rb->flags & RAM_MIGRATABLE;
2067 }
2068
2069 void qemu_ram_set_migratable(RAMBlock *rb)
2070 {
2071 rb->flags |= RAM_MIGRATABLE;
2072 }
2073
2074 void qemu_ram_unset_migratable(RAMBlock *rb)
2075 {
2076 rb->flags &= ~RAM_MIGRATABLE;
2077 }
2078
2079 /* Called with iothread lock held. */
2080 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2081 {
2082 RAMBlock *block;
2083
2084 assert(new_block);
2085 assert(!new_block->idstr[0]);
2086
2087 if (dev) {
2088 char *id = qdev_get_dev_path(dev);
2089 if (id) {
2090 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2091 g_free(id);
2092 }
2093 }
2094 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2095
2096 rcu_read_lock();
2097 RAMBLOCK_FOREACH(block) {
2098 if (block != new_block &&
2099 !strcmp(block->idstr, new_block->idstr)) {
2100 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2101 new_block->idstr);
2102 abort();
2103 }
2104 }
2105 rcu_read_unlock();
2106 }
2107
2108 /* Called with iothread lock held. */
2109 void qemu_ram_unset_idstr(RAMBlock *block)
2110 {
2111 /* FIXME: arch_init.c assumes that this is not called throughout
2112 * migration. Ignore the problem since hot-unplug during migration
2113 * does not work anyway.
2114 */
2115 if (block) {
2116 memset(block->idstr, 0, sizeof(block->idstr));
2117 }
2118 }
2119
2120 size_t qemu_ram_pagesize(RAMBlock *rb)
2121 {
2122 return rb->page_size;
2123 }
2124
2125 /* Returns the largest size of page in use */
2126 size_t qemu_ram_pagesize_largest(void)
2127 {
2128 RAMBlock *block;
2129 size_t largest = 0;
2130
2131 RAMBLOCK_FOREACH(block) {
2132 largest = MAX(largest, qemu_ram_pagesize(block));
2133 }
2134
2135 return largest;
2136 }
2137
2138 static int memory_try_enable_merging(void *addr, size_t len)
2139 {
2140 if (!machine_mem_merge(current_machine)) {
2141 /* disabled by the user */
2142 return 0;
2143 }
2144
2145 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2146 }
2147
2148 /* Only legal before guest might have detected the memory size: e.g. on
2149 * incoming migration, or right after reset.
2150 *
2151 * As memory core doesn't know how is memory accessed, it is up to
2152 * resize callback to update device state and/or add assertions to detect
2153 * misuse, if necessary.
2154 */
2155 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2156 {
2157 assert(block);
2158
2159 newsize = HOST_PAGE_ALIGN(newsize);
2160
2161 if (block->used_length == newsize) {
2162 return 0;
2163 }
2164
2165 if (!(block->flags & RAM_RESIZEABLE)) {
2166 error_setg_errno(errp, EINVAL,
2167 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2168 " in != 0x" RAM_ADDR_FMT, block->idstr,
2169 newsize, block->used_length);
2170 return -EINVAL;
2171 }
2172
2173 if (block->max_length < newsize) {
2174 error_setg_errno(errp, EINVAL,
2175 "Length too large: %s: 0x" RAM_ADDR_FMT
2176 " > 0x" RAM_ADDR_FMT, block->idstr,
2177 newsize, block->max_length);
2178 return -EINVAL;
2179 }
2180
2181 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2182 block->used_length = newsize;
2183 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2184 DIRTY_CLIENTS_ALL);
2185 memory_region_set_size(block->mr, newsize);
2186 if (block->resized) {
2187 block->resized(block->idstr, newsize, block->host);
2188 }
2189 return 0;
2190 }
2191
2192 /* Called with ram_list.mutex held */
2193 static void dirty_memory_extend(ram_addr_t old_ram_size,
2194 ram_addr_t new_ram_size)
2195 {
2196 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2197 DIRTY_MEMORY_BLOCK_SIZE);
2198 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2199 DIRTY_MEMORY_BLOCK_SIZE);
2200 int i;
2201
2202 /* Only need to extend if block count increased */
2203 if (new_num_blocks <= old_num_blocks) {
2204 return;
2205 }
2206
2207 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2208 DirtyMemoryBlocks *old_blocks;
2209 DirtyMemoryBlocks *new_blocks;
2210 int j;
2211
2212 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2213 new_blocks = g_malloc(sizeof(*new_blocks) +
2214 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2215
2216 if (old_num_blocks) {
2217 memcpy(new_blocks->blocks, old_blocks->blocks,
2218 old_num_blocks * sizeof(old_blocks->blocks[0]));
2219 }
2220
2221 for (j = old_num_blocks; j < new_num_blocks; j++) {
2222 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2223 }
2224
2225 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2226
2227 if (old_blocks) {
2228 g_free_rcu(old_blocks, rcu);
2229 }
2230 }
2231 }
2232
2233 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2234 {
2235 RAMBlock *block;
2236 RAMBlock *last_block = NULL;
2237 ram_addr_t old_ram_size, new_ram_size;
2238 Error *err = NULL;
2239
2240 old_ram_size = last_ram_page();
2241
2242 qemu_mutex_lock_ramlist();
2243 new_block->offset = find_ram_offset(new_block->max_length);
2244
2245 if (!new_block->host) {
2246 if (xen_enabled()) {
2247 xen_ram_alloc(new_block->offset, new_block->max_length,
2248 new_block->mr, &err);
2249 if (err) {
2250 error_propagate(errp, err);
2251 qemu_mutex_unlock_ramlist();
2252 return;
2253 }
2254 } else {
2255 new_block->host = phys_mem_alloc(new_block->max_length,
2256 &new_block->mr->align, shared);
2257 if (!new_block->host) {
2258 error_setg_errno(errp, errno,
2259 "cannot set up guest memory '%s'",
2260 memory_region_name(new_block->mr));
2261 qemu_mutex_unlock_ramlist();
2262 return;
2263 }
2264 memory_try_enable_merging(new_block->host, new_block->max_length);
2265 }
2266 }
2267
2268 new_ram_size = MAX(old_ram_size,
2269 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2270 if (new_ram_size > old_ram_size) {
2271 dirty_memory_extend(old_ram_size, new_ram_size);
2272 }
2273 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2274 * QLIST (which has an RCU-friendly variant) does not have insertion at
2275 * tail, so save the last element in last_block.
2276 */
2277 RAMBLOCK_FOREACH(block) {
2278 last_block = block;
2279 if (block->max_length < new_block->max_length) {
2280 break;
2281 }
2282 }
2283 if (block) {
2284 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2285 } else if (last_block) {
2286 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2287 } else { /* list is empty */
2288 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2289 }
2290 ram_list.mru_block = NULL;
2291
2292 /* Write list before version */
2293 smp_wmb();
2294 ram_list.version++;
2295 qemu_mutex_unlock_ramlist();
2296
2297 cpu_physical_memory_set_dirty_range(new_block->offset,
2298 new_block->used_length,
2299 DIRTY_CLIENTS_ALL);
2300
2301 if (new_block->host) {
2302 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2303 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2304 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2305 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2306 ram_block_notify_add(new_block->host, new_block->max_length);
2307 }
2308 }
2309
2310 #ifdef CONFIG_POSIX
2311 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2312 uint32_t ram_flags, int fd,
2313 Error **errp)
2314 {
2315 RAMBlock *new_block;
2316 Error *local_err = NULL;
2317 int64_t file_size;
2318
2319 /* Just support these ram flags by now. */
2320 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2321
2322 if (xen_enabled()) {
2323 error_setg(errp, "-mem-path not supported with Xen");
2324 return NULL;
2325 }
2326
2327 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2328 error_setg(errp,
2329 "host lacks kvm mmu notifiers, -mem-path unsupported");
2330 return NULL;
2331 }
2332
2333 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2334 /*
2335 * file_ram_alloc() needs to allocate just like
2336 * phys_mem_alloc, but we haven't bothered to provide
2337 * a hook there.
2338 */
2339 error_setg(errp,
2340 "-mem-path not supported with this accelerator");
2341 return NULL;
2342 }
2343
2344 size = HOST_PAGE_ALIGN(size);
2345 file_size = get_file_size(fd);
2346 if (file_size > 0 && file_size < size) {
2347 error_setg(errp, "backing store %s size 0x%" PRIx64
2348 " does not match 'size' option 0x" RAM_ADDR_FMT,
2349 mem_path, file_size, size);
2350 return NULL;
2351 }
2352
2353 new_block = g_malloc0(sizeof(*new_block));
2354 new_block->mr = mr;
2355 new_block->used_length = size;
2356 new_block->max_length = size;
2357 new_block->flags = ram_flags;
2358 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2359 if (!new_block->host) {
2360 g_free(new_block);
2361 return NULL;
2362 }
2363
2364 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2365 if (local_err) {
2366 g_free(new_block);
2367 error_propagate(errp, local_err);
2368 return NULL;
2369 }
2370 return new_block;
2371
2372 }
2373
2374
2375 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2376 uint32_t ram_flags, const char *mem_path,
2377 Error **errp)
2378 {
2379 int fd;
2380 bool created;
2381 RAMBlock *block;
2382
2383 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2384 if (fd < 0) {
2385 return NULL;
2386 }
2387
2388 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2389 if (!block) {
2390 if (created) {
2391 unlink(mem_path);
2392 }
2393 close(fd);
2394 return NULL;
2395 }
2396
2397 return block;
2398 }
2399 #endif
2400
2401 static
2402 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2403 void (*resized)(const char*,
2404 uint64_t length,
2405 void *host),
2406 void *host, bool resizeable, bool share,
2407 MemoryRegion *mr, Error **errp)
2408 {
2409 RAMBlock *new_block;
2410 Error *local_err = NULL;
2411
2412 size = HOST_PAGE_ALIGN(size);
2413 max_size = HOST_PAGE_ALIGN(max_size);
2414 new_block = g_malloc0(sizeof(*new_block));
2415 new_block->mr = mr;
2416 new_block->resized = resized;
2417 new_block->used_length = size;
2418 new_block->max_length = max_size;
2419 assert(max_size >= size);
2420 new_block->fd = -1;
2421 new_block->page_size = getpagesize();
2422 new_block->host = host;
2423 if (host) {
2424 new_block->flags |= RAM_PREALLOC;
2425 }
2426 if (resizeable) {
2427 new_block->flags |= RAM_RESIZEABLE;
2428 }
2429 ram_block_add(new_block, &local_err, share);
2430 if (local_err) {
2431 g_free(new_block);
2432 error_propagate(errp, local_err);
2433 return NULL;
2434 }
2435 return new_block;
2436 }
2437
2438 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2439 MemoryRegion *mr, Error **errp)
2440 {
2441 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2442 false, mr, errp);
2443 }
2444
2445 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2446 MemoryRegion *mr, Error **errp)
2447 {
2448 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2449 share, mr, errp);
2450 }
2451
2452 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2453 void (*resized)(const char*,
2454 uint64_t length,
2455 void *host),
2456 MemoryRegion *mr, Error **errp)
2457 {
2458 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2459 false, mr, errp);
2460 }
2461
2462 static void reclaim_ramblock(RAMBlock *block)
2463 {
2464 if (block->flags & RAM_PREALLOC) {
2465 ;
2466 } else if (xen_enabled()) {
2467 xen_invalidate_map_cache_entry(block->host);
2468 #ifndef _WIN32
2469 } else if (block->fd >= 0) {
2470 qemu_ram_munmap(block->fd, block->host, block->max_length);
2471 close(block->fd);
2472 #endif
2473 } else {
2474 qemu_anon_ram_free(block->host, block->max_length);
2475 }
2476 g_free(block);
2477 }
2478
2479 void qemu_ram_free(RAMBlock *block)
2480 {
2481 if (!block) {
2482 return;
2483 }
2484
2485 if (block->host) {
2486 ram_block_notify_remove(block->host, block->max_length);
2487 }
2488
2489 qemu_mutex_lock_ramlist();
2490 QLIST_REMOVE_RCU(block, next);
2491 ram_list.mru_block = NULL;
2492 /* Write list before version */
2493 smp_wmb();
2494 ram_list.version++;
2495 call_rcu(block, reclaim_ramblock, rcu);
2496 qemu_mutex_unlock_ramlist();
2497 }
2498
2499 #ifndef _WIN32
2500 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2501 {
2502 RAMBlock *block;
2503 ram_addr_t offset;
2504 int flags;
2505 void *area, *vaddr;
2506
2507 RAMBLOCK_FOREACH(block) {
2508 offset = addr - block->offset;
2509 if (offset < block->max_length) {
2510 vaddr = ramblock_ptr(block, offset);
2511 if (block->flags & RAM_PREALLOC) {
2512 ;
2513 } else if (xen_enabled()) {
2514 abort();
2515 } else {
2516 flags = MAP_FIXED;
2517 if (block->fd >= 0) {
2518 flags |= (block->flags & RAM_SHARED ?
2519 MAP_SHARED : MAP_PRIVATE);
2520 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2521 flags, block->fd, offset);
2522 } else {
2523 /*
2524 * Remap needs to match alloc. Accelerators that
2525 * set phys_mem_alloc never remap. If they did,
2526 * we'd need a remap hook here.
2527 */
2528 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2529
2530 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2531 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2532 flags, -1, 0);
2533 }
2534 if (area != vaddr) {
2535 error_report("Could not remap addr: "
2536 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2537 length, addr);
2538 exit(1);
2539 }
2540 memory_try_enable_merging(vaddr, length);
2541 qemu_ram_setup_dump(vaddr, length);
2542 }
2543 }
2544 }
2545 }
2546 #endif /* !_WIN32 */
2547
2548 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2549 * This should not be used for general purpose DMA. Use address_space_map
2550 * or address_space_rw instead. For local memory (e.g. video ram) that the
2551 * device owns, use memory_region_get_ram_ptr.
2552 *
2553 * Called within RCU critical section.
2554 */
2555 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2556 {
2557 RAMBlock *block = ram_block;
2558
2559 if (block == NULL) {
2560 block = qemu_get_ram_block(addr);
2561 addr -= block->offset;
2562 }
2563
2564 if (xen_enabled() && block->host == NULL) {
2565 /* We need to check if the requested address is in the RAM
2566 * because we don't want to map the entire memory in QEMU.
2567 * In that case just map until the end of the page.
2568 */
2569 if (block->offset == 0) {
2570 return xen_map_cache(addr, 0, 0, false);
2571 }
2572
2573 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2574 }
2575 return ramblock_ptr(block, addr);
2576 }
2577
2578 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2579 * but takes a size argument.
2580 *
2581 * Called within RCU critical section.
2582 */
2583 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2584 hwaddr *size, bool lock)
2585 {
2586 RAMBlock *block = ram_block;
2587 if (*size == 0) {
2588 return NULL;
2589 }
2590
2591 if (block == NULL) {
2592 block = qemu_get_ram_block(addr);
2593 addr -= block->offset;
2594 }
2595 *size = MIN(*size, block->max_length - addr);
2596
2597 if (xen_enabled() && block->host == NULL) {
2598 /* We need to check if the requested address is in the RAM
2599 * because we don't want to map the entire memory in QEMU.
2600 * In that case just map the requested area.
2601 */
2602 if (block->offset == 0) {
2603 return xen_map_cache(addr, *size, lock, lock);
2604 }
2605
2606 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2607 }
2608
2609 return ramblock_ptr(block, addr);
2610 }
2611
2612 /* Return the offset of a hostpointer within a ramblock */
2613 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2614 {
2615 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2616 assert((uintptr_t)host >= (uintptr_t)rb->host);
2617 assert(res < rb->max_length);
2618
2619 return res;
2620 }
2621
2622 /*
2623 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2624 * in that RAMBlock.
2625 *
2626 * ptr: Host pointer to look up
2627 * round_offset: If true round the result offset down to a page boundary
2628 * *ram_addr: set to result ram_addr
2629 * *offset: set to result offset within the RAMBlock
2630 *
2631 * Returns: RAMBlock (or NULL if not found)
2632 *
2633 * By the time this function returns, the returned pointer is not protected
2634 * by RCU anymore. If the caller is not within an RCU critical section and
2635 * does not hold the iothread lock, it must have other means of protecting the
2636 * pointer, such as a reference to the region that includes the incoming
2637 * ram_addr_t.
2638 */
2639 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2640 ram_addr_t *offset)
2641 {
2642 RAMBlock *block;
2643 uint8_t *host = ptr;
2644
2645 if (xen_enabled()) {
2646 ram_addr_t ram_addr;
2647 rcu_read_lock();
2648 ram_addr = xen_ram_addr_from_mapcache(ptr);
2649 block = qemu_get_ram_block(ram_addr);
2650 if (block) {
2651 *offset = ram_addr - block->offset;
2652 }
2653 rcu_read_unlock();
2654 return block;
2655 }
2656
2657 rcu_read_lock();
2658 block = atomic_rcu_read(&ram_list.mru_block);
2659 if (block && block->host && host - block->host < block->max_length) {
2660 goto found;
2661 }
2662
2663 RAMBLOCK_FOREACH(block) {
2664 /* This case append when the block is not mapped. */
2665 if (block->host == NULL) {
2666 continue;
2667 }
2668 if (host - block->host < block->max_length) {
2669 goto found;
2670 }
2671 }
2672
2673 rcu_read_unlock();
2674 return NULL;
2675
2676 found:
2677 *offset = (host - block->host);
2678 if (round_offset) {
2679 *offset &= TARGET_PAGE_MASK;
2680 }
2681 rcu_read_unlock();
2682 return block;
2683 }
2684
2685 /*
2686 * Finds the named RAMBlock
2687 *
2688 * name: The name of RAMBlock to find
2689 *
2690 * Returns: RAMBlock (or NULL if not found)
2691 */
2692 RAMBlock *qemu_ram_block_by_name(const char *name)
2693 {
2694 RAMBlock *block;
2695
2696 RAMBLOCK_FOREACH(block) {
2697 if (!strcmp(name, block->idstr)) {
2698 return block;
2699 }
2700 }
2701
2702 return NULL;
2703 }
2704
2705 /* Some of the softmmu routines need to translate from a host pointer
2706 (typically a TLB entry) back to a ram offset. */
2707 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2708 {
2709 RAMBlock *block;
2710 ram_addr_t offset;
2711
2712 block = qemu_ram_block_from_host(ptr, false, &offset);
2713 if (!block) {
2714 return RAM_ADDR_INVALID;
2715 }
2716
2717 return block->offset + offset;
2718 }
2719
2720 /* Called within RCU critical section. */
2721 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2722 CPUState *cpu,
2723 vaddr mem_vaddr,
2724 ram_addr_t ram_addr,
2725 unsigned size)
2726 {
2727 ndi->cpu = cpu;
2728 ndi->ram_addr = ram_addr;
2729 ndi->mem_vaddr = mem_vaddr;
2730 ndi->size = size;
2731 ndi->pages = NULL;
2732
2733 assert(tcg_enabled());
2734 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2735 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2736 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2737 }
2738 }
2739
2740 /* Called within RCU critical section. */
2741 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2742 {
2743 if (ndi->pages) {
2744 assert(tcg_enabled());
2745 page_collection_unlock(ndi->pages);
2746 ndi->pages = NULL;
2747 }
2748
2749 /* Set both VGA and migration bits for simplicity and to remove
2750 * the notdirty callback faster.
2751 */
2752 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2753 DIRTY_CLIENTS_NOCODE);
2754 /* we remove the notdirty callback only if the code has been
2755 flushed */
2756 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2757 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2758 }
2759 }
2760
2761 /* Called within RCU critical section. */
2762 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2763 uint64_t val, unsigned size)
2764 {
2765 NotDirtyInfo ndi;
2766
2767 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2768 ram_addr, size);
2769
2770 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2771 memory_notdirty_write_complete(&ndi);
2772 }
2773
2774 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2775 unsigned size, bool is_write,
2776 MemTxAttrs attrs)
2777 {
2778 return is_write;
2779 }
2780
2781 static const MemoryRegionOps notdirty_mem_ops = {
2782 .write = notdirty_mem_write,
2783 .valid.accepts = notdirty_mem_accepts,
2784 .endianness = DEVICE_NATIVE_ENDIAN,
2785 .valid = {
2786 .min_access_size = 1,
2787 .max_access_size = 8,
2788 .unaligned = false,
2789 },
2790 .impl = {
2791 .min_access_size = 1,
2792 .max_access_size = 8,
2793 .unaligned = false,
2794 },
2795 };
2796
2797 /* Generate a debug exception if a watchpoint has been hit. */
2798 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2799 {
2800 CPUState *cpu = current_cpu;
2801 CPUClass *cc = CPU_GET_CLASS(cpu);
2802 target_ulong vaddr;
2803 CPUWatchpoint *wp;
2804
2805 assert(tcg_enabled());
2806 if (cpu->watchpoint_hit) {
2807 /* We re-entered the check after replacing the TB. Now raise
2808 * the debug interrupt so that is will trigger after the
2809 * current instruction. */
2810 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2811 return;
2812 }
2813 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2814 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2815 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2816 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2817 && (wp->flags & flags)) {
2818 if (flags == BP_MEM_READ) {
2819 wp->flags |= BP_WATCHPOINT_HIT_READ;
2820 } else {
2821 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2822 }
2823 wp->hitaddr = vaddr;
2824 wp->hitattrs = attrs;
2825 if (!cpu->watchpoint_hit) {
2826 if (wp->flags & BP_CPU &&
2827 !cc->debug_check_watchpoint(cpu, wp)) {
2828 wp->flags &= ~BP_WATCHPOINT_HIT;
2829 continue;
2830 }
2831 cpu->watchpoint_hit = wp;
2832
2833 mmap_lock();
2834 tb_check_watchpoint(cpu);
2835 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2836 cpu->exception_index = EXCP_DEBUG;
2837 mmap_unlock();
2838 cpu_loop_exit(cpu);
2839 } else {
2840 /* Force execution of one insn next time. */
2841 cpu->cflags_next_tb = 1 | curr_cflags();
2842 mmap_unlock();
2843 cpu_loop_exit_noexc(cpu);
2844 }
2845 }
2846 } else {
2847 wp->flags &= ~BP_WATCHPOINT_HIT;
2848 }
2849 }
2850 }
2851
2852 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2853 so these check for a hit then pass through to the normal out-of-line
2854 phys routines. */
2855 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2856 unsigned size, MemTxAttrs attrs)
2857 {
2858 MemTxResult res;
2859 uint64_t data;
2860 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2861 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2862
2863 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2864 switch (size) {
2865 case 1:
2866 data = address_space_ldub(as, addr, attrs, &res);
2867 break;
2868 case 2:
2869 data = address_space_lduw(as, addr, attrs, &res);
2870 break;
2871 case 4:
2872 data = address_space_ldl(as, addr, attrs, &res);
2873 break;
2874 case 8:
2875 data = address_space_ldq(as, addr, attrs, &res);
2876 break;
2877 default: abort();
2878 }
2879 *pdata = data;
2880 return res;
2881 }
2882
2883 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2884 uint64_t val, unsigned size,
2885 MemTxAttrs attrs)
2886 {
2887 MemTxResult res;
2888 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2889 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2890
2891 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2892 switch (size) {
2893 case 1:
2894 address_space_stb(as, addr, val, attrs, &res);
2895 break;
2896 case 2:
2897 address_space_stw(as, addr, val, attrs, &res);
2898 break;
2899 case 4:
2900 address_space_stl(as, addr, val, attrs, &res);
2901 break;
2902 case 8:
2903 address_space_stq(as, addr, val, attrs, &res);
2904 break;
2905 default: abort();
2906 }
2907 return res;
2908 }
2909
2910 static const MemoryRegionOps watch_mem_ops = {
2911 .read_with_attrs = watch_mem_read,
2912 .write_with_attrs = watch_mem_write,
2913 .endianness = DEVICE_NATIVE_ENDIAN,
2914 .valid = {
2915 .min_access_size = 1,
2916 .max_access_size = 8,
2917 .unaligned = false,
2918 },
2919 .impl = {
2920 .min_access_size = 1,
2921 .max_access_size = 8,
2922 .unaligned = false,
2923 },
2924 };
2925
2926 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2927 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2928 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2929 const uint8_t *buf, hwaddr len);
2930 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2931 bool is_write, MemTxAttrs attrs);
2932
2933 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2934 unsigned len, MemTxAttrs attrs)
2935 {
2936 subpage_t *subpage = opaque;
2937 uint8_t buf[8];
2938 MemTxResult res;
2939
2940 #if defined(DEBUG_SUBPAGE)
2941 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2942 subpage, len, addr);
2943 #endif
2944 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2945 if (res) {
2946 return res;
2947 }
2948 *data = ldn_p(buf, len);
2949 return MEMTX_OK;
2950 }
2951
2952 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2953 uint64_t value, unsigned len, MemTxAttrs attrs)
2954 {
2955 subpage_t *subpage = opaque;
2956 uint8_t buf[8];
2957
2958 #if defined(DEBUG_SUBPAGE)
2959 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2960 " value %"PRIx64"\n",
2961 __func__, subpage, len, addr, value);
2962 #endif
2963 stn_p(buf, len, value);
2964 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2965 }
2966
2967 static bool subpage_accepts(void *opaque, hwaddr addr,
2968 unsigned len, bool is_write,
2969 MemTxAttrs attrs)
2970 {
2971 subpage_t *subpage = opaque;
2972 #if defined(DEBUG_SUBPAGE)
2973 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2974 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2975 #endif
2976
2977 return flatview_access_valid(subpage->fv, addr + subpage->base,
2978 len, is_write, attrs);
2979 }
2980
2981 static const MemoryRegionOps subpage_ops = {
2982 .read_with_attrs = subpage_read,
2983 .write_with_attrs = subpage_write,
2984 .impl.min_access_size = 1,
2985 .impl.max_access_size = 8,
2986 .valid.min_access_size = 1,
2987 .valid.max_access_size = 8,
2988 .valid.accepts = subpage_accepts,
2989 .endianness = DEVICE_NATIVE_ENDIAN,
2990 };
2991
2992 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2993 uint16_t section)
2994 {
2995 int idx, eidx;
2996
2997 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2998 return -1;
2999 idx = SUBPAGE_IDX(start);
3000 eidx = SUBPAGE_IDX(end);
3001 #if defined(DEBUG_SUBPAGE)
3002 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3003 __func__, mmio, start, end, idx, eidx, section);
3004 #endif
3005 for (; idx <= eidx; idx++) {
3006 mmio->sub_section[idx] = section;
3007 }
3008
3009 return 0;
3010 }
3011
3012 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
3013 {
3014 subpage_t *mmio;
3015
3016 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
3017 mmio->fv = fv;
3018 mmio->base = base;
3019 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
3020 NULL, TARGET_PAGE_SIZE);
3021 mmio->iomem.subpage = true;
3022 #if defined(DEBUG_SUBPAGE)
3023 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3024 mmio, base, TARGET_PAGE_SIZE);
3025 #endif
3026 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
3027
3028 return mmio;
3029 }
3030
3031 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
3032 {
3033 assert(fv);
3034 MemoryRegionSection section = {
3035 .fv = fv,
3036 .mr = mr,
3037 .offset_within_address_space = 0,
3038 .offset_within_region = 0,
3039 .size = int128_2_64(),
3040 };
3041
3042 return phys_section_add(map, &section);
3043 }
3044
3045 static void readonly_mem_write(void *opaque, hwaddr addr,
3046 uint64_t val, unsigned size)
3047 {
3048 /* Ignore any write to ROM. */
3049 }
3050
3051 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3052 unsigned size, bool is_write,
3053 MemTxAttrs attrs)
3054 {
3055 return is_write;
3056 }
3057
3058 /* This will only be used for writes, because reads are special cased
3059 * to directly access the underlying host ram.
3060 */
3061 static const MemoryRegionOps readonly_mem_ops = {
3062 .write = readonly_mem_write,
3063 .valid.accepts = readonly_mem_accepts,
3064 .endianness = DEVICE_NATIVE_ENDIAN,
3065 .valid = {
3066 .min_access_size = 1,
3067 .max_access_size = 8,
3068 .unaligned = false,
3069 },
3070 .impl = {
3071 .min_access_size = 1,
3072 .max_access_size = 8,
3073 .unaligned = false,
3074 },
3075 };
3076
3077 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3078 hwaddr index, MemTxAttrs attrs)
3079 {
3080 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3081 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3082 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3083 MemoryRegionSection *sections = d->map.sections;
3084
3085 return &sections[index & ~TARGET_PAGE_MASK];
3086 }
3087
3088 static void io_mem_init(void)
3089 {
3090 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3091 NULL, NULL, UINT64_MAX);
3092 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3093 NULL, UINT64_MAX);
3094
3095 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3096 * which can be called without the iothread mutex.
3097 */
3098 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3099 NULL, UINT64_MAX);
3100 memory_region_clear_global_locking(&io_mem_notdirty);
3101
3102 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3103 NULL, UINT64_MAX);
3104 }
3105
3106 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3107 {
3108 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3109 uint16_t n;
3110
3111 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3112 assert(n == PHYS_SECTION_UNASSIGNED);
3113 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3114 assert(n == PHYS_SECTION_NOTDIRTY);
3115 n = dummy_section(&d->map, fv, &io_mem_rom);
3116 assert(n == PHYS_SECTION_ROM);
3117 n = dummy_section(&d->map, fv, &io_mem_watch);
3118 assert(n == PHYS_SECTION_WATCH);
3119
3120 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3121
3122 return d;
3123 }
3124
3125 void address_space_dispatch_free(AddressSpaceDispatch *d)
3126 {
3127 phys_sections_free(&d->map);
3128 g_free(d);
3129 }
3130
3131 static void tcg_commit(MemoryListener *listener)
3132 {
3133 CPUAddressSpace *cpuas;
3134 AddressSpaceDispatch *d;
3135
3136 assert(tcg_enabled());
3137 /* since each CPU stores ram addresses in its TLB cache, we must
3138 reset the modified entries */
3139 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3140 cpu_reloading_memory_map();
3141 /* The CPU and TLB are protected by the iothread lock.
3142 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3143 * may have split the RCU critical section.
3144 */
3145 d = address_space_to_dispatch(cpuas->as);
3146 atomic_rcu_set(&cpuas->memory_dispatch, d);
3147 tlb_flush(cpuas->cpu);
3148 }
3149
3150 static void memory_map_init(void)
3151 {
3152 system_memory = g_malloc(sizeof(*system_memory));
3153
3154 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3155 address_space_init(&address_space_memory, system_memory, "memory");
3156
3157 system_io = g_malloc(sizeof(*system_io));
3158 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3159 65536);
3160 address_space_init(&address_space_io, system_io, "I/O");
3161 }
3162
3163 MemoryRegion *get_system_memory(void)
3164 {
3165 return system_memory;
3166 }
3167
3168 MemoryRegion *get_system_io(void)
3169 {
3170 return system_io;
3171 }
3172
3173 #endif /* !defined(CONFIG_USER_ONLY) */
3174
3175 /* physical memory access (slow version, mainly for debug) */
3176 #if defined(CONFIG_USER_ONLY)
3177 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3178 uint8_t *buf, target_ulong len, int is_write)
3179 {
3180 int flags;
3181 target_ulong l, page;
3182 void * p;
3183
3184 while (len > 0) {
3185 page = addr & TARGET_PAGE_MASK;
3186 l = (page + TARGET_PAGE_SIZE) - addr;
3187 if (l > len)
3188 l = len;
3189 flags = page_get_flags(page);
3190 if (!(flags & PAGE_VALID))
3191 return -1;
3192 if (is_write) {
3193 if (!(flags & PAGE_WRITE))
3194 return -1;
3195 /* XXX: this code should not depend on lock_user */
3196 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3197 return -1;
3198 memcpy(p, buf, l);
3199 unlock_user(p, addr, l);
3200 } else {
3201 if (!(flags & PAGE_READ))
3202 return -1;
3203 /* XXX: this code should not depend on lock_user */
3204 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3205 return -1;
3206 memcpy(buf, p, l);
3207 unlock_user(p, addr, 0);
3208 }
3209 len -= l;
3210 buf += l;
3211 addr += l;
3212 }
3213 return 0;
3214 }
3215
3216 #else
3217
3218 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3219 hwaddr length)
3220 {
3221 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3222 addr += memory_region_get_ram_addr(mr);
3223
3224 /* No early return if dirty_log_mask is or becomes 0, because
3225 * cpu_physical_memory_set_dirty_range will still call
3226 * xen_modified_memory.
3227 */
3228 if (dirty_log_mask) {
3229 dirty_log_mask =
3230 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3231 }
3232 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3233 assert(tcg_enabled());
3234 tb_invalidate_phys_range(addr, addr + length);
3235 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3236 }
3237 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3238 }
3239
3240 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3241 {
3242 /*
3243 * In principle this function would work on other memory region types too,
3244 * but the ROM device use case is the only one where this operation is
3245 * necessary. Other memory regions should use the
3246 * address_space_read/write() APIs.
3247 */
3248 assert(memory_region_is_romd(mr));
3249
3250 invalidate_and_set_dirty(mr, addr, size);
3251 }
3252
3253 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3254 {
3255 unsigned access_size_max = mr->ops->valid.max_access_size;
3256
3257 /* Regions are assumed to support 1-4 byte accesses unless
3258 otherwise specified. */
3259 if (access_size_max == 0) {
3260 access_size_max = 4;
3261 }
3262
3263 /* Bound the maximum access by the alignment of the address. */
3264 if (!mr->ops->impl.unaligned) {
3265 unsigned align_size_max = addr & -addr;
3266 if (align_size_max != 0 && align_size_max < access_size_max) {
3267 access_size_max = align_size_max;
3268 }
3269 }
3270
3271 /* Don't attempt accesses larger than the maximum. */
3272 if (l > access_size_max) {
3273 l = access_size_max;
3274 }
3275 l = pow2floor(l);
3276
3277 return l;
3278 }
3279
3280 static bool prepare_mmio_access(MemoryRegion *mr)
3281 {
3282 bool unlocked = !qemu_mutex_iothread_locked();
3283 bool release_lock = false;
3284
3285 if (unlocked && mr->global_locking) {
3286 qemu_mutex_lock_iothread();
3287 unlocked = false;
3288 release_lock = true;
3289 }
3290 if (mr->flush_coalesced_mmio) {
3291 if (unlocked) {
3292 qemu_mutex_lock_iothread();
3293 }
3294 qemu_flush_coalesced_mmio_buffer();
3295 if (unlocked) {
3296 qemu_mutex_unlock_iothread();
3297 }
3298 }
3299
3300 return release_lock;
3301 }
3302
3303 /* Called within RCU critical section. */
3304 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3305 MemTxAttrs attrs,
3306 const uint8_t *buf,
3307 hwaddr len, hwaddr addr1,
3308 hwaddr l, MemoryRegion *mr)
3309 {
3310 uint8_t *ptr;
3311 uint64_t val;
3312 MemTxResult result = MEMTX_OK;
3313 bool release_lock = false;
3314
3315 for (;;) {
3316 if (!memory_access_is_direct(mr, true)) {
3317 release_lock |= prepare_mmio_access(mr);
3318 l = memory_access_size(mr, l, addr1);
3319 /* XXX: could force current_cpu to NULL to avoid
3320 potential bugs */
3321 val = ldn_p(buf, l);
3322 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3323 } else {
3324 /* RAM case */
3325 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3326 memcpy(ptr, buf, l);
3327 invalidate_and_set_dirty(mr, addr1, l);
3328 }
3329
3330 if (release_lock) {
3331 qemu_mutex_unlock_iothread();
3332 release_lock = false;
3333 }
3334
3335 len -= l;
3336 buf += l;
3337 addr += l;
3338
3339 if (!len) {
3340 break;
3341 }
3342
3343 l = len;
3344 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3345 }
3346
3347 return result;
3348 }
3349
3350 /* Called from RCU critical section. */
3351 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3352 const uint8_t *buf, hwaddr len)
3353 {
3354 hwaddr l;
3355 hwaddr addr1;
3356 MemoryRegion *mr;
3357 MemTxResult result = MEMTX_OK;
3358
3359 l = len;
3360 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3361 result = flatview_write_continue(fv, addr, attrs, buf, len,
3362 addr1, l, mr);
3363
3364 return result;
3365 }
3366
3367 /* Called within RCU critical section. */
3368 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3369 MemTxAttrs attrs, uint8_t *buf,
3370 hwaddr len, hwaddr addr1, hwaddr l,
3371 MemoryRegion *mr)
3372 {
3373 uint8_t *ptr;
3374 uint64_t val;
3375 MemTxResult result = MEMTX_OK;
3376 bool release_lock = false;
3377
3378 for (;;) {
3379 if (!memory_access_is_direct(mr, false)) {
3380 /* I/O case */
3381 release_lock |= prepare_mmio_access(mr);
3382 l = memory_access_size(mr, l, addr1);
3383 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3384 stn_p(buf, l, val);
3385 } else {
3386 /* RAM case */
3387 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3388 memcpy(buf, ptr, l);
3389 }
3390
3391 if (release_lock) {
3392 qemu_mutex_unlock_iothread();
3393 release_lock = false;
3394 }
3395
3396 len -= l;
3397 buf += l;
3398 addr += l;
3399
3400 if (!len) {
3401 break;
3402 }
3403
3404 l = len;
3405 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3406 }
3407
3408 return result;
3409 }
3410
3411 /* Called from RCU critical section. */
3412 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3413 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3414 {
3415 hwaddr l;
3416 hwaddr addr1;
3417 MemoryRegion *mr;
3418
3419 l = len;
3420 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3421 return flatview_read_continue(fv, addr, attrs, buf, len,
3422 addr1, l, mr);
3423 }
3424
3425 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3426 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3427 {
3428 MemTxResult result = MEMTX_OK;
3429 FlatView *fv;
3430
3431 if (len > 0) {
3432 rcu_read_lock();
3433 fv = address_space_to_flatview(as);
3434 result = flatview_read(fv, addr, attrs, buf, len);
3435 rcu_read_unlock();
3436 }
3437
3438 return result;
3439 }
3440
3441 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3442 MemTxAttrs attrs,
3443 const uint8_t *buf, hwaddr len)
3444 {
3445 MemTxResult result = MEMTX_OK;
3446 FlatView *fv;
3447
3448 if (len > 0) {
3449 rcu_read_lock();
3450 fv = address_space_to_flatview(as);
3451 result = flatview_write(fv, addr, attrs, buf, len);
3452 rcu_read_unlock();
3453 }
3454
3455 return result;
3456 }
3457
3458 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3459 uint8_t *buf, hwaddr len, bool is_write)
3460 {
3461 if (is_write) {
3462 return address_space_write(as, addr, attrs, buf, len);
3463 } else {
3464 return address_space_read_full(as, addr, attrs, buf, len);
3465 }
3466 }
3467
3468 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3469 hwaddr len, int is_write)
3470 {
3471 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3472 buf, len, is_write);
3473 }
3474
3475 enum write_rom_type {
3476 WRITE_DATA,
3477 FLUSH_CACHE,
3478 };
3479
3480 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3481 hwaddr addr,
3482 MemTxAttrs attrs,
3483 const uint8_t *buf,
3484 hwaddr len,
3485 enum write_rom_type type)
3486 {
3487 hwaddr l;
3488 uint8_t *ptr;
3489 hwaddr addr1;
3490 MemoryRegion *mr;
3491
3492 rcu_read_lock();
3493 while (len > 0) {
3494 l = len;
3495 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3496
3497 if (!(memory_region_is_ram(mr) ||
3498 memory_region_is_romd(mr))) {
3499 l = memory_access_size(mr, l, addr1);
3500 } else {
3501 /* ROM/RAM case */
3502 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3503 switch (type) {
3504 case WRITE_DATA:
3505 memcpy(ptr, buf, l);
3506 invalidate_and_set_dirty(mr, addr1, l);
3507 break;
3508 case FLUSH_CACHE:
3509 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3510 break;
3511 }
3512 }
3513 len -= l;
3514 buf += l;
3515 addr += l;
3516 }
3517 rcu_read_unlock();
3518 return MEMTX_OK;
3519 }
3520
3521 /* used for ROM loading : can write in RAM and ROM */
3522 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3523 MemTxAttrs attrs,
3524 const uint8_t *buf, hwaddr len)
3525 {
3526 return address_space_write_rom_internal(as, addr, attrs,
3527 buf, len, WRITE_DATA);
3528 }
3529
3530 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3531 {
3532 /*
3533 * This function should do the same thing as an icache flush that was
3534 * triggered from within the guest. For TCG we are always cache coherent,
3535 * so there is no need to flush anything. For KVM / Xen we need to flush
3536 * the host's instruction cache at least.
3537 */
3538 if (tcg_enabled()) {
3539 return;
3540 }
3541
3542 address_space_write_rom_internal(&address_space_memory,
3543 start, MEMTXATTRS_UNSPECIFIED,
3544 NULL, len, FLUSH_CACHE);
3545 }
3546
3547 typedef struct {
3548 MemoryRegion *mr;
3549 void *buffer;
3550 hwaddr addr;
3551 hwaddr len;
3552 bool in_use;
3553 } BounceBuffer;
3554
3555 static BounceBuffer bounce;
3556
3557 typedef struct MapClient {
3558 QEMUBH *bh;
3559 QLIST_ENTRY(MapClient) link;
3560 } MapClient;
3561
3562 QemuMutex map_client_list_lock;
3563 static QLIST_HEAD(, MapClient) map_client_list
3564 = QLIST_HEAD_INITIALIZER(map_client_list);
3565
3566 static void cpu_unregister_map_client_do(MapClient *client)
3567 {
3568 QLIST_REMOVE(client, link);
3569 g_free(client);
3570 }
3571
3572 static void cpu_notify_map_clients_locked(void)
3573 {
3574 MapClient *client;
3575
3576 while (!QLIST_EMPTY(&map_client_list)) {
3577 client = QLIST_FIRST(&map_client_list);
3578 qemu_bh_schedule(client->bh);
3579 cpu_unregister_map_client_do(client);
3580 }
3581 }
3582
3583 void cpu_register_map_client(QEMUBH *bh)
3584 {
3585 MapClient *client = g_malloc(sizeof(*client));
3586
3587 qemu_mutex_lock(&map_client_list_lock);
3588 client->bh = bh;
3589 QLIST_INSERT_HEAD(&map_client_list, client, link);
3590 if (!atomic_read(&bounce.in_use)) {
3591 cpu_notify_map_clients_locked();
3592 }
3593 qemu_mutex_unlock(&map_client_list_lock);
3594 }
3595
3596 void cpu_exec_init_all(void)
3597 {
3598 qemu_mutex_init(&ram_list.mutex);
3599 /* The data structures we set up here depend on knowing the page size,
3600 * so no more changes can be made after this point.
3601 * In an ideal world, nothing we did before we had finished the
3602 * machine setup would care about the target page size, and we could
3603 * do this much later, rather than requiring board models to state
3604 * up front what their requirements are.
3605 */
3606 finalize_target_page_bits();
3607 io_mem_init();
3608 memory_map_init();
3609 qemu_mutex_init(&map_client_list_lock);
3610 }
3611
3612 void cpu_unregister_map_client(QEMUBH *bh)
3613 {
3614 MapClient *client;
3615
3616 qemu_mutex_lock(&map_client_list_lock);
3617 QLIST_FOREACH(client, &map_client_list, link) {
3618 if (client->bh == bh) {
3619 cpu_unregister_map_client_do(client);
3620 break;
3621 }
3622 }
3623 qemu_mutex_unlock(&map_client_list_lock);
3624 }
3625
3626 static void cpu_notify_map_clients(void)
3627 {
3628 qemu_mutex_lock(&map_client_list_lock);
3629 cpu_notify_map_clients_locked();
3630 qemu_mutex_unlock(&map_client_list_lock);
3631 }
3632
3633 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3634 bool is_write, MemTxAttrs attrs)
3635 {
3636 MemoryRegion *mr;
3637 hwaddr l, xlat;
3638
3639 while (len > 0) {
3640 l = len;
3641 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3642 if (!memory_access_is_direct(mr, is_write)) {
3643 l = memory_access_size(mr, l, addr);
3644 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3645 return false;
3646 }
3647 }
3648
3649 len -= l;
3650 addr += l;
3651 }
3652 return true;
3653 }
3654
3655 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3656 hwaddr len, bool is_write,
3657 MemTxAttrs attrs)
3658 {
3659 FlatView *fv;
3660 bool result;
3661
3662 rcu_read_lock();
3663 fv = address_space_to_flatview(as);
3664 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3665 rcu_read_unlock();
3666 return result;
3667 }
3668
3669 static hwaddr
3670 flatview_extend_translation(FlatView *fv, hwaddr addr,
3671 hwaddr target_len,
3672 MemoryRegion *mr, hwaddr base, hwaddr len,
3673 bool is_write, MemTxAttrs attrs)
3674 {
3675 hwaddr done = 0;
3676 hwaddr xlat;
3677 MemoryRegion *this_mr;
3678
3679 for (;;) {
3680 target_len -= len;
3681 addr += len;
3682 done += len;
3683 if (target_len == 0) {
3684 return done;
3685 }
3686
3687 len = target_len;
3688 this_mr = flatview_translate(fv, addr, &xlat,
3689 &len, is_write, attrs);
3690 if (this_mr != mr || xlat != base + done) {
3691 return done;
3692 }
3693 }
3694 }
3695
3696 /* Map a physical memory region into a host virtual address.
3697 * May map a subset of the requested range, given by and returned in *plen.
3698 * May return NULL if resources needed to perform the mapping are exhausted.
3699 * Use only for reads OR writes - not for read-modify-write operations.
3700 * Use cpu_register_map_client() to know when retrying the map operation is
3701 * likely to succeed.
3702 */
3703 void *address_space_map(AddressSpace *as,
3704 hwaddr addr,
3705 hwaddr *plen,
3706 bool is_write,
3707 MemTxAttrs attrs)
3708 {
3709 hwaddr len = *plen;
3710 hwaddr l, xlat;
3711 MemoryRegion *mr;
3712 void *ptr;
3713 FlatView *fv;
3714
3715 if (len == 0) {
3716 return NULL;
3717 }
3718
3719 l = len;
3720 rcu_read_lock();
3721 fv = address_space_to_flatview(as);
3722 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3723
3724 if (!memory_access_is_direct(mr, is_write)) {
3725 if (atomic_xchg(&bounce.in_use, true)) {
3726 rcu_read_unlock();
3727 return NULL;
3728 }
3729 /* Avoid unbounded allocations */
3730 l = MIN(l, TARGET_PAGE_SIZE);
3731 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3732 bounce.addr = addr;
3733 bounce.len = l;
3734
3735 memory_region_ref(mr);
3736 bounce.mr = mr;
3737 if (!is_write) {
3738 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3739 bounce.buffer, l);
3740 }
3741
3742 rcu_read_unlock();
3743 *plen = l;
3744 return bounce.buffer;
3745 }
3746
3747
3748 memory_region_ref(mr);
3749 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3750 l, is_write, attrs);
3751 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3752 rcu_read_unlock();
3753
3754 return ptr;
3755 }
3756
3757 /* Unmaps a memory region previously mapped by address_space_map().
3758 * Will also mark the memory as dirty if is_write == 1. access_len gives
3759 * the amount of memory that was actually read or written by the caller.
3760 */
3761 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3762 int is_write, hwaddr access_len)
3763 {
3764 if (buffer != bounce.buffer) {
3765 MemoryRegion *mr;
3766 ram_addr_t addr1;
3767
3768 mr = memory_region_from_host(buffer, &addr1);
3769 assert(mr != NULL);
3770 if (is_write) {
3771 invalidate_and_set_dirty(mr, addr1, access_len);
3772 }
3773 if (xen_enabled()) {
3774 xen_invalidate_map_cache_entry(buffer);
3775 }
3776 memory_region_unref(mr);
3777 return;
3778 }
3779 if (is_write) {
3780 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3781 bounce.buffer, access_len);
3782 }
3783 qemu_vfree(bounce.buffer);
3784 bounce.buffer = NULL;
3785 memory_region_unref(bounce.mr);
3786 atomic_mb_set(&bounce.in_use, false);
3787 cpu_notify_map_clients();
3788 }
3789
3790 void *cpu_physical_memory_map(hwaddr addr,
3791 hwaddr *plen,
3792 int is_write)
3793 {
3794 return address_space_map(&address_space_memory, addr, plen, is_write,
3795 MEMTXATTRS_UNSPECIFIED);
3796 }
3797
3798 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3799 int is_write, hwaddr access_len)
3800 {
3801 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3802 }
3803
3804 #define ARG1_DECL AddressSpace *as
3805 #define ARG1 as
3806 #define SUFFIX
3807 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3808 #define RCU_READ_LOCK(...) rcu_read_lock()
3809 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3810 #include "memory_ldst.inc.c"
3811
3812 int64_t address_space_cache_init(MemoryRegionCache *cache,
3813 AddressSpace *as,
3814 hwaddr addr,
3815 hwaddr len,
3816 bool is_write)
3817 {
3818 AddressSpaceDispatch *d;
3819 hwaddr l;
3820 MemoryRegion *mr;
3821
3822 assert(len > 0);
3823
3824 l = len;
3825 cache->fv = address_space_get_flatview(as);
3826 d = flatview_to_dispatch(cache->fv);
3827 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3828
3829 mr = cache->mrs.mr;
3830 memory_region_ref(mr);
3831 if (memory_access_is_direct(mr, is_write)) {
3832 /* We don't care about the memory attributes here as we're only
3833 * doing this if we found actual RAM, which behaves the same
3834 * regardless of attributes; so UNSPECIFIED is fine.
3835 */
3836 l = flatview_extend_translation(cache->fv, addr, len, mr,
3837 cache->xlat, l, is_write,
3838 MEMTXATTRS_UNSPECIFIED);
3839 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3840 } else {
3841 cache->ptr = NULL;
3842 }
3843
3844 cache->len = l;
3845 cache->is_write = is_write;
3846 return l;
3847 }
3848
3849 void address_space_cache_invalidate(MemoryRegionCache *cache,
3850 hwaddr addr,
3851 hwaddr access_len)
3852 {
3853 assert(cache->is_write);
3854 if (likely(cache->ptr)) {
3855 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3856 }
3857 }
3858
3859 void address_space_cache_destroy(MemoryRegionCache *cache)
3860 {
3861 if (!cache->mrs.mr) {
3862 return;
3863 }
3864
3865 if (xen_enabled()) {
3866 xen_invalidate_map_cache_entry(cache->ptr);
3867 }
3868 memory_region_unref(cache->mrs.mr);
3869 flatview_unref(cache->fv);
3870 cache->mrs.mr = NULL;
3871 cache->fv = NULL;
3872 }
3873
3874 /* Called from RCU critical section. This function has the same
3875 * semantics as address_space_translate, but it only works on a
3876 * predefined range of a MemoryRegion that was mapped with
3877 * address_space_cache_init.
3878 */
3879 static inline MemoryRegion *address_space_translate_cached(
3880 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3881 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3882 {
3883 MemoryRegionSection section;
3884 MemoryRegion *mr;
3885 IOMMUMemoryRegion *iommu_mr;
3886 AddressSpace *target_as;
3887
3888 assert(!cache->ptr);
3889 *xlat = addr + cache->xlat;
3890
3891 mr = cache->mrs.mr;
3892 iommu_mr = memory_region_get_iommu(mr);
3893 if (!iommu_mr) {
3894 /* MMIO region. */
3895 return mr;
3896 }
3897
3898 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3899 NULL, is_write, true,
3900 &target_as, attrs);
3901 return section.mr;
3902 }
3903
3904 /* Called from RCU critical section. address_space_read_cached uses this
3905 * out of line function when the target is an MMIO or IOMMU region.
3906 */
3907 void
3908 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3909 void *buf, hwaddr len)
3910 {
3911 hwaddr addr1, l;
3912 MemoryRegion *mr;
3913
3914 l = len;
3915 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3916 MEMTXATTRS_UNSPECIFIED);
3917 flatview_read_continue(cache->fv,
3918 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3919 addr1, l, mr);
3920 }
3921
3922 /* Called from RCU critical section. address_space_write_cached uses this
3923 * out of line function when the target is an MMIO or IOMMU region.
3924 */
3925 void
3926 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3927 const void *buf, hwaddr len)
3928 {
3929 hwaddr addr1, l;
3930 MemoryRegion *mr;
3931
3932 l = len;
3933 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3934 MEMTXATTRS_UNSPECIFIED);
3935 flatview_write_continue(cache->fv,
3936 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3937 addr1, l, mr);
3938 }
3939
3940 #define ARG1_DECL MemoryRegionCache *cache
3941 #define ARG1 cache
3942 #define SUFFIX _cached_slow
3943 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3944 #define RCU_READ_LOCK() ((void)0)
3945 #define RCU_READ_UNLOCK() ((void)0)
3946 #include "memory_ldst.inc.c"
3947
3948 /* virtual memory access for debug (includes writing to ROM) */
3949 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3950 uint8_t *buf, target_ulong len, int is_write)
3951 {
3952 hwaddr phys_addr;
3953 target_ulong l, page;
3954
3955 cpu_synchronize_state(cpu);
3956 while (len > 0) {
3957 int asidx;
3958 MemTxAttrs attrs;
3959
3960 page = addr & TARGET_PAGE_MASK;
3961 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3962 asidx = cpu_asidx_from_attrs(cpu, attrs);
3963 /* if no physical page mapped, return an error */
3964 if (phys_addr == -1)
3965 return -1;
3966 l = (page + TARGET_PAGE_SIZE) - addr;
3967 if (l > len)
3968 l = len;
3969 phys_addr += (addr & ~TARGET_PAGE_MASK);
3970 if (is_write) {
3971 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3972 attrs, buf, l);
3973 } else {
3974 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3975 attrs, buf, l, 0);
3976 }
3977 len -= l;
3978 buf += l;
3979 addr += l;
3980 }
3981 return 0;
3982 }
3983
3984 /*
3985 * Allows code that needs to deal with migration bitmaps etc to still be built
3986 * target independent.
3987 */
3988 size_t qemu_target_page_size(void)
3989 {
3990 return TARGET_PAGE_SIZE;
3991 }
3992
3993 int qemu_target_page_bits(void)
3994 {
3995 return TARGET_PAGE_BITS;
3996 }
3997
3998 int qemu_target_page_bits_min(void)
3999 {
4000 return TARGET_PAGE_BITS_MIN;
4001 }
4002 #endif
4003
4004 bool target_words_bigendian(void)
4005 {
4006 #if defined(TARGET_WORDS_BIGENDIAN)
4007 return true;
4008 #else
4009 return false;
4010 #endif
4011 }
4012
4013 #ifndef CONFIG_USER_ONLY
4014 bool cpu_physical_memory_is_io(hwaddr phys_addr)
4015 {
4016 MemoryRegion*mr;
4017 hwaddr l = 1;
4018 bool res;
4019
4020 rcu_read_lock();
4021 mr = address_space_translate(&address_space_memory,
4022 phys_addr, &phys_addr, &l, false,
4023 MEMTXATTRS_UNSPECIFIED);
4024
4025 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4026 rcu_read_unlock();
4027 return res;
4028 }
4029
4030 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
4031 {
4032 RAMBlock *block;
4033 int ret = 0;
4034
4035 rcu_read_lock();
4036 RAMBLOCK_FOREACH(block) {
4037 ret = func(block, opaque);
4038 if (ret) {
4039 break;
4040 }
4041 }
4042 rcu_read_unlock();
4043 return ret;
4044 }
4045
4046 /*
4047 * Unmap pages of memory from start to start+length such that
4048 * they a) read as 0, b) Trigger whatever fault mechanism
4049 * the OS provides for postcopy.
4050 * The pages must be unmapped by the end of the function.
4051 * Returns: 0 on success, none-0 on failure
4052 *
4053 */
4054 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4055 {
4056 int ret = -1;
4057
4058 uint8_t *host_startaddr = rb->host + start;
4059
4060 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4061 error_report("ram_block_discard_range: Unaligned start address: %p",
4062 host_startaddr);
4063 goto err;
4064 }
4065
4066 if ((start + length) <= rb->used_length) {
4067 bool need_madvise, need_fallocate;
4068 uint8_t *host_endaddr = host_startaddr + length;
4069 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4070 error_report("ram_block_discard_range: Unaligned end address: %p",
4071 host_endaddr);
4072 goto err;
4073 }
4074
4075 errno = ENOTSUP; /* If we are missing MADVISE etc */
4076
4077 /* The logic here is messy;
4078 * madvise DONTNEED fails for hugepages
4079 * fallocate works on hugepages and shmem
4080 */
4081 need_madvise = (rb->page_size == qemu_host_page_size);
4082 need_fallocate = rb->fd != -1;
4083 if (need_fallocate) {
4084 /* For a file, this causes the area of the file to be zero'd
4085 * if read, and for hugetlbfs also causes it to be unmapped
4086 * so a userfault will trigger.
4087 */
4088 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4089 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4090 start, length);
4091 if (ret) {
4092 ret = -errno;
4093 error_report("ram_block_discard_range: Failed to fallocate "
4094 "%s:%" PRIx64 " +%zx (%d)",
4095 rb->idstr, start, length, ret);
4096 goto err;
4097 }
4098 #else
4099 ret = -ENOSYS;
4100 error_report("ram_block_discard_range: fallocate not available/file"
4101 "%s:%" PRIx64 " +%zx (%d)",
4102 rb->idstr, start, length, ret);
4103 goto err;
4104 #endif
4105 }
4106 if (need_madvise) {
4107 /* For normal RAM this causes it to be unmapped,
4108 * for shared memory it causes the local mapping to disappear
4109 * and to fall back on the file contents (which we just
4110 * fallocate'd away).
4111 */
4112 #if defined(CONFIG_MADVISE)
4113 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4114 if (ret) {
4115 ret = -errno;
4116 error_report("ram_block_discard_range: Failed to discard range "
4117 "%s:%" PRIx64 " +%zx (%d)",
4118 rb->idstr, start, length, ret);
4119 goto err;
4120 }
4121 #else
4122 ret = -ENOSYS;
4123 error_report("ram_block_discard_range: MADVISE not available"
4124 "%s:%" PRIx64 " +%zx (%d)",
4125 rb->idstr, start, length, ret);
4126 goto err;
4127 #endif
4128 }
4129 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4130 need_madvise, need_fallocate, ret);
4131 } else {
4132 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4133 "/%zx/" RAM_ADDR_FMT")",
4134 rb->idstr, start, length, rb->used_length);
4135 }
4136
4137 err:
4138 return ret;
4139 }
4140
4141 bool ramblock_is_pmem(RAMBlock *rb)
4142 {
4143 return rb->flags & RAM_PMEM;
4144 }
4145
4146 #endif
4147
4148 void page_size_init(void)
4149 {
4150 /* NOTE: we can always suppose that qemu_host_page_size >=
4151 TARGET_PAGE_SIZE */
4152 if (qemu_host_page_size == 0) {
4153 qemu_host_page_size = qemu_real_host_page_size;
4154 }
4155 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4156 qemu_host_page_size = TARGET_PAGE_SIZE;
4157 }
4158 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4159 }
4160
4161 #if !defined(CONFIG_USER_ONLY)
4162
4163 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4164 {
4165 if (start == end - 1) {
4166 qemu_printf("\t%3d ", start);
4167 } else {
4168 qemu_printf("\t%3d..%-3d ", start, end - 1);
4169 }
4170 qemu_printf(" skip=%d ", skip);
4171 if (ptr == PHYS_MAP_NODE_NIL) {
4172 qemu_printf(" ptr=NIL");
4173 } else if (!skip) {
4174 qemu_printf(" ptr=#%d", ptr);
4175 } else {
4176 qemu_printf(" ptr=[%d]", ptr);
4177 }
4178 qemu_printf("\n");
4179 }
4180
4181 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4182 int128_sub((size), int128_one())) : 0)
4183
4184 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4185 {
4186 int i;
4187
4188 qemu_printf(" Dispatch\n");
4189 qemu_printf(" Physical sections\n");
4190
4191 for (i = 0; i < d->map.sections_nb; ++i) {
4192 MemoryRegionSection *s = d->map.sections + i;
4193 const char *names[] = { " [unassigned]", " [not dirty]",
4194 " [ROM]", " [watch]" };
4195
4196 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4197 " %s%s%s%s%s",
4198 i,
4199 s->offset_within_address_space,
4200 s->offset_within_address_space + MR_SIZE(s->mr->size),
4201 s->mr->name ? s->mr->name : "(noname)",
4202 i < ARRAY_SIZE(names) ? names[i] : "",
4203 s->mr == root ? " [ROOT]" : "",
4204 s == d->mru_section ? " [MRU]" : "",
4205 s->mr->is_iommu ? " [iommu]" : "");
4206
4207 if (s->mr->alias) {
4208 qemu_printf(" alias=%s", s->mr->alias->name ?
4209 s->mr->alias->name : "noname");
4210 }
4211 qemu_printf("\n");
4212 }
4213
4214 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4215 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4216 for (i = 0; i < d->map.nodes_nb; ++i) {
4217 int j, jprev;
4218 PhysPageEntry prev;
4219 Node *n = d->map.nodes + i;
4220
4221 qemu_printf(" [%d]\n", i);
4222
4223 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4224 PhysPageEntry *pe = *n + j;
4225
4226 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4227 continue;
4228 }
4229
4230 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4231
4232 jprev = j;
4233 prev = *pe;
4234 }
4235
4236 if (jprev != ARRAY_SIZE(*n)) {
4237 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4238 }
4239 }
4240 }
4241
4242 #endif