]> git.ipfire.org Git - thirdparty/qemu.git/blob - exec.c
exec: add page_mask for flatview_do_translate
[thirdparty/qemu.git] / exec.c
1 /*
2 * Virtual page mapping
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #ifndef _WIN32
22 #endif
23
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "qemu/timer.h"
38 #include "qemu/config-file.h"
39 #include "qemu/error-report.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include "qemu.h"
42 #else /* !CONFIG_USER_ONLY */
43 #include "hw/hw.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/hw_accel.h"
49 #include "exec/address-spaces.h"
50 #include "sysemu/xen-mapcache.h"
51 #include "trace-root.h"
52
53 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
54 #include <fcntl.h>
55 #include <linux/falloc.h>
56 #endif
57
58 #endif
59 #include "qemu/rcu_queue.h"
60 #include "qemu/main-loop.h"
61 #include "translate-all.h"
62 #include "sysemu/replay.h"
63
64 #include "exec/memory-internal.h"
65 #include "exec/ram_addr.h"
66 #include "exec/log.h"
67
68 #include "migration/vmstate.h"
69
70 #include "qemu/range.h"
71 #ifndef _WIN32
72 #include "qemu/mmap-alloc.h"
73 #endif
74
75 #include "monitor/monitor.h"
76
77 //#define DEBUG_SUBPAGE
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
83 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
84
85 static MemoryRegion *system_memory;
86 static MemoryRegion *system_io;
87
88 AddressSpace address_space_io;
89 AddressSpace address_space_memory;
90
91 MemoryRegion io_mem_rom, io_mem_notdirty;
92 static MemoryRegion io_mem_unassigned;
93
94 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
95 #define RAM_PREALLOC (1 << 0)
96
97 /* RAM is mmap-ed with MAP_SHARED */
98 #define RAM_SHARED (1 << 1)
99
100 /* Only a portion of RAM (used_length) is actually used, and migrated.
101 * This used_length size can change across reboots.
102 */
103 #define RAM_RESIZEABLE (1 << 2)
104
105 #endif
106
107 #ifdef TARGET_PAGE_BITS_VARY
108 int target_page_bits;
109 bool target_page_bits_decided;
110 #endif
111
112 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 __thread CPUState *current_cpu;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount;
120
121 uintptr_t qemu_host_page_size;
122 intptr_t qemu_host_page_mask;
123
124 bool set_preferred_target_page_bits(int bits)
125 {
126 /* The target page size is the lowest common denominator for all
127 * the CPUs in the system, so we can only make it smaller, never
128 * larger. And we can't make it smaller once we've committed to
129 * a particular size.
130 */
131 #ifdef TARGET_PAGE_BITS_VARY
132 assert(bits >= TARGET_PAGE_BITS_MIN);
133 if (target_page_bits == 0 || target_page_bits > bits) {
134 if (target_page_bits_decided) {
135 return false;
136 }
137 target_page_bits = bits;
138 }
139 #endif
140 return true;
141 }
142
143 #if !defined(CONFIG_USER_ONLY)
144
145 static void finalize_target_page_bits(void)
146 {
147 #ifdef TARGET_PAGE_BITS_VARY
148 if (target_page_bits == 0) {
149 target_page_bits = TARGET_PAGE_BITS_MIN;
150 }
151 target_page_bits_decided = true;
152 #endif
153 }
154
155 typedef struct PhysPageEntry PhysPageEntry;
156
157 struct PhysPageEntry {
158 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
159 uint32_t skip : 6;
160 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
161 uint32_t ptr : 26;
162 };
163
164 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
165
166 /* Size of the L2 (and L3, etc) page tables. */
167 #define ADDR_SPACE_BITS 64
168
169 #define P_L2_BITS 9
170 #define P_L2_SIZE (1 << P_L2_BITS)
171
172 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
173
174 typedef PhysPageEntry Node[P_L2_SIZE];
175
176 typedef struct PhysPageMap {
177 struct rcu_head rcu;
178
179 unsigned sections_nb;
180 unsigned sections_nb_alloc;
181 unsigned nodes_nb;
182 unsigned nodes_nb_alloc;
183 Node *nodes;
184 MemoryRegionSection *sections;
185 } PhysPageMap;
186
187 struct AddressSpaceDispatch {
188 MemoryRegionSection *mru_section;
189 /* This is a multi-level map on the physical address space.
190 * The bottom level has pointers to MemoryRegionSections.
191 */
192 PhysPageEntry phys_map;
193 PhysPageMap map;
194 };
195
196 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
197 typedef struct subpage_t {
198 MemoryRegion iomem;
199 FlatView *fv;
200 hwaddr base;
201 uint16_t sub_section[];
202 } subpage_t;
203
204 #define PHYS_SECTION_UNASSIGNED 0
205 #define PHYS_SECTION_NOTDIRTY 1
206 #define PHYS_SECTION_ROM 2
207 #define PHYS_SECTION_WATCH 3
208
209 static void io_mem_init(void);
210 static void memory_map_init(void);
211 static void tcg_commit(MemoryListener *listener);
212
213 static MemoryRegion io_mem_watch;
214
215 /**
216 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
217 * @cpu: the CPU whose AddressSpace this is
218 * @as: the AddressSpace itself
219 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
220 * @tcg_as_listener: listener for tracking changes to the AddressSpace
221 */
222 struct CPUAddressSpace {
223 CPUState *cpu;
224 AddressSpace *as;
225 struct AddressSpaceDispatch *memory_dispatch;
226 MemoryListener tcg_as_listener;
227 };
228
229 struct DirtyBitmapSnapshot {
230 ram_addr_t start;
231 ram_addr_t end;
232 unsigned long dirty[];
233 };
234
235 #endif
236
237 #if !defined(CONFIG_USER_ONLY)
238
239 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
240 {
241 static unsigned alloc_hint = 16;
242 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
243 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
244 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
245 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
246 alloc_hint = map->nodes_nb_alloc;
247 }
248 }
249
250 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
251 {
252 unsigned i;
253 uint32_t ret;
254 PhysPageEntry e;
255 PhysPageEntry *p;
256
257 ret = map->nodes_nb++;
258 p = map->nodes[ret];
259 assert(ret != PHYS_MAP_NODE_NIL);
260 assert(ret != map->nodes_nb_alloc);
261
262 e.skip = leaf ? 0 : 1;
263 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
264 for (i = 0; i < P_L2_SIZE; ++i) {
265 memcpy(&p[i], &e, sizeof(e));
266 }
267 return ret;
268 }
269
270 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
271 hwaddr *index, hwaddr *nb, uint16_t leaf,
272 int level)
273 {
274 PhysPageEntry *p;
275 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
276
277 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
278 lp->ptr = phys_map_node_alloc(map, level == 0);
279 }
280 p = map->nodes[lp->ptr];
281 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
282
283 while (*nb && lp < &p[P_L2_SIZE]) {
284 if ((*index & (step - 1)) == 0 && *nb >= step) {
285 lp->skip = 0;
286 lp->ptr = leaf;
287 *index += step;
288 *nb -= step;
289 } else {
290 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
291 }
292 ++lp;
293 }
294 }
295
296 static void phys_page_set(AddressSpaceDispatch *d,
297 hwaddr index, hwaddr nb,
298 uint16_t leaf)
299 {
300 /* Wildly overreserve - it doesn't matter much. */
301 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
302
303 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
304 }
305
306 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
307 * and update our entry so we can skip it and go directly to the destination.
308 */
309 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
310 {
311 unsigned valid_ptr = P_L2_SIZE;
312 int valid = 0;
313 PhysPageEntry *p;
314 int i;
315
316 if (lp->ptr == PHYS_MAP_NODE_NIL) {
317 return;
318 }
319
320 p = nodes[lp->ptr];
321 for (i = 0; i < P_L2_SIZE; i++) {
322 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
323 continue;
324 }
325
326 valid_ptr = i;
327 valid++;
328 if (p[i].skip) {
329 phys_page_compact(&p[i], nodes);
330 }
331 }
332
333 /* We can only compress if there's only one child. */
334 if (valid != 1) {
335 return;
336 }
337
338 assert(valid_ptr < P_L2_SIZE);
339
340 /* Don't compress if it won't fit in the # of bits we have. */
341 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
342 return;
343 }
344
345 lp->ptr = p[valid_ptr].ptr;
346 if (!p[valid_ptr].skip) {
347 /* If our only child is a leaf, make this a leaf. */
348 /* By design, we should have made this node a leaf to begin with so we
349 * should never reach here.
350 * But since it's so simple to handle this, let's do it just in case we
351 * change this rule.
352 */
353 lp->skip = 0;
354 } else {
355 lp->skip += p[valid_ptr].skip;
356 }
357 }
358
359 void address_space_dispatch_compact(AddressSpaceDispatch *d)
360 {
361 if (d->phys_map.skip) {
362 phys_page_compact(&d->phys_map, d->map.nodes);
363 }
364 }
365
366 static inline bool section_covers_addr(const MemoryRegionSection *section,
367 hwaddr addr)
368 {
369 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
370 * the section must cover the entire address space.
371 */
372 return int128_gethi(section->size) ||
373 range_covers_byte(section->offset_within_address_space,
374 int128_getlo(section->size), addr);
375 }
376
377 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
378 {
379 PhysPageEntry lp = d->phys_map, *p;
380 Node *nodes = d->map.nodes;
381 MemoryRegionSection *sections = d->map.sections;
382 hwaddr index = addr >> TARGET_PAGE_BITS;
383 int i;
384
385 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
386 if (lp.ptr == PHYS_MAP_NODE_NIL) {
387 return &sections[PHYS_SECTION_UNASSIGNED];
388 }
389 p = nodes[lp.ptr];
390 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
391 }
392
393 if (section_covers_addr(&sections[lp.ptr], addr)) {
394 return &sections[lp.ptr];
395 } else {
396 return &sections[PHYS_SECTION_UNASSIGNED];
397 }
398 }
399
400 bool memory_region_is_unassigned(MemoryRegion *mr)
401 {
402 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
403 && mr != &io_mem_watch;
404 }
405
406 /* Called from RCU critical section */
407 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
408 hwaddr addr,
409 bool resolve_subpage)
410 {
411 MemoryRegionSection *section = atomic_read(&d->mru_section);
412 subpage_t *subpage;
413 bool update;
414
415 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
416 section_covers_addr(section, addr)) {
417 update = false;
418 } else {
419 section = phys_page_find(d, addr);
420 update = true;
421 }
422 if (resolve_subpage && section->mr->subpage) {
423 subpage = container_of(section->mr, subpage_t, iomem);
424 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
425 }
426 if (update) {
427 atomic_set(&d->mru_section, section);
428 }
429 return section;
430 }
431
432 /* Called from RCU critical section */
433 static MemoryRegionSection *
434 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
435 hwaddr *plen, bool resolve_subpage)
436 {
437 MemoryRegionSection *section;
438 MemoryRegion *mr;
439 Int128 diff;
440
441 section = address_space_lookup_region(d, addr, resolve_subpage);
442 /* Compute offset within MemoryRegionSection */
443 addr -= section->offset_within_address_space;
444
445 /* Compute offset within MemoryRegion */
446 *xlat = addr + section->offset_within_region;
447
448 mr = section->mr;
449
450 /* MMIO registers can be expected to perform full-width accesses based only
451 * on their address, without considering adjacent registers that could
452 * decode to completely different MemoryRegions. When such registers
453 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
454 * regions overlap wildly. For this reason we cannot clamp the accesses
455 * here.
456 *
457 * If the length is small (as is the case for address_space_ldl/stl),
458 * everything works fine. If the incoming length is large, however,
459 * the caller really has to do the clamping through memory_access_size.
460 */
461 if (memory_region_is_ram(mr)) {
462 diff = int128_sub(section->size, int128_make64(addr));
463 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
464 }
465 return section;
466 }
467
468 /**
469 * flatview_do_translate - translate an address in FlatView
470 *
471 * @fv: the flat view that we want to translate on
472 * @addr: the address to be translated in above address space
473 * @xlat: the translated address offset within memory region. It
474 * cannot be @NULL.
475 * @plen_out: valid read/write length of the translated address. It
476 * can be @NULL when we don't care about it.
477 * @page_mask_out: page mask for the translated address. This
478 * should only be meaningful for IOMMU translated
479 * addresses, since there may be huge pages that this bit
480 * would tell. It can be @NULL if we don't care about it.
481 * @is_write: whether the translation operation is for write
482 * @is_mmio: whether this can be MMIO, set true if it can
483 *
484 * This function is called from RCU critical section
485 */
486 static MemoryRegionSection flatview_do_translate(FlatView *fv,
487 hwaddr addr,
488 hwaddr *xlat,
489 hwaddr *plen_out,
490 hwaddr *page_mask_out,
491 bool is_write,
492 bool is_mmio,
493 AddressSpace **target_as)
494 {
495 IOMMUTLBEntry iotlb;
496 MemoryRegionSection *section;
497 IOMMUMemoryRegion *iommu_mr;
498 IOMMUMemoryRegionClass *imrc;
499 hwaddr page_mask = (hwaddr)(-1);
500 hwaddr plen = (hwaddr)(-1);
501
502 if (plen_out) {
503 plen = *plen_out;
504 }
505
506 for (;;) {
507 section = address_space_translate_internal(
508 flatview_to_dispatch(fv), addr, &addr,
509 &plen, is_mmio);
510
511 iommu_mr = memory_region_get_iommu(section->mr);
512 if (!iommu_mr) {
513 break;
514 }
515 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
516
517 iotlb = imrc->translate(iommu_mr, addr, is_write ?
518 IOMMU_WO : IOMMU_RO);
519 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
520 | (addr & iotlb.addr_mask));
521 page_mask &= iotlb.addr_mask;
522 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
523 if (!(iotlb.perm & (1 << is_write))) {
524 goto translate_fail;
525 }
526
527 fv = address_space_to_flatview(iotlb.target_as);
528 *target_as = iotlb.target_as;
529 }
530
531 *xlat = addr;
532
533 if (page_mask == (hwaddr)(-1)) {
534 /* Not behind an IOMMU, use default page size. */
535 page_mask = ~TARGET_PAGE_MASK;
536 }
537
538 if (page_mask_out) {
539 *page_mask_out = page_mask;
540 }
541
542 if (plen_out) {
543 *plen_out = plen;
544 }
545
546 return *section;
547
548 translate_fail:
549 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
550 }
551
552 /* Called from RCU critical section */
553 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
554 bool is_write)
555 {
556 MemoryRegionSection section;
557 hwaddr xlat, plen;
558
559 /* Try to get maximum page mask during translation. */
560 plen = (hwaddr)-1;
561
562 /* This can never be MMIO. */
563 section = flatview_do_translate(address_space_to_flatview(as), addr,
564 &xlat, &plen, NULL, is_write, false, &as);
565
566 /* Illegal translation */
567 if (section.mr == &io_mem_unassigned) {
568 goto iotlb_fail;
569 }
570
571 /* Convert memory region offset into address space offset */
572 xlat += section.offset_within_address_space -
573 section.offset_within_region;
574
575 if (plen == (hwaddr)-1) {
576 /*
577 * We use default page size here. Logically it only happens
578 * for identity mappings.
579 */
580 plen = TARGET_PAGE_SIZE;
581 }
582
583 /* Convert to address mask */
584 plen -= 1;
585
586 return (IOMMUTLBEntry) {
587 .target_as = as,
588 .iova = addr & ~plen,
589 .translated_addr = xlat & ~plen,
590 .addr_mask = plen,
591 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
592 .perm = IOMMU_RW,
593 };
594
595 iotlb_fail:
596 return (IOMMUTLBEntry) {0};
597 }
598
599 /* Called from RCU critical section */
600 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
601 hwaddr *plen, bool is_write)
602 {
603 MemoryRegion *mr;
604 MemoryRegionSection section;
605 AddressSpace *as = NULL;
606
607 /* This can be MMIO, so setup MMIO bit. */
608 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
609 is_write, true, &as);
610 mr = section.mr;
611
612 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
613 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
614 *plen = MIN(page, *plen);
615 }
616
617 return mr;
618 }
619
620 /* Called from RCU critical section */
621 MemoryRegionSection *
622 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
623 hwaddr *xlat, hwaddr *plen)
624 {
625 MemoryRegionSection *section;
626 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
627
628 section = address_space_translate_internal(d, addr, xlat, plen, false);
629
630 assert(!memory_region_is_iommu(section->mr));
631 return section;
632 }
633 #endif
634
635 #if !defined(CONFIG_USER_ONLY)
636
637 static int cpu_common_post_load(void *opaque, int version_id)
638 {
639 CPUState *cpu = opaque;
640
641 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
642 version_id is increased. */
643 cpu->interrupt_request &= ~0x01;
644 tlb_flush(cpu);
645
646 return 0;
647 }
648
649 static int cpu_common_pre_load(void *opaque)
650 {
651 CPUState *cpu = opaque;
652
653 cpu->exception_index = -1;
654
655 return 0;
656 }
657
658 static bool cpu_common_exception_index_needed(void *opaque)
659 {
660 CPUState *cpu = opaque;
661
662 return tcg_enabled() && cpu->exception_index != -1;
663 }
664
665 static const VMStateDescription vmstate_cpu_common_exception_index = {
666 .name = "cpu_common/exception_index",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .needed = cpu_common_exception_index_needed,
670 .fields = (VMStateField[]) {
671 VMSTATE_INT32(exception_index, CPUState),
672 VMSTATE_END_OF_LIST()
673 }
674 };
675
676 static bool cpu_common_crash_occurred_needed(void *opaque)
677 {
678 CPUState *cpu = opaque;
679
680 return cpu->crash_occurred;
681 }
682
683 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
684 .name = "cpu_common/crash_occurred",
685 .version_id = 1,
686 .minimum_version_id = 1,
687 .needed = cpu_common_crash_occurred_needed,
688 .fields = (VMStateField[]) {
689 VMSTATE_BOOL(crash_occurred, CPUState),
690 VMSTATE_END_OF_LIST()
691 }
692 };
693
694 const VMStateDescription vmstate_cpu_common = {
695 .name = "cpu_common",
696 .version_id = 1,
697 .minimum_version_id = 1,
698 .pre_load = cpu_common_pre_load,
699 .post_load = cpu_common_post_load,
700 .fields = (VMStateField[]) {
701 VMSTATE_UINT32(halted, CPUState),
702 VMSTATE_UINT32(interrupt_request, CPUState),
703 VMSTATE_END_OF_LIST()
704 },
705 .subsections = (const VMStateDescription*[]) {
706 &vmstate_cpu_common_exception_index,
707 &vmstate_cpu_common_crash_occurred,
708 NULL
709 }
710 };
711
712 #endif
713
714 CPUState *qemu_get_cpu(int index)
715 {
716 CPUState *cpu;
717
718 CPU_FOREACH(cpu) {
719 if (cpu->cpu_index == index) {
720 return cpu;
721 }
722 }
723
724 return NULL;
725 }
726
727 #if !defined(CONFIG_USER_ONLY)
728 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
729 {
730 CPUAddressSpace *newas;
731
732 /* Target code should have set num_ases before calling us */
733 assert(asidx < cpu->num_ases);
734
735 if (asidx == 0) {
736 /* address space 0 gets the convenience alias */
737 cpu->as = as;
738 }
739
740 /* KVM cannot currently support multiple address spaces. */
741 assert(asidx == 0 || !kvm_enabled());
742
743 if (!cpu->cpu_ases) {
744 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
745 }
746
747 newas = &cpu->cpu_ases[asidx];
748 newas->cpu = cpu;
749 newas->as = as;
750 if (tcg_enabled()) {
751 newas->tcg_as_listener.commit = tcg_commit;
752 memory_listener_register(&newas->tcg_as_listener, as);
753 }
754 }
755
756 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
757 {
758 /* Return the AddressSpace corresponding to the specified index */
759 return cpu->cpu_ases[asidx].as;
760 }
761 #endif
762
763 void cpu_exec_unrealizefn(CPUState *cpu)
764 {
765 CPUClass *cc = CPU_GET_CLASS(cpu);
766
767 cpu_list_remove(cpu);
768
769 if (cc->vmsd != NULL) {
770 vmstate_unregister(NULL, cc->vmsd, cpu);
771 }
772 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
773 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
774 }
775 }
776
777 Property cpu_common_props[] = {
778 #ifndef CONFIG_USER_ONLY
779 /* Create a memory property for softmmu CPU object,
780 * so users can wire up its memory. (This can't go in qom/cpu.c
781 * because that file is compiled only once for both user-mode
782 * and system builds.) The default if no link is set up is to use
783 * the system address space.
784 */
785 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
786 MemoryRegion *),
787 #endif
788 DEFINE_PROP_END_OF_LIST(),
789 };
790
791 void cpu_exec_initfn(CPUState *cpu)
792 {
793 cpu->as = NULL;
794 cpu->num_ases = 0;
795
796 #ifndef CONFIG_USER_ONLY
797 cpu->thread_id = qemu_get_thread_id();
798 cpu->memory = system_memory;
799 object_ref(OBJECT(cpu->memory));
800 #endif
801 }
802
803 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
804 {
805 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
806
807 cpu_list_add(cpu);
808
809 #ifndef CONFIG_USER_ONLY
810 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
811 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
812 }
813 if (cc->vmsd != NULL) {
814 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
815 }
816 #endif
817 }
818
819 #if defined(CONFIG_USER_ONLY)
820 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
821 {
822 mmap_lock();
823 tb_lock();
824 tb_invalidate_phys_page_range(pc, pc + 1, 0);
825 tb_unlock();
826 mmap_unlock();
827 }
828 #else
829 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
830 {
831 MemTxAttrs attrs;
832 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
833 int asidx = cpu_asidx_from_attrs(cpu, attrs);
834 if (phys != -1) {
835 /* Locks grabbed by tb_invalidate_phys_addr */
836 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
837 phys | (pc & ~TARGET_PAGE_MASK));
838 }
839 }
840 #endif
841
842 #if defined(CONFIG_USER_ONLY)
843 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
844
845 {
846 }
847
848 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
849 int flags)
850 {
851 return -ENOSYS;
852 }
853
854 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
855 {
856 }
857
858 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
859 int flags, CPUWatchpoint **watchpoint)
860 {
861 return -ENOSYS;
862 }
863 #else
864 /* Add a watchpoint. */
865 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
866 int flags, CPUWatchpoint **watchpoint)
867 {
868 CPUWatchpoint *wp;
869
870 /* forbid ranges which are empty or run off the end of the address space */
871 if (len == 0 || (addr + len - 1) < addr) {
872 error_report("tried to set invalid watchpoint at %"
873 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
874 return -EINVAL;
875 }
876 wp = g_malloc(sizeof(*wp));
877
878 wp->vaddr = addr;
879 wp->len = len;
880 wp->flags = flags;
881
882 /* keep all GDB-injected watchpoints in front */
883 if (flags & BP_GDB) {
884 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
885 } else {
886 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
887 }
888
889 tlb_flush_page(cpu, addr);
890
891 if (watchpoint)
892 *watchpoint = wp;
893 return 0;
894 }
895
896 /* Remove a specific watchpoint. */
897 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
898 int flags)
899 {
900 CPUWatchpoint *wp;
901
902 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
903 if (addr == wp->vaddr && len == wp->len
904 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
905 cpu_watchpoint_remove_by_ref(cpu, wp);
906 return 0;
907 }
908 }
909 return -ENOENT;
910 }
911
912 /* Remove a specific watchpoint by reference. */
913 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
914 {
915 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
916
917 tlb_flush_page(cpu, watchpoint->vaddr);
918
919 g_free(watchpoint);
920 }
921
922 /* Remove all matching watchpoints. */
923 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
924 {
925 CPUWatchpoint *wp, *next;
926
927 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
928 if (wp->flags & mask) {
929 cpu_watchpoint_remove_by_ref(cpu, wp);
930 }
931 }
932 }
933
934 /* Return true if this watchpoint address matches the specified
935 * access (ie the address range covered by the watchpoint overlaps
936 * partially or completely with the address range covered by the
937 * access).
938 */
939 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
940 vaddr addr,
941 vaddr len)
942 {
943 /* We know the lengths are non-zero, but a little caution is
944 * required to avoid errors in the case where the range ends
945 * exactly at the top of the address space and so addr + len
946 * wraps round to zero.
947 */
948 vaddr wpend = wp->vaddr + wp->len - 1;
949 vaddr addrend = addr + len - 1;
950
951 return !(addr > wpend || wp->vaddr > addrend);
952 }
953
954 #endif
955
956 /* Add a breakpoint. */
957 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
958 CPUBreakpoint **breakpoint)
959 {
960 CPUBreakpoint *bp;
961
962 bp = g_malloc(sizeof(*bp));
963
964 bp->pc = pc;
965 bp->flags = flags;
966
967 /* keep all GDB-injected breakpoints in front */
968 if (flags & BP_GDB) {
969 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
970 } else {
971 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
972 }
973
974 breakpoint_invalidate(cpu, pc);
975
976 if (breakpoint) {
977 *breakpoint = bp;
978 }
979 return 0;
980 }
981
982 /* Remove a specific breakpoint. */
983 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
984 {
985 CPUBreakpoint *bp;
986
987 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
988 if (bp->pc == pc && bp->flags == flags) {
989 cpu_breakpoint_remove_by_ref(cpu, bp);
990 return 0;
991 }
992 }
993 return -ENOENT;
994 }
995
996 /* Remove a specific breakpoint by reference. */
997 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
998 {
999 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1000
1001 breakpoint_invalidate(cpu, breakpoint->pc);
1002
1003 g_free(breakpoint);
1004 }
1005
1006 /* Remove all matching breakpoints. */
1007 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1008 {
1009 CPUBreakpoint *bp, *next;
1010
1011 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1012 if (bp->flags & mask) {
1013 cpu_breakpoint_remove_by_ref(cpu, bp);
1014 }
1015 }
1016 }
1017
1018 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1019 CPU loop after each instruction */
1020 void cpu_single_step(CPUState *cpu, int enabled)
1021 {
1022 if (cpu->singlestep_enabled != enabled) {
1023 cpu->singlestep_enabled = enabled;
1024 if (kvm_enabled()) {
1025 kvm_update_guest_debug(cpu, 0);
1026 } else {
1027 /* must flush all the translated code to avoid inconsistencies */
1028 /* XXX: only flush what is necessary */
1029 tb_flush(cpu);
1030 }
1031 }
1032 }
1033
1034 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1035 {
1036 va_list ap;
1037 va_list ap2;
1038
1039 va_start(ap, fmt);
1040 va_copy(ap2, ap);
1041 fprintf(stderr, "qemu: fatal: ");
1042 vfprintf(stderr, fmt, ap);
1043 fprintf(stderr, "\n");
1044 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1045 if (qemu_log_separate()) {
1046 qemu_log_lock();
1047 qemu_log("qemu: fatal: ");
1048 qemu_log_vprintf(fmt, ap2);
1049 qemu_log("\n");
1050 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1051 qemu_log_flush();
1052 qemu_log_unlock();
1053 qemu_log_close();
1054 }
1055 va_end(ap2);
1056 va_end(ap);
1057 replay_finish();
1058 #if defined(CONFIG_USER_ONLY)
1059 {
1060 struct sigaction act;
1061 sigfillset(&act.sa_mask);
1062 act.sa_handler = SIG_DFL;
1063 sigaction(SIGABRT, &act, NULL);
1064 }
1065 #endif
1066 abort();
1067 }
1068
1069 #if !defined(CONFIG_USER_ONLY)
1070 /* Called from RCU critical section */
1071 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1072 {
1073 RAMBlock *block;
1074
1075 block = atomic_rcu_read(&ram_list.mru_block);
1076 if (block && addr - block->offset < block->max_length) {
1077 return block;
1078 }
1079 RAMBLOCK_FOREACH(block) {
1080 if (addr - block->offset < block->max_length) {
1081 goto found;
1082 }
1083 }
1084
1085 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1086 abort();
1087
1088 found:
1089 /* It is safe to write mru_block outside the iothread lock. This
1090 * is what happens:
1091 *
1092 * mru_block = xxx
1093 * rcu_read_unlock()
1094 * xxx removed from list
1095 * rcu_read_lock()
1096 * read mru_block
1097 * mru_block = NULL;
1098 * call_rcu(reclaim_ramblock, xxx);
1099 * rcu_read_unlock()
1100 *
1101 * atomic_rcu_set is not needed here. The block was already published
1102 * when it was placed into the list. Here we're just making an extra
1103 * copy of the pointer.
1104 */
1105 ram_list.mru_block = block;
1106 return block;
1107 }
1108
1109 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1110 {
1111 CPUState *cpu;
1112 ram_addr_t start1;
1113 RAMBlock *block;
1114 ram_addr_t end;
1115
1116 end = TARGET_PAGE_ALIGN(start + length);
1117 start &= TARGET_PAGE_MASK;
1118
1119 rcu_read_lock();
1120 block = qemu_get_ram_block(start);
1121 assert(block == qemu_get_ram_block(end - 1));
1122 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1123 CPU_FOREACH(cpu) {
1124 tlb_reset_dirty(cpu, start1, length);
1125 }
1126 rcu_read_unlock();
1127 }
1128
1129 /* Note: start and end must be within the same ram block. */
1130 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1131 ram_addr_t length,
1132 unsigned client)
1133 {
1134 DirtyMemoryBlocks *blocks;
1135 unsigned long end, page;
1136 bool dirty = false;
1137
1138 if (length == 0) {
1139 return false;
1140 }
1141
1142 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1143 page = start >> TARGET_PAGE_BITS;
1144
1145 rcu_read_lock();
1146
1147 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1148
1149 while (page < end) {
1150 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1151 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1152 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1153
1154 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1155 offset, num);
1156 page += num;
1157 }
1158
1159 rcu_read_unlock();
1160
1161 if (dirty && tcg_enabled()) {
1162 tlb_reset_dirty_range_all(start, length);
1163 }
1164
1165 return dirty;
1166 }
1167
1168 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1169 (ram_addr_t start, ram_addr_t length, unsigned client)
1170 {
1171 DirtyMemoryBlocks *blocks;
1172 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1173 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1174 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1175 DirtyBitmapSnapshot *snap;
1176 unsigned long page, end, dest;
1177
1178 snap = g_malloc0(sizeof(*snap) +
1179 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1180 snap->start = first;
1181 snap->end = last;
1182
1183 page = first >> TARGET_PAGE_BITS;
1184 end = last >> TARGET_PAGE_BITS;
1185 dest = 0;
1186
1187 rcu_read_lock();
1188
1189 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1190
1191 while (page < end) {
1192 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1193 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1194 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1195
1196 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1197 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1198 offset >>= BITS_PER_LEVEL;
1199
1200 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1201 blocks->blocks[idx] + offset,
1202 num);
1203 page += num;
1204 dest += num >> BITS_PER_LEVEL;
1205 }
1206
1207 rcu_read_unlock();
1208
1209 if (tcg_enabled()) {
1210 tlb_reset_dirty_range_all(start, length);
1211 }
1212
1213 return snap;
1214 }
1215
1216 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1217 ram_addr_t start,
1218 ram_addr_t length)
1219 {
1220 unsigned long page, end;
1221
1222 assert(start >= snap->start);
1223 assert(start + length <= snap->end);
1224
1225 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1226 page = (start - snap->start) >> TARGET_PAGE_BITS;
1227
1228 while (page < end) {
1229 if (test_bit(page, snap->dirty)) {
1230 return true;
1231 }
1232 page++;
1233 }
1234 return false;
1235 }
1236
1237 /* Called from RCU critical section */
1238 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1239 MemoryRegionSection *section,
1240 target_ulong vaddr,
1241 hwaddr paddr, hwaddr xlat,
1242 int prot,
1243 target_ulong *address)
1244 {
1245 hwaddr iotlb;
1246 CPUWatchpoint *wp;
1247
1248 if (memory_region_is_ram(section->mr)) {
1249 /* Normal RAM. */
1250 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1251 if (!section->readonly) {
1252 iotlb |= PHYS_SECTION_NOTDIRTY;
1253 } else {
1254 iotlb |= PHYS_SECTION_ROM;
1255 }
1256 } else {
1257 AddressSpaceDispatch *d;
1258
1259 d = flatview_to_dispatch(section->fv);
1260 iotlb = section - d->map.sections;
1261 iotlb += xlat;
1262 }
1263
1264 /* Make accesses to pages with watchpoints go via the
1265 watchpoint trap routines. */
1266 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1267 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1268 /* Avoid trapping reads of pages with a write breakpoint. */
1269 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1270 iotlb = PHYS_SECTION_WATCH + paddr;
1271 *address |= TLB_MMIO;
1272 break;
1273 }
1274 }
1275 }
1276
1277 return iotlb;
1278 }
1279 #endif /* defined(CONFIG_USER_ONLY) */
1280
1281 #if !defined(CONFIG_USER_ONLY)
1282
1283 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1284 uint16_t section);
1285 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1286
1287 static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1288 qemu_anon_ram_alloc;
1289
1290 /*
1291 * Set a custom physical guest memory alloator.
1292 * Accelerators with unusual needs may need this. Hopefully, we can
1293 * get rid of it eventually.
1294 */
1295 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
1296 {
1297 phys_mem_alloc = alloc;
1298 }
1299
1300 static uint16_t phys_section_add(PhysPageMap *map,
1301 MemoryRegionSection *section)
1302 {
1303 /* The physical section number is ORed with a page-aligned
1304 * pointer to produce the iotlb entries. Thus it should
1305 * never overflow into the page-aligned value.
1306 */
1307 assert(map->sections_nb < TARGET_PAGE_SIZE);
1308
1309 if (map->sections_nb == map->sections_nb_alloc) {
1310 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1311 map->sections = g_renew(MemoryRegionSection, map->sections,
1312 map->sections_nb_alloc);
1313 }
1314 map->sections[map->sections_nb] = *section;
1315 memory_region_ref(section->mr);
1316 return map->sections_nb++;
1317 }
1318
1319 static void phys_section_destroy(MemoryRegion *mr)
1320 {
1321 bool have_sub_page = mr->subpage;
1322
1323 memory_region_unref(mr);
1324
1325 if (have_sub_page) {
1326 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1327 object_unref(OBJECT(&subpage->iomem));
1328 g_free(subpage);
1329 }
1330 }
1331
1332 static void phys_sections_free(PhysPageMap *map)
1333 {
1334 while (map->sections_nb > 0) {
1335 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1336 phys_section_destroy(section->mr);
1337 }
1338 g_free(map->sections);
1339 g_free(map->nodes);
1340 }
1341
1342 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1343 {
1344 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1345 subpage_t *subpage;
1346 hwaddr base = section->offset_within_address_space
1347 & TARGET_PAGE_MASK;
1348 MemoryRegionSection *existing = phys_page_find(d, base);
1349 MemoryRegionSection subsection = {
1350 .offset_within_address_space = base,
1351 .size = int128_make64(TARGET_PAGE_SIZE),
1352 };
1353 hwaddr start, end;
1354
1355 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1356
1357 if (!(existing->mr->subpage)) {
1358 subpage = subpage_init(fv, base);
1359 subsection.fv = fv;
1360 subsection.mr = &subpage->iomem;
1361 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1362 phys_section_add(&d->map, &subsection));
1363 } else {
1364 subpage = container_of(existing->mr, subpage_t, iomem);
1365 }
1366 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1367 end = start + int128_get64(section->size) - 1;
1368 subpage_register(subpage, start, end,
1369 phys_section_add(&d->map, section));
1370 }
1371
1372
1373 static void register_multipage(FlatView *fv,
1374 MemoryRegionSection *section)
1375 {
1376 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1377 hwaddr start_addr = section->offset_within_address_space;
1378 uint16_t section_index = phys_section_add(&d->map, section);
1379 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1380 TARGET_PAGE_BITS));
1381
1382 assert(num_pages);
1383 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1384 }
1385
1386 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1387 {
1388 MemoryRegionSection now = *section, remain = *section;
1389 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1390
1391 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1392 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1393 - now.offset_within_address_space;
1394
1395 now.size = int128_min(int128_make64(left), now.size);
1396 register_subpage(fv, &now);
1397 } else {
1398 now.size = int128_zero();
1399 }
1400 while (int128_ne(remain.size, now.size)) {
1401 remain.size = int128_sub(remain.size, now.size);
1402 remain.offset_within_address_space += int128_get64(now.size);
1403 remain.offset_within_region += int128_get64(now.size);
1404 now = remain;
1405 if (int128_lt(remain.size, page_size)) {
1406 register_subpage(fv, &now);
1407 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1408 now.size = page_size;
1409 register_subpage(fv, &now);
1410 } else {
1411 now.size = int128_and(now.size, int128_neg(page_size));
1412 register_multipage(fv, &now);
1413 }
1414 }
1415 }
1416
1417 void qemu_flush_coalesced_mmio_buffer(void)
1418 {
1419 if (kvm_enabled())
1420 kvm_flush_coalesced_mmio_buffer();
1421 }
1422
1423 void qemu_mutex_lock_ramlist(void)
1424 {
1425 qemu_mutex_lock(&ram_list.mutex);
1426 }
1427
1428 void qemu_mutex_unlock_ramlist(void)
1429 {
1430 qemu_mutex_unlock(&ram_list.mutex);
1431 }
1432
1433 void ram_block_dump(Monitor *mon)
1434 {
1435 RAMBlock *block;
1436 char *psize;
1437
1438 rcu_read_lock();
1439 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1440 "Block Name", "PSize", "Offset", "Used", "Total");
1441 RAMBLOCK_FOREACH(block) {
1442 psize = size_to_str(block->page_size);
1443 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1444 " 0x%016" PRIx64 "\n", block->idstr, psize,
1445 (uint64_t)block->offset,
1446 (uint64_t)block->used_length,
1447 (uint64_t)block->max_length);
1448 g_free(psize);
1449 }
1450 rcu_read_unlock();
1451 }
1452
1453 #ifdef __linux__
1454 /*
1455 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1456 * may or may not name the same files / on the same filesystem now as
1457 * when we actually open and map them. Iterate over the file
1458 * descriptors instead, and use qemu_fd_getpagesize().
1459 */
1460 static int find_max_supported_pagesize(Object *obj, void *opaque)
1461 {
1462 char *mem_path;
1463 long *hpsize_min = opaque;
1464
1465 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1466 mem_path = object_property_get_str(obj, "mem-path", NULL);
1467 if (mem_path) {
1468 long hpsize = qemu_mempath_getpagesize(mem_path);
1469 if (hpsize < *hpsize_min) {
1470 *hpsize_min = hpsize;
1471 }
1472 } else {
1473 *hpsize_min = getpagesize();
1474 }
1475 }
1476
1477 return 0;
1478 }
1479
1480 long qemu_getrampagesize(void)
1481 {
1482 long hpsize = LONG_MAX;
1483 long mainrampagesize;
1484 Object *memdev_root;
1485
1486 if (mem_path) {
1487 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1488 } else {
1489 mainrampagesize = getpagesize();
1490 }
1491
1492 /* it's possible we have memory-backend objects with
1493 * hugepage-backed RAM. these may get mapped into system
1494 * address space via -numa parameters or memory hotplug
1495 * hooks. we want to take these into account, but we
1496 * also want to make sure these supported hugepage
1497 * sizes are applicable across the entire range of memory
1498 * we may boot from, so we take the min across all
1499 * backends, and assume normal pages in cases where a
1500 * backend isn't backed by hugepages.
1501 */
1502 memdev_root = object_resolve_path("/objects", NULL);
1503 if (memdev_root) {
1504 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1505 }
1506 if (hpsize == LONG_MAX) {
1507 /* No additional memory regions found ==> Report main RAM page size */
1508 return mainrampagesize;
1509 }
1510
1511 /* If NUMA is disabled or the NUMA nodes are not backed with a
1512 * memory-backend, then there is at least one node using "normal" RAM,
1513 * so if its page size is smaller we have got to report that size instead.
1514 */
1515 if (hpsize > mainrampagesize &&
1516 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1517 static bool warned;
1518 if (!warned) {
1519 error_report("Huge page support disabled (n/a for main memory).");
1520 warned = true;
1521 }
1522 return mainrampagesize;
1523 }
1524
1525 return hpsize;
1526 }
1527 #else
1528 long qemu_getrampagesize(void)
1529 {
1530 return getpagesize();
1531 }
1532 #endif
1533
1534 #ifdef __linux__
1535 static int64_t get_file_size(int fd)
1536 {
1537 int64_t size = lseek(fd, 0, SEEK_END);
1538 if (size < 0) {
1539 return -errno;
1540 }
1541 return size;
1542 }
1543
1544 static int file_ram_open(const char *path,
1545 const char *region_name,
1546 bool *created,
1547 Error **errp)
1548 {
1549 char *filename;
1550 char *sanitized_name;
1551 char *c;
1552 int fd = -1;
1553
1554 *created = false;
1555 for (;;) {
1556 fd = open(path, O_RDWR);
1557 if (fd >= 0) {
1558 /* @path names an existing file, use it */
1559 break;
1560 }
1561 if (errno == ENOENT) {
1562 /* @path names a file that doesn't exist, create it */
1563 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1564 if (fd >= 0) {
1565 *created = true;
1566 break;
1567 }
1568 } else if (errno == EISDIR) {
1569 /* @path names a directory, create a file there */
1570 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1571 sanitized_name = g_strdup(region_name);
1572 for (c = sanitized_name; *c != '\0'; c++) {
1573 if (*c == '/') {
1574 *c = '_';
1575 }
1576 }
1577
1578 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1579 sanitized_name);
1580 g_free(sanitized_name);
1581
1582 fd = mkstemp(filename);
1583 if (fd >= 0) {
1584 unlink(filename);
1585 g_free(filename);
1586 break;
1587 }
1588 g_free(filename);
1589 }
1590 if (errno != EEXIST && errno != EINTR) {
1591 error_setg_errno(errp, errno,
1592 "can't open backing store %s for guest RAM",
1593 path);
1594 return -1;
1595 }
1596 /*
1597 * Try again on EINTR and EEXIST. The latter happens when
1598 * something else creates the file between our two open().
1599 */
1600 }
1601
1602 return fd;
1603 }
1604
1605 static void *file_ram_alloc(RAMBlock *block,
1606 ram_addr_t memory,
1607 int fd,
1608 bool truncate,
1609 Error **errp)
1610 {
1611 void *area;
1612
1613 block->page_size = qemu_fd_getpagesize(fd);
1614 block->mr->align = block->page_size;
1615 #if defined(__s390x__)
1616 if (kvm_enabled()) {
1617 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1618 }
1619 #endif
1620
1621 if (memory < block->page_size) {
1622 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1623 "or larger than page size 0x%zx",
1624 memory, block->page_size);
1625 return NULL;
1626 }
1627
1628 memory = ROUND_UP(memory, block->page_size);
1629
1630 /*
1631 * ftruncate is not supported by hugetlbfs in older
1632 * hosts, so don't bother bailing out on errors.
1633 * If anything goes wrong with it under other filesystems,
1634 * mmap will fail.
1635 *
1636 * Do not truncate the non-empty backend file to avoid corrupting
1637 * the existing data in the file. Disabling shrinking is not
1638 * enough. For example, the current vNVDIMM implementation stores
1639 * the guest NVDIMM labels at the end of the backend file. If the
1640 * backend file is later extended, QEMU will not be able to find
1641 * those labels. Therefore, extending the non-empty backend file
1642 * is disabled as well.
1643 */
1644 if (truncate && ftruncate(fd, memory)) {
1645 perror("ftruncate");
1646 }
1647
1648 area = qemu_ram_mmap(fd, memory, block->mr->align,
1649 block->flags & RAM_SHARED);
1650 if (area == MAP_FAILED) {
1651 error_setg_errno(errp, errno,
1652 "unable to map backing store for guest RAM");
1653 return NULL;
1654 }
1655
1656 if (mem_prealloc) {
1657 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1658 if (errp && *errp) {
1659 qemu_ram_munmap(area, memory);
1660 return NULL;
1661 }
1662 }
1663
1664 block->fd = fd;
1665 return area;
1666 }
1667 #endif
1668
1669 /* Called with the ramlist lock held. */
1670 static ram_addr_t find_ram_offset(ram_addr_t size)
1671 {
1672 RAMBlock *block, *next_block;
1673 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1674
1675 assert(size != 0); /* it would hand out same offset multiple times */
1676
1677 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1678 return 0;
1679 }
1680
1681 RAMBLOCK_FOREACH(block) {
1682 ram_addr_t end, next = RAM_ADDR_MAX;
1683
1684 end = block->offset + block->max_length;
1685
1686 RAMBLOCK_FOREACH(next_block) {
1687 if (next_block->offset >= end) {
1688 next = MIN(next, next_block->offset);
1689 }
1690 }
1691 if (next - end >= size && next - end < mingap) {
1692 offset = end;
1693 mingap = next - end;
1694 }
1695 }
1696
1697 if (offset == RAM_ADDR_MAX) {
1698 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1699 (uint64_t)size);
1700 abort();
1701 }
1702
1703 return offset;
1704 }
1705
1706 unsigned long last_ram_page(void)
1707 {
1708 RAMBlock *block;
1709 ram_addr_t last = 0;
1710
1711 rcu_read_lock();
1712 RAMBLOCK_FOREACH(block) {
1713 last = MAX(last, block->offset + block->max_length);
1714 }
1715 rcu_read_unlock();
1716 return last >> TARGET_PAGE_BITS;
1717 }
1718
1719 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1720 {
1721 int ret;
1722
1723 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1724 if (!machine_dump_guest_core(current_machine)) {
1725 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1726 if (ret) {
1727 perror("qemu_madvise");
1728 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1729 "but dump_guest_core=off specified\n");
1730 }
1731 }
1732 }
1733
1734 const char *qemu_ram_get_idstr(RAMBlock *rb)
1735 {
1736 return rb->idstr;
1737 }
1738
1739 bool qemu_ram_is_shared(RAMBlock *rb)
1740 {
1741 return rb->flags & RAM_SHARED;
1742 }
1743
1744 /* Called with iothread lock held. */
1745 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1746 {
1747 RAMBlock *block;
1748
1749 assert(new_block);
1750 assert(!new_block->idstr[0]);
1751
1752 if (dev) {
1753 char *id = qdev_get_dev_path(dev);
1754 if (id) {
1755 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1756 g_free(id);
1757 }
1758 }
1759 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1760
1761 rcu_read_lock();
1762 RAMBLOCK_FOREACH(block) {
1763 if (block != new_block &&
1764 !strcmp(block->idstr, new_block->idstr)) {
1765 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1766 new_block->idstr);
1767 abort();
1768 }
1769 }
1770 rcu_read_unlock();
1771 }
1772
1773 /* Called with iothread lock held. */
1774 void qemu_ram_unset_idstr(RAMBlock *block)
1775 {
1776 /* FIXME: arch_init.c assumes that this is not called throughout
1777 * migration. Ignore the problem since hot-unplug during migration
1778 * does not work anyway.
1779 */
1780 if (block) {
1781 memset(block->idstr, 0, sizeof(block->idstr));
1782 }
1783 }
1784
1785 size_t qemu_ram_pagesize(RAMBlock *rb)
1786 {
1787 return rb->page_size;
1788 }
1789
1790 /* Returns the largest size of page in use */
1791 size_t qemu_ram_pagesize_largest(void)
1792 {
1793 RAMBlock *block;
1794 size_t largest = 0;
1795
1796 RAMBLOCK_FOREACH(block) {
1797 largest = MAX(largest, qemu_ram_pagesize(block));
1798 }
1799
1800 return largest;
1801 }
1802
1803 static int memory_try_enable_merging(void *addr, size_t len)
1804 {
1805 if (!machine_mem_merge(current_machine)) {
1806 /* disabled by the user */
1807 return 0;
1808 }
1809
1810 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1811 }
1812
1813 /* Only legal before guest might have detected the memory size: e.g. on
1814 * incoming migration, or right after reset.
1815 *
1816 * As memory core doesn't know how is memory accessed, it is up to
1817 * resize callback to update device state and/or add assertions to detect
1818 * misuse, if necessary.
1819 */
1820 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1821 {
1822 assert(block);
1823
1824 newsize = HOST_PAGE_ALIGN(newsize);
1825
1826 if (block->used_length == newsize) {
1827 return 0;
1828 }
1829
1830 if (!(block->flags & RAM_RESIZEABLE)) {
1831 error_setg_errno(errp, EINVAL,
1832 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1833 " in != 0x" RAM_ADDR_FMT, block->idstr,
1834 newsize, block->used_length);
1835 return -EINVAL;
1836 }
1837
1838 if (block->max_length < newsize) {
1839 error_setg_errno(errp, EINVAL,
1840 "Length too large: %s: 0x" RAM_ADDR_FMT
1841 " > 0x" RAM_ADDR_FMT, block->idstr,
1842 newsize, block->max_length);
1843 return -EINVAL;
1844 }
1845
1846 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1847 block->used_length = newsize;
1848 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1849 DIRTY_CLIENTS_ALL);
1850 memory_region_set_size(block->mr, newsize);
1851 if (block->resized) {
1852 block->resized(block->idstr, newsize, block->host);
1853 }
1854 return 0;
1855 }
1856
1857 /* Called with ram_list.mutex held */
1858 static void dirty_memory_extend(ram_addr_t old_ram_size,
1859 ram_addr_t new_ram_size)
1860 {
1861 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1862 DIRTY_MEMORY_BLOCK_SIZE);
1863 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1864 DIRTY_MEMORY_BLOCK_SIZE);
1865 int i;
1866
1867 /* Only need to extend if block count increased */
1868 if (new_num_blocks <= old_num_blocks) {
1869 return;
1870 }
1871
1872 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1873 DirtyMemoryBlocks *old_blocks;
1874 DirtyMemoryBlocks *new_blocks;
1875 int j;
1876
1877 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1878 new_blocks = g_malloc(sizeof(*new_blocks) +
1879 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1880
1881 if (old_num_blocks) {
1882 memcpy(new_blocks->blocks, old_blocks->blocks,
1883 old_num_blocks * sizeof(old_blocks->blocks[0]));
1884 }
1885
1886 for (j = old_num_blocks; j < new_num_blocks; j++) {
1887 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1888 }
1889
1890 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1891
1892 if (old_blocks) {
1893 g_free_rcu(old_blocks, rcu);
1894 }
1895 }
1896 }
1897
1898 static void ram_block_add(RAMBlock *new_block, Error **errp)
1899 {
1900 RAMBlock *block;
1901 RAMBlock *last_block = NULL;
1902 ram_addr_t old_ram_size, new_ram_size;
1903 Error *err = NULL;
1904
1905 old_ram_size = last_ram_page();
1906
1907 qemu_mutex_lock_ramlist();
1908 new_block->offset = find_ram_offset(new_block->max_length);
1909
1910 if (!new_block->host) {
1911 if (xen_enabled()) {
1912 xen_ram_alloc(new_block->offset, new_block->max_length,
1913 new_block->mr, &err);
1914 if (err) {
1915 error_propagate(errp, err);
1916 qemu_mutex_unlock_ramlist();
1917 return;
1918 }
1919 } else {
1920 new_block->host = phys_mem_alloc(new_block->max_length,
1921 &new_block->mr->align);
1922 if (!new_block->host) {
1923 error_setg_errno(errp, errno,
1924 "cannot set up guest memory '%s'",
1925 memory_region_name(new_block->mr));
1926 qemu_mutex_unlock_ramlist();
1927 return;
1928 }
1929 memory_try_enable_merging(new_block->host, new_block->max_length);
1930 }
1931 }
1932
1933 new_ram_size = MAX(old_ram_size,
1934 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1935 if (new_ram_size > old_ram_size) {
1936 dirty_memory_extend(old_ram_size, new_ram_size);
1937 }
1938 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1939 * QLIST (which has an RCU-friendly variant) does not have insertion at
1940 * tail, so save the last element in last_block.
1941 */
1942 RAMBLOCK_FOREACH(block) {
1943 last_block = block;
1944 if (block->max_length < new_block->max_length) {
1945 break;
1946 }
1947 }
1948 if (block) {
1949 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1950 } else if (last_block) {
1951 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1952 } else { /* list is empty */
1953 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1954 }
1955 ram_list.mru_block = NULL;
1956
1957 /* Write list before version */
1958 smp_wmb();
1959 ram_list.version++;
1960 qemu_mutex_unlock_ramlist();
1961
1962 cpu_physical_memory_set_dirty_range(new_block->offset,
1963 new_block->used_length,
1964 DIRTY_CLIENTS_ALL);
1965
1966 if (new_block->host) {
1967 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1968 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1969 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1970 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1971 ram_block_notify_add(new_block->host, new_block->max_length);
1972 }
1973 }
1974
1975 #ifdef __linux__
1976 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1977 bool share, int fd,
1978 Error **errp)
1979 {
1980 RAMBlock *new_block;
1981 Error *local_err = NULL;
1982 int64_t file_size;
1983
1984 if (xen_enabled()) {
1985 error_setg(errp, "-mem-path not supported with Xen");
1986 return NULL;
1987 }
1988
1989 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1990 error_setg(errp,
1991 "host lacks kvm mmu notifiers, -mem-path unsupported");
1992 return NULL;
1993 }
1994
1995 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1996 /*
1997 * file_ram_alloc() needs to allocate just like
1998 * phys_mem_alloc, but we haven't bothered to provide
1999 * a hook there.
2000 */
2001 error_setg(errp,
2002 "-mem-path not supported with this accelerator");
2003 return NULL;
2004 }
2005
2006 size = HOST_PAGE_ALIGN(size);
2007 file_size = get_file_size(fd);
2008 if (file_size > 0 && file_size < size) {
2009 error_setg(errp, "backing store %s size 0x%" PRIx64
2010 " does not match 'size' option 0x" RAM_ADDR_FMT,
2011 mem_path, file_size, size);
2012 return NULL;
2013 }
2014
2015 new_block = g_malloc0(sizeof(*new_block));
2016 new_block->mr = mr;
2017 new_block->used_length = size;
2018 new_block->max_length = size;
2019 new_block->flags = share ? RAM_SHARED : 0;
2020 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2021 if (!new_block->host) {
2022 g_free(new_block);
2023 return NULL;
2024 }
2025
2026 ram_block_add(new_block, &local_err);
2027 if (local_err) {
2028 g_free(new_block);
2029 error_propagate(errp, local_err);
2030 return NULL;
2031 }
2032 return new_block;
2033
2034 }
2035
2036
2037 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2038 bool share, const char *mem_path,
2039 Error **errp)
2040 {
2041 int fd;
2042 bool created;
2043 RAMBlock *block;
2044
2045 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2046 if (fd < 0) {
2047 return NULL;
2048 }
2049
2050 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2051 if (!block) {
2052 if (created) {
2053 unlink(mem_path);
2054 }
2055 close(fd);
2056 return NULL;
2057 }
2058
2059 return block;
2060 }
2061 #endif
2062
2063 static
2064 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2065 void (*resized)(const char*,
2066 uint64_t length,
2067 void *host),
2068 void *host, bool resizeable,
2069 MemoryRegion *mr, Error **errp)
2070 {
2071 RAMBlock *new_block;
2072 Error *local_err = NULL;
2073
2074 size = HOST_PAGE_ALIGN(size);
2075 max_size = HOST_PAGE_ALIGN(max_size);
2076 new_block = g_malloc0(sizeof(*new_block));
2077 new_block->mr = mr;
2078 new_block->resized = resized;
2079 new_block->used_length = size;
2080 new_block->max_length = max_size;
2081 assert(max_size >= size);
2082 new_block->fd = -1;
2083 new_block->page_size = getpagesize();
2084 new_block->host = host;
2085 if (host) {
2086 new_block->flags |= RAM_PREALLOC;
2087 }
2088 if (resizeable) {
2089 new_block->flags |= RAM_RESIZEABLE;
2090 }
2091 ram_block_add(new_block, &local_err);
2092 if (local_err) {
2093 g_free(new_block);
2094 error_propagate(errp, local_err);
2095 return NULL;
2096 }
2097 return new_block;
2098 }
2099
2100 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2101 MemoryRegion *mr, Error **errp)
2102 {
2103 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2104 }
2105
2106 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
2107 {
2108 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2109 }
2110
2111 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2112 void (*resized)(const char*,
2113 uint64_t length,
2114 void *host),
2115 MemoryRegion *mr, Error **errp)
2116 {
2117 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
2118 }
2119
2120 static void reclaim_ramblock(RAMBlock *block)
2121 {
2122 if (block->flags & RAM_PREALLOC) {
2123 ;
2124 } else if (xen_enabled()) {
2125 xen_invalidate_map_cache_entry(block->host);
2126 #ifndef _WIN32
2127 } else if (block->fd >= 0) {
2128 qemu_ram_munmap(block->host, block->max_length);
2129 close(block->fd);
2130 #endif
2131 } else {
2132 qemu_anon_ram_free(block->host, block->max_length);
2133 }
2134 g_free(block);
2135 }
2136
2137 void qemu_ram_free(RAMBlock *block)
2138 {
2139 if (!block) {
2140 return;
2141 }
2142
2143 if (block->host) {
2144 ram_block_notify_remove(block->host, block->max_length);
2145 }
2146
2147 qemu_mutex_lock_ramlist();
2148 QLIST_REMOVE_RCU(block, next);
2149 ram_list.mru_block = NULL;
2150 /* Write list before version */
2151 smp_wmb();
2152 ram_list.version++;
2153 call_rcu(block, reclaim_ramblock, rcu);
2154 qemu_mutex_unlock_ramlist();
2155 }
2156
2157 #ifndef _WIN32
2158 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2159 {
2160 RAMBlock *block;
2161 ram_addr_t offset;
2162 int flags;
2163 void *area, *vaddr;
2164
2165 RAMBLOCK_FOREACH(block) {
2166 offset = addr - block->offset;
2167 if (offset < block->max_length) {
2168 vaddr = ramblock_ptr(block, offset);
2169 if (block->flags & RAM_PREALLOC) {
2170 ;
2171 } else if (xen_enabled()) {
2172 abort();
2173 } else {
2174 flags = MAP_FIXED;
2175 if (block->fd >= 0) {
2176 flags |= (block->flags & RAM_SHARED ?
2177 MAP_SHARED : MAP_PRIVATE);
2178 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2179 flags, block->fd, offset);
2180 } else {
2181 /*
2182 * Remap needs to match alloc. Accelerators that
2183 * set phys_mem_alloc never remap. If they did,
2184 * we'd need a remap hook here.
2185 */
2186 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2187
2188 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2189 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2190 flags, -1, 0);
2191 }
2192 if (area != vaddr) {
2193 fprintf(stderr, "Could not remap addr: "
2194 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
2195 length, addr);
2196 exit(1);
2197 }
2198 memory_try_enable_merging(vaddr, length);
2199 qemu_ram_setup_dump(vaddr, length);
2200 }
2201 }
2202 }
2203 }
2204 #endif /* !_WIN32 */
2205
2206 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2207 * This should not be used for general purpose DMA. Use address_space_map
2208 * or address_space_rw instead. For local memory (e.g. video ram) that the
2209 * device owns, use memory_region_get_ram_ptr.
2210 *
2211 * Called within RCU critical section.
2212 */
2213 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2214 {
2215 RAMBlock *block = ram_block;
2216
2217 if (block == NULL) {
2218 block = qemu_get_ram_block(addr);
2219 addr -= block->offset;
2220 }
2221
2222 if (xen_enabled() && block->host == NULL) {
2223 /* We need to check if the requested address is in the RAM
2224 * because we don't want to map the entire memory in QEMU.
2225 * In that case just map until the end of the page.
2226 */
2227 if (block->offset == 0) {
2228 return xen_map_cache(addr, 0, 0, false);
2229 }
2230
2231 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2232 }
2233 return ramblock_ptr(block, addr);
2234 }
2235
2236 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2237 * but takes a size argument.
2238 *
2239 * Called within RCU critical section.
2240 */
2241 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2242 hwaddr *size, bool lock)
2243 {
2244 RAMBlock *block = ram_block;
2245 if (*size == 0) {
2246 return NULL;
2247 }
2248
2249 if (block == NULL) {
2250 block = qemu_get_ram_block(addr);
2251 addr -= block->offset;
2252 }
2253 *size = MIN(*size, block->max_length - addr);
2254
2255 if (xen_enabled() && block->host == NULL) {
2256 /* We need to check if the requested address is in the RAM
2257 * because we don't want to map the entire memory in QEMU.
2258 * In that case just map the requested area.
2259 */
2260 if (block->offset == 0) {
2261 return xen_map_cache(addr, *size, lock, lock);
2262 }
2263
2264 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2265 }
2266
2267 return ramblock_ptr(block, addr);
2268 }
2269
2270 /*
2271 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2272 * in that RAMBlock.
2273 *
2274 * ptr: Host pointer to look up
2275 * round_offset: If true round the result offset down to a page boundary
2276 * *ram_addr: set to result ram_addr
2277 * *offset: set to result offset within the RAMBlock
2278 *
2279 * Returns: RAMBlock (or NULL if not found)
2280 *
2281 * By the time this function returns, the returned pointer is not protected
2282 * by RCU anymore. If the caller is not within an RCU critical section and
2283 * does not hold the iothread lock, it must have other means of protecting the
2284 * pointer, such as a reference to the region that includes the incoming
2285 * ram_addr_t.
2286 */
2287 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2288 ram_addr_t *offset)
2289 {
2290 RAMBlock *block;
2291 uint8_t *host = ptr;
2292
2293 if (xen_enabled()) {
2294 ram_addr_t ram_addr;
2295 rcu_read_lock();
2296 ram_addr = xen_ram_addr_from_mapcache(ptr);
2297 block = qemu_get_ram_block(ram_addr);
2298 if (block) {
2299 *offset = ram_addr - block->offset;
2300 }
2301 rcu_read_unlock();
2302 return block;
2303 }
2304
2305 rcu_read_lock();
2306 block = atomic_rcu_read(&ram_list.mru_block);
2307 if (block && block->host && host - block->host < block->max_length) {
2308 goto found;
2309 }
2310
2311 RAMBLOCK_FOREACH(block) {
2312 /* This case append when the block is not mapped. */
2313 if (block->host == NULL) {
2314 continue;
2315 }
2316 if (host - block->host < block->max_length) {
2317 goto found;
2318 }
2319 }
2320
2321 rcu_read_unlock();
2322 return NULL;
2323
2324 found:
2325 *offset = (host - block->host);
2326 if (round_offset) {
2327 *offset &= TARGET_PAGE_MASK;
2328 }
2329 rcu_read_unlock();
2330 return block;
2331 }
2332
2333 /*
2334 * Finds the named RAMBlock
2335 *
2336 * name: The name of RAMBlock to find
2337 *
2338 * Returns: RAMBlock (or NULL if not found)
2339 */
2340 RAMBlock *qemu_ram_block_by_name(const char *name)
2341 {
2342 RAMBlock *block;
2343
2344 RAMBLOCK_FOREACH(block) {
2345 if (!strcmp(name, block->idstr)) {
2346 return block;
2347 }
2348 }
2349
2350 return NULL;
2351 }
2352
2353 /* Some of the softmmu routines need to translate from a host pointer
2354 (typically a TLB entry) back to a ram offset. */
2355 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2356 {
2357 RAMBlock *block;
2358 ram_addr_t offset;
2359
2360 block = qemu_ram_block_from_host(ptr, false, &offset);
2361 if (!block) {
2362 return RAM_ADDR_INVALID;
2363 }
2364
2365 return block->offset + offset;
2366 }
2367
2368 /* Called within RCU critical section. */
2369 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2370 uint64_t val, unsigned size)
2371 {
2372 bool locked = false;
2373
2374 assert(tcg_enabled());
2375 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2376 locked = true;
2377 tb_lock();
2378 tb_invalidate_phys_page_fast(ram_addr, size);
2379 }
2380 switch (size) {
2381 case 1:
2382 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2383 break;
2384 case 2:
2385 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2386 break;
2387 case 4:
2388 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2389 break;
2390 default:
2391 abort();
2392 }
2393
2394 if (locked) {
2395 tb_unlock();
2396 }
2397
2398 /* Set both VGA and migration bits for simplicity and to remove
2399 * the notdirty callback faster.
2400 */
2401 cpu_physical_memory_set_dirty_range(ram_addr, size,
2402 DIRTY_CLIENTS_NOCODE);
2403 /* we remove the notdirty callback only if the code has been
2404 flushed */
2405 if (!cpu_physical_memory_is_clean(ram_addr)) {
2406 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
2407 }
2408 }
2409
2410 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2411 unsigned size, bool is_write)
2412 {
2413 return is_write;
2414 }
2415
2416 static const MemoryRegionOps notdirty_mem_ops = {
2417 .write = notdirty_mem_write,
2418 .valid.accepts = notdirty_mem_accepts,
2419 .endianness = DEVICE_NATIVE_ENDIAN,
2420 };
2421
2422 /* Generate a debug exception if a watchpoint has been hit. */
2423 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2424 {
2425 CPUState *cpu = current_cpu;
2426 CPUClass *cc = CPU_GET_CLASS(cpu);
2427 CPUArchState *env = cpu->env_ptr;
2428 target_ulong pc, cs_base;
2429 target_ulong vaddr;
2430 CPUWatchpoint *wp;
2431 uint32_t cpu_flags;
2432
2433 assert(tcg_enabled());
2434 if (cpu->watchpoint_hit) {
2435 /* We re-entered the check after replacing the TB. Now raise
2436 * the debug interrupt so that is will trigger after the
2437 * current instruction. */
2438 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2439 return;
2440 }
2441 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2442 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2443 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2444 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2445 && (wp->flags & flags)) {
2446 if (flags == BP_MEM_READ) {
2447 wp->flags |= BP_WATCHPOINT_HIT_READ;
2448 } else {
2449 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2450 }
2451 wp->hitaddr = vaddr;
2452 wp->hitattrs = attrs;
2453 if (!cpu->watchpoint_hit) {
2454 if (wp->flags & BP_CPU &&
2455 !cc->debug_check_watchpoint(cpu, wp)) {
2456 wp->flags &= ~BP_WATCHPOINT_HIT;
2457 continue;
2458 }
2459 cpu->watchpoint_hit = wp;
2460
2461 /* Both tb_lock and iothread_mutex will be reset when
2462 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2463 * back into the cpu_exec main loop.
2464 */
2465 tb_lock();
2466 tb_check_watchpoint(cpu);
2467 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2468 cpu->exception_index = EXCP_DEBUG;
2469 cpu_loop_exit(cpu);
2470 } else {
2471 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2472 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
2473 cpu_loop_exit_noexc(cpu);
2474 }
2475 }
2476 } else {
2477 wp->flags &= ~BP_WATCHPOINT_HIT;
2478 }
2479 }
2480 }
2481
2482 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2483 so these check for a hit then pass through to the normal out-of-line
2484 phys routines. */
2485 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2486 unsigned size, MemTxAttrs attrs)
2487 {
2488 MemTxResult res;
2489 uint64_t data;
2490 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2491 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2492
2493 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2494 switch (size) {
2495 case 1:
2496 data = address_space_ldub(as, addr, attrs, &res);
2497 break;
2498 case 2:
2499 data = address_space_lduw(as, addr, attrs, &res);
2500 break;
2501 case 4:
2502 data = address_space_ldl(as, addr, attrs, &res);
2503 break;
2504 default: abort();
2505 }
2506 *pdata = data;
2507 return res;
2508 }
2509
2510 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2511 uint64_t val, unsigned size,
2512 MemTxAttrs attrs)
2513 {
2514 MemTxResult res;
2515 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2516 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2517
2518 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2519 switch (size) {
2520 case 1:
2521 address_space_stb(as, addr, val, attrs, &res);
2522 break;
2523 case 2:
2524 address_space_stw(as, addr, val, attrs, &res);
2525 break;
2526 case 4:
2527 address_space_stl(as, addr, val, attrs, &res);
2528 break;
2529 default: abort();
2530 }
2531 return res;
2532 }
2533
2534 static const MemoryRegionOps watch_mem_ops = {
2535 .read_with_attrs = watch_mem_read,
2536 .write_with_attrs = watch_mem_write,
2537 .endianness = DEVICE_NATIVE_ENDIAN,
2538 };
2539
2540 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2541 const uint8_t *buf, int len);
2542 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2543 bool is_write);
2544
2545 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2546 unsigned len, MemTxAttrs attrs)
2547 {
2548 subpage_t *subpage = opaque;
2549 uint8_t buf[8];
2550 MemTxResult res;
2551
2552 #if defined(DEBUG_SUBPAGE)
2553 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2554 subpage, len, addr);
2555 #endif
2556 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2557 if (res) {
2558 return res;
2559 }
2560 switch (len) {
2561 case 1:
2562 *data = ldub_p(buf);
2563 return MEMTX_OK;
2564 case 2:
2565 *data = lduw_p(buf);
2566 return MEMTX_OK;
2567 case 4:
2568 *data = ldl_p(buf);
2569 return MEMTX_OK;
2570 case 8:
2571 *data = ldq_p(buf);
2572 return MEMTX_OK;
2573 default:
2574 abort();
2575 }
2576 }
2577
2578 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2579 uint64_t value, unsigned len, MemTxAttrs attrs)
2580 {
2581 subpage_t *subpage = opaque;
2582 uint8_t buf[8];
2583
2584 #if defined(DEBUG_SUBPAGE)
2585 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2586 " value %"PRIx64"\n",
2587 __func__, subpage, len, addr, value);
2588 #endif
2589 switch (len) {
2590 case 1:
2591 stb_p(buf, value);
2592 break;
2593 case 2:
2594 stw_p(buf, value);
2595 break;
2596 case 4:
2597 stl_p(buf, value);
2598 break;
2599 case 8:
2600 stq_p(buf, value);
2601 break;
2602 default:
2603 abort();
2604 }
2605 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2606 }
2607
2608 static bool subpage_accepts(void *opaque, hwaddr addr,
2609 unsigned len, bool is_write)
2610 {
2611 subpage_t *subpage = opaque;
2612 #if defined(DEBUG_SUBPAGE)
2613 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2614 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2615 #endif
2616
2617 return flatview_access_valid(subpage->fv, addr + subpage->base,
2618 len, is_write);
2619 }
2620
2621 static const MemoryRegionOps subpage_ops = {
2622 .read_with_attrs = subpage_read,
2623 .write_with_attrs = subpage_write,
2624 .impl.min_access_size = 1,
2625 .impl.max_access_size = 8,
2626 .valid.min_access_size = 1,
2627 .valid.max_access_size = 8,
2628 .valid.accepts = subpage_accepts,
2629 .endianness = DEVICE_NATIVE_ENDIAN,
2630 };
2631
2632 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2633 uint16_t section)
2634 {
2635 int idx, eidx;
2636
2637 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2638 return -1;
2639 idx = SUBPAGE_IDX(start);
2640 eidx = SUBPAGE_IDX(end);
2641 #if defined(DEBUG_SUBPAGE)
2642 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2643 __func__, mmio, start, end, idx, eidx, section);
2644 #endif
2645 for (; idx <= eidx; idx++) {
2646 mmio->sub_section[idx] = section;
2647 }
2648
2649 return 0;
2650 }
2651
2652 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2653 {
2654 subpage_t *mmio;
2655
2656 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2657 mmio->fv = fv;
2658 mmio->base = base;
2659 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2660 NULL, TARGET_PAGE_SIZE);
2661 mmio->iomem.subpage = true;
2662 #if defined(DEBUG_SUBPAGE)
2663 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2664 mmio, base, TARGET_PAGE_SIZE);
2665 #endif
2666 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2667
2668 return mmio;
2669 }
2670
2671 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2672 {
2673 assert(fv);
2674 MemoryRegionSection section = {
2675 .fv = fv,
2676 .mr = mr,
2677 .offset_within_address_space = 0,
2678 .offset_within_region = 0,
2679 .size = int128_2_64(),
2680 };
2681
2682 return phys_section_add(map, &section);
2683 }
2684
2685 MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
2686 {
2687 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2688 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2689 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2690 MemoryRegionSection *sections = d->map.sections;
2691
2692 return sections[index & ~TARGET_PAGE_MASK].mr;
2693 }
2694
2695 static void io_mem_init(void)
2696 {
2697 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2698 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2699 NULL, UINT64_MAX);
2700
2701 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2702 * which can be called without the iothread mutex.
2703 */
2704 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
2705 NULL, UINT64_MAX);
2706 memory_region_clear_global_locking(&io_mem_notdirty);
2707
2708 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
2709 NULL, UINT64_MAX);
2710 }
2711
2712 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2713 {
2714 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2715 uint16_t n;
2716
2717 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2718 assert(n == PHYS_SECTION_UNASSIGNED);
2719 n = dummy_section(&d->map, fv, &io_mem_notdirty);
2720 assert(n == PHYS_SECTION_NOTDIRTY);
2721 n = dummy_section(&d->map, fv, &io_mem_rom);
2722 assert(n == PHYS_SECTION_ROM);
2723 n = dummy_section(&d->map, fv, &io_mem_watch);
2724 assert(n == PHYS_SECTION_WATCH);
2725
2726 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2727
2728 return d;
2729 }
2730
2731 void address_space_dispatch_free(AddressSpaceDispatch *d)
2732 {
2733 phys_sections_free(&d->map);
2734 g_free(d);
2735 }
2736
2737 static void tcg_commit(MemoryListener *listener)
2738 {
2739 CPUAddressSpace *cpuas;
2740 AddressSpaceDispatch *d;
2741
2742 /* since each CPU stores ram addresses in its TLB cache, we must
2743 reset the modified entries */
2744 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2745 cpu_reloading_memory_map();
2746 /* The CPU and TLB are protected by the iothread lock.
2747 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2748 * may have split the RCU critical section.
2749 */
2750 d = address_space_to_dispatch(cpuas->as);
2751 atomic_rcu_set(&cpuas->memory_dispatch, d);
2752 tlb_flush(cpuas->cpu);
2753 }
2754
2755 static void memory_map_init(void)
2756 {
2757 system_memory = g_malloc(sizeof(*system_memory));
2758
2759 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2760 address_space_init(&address_space_memory, system_memory, "memory");
2761
2762 system_io = g_malloc(sizeof(*system_io));
2763 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2764 65536);
2765 address_space_init(&address_space_io, system_io, "I/O");
2766 }
2767
2768 MemoryRegion *get_system_memory(void)
2769 {
2770 return system_memory;
2771 }
2772
2773 MemoryRegion *get_system_io(void)
2774 {
2775 return system_io;
2776 }
2777
2778 #endif /* !defined(CONFIG_USER_ONLY) */
2779
2780 /* physical memory access (slow version, mainly for debug) */
2781 #if defined(CONFIG_USER_ONLY)
2782 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2783 uint8_t *buf, int len, int is_write)
2784 {
2785 int l, flags;
2786 target_ulong page;
2787 void * p;
2788
2789 while (len > 0) {
2790 page = addr & TARGET_PAGE_MASK;
2791 l = (page + TARGET_PAGE_SIZE) - addr;
2792 if (l > len)
2793 l = len;
2794 flags = page_get_flags(page);
2795 if (!(flags & PAGE_VALID))
2796 return -1;
2797 if (is_write) {
2798 if (!(flags & PAGE_WRITE))
2799 return -1;
2800 /* XXX: this code should not depend on lock_user */
2801 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2802 return -1;
2803 memcpy(p, buf, l);
2804 unlock_user(p, addr, l);
2805 } else {
2806 if (!(flags & PAGE_READ))
2807 return -1;
2808 /* XXX: this code should not depend on lock_user */
2809 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2810 return -1;
2811 memcpy(buf, p, l);
2812 unlock_user(p, addr, 0);
2813 }
2814 len -= l;
2815 buf += l;
2816 addr += l;
2817 }
2818 return 0;
2819 }
2820
2821 #else
2822
2823 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2824 hwaddr length)
2825 {
2826 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2827 addr += memory_region_get_ram_addr(mr);
2828
2829 /* No early return if dirty_log_mask is or becomes 0, because
2830 * cpu_physical_memory_set_dirty_range will still call
2831 * xen_modified_memory.
2832 */
2833 if (dirty_log_mask) {
2834 dirty_log_mask =
2835 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2836 }
2837 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2838 assert(tcg_enabled());
2839 tb_lock();
2840 tb_invalidate_phys_range(addr, addr + length);
2841 tb_unlock();
2842 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2843 }
2844 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2845 }
2846
2847 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2848 {
2849 unsigned access_size_max = mr->ops->valid.max_access_size;
2850
2851 /* Regions are assumed to support 1-4 byte accesses unless
2852 otherwise specified. */
2853 if (access_size_max == 0) {
2854 access_size_max = 4;
2855 }
2856
2857 /* Bound the maximum access by the alignment of the address. */
2858 if (!mr->ops->impl.unaligned) {
2859 unsigned align_size_max = addr & -addr;
2860 if (align_size_max != 0 && align_size_max < access_size_max) {
2861 access_size_max = align_size_max;
2862 }
2863 }
2864
2865 /* Don't attempt accesses larger than the maximum. */
2866 if (l > access_size_max) {
2867 l = access_size_max;
2868 }
2869 l = pow2floor(l);
2870
2871 return l;
2872 }
2873
2874 static bool prepare_mmio_access(MemoryRegion *mr)
2875 {
2876 bool unlocked = !qemu_mutex_iothread_locked();
2877 bool release_lock = false;
2878
2879 if (unlocked && mr->global_locking) {
2880 qemu_mutex_lock_iothread();
2881 unlocked = false;
2882 release_lock = true;
2883 }
2884 if (mr->flush_coalesced_mmio) {
2885 if (unlocked) {
2886 qemu_mutex_lock_iothread();
2887 }
2888 qemu_flush_coalesced_mmio_buffer();
2889 if (unlocked) {
2890 qemu_mutex_unlock_iothread();
2891 }
2892 }
2893
2894 return release_lock;
2895 }
2896
2897 /* Called within RCU critical section. */
2898 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2899 MemTxAttrs attrs,
2900 const uint8_t *buf,
2901 int len, hwaddr addr1,
2902 hwaddr l, MemoryRegion *mr)
2903 {
2904 uint8_t *ptr;
2905 uint64_t val;
2906 MemTxResult result = MEMTX_OK;
2907 bool release_lock = false;
2908
2909 for (;;) {
2910 if (!memory_access_is_direct(mr, true)) {
2911 release_lock |= prepare_mmio_access(mr);
2912 l = memory_access_size(mr, l, addr1);
2913 /* XXX: could force current_cpu to NULL to avoid
2914 potential bugs */
2915 switch (l) {
2916 case 8:
2917 /* 64 bit write access */
2918 val = ldq_p(buf);
2919 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2920 attrs);
2921 break;
2922 case 4:
2923 /* 32 bit write access */
2924 val = (uint32_t)ldl_p(buf);
2925 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2926 attrs);
2927 break;
2928 case 2:
2929 /* 16 bit write access */
2930 val = lduw_p(buf);
2931 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2932 attrs);
2933 break;
2934 case 1:
2935 /* 8 bit write access */
2936 val = ldub_p(buf);
2937 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2938 attrs);
2939 break;
2940 default:
2941 abort();
2942 }
2943 } else {
2944 /* RAM case */
2945 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2946 memcpy(ptr, buf, l);
2947 invalidate_and_set_dirty(mr, addr1, l);
2948 }
2949
2950 if (release_lock) {
2951 qemu_mutex_unlock_iothread();
2952 release_lock = false;
2953 }
2954
2955 len -= l;
2956 buf += l;
2957 addr += l;
2958
2959 if (!len) {
2960 break;
2961 }
2962
2963 l = len;
2964 mr = flatview_translate(fv, addr, &addr1, &l, true);
2965 }
2966
2967 return result;
2968 }
2969
2970 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2971 const uint8_t *buf, int len)
2972 {
2973 hwaddr l;
2974 hwaddr addr1;
2975 MemoryRegion *mr;
2976 MemTxResult result = MEMTX_OK;
2977
2978 if (len > 0) {
2979 rcu_read_lock();
2980 l = len;
2981 mr = flatview_translate(fv, addr, &addr1, &l, true);
2982 result = flatview_write_continue(fv, addr, attrs, buf, len,
2983 addr1, l, mr);
2984 rcu_read_unlock();
2985 }
2986
2987 return result;
2988 }
2989
2990 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2991 MemTxAttrs attrs,
2992 const uint8_t *buf, int len)
2993 {
2994 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
2995 }
2996
2997 /* Called within RCU critical section. */
2998 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2999 MemTxAttrs attrs, uint8_t *buf,
3000 int len, hwaddr addr1, hwaddr l,
3001 MemoryRegion *mr)
3002 {
3003 uint8_t *ptr;
3004 uint64_t val;
3005 MemTxResult result = MEMTX_OK;
3006 bool release_lock = false;
3007
3008 for (;;) {
3009 if (!memory_access_is_direct(mr, false)) {
3010 /* I/O case */
3011 release_lock |= prepare_mmio_access(mr);
3012 l = memory_access_size(mr, l, addr1);
3013 switch (l) {
3014 case 8:
3015 /* 64 bit read access */
3016 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3017 attrs);
3018 stq_p(buf, val);
3019 break;
3020 case 4:
3021 /* 32 bit read access */
3022 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3023 attrs);
3024 stl_p(buf, val);
3025 break;
3026 case 2:
3027 /* 16 bit read access */
3028 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3029 attrs);
3030 stw_p(buf, val);
3031 break;
3032 case 1:
3033 /* 8 bit read access */
3034 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3035 attrs);
3036 stb_p(buf, val);
3037 break;
3038 default:
3039 abort();
3040 }
3041 } else {
3042 /* RAM case */
3043 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3044 memcpy(buf, ptr, l);
3045 }
3046
3047 if (release_lock) {
3048 qemu_mutex_unlock_iothread();
3049 release_lock = false;
3050 }
3051
3052 len -= l;
3053 buf += l;
3054 addr += l;
3055
3056 if (!len) {
3057 break;
3058 }
3059
3060 l = len;
3061 mr = flatview_translate(fv, addr, &addr1, &l, false);
3062 }
3063
3064 return result;
3065 }
3066
3067 MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3068 MemTxAttrs attrs, uint8_t *buf, int len)
3069 {
3070 hwaddr l;
3071 hwaddr addr1;
3072 MemoryRegion *mr;
3073 MemTxResult result = MEMTX_OK;
3074
3075 if (len > 0) {
3076 rcu_read_lock();
3077 l = len;
3078 mr = flatview_translate(fv, addr, &addr1, &l, false);
3079 result = flatview_read_continue(fv, addr, attrs, buf, len,
3080 addr1, l, mr);
3081 rcu_read_unlock();
3082 }
3083
3084 return result;
3085 }
3086
3087 static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3088 uint8_t *buf, int len, bool is_write)
3089 {
3090 if (is_write) {
3091 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
3092 } else {
3093 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
3094 }
3095 }
3096
3097 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3098 MemTxAttrs attrs, uint8_t *buf,
3099 int len, bool is_write)
3100 {
3101 return flatview_rw(address_space_to_flatview(as),
3102 addr, attrs, buf, len, is_write);
3103 }
3104
3105 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3106 int len, int is_write)
3107 {
3108 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3109 buf, len, is_write);
3110 }
3111
3112 enum write_rom_type {
3113 WRITE_DATA,
3114 FLUSH_CACHE,
3115 };
3116
3117 static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
3118 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
3119 {
3120 hwaddr l;
3121 uint8_t *ptr;
3122 hwaddr addr1;
3123 MemoryRegion *mr;
3124
3125 rcu_read_lock();
3126 while (len > 0) {
3127 l = len;
3128 mr = address_space_translate(as, addr, &addr1, &l, true);
3129
3130 if (!(memory_region_is_ram(mr) ||
3131 memory_region_is_romd(mr))) {
3132 l = memory_access_size(mr, l, addr1);
3133 } else {
3134 /* ROM/RAM case */
3135 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3136 switch (type) {
3137 case WRITE_DATA:
3138 memcpy(ptr, buf, l);
3139 invalidate_and_set_dirty(mr, addr1, l);
3140 break;
3141 case FLUSH_CACHE:
3142 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3143 break;
3144 }
3145 }
3146 len -= l;
3147 buf += l;
3148 addr += l;
3149 }
3150 rcu_read_unlock();
3151 }
3152
3153 /* used for ROM loading : can write in RAM and ROM */
3154 void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
3155 const uint8_t *buf, int len)
3156 {
3157 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
3158 }
3159
3160 void cpu_flush_icache_range(hwaddr start, int len)
3161 {
3162 /*
3163 * This function should do the same thing as an icache flush that was
3164 * triggered from within the guest. For TCG we are always cache coherent,
3165 * so there is no need to flush anything. For KVM / Xen we need to flush
3166 * the host's instruction cache at least.
3167 */
3168 if (tcg_enabled()) {
3169 return;
3170 }
3171
3172 cpu_physical_memory_write_rom_internal(&address_space_memory,
3173 start, NULL, len, FLUSH_CACHE);
3174 }
3175
3176 typedef struct {
3177 MemoryRegion *mr;
3178 void *buffer;
3179 hwaddr addr;
3180 hwaddr len;
3181 bool in_use;
3182 } BounceBuffer;
3183
3184 static BounceBuffer bounce;
3185
3186 typedef struct MapClient {
3187 QEMUBH *bh;
3188 QLIST_ENTRY(MapClient) link;
3189 } MapClient;
3190
3191 QemuMutex map_client_list_lock;
3192 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3193 = QLIST_HEAD_INITIALIZER(map_client_list);
3194
3195 static void cpu_unregister_map_client_do(MapClient *client)
3196 {
3197 QLIST_REMOVE(client, link);
3198 g_free(client);
3199 }
3200
3201 static void cpu_notify_map_clients_locked(void)
3202 {
3203 MapClient *client;
3204
3205 while (!QLIST_EMPTY(&map_client_list)) {
3206 client = QLIST_FIRST(&map_client_list);
3207 qemu_bh_schedule(client->bh);
3208 cpu_unregister_map_client_do(client);
3209 }
3210 }
3211
3212 void cpu_register_map_client(QEMUBH *bh)
3213 {
3214 MapClient *client = g_malloc(sizeof(*client));
3215
3216 qemu_mutex_lock(&map_client_list_lock);
3217 client->bh = bh;
3218 QLIST_INSERT_HEAD(&map_client_list, client, link);
3219 if (!atomic_read(&bounce.in_use)) {
3220 cpu_notify_map_clients_locked();
3221 }
3222 qemu_mutex_unlock(&map_client_list_lock);
3223 }
3224
3225 void cpu_exec_init_all(void)
3226 {
3227 qemu_mutex_init(&ram_list.mutex);
3228 /* The data structures we set up here depend on knowing the page size,
3229 * so no more changes can be made after this point.
3230 * In an ideal world, nothing we did before we had finished the
3231 * machine setup would care about the target page size, and we could
3232 * do this much later, rather than requiring board models to state
3233 * up front what their requirements are.
3234 */
3235 finalize_target_page_bits();
3236 io_mem_init();
3237 memory_map_init();
3238 qemu_mutex_init(&map_client_list_lock);
3239 }
3240
3241 void cpu_unregister_map_client(QEMUBH *bh)
3242 {
3243 MapClient *client;
3244
3245 qemu_mutex_lock(&map_client_list_lock);
3246 QLIST_FOREACH(client, &map_client_list, link) {
3247 if (client->bh == bh) {
3248 cpu_unregister_map_client_do(client);
3249 break;
3250 }
3251 }
3252 qemu_mutex_unlock(&map_client_list_lock);
3253 }
3254
3255 static void cpu_notify_map_clients(void)
3256 {
3257 qemu_mutex_lock(&map_client_list_lock);
3258 cpu_notify_map_clients_locked();
3259 qemu_mutex_unlock(&map_client_list_lock);
3260 }
3261
3262 static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3263 bool is_write)
3264 {
3265 MemoryRegion *mr;
3266 hwaddr l, xlat;
3267
3268 rcu_read_lock();
3269 while (len > 0) {
3270 l = len;
3271 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3272 if (!memory_access_is_direct(mr, is_write)) {
3273 l = memory_access_size(mr, l, addr);
3274 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
3275 rcu_read_unlock();
3276 return false;
3277 }
3278 }
3279
3280 len -= l;
3281 addr += l;
3282 }
3283 rcu_read_unlock();
3284 return true;
3285 }
3286
3287 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3288 int len, bool is_write)
3289 {
3290 return flatview_access_valid(address_space_to_flatview(as),
3291 addr, len, is_write);
3292 }
3293
3294 static hwaddr
3295 flatview_extend_translation(FlatView *fv, hwaddr addr,
3296 hwaddr target_len,
3297 MemoryRegion *mr, hwaddr base, hwaddr len,
3298 bool is_write)
3299 {
3300 hwaddr done = 0;
3301 hwaddr xlat;
3302 MemoryRegion *this_mr;
3303
3304 for (;;) {
3305 target_len -= len;
3306 addr += len;
3307 done += len;
3308 if (target_len == 0) {
3309 return done;
3310 }
3311
3312 len = target_len;
3313 this_mr = flatview_translate(fv, addr, &xlat,
3314 &len, is_write);
3315 if (this_mr != mr || xlat != base + done) {
3316 return done;
3317 }
3318 }
3319 }
3320
3321 /* Map a physical memory region into a host virtual address.
3322 * May map a subset of the requested range, given by and returned in *plen.
3323 * May return NULL if resources needed to perform the mapping are exhausted.
3324 * Use only for reads OR writes - not for read-modify-write operations.
3325 * Use cpu_register_map_client() to know when retrying the map operation is
3326 * likely to succeed.
3327 */
3328 void *address_space_map(AddressSpace *as,
3329 hwaddr addr,
3330 hwaddr *plen,
3331 bool is_write)
3332 {
3333 hwaddr len = *plen;
3334 hwaddr l, xlat;
3335 MemoryRegion *mr;
3336 void *ptr;
3337 FlatView *fv = address_space_to_flatview(as);
3338
3339 if (len == 0) {
3340 return NULL;
3341 }
3342
3343 l = len;
3344 rcu_read_lock();
3345 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
3346
3347 if (!memory_access_is_direct(mr, is_write)) {
3348 if (atomic_xchg(&bounce.in_use, true)) {
3349 rcu_read_unlock();
3350 return NULL;
3351 }
3352 /* Avoid unbounded allocations */
3353 l = MIN(l, TARGET_PAGE_SIZE);
3354 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3355 bounce.addr = addr;
3356 bounce.len = l;
3357
3358 memory_region_ref(mr);
3359 bounce.mr = mr;
3360 if (!is_write) {
3361 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3362 bounce.buffer, l);
3363 }
3364
3365 rcu_read_unlock();
3366 *plen = l;
3367 return bounce.buffer;
3368 }
3369
3370
3371 memory_region_ref(mr);
3372 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3373 l, is_write);
3374 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3375 rcu_read_unlock();
3376
3377 return ptr;
3378 }
3379
3380 /* Unmaps a memory region previously mapped by address_space_map().
3381 * Will also mark the memory as dirty if is_write == 1. access_len gives
3382 * the amount of memory that was actually read or written by the caller.
3383 */
3384 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3385 int is_write, hwaddr access_len)
3386 {
3387 if (buffer != bounce.buffer) {
3388 MemoryRegion *mr;
3389 ram_addr_t addr1;
3390
3391 mr = memory_region_from_host(buffer, &addr1);
3392 assert(mr != NULL);
3393 if (is_write) {
3394 invalidate_and_set_dirty(mr, addr1, access_len);
3395 }
3396 if (xen_enabled()) {
3397 xen_invalidate_map_cache_entry(buffer);
3398 }
3399 memory_region_unref(mr);
3400 return;
3401 }
3402 if (is_write) {
3403 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3404 bounce.buffer, access_len);
3405 }
3406 qemu_vfree(bounce.buffer);
3407 bounce.buffer = NULL;
3408 memory_region_unref(bounce.mr);
3409 atomic_mb_set(&bounce.in_use, false);
3410 cpu_notify_map_clients();
3411 }
3412
3413 void *cpu_physical_memory_map(hwaddr addr,
3414 hwaddr *plen,
3415 int is_write)
3416 {
3417 return address_space_map(&address_space_memory, addr, plen, is_write);
3418 }
3419
3420 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3421 int is_write, hwaddr access_len)
3422 {
3423 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3424 }
3425
3426 #define ARG1_DECL AddressSpace *as
3427 #define ARG1 as
3428 #define SUFFIX
3429 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3430 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3431 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3432 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3433 #define RCU_READ_LOCK(...) rcu_read_lock()
3434 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3435 #include "memory_ldst.inc.c"
3436
3437 int64_t address_space_cache_init(MemoryRegionCache *cache,
3438 AddressSpace *as,
3439 hwaddr addr,
3440 hwaddr len,
3441 bool is_write)
3442 {
3443 cache->len = len;
3444 cache->as = as;
3445 cache->xlat = addr;
3446 return len;
3447 }
3448
3449 void address_space_cache_invalidate(MemoryRegionCache *cache,
3450 hwaddr addr,
3451 hwaddr access_len)
3452 {
3453 }
3454
3455 void address_space_cache_destroy(MemoryRegionCache *cache)
3456 {
3457 cache->as = NULL;
3458 }
3459
3460 #define ARG1_DECL MemoryRegionCache *cache
3461 #define ARG1 cache
3462 #define SUFFIX _cached
3463 #define TRANSLATE(addr, ...) \
3464 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3465 #define IS_DIRECT(mr, is_write) true
3466 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3467 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3468 #define RCU_READ_LOCK() rcu_read_lock()
3469 #define RCU_READ_UNLOCK() rcu_read_unlock()
3470 #include "memory_ldst.inc.c"
3471
3472 /* virtual memory access for debug (includes writing to ROM) */
3473 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3474 uint8_t *buf, int len, int is_write)
3475 {
3476 int l;
3477 hwaddr phys_addr;
3478 target_ulong page;
3479
3480 cpu_synchronize_state(cpu);
3481 while (len > 0) {
3482 int asidx;
3483 MemTxAttrs attrs;
3484
3485 page = addr & TARGET_PAGE_MASK;
3486 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3487 asidx = cpu_asidx_from_attrs(cpu, attrs);
3488 /* if no physical page mapped, return an error */
3489 if (phys_addr == -1)
3490 return -1;
3491 l = (page + TARGET_PAGE_SIZE) - addr;
3492 if (l > len)
3493 l = len;
3494 phys_addr += (addr & ~TARGET_PAGE_MASK);
3495 if (is_write) {
3496 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3497 phys_addr, buf, l);
3498 } else {
3499 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3500 MEMTXATTRS_UNSPECIFIED,
3501 buf, l, 0);
3502 }
3503 len -= l;
3504 buf += l;
3505 addr += l;
3506 }
3507 return 0;
3508 }
3509
3510 /*
3511 * Allows code that needs to deal with migration bitmaps etc to still be built
3512 * target independent.
3513 */
3514 size_t qemu_target_page_size(void)
3515 {
3516 return TARGET_PAGE_SIZE;
3517 }
3518
3519 int qemu_target_page_bits(void)
3520 {
3521 return TARGET_PAGE_BITS;
3522 }
3523
3524 int qemu_target_page_bits_min(void)
3525 {
3526 return TARGET_PAGE_BITS_MIN;
3527 }
3528 #endif
3529
3530 /*
3531 * A helper function for the _utterly broken_ virtio device model to find out if
3532 * it's running on a big endian machine. Don't do this at home kids!
3533 */
3534 bool target_words_bigendian(void);
3535 bool target_words_bigendian(void)
3536 {
3537 #if defined(TARGET_WORDS_BIGENDIAN)
3538 return true;
3539 #else
3540 return false;
3541 #endif
3542 }
3543
3544 #ifndef CONFIG_USER_ONLY
3545 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3546 {
3547 MemoryRegion*mr;
3548 hwaddr l = 1;
3549 bool res;
3550
3551 rcu_read_lock();
3552 mr = address_space_translate(&address_space_memory,
3553 phys_addr, &phys_addr, &l, false);
3554
3555 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3556 rcu_read_unlock();
3557 return res;
3558 }
3559
3560 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3561 {
3562 RAMBlock *block;
3563 int ret = 0;
3564
3565 rcu_read_lock();
3566 RAMBLOCK_FOREACH(block) {
3567 ret = func(block->idstr, block->host, block->offset,
3568 block->used_length, opaque);
3569 if (ret) {
3570 break;
3571 }
3572 }
3573 rcu_read_unlock();
3574 return ret;
3575 }
3576
3577 /*
3578 * Unmap pages of memory from start to start+length such that
3579 * they a) read as 0, b) Trigger whatever fault mechanism
3580 * the OS provides for postcopy.
3581 * The pages must be unmapped by the end of the function.
3582 * Returns: 0 on success, none-0 on failure
3583 *
3584 */
3585 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3586 {
3587 int ret = -1;
3588
3589 uint8_t *host_startaddr = rb->host + start;
3590
3591 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3592 error_report("ram_block_discard_range: Unaligned start address: %p",
3593 host_startaddr);
3594 goto err;
3595 }
3596
3597 if ((start + length) <= rb->used_length) {
3598 uint8_t *host_endaddr = host_startaddr + length;
3599 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3600 error_report("ram_block_discard_range: Unaligned end address: %p",
3601 host_endaddr);
3602 goto err;
3603 }
3604
3605 errno = ENOTSUP; /* If we are missing MADVISE etc */
3606
3607 if (rb->page_size == qemu_host_page_size) {
3608 #if defined(CONFIG_MADVISE)
3609 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3610 * freeing the page.
3611 */
3612 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3613 #endif
3614 } else {
3615 /* Huge page case - unfortunately it can't do DONTNEED, but
3616 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3617 * huge page file.
3618 */
3619 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3620 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3621 start, length);
3622 #endif
3623 }
3624 if (ret) {
3625 ret = -errno;
3626 error_report("ram_block_discard_range: Failed to discard range "
3627 "%s:%" PRIx64 " +%zx (%d)",
3628 rb->idstr, start, length, ret);
3629 }
3630 } else {
3631 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3632 "/%zx/" RAM_ADDR_FMT")",
3633 rb->idstr, start, length, rb->used_length);
3634 }
3635
3636 err:
3637 return ret;
3638 }
3639
3640 #endif
3641
3642 void page_size_init(void)
3643 {
3644 /* NOTE: we can always suppose that qemu_host_page_size >=
3645 TARGET_PAGE_SIZE */
3646 if (qemu_host_page_size == 0) {
3647 qemu_host_page_size = qemu_real_host_page_size;
3648 }
3649 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3650 qemu_host_page_size = TARGET_PAGE_SIZE;
3651 }
3652 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3653 }
3654
3655 #if !defined(CONFIG_USER_ONLY)
3656
3657 static void mtree_print_phys_entries(fprintf_function mon, void *f,
3658 int start, int end, int skip, int ptr)
3659 {
3660 if (start == end - 1) {
3661 mon(f, "\t%3d ", start);
3662 } else {
3663 mon(f, "\t%3d..%-3d ", start, end - 1);
3664 }
3665 mon(f, " skip=%d ", skip);
3666 if (ptr == PHYS_MAP_NODE_NIL) {
3667 mon(f, " ptr=NIL");
3668 } else if (!skip) {
3669 mon(f, " ptr=#%d", ptr);
3670 } else {
3671 mon(f, " ptr=[%d]", ptr);
3672 }
3673 mon(f, "\n");
3674 }
3675
3676 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3677 int128_sub((size), int128_one())) : 0)
3678
3679 void mtree_print_dispatch(fprintf_function mon, void *f,
3680 AddressSpaceDispatch *d, MemoryRegion *root)
3681 {
3682 int i;
3683
3684 mon(f, " Dispatch\n");
3685 mon(f, " Physical sections\n");
3686
3687 for (i = 0; i < d->map.sections_nb; ++i) {
3688 MemoryRegionSection *s = d->map.sections + i;
3689 const char *names[] = { " [unassigned]", " [not dirty]",
3690 " [ROM]", " [watch]" };
3691
3692 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3693 i,
3694 s->offset_within_address_space,
3695 s->offset_within_address_space + MR_SIZE(s->mr->size),
3696 s->mr->name ? s->mr->name : "(noname)",
3697 i < ARRAY_SIZE(names) ? names[i] : "",
3698 s->mr == root ? " [ROOT]" : "",
3699 s == d->mru_section ? " [MRU]" : "",
3700 s->mr->is_iommu ? " [iommu]" : "");
3701
3702 if (s->mr->alias) {
3703 mon(f, " alias=%s", s->mr->alias->name ?
3704 s->mr->alias->name : "noname");
3705 }
3706 mon(f, "\n");
3707 }
3708
3709 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3710 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3711 for (i = 0; i < d->map.nodes_nb; ++i) {
3712 int j, jprev;
3713 PhysPageEntry prev;
3714 Node *n = d->map.nodes + i;
3715
3716 mon(f, " [%d]\n", i);
3717
3718 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3719 PhysPageEntry *pe = *n + j;
3720
3721 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3722 continue;
3723 }
3724
3725 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3726
3727 jprev = j;
3728 prev = *pe;
3729 }
3730
3731 if (jprev != ARRAY_SIZE(*n)) {
3732 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3733 }
3734 }
3735 }
3736
3737 #endif