]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/aio.c
Merge tag 'y2038-for-4.21' of ssh://gitolite.kernel.org:/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49
50 #include "internal.h"
51
52 #define KIOCB_KEY 0
53
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
57 struct aio_ring {
58 unsigned id; /* kernel internal index number */
59 unsigned nr; /* number of io_events */
60 unsigned head; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
62 unsigned tail;
63
64 unsigned magic;
65 unsigned compat_features;
66 unsigned incompat_features;
67 unsigned header_length; /* size of aio_ring */
68
69
70 struct io_event io_events[0];
71 }; /* 128 bytes + ring size */
72
73 #define AIO_RING_PAGES 8
74
75 struct kioctx_table {
76 struct rcu_head rcu;
77 unsigned nr;
78 struct kioctx __rcu *table[];
79 };
80
81 struct kioctx_cpu {
82 unsigned reqs_available;
83 };
84
85 struct ctx_rq_wait {
86 struct completion comp;
87 atomic_t count;
88 };
89
90 struct kioctx {
91 struct percpu_ref users;
92 atomic_t dead;
93
94 struct percpu_ref reqs;
95
96 unsigned long user_id;
97
98 struct __percpu kioctx_cpu *cpu;
99
100 /*
101 * For percpu reqs_available, number of slots we move to/from global
102 * counter at a time:
103 */
104 unsigned req_batch;
105 /*
106 * This is what userspace passed to io_setup(), it's not used for
107 * anything but counting against the global max_reqs quota.
108 *
109 * The real limit is nr_events - 1, which will be larger (see
110 * aio_setup_ring())
111 */
112 unsigned max_reqs;
113
114 /* Size of ringbuffer, in units of struct io_event */
115 unsigned nr_events;
116
117 unsigned long mmap_base;
118 unsigned long mmap_size;
119
120 struct page **ring_pages;
121 long nr_pages;
122
123 struct rcu_work free_rwork; /* see free_ioctx() */
124
125 /*
126 * signals when all in-flight requests are done
127 */
128 struct ctx_rq_wait *rq_wait;
129
130 struct {
131 /*
132 * This counts the number of available slots in the ringbuffer,
133 * so we avoid overflowing it: it's decremented (if positive)
134 * when allocating a kiocb and incremented when the resulting
135 * io_event is pulled off the ringbuffer.
136 *
137 * We batch accesses to it with a percpu version.
138 */
139 atomic_t reqs_available;
140 } ____cacheline_aligned_in_smp;
141
142 struct {
143 spinlock_t ctx_lock;
144 struct list_head active_reqs; /* used for cancellation */
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 struct mutex ring_lock;
149 wait_queue_head_t wait;
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 unsigned tail;
154 unsigned completed_events;
155 spinlock_t completion_lock;
156 } ____cacheline_aligned_in_smp;
157
158 struct page *internal_pages[AIO_RING_PAGES];
159 struct file *aio_ring_file;
160
161 unsigned id;
162 };
163
164 struct fsync_iocb {
165 struct work_struct work;
166 struct file *file;
167 bool datasync;
168 };
169
170 struct poll_iocb {
171 struct file *file;
172 struct wait_queue_head *head;
173 __poll_t events;
174 bool woken;
175 bool cancelled;
176 struct wait_queue_entry wait;
177 struct work_struct work;
178 };
179
180 struct aio_kiocb {
181 union {
182 struct kiocb rw;
183 struct fsync_iocb fsync;
184 struct poll_iocb poll;
185 };
186
187 struct kioctx *ki_ctx;
188 kiocb_cancel_fn *ki_cancel;
189
190 struct iocb __user *ki_user_iocb; /* user's aiocb */
191 __u64 ki_user_data; /* user's data for completion */
192
193 struct list_head ki_list; /* the aio core uses this
194 * for cancellation */
195 refcount_t ki_refcnt;
196
197 /*
198 * If the aio_resfd field of the userspace iocb is not zero,
199 * this is the underlying eventfd context to deliver events to.
200 */
201 struct eventfd_ctx *ki_eventfd;
202 };
203
204 /*------ sysctl variables----*/
205 static DEFINE_SPINLOCK(aio_nr_lock);
206 unsigned long aio_nr; /* current system wide number of aio requests */
207 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
208 /*----end sysctl variables---*/
209
210 static struct kmem_cache *kiocb_cachep;
211 static struct kmem_cache *kioctx_cachep;
212
213 static struct vfsmount *aio_mnt;
214
215 static const struct file_operations aio_ring_fops;
216 static const struct address_space_operations aio_ctx_aops;
217
218 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
219 {
220 struct file *file;
221 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
222 if (IS_ERR(inode))
223 return ERR_CAST(inode);
224
225 inode->i_mapping->a_ops = &aio_ctx_aops;
226 inode->i_mapping->private_data = ctx;
227 inode->i_size = PAGE_SIZE * nr_pages;
228
229 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
230 O_RDWR, &aio_ring_fops);
231 if (IS_ERR(file))
232 iput(inode);
233 return file;
234 }
235
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
238 {
239 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
240 AIO_RING_MAGIC);
241
242 if (!IS_ERR(root))
243 root->d_sb->s_iflags |= SB_I_NOEXEC;
244 return root;
245 }
246
247 /* aio_setup
248 * Creates the slab caches used by the aio routines, panic on
249 * failure as this is done early during the boot sequence.
250 */
251 static int __init aio_setup(void)
252 {
253 static struct file_system_type aio_fs = {
254 .name = "aio",
255 .mount = aio_mount,
256 .kill_sb = kill_anon_super,
257 };
258 aio_mnt = kern_mount(&aio_fs);
259 if (IS_ERR(aio_mnt))
260 panic("Failed to create aio fs mount.");
261
262 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
263 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
264 return 0;
265 }
266 __initcall(aio_setup);
267
268 static void put_aio_ring_file(struct kioctx *ctx)
269 {
270 struct file *aio_ring_file = ctx->aio_ring_file;
271 struct address_space *i_mapping;
272
273 if (aio_ring_file) {
274 truncate_setsize(file_inode(aio_ring_file), 0);
275
276 /* Prevent further access to the kioctx from migratepages */
277 i_mapping = aio_ring_file->f_mapping;
278 spin_lock(&i_mapping->private_lock);
279 i_mapping->private_data = NULL;
280 ctx->aio_ring_file = NULL;
281 spin_unlock(&i_mapping->private_lock);
282
283 fput(aio_ring_file);
284 }
285 }
286
287 static void aio_free_ring(struct kioctx *ctx)
288 {
289 int i;
290
291 /* Disconnect the kiotx from the ring file. This prevents future
292 * accesses to the kioctx from page migration.
293 */
294 put_aio_ring_file(ctx);
295
296 for (i = 0; i < ctx->nr_pages; i++) {
297 struct page *page;
298 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
299 page_count(ctx->ring_pages[i]));
300 page = ctx->ring_pages[i];
301 if (!page)
302 continue;
303 ctx->ring_pages[i] = NULL;
304 put_page(page);
305 }
306
307 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
308 kfree(ctx->ring_pages);
309 ctx->ring_pages = NULL;
310 }
311 }
312
313 static int aio_ring_mremap(struct vm_area_struct *vma)
314 {
315 struct file *file = vma->vm_file;
316 struct mm_struct *mm = vma->vm_mm;
317 struct kioctx_table *table;
318 int i, res = -EINVAL;
319
320 spin_lock(&mm->ioctx_lock);
321 rcu_read_lock();
322 table = rcu_dereference(mm->ioctx_table);
323 for (i = 0; i < table->nr; i++) {
324 struct kioctx *ctx;
325
326 ctx = rcu_dereference(table->table[i]);
327 if (ctx && ctx->aio_ring_file == file) {
328 if (!atomic_read(&ctx->dead)) {
329 ctx->user_id = ctx->mmap_base = vma->vm_start;
330 res = 0;
331 }
332 break;
333 }
334 }
335
336 rcu_read_unlock();
337 spin_unlock(&mm->ioctx_lock);
338 return res;
339 }
340
341 static const struct vm_operations_struct aio_ring_vm_ops = {
342 .mremap = aio_ring_mremap,
343 #if IS_ENABLED(CONFIG_MMU)
344 .fault = filemap_fault,
345 .map_pages = filemap_map_pages,
346 .page_mkwrite = filemap_page_mkwrite,
347 #endif
348 };
349
350 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
351 {
352 vma->vm_flags |= VM_DONTEXPAND;
353 vma->vm_ops = &aio_ring_vm_ops;
354 return 0;
355 }
356
357 static const struct file_operations aio_ring_fops = {
358 .mmap = aio_ring_mmap,
359 };
360
361 #if IS_ENABLED(CONFIG_MIGRATION)
362 static int aio_migratepage(struct address_space *mapping, struct page *new,
363 struct page *old, enum migrate_mode mode)
364 {
365 struct kioctx *ctx;
366 unsigned long flags;
367 pgoff_t idx;
368 int rc;
369
370 /*
371 * We cannot support the _NO_COPY case here, because copy needs to
372 * happen under the ctx->completion_lock. That does not work with the
373 * migration workflow of MIGRATE_SYNC_NO_COPY.
374 */
375 if (mode == MIGRATE_SYNC_NO_COPY)
376 return -EINVAL;
377
378 rc = 0;
379
380 /* mapping->private_lock here protects against the kioctx teardown. */
381 spin_lock(&mapping->private_lock);
382 ctx = mapping->private_data;
383 if (!ctx) {
384 rc = -EINVAL;
385 goto out;
386 }
387
388 /* The ring_lock mutex. The prevents aio_read_events() from writing
389 * to the ring's head, and prevents page migration from mucking in
390 * a partially initialized kiotx.
391 */
392 if (!mutex_trylock(&ctx->ring_lock)) {
393 rc = -EAGAIN;
394 goto out;
395 }
396
397 idx = old->index;
398 if (idx < (pgoff_t)ctx->nr_pages) {
399 /* Make sure the old page hasn't already been changed */
400 if (ctx->ring_pages[idx] != old)
401 rc = -EAGAIN;
402 } else
403 rc = -EINVAL;
404
405 if (rc != 0)
406 goto out_unlock;
407
408 /* Writeback must be complete */
409 BUG_ON(PageWriteback(old));
410 get_page(new);
411
412 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
413 if (rc != MIGRATEPAGE_SUCCESS) {
414 put_page(new);
415 goto out_unlock;
416 }
417
418 /* Take completion_lock to prevent other writes to the ring buffer
419 * while the old page is copied to the new. This prevents new
420 * events from being lost.
421 */
422 spin_lock_irqsave(&ctx->completion_lock, flags);
423 migrate_page_copy(new, old);
424 BUG_ON(ctx->ring_pages[idx] != old);
425 ctx->ring_pages[idx] = new;
426 spin_unlock_irqrestore(&ctx->completion_lock, flags);
427
428 /* The old page is no longer accessible. */
429 put_page(old);
430
431 out_unlock:
432 mutex_unlock(&ctx->ring_lock);
433 out:
434 spin_unlock(&mapping->private_lock);
435 return rc;
436 }
437 #endif
438
439 static const struct address_space_operations aio_ctx_aops = {
440 .set_page_dirty = __set_page_dirty_no_writeback,
441 #if IS_ENABLED(CONFIG_MIGRATION)
442 .migratepage = aio_migratepage,
443 #endif
444 };
445
446 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
447 {
448 struct aio_ring *ring;
449 struct mm_struct *mm = current->mm;
450 unsigned long size, unused;
451 int nr_pages;
452 int i;
453 struct file *file;
454
455 /* Compensate for the ring buffer's head/tail overlap entry */
456 nr_events += 2; /* 1 is required, 2 for good luck */
457
458 size = sizeof(struct aio_ring);
459 size += sizeof(struct io_event) * nr_events;
460
461 nr_pages = PFN_UP(size);
462 if (nr_pages < 0)
463 return -EINVAL;
464
465 file = aio_private_file(ctx, nr_pages);
466 if (IS_ERR(file)) {
467 ctx->aio_ring_file = NULL;
468 return -ENOMEM;
469 }
470
471 ctx->aio_ring_file = file;
472 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
473 / sizeof(struct io_event);
474
475 ctx->ring_pages = ctx->internal_pages;
476 if (nr_pages > AIO_RING_PAGES) {
477 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
478 GFP_KERNEL);
479 if (!ctx->ring_pages) {
480 put_aio_ring_file(ctx);
481 return -ENOMEM;
482 }
483 }
484
485 for (i = 0; i < nr_pages; i++) {
486 struct page *page;
487 page = find_or_create_page(file->f_mapping,
488 i, GFP_HIGHUSER | __GFP_ZERO);
489 if (!page)
490 break;
491 pr_debug("pid(%d) page[%d]->count=%d\n",
492 current->pid, i, page_count(page));
493 SetPageUptodate(page);
494 unlock_page(page);
495
496 ctx->ring_pages[i] = page;
497 }
498 ctx->nr_pages = i;
499
500 if (unlikely(i != nr_pages)) {
501 aio_free_ring(ctx);
502 return -ENOMEM;
503 }
504
505 ctx->mmap_size = nr_pages * PAGE_SIZE;
506 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
507
508 if (down_write_killable(&mm->mmap_sem)) {
509 ctx->mmap_size = 0;
510 aio_free_ring(ctx);
511 return -EINTR;
512 }
513
514 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
515 PROT_READ | PROT_WRITE,
516 MAP_SHARED, 0, &unused, NULL);
517 up_write(&mm->mmap_sem);
518 if (IS_ERR((void *)ctx->mmap_base)) {
519 ctx->mmap_size = 0;
520 aio_free_ring(ctx);
521 return -ENOMEM;
522 }
523
524 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
525
526 ctx->user_id = ctx->mmap_base;
527 ctx->nr_events = nr_events; /* trusted copy */
528
529 ring = kmap_atomic(ctx->ring_pages[0]);
530 ring->nr = nr_events; /* user copy */
531 ring->id = ~0U;
532 ring->head = ring->tail = 0;
533 ring->magic = AIO_RING_MAGIC;
534 ring->compat_features = AIO_RING_COMPAT_FEATURES;
535 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
536 ring->header_length = sizeof(struct aio_ring);
537 kunmap_atomic(ring);
538 flush_dcache_page(ctx->ring_pages[0]);
539
540 return 0;
541 }
542
543 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
544 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
545 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
546
547 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
548 {
549 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
550 struct kioctx *ctx = req->ki_ctx;
551 unsigned long flags;
552
553 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
554 return;
555
556 spin_lock_irqsave(&ctx->ctx_lock, flags);
557 list_add_tail(&req->ki_list, &ctx->active_reqs);
558 req->ki_cancel = cancel;
559 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
560 }
561 EXPORT_SYMBOL(kiocb_set_cancel_fn);
562
563 /*
564 * free_ioctx() should be RCU delayed to synchronize against the RCU
565 * protected lookup_ioctx() and also needs process context to call
566 * aio_free_ring(). Use rcu_work.
567 */
568 static void free_ioctx(struct work_struct *work)
569 {
570 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
571 free_rwork);
572 pr_debug("freeing %p\n", ctx);
573
574 aio_free_ring(ctx);
575 free_percpu(ctx->cpu);
576 percpu_ref_exit(&ctx->reqs);
577 percpu_ref_exit(&ctx->users);
578 kmem_cache_free(kioctx_cachep, ctx);
579 }
580
581 static void free_ioctx_reqs(struct percpu_ref *ref)
582 {
583 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
584
585 /* At this point we know that there are no any in-flight requests */
586 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
587 complete(&ctx->rq_wait->comp);
588
589 /* Synchronize against RCU protected table->table[] dereferences */
590 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
591 queue_rcu_work(system_wq, &ctx->free_rwork);
592 }
593
594 /*
595 * When this function runs, the kioctx has been removed from the "hash table"
596 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
597 * now it's safe to cancel any that need to be.
598 */
599 static void free_ioctx_users(struct percpu_ref *ref)
600 {
601 struct kioctx *ctx = container_of(ref, struct kioctx, users);
602 struct aio_kiocb *req;
603
604 spin_lock_irq(&ctx->ctx_lock);
605
606 while (!list_empty(&ctx->active_reqs)) {
607 req = list_first_entry(&ctx->active_reqs,
608 struct aio_kiocb, ki_list);
609 req->ki_cancel(&req->rw);
610 list_del_init(&req->ki_list);
611 }
612
613 spin_unlock_irq(&ctx->ctx_lock);
614
615 percpu_ref_kill(&ctx->reqs);
616 percpu_ref_put(&ctx->reqs);
617 }
618
619 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
620 {
621 unsigned i, new_nr;
622 struct kioctx_table *table, *old;
623 struct aio_ring *ring;
624
625 spin_lock(&mm->ioctx_lock);
626 table = rcu_dereference_raw(mm->ioctx_table);
627
628 while (1) {
629 if (table)
630 for (i = 0; i < table->nr; i++)
631 if (!rcu_access_pointer(table->table[i])) {
632 ctx->id = i;
633 rcu_assign_pointer(table->table[i], ctx);
634 spin_unlock(&mm->ioctx_lock);
635
636 /* While kioctx setup is in progress,
637 * we are protected from page migration
638 * changes ring_pages by ->ring_lock.
639 */
640 ring = kmap_atomic(ctx->ring_pages[0]);
641 ring->id = ctx->id;
642 kunmap_atomic(ring);
643 return 0;
644 }
645
646 new_nr = (table ? table->nr : 1) * 4;
647 spin_unlock(&mm->ioctx_lock);
648
649 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
650 new_nr, GFP_KERNEL);
651 if (!table)
652 return -ENOMEM;
653
654 table->nr = new_nr;
655
656 spin_lock(&mm->ioctx_lock);
657 old = rcu_dereference_raw(mm->ioctx_table);
658
659 if (!old) {
660 rcu_assign_pointer(mm->ioctx_table, table);
661 } else if (table->nr > old->nr) {
662 memcpy(table->table, old->table,
663 old->nr * sizeof(struct kioctx *));
664
665 rcu_assign_pointer(mm->ioctx_table, table);
666 kfree_rcu(old, rcu);
667 } else {
668 kfree(table);
669 table = old;
670 }
671 }
672 }
673
674 static void aio_nr_sub(unsigned nr)
675 {
676 spin_lock(&aio_nr_lock);
677 if (WARN_ON(aio_nr - nr > aio_nr))
678 aio_nr = 0;
679 else
680 aio_nr -= nr;
681 spin_unlock(&aio_nr_lock);
682 }
683
684 /* ioctx_alloc
685 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
686 */
687 static struct kioctx *ioctx_alloc(unsigned nr_events)
688 {
689 struct mm_struct *mm = current->mm;
690 struct kioctx *ctx;
691 int err = -ENOMEM;
692
693 /*
694 * Store the original nr_events -- what userspace passed to io_setup(),
695 * for counting against the global limit -- before it changes.
696 */
697 unsigned int max_reqs = nr_events;
698
699 /*
700 * We keep track of the number of available ringbuffer slots, to prevent
701 * overflow (reqs_available), and we also use percpu counters for this.
702 *
703 * So since up to half the slots might be on other cpu's percpu counters
704 * and unavailable, double nr_events so userspace sees what they
705 * expected: additionally, we move req_batch slots to/from percpu
706 * counters at a time, so make sure that isn't 0:
707 */
708 nr_events = max(nr_events, num_possible_cpus() * 4);
709 nr_events *= 2;
710
711 /* Prevent overflows */
712 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
713 pr_debug("ENOMEM: nr_events too high\n");
714 return ERR_PTR(-EINVAL);
715 }
716
717 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
718 return ERR_PTR(-EAGAIN);
719
720 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
721 if (!ctx)
722 return ERR_PTR(-ENOMEM);
723
724 ctx->max_reqs = max_reqs;
725
726 spin_lock_init(&ctx->ctx_lock);
727 spin_lock_init(&ctx->completion_lock);
728 mutex_init(&ctx->ring_lock);
729 /* Protect against page migration throughout kiotx setup by keeping
730 * the ring_lock mutex held until setup is complete. */
731 mutex_lock(&ctx->ring_lock);
732 init_waitqueue_head(&ctx->wait);
733
734 INIT_LIST_HEAD(&ctx->active_reqs);
735
736 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
737 goto err;
738
739 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
740 goto err;
741
742 ctx->cpu = alloc_percpu(struct kioctx_cpu);
743 if (!ctx->cpu)
744 goto err;
745
746 err = aio_setup_ring(ctx, nr_events);
747 if (err < 0)
748 goto err;
749
750 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
751 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
752 if (ctx->req_batch < 1)
753 ctx->req_batch = 1;
754
755 /* limit the number of system wide aios */
756 spin_lock(&aio_nr_lock);
757 if (aio_nr + ctx->max_reqs > aio_max_nr ||
758 aio_nr + ctx->max_reqs < aio_nr) {
759 spin_unlock(&aio_nr_lock);
760 err = -EAGAIN;
761 goto err_ctx;
762 }
763 aio_nr += ctx->max_reqs;
764 spin_unlock(&aio_nr_lock);
765
766 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
767 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
768
769 err = ioctx_add_table(ctx, mm);
770 if (err)
771 goto err_cleanup;
772
773 /* Release the ring_lock mutex now that all setup is complete. */
774 mutex_unlock(&ctx->ring_lock);
775
776 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
777 ctx, ctx->user_id, mm, ctx->nr_events);
778 return ctx;
779
780 err_cleanup:
781 aio_nr_sub(ctx->max_reqs);
782 err_ctx:
783 atomic_set(&ctx->dead, 1);
784 if (ctx->mmap_size)
785 vm_munmap(ctx->mmap_base, ctx->mmap_size);
786 aio_free_ring(ctx);
787 err:
788 mutex_unlock(&ctx->ring_lock);
789 free_percpu(ctx->cpu);
790 percpu_ref_exit(&ctx->reqs);
791 percpu_ref_exit(&ctx->users);
792 kmem_cache_free(kioctx_cachep, ctx);
793 pr_debug("error allocating ioctx %d\n", err);
794 return ERR_PTR(err);
795 }
796
797 /* kill_ioctx
798 * Cancels all outstanding aio requests on an aio context. Used
799 * when the processes owning a context have all exited to encourage
800 * the rapid destruction of the kioctx.
801 */
802 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
803 struct ctx_rq_wait *wait)
804 {
805 struct kioctx_table *table;
806
807 spin_lock(&mm->ioctx_lock);
808 if (atomic_xchg(&ctx->dead, 1)) {
809 spin_unlock(&mm->ioctx_lock);
810 return -EINVAL;
811 }
812
813 table = rcu_dereference_raw(mm->ioctx_table);
814 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
815 RCU_INIT_POINTER(table->table[ctx->id], NULL);
816 spin_unlock(&mm->ioctx_lock);
817
818 /* free_ioctx_reqs() will do the necessary RCU synchronization */
819 wake_up_all(&ctx->wait);
820
821 /*
822 * It'd be more correct to do this in free_ioctx(), after all
823 * the outstanding kiocbs have finished - but by then io_destroy
824 * has already returned, so io_setup() could potentially return
825 * -EAGAIN with no ioctxs actually in use (as far as userspace
826 * could tell).
827 */
828 aio_nr_sub(ctx->max_reqs);
829
830 if (ctx->mmap_size)
831 vm_munmap(ctx->mmap_base, ctx->mmap_size);
832
833 ctx->rq_wait = wait;
834 percpu_ref_kill(&ctx->users);
835 return 0;
836 }
837
838 /*
839 * exit_aio: called when the last user of mm goes away. At this point, there is
840 * no way for any new requests to be submited or any of the io_* syscalls to be
841 * called on the context.
842 *
843 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
844 * them.
845 */
846 void exit_aio(struct mm_struct *mm)
847 {
848 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
849 struct ctx_rq_wait wait;
850 int i, skipped;
851
852 if (!table)
853 return;
854
855 atomic_set(&wait.count, table->nr);
856 init_completion(&wait.comp);
857
858 skipped = 0;
859 for (i = 0; i < table->nr; ++i) {
860 struct kioctx *ctx =
861 rcu_dereference_protected(table->table[i], true);
862
863 if (!ctx) {
864 skipped++;
865 continue;
866 }
867
868 /*
869 * We don't need to bother with munmap() here - exit_mmap(mm)
870 * is coming and it'll unmap everything. And we simply can't,
871 * this is not necessarily our ->mm.
872 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
873 * that it needs to unmap the area, just set it to 0.
874 */
875 ctx->mmap_size = 0;
876 kill_ioctx(mm, ctx, &wait);
877 }
878
879 if (!atomic_sub_and_test(skipped, &wait.count)) {
880 /* Wait until all IO for the context are done. */
881 wait_for_completion(&wait.comp);
882 }
883
884 RCU_INIT_POINTER(mm->ioctx_table, NULL);
885 kfree(table);
886 }
887
888 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
889 {
890 struct kioctx_cpu *kcpu;
891 unsigned long flags;
892
893 local_irq_save(flags);
894 kcpu = this_cpu_ptr(ctx->cpu);
895 kcpu->reqs_available += nr;
896
897 while (kcpu->reqs_available >= ctx->req_batch * 2) {
898 kcpu->reqs_available -= ctx->req_batch;
899 atomic_add(ctx->req_batch, &ctx->reqs_available);
900 }
901
902 local_irq_restore(flags);
903 }
904
905 static bool get_reqs_available(struct kioctx *ctx)
906 {
907 struct kioctx_cpu *kcpu;
908 bool ret = false;
909 unsigned long flags;
910
911 local_irq_save(flags);
912 kcpu = this_cpu_ptr(ctx->cpu);
913 if (!kcpu->reqs_available) {
914 int old, avail = atomic_read(&ctx->reqs_available);
915
916 do {
917 if (avail < ctx->req_batch)
918 goto out;
919
920 old = avail;
921 avail = atomic_cmpxchg(&ctx->reqs_available,
922 avail, avail - ctx->req_batch);
923 } while (avail != old);
924
925 kcpu->reqs_available += ctx->req_batch;
926 }
927
928 ret = true;
929 kcpu->reqs_available--;
930 out:
931 local_irq_restore(flags);
932 return ret;
933 }
934
935 /* refill_reqs_available
936 * Updates the reqs_available reference counts used for tracking the
937 * number of free slots in the completion ring. This can be called
938 * from aio_complete() (to optimistically update reqs_available) or
939 * from aio_get_req() (the we're out of events case). It must be
940 * called holding ctx->completion_lock.
941 */
942 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
943 unsigned tail)
944 {
945 unsigned events_in_ring, completed;
946
947 /* Clamp head since userland can write to it. */
948 head %= ctx->nr_events;
949 if (head <= tail)
950 events_in_ring = tail - head;
951 else
952 events_in_ring = ctx->nr_events - (head - tail);
953
954 completed = ctx->completed_events;
955 if (events_in_ring < completed)
956 completed -= events_in_ring;
957 else
958 completed = 0;
959
960 if (!completed)
961 return;
962
963 ctx->completed_events -= completed;
964 put_reqs_available(ctx, completed);
965 }
966
967 /* user_refill_reqs_available
968 * Called to refill reqs_available when aio_get_req() encounters an
969 * out of space in the completion ring.
970 */
971 static void user_refill_reqs_available(struct kioctx *ctx)
972 {
973 spin_lock_irq(&ctx->completion_lock);
974 if (ctx->completed_events) {
975 struct aio_ring *ring;
976 unsigned head;
977
978 /* Access of ring->head may race with aio_read_events_ring()
979 * here, but that's okay since whether we read the old version
980 * or the new version, and either will be valid. The important
981 * part is that head cannot pass tail since we prevent
982 * aio_complete() from updating tail by holding
983 * ctx->completion_lock. Even if head is invalid, the check
984 * against ctx->completed_events below will make sure we do the
985 * safe/right thing.
986 */
987 ring = kmap_atomic(ctx->ring_pages[0]);
988 head = ring->head;
989 kunmap_atomic(ring);
990
991 refill_reqs_available(ctx, head, ctx->tail);
992 }
993
994 spin_unlock_irq(&ctx->completion_lock);
995 }
996
997 /* aio_get_req
998 * Allocate a slot for an aio request.
999 * Returns NULL if no requests are free.
1000 */
1001 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1002 {
1003 struct aio_kiocb *req;
1004
1005 if (!get_reqs_available(ctx)) {
1006 user_refill_reqs_available(ctx);
1007 if (!get_reqs_available(ctx))
1008 return NULL;
1009 }
1010
1011 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1012 if (unlikely(!req))
1013 goto out_put;
1014
1015 percpu_ref_get(&ctx->reqs);
1016 INIT_LIST_HEAD(&req->ki_list);
1017 refcount_set(&req->ki_refcnt, 0);
1018 req->ki_ctx = ctx;
1019 return req;
1020 out_put:
1021 put_reqs_available(ctx, 1);
1022 return NULL;
1023 }
1024
1025 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1026 {
1027 struct aio_ring __user *ring = (void __user *)ctx_id;
1028 struct mm_struct *mm = current->mm;
1029 struct kioctx *ctx, *ret = NULL;
1030 struct kioctx_table *table;
1031 unsigned id;
1032
1033 if (get_user(id, &ring->id))
1034 return NULL;
1035
1036 rcu_read_lock();
1037 table = rcu_dereference(mm->ioctx_table);
1038
1039 if (!table || id >= table->nr)
1040 goto out;
1041
1042 id = array_index_nospec(id, table->nr);
1043 ctx = rcu_dereference(table->table[id]);
1044 if (ctx && ctx->user_id == ctx_id) {
1045 if (percpu_ref_tryget_live(&ctx->users))
1046 ret = ctx;
1047 }
1048 out:
1049 rcu_read_unlock();
1050 return ret;
1051 }
1052
1053 static inline void iocb_put(struct aio_kiocb *iocb)
1054 {
1055 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1056 refcount_dec_and_test(&iocb->ki_refcnt)) {
1057 percpu_ref_put(&iocb->ki_ctx->reqs);
1058 kmem_cache_free(kiocb_cachep, iocb);
1059 }
1060 }
1061
1062 /* aio_complete
1063 * Called when the io request on the given iocb is complete.
1064 */
1065 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1066 {
1067 struct kioctx *ctx = iocb->ki_ctx;
1068 struct aio_ring *ring;
1069 struct io_event *ev_page, *event;
1070 unsigned tail, pos, head;
1071 unsigned long flags;
1072
1073 /*
1074 * Add a completion event to the ring buffer. Must be done holding
1075 * ctx->completion_lock to prevent other code from messing with the tail
1076 * pointer since we might be called from irq context.
1077 */
1078 spin_lock_irqsave(&ctx->completion_lock, flags);
1079
1080 tail = ctx->tail;
1081 pos = tail + AIO_EVENTS_OFFSET;
1082
1083 if (++tail >= ctx->nr_events)
1084 tail = 0;
1085
1086 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1087 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1088
1089 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1090 event->data = iocb->ki_user_data;
1091 event->res = res;
1092 event->res2 = res2;
1093
1094 kunmap_atomic(ev_page);
1095 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1096
1097 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1098 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1099 res, res2);
1100
1101 /* after flagging the request as done, we
1102 * must never even look at it again
1103 */
1104 smp_wmb(); /* make event visible before updating tail */
1105
1106 ctx->tail = tail;
1107
1108 ring = kmap_atomic(ctx->ring_pages[0]);
1109 head = ring->head;
1110 ring->tail = tail;
1111 kunmap_atomic(ring);
1112 flush_dcache_page(ctx->ring_pages[0]);
1113
1114 ctx->completed_events++;
1115 if (ctx->completed_events > 1)
1116 refill_reqs_available(ctx, head, tail);
1117 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1118
1119 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1120
1121 /*
1122 * Check if the user asked us to deliver the result through an
1123 * eventfd. The eventfd_signal() function is safe to be called
1124 * from IRQ context.
1125 */
1126 if (iocb->ki_eventfd) {
1127 eventfd_signal(iocb->ki_eventfd, 1);
1128 eventfd_ctx_put(iocb->ki_eventfd);
1129 }
1130
1131 /*
1132 * We have to order our ring_info tail store above and test
1133 * of the wait list below outside the wait lock. This is
1134 * like in wake_up_bit() where clearing a bit has to be
1135 * ordered with the unlocked test.
1136 */
1137 smp_mb();
1138
1139 if (waitqueue_active(&ctx->wait))
1140 wake_up(&ctx->wait);
1141 iocb_put(iocb);
1142 }
1143
1144 /* aio_read_events_ring
1145 * Pull an event off of the ioctx's event ring. Returns the number of
1146 * events fetched
1147 */
1148 static long aio_read_events_ring(struct kioctx *ctx,
1149 struct io_event __user *event, long nr)
1150 {
1151 struct aio_ring *ring;
1152 unsigned head, tail, pos;
1153 long ret = 0;
1154 int copy_ret;
1155
1156 /*
1157 * The mutex can block and wake us up and that will cause
1158 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1159 * and repeat. This should be rare enough that it doesn't cause
1160 * peformance issues. See the comment in read_events() for more detail.
1161 */
1162 sched_annotate_sleep();
1163 mutex_lock(&ctx->ring_lock);
1164
1165 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1166 ring = kmap_atomic(ctx->ring_pages[0]);
1167 head = ring->head;
1168 tail = ring->tail;
1169 kunmap_atomic(ring);
1170
1171 /*
1172 * Ensure that once we've read the current tail pointer, that
1173 * we also see the events that were stored up to the tail.
1174 */
1175 smp_rmb();
1176
1177 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1178
1179 if (head == tail)
1180 goto out;
1181
1182 head %= ctx->nr_events;
1183 tail %= ctx->nr_events;
1184
1185 while (ret < nr) {
1186 long avail;
1187 struct io_event *ev;
1188 struct page *page;
1189
1190 avail = (head <= tail ? tail : ctx->nr_events) - head;
1191 if (head == tail)
1192 break;
1193
1194 pos = head + AIO_EVENTS_OFFSET;
1195 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1196 pos %= AIO_EVENTS_PER_PAGE;
1197
1198 avail = min(avail, nr - ret);
1199 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1200
1201 ev = kmap(page);
1202 copy_ret = copy_to_user(event + ret, ev + pos,
1203 sizeof(*ev) * avail);
1204 kunmap(page);
1205
1206 if (unlikely(copy_ret)) {
1207 ret = -EFAULT;
1208 goto out;
1209 }
1210
1211 ret += avail;
1212 head += avail;
1213 head %= ctx->nr_events;
1214 }
1215
1216 ring = kmap_atomic(ctx->ring_pages[0]);
1217 ring->head = head;
1218 kunmap_atomic(ring);
1219 flush_dcache_page(ctx->ring_pages[0]);
1220
1221 pr_debug("%li h%u t%u\n", ret, head, tail);
1222 out:
1223 mutex_unlock(&ctx->ring_lock);
1224
1225 return ret;
1226 }
1227
1228 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1229 struct io_event __user *event, long *i)
1230 {
1231 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1232
1233 if (ret > 0)
1234 *i += ret;
1235
1236 if (unlikely(atomic_read(&ctx->dead)))
1237 ret = -EINVAL;
1238
1239 if (!*i)
1240 *i = ret;
1241
1242 return ret < 0 || *i >= min_nr;
1243 }
1244
1245 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1246 struct io_event __user *event,
1247 ktime_t until)
1248 {
1249 long ret = 0;
1250
1251 /*
1252 * Note that aio_read_events() is being called as the conditional - i.e.
1253 * we're calling it after prepare_to_wait() has set task state to
1254 * TASK_INTERRUPTIBLE.
1255 *
1256 * But aio_read_events() can block, and if it blocks it's going to flip
1257 * the task state back to TASK_RUNNING.
1258 *
1259 * This should be ok, provided it doesn't flip the state back to
1260 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1261 * will only happen if the mutex_lock() call blocks, and we then find
1262 * the ringbuffer empty. So in practice we should be ok, but it's
1263 * something to be aware of when touching this code.
1264 */
1265 if (until == 0)
1266 aio_read_events(ctx, min_nr, nr, event, &ret);
1267 else
1268 wait_event_interruptible_hrtimeout(ctx->wait,
1269 aio_read_events(ctx, min_nr, nr, event, &ret),
1270 until);
1271 return ret;
1272 }
1273
1274 /* sys_io_setup:
1275 * Create an aio_context capable of receiving at least nr_events.
1276 * ctxp must not point to an aio_context that already exists, and
1277 * must be initialized to 0 prior to the call. On successful
1278 * creation of the aio_context, *ctxp is filled in with the resulting
1279 * handle. May fail with -EINVAL if *ctxp is not initialized,
1280 * if the specified nr_events exceeds internal limits. May fail
1281 * with -EAGAIN if the specified nr_events exceeds the user's limit
1282 * of available events. May fail with -ENOMEM if insufficient kernel
1283 * resources are available. May fail with -EFAULT if an invalid
1284 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1285 * implemented.
1286 */
1287 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1288 {
1289 struct kioctx *ioctx = NULL;
1290 unsigned long ctx;
1291 long ret;
1292
1293 ret = get_user(ctx, ctxp);
1294 if (unlikely(ret))
1295 goto out;
1296
1297 ret = -EINVAL;
1298 if (unlikely(ctx || nr_events == 0)) {
1299 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1300 ctx, nr_events);
1301 goto out;
1302 }
1303
1304 ioctx = ioctx_alloc(nr_events);
1305 ret = PTR_ERR(ioctx);
1306 if (!IS_ERR(ioctx)) {
1307 ret = put_user(ioctx->user_id, ctxp);
1308 if (ret)
1309 kill_ioctx(current->mm, ioctx, NULL);
1310 percpu_ref_put(&ioctx->users);
1311 }
1312
1313 out:
1314 return ret;
1315 }
1316
1317 #ifdef CONFIG_COMPAT
1318 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1319 {
1320 struct kioctx *ioctx = NULL;
1321 unsigned long ctx;
1322 long ret;
1323
1324 ret = get_user(ctx, ctx32p);
1325 if (unlikely(ret))
1326 goto out;
1327
1328 ret = -EINVAL;
1329 if (unlikely(ctx || nr_events == 0)) {
1330 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1331 ctx, nr_events);
1332 goto out;
1333 }
1334
1335 ioctx = ioctx_alloc(nr_events);
1336 ret = PTR_ERR(ioctx);
1337 if (!IS_ERR(ioctx)) {
1338 /* truncating is ok because it's a user address */
1339 ret = put_user((u32)ioctx->user_id, ctx32p);
1340 if (ret)
1341 kill_ioctx(current->mm, ioctx, NULL);
1342 percpu_ref_put(&ioctx->users);
1343 }
1344
1345 out:
1346 return ret;
1347 }
1348 #endif
1349
1350 /* sys_io_destroy:
1351 * Destroy the aio_context specified. May cancel any outstanding
1352 * AIOs and block on completion. Will fail with -ENOSYS if not
1353 * implemented. May fail with -EINVAL if the context pointed to
1354 * is invalid.
1355 */
1356 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1357 {
1358 struct kioctx *ioctx = lookup_ioctx(ctx);
1359 if (likely(NULL != ioctx)) {
1360 struct ctx_rq_wait wait;
1361 int ret;
1362
1363 init_completion(&wait.comp);
1364 atomic_set(&wait.count, 1);
1365
1366 /* Pass requests_done to kill_ioctx() where it can be set
1367 * in a thread-safe way. If we try to set it here then we have
1368 * a race condition if two io_destroy() called simultaneously.
1369 */
1370 ret = kill_ioctx(current->mm, ioctx, &wait);
1371 percpu_ref_put(&ioctx->users);
1372
1373 /* Wait until all IO for the context are done. Otherwise kernel
1374 * keep using user-space buffers even if user thinks the context
1375 * is destroyed.
1376 */
1377 if (!ret)
1378 wait_for_completion(&wait.comp);
1379
1380 return ret;
1381 }
1382 pr_debug("EINVAL: invalid context id\n");
1383 return -EINVAL;
1384 }
1385
1386 static void aio_remove_iocb(struct aio_kiocb *iocb)
1387 {
1388 struct kioctx *ctx = iocb->ki_ctx;
1389 unsigned long flags;
1390
1391 spin_lock_irqsave(&ctx->ctx_lock, flags);
1392 list_del(&iocb->ki_list);
1393 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1394 }
1395
1396 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1397 {
1398 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1399
1400 if (!list_empty_careful(&iocb->ki_list))
1401 aio_remove_iocb(iocb);
1402
1403 if (kiocb->ki_flags & IOCB_WRITE) {
1404 struct inode *inode = file_inode(kiocb->ki_filp);
1405
1406 /*
1407 * Tell lockdep we inherited freeze protection from submission
1408 * thread.
1409 */
1410 if (S_ISREG(inode->i_mode))
1411 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1412 file_end_write(kiocb->ki_filp);
1413 }
1414
1415 fput(kiocb->ki_filp);
1416 aio_complete(iocb, res, res2);
1417 }
1418
1419 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1420 {
1421 int ret;
1422
1423 req->ki_filp = fget(iocb->aio_fildes);
1424 if (unlikely(!req->ki_filp))
1425 return -EBADF;
1426 req->ki_complete = aio_complete_rw;
1427 req->ki_pos = iocb->aio_offset;
1428 req->ki_flags = iocb_flags(req->ki_filp);
1429 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1430 req->ki_flags |= IOCB_EVENTFD;
1431 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1432 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1433 /*
1434 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1435 * aio_reqprio is interpreted as an I/O scheduling
1436 * class and priority.
1437 */
1438 ret = ioprio_check_cap(iocb->aio_reqprio);
1439 if (ret) {
1440 pr_debug("aio ioprio check cap error: %d\n", ret);
1441 fput(req->ki_filp);
1442 return ret;
1443 }
1444
1445 req->ki_ioprio = iocb->aio_reqprio;
1446 } else
1447 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1448
1449 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1450 if (unlikely(ret))
1451 fput(req->ki_filp);
1452 return ret;
1453 }
1454
1455 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1456 bool vectored, bool compat, struct iov_iter *iter)
1457 {
1458 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1459 size_t len = iocb->aio_nbytes;
1460
1461 if (!vectored) {
1462 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1463 *iovec = NULL;
1464 return ret;
1465 }
1466 #ifdef CONFIG_COMPAT
1467 if (compat)
1468 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1469 iter);
1470 #endif
1471 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1472 }
1473
1474 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1475 {
1476 switch (ret) {
1477 case -EIOCBQUEUED:
1478 break;
1479 case -ERESTARTSYS:
1480 case -ERESTARTNOINTR:
1481 case -ERESTARTNOHAND:
1482 case -ERESTART_RESTARTBLOCK:
1483 /*
1484 * There's no easy way to restart the syscall since other AIO's
1485 * may be already running. Just fail this IO with EINTR.
1486 */
1487 ret = -EINTR;
1488 /*FALLTHRU*/
1489 default:
1490 aio_complete_rw(req, ret, 0);
1491 }
1492 }
1493
1494 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1495 bool compat)
1496 {
1497 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1498 struct iov_iter iter;
1499 struct file *file;
1500 ssize_t ret;
1501
1502 ret = aio_prep_rw(req, iocb);
1503 if (ret)
1504 return ret;
1505 file = req->ki_filp;
1506
1507 ret = -EBADF;
1508 if (unlikely(!(file->f_mode & FMODE_READ)))
1509 goto out_fput;
1510 ret = -EINVAL;
1511 if (unlikely(!file->f_op->read_iter))
1512 goto out_fput;
1513
1514 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1515 if (ret)
1516 goto out_fput;
1517 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1518 if (!ret)
1519 aio_rw_done(req, call_read_iter(file, req, &iter));
1520 kfree(iovec);
1521 out_fput:
1522 if (unlikely(ret))
1523 fput(file);
1524 return ret;
1525 }
1526
1527 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1528 bool compat)
1529 {
1530 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1531 struct iov_iter iter;
1532 struct file *file;
1533 ssize_t ret;
1534
1535 ret = aio_prep_rw(req, iocb);
1536 if (ret)
1537 return ret;
1538 file = req->ki_filp;
1539
1540 ret = -EBADF;
1541 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1542 goto out_fput;
1543 ret = -EINVAL;
1544 if (unlikely(!file->f_op->write_iter))
1545 goto out_fput;
1546
1547 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1548 if (ret)
1549 goto out_fput;
1550 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1551 if (!ret) {
1552 /*
1553 * Open-code file_start_write here to grab freeze protection,
1554 * which will be released by another thread in
1555 * aio_complete_rw(). Fool lockdep by telling it the lock got
1556 * released so that it doesn't complain about the held lock when
1557 * we return to userspace.
1558 */
1559 if (S_ISREG(file_inode(file)->i_mode)) {
1560 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1561 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1562 }
1563 req->ki_flags |= IOCB_WRITE;
1564 aio_rw_done(req, call_write_iter(file, req, &iter));
1565 }
1566 kfree(iovec);
1567 out_fput:
1568 if (unlikely(ret))
1569 fput(file);
1570 return ret;
1571 }
1572
1573 static void aio_fsync_work(struct work_struct *work)
1574 {
1575 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1576 int ret;
1577
1578 ret = vfs_fsync(req->file, req->datasync);
1579 fput(req->file);
1580 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1581 }
1582
1583 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1584 {
1585 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1586 iocb->aio_rw_flags))
1587 return -EINVAL;
1588
1589 req->file = fget(iocb->aio_fildes);
1590 if (unlikely(!req->file))
1591 return -EBADF;
1592 if (unlikely(!req->file->f_op->fsync)) {
1593 fput(req->file);
1594 return -EINVAL;
1595 }
1596
1597 req->datasync = datasync;
1598 INIT_WORK(&req->work, aio_fsync_work);
1599 schedule_work(&req->work);
1600 return 0;
1601 }
1602
1603 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1604 {
1605 struct file *file = iocb->poll.file;
1606
1607 aio_complete(iocb, mangle_poll(mask), 0);
1608 fput(file);
1609 }
1610
1611 static void aio_poll_complete_work(struct work_struct *work)
1612 {
1613 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1614 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1615 struct poll_table_struct pt = { ._key = req->events };
1616 struct kioctx *ctx = iocb->ki_ctx;
1617 __poll_t mask = 0;
1618
1619 if (!READ_ONCE(req->cancelled))
1620 mask = vfs_poll(req->file, &pt) & req->events;
1621
1622 /*
1623 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1624 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1625 * synchronize with them. In the cancellation case the list_del_init
1626 * itself is not actually needed, but harmless so we keep it in to
1627 * avoid further branches in the fast path.
1628 */
1629 spin_lock_irq(&ctx->ctx_lock);
1630 if (!mask && !READ_ONCE(req->cancelled)) {
1631 add_wait_queue(req->head, &req->wait);
1632 spin_unlock_irq(&ctx->ctx_lock);
1633 return;
1634 }
1635 list_del_init(&iocb->ki_list);
1636 spin_unlock_irq(&ctx->ctx_lock);
1637
1638 aio_poll_complete(iocb, mask);
1639 }
1640
1641 /* assumes we are called with irqs disabled */
1642 static int aio_poll_cancel(struct kiocb *iocb)
1643 {
1644 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1645 struct poll_iocb *req = &aiocb->poll;
1646
1647 spin_lock(&req->head->lock);
1648 WRITE_ONCE(req->cancelled, true);
1649 if (!list_empty(&req->wait.entry)) {
1650 list_del_init(&req->wait.entry);
1651 schedule_work(&aiocb->poll.work);
1652 }
1653 spin_unlock(&req->head->lock);
1654
1655 return 0;
1656 }
1657
1658 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1659 void *key)
1660 {
1661 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1662 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1663 __poll_t mask = key_to_poll(key);
1664
1665 req->woken = true;
1666
1667 /* for instances that support it check for an event match first: */
1668 if (mask) {
1669 if (!(mask & req->events))
1670 return 0;
1671
1672 /* try to complete the iocb inline if we can: */
1673 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1674 list_del(&iocb->ki_list);
1675 spin_unlock(&iocb->ki_ctx->ctx_lock);
1676
1677 list_del_init(&req->wait.entry);
1678 aio_poll_complete(iocb, mask);
1679 return 1;
1680 }
1681 }
1682
1683 list_del_init(&req->wait.entry);
1684 schedule_work(&req->work);
1685 return 1;
1686 }
1687
1688 struct aio_poll_table {
1689 struct poll_table_struct pt;
1690 struct aio_kiocb *iocb;
1691 int error;
1692 };
1693
1694 static void
1695 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1696 struct poll_table_struct *p)
1697 {
1698 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1699
1700 /* multiple wait queues per file are not supported */
1701 if (unlikely(pt->iocb->poll.head)) {
1702 pt->error = -EINVAL;
1703 return;
1704 }
1705
1706 pt->error = 0;
1707 pt->iocb->poll.head = head;
1708 add_wait_queue(head, &pt->iocb->poll.wait);
1709 }
1710
1711 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1712 {
1713 struct kioctx *ctx = aiocb->ki_ctx;
1714 struct poll_iocb *req = &aiocb->poll;
1715 struct aio_poll_table apt;
1716 __poll_t mask;
1717
1718 /* reject any unknown events outside the normal event mask. */
1719 if ((u16)iocb->aio_buf != iocb->aio_buf)
1720 return -EINVAL;
1721 /* reject fields that are not defined for poll */
1722 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1723 return -EINVAL;
1724
1725 INIT_WORK(&req->work, aio_poll_complete_work);
1726 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1727 req->file = fget(iocb->aio_fildes);
1728 if (unlikely(!req->file))
1729 return -EBADF;
1730
1731 apt.pt._qproc = aio_poll_queue_proc;
1732 apt.pt._key = req->events;
1733 apt.iocb = aiocb;
1734 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1735
1736 /* initialized the list so that we can do list_empty checks */
1737 INIT_LIST_HEAD(&req->wait.entry);
1738 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1739
1740 /* one for removal from waitqueue, one for this function */
1741 refcount_set(&aiocb->ki_refcnt, 2);
1742
1743 mask = vfs_poll(req->file, &apt.pt) & req->events;
1744 if (unlikely(!req->head)) {
1745 /* we did not manage to set up a waitqueue, done */
1746 goto out;
1747 }
1748
1749 spin_lock_irq(&ctx->ctx_lock);
1750 spin_lock(&req->head->lock);
1751 if (req->woken) {
1752 /* wake_up context handles the rest */
1753 mask = 0;
1754 apt.error = 0;
1755 } else if (mask || apt.error) {
1756 /* if we get an error or a mask we are done */
1757 WARN_ON_ONCE(list_empty(&req->wait.entry));
1758 list_del_init(&req->wait.entry);
1759 } else {
1760 /* actually waiting for an event */
1761 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1762 aiocb->ki_cancel = aio_poll_cancel;
1763 }
1764 spin_unlock(&req->head->lock);
1765 spin_unlock_irq(&ctx->ctx_lock);
1766
1767 out:
1768 if (unlikely(apt.error)) {
1769 fput(req->file);
1770 return apt.error;
1771 }
1772
1773 if (mask)
1774 aio_poll_complete(aiocb, mask);
1775 iocb_put(aiocb);
1776 return 0;
1777 }
1778
1779 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1780 bool compat)
1781 {
1782 struct aio_kiocb *req;
1783 struct iocb iocb;
1784 ssize_t ret;
1785
1786 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1787 return -EFAULT;
1788
1789 /* enforce forwards compatibility on users */
1790 if (unlikely(iocb.aio_reserved2)) {
1791 pr_debug("EINVAL: reserve field set\n");
1792 return -EINVAL;
1793 }
1794
1795 /* prevent overflows */
1796 if (unlikely(
1797 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1798 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1799 ((ssize_t)iocb.aio_nbytes < 0)
1800 )) {
1801 pr_debug("EINVAL: overflow check\n");
1802 return -EINVAL;
1803 }
1804
1805 req = aio_get_req(ctx);
1806 if (unlikely(!req))
1807 return -EAGAIN;
1808
1809 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1810 /*
1811 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1812 * instance of the file* now. The file descriptor must be
1813 * an eventfd() fd, and will be signaled for each completed
1814 * event using the eventfd_signal() function.
1815 */
1816 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1817 if (IS_ERR(req->ki_eventfd)) {
1818 ret = PTR_ERR(req->ki_eventfd);
1819 req->ki_eventfd = NULL;
1820 goto out_put_req;
1821 }
1822 }
1823
1824 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1825 if (unlikely(ret)) {
1826 pr_debug("EFAULT: aio_key\n");
1827 goto out_put_req;
1828 }
1829
1830 req->ki_user_iocb = user_iocb;
1831 req->ki_user_data = iocb.aio_data;
1832
1833 switch (iocb.aio_lio_opcode) {
1834 case IOCB_CMD_PREAD:
1835 ret = aio_read(&req->rw, &iocb, false, compat);
1836 break;
1837 case IOCB_CMD_PWRITE:
1838 ret = aio_write(&req->rw, &iocb, false, compat);
1839 break;
1840 case IOCB_CMD_PREADV:
1841 ret = aio_read(&req->rw, &iocb, true, compat);
1842 break;
1843 case IOCB_CMD_PWRITEV:
1844 ret = aio_write(&req->rw, &iocb, true, compat);
1845 break;
1846 case IOCB_CMD_FSYNC:
1847 ret = aio_fsync(&req->fsync, &iocb, false);
1848 break;
1849 case IOCB_CMD_FDSYNC:
1850 ret = aio_fsync(&req->fsync, &iocb, true);
1851 break;
1852 case IOCB_CMD_POLL:
1853 ret = aio_poll(req, &iocb);
1854 break;
1855 default:
1856 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1857 ret = -EINVAL;
1858 break;
1859 }
1860
1861 /*
1862 * If ret is 0, we'd either done aio_complete() ourselves or have
1863 * arranged for that to be done asynchronously. Anything non-zero
1864 * means that we need to destroy req ourselves.
1865 */
1866 if (ret)
1867 goto out_put_req;
1868 return 0;
1869 out_put_req:
1870 put_reqs_available(ctx, 1);
1871 percpu_ref_put(&ctx->reqs);
1872 if (req->ki_eventfd)
1873 eventfd_ctx_put(req->ki_eventfd);
1874 kmem_cache_free(kiocb_cachep, req);
1875 return ret;
1876 }
1877
1878 /* sys_io_submit:
1879 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1880 * the number of iocbs queued. May return -EINVAL if the aio_context
1881 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1882 * *iocbpp[0] is not properly initialized, if the operation specified
1883 * is invalid for the file descriptor in the iocb. May fail with
1884 * -EFAULT if any of the data structures point to invalid data. May
1885 * fail with -EBADF if the file descriptor specified in the first
1886 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1887 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1888 * fail with -ENOSYS if not implemented.
1889 */
1890 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1891 struct iocb __user * __user *, iocbpp)
1892 {
1893 struct kioctx *ctx;
1894 long ret = 0;
1895 int i = 0;
1896 struct blk_plug plug;
1897
1898 if (unlikely(nr < 0))
1899 return -EINVAL;
1900
1901 ctx = lookup_ioctx(ctx_id);
1902 if (unlikely(!ctx)) {
1903 pr_debug("EINVAL: invalid context id\n");
1904 return -EINVAL;
1905 }
1906
1907 if (nr > ctx->nr_events)
1908 nr = ctx->nr_events;
1909
1910 blk_start_plug(&plug);
1911 for (i = 0; i < nr; i++) {
1912 struct iocb __user *user_iocb;
1913
1914 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1915 ret = -EFAULT;
1916 break;
1917 }
1918
1919 ret = io_submit_one(ctx, user_iocb, false);
1920 if (ret)
1921 break;
1922 }
1923 blk_finish_plug(&plug);
1924
1925 percpu_ref_put(&ctx->users);
1926 return i ? i : ret;
1927 }
1928
1929 #ifdef CONFIG_COMPAT
1930 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1931 int, nr, compat_uptr_t __user *, iocbpp)
1932 {
1933 struct kioctx *ctx;
1934 long ret = 0;
1935 int i = 0;
1936 struct blk_plug plug;
1937
1938 if (unlikely(nr < 0))
1939 return -EINVAL;
1940
1941 ctx = lookup_ioctx(ctx_id);
1942 if (unlikely(!ctx)) {
1943 pr_debug("EINVAL: invalid context id\n");
1944 return -EINVAL;
1945 }
1946
1947 if (nr > ctx->nr_events)
1948 nr = ctx->nr_events;
1949
1950 blk_start_plug(&plug);
1951 for (i = 0; i < nr; i++) {
1952 compat_uptr_t user_iocb;
1953
1954 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1955 ret = -EFAULT;
1956 break;
1957 }
1958
1959 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1960 if (ret)
1961 break;
1962 }
1963 blk_finish_plug(&plug);
1964
1965 percpu_ref_put(&ctx->users);
1966 return i ? i : ret;
1967 }
1968 #endif
1969
1970 /* lookup_kiocb
1971 * Finds a given iocb for cancellation.
1972 */
1973 static struct aio_kiocb *
1974 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1975 {
1976 struct aio_kiocb *kiocb;
1977
1978 assert_spin_locked(&ctx->ctx_lock);
1979
1980 /* TODO: use a hash or array, this sucks. */
1981 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1982 if (kiocb->ki_user_iocb == iocb)
1983 return kiocb;
1984 }
1985 return NULL;
1986 }
1987
1988 /* sys_io_cancel:
1989 * Attempts to cancel an iocb previously passed to io_submit. If
1990 * the operation is successfully cancelled, the resulting event is
1991 * copied into the memory pointed to by result without being placed
1992 * into the completion queue and 0 is returned. May fail with
1993 * -EFAULT if any of the data structures pointed to are invalid.
1994 * May fail with -EINVAL if aio_context specified by ctx_id is
1995 * invalid. May fail with -EAGAIN if the iocb specified was not
1996 * cancelled. Will fail with -ENOSYS if not implemented.
1997 */
1998 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1999 struct io_event __user *, result)
2000 {
2001 struct kioctx *ctx;
2002 struct aio_kiocb *kiocb;
2003 int ret = -EINVAL;
2004 u32 key;
2005
2006 if (unlikely(get_user(key, &iocb->aio_key)))
2007 return -EFAULT;
2008 if (unlikely(key != KIOCB_KEY))
2009 return -EINVAL;
2010
2011 ctx = lookup_ioctx(ctx_id);
2012 if (unlikely(!ctx))
2013 return -EINVAL;
2014
2015 spin_lock_irq(&ctx->ctx_lock);
2016 kiocb = lookup_kiocb(ctx, iocb);
2017 if (kiocb) {
2018 ret = kiocb->ki_cancel(&kiocb->rw);
2019 list_del_init(&kiocb->ki_list);
2020 }
2021 spin_unlock_irq(&ctx->ctx_lock);
2022
2023 if (!ret) {
2024 /*
2025 * The result argument is no longer used - the io_event is
2026 * always delivered via the ring buffer. -EINPROGRESS indicates
2027 * cancellation is progress:
2028 */
2029 ret = -EINPROGRESS;
2030 }
2031
2032 percpu_ref_put(&ctx->users);
2033
2034 return ret;
2035 }
2036
2037 static long do_io_getevents(aio_context_t ctx_id,
2038 long min_nr,
2039 long nr,
2040 struct io_event __user *events,
2041 struct timespec64 *ts)
2042 {
2043 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2044 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2045 long ret = -EINVAL;
2046
2047 if (likely(ioctx)) {
2048 if (likely(min_nr <= nr && min_nr >= 0))
2049 ret = read_events(ioctx, min_nr, nr, events, until);
2050 percpu_ref_put(&ioctx->users);
2051 }
2052
2053 return ret;
2054 }
2055
2056 /* io_getevents:
2057 * Attempts to read at least min_nr events and up to nr events from
2058 * the completion queue for the aio_context specified by ctx_id. If
2059 * it succeeds, the number of read events is returned. May fail with
2060 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2061 * out of range, if timeout is out of range. May fail with -EFAULT
2062 * if any of the memory specified is invalid. May return 0 or
2063 * < min_nr if the timeout specified by timeout has elapsed
2064 * before sufficient events are available, where timeout == NULL
2065 * specifies an infinite timeout. Note that the timeout pointed to by
2066 * timeout is relative. Will fail with -ENOSYS if not implemented.
2067 */
2068 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2069
2070 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2071 long, min_nr,
2072 long, nr,
2073 struct io_event __user *, events,
2074 struct __kernel_timespec __user *, timeout)
2075 {
2076 struct timespec64 ts;
2077 int ret;
2078
2079 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2080 return -EFAULT;
2081
2082 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2083 if (!ret && signal_pending(current))
2084 ret = -EINTR;
2085 return ret;
2086 }
2087
2088 #endif
2089
2090 struct __aio_sigset {
2091 const sigset_t __user *sigmask;
2092 size_t sigsetsize;
2093 };
2094
2095 SYSCALL_DEFINE6(io_pgetevents,
2096 aio_context_t, ctx_id,
2097 long, min_nr,
2098 long, nr,
2099 struct io_event __user *, events,
2100 struct __kernel_timespec __user *, timeout,
2101 const struct __aio_sigset __user *, usig)
2102 {
2103 struct __aio_sigset ksig = { NULL, };
2104 sigset_t ksigmask, sigsaved;
2105 struct timespec64 ts;
2106 int ret;
2107
2108 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2109 return -EFAULT;
2110
2111 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2112 return -EFAULT;
2113
2114 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2115 if (ret)
2116 return ret;
2117
2118 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2119 restore_user_sigmask(ksig.sigmask, &sigsaved);
2120 if (signal_pending(current) && !ret)
2121 ret = -ERESTARTNOHAND;
2122
2123 return ret;
2124 }
2125
2126 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2127
2128 SYSCALL_DEFINE6(io_pgetevents_time32,
2129 aio_context_t, ctx_id,
2130 long, min_nr,
2131 long, nr,
2132 struct io_event __user *, events,
2133 struct old_timespec32 __user *, timeout,
2134 const struct __aio_sigset __user *, usig)
2135 {
2136 struct __aio_sigset ksig = { NULL, };
2137 sigset_t ksigmask, sigsaved;
2138 struct timespec64 ts;
2139 int ret;
2140
2141 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2142 return -EFAULT;
2143
2144 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2145 return -EFAULT;
2146
2147
2148 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2149 if (ret)
2150 return ret;
2151
2152 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2153 restore_user_sigmask(ksig.sigmask, &sigsaved);
2154 if (signal_pending(current) && !ret)
2155 ret = -ERESTARTNOHAND;
2156
2157 return ret;
2158 }
2159
2160 #endif
2161
2162 #if defined(CONFIG_COMPAT_32BIT_TIME)
2163
2164 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2165 compat_long_t, min_nr,
2166 compat_long_t, nr,
2167 struct io_event __user *, events,
2168 struct old_timespec32 __user *, timeout)
2169 {
2170 struct timespec64 t;
2171 int ret;
2172
2173 if (timeout && get_old_timespec32(&t, timeout))
2174 return -EFAULT;
2175
2176 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2177 if (!ret && signal_pending(current))
2178 ret = -EINTR;
2179 return ret;
2180 }
2181
2182 #endif
2183
2184 #ifdef CONFIG_COMPAT
2185
2186 struct __compat_aio_sigset {
2187 compat_sigset_t __user *sigmask;
2188 compat_size_t sigsetsize;
2189 };
2190
2191 #if defined(CONFIG_COMPAT_32BIT_TIME)
2192
2193 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2194 compat_aio_context_t, ctx_id,
2195 compat_long_t, min_nr,
2196 compat_long_t, nr,
2197 struct io_event __user *, events,
2198 struct old_timespec32 __user *, timeout,
2199 const struct __compat_aio_sigset __user *, usig)
2200 {
2201 struct __compat_aio_sigset ksig = { NULL, };
2202 sigset_t ksigmask, sigsaved;
2203 struct timespec64 t;
2204 int ret;
2205
2206 if (timeout && get_old_timespec32(&t, timeout))
2207 return -EFAULT;
2208
2209 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2210 return -EFAULT;
2211
2212 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2213 if (ret)
2214 return ret;
2215
2216 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2217 restore_user_sigmask(ksig.sigmask, &sigsaved);
2218 if (signal_pending(current) && !ret)
2219 ret = -ERESTARTNOHAND;
2220
2221 return ret;
2222 }
2223
2224 #endif
2225
2226 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2227 compat_aio_context_t, ctx_id,
2228 compat_long_t, min_nr,
2229 compat_long_t, nr,
2230 struct io_event __user *, events,
2231 struct __kernel_timespec __user *, timeout,
2232 const struct __compat_aio_sigset __user *, usig)
2233 {
2234 struct __compat_aio_sigset ksig = { NULL, };
2235 sigset_t ksigmask, sigsaved;
2236 struct timespec64 t;
2237 int ret;
2238
2239 if (timeout && get_timespec64(&t, timeout))
2240 return -EFAULT;
2241
2242 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2243 return -EFAULT;
2244
2245 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2246 if (ret)
2247 return ret;
2248
2249 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2250 restore_user_sigmask(ksig.sigmask, &sigsaved);
2251 if (signal_pending(current) && !ret)
2252 ret = -ERESTARTNOHAND;
2253
2254 return ret;
2255 }
2256 #endif