]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/aio.c
Merge tag 'riscv-for-linus-6.8-mw4' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / fs / aio.c
1 /*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
9 *
10 * See ../COPYING for licensing terms.
11 */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48
49 #include "internal.h"
50
51 #define KIOCB_KEY 0
52
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
56 struct aio_ring {
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
61 unsigned tail;
62
63 unsigned magic;
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
67
68
69 struct io_event io_events[];
70 }; /* 128 bytes + ring size */
71
72 /*
73 * Plugging is meant to work with larger batches of IOs. If we don't
74 * have more than the below, then don't bother setting up a plug.
75 */
76 #define AIO_PLUG_THRESHOLD 2
77
78 #define AIO_RING_PAGES 8
79
80 struct kioctx_table {
81 struct rcu_head rcu;
82 unsigned nr;
83 struct kioctx __rcu *table[] __counted_by(nr);
84 };
85
86 struct kioctx_cpu {
87 unsigned reqs_available;
88 };
89
90 struct ctx_rq_wait {
91 struct completion comp;
92 atomic_t count;
93 };
94
95 struct kioctx {
96 struct percpu_ref users;
97 atomic_t dead;
98
99 struct percpu_ref reqs;
100
101 unsigned long user_id;
102
103 struct __percpu kioctx_cpu *cpu;
104
105 /*
106 * For percpu reqs_available, number of slots we move to/from global
107 * counter at a time:
108 */
109 unsigned req_batch;
110 /*
111 * This is what userspace passed to io_setup(), it's not used for
112 * anything but counting against the global max_reqs quota.
113 *
114 * The real limit is nr_events - 1, which will be larger (see
115 * aio_setup_ring())
116 */
117 unsigned max_reqs;
118
119 /* Size of ringbuffer, in units of struct io_event */
120 unsigned nr_events;
121
122 unsigned long mmap_base;
123 unsigned long mmap_size;
124
125 struct page **ring_pages;
126 long nr_pages;
127
128 struct rcu_work free_rwork; /* see free_ioctx() */
129
130 /*
131 * signals when all in-flight requests are done
132 */
133 struct ctx_rq_wait *rq_wait;
134
135 struct {
136 /*
137 * This counts the number of available slots in the ringbuffer,
138 * so we avoid overflowing it: it's decremented (if positive)
139 * when allocating a kiocb and incremented when the resulting
140 * io_event is pulled off the ringbuffer.
141 *
142 * We batch accesses to it with a percpu version.
143 */
144 atomic_t reqs_available;
145 } ____cacheline_aligned_in_smp;
146
147 struct {
148 spinlock_t ctx_lock;
149 struct list_head active_reqs; /* used for cancellation */
150 } ____cacheline_aligned_in_smp;
151
152 struct {
153 struct mutex ring_lock;
154 wait_queue_head_t wait;
155 } ____cacheline_aligned_in_smp;
156
157 struct {
158 unsigned tail;
159 unsigned completed_events;
160 spinlock_t completion_lock;
161 } ____cacheline_aligned_in_smp;
162
163 struct page *internal_pages[AIO_RING_PAGES];
164 struct file *aio_ring_file;
165
166 unsigned id;
167 };
168
169 /*
170 * First field must be the file pointer in all the
171 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172 */
173 struct fsync_iocb {
174 struct file *file;
175 struct work_struct work;
176 bool datasync;
177 struct cred *creds;
178 };
179
180 struct poll_iocb {
181 struct file *file;
182 struct wait_queue_head *head;
183 __poll_t events;
184 bool cancelled;
185 bool work_scheduled;
186 bool work_need_resched;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189 };
190
191 /*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
197 struct aio_kiocb {
198 union {
199 struct file *ki_filp;
200 struct kiocb rw;
201 struct fsync_iocb fsync;
202 struct poll_iocb poll;
203 };
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
208 struct io_event ki_res;
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt;
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219 };
220
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr; /* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 {
229 .procname = "aio-nr",
230 .data = &aio_nr,
231 .maxlen = sizeof(aio_nr),
232 .mode = 0444,
233 .proc_handler = proc_doulongvec_minmax,
234 },
235 {
236 .procname = "aio-max-nr",
237 .data = &aio_max_nr,
238 .maxlen = sizeof(aio_max_nr),
239 .mode = 0644,
240 .proc_handler = proc_doulongvec_minmax,
241 },
242 };
243
244 static void __init aio_sysctl_init(void)
245 {
246 register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251
252 static struct kmem_cache *kiocb_cachep;
253 static struct kmem_cache *kioctx_cachep;
254
255 static struct vfsmount *aio_mnt;
256
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 struct file *file;
263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 if (IS_ERR(inode))
265 return ERR_CAST(inode);
266
267 inode->i_mapping->a_ops = &aio_ctx_aops;
268 inode->i_mapping->i_private_data = ctx;
269 inode->i_size = PAGE_SIZE * nr_pages;
270
271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 O_RDWR, &aio_ring_fops);
273 if (IS_ERR(file))
274 iput(inode);
275 return file;
276 }
277
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 if (!init_pseudo(fc, AIO_RING_MAGIC))
281 return -ENOMEM;
282 fc->s_iflags |= SB_I_NOEXEC;
283 return 0;
284 }
285
286 /* aio_setup
287 * Creates the slab caches used by the aio routines, panic on
288 * failure as this is done early during the boot sequence.
289 */
290 static int __init aio_setup(void)
291 {
292 static struct file_system_type aio_fs = {
293 .name = "aio",
294 .init_fs_context = aio_init_fs_context,
295 .kill_sb = kill_anon_super,
296 };
297 aio_mnt = kern_mount(&aio_fs);
298 if (IS_ERR(aio_mnt))
299 panic("Failed to create aio fs mount.");
300
301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 aio_sysctl_init();
304 return 0;
305 }
306 __initcall(aio_setup);
307
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 struct file *aio_ring_file = ctx->aio_ring_file;
311 struct address_space *i_mapping;
312
313 if (aio_ring_file) {
314 truncate_setsize(file_inode(aio_ring_file), 0);
315
316 /* Prevent further access to the kioctx from migratepages */
317 i_mapping = aio_ring_file->f_mapping;
318 spin_lock(&i_mapping->i_private_lock);
319 i_mapping->i_private_data = NULL;
320 ctx->aio_ring_file = NULL;
321 spin_unlock(&i_mapping->i_private_lock);
322
323 fput(aio_ring_file);
324 }
325 }
326
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 int i;
330
331 /* Disconnect the kiotx from the ring file. This prevents future
332 * accesses to the kioctx from page migration.
333 */
334 put_aio_ring_file(ctx);
335
336 for (i = 0; i < ctx->nr_pages; i++) {
337 struct page *page;
338 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
339 page_count(ctx->ring_pages[i]));
340 page = ctx->ring_pages[i];
341 if (!page)
342 continue;
343 ctx->ring_pages[i] = NULL;
344 put_page(page);
345 }
346
347 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
348 kfree(ctx->ring_pages);
349 ctx->ring_pages = NULL;
350 }
351 }
352
353 static int aio_ring_mremap(struct vm_area_struct *vma)
354 {
355 struct file *file = vma->vm_file;
356 struct mm_struct *mm = vma->vm_mm;
357 struct kioctx_table *table;
358 int i, res = -EINVAL;
359
360 spin_lock(&mm->ioctx_lock);
361 rcu_read_lock();
362 table = rcu_dereference(mm->ioctx_table);
363 if (!table)
364 goto out_unlock;
365
366 for (i = 0; i < table->nr; i++) {
367 struct kioctx *ctx;
368
369 ctx = rcu_dereference(table->table[i]);
370 if (ctx && ctx->aio_ring_file == file) {
371 if (!atomic_read(&ctx->dead)) {
372 ctx->user_id = ctx->mmap_base = vma->vm_start;
373 res = 0;
374 }
375 break;
376 }
377 }
378
379 out_unlock:
380 rcu_read_unlock();
381 spin_unlock(&mm->ioctx_lock);
382 return res;
383 }
384
385 static const struct vm_operations_struct aio_ring_vm_ops = {
386 .mremap = aio_ring_mremap,
387 #if IS_ENABLED(CONFIG_MMU)
388 .fault = filemap_fault,
389 .map_pages = filemap_map_pages,
390 .page_mkwrite = filemap_page_mkwrite,
391 #endif
392 };
393
394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
395 {
396 vm_flags_set(vma, VM_DONTEXPAND);
397 vma->vm_ops = &aio_ring_vm_ops;
398 return 0;
399 }
400
401 static const struct file_operations aio_ring_fops = {
402 .mmap = aio_ring_mmap,
403 };
404
405 #if IS_ENABLED(CONFIG_MIGRATION)
406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
407 struct folio *src, enum migrate_mode mode)
408 {
409 struct kioctx *ctx;
410 unsigned long flags;
411 pgoff_t idx;
412 int rc;
413
414 /*
415 * We cannot support the _NO_COPY case here, because copy needs to
416 * happen under the ctx->completion_lock. That does not work with the
417 * migration workflow of MIGRATE_SYNC_NO_COPY.
418 */
419 if (mode == MIGRATE_SYNC_NO_COPY)
420 return -EINVAL;
421
422 rc = 0;
423
424 /* mapping->i_private_lock here protects against the kioctx teardown. */
425 spin_lock(&mapping->i_private_lock);
426 ctx = mapping->i_private_data;
427 if (!ctx) {
428 rc = -EINVAL;
429 goto out;
430 }
431
432 /* The ring_lock mutex. The prevents aio_read_events() from writing
433 * to the ring's head, and prevents page migration from mucking in
434 * a partially initialized kiotx.
435 */
436 if (!mutex_trylock(&ctx->ring_lock)) {
437 rc = -EAGAIN;
438 goto out;
439 }
440
441 idx = src->index;
442 if (idx < (pgoff_t)ctx->nr_pages) {
443 /* Make sure the old folio hasn't already been changed */
444 if (ctx->ring_pages[idx] != &src->page)
445 rc = -EAGAIN;
446 } else
447 rc = -EINVAL;
448
449 if (rc != 0)
450 goto out_unlock;
451
452 /* Writeback must be complete */
453 BUG_ON(folio_test_writeback(src));
454 folio_get(dst);
455
456 rc = folio_migrate_mapping(mapping, dst, src, 1);
457 if (rc != MIGRATEPAGE_SUCCESS) {
458 folio_put(dst);
459 goto out_unlock;
460 }
461
462 /* Take completion_lock to prevent other writes to the ring buffer
463 * while the old folio is copied to the new. This prevents new
464 * events from being lost.
465 */
466 spin_lock_irqsave(&ctx->completion_lock, flags);
467 folio_migrate_copy(dst, src);
468 BUG_ON(ctx->ring_pages[idx] != &src->page);
469 ctx->ring_pages[idx] = &dst->page;
470 spin_unlock_irqrestore(&ctx->completion_lock, flags);
471
472 /* The old folio is no longer accessible. */
473 folio_put(src);
474
475 out_unlock:
476 mutex_unlock(&ctx->ring_lock);
477 out:
478 spin_unlock(&mapping->i_private_lock);
479 return rc;
480 }
481 #else
482 #define aio_migrate_folio NULL
483 #endif
484
485 static const struct address_space_operations aio_ctx_aops = {
486 .dirty_folio = noop_dirty_folio,
487 .migrate_folio = aio_migrate_folio,
488 };
489
490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
491 {
492 struct aio_ring *ring;
493 struct mm_struct *mm = current->mm;
494 unsigned long size, unused;
495 int nr_pages;
496 int i;
497 struct file *file;
498
499 /* Compensate for the ring buffer's head/tail overlap entry */
500 nr_events += 2; /* 1 is required, 2 for good luck */
501
502 size = sizeof(struct aio_ring);
503 size += sizeof(struct io_event) * nr_events;
504
505 nr_pages = PFN_UP(size);
506 if (nr_pages < 0)
507 return -EINVAL;
508
509 file = aio_private_file(ctx, nr_pages);
510 if (IS_ERR(file)) {
511 ctx->aio_ring_file = NULL;
512 return -ENOMEM;
513 }
514
515 ctx->aio_ring_file = file;
516 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
517 / sizeof(struct io_event);
518
519 ctx->ring_pages = ctx->internal_pages;
520 if (nr_pages > AIO_RING_PAGES) {
521 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
522 GFP_KERNEL);
523 if (!ctx->ring_pages) {
524 put_aio_ring_file(ctx);
525 return -ENOMEM;
526 }
527 }
528
529 for (i = 0; i < nr_pages; i++) {
530 struct page *page;
531 page = find_or_create_page(file->f_mapping,
532 i, GFP_USER | __GFP_ZERO);
533 if (!page)
534 break;
535 pr_debug("pid(%d) page[%d]->count=%d\n",
536 current->pid, i, page_count(page));
537 SetPageUptodate(page);
538 unlock_page(page);
539
540 ctx->ring_pages[i] = page;
541 }
542 ctx->nr_pages = i;
543
544 if (unlikely(i != nr_pages)) {
545 aio_free_ring(ctx);
546 return -ENOMEM;
547 }
548
549 ctx->mmap_size = nr_pages * PAGE_SIZE;
550 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
551
552 if (mmap_write_lock_killable(mm)) {
553 ctx->mmap_size = 0;
554 aio_free_ring(ctx);
555 return -EINTR;
556 }
557
558 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
559 PROT_READ | PROT_WRITE,
560 MAP_SHARED, 0, 0, &unused, NULL);
561 mmap_write_unlock(mm);
562 if (IS_ERR((void *)ctx->mmap_base)) {
563 ctx->mmap_size = 0;
564 aio_free_ring(ctx);
565 return -ENOMEM;
566 }
567
568 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
569
570 ctx->user_id = ctx->mmap_base;
571 ctx->nr_events = nr_events; /* trusted copy */
572
573 ring = page_address(ctx->ring_pages[0]);
574 ring->nr = nr_events; /* user copy */
575 ring->id = ~0U;
576 ring->head = ring->tail = 0;
577 ring->magic = AIO_RING_MAGIC;
578 ring->compat_features = AIO_RING_COMPAT_FEATURES;
579 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
580 ring->header_length = sizeof(struct aio_ring);
581 flush_dcache_page(ctx->ring_pages[0]);
582
583 return 0;
584 }
585
586 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
587 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
588 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
589
590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
591 {
592 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
593 struct kioctx *ctx = req->ki_ctx;
594 unsigned long flags;
595
596 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
597 return;
598
599 spin_lock_irqsave(&ctx->ctx_lock, flags);
600 list_add_tail(&req->ki_list, &ctx->active_reqs);
601 req->ki_cancel = cancel;
602 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
603 }
604 EXPORT_SYMBOL(kiocb_set_cancel_fn);
605
606 /*
607 * free_ioctx() should be RCU delayed to synchronize against the RCU
608 * protected lookup_ioctx() and also needs process context to call
609 * aio_free_ring(). Use rcu_work.
610 */
611 static void free_ioctx(struct work_struct *work)
612 {
613 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
614 free_rwork);
615 pr_debug("freeing %p\n", ctx);
616
617 aio_free_ring(ctx);
618 free_percpu(ctx->cpu);
619 percpu_ref_exit(&ctx->reqs);
620 percpu_ref_exit(&ctx->users);
621 kmem_cache_free(kioctx_cachep, ctx);
622 }
623
624 static void free_ioctx_reqs(struct percpu_ref *ref)
625 {
626 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
627
628 /* At this point we know that there are no any in-flight requests */
629 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
630 complete(&ctx->rq_wait->comp);
631
632 /* Synchronize against RCU protected table->table[] dereferences */
633 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
634 queue_rcu_work(system_wq, &ctx->free_rwork);
635 }
636
637 /*
638 * When this function runs, the kioctx has been removed from the "hash table"
639 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
640 * now it's safe to cancel any that need to be.
641 */
642 static void free_ioctx_users(struct percpu_ref *ref)
643 {
644 struct kioctx *ctx = container_of(ref, struct kioctx, users);
645 struct aio_kiocb *req;
646
647 spin_lock_irq(&ctx->ctx_lock);
648
649 while (!list_empty(&ctx->active_reqs)) {
650 req = list_first_entry(&ctx->active_reqs,
651 struct aio_kiocb, ki_list);
652 req->ki_cancel(&req->rw);
653 list_del_init(&req->ki_list);
654 }
655
656 spin_unlock_irq(&ctx->ctx_lock);
657
658 percpu_ref_kill(&ctx->reqs);
659 percpu_ref_put(&ctx->reqs);
660 }
661
662 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
663 {
664 unsigned i, new_nr;
665 struct kioctx_table *table, *old;
666 struct aio_ring *ring;
667
668 spin_lock(&mm->ioctx_lock);
669 table = rcu_dereference_raw(mm->ioctx_table);
670
671 while (1) {
672 if (table)
673 for (i = 0; i < table->nr; i++)
674 if (!rcu_access_pointer(table->table[i])) {
675 ctx->id = i;
676 rcu_assign_pointer(table->table[i], ctx);
677 spin_unlock(&mm->ioctx_lock);
678
679 /* While kioctx setup is in progress,
680 * we are protected from page migration
681 * changes ring_pages by ->ring_lock.
682 */
683 ring = page_address(ctx->ring_pages[0]);
684 ring->id = ctx->id;
685 return 0;
686 }
687
688 new_nr = (table ? table->nr : 1) * 4;
689 spin_unlock(&mm->ioctx_lock);
690
691 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
692 if (!table)
693 return -ENOMEM;
694
695 table->nr = new_nr;
696
697 spin_lock(&mm->ioctx_lock);
698 old = rcu_dereference_raw(mm->ioctx_table);
699
700 if (!old) {
701 rcu_assign_pointer(mm->ioctx_table, table);
702 } else if (table->nr > old->nr) {
703 memcpy(table->table, old->table,
704 old->nr * sizeof(struct kioctx *));
705
706 rcu_assign_pointer(mm->ioctx_table, table);
707 kfree_rcu(old, rcu);
708 } else {
709 kfree(table);
710 table = old;
711 }
712 }
713 }
714
715 static void aio_nr_sub(unsigned nr)
716 {
717 spin_lock(&aio_nr_lock);
718 if (WARN_ON(aio_nr - nr > aio_nr))
719 aio_nr = 0;
720 else
721 aio_nr -= nr;
722 spin_unlock(&aio_nr_lock);
723 }
724
725 /* ioctx_alloc
726 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
727 */
728 static struct kioctx *ioctx_alloc(unsigned nr_events)
729 {
730 struct mm_struct *mm = current->mm;
731 struct kioctx *ctx;
732 int err = -ENOMEM;
733
734 /*
735 * Store the original nr_events -- what userspace passed to io_setup(),
736 * for counting against the global limit -- before it changes.
737 */
738 unsigned int max_reqs = nr_events;
739
740 /*
741 * We keep track of the number of available ringbuffer slots, to prevent
742 * overflow (reqs_available), and we also use percpu counters for this.
743 *
744 * So since up to half the slots might be on other cpu's percpu counters
745 * and unavailable, double nr_events so userspace sees what they
746 * expected: additionally, we move req_batch slots to/from percpu
747 * counters at a time, so make sure that isn't 0:
748 */
749 nr_events = max(nr_events, num_possible_cpus() * 4);
750 nr_events *= 2;
751
752 /* Prevent overflows */
753 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
754 pr_debug("ENOMEM: nr_events too high\n");
755 return ERR_PTR(-EINVAL);
756 }
757
758 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
759 return ERR_PTR(-EAGAIN);
760
761 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
762 if (!ctx)
763 return ERR_PTR(-ENOMEM);
764
765 ctx->max_reqs = max_reqs;
766
767 spin_lock_init(&ctx->ctx_lock);
768 spin_lock_init(&ctx->completion_lock);
769 mutex_init(&ctx->ring_lock);
770 /* Protect against page migration throughout kiotx setup by keeping
771 * the ring_lock mutex held until setup is complete. */
772 mutex_lock(&ctx->ring_lock);
773 init_waitqueue_head(&ctx->wait);
774
775 INIT_LIST_HEAD(&ctx->active_reqs);
776
777 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
778 goto err;
779
780 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
781 goto err;
782
783 ctx->cpu = alloc_percpu(struct kioctx_cpu);
784 if (!ctx->cpu)
785 goto err;
786
787 err = aio_setup_ring(ctx, nr_events);
788 if (err < 0)
789 goto err;
790
791 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
792 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
793 if (ctx->req_batch < 1)
794 ctx->req_batch = 1;
795
796 /* limit the number of system wide aios */
797 spin_lock(&aio_nr_lock);
798 if (aio_nr + ctx->max_reqs > aio_max_nr ||
799 aio_nr + ctx->max_reqs < aio_nr) {
800 spin_unlock(&aio_nr_lock);
801 err = -EAGAIN;
802 goto err_ctx;
803 }
804 aio_nr += ctx->max_reqs;
805 spin_unlock(&aio_nr_lock);
806
807 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
808 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
809
810 err = ioctx_add_table(ctx, mm);
811 if (err)
812 goto err_cleanup;
813
814 /* Release the ring_lock mutex now that all setup is complete. */
815 mutex_unlock(&ctx->ring_lock);
816
817 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
818 ctx, ctx->user_id, mm, ctx->nr_events);
819 return ctx;
820
821 err_cleanup:
822 aio_nr_sub(ctx->max_reqs);
823 err_ctx:
824 atomic_set(&ctx->dead, 1);
825 if (ctx->mmap_size)
826 vm_munmap(ctx->mmap_base, ctx->mmap_size);
827 aio_free_ring(ctx);
828 err:
829 mutex_unlock(&ctx->ring_lock);
830 free_percpu(ctx->cpu);
831 percpu_ref_exit(&ctx->reqs);
832 percpu_ref_exit(&ctx->users);
833 kmem_cache_free(kioctx_cachep, ctx);
834 pr_debug("error allocating ioctx %d\n", err);
835 return ERR_PTR(err);
836 }
837
838 /* kill_ioctx
839 * Cancels all outstanding aio requests on an aio context. Used
840 * when the processes owning a context have all exited to encourage
841 * the rapid destruction of the kioctx.
842 */
843 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
844 struct ctx_rq_wait *wait)
845 {
846 struct kioctx_table *table;
847
848 spin_lock(&mm->ioctx_lock);
849 if (atomic_xchg(&ctx->dead, 1)) {
850 spin_unlock(&mm->ioctx_lock);
851 return -EINVAL;
852 }
853
854 table = rcu_dereference_raw(mm->ioctx_table);
855 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
856 RCU_INIT_POINTER(table->table[ctx->id], NULL);
857 spin_unlock(&mm->ioctx_lock);
858
859 /* free_ioctx_reqs() will do the necessary RCU synchronization */
860 wake_up_all(&ctx->wait);
861
862 /*
863 * It'd be more correct to do this in free_ioctx(), after all
864 * the outstanding kiocbs have finished - but by then io_destroy
865 * has already returned, so io_setup() could potentially return
866 * -EAGAIN with no ioctxs actually in use (as far as userspace
867 * could tell).
868 */
869 aio_nr_sub(ctx->max_reqs);
870
871 if (ctx->mmap_size)
872 vm_munmap(ctx->mmap_base, ctx->mmap_size);
873
874 ctx->rq_wait = wait;
875 percpu_ref_kill(&ctx->users);
876 return 0;
877 }
878
879 /*
880 * exit_aio: called when the last user of mm goes away. At this point, there is
881 * no way for any new requests to be submited or any of the io_* syscalls to be
882 * called on the context.
883 *
884 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
885 * them.
886 */
887 void exit_aio(struct mm_struct *mm)
888 {
889 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
890 struct ctx_rq_wait wait;
891 int i, skipped;
892
893 if (!table)
894 return;
895
896 atomic_set(&wait.count, table->nr);
897 init_completion(&wait.comp);
898
899 skipped = 0;
900 for (i = 0; i < table->nr; ++i) {
901 struct kioctx *ctx =
902 rcu_dereference_protected(table->table[i], true);
903
904 if (!ctx) {
905 skipped++;
906 continue;
907 }
908
909 /*
910 * We don't need to bother with munmap() here - exit_mmap(mm)
911 * is coming and it'll unmap everything. And we simply can't,
912 * this is not necessarily our ->mm.
913 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
914 * that it needs to unmap the area, just set it to 0.
915 */
916 ctx->mmap_size = 0;
917 kill_ioctx(mm, ctx, &wait);
918 }
919
920 if (!atomic_sub_and_test(skipped, &wait.count)) {
921 /* Wait until all IO for the context are done. */
922 wait_for_completion(&wait.comp);
923 }
924
925 RCU_INIT_POINTER(mm->ioctx_table, NULL);
926 kfree(table);
927 }
928
929 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
930 {
931 struct kioctx_cpu *kcpu;
932 unsigned long flags;
933
934 local_irq_save(flags);
935 kcpu = this_cpu_ptr(ctx->cpu);
936 kcpu->reqs_available += nr;
937
938 while (kcpu->reqs_available >= ctx->req_batch * 2) {
939 kcpu->reqs_available -= ctx->req_batch;
940 atomic_add(ctx->req_batch, &ctx->reqs_available);
941 }
942
943 local_irq_restore(flags);
944 }
945
946 static bool __get_reqs_available(struct kioctx *ctx)
947 {
948 struct kioctx_cpu *kcpu;
949 bool ret = false;
950 unsigned long flags;
951
952 local_irq_save(flags);
953 kcpu = this_cpu_ptr(ctx->cpu);
954 if (!kcpu->reqs_available) {
955 int avail = atomic_read(&ctx->reqs_available);
956
957 do {
958 if (avail < ctx->req_batch)
959 goto out;
960 } while (!atomic_try_cmpxchg(&ctx->reqs_available,
961 &avail, avail - ctx->req_batch));
962
963 kcpu->reqs_available += ctx->req_batch;
964 }
965
966 ret = true;
967 kcpu->reqs_available--;
968 out:
969 local_irq_restore(flags);
970 return ret;
971 }
972
973 /* refill_reqs_available
974 * Updates the reqs_available reference counts used for tracking the
975 * number of free slots in the completion ring. This can be called
976 * from aio_complete() (to optimistically update reqs_available) or
977 * from aio_get_req() (the we're out of events case). It must be
978 * called holding ctx->completion_lock.
979 */
980 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
981 unsigned tail)
982 {
983 unsigned events_in_ring, completed;
984
985 /* Clamp head since userland can write to it. */
986 head %= ctx->nr_events;
987 if (head <= tail)
988 events_in_ring = tail - head;
989 else
990 events_in_ring = ctx->nr_events - (head - tail);
991
992 completed = ctx->completed_events;
993 if (events_in_ring < completed)
994 completed -= events_in_ring;
995 else
996 completed = 0;
997
998 if (!completed)
999 return;
1000
1001 ctx->completed_events -= completed;
1002 put_reqs_available(ctx, completed);
1003 }
1004
1005 /* user_refill_reqs_available
1006 * Called to refill reqs_available when aio_get_req() encounters an
1007 * out of space in the completion ring.
1008 */
1009 static void user_refill_reqs_available(struct kioctx *ctx)
1010 {
1011 spin_lock_irq(&ctx->completion_lock);
1012 if (ctx->completed_events) {
1013 struct aio_ring *ring;
1014 unsigned head;
1015
1016 /* Access of ring->head may race with aio_read_events_ring()
1017 * here, but that's okay since whether we read the old version
1018 * or the new version, and either will be valid. The important
1019 * part is that head cannot pass tail since we prevent
1020 * aio_complete() from updating tail by holding
1021 * ctx->completion_lock. Even if head is invalid, the check
1022 * against ctx->completed_events below will make sure we do the
1023 * safe/right thing.
1024 */
1025 ring = page_address(ctx->ring_pages[0]);
1026 head = ring->head;
1027
1028 refill_reqs_available(ctx, head, ctx->tail);
1029 }
1030
1031 spin_unlock_irq(&ctx->completion_lock);
1032 }
1033
1034 static bool get_reqs_available(struct kioctx *ctx)
1035 {
1036 if (__get_reqs_available(ctx))
1037 return true;
1038 user_refill_reqs_available(ctx);
1039 return __get_reqs_available(ctx);
1040 }
1041
1042 /* aio_get_req
1043 * Allocate a slot for an aio request.
1044 * Returns NULL if no requests are free.
1045 *
1046 * The refcount is initialized to 2 - one for the async op completion,
1047 * one for the synchronous code that does this.
1048 */
1049 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1050 {
1051 struct aio_kiocb *req;
1052
1053 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1054 if (unlikely(!req))
1055 return NULL;
1056
1057 if (unlikely(!get_reqs_available(ctx))) {
1058 kmem_cache_free(kiocb_cachep, req);
1059 return NULL;
1060 }
1061
1062 percpu_ref_get(&ctx->reqs);
1063 req->ki_ctx = ctx;
1064 INIT_LIST_HEAD(&req->ki_list);
1065 refcount_set(&req->ki_refcnt, 2);
1066 req->ki_eventfd = NULL;
1067 return req;
1068 }
1069
1070 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1071 {
1072 struct aio_ring __user *ring = (void __user *)ctx_id;
1073 struct mm_struct *mm = current->mm;
1074 struct kioctx *ctx, *ret = NULL;
1075 struct kioctx_table *table;
1076 unsigned id;
1077
1078 if (get_user(id, &ring->id))
1079 return NULL;
1080
1081 rcu_read_lock();
1082 table = rcu_dereference(mm->ioctx_table);
1083
1084 if (!table || id >= table->nr)
1085 goto out;
1086
1087 id = array_index_nospec(id, table->nr);
1088 ctx = rcu_dereference(table->table[id]);
1089 if (ctx && ctx->user_id == ctx_id) {
1090 if (percpu_ref_tryget_live(&ctx->users))
1091 ret = ctx;
1092 }
1093 out:
1094 rcu_read_unlock();
1095 return ret;
1096 }
1097
1098 static inline void iocb_destroy(struct aio_kiocb *iocb)
1099 {
1100 if (iocb->ki_eventfd)
1101 eventfd_ctx_put(iocb->ki_eventfd);
1102 if (iocb->ki_filp)
1103 fput(iocb->ki_filp);
1104 percpu_ref_put(&iocb->ki_ctx->reqs);
1105 kmem_cache_free(kiocb_cachep, iocb);
1106 }
1107
1108 struct aio_waiter {
1109 struct wait_queue_entry w;
1110 size_t min_nr;
1111 };
1112
1113 /* aio_complete
1114 * Called when the io request on the given iocb is complete.
1115 */
1116 static void aio_complete(struct aio_kiocb *iocb)
1117 {
1118 struct kioctx *ctx = iocb->ki_ctx;
1119 struct aio_ring *ring;
1120 struct io_event *ev_page, *event;
1121 unsigned tail, pos, head, avail;
1122 unsigned long flags;
1123
1124 /*
1125 * Add a completion event to the ring buffer. Must be done holding
1126 * ctx->completion_lock to prevent other code from messing with the tail
1127 * pointer since we might be called from irq context.
1128 */
1129 spin_lock_irqsave(&ctx->completion_lock, flags);
1130
1131 tail = ctx->tail;
1132 pos = tail + AIO_EVENTS_OFFSET;
1133
1134 if (++tail >= ctx->nr_events)
1135 tail = 0;
1136
1137 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1138 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1139
1140 *event = iocb->ki_res;
1141
1142 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1143
1144 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1145 (void __user *)(unsigned long)iocb->ki_res.obj,
1146 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1147
1148 /* after flagging the request as done, we
1149 * must never even look at it again
1150 */
1151 smp_wmb(); /* make event visible before updating tail */
1152
1153 ctx->tail = tail;
1154
1155 ring = page_address(ctx->ring_pages[0]);
1156 head = ring->head;
1157 ring->tail = tail;
1158 flush_dcache_page(ctx->ring_pages[0]);
1159
1160 ctx->completed_events++;
1161 if (ctx->completed_events > 1)
1162 refill_reqs_available(ctx, head, tail);
1163
1164 avail = tail > head
1165 ? tail - head
1166 : tail + ctx->nr_events - head;
1167 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1168
1169 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1170
1171 /*
1172 * Check if the user asked us to deliver the result through an
1173 * eventfd. The eventfd_signal() function is safe to be called
1174 * from IRQ context.
1175 */
1176 if (iocb->ki_eventfd)
1177 eventfd_signal(iocb->ki_eventfd);
1178
1179 /*
1180 * We have to order our ring_info tail store above and test
1181 * of the wait list below outside the wait lock. This is
1182 * like in wake_up_bit() where clearing a bit has to be
1183 * ordered with the unlocked test.
1184 */
1185 smp_mb();
1186
1187 if (waitqueue_active(&ctx->wait)) {
1188 struct aio_waiter *curr, *next;
1189 unsigned long flags;
1190
1191 spin_lock_irqsave(&ctx->wait.lock, flags);
1192 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1193 if (avail >= curr->min_nr) {
1194 list_del_init_careful(&curr->w.entry);
1195 wake_up_process(curr->w.private);
1196 }
1197 spin_unlock_irqrestore(&ctx->wait.lock, flags);
1198 }
1199 }
1200
1201 static inline void iocb_put(struct aio_kiocb *iocb)
1202 {
1203 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1204 aio_complete(iocb);
1205 iocb_destroy(iocb);
1206 }
1207 }
1208
1209 /* aio_read_events_ring
1210 * Pull an event off of the ioctx's event ring. Returns the number of
1211 * events fetched
1212 */
1213 static long aio_read_events_ring(struct kioctx *ctx,
1214 struct io_event __user *event, long nr)
1215 {
1216 struct aio_ring *ring;
1217 unsigned head, tail, pos;
1218 long ret = 0;
1219 int copy_ret;
1220
1221 /*
1222 * The mutex can block and wake us up and that will cause
1223 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1224 * and repeat. This should be rare enough that it doesn't cause
1225 * peformance issues. See the comment in read_events() for more detail.
1226 */
1227 sched_annotate_sleep();
1228 mutex_lock(&ctx->ring_lock);
1229
1230 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1231 ring = page_address(ctx->ring_pages[0]);
1232 head = ring->head;
1233 tail = ring->tail;
1234
1235 /*
1236 * Ensure that once we've read the current tail pointer, that
1237 * we also see the events that were stored up to the tail.
1238 */
1239 smp_rmb();
1240
1241 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1242
1243 if (head == tail)
1244 goto out;
1245
1246 head %= ctx->nr_events;
1247 tail %= ctx->nr_events;
1248
1249 while (ret < nr) {
1250 long avail;
1251 struct io_event *ev;
1252 struct page *page;
1253
1254 avail = (head <= tail ? tail : ctx->nr_events) - head;
1255 if (head == tail)
1256 break;
1257
1258 pos = head + AIO_EVENTS_OFFSET;
1259 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1260 pos %= AIO_EVENTS_PER_PAGE;
1261
1262 avail = min(avail, nr - ret);
1263 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1264
1265 ev = page_address(page);
1266 copy_ret = copy_to_user(event + ret, ev + pos,
1267 sizeof(*ev) * avail);
1268
1269 if (unlikely(copy_ret)) {
1270 ret = -EFAULT;
1271 goto out;
1272 }
1273
1274 ret += avail;
1275 head += avail;
1276 head %= ctx->nr_events;
1277 }
1278
1279 ring = page_address(ctx->ring_pages[0]);
1280 ring->head = head;
1281 flush_dcache_page(ctx->ring_pages[0]);
1282
1283 pr_debug("%li h%u t%u\n", ret, head, tail);
1284 out:
1285 mutex_unlock(&ctx->ring_lock);
1286
1287 return ret;
1288 }
1289
1290 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1291 struct io_event __user *event, long *i)
1292 {
1293 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1294
1295 if (ret > 0)
1296 *i += ret;
1297
1298 if (unlikely(atomic_read(&ctx->dead)))
1299 ret = -EINVAL;
1300
1301 if (!*i)
1302 *i = ret;
1303
1304 return ret < 0 || *i >= min_nr;
1305 }
1306
1307 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1308 struct io_event __user *event,
1309 ktime_t until)
1310 {
1311 struct hrtimer_sleeper t;
1312 struct aio_waiter w;
1313 long ret = 0, ret2 = 0;
1314
1315 /*
1316 * Note that aio_read_events() is being called as the conditional - i.e.
1317 * we're calling it after prepare_to_wait() has set task state to
1318 * TASK_INTERRUPTIBLE.
1319 *
1320 * But aio_read_events() can block, and if it blocks it's going to flip
1321 * the task state back to TASK_RUNNING.
1322 *
1323 * This should be ok, provided it doesn't flip the state back to
1324 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1325 * will only happen if the mutex_lock() call blocks, and we then find
1326 * the ringbuffer empty. So in practice we should be ok, but it's
1327 * something to be aware of when touching this code.
1328 */
1329 aio_read_events(ctx, min_nr, nr, event, &ret);
1330 if (until == 0 || ret < 0 || ret >= min_nr)
1331 return ret;
1332
1333 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1334 if (until != KTIME_MAX) {
1335 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1336 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1337 }
1338
1339 init_wait(&w.w);
1340
1341 while (1) {
1342 unsigned long nr_got = ret;
1343
1344 w.min_nr = min_nr - ret;
1345
1346 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1347 if (!ret2 && !t.task)
1348 ret2 = -ETIME;
1349
1350 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1351 break;
1352
1353 if (nr_got == ret)
1354 schedule();
1355 }
1356
1357 finish_wait(&ctx->wait, &w.w);
1358 hrtimer_cancel(&t.timer);
1359 destroy_hrtimer_on_stack(&t.timer);
1360
1361 return ret;
1362 }
1363
1364 /* sys_io_setup:
1365 * Create an aio_context capable of receiving at least nr_events.
1366 * ctxp must not point to an aio_context that already exists, and
1367 * must be initialized to 0 prior to the call. On successful
1368 * creation of the aio_context, *ctxp is filled in with the resulting
1369 * handle. May fail with -EINVAL if *ctxp is not initialized,
1370 * if the specified nr_events exceeds internal limits. May fail
1371 * with -EAGAIN if the specified nr_events exceeds the user's limit
1372 * of available events. May fail with -ENOMEM if insufficient kernel
1373 * resources are available. May fail with -EFAULT if an invalid
1374 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1375 * implemented.
1376 */
1377 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1378 {
1379 struct kioctx *ioctx = NULL;
1380 unsigned long ctx;
1381 long ret;
1382
1383 ret = get_user(ctx, ctxp);
1384 if (unlikely(ret))
1385 goto out;
1386
1387 ret = -EINVAL;
1388 if (unlikely(ctx || nr_events == 0)) {
1389 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1390 ctx, nr_events);
1391 goto out;
1392 }
1393
1394 ioctx = ioctx_alloc(nr_events);
1395 ret = PTR_ERR(ioctx);
1396 if (!IS_ERR(ioctx)) {
1397 ret = put_user(ioctx->user_id, ctxp);
1398 if (ret)
1399 kill_ioctx(current->mm, ioctx, NULL);
1400 percpu_ref_put(&ioctx->users);
1401 }
1402
1403 out:
1404 return ret;
1405 }
1406
1407 #ifdef CONFIG_COMPAT
1408 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1409 {
1410 struct kioctx *ioctx = NULL;
1411 unsigned long ctx;
1412 long ret;
1413
1414 ret = get_user(ctx, ctx32p);
1415 if (unlikely(ret))
1416 goto out;
1417
1418 ret = -EINVAL;
1419 if (unlikely(ctx || nr_events == 0)) {
1420 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1421 ctx, nr_events);
1422 goto out;
1423 }
1424
1425 ioctx = ioctx_alloc(nr_events);
1426 ret = PTR_ERR(ioctx);
1427 if (!IS_ERR(ioctx)) {
1428 /* truncating is ok because it's a user address */
1429 ret = put_user((u32)ioctx->user_id, ctx32p);
1430 if (ret)
1431 kill_ioctx(current->mm, ioctx, NULL);
1432 percpu_ref_put(&ioctx->users);
1433 }
1434
1435 out:
1436 return ret;
1437 }
1438 #endif
1439
1440 /* sys_io_destroy:
1441 * Destroy the aio_context specified. May cancel any outstanding
1442 * AIOs and block on completion. Will fail with -ENOSYS if not
1443 * implemented. May fail with -EINVAL if the context pointed to
1444 * is invalid.
1445 */
1446 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1447 {
1448 struct kioctx *ioctx = lookup_ioctx(ctx);
1449 if (likely(NULL != ioctx)) {
1450 struct ctx_rq_wait wait;
1451 int ret;
1452
1453 init_completion(&wait.comp);
1454 atomic_set(&wait.count, 1);
1455
1456 /* Pass requests_done to kill_ioctx() where it can be set
1457 * in a thread-safe way. If we try to set it here then we have
1458 * a race condition if two io_destroy() called simultaneously.
1459 */
1460 ret = kill_ioctx(current->mm, ioctx, &wait);
1461 percpu_ref_put(&ioctx->users);
1462
1463 /* Wait until all IO for the context are done. Otherwise kernel
1464 * keep using user-space buffers even if user thinks the context
1465 * is destroyed.
1466 */
1467 if (!ret)
1468 wait_for_completion(&wait.comp);
1469
1470 return ret;
1471 }
1472 pr_debug("EINVAL: invalid context id\n");
1473 return -EINVAL;
1474 }
1475
1476 static void aio_remove_iocb(struct aio_kiocb *iocb)
1477 {
1478 struct kioctx *ctx = iocb->ki_ctx;
1479 unsigned long flags;
1480
1481 spin_lock_irqsave(&ctx->ctx_lock, flags);
1482 list_del(&iocb->ki_list);
1483 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1484 }
1485
1486 static void aio_complete_rw(struct kiocb *kiocb, long res)
1487 {
1488 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1489
1490 if (!list_empty_careful(&iocb->ki_list))
1491 aio_remove_iocb(iocb);
1492
1493 if (kiocb->ki_flags & IOCB_WRITE) {
1494 struct inode *inode = file_inode(kiocb->ki_filp);
1495
1496 if (S_ISREG(inode->i_mode))
1497 kiocb_end_write(kiocb);
1498 }
1499
1500 iocb->ki_res.res = res;
1501 iocb->ki_res.res2 = 0;
1502 iocb_put(iocb);
1503 }
1504
1505 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1506 {
1507 int ret;
1508
1509 req->ki_complete = aio_complete_rw;
1510 req->private = NULL;
1511 req->ki_pos = iocb->aio_offset;
1512 req->ki_flags = req->ki_filp->f_iocb_flags;
1513 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1514 req->ki_flags |= IOCB_EVENTFD;
1515 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1516 /*
1517 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1518 * aio_reqprio is interpreted as an I/O scheduling
1519 * class and priority.
1520 */
1521 ret = ioprio_check_cap(iocb->aio_reqprio);
1522 if (ret) {
1523 pr_debug("aio ioprio check cap error: %d\n", ret);
1524 return ret;
1525 }
1526
1527 req->ki_ioprio = iocb->aio_reqprio;
1528 } else
1529 req->ki_ioprio = get_current_ioprio();
1530
1531 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1532 if (unlikely(ret))
1533 return ret;
1534
1535 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1536 return 0;
1537 }
1538
1539 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1540 struct iovec **iovec, bool vectored, bool compat,
1541 struct iov_iter *iter)
1542 {
1543 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1544 size_t len = iocb->aio_nbytes;
1545
1546 if (!vectored) {
1547 ssize_t ret = import_ubuf(rw, buf, len, iter);
1548 *iovec = NULL;
1549 return ret;
1550 }
1551
1552 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1553 }
1554
1555 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1556 {
1557 switch (ret) {
1558 case -EIOCBQUEUED:
1559 break;
1560 case -ERESTARTSYS:
1561 case -ERESTARTNOINTR:
1562 case -ERESTARTNOHAND:
1563 case -ERESTART_RESTARTBLOCK:
1564 /*
1565 * There's no easy way to restart the syscall since other AIO's
1566 * may be already running. Just fail this IO with EINTR.
1567 */
1568 ret = -EINTR;
1569 fallthrough;
1570 default:
1571 req->ki_complete(req, ret);
1572 }
1573 }
1574
1575 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1576 bool vectored, bool compat)
1577 {
1578 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1579 struct iov_iter iter;
1580 struct file *file;
1581 int ret;
1582
1583 ret = aio_prep_rw(req, iocb);
1584 if (ret)
1585 return ret;
1586 file = req->ki_filp;
1587 if (unlikely(!(file->f_mode & FMODE_READ)))
1588 return -EBADF;
1589 if (unlikely(!file->f_op->read_iter))
1590 return -EINVAL;
1591
1592 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1593 if (ret < 0)
1594 return ret;
1595 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1596 if (!ret)
1597 aio_rw_done(req, call_read_iter(file, req, &iter));
1598 kfree(iovec);
1599 return ret;
1600 }
1601
1602 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1603 bool vectored, bool compat)
1604 {
1605 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1606 struct iov_iter iter;
1607 struct file *file;
1608 int ret;
1609
1610 ret = aio_prep_rw(req, iocb);
1611 if (ret)
1612 return ret;
1613 file = req->ki_filp;
1614
1615 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1616 return -EBADF;
1617 if (unlikely(!file->f_op->write_iter))
1618 return -EINVAL;
1619
1620 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1621 if (ret < 0)
1622 return ret;
1623 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1624 if (!ret) {
1625 if (S_ISREG(file_inode(file)->i_mode))
1626 kiocb_start_write(req);
1627 req->ki_flags |= IOCB_WRITE;
1628 aio_rw_done(req, call_write_iter(file, req, &iter));
1629 }
1630 kfree(iovec);
1631 return ret;
1632 }
1633
1634 static void aio_fsync_work(struct work_struct *work)
1635 {
1636 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1637 const struct cred *old_cred = override_creds(iocb->fsync.creds);
1638
1639 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1640 revert_creds(old_cred);
1641 put_cred(iocb->fsync.creds);
1642 iocb_put(iocb);
1643 }
1644
1645 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1646 bool datasync)
1647 {
1648 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1649 iocb->aio_rw_flags))
1650 return -EINVAL;
1651
1652 if (unlikely(!req->file->f_op->fsync))
1653 return -EINVAL;
1654
1655 req->creds = prepare_creds();
1656 if (!req->creds)
1657 return -ENOMEM;
1658
1659 req->datasync = datasync;
1660 INIT_WORK(&req->work, aio_fsync_work);
1661 schedule_work(&req->work);
1662 return 0;
1663 }
1664
1665 static void aio_poll_put_work(struct work_struct *work)
1666 {
1667 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1668 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1669
1670 iocb_put(iocb);
1671 }
1672
1673 /*
1674 * Safely lock the waitqueue which the request is on, synchronizing with the
1675 * case where the ->poll() provider decides to free its waitqueue early.
1676 *
1677 * Returns true on success, meaning that req->head->lock was locked, req->wait
1678 * is on req->head, and an RCU read lock was taken. Returns false if the
1679 * request was already removed from its waitqueue (which might no longer exist).
1680 */
1681 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1682 {
1683 wait_queue_head_t *head;
1684
1685 /*
1686 * While we hold the waitqueue lock and the waitqueue is nonempty,
1687 * wake_up_pollfree() will wait for us. However, taking the waitqueue
1688 * lock in the first place can race with the waitqueue being freed.
1689 *
1690 * We solve this as eventpoll does: by taking advantage of the fact that
1691 * all users of wake_up_pollfree() will RCU-delay the actual free. If
1692 * we enter rcu_read_lock() and see that the pointer to the queue is
1693 * non-NULL, we can then lock it without the memory being freed out from
1694 * under us, then check whether the request is still on the queue.
1695 *
1696 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1697 * case the caller deletes the entry from the queue, leaving it empty.
1698 * In that case, only RCU prevents the queue memory from being freed.
1699 */
1700 rcu_read_lock();
1701 head = smp_load_acquire(&req->head);
1702 if (head) {
1703 spin_lock(&head->lock);
1704 if (!list_empty(&req->wait.entry))
1705 return true;
1706 spin_unlock(&head->lock);
1707 }
1708 rcu_read_unlock();
1709 return false;
1710 }
1711
1712 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1713 {
1714 spin_unlock(&req->head->lock);
1715 rcu_read_unlock();
1716 }
1717
1718 static void aio_poll_complete_work(struct work_struct *work)
1719 {
1720 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1721 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1722 struct poll_table_struct pt = { ._key = req->events };
1723 struct kioctx *ctx = iocb->ki_ctx;
1724 __poll_t mask = 0;
1725
1726 if (!READ_ONCE(req->cancelled))
1727 mask = vfs_poll(req->file, &pt) & req->events;
1728
1729 /*
1730 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1731 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1732 * synchronize with them. In the cancellation case the list_del_init
1733 * itself is not actually needed, but harmless so we keep it in to
1734 * avoid further branches in the fast path.
1735 */
1736 spin_lock_irq(&ctx->ctx_lock);
1737 if (poll_iocb_lock_wq(req)) {
1738 if (!mask && !READ_ONCE(req->cancelled)) {
1739 /*
1740 * The request isn't actually ready to be completed yet.
1741 * Reschedule completion if another wakeup came in.
1742 */
1743 if (req->work_need_resched) {
1744 schedule_work(&req->work);
1745 req->work_need_resched = false;
1746 } else {
1747 req->work_scheduled = false;
1748 }
1749 poll_iocb_unlock_wq(req);
1750 spin_unlock_irq(&ctx->ctx_lock);
1751 return;
1752 }
1753 list_del_init(&req->wait.entry);
1754 poll_iocb_unlock_wq(req);
1755 } /* else, POLLFREE has freed the waitqueue, so we must complete */
1756 list_del_init(&iocb->ki_list);
1757 iocb->ki_res.res = mangle_poll(mask);
1758 spin_unlock_irq(&ctx->ctx_lock);
1759
1760 iocb_put(iocb);
1761 }
1762
1763 /* assumes we are called with irqs disabled */
1764 static int aio_poll_cancel(struct kiocb *iocb)
1765 {
1766 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1767 struct poll_iocb *req = &aiocb->poll;
1768
1769 if (poll_iocb_lock_wq(req)) {
1770 WRITE_ONCE(req->cancelled, true);
1771 if (!req->work_scheduled) {
1772 schedule_work(&aiocb->poll.work);
1773 req->work_scheduled = true;
1774 }
1775 poll_iocb_unlock_wq(req);
1776 } /* else, the request was force-cancelled by POLLFREE already */
1777
1778 return 0;
1779 }
1780
1781 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1782 void *key)
1783 {
1784 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1785 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1786 __poll_t mask = key_to_poll(key);
1787 unsigned long flags;
1788
1789 /* for instances that support it check for an event match first: */
1790 if (mask && !(mask & req->events))
1791 return 0;
1792
1793 /*
1794 * Complete the request inline if possible. This requires that three
1795 * conditions be met:
1796 * 1. An event mask must have been passed. If a plain wakeup was done
1797 * instead, then mask == 0 and we have to call vfs_poll() to get
1798 * the events, so inline completion isn't possible.
1799 * 2. The completion work must not have already been scheduled.
1800 * 3. ctx_lock must not be busy. We have to use trylock because we
1801 * already hold the waitqueue lock, so this inverts the normal
1802 * locking order. Use irqsave/irqrestore because not all
1803 * filesystems (e.g. fuse) call this function with IRQs disabled,
1804 * yet IRQs have to be disabled before ctx_lock is obtained.
1805 */
1806 if (mask && !req->work_scheduled &&
1807 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1808 struct kioctx *ctx = iocb->ki_ctx;
1809
1810 list_del_init(&req->wait.entry);
1811 list_del(&iocb->ki_list);
1812 iocb->ki_res.res = mangle_poll(mask);
1813 if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1814 iocb = NULL;
1815 INIT_WORK(&req->work, aio_poll_put_work);
1816 schedule_work(&req->work);
1817 }
1818 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1819 if (iocb)
1820 iocb_put(iocb);
1821 } else {
1822 /*
1823 * Schedule the completion work if needed. If it was already
1824 * scheduled, record that another wakeup came in.
1825 *
1826 * Don't remove the request from the waitqueue here, as it might
1827 * not actually be complete yet (we won't know until vfs_poll()
1828 * is called), and we must not miss any wakeups. POLLFREE is an
1829 * exception to this; see below.
1830 */
1831 if (req->work_scheduled) {
1832 req->work_need_resched = true;
1833 } else {
1834 schedule_work(&req->work);
1835 req->work_scheduled = true;
1836 }
1837
1838 /*
1839 * If the waitqueue is being freed early but we can't complete
1840 * the request inline, we have to tear down the request as best
1841 * we can. That means immediately removing the request from its
1842 * waitqueue and preventing all further accesses to the
1843 * waitqueue via the request. We also need to schedule the
1844 * completion work (done above). Also mark the request as
1845 * cancelled, to potentially skip an unneeded call to ->poll().
1846 */
1847 if (mask & POLLFREE) {
1848 WRITE_ONCE(req->cancelled, true);
1849 list_del_init(&req->wait.entry);
1850
1851 /*
1852 * Careful: this *must* be the last step, since as soon
1853 * as req->head is NULL'ed out, the request can be
1854 * completed and freed, since aio_poll_complete_work()
1855 * will no longer need to take the waitqueue lock.
1856 */
1857 smp_store_release(&req->head, NULL);
1858 }
1859 }
1860 return 1;
1861 }
1862
1863 struct aio_poll_table {
1864 struct poll_table_struct pt;
1865 struct aio_kiocb *iocb;
1866 bool queued;
1867 int error;
1868 };
1869
1870 static void
1871 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1872 struct poll_table_struct *p)
1873 {
1874 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1875
1876 /* multiple wait queues per file are not supported */
1877 if (unlikely(pt->queued)) {
1878 pt->error = -EINVAL;
1879 return;
1880 }
1881
1882 pt->queued = true;
1883 pt->error = 0;
1884 pt->iocb->poll.head = head;
1885 add_wait_queue(head, &pt->iocb->poll.wait);
1886 }
1887
1888 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1889 {
1890 struct kioctx *ctx = aiocb->ki_ctx;
1891 struct poll_iocb *req = &aiocb->poll;
1892 struct aio_poll_table apt;
1893 bool cancel = false;
1894 __poll_t mask;
1895
1896 /* reject any unknown events outside the normal event mask. */
1897 if ((u16)iocb->aio_buf != iocb->aio_buf)
1898 return -EINVAL;
1899 /* reject fields that are not defined for poll */
1900 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1901 return -EINVAL;
1902
1903 INIT_WORK(&req->work, aio_poll_complete_work);
1904 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1905
1906 req->head = NULL;
1907 req->cancelled = false;
1908 req->work_scheduled = false;
1909 req->work_need_resched = false;
1910
1911 apt.pt._qproc = aio_poll_queue_proc;
1912 apt.pt._key = req->events;
1913 apt.iocb = aiocb;
1914 apt.queued = false;
1915 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1916
1917 /* initialized the list so that we can do list_empty checks */
1918 INIT_LIST_HEAD(&req->wait.entry);
1919 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1920
1921 mask = vfs_poll(req->file, &apt.pt) & req->events;
1922 spin_lock_irq(&ctx->ctx_lock);
1923 if (likely(apt.queued)) {
1924 bool on_queue = poll_iocb_lock_wq(req);
1925
1926 if (!on_queue || req->work_scheduled) {
1927 /*
1928 * aio_poll_wake() already either scheduled the async
1929 * completion work, or completed the request inline.
1930 */
1931 if (apt.error) /* unsupported case: multiple queues */
1932 cancel = true;
1933 apt.error = 0;
1934 mask = 0;
1935 }
1936 if (mask || apt.error) {
1937 /* Steal to complete synchronously. */
1938 list_del_init(&req->wait.entry);
1939 } else if (cancel) {
1940 /* Cancel if possible (may be too late though). */
1941 WRITE_ONCE(req->cancelled, true);
1942 } else if (on_queue) {
1943 /*
1944 * Actually waiting for an event, so add the request to
1945 * active_reqs so that it can be cancelled if needed.
1946 */
1947 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1948 aiocb->ki_cancel = aio_poll_cancel;
1949 }
1950 if (on_queue)
1951 poll_iocb_unlock_wq(req);
1952 }
1953 if (mask) { /* no async, we'd stolen it */
1954 aiocb->ki_res.res = mangle_poll(mask);
1955 apt.error = 0;
1956 }
1957 spin_unlock_irq(&ctx->ctx_lock);
1958 if (mask)
1959 iocb_put(aiocb);
1960 return apt.error;
1961 }
1962
1963 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1964 struct iocb __user *user_iocb, struct aio_kiocb *req,
1965 bool compat)
1966 {
1967 req->ki_filp = fget(iocb->aio_fildes);
1968 if (unlikely(!req->ki_filp))
1969 return -EBADF;
1970
1971 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1972 struct eventfd_ctx *eventfd;
1973 /*
1974 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1975 * instance of the file* now. The file descriptor must be
1976 * an eventfd() fd, and will be signaled for each completed
1977 * event using the eventfd_signal() function.
1978 */
1979 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1980 if (IS_ERR(eventfd))
1981 return PTR_ERR(eventfd);
1982
1983 req->ki_eventfd = eventfd;
1984 }
1985
1986 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1987 pr_debug("EFAULT: aio_key\n");
1988 return -EFAULT;
1989 }
1990
1991 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1992 req->ki_res.data = iocb->aio_data;
1993 req->ki_res.res = 0;
1994 req->ki_res.res2 = 0;
1995
1996 switch (iocb->aio_lio_opcode) {
1997 case IOCB_CMD_PREAD:
1998 return aio_read(&req->rw, iocb, false, compat);
1999 case IOCB_CMD_PWRITE:
2000 return aio_write(&req->rw, iocb, false, compat);
2001 case IOCB_CMD_PREADV:
2002 return aio_read(&req->rw, iocb, true, compat);
2003 case IOCB_CMD_PWRITEV:
2004 return aio_write(&req->rw, iocb, true, compat);
2005 case IOCB_CMD_FSYNC:
2006 return aio_fsync(&req->fsync, iocb, false);
2007 case IOCB_CMD_FDSYNC:
2008 return aio_fsync(&req->fsync, iocb, true);
2009 case IOCB_CMD_POLL:
2010 return aio_poll(req, iocb);
2011 default:
2012 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2013 return -EINVAL;
2014 }
2015 }
2016
2017 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2018 bool compat)
2019 {
2020 struct aio_kiocb *req;
2021 struct iocb iocb;
2022 int err;
2023
2024 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2025 return -EFAULT;
2026
2027 /* enforce forwards compatibility on users */
2028 if (unlikely(iocb.aio_reserved2)) {
2029 pr_debug("EINVAL: reserve field set\n");
2030 return -EINVAL;
2031 }
2032
2033 /* prevent overflows */
2034 if (unlikely(
2035 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2036 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2037 ((ssize_t)iocb.aio_nbytes < 0)
2038 )) {
2039 pr_debug("EINVAL: overflow check\n");
2040 return -EINVAL;
2041 }
2042
2043 req = aio_get_req(ctx);
2044 if (unlikely(!req))
2045 return -EAGAIN;
2046
2047 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2048
2049 /* Done with the synchronous reference */
2050 iocb_put(req);
2051
2052 /*
2053 * If err is 0, we'd either done aio_complete() ourselves or have
2054 * arranged for that to be done asynchronously. Anything non-zero
2055 * means that we need to destroy req ourselves.
2056 */
2057 if (unlikely(err)) {
2058 iocb_destroy(req);
2059 put_reqs_available(ctx, 1);
2060 }
2061 return err;
2062 }
2063
2064 /* sys_io_submit:
2065 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
2066 * the number of iocbs queued. May return -EINVAL if the aio_context
2067 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
2068 * *iocbpp[0] is not properly initialized, if the operation specified
2069 * is invalid for the file descriptor in the iocb. May fail with
2070 * -EFAULT if any of the data structures point to invalid data. May
2071 * fail with -EBADF if the file descriptor specified in the first
2072 * iocb is invalid. May fail with -EAGAIN if insufficient resources
2073 * are available to queue any iocbs. Will return 0 if nr is 0. Will
2074 * fail with -ENOSYS if not implemented.
2075 */
2076 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2077 struct iocb __user * __user *, iocbpp)
2078 {
2079 struct kioctx *ctx;
2080 long ret = 0;
2081 int i = 0;
2082 struct blk_plug plug;
2083
2084 if (unlikely(nr < 0))
2085 return -EINVAL;
2086
2087 ctx = lookup_ioctx(ctx_id);
2088 if (unlikely(!ctx)) {
2089 pr_debug("EINVAL: invalid context id\n");
2090 return -EINVAL;
2091 }
2092
2093 if (nr > ctx->nr_events)
2094 nr = ctx->nr_events;
2095
2096 if (nr > AIO_PLUG_THRESHOLD)
2097 blk_start_plug(&plug);
2098 for (i = 0; i < nr; i++) {
2099 struct iocb __user *user_iocb;
2100
2101 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2102 ret = -EFAULT;
2103 break;
2104 }
2105
2106 ret = io_submit_one(ctx, user_iocb, false);
2107 if (ret)
2108 break;
2109 }
2110 if (nr > AIO_PLUG_THRESHOLD)
2111 blk_finish_plug(&plug);
2112
2113 percpu_ref_put(&ctx->users);
2114 return i ? i : ret;
2115 }
2116
2117 #ifdef CONFIG_COMPAT
2118 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2119 int, nr, compat_uptr_t __user *, iocbpp)
2120 {
2121 struct kioctx *ctx;
2122 long ret = 0;
2123 int i = 0;
2124 struct blk_plug plug;
2125
2126 if (unlikely(nr < 0))
2127 return -EINVAL;
2128
2129 ctx = lookup_ioctx(ctx_id);
2130 if (unlikely(!ctx)) {
2131 pr_debug("EINVAL: invalid context id\n");
2132 return -EINVAL;
2133 }
2134
2135 if (nr > ctx->nr_events)
2136 nr = ctx->nr_events;
2137
2138 if (nr > AIO_PLUG_THRESHOLD)
2139 blk_start_plug(&plug);
2140 for (i = 0; i < nr; i++) {
2141 compat_uptr_t user_iocb;
2142
2143 if (unlikely(get_user(user_iocb, iocbpp + i))) {
2144 ret = -EFAULT;
2145 break;
2146 }
2147
2148 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2149 if (ret)
2150 break;
2151 }
2152 if (nr > AIO_PLUG_THRESHOLD)
2153 blk_finish_plug(&plug);
2154
2155 percpu_ref_put(&ctx->users);
2156 return i ? i : ret;
2157 }
2158 #endif
2159
2160 /* sys_io_cancel:
2161 * Attempts to cancel an iocb previously passed to io_submit. If
2162 * the operation is successfully cancelled, the resulting event is
2163 * copied into the memory pointed to by result without being placed
2164 * into the completion queue and 0 is returned. May fail with
2165 * -EFAULT if any of the data structures pointed to are invalid.
2166 * May fail with -EINVAL if aio_context specified by ctx_id is
2167 * invalid. May fail with -EAGAIN if the iocb specified was not
2168 * cancelled. Will fail with -ENOSYS if not implemented.
2169 */
2170 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2171 struct io_event __user *, result)
2172 {
2173 struct kioctx *ctx;
2174 struct aio_kiocb *kiocb;
2175 int ret = -EINVAL;
2176 u32 key;
2177 u64 obj = (u64)(unsigned long)iocb;
2178
2179 if (unlikely(get_user(key, &iocb->aio_key)))
2180 return -EFAULT;
2181 if (unlikely(key != KIOCB_KEY))
2182 return -EINVAL;
2183
2184 ctx = lookup_ioctx(ctx_id);
2185 if (unlikely(!ctx))
2186 return -EINVAL;
2187
2188 spin_lock_irq(&ctx->ctx_lock);
2189 /* TODO: use a hash or array, this sucks. */
2190 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2191 if (kiocb->ki_res.obj == obj) {
2192 ret = kiocb->ki_cancel(&kiocb->rw);
2193 list_del_init(&kiocb->ki_list);
2194 break;
2195 }
2196 }
2197 spin_unlock_irq(&ctx->ctx_lock);
2198
2199 if (!ret) {
2200 /*
2201 * The result argument is no longer used - the io_event is
2202 * always delivered via the ring buffer. -EINPROGRESS indicates
2203 * cancellation is progress:
2204 */
2205 ret = -EINPROGRESS;
2206 }
2207
2208 percpu_ref_put(&ctx->users);
2209
2210 return ret;
2211 }
2212
2213 static long do_io_getevents(aio_context_t ctx_id,
2214 long min_nr,
2215 long nr,
2216 struct io_event __user *events,
2217 struct timespec64 *ts)
2218 {
2219 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2220 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2221 long ret = -EINVAL;
2222
2223 if (likely(ioctx)) {
2224 if (likely(min_nr <= nr && min_nr >= 0))
2225 ret = read_events(ioctx, min_nr, nr, events, until);
2226 percpu_ref_put(&ioctx->users);
2227 }
2228
2229 return ret;
2230 }
2231
2232 /* io_getevents:
2233 * Attempts to read at least min_nr events and up to nr events from
2234 * the completion queue for the aio_context specified by ctx_id. If
2235 * it succeeds, the number of read events is returned. May fail with
2236 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2237 * out of range, if timeout is out of range. May fail with -EFAULT
2238 * if any of the memory specified is invalid. May return 0 or
2239 * < min_nr if the timeout specified by timeout has elapsed
2240 * before sufficient events are available, where timeout == NULL
2241 * specifies an infinite timeout. Note that the timeout pointed to by
2242 * timeout is relative. Will fail with -ENOSYS if not implemented.
2243 */
2244 #ifdef CONFIG_64BIT
2245
2246 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2247 long, min_nr,
2248 long, nr,
2249 struct io_event __user *, events,
2250 struct __kernel_timespec __user *, timeout)
2251 {
2252 struct timespec64 ts;
2253 int ret;
2254
2255 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2256 return -EFAULT;
2257
2258 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2259 if (!ret && signal_pending(current))
2260 ret = -EINTR;
2261 return ret;
2262 }
2263
2264 #endif
2265
2266 struct __aio_sigset {
2267 const sigset_t __user *sigmask;
2268 size_t sigsetsize;
2269 };
2270
2271 SYSCALL_DEFINE6(io_pgetevents,
2272 aio_context_t, ctx_id,
2273 long, min_nr,
2274 long, nr,
2275 struct io_event __user *, events,
2276 struct __kernel_timespec __user *, timeout,
2277 const struct __aio_sigset __user *, usig)
2278 {
2279 struct __aio_sigset ksig = { NULL, };
2280 struct timespec64 ts;
2281 bool interrupted;
2282 int ret;
2283
2284 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2285 return -EFAULT;
2286
2287 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2288 return -EFAULT;
2289
2290 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2291 if (ret)
2292 return ret;
2293
2294 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2295
2296 interrupted = signal_pending(current);
2297 restore_saved_sigmask_unless(interrupted);
2298 if (interrupted && !ret)
2299 ret = -ERESTARTNOHAND;
2300
2301 return ret;
2302 }
2303
2304 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2305
2306 SYSCALL_DEFINE6(io_pgetevents_time32,
2307 aio_context_t, ctx_id,
2308 long, min_nr,
2309 long, nr,
2310 struct io_event __user *, events,
2311 struct old_timespec32 __user *, timeout,
2312 const struct __aio_sigset __user *, usig)
2313 {
2314 struct __aio_sigset ksig = { NULL, };
2315 struct timespec64 ts;
2316 bool interrupted;
2317 int ret;
2318
2319 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2320 return -EFAULT;
2321
2322 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2323 return -EFAULT;
2324
2325
2326 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2327 if (ret)
2328 return ret;
2329
2330 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2331
2332 interrupted = signal_pending(current);
2333 restore_saved_sigmask_unless(interrupted);
2334 if (interrupted && !ret)
2335 ret = -ERESTARTNOHAND;
2336
2337 return ret;
2338 }
2339
2340 #endif
2341
2342 #if defined(CONFIG_COMPAT_32BIT_TIME)
2343
2344 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2345 __s32, min_nr,
2346 __s32, nr,
2347 struct io_event __user *, events,
2348 struct old_timespec32 __user *, timeout)
2349 {
2350 struct timespec64 t;
2351 int ret;
2352
2353 if (timeout && get_old_timespec32(&t, timeout))
2354 return -EFAULT;
2355
2356 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2357 if (!ret && signal_pending(current))
2358 ret = -EINTR;
2359 return ret;
2360 }
2361
2362 #endif
2363
2364 #ifdef CONFIG_COMPAT
2365
2366 struct __compat_aio_sigset {
2367 compat_uptr_t sigmask;
2368 compat_size_t sigsetsize;
2369 };
2370
2371 #if defined(CONFIG_COMPAT_32BIT_TIME)
2372
2373 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2374 compat_aio_context_t, ctx_id,
2375 compat_long_t, min_nr,
2376 compat_long_t, nr,
2377 struct io_event __user *, events,
2378 struct old_timespec32 __user *, timeout,
2379 const struct __compat_aio_sigset __user *, usig)
2380 {
2381 struct __compat_aio_sigset ksig = { 0, };
2382 struct timespec64 t;
2383 bool interrupted;
2384 int ret;
2385
2386 if (timeout && get_old_timespec32(&t, timeout))
2387 return -EFAULT;
2388
2389 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2390 return -EFAULT;
2391
2392 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2393 if (ret)
2394 return ret;
2395
2396 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2397
2398 interrupted = signal_pending(current);
2399 restore_saved_sigmask_unless(interrupted);
2400 if (interrupted && !ret)
2401 ret = -ERESTARTNOHAND;
2402
2403 return ret;
2404 }
2405
2406 #endif
2407
2408 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2409 compat_aio_context_t, ctx_id,
2410 compat_long_t, min_nr,
2411 compat_long_t, nr,
2412 struct io_event __user *, events,
2413 struct __kernel_timespec __user *, timeout,
2414 const struct __compat_aio_sigset __user *, usig)
2415 {
2416 struct __compat_aio_sigset ksig = { 0, };
2417 struct timespec64 t;
2418 bool interrupted;
2419 int ret;
2420
2421 if (timeout && get_timespec64(&t, timeout))
2422 return -EFAULT;
2423
2424 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2425 return -EFAULT;
2426
2427 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2428 if (ret)
2429 return ret;
2430
2431 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2432
2433 interrupted = signal_pending(current);
2434 restore_saved_sigmask_unless(interrupted);
2435 if (interrupted && !ret)
2436 ret = -ERESTARTNOHAND;
2437
2438 return ret;
2439 }
2440 #endif