]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/bcachefs/btree_update_interior.c
KVM: clean up directives to compile out irqfds
[thirdparty/kernel/stable.git] / fs / bcachefs / btree_update_interior.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "alloc_foreground.h"
5 #include "bkey_methods.h"
6 #include "btree_cache.h"
7 #include "btree_gc.h"
8 #include "btree_journal_iter.h"
9 #include "btree_update.h"
10 #include "btree_update_interior.h"
11 #include "btree_io.h"
12 #include "btree_iter.h"
13 #include "btree_locking.h"
14 #include "buckets.h"
15 #include "clock.h"
16 #include "error.h"
17 #include "extents.h"
18 #include "journal.h"
19 #include "journal_reclaim.h"
20 #include "keylist.h"
21 #include "replicas.h"
22 #include "super-io.h"
23 #include "trace.h"
24
25 #include <linux/random.h>
26
27 static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *,
28 struct btree_path *, struct btree *,
29 struct keylist *, unsigned);
30 static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *);
31
32 static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans,
33 enum btree_id btree_id,
34 unsigned level,
35 struct bpos pos)
36 {
37 struct btree_path *path;
38
39 path = bch2_path_get(trans, btree_id, pos, level + 1, level,
40 BTREE_ITER_NOPRESERVE|
41 BTREE_ITER_INTENT, _RET_IP_);
42 path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_);
43 bch2_btree_path_downgrade(trans, path);
44 __bch2_btree_path_unlock(trans, path);
45 return path;
46 }
47
48 /* Debug code: */
49
50 /*
51 * Verify that child nodes correctly span parent node's range:
52 */
53 static void btree_node_interior_verify(struct bch_fs *c, struct btree *b)
54 {
55 #ifdef CONFIG_BCACHEFS_DEBUG
56 struct bpos next_node = b->data->min_key;
57 struct btree_node_iter iter;
58 struct bkey_s_c k;
59 struct bkey_s_c_btree_ptr_v2 bp;
60 struct bkey unpacked;
61 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
62
63 BUG_ON(!b->c.level);
64
65 if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))
66 return;
67
68 bch2_btree_node_iter_init_from_start(&iter, b);
69
70 while (1) {
71 k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked);
72 if (k.k->type != KEY_TYPE_btree_ptr_v2)
73 break;
74 bp = bkey_s_c_to_btree_ptr_v2(k);
75
76 if (!bpos_eq(next_node, bp.v->min_key)) {
77 bch2_dump_btree_node(c, b);
78 bch2_bpos_to_text(&buf1, next_node);
79 bch2_bpos_to_text(&buf2, bp.v->min_key);
80 panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf);
81 }
82
83 bch2_btree_node_iter_advance(&iter, b);
84
85 if (bch2_btree_node_iter_end(&iter)) {
86 if (!bpos_eq(k.k->p, b->key.k.p)) {
87 bch2_dump_btree_node(c, b);
88 bch2_bpos_to_text(&buf1, b->key.k.p);
89 bch2_bpos_to_text(&buf2, k.k->p);
90 panic("expected end %s got %s\n", buf1.buf, buf2.buf);
91 }
92 break;
93 }
94
95 next_node = bpos_successor(k.k->p);
96 }
97 #endif
98 }
99
100 /* Calculate ideal packed bkey format for new btree nodes: */
101
102 void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b)
103 {
104 struct bkey_packed *k;
105 struct bset_tree *t;
106 struct bkey uk;
107
108 for_each_bset(b, t)
109 bset_tree_for_each_key(b, t, k)
110 if (!bkey_deleted(k)) {
111 uk = bkey_unpack_key(b, k);
112 bch2_bkey_format_add_key(s, &uk);
113 }
114 }
115
116 static struct bkey_format bch2_btree_calc_format(struct btree *b)
117 {
118 struct bkey_format_state s;
119
120 bch2_bkey_format_init(&s);
121 bch2_bkey_format_add_pos(&s, b->data->min_key);
122 bch2_bkey_format_add_pos(&s, b->data->max_key);
123 __bch2_btree_calc_format(&s, b);
124
125 return bch2_bkey_format_done(&s);
126 }
127
128 static size_t btree_node_u64s_with_format(struct btree *b,
129 struct bkey_format *new_f)
130 {
131 struct bkey_format *old_f = &b->format;
132
133 /* stupid integer promotion rules */
134 ssize_t delta =
135 (((int) new_f->key_u64s - old_f->key_u64s) *
136 (int) b->nr.packed_keys) +
137 (((int) new_f->key_u64s - BKEY_U64s) *
138 (int) b->nr.unpacked_keys);
139
140 BUG_ON(delta + b->nr.live_u64s < 0);
141
142 return b->nr.live_u64s + delta;
143 }
144
145 /**
146 * bch2_btree_node_format_fits - check if we could rewrite node with a new format
147 *
148 * @c: filesystem handle
149 * @b: btree node to rewrite
150 * @new_f: bkey format to translate keys to
151 *
152 * Returns: true if all re-packed keys will be able to fit in a new node.
153 *
154 * Assumes all keys will successfully pack with the new format.
155 */
156 bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b,
157 struct bkey_format *new_f)
158 {
159 size_t u64s = btree_node_u64s_with_format(b, new_f);
160
161 return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c);
162 }
163
164 /* Btree node freeing/allocation: */
165
166 static void __btree_node_free(struct bch_fs *c, struct btree *b)
167 {
168 trace_and_count(c, btree_node_free, c, b);
169
170 BUG_ON(btree_node_write_blocked(b));
171 BUG_ON(btree_node_dirty(b));
172 BUG_ON(btree_node_need_write(b));
173 BUG_ON(b == btree_node_root(c, b));
174 BUG_ON(b->ob.nr);
175 BUG_ON(!list_empty(&b->write_blocked));
176 BUG_ON(b->will_make_reachable);
177
178 clear_btree_node_noevict(b);
179
180 mutex_lock(&c->btree_cache.lock);
181 list_move(&b->list, &c->btree_cache.freeable);
182 mutex_unlock(&c->btree_cache.lock);
183 }
184
185 static void bch2_btree_node_free_inmem(struct btree_trans *trans,
186 struct btree_path *path,
187 struct btree *b)
188 {
189 struct bch_fs *c = trans->c;
190 unsigned level = b->c.level;
191
192 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
193 bch2_btree_node_hash_remove(&c->btree_cache, b);
194 __btree_node_free(c, b);
195 six_unlock_write(&b->c.lock);
196 mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED);
197
198 trans_for_each_path(trans, path)
199 if (path->l[level].b == b) {
200 btree_node_unlock(trans, path, level);
201 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
202 }
203 }
204
205 static void bch2_btree_node_free_never_used(struct btree_update *as,
206 struct btree_trans *trans,
207 struct btree *b)
208 {
209 struct bch_fs *c = as->c;
210 struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL];
211 struct btree_path *path;
212 unsigned level = b->c.level;
213
214 BUG_ON(!list_empty(&b->write_blocked));
215 BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as));
216
217 b->will_make_reachable = 0;
218 closure_put(&as->cl);
219
220 clear_btree_node_will_make_reachable(b);
221 clear_btree_node_accessed(b);
222 clear_btree_node_dirty_acct(c, b);
223 clear_btree_node_need_write(b);
224
225 mutex_lock(&c->btree_cache.lock);
226 list_del_init(&b->list);
227 bch2_btree_node_hash_remove(&c->btree_cache, b);
228 mutex_unlock(&c->btree_cache.lock);
229
230 BUG_ON(p->nr >= ARRAY_SIZE(p->b));
231 p->b[p->nr++] = b;
232
233 six_unlock_intent(&b->c.lock);
234
235 trans_for_each_path(trans, path)
236 if (path->l[level].b == b) {
237 btree_node_unlock(trans, path, level);
238 path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init);
239 }
240 }
241
242 static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans,
243 struct disk_reservation *res,
244 struct closure *cl,
245 bool interior_node,
246 unsigned flags)
247 {
248 struct bch_fs *c = trans->c;
249 struct write_point *wp;
250 struct btree *b;
251 BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp;
252 struct open_buckets obs = { .nr = 0 };
253 struct bch_devs_list devs_have = (struct bch_devs_list) { 0 };
254 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
255 unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim
256 ? BTREE_NODE_RESERVE
257 : 0;
258 int ret;
259
260 mutex_lock(&c->btree_reserve_cache_lock);
261 if (c->btree_reserve_cache_nr > nr_reserve) {
262 struct btree_alloc *a =
263 &c->btree_reserve_cache[--c->btree_reserve_cache_nr];
264
265 obs = a->ob;
266 bkey_copy(&tmp.k, &a->k);
267 mutex_unlock(&c->btree_reserve_cache_lock);
268 goto mem_alloc;
269 }
270 mutex_unlock(&c->btree_reserve_cache_lock);
271
272 retry:
273 ret = bch2_alloc_sectors_start_trans(trans,
274 c->opts.metadata_target ?:
275 c->opts.foreground_target,
276 0,
277 writepoint_ptr(&c->btree_write_point),
278 &devs_have,
279 res->nr_replicas,
280 c->opts.metadata_replicas_required,
281 watermark, 0, cl, &wp);
282 if (unlikely(ret))
283 return ERR_PTR(ret);
284
285 if (wp->sectors_free < btree_sectors(c)) {
286 struct open_bucket *ob;
287 unsigned i;
288
289 open_bucket_for_each(c, &wp->ptrs, ob, i)
290 if (ob->sectors_free < btree_sectors(c))
291 ob->sectors_free = 0;
292
293 bch2_alloc_sectors_done(c, wp);
294 goto retry;
295 }
296
297 bkey_btree_ptr_v2_init(&tmp.k);
298 bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false);
299
300 bch2_open_bucket_get(c, wp, &obs);
301 bch2_alloc_sectors_done(c, wp);
302 mem_alloc:
303 b = bch2_btree_node_mem_alloc(trans, interior_node);
304 six_unlock_write(&b->c.lock);
305 six_unlock_intent(&b->c.lock);
306
307 /* we hold cannibalize_lock: */
308 BUG_ON(IS_ERR(b));
309 BUG_ON(b->ob.nr);
310
311 bkey_copy(&b->key, &tmp.k);
312 b->ob = obs;
313
314 return b;
315 }
316
317 static struct btree *bch2_btree_node_alloc(struct btree_update *as,
318 struct btree_trans *trans,
319 unsigned level)
320 {
321 struct bch_fs *c = as->c;
322 struct btree *b;
323 struct prealloc_nodes *p = &as->prealloc_nodes[!!level];
324 int ret;
325
326 BUG_ON(level >= BTREE_MAX_DEPTH);
327 BUG_ON(!p->nr);
328
329 b = p->b[--p->nr];
330
331 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
332 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
333
334 set_btree_node_accessed(b);
335 set_btree_node_dirty_acct(c, b);
336 set_btree_node_need_write(b);
337
338 bch2_bset_init_first(b, &b->data->keys);
339 b->c.level = level;
340 b->c.btree_id = as->btree_id;
341 b->version_ondisk = c->sb.version;
342
343 memset(&b->nr, 0, sizeof(b->nr));
344 b->data->magic = cpu_to_le64(bset_magic(c));
345 memset(&b->data->_ptr, 0, sizeof(b->data->_ptr));
346 b->data->flags = 0;
347 SET_BTREE_NODE_ID(b->data, as->btree_id);
348 SET_BTREE_NODE_LEVEL(b->data, level);
349
350 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
351 struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key);
352
353 bp->v.mem_ptr = 0;
354 bp->v.seq = b->data->keys.seq;
355 bp->v.sectors_written = 0;
356 }
357
358 SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true);
359
360 bch2_btree_build_aux_trees(b);
361
362 ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id);
363 BUG_ON(ret);
364
365 trace_and_count(c, btree_node_alloc, c, b);
366 bch2_increment_clock(c, btree_sectors(c), WRITE);
367 return b;
368 }
369
370 static void btree_set_min(struct btree *b, struct bpos pos)
371 {
372 if (b->key.k.type == KEY_TYPE_btree_ptr_v2)
373 bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos;
374 b->data->min_key = pos;
375 }
376
377 static void btree_set_max(struct btree *b, struct bpos pos)
378 {
379 b->key.k.p = pos;
380 b->data->max_key = pos;
381 }
382
383 static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as,
384 struct btree_trans *trans,
385 struct btree *b)
386 {
387 struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level);
388 struct bkey_format format = bch2_btree_calc_format(b);
389
390 /*
391 * The keys might expand with the new format - if they wouldn't fit in
392 * the btree node anymore, use the old format for now:
393 */
394 if (!bch2_btree_node_format_fits(as->c, b, &format))
395 format = b->format;
396
397 SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1);
398
399 btree_set_min(n, b->data->min_key);
400 btree_set_max(n, b->data->max_key);
401
402 n->data->format = format;
403 btree_node_set_format(n, format);
404
405 bch2_btree_sort_into(as->c, n, b);
406
407 btree_node_reset_sib_u64s(n);
408 return n;
409 }
410
411 static struct btree *__btree_root_alloc(struct btree_update *as,
412 struct btree_trans *trans, unsigned level)
413 {
414 struct btree *b = bch2_btree_node_alloc(as, trans, level);
415
416 btree_set_min(b, POS_MIN);
417 btree_set_max(b, SPOS_MAX);
418 b->data->format = bch2_btree_calc_format(b);
419
420 btree_node_set_format(b, b->data->format);
421 bch2_btree_build_aux_trees(b);
422
423 return b;
424 }
425
426 static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans)
427 {
428 struct bch_fs *c = as->c;
429 struct prealloc_nodes *p;
430
431 for (p = as->prealloc_nodes;
432 p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes);
433 p++) {
434 while (p->nr) {
435 struct btree *b = p->b[--p->nr];
436
437 mutex_lock(&c->btree_reserve_cache_lock);
438
439 if (c->btree_reserve_cache_nr <
440 ARRAY_SIZE(c->btree_reserve_cache)) {
441 struct btree_alloc *a =
442 &c->btree_reserve_cache[c->btree_reserve_cache_nr++];
443
444 a->ob = b->ob;
445 b->ob.nr = 0;
446 bkey_copy(&a->k, &b->key);
447 } else {
448 bch2_open_buckets_put(c, &b->ob);
449 }
450
451 mutex_unlock(&c->btree_reserve_cache_lock);
452
453 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
454 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write);
455 __btree_node_free(c, b);
456 six_unlock_write(&b->c.lock);
457 six_unlock_intent(&b->c.lock);
458 }
459 }
460 }
461
462 static int bch2_btree_reserve_get(struct btree_trans *trans,
463 struct btree_update *as,
464 unsigned nr_nodes[2],
465 unsigned flags,
466 struct closure *cl)
467 {
468 struct bch_fs *c = as->c;
469 struct btree *b;
470 unsigned interior;
471 int ret = 0;
472
473 BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX);
474
475 /*
476 * Protects reaping from the btree node cache and using the btree node
477 * open bucket reserve:
478 *
479 * BTREE_INSERT_NOWAIT only applies to btree node allocation, not
480 * blocking on this lock:
481 */
482 ret = bch2_btree_cache_cannibalize_lock(c, cl);
483 if (ret)
484 return ret;
485
486 for (interior = 0; interior < 2; interior++) {
487 struct prealloc_nodes *p = as->prealloc_nodes + interior;
488
489 while (p->nr < nr_nodes[interior]) {
490 b = __bch2_btree_node_alloc(trans, &as->disk_res,
491 flags & BTREE_INSERT_NOWAIT ? NULL : cl,
492 interior, flags);
493 if (IS_ERR(b)) {
494 ret = PTR_ERR(b);
495 goto err;
496 }
497
498 p->b[p->nr++] = b;
499 }
500 }
501 err:
502 bch2_btree_cache_cannibalize_unlock(c);
503 return ret;
504 }
505
506 /* Asynchronous interior node update machinery */
507
508 static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans)
509 {
510 struct bch_fs *c = as->c;
511
512 if (as->took_gc_lock)
513 up_read(&c->gc_lock);
514 as->took_gc_lock = false;
515
516 bch2_journal_preres_put(&c->journal, &as->journal_preres);
517
518 bch2_journal_pin_drop(&c->journal, &as->journal);
519 bch2_journal_pin_flush(&c->journal, &as->journal);
520 bch2_disk_reservation_put(c, &as->disk_res);
521 bch2_btree_reserve_put(as, trans);
522
523 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total],
524 as->start_time);
525
526 mutex_lock(&c->btree_interior_update_lock);
527 list_del(&as->unwritten_list);
528 list_del(&as->list);
529
530 closure_debug_destroy(&as->cl);
531 mempool_free(as, &c->btree_interior_update_pool);
532
533 /*
534 * Have to do the wakeup with btree_interior_update_lock still held,
535 * since being on btree_interior_update_list is our ref on @c:
536 */
537 closure_wake_up(&c->btree_interior_update_wait);
538
539 mutex_unlock(&c->btree_interior_update_lock);
540 }
541
542 static void btree_update_add_key(struct btree_update *as,
543 struct keylist *keys, struct btree *b)
544 {
545 struct bkey_i *k = &b->key;
546
547 BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s >
548 ARRAY_SIZE(as->_old_keys));
549
550 bkey_copy(keys->top, k);
551 bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1;
552
553 bch2_keylist_push(keys);
554 }
555
556 /*
557 * The transactional part of an interior btree node update, where we journal the
558 * update we did to the interior node and update alloc info:
559 */
560 static int btree_update_nodes_written_trans(struct btree_trans *trans,
561 struct btree_update *as)
562 {
563 struct bkey_i *k;
564 int ret;
565
566 ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s);
567 if (ret)
568 return ret;
569
570 memcpy(&darray_top(trans->extra_journal_entries),
571 as->journal_entries,
572 as->journal_u64s * sizeof(u64));
573 trans->extra_journal_entries.nr += as->journal_u64s;
574
575 trans->journal_pin = &as->journal;
576
577 for_each_keylist_key(&as->old_keys, k) {
578 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
579
580 ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0);
581 if (ret)
582 return ret;
583 }
584
585 for_each_keylist_key(&as->new_keys, k) {
586 unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr;
587
588 ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0);
589 if (ret)
590 return ret;
591 }
592
593 return 0;
594 }
595
596 static void btree_update_nodes_written(struct btree_update *as)
597 {
598 struct bch_fs *c = as->c;
599 struct btree *b;
600 struct btree_trans *trans = bch2_trans_get(c);
601 u64 journal_seq = 0;
602 unsigned i;
603 int ret;
604
605 /*
606 * If we're already in an error state, it might be because a btree node
607 * was never written, and we might be trying to free that same btree
608 * node here, but it won't have been marked as allocated and we'll see
609 * spurious disk usage inconsistencies in the transactional part below
610 * if we don't skip it:
611 */
612 ret = bch2_journal_error(&c->journal);
613 if (ret)
614 goto err;
615
616 /*
617 * Wait for any in flight writes to finish before we free the old nodes
618 * on disk:
619 */
620 for (i = 0; i < as->nr_old_nodes; i++) {
621 __le64 seq;
622
623 b = as->old_nodes[i];
624
625 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
626 seq = b->data ? b->data->keys.seq : 0;
627 six_unlock_read(&b->c.lock);
628
629 if (seq == as->old_nodes_seq[i])
630 wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner,
631 TASK_UNINTERRUPTIBLE);
632 }
633
634 /*
635 * We did an update to a parent node where the pointers we added pointed
636 * to child nodes that weren't written yet: now, the child nodes have
637 * been written so we can write out the update to the interior node.
638 */
639
640 /*
641 * We can't call into journal reclaim here: we'd block on the journal
642 * reclaim lock, but we may need to release the open buckets we have
643 * pinned in order for other btree updates to make forward progress, and
644 * journal reclaim does btree updates when flushing bkey_cached entries,
645 * which may require allocations as well.
646 */
647 ret = commit_do(trans, &as->disk_res, &journal_seq,
648 BCH_WATERMARK_reclaim|
649 BTREE_INSERT_NOFAIL|
650 BTREE_INSERT_NOCHECK_RW|
651 BTREE_INSERT_JOURNAL_RECLAIM,
652 btree_update_nodes_written_trans(trans, as));
653 bch2_trans_unlock(trans);
654
655 bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c,
656 "%s(): error %s", __func__, bch2_err_str(ret));
657 err:
658 if (as->b) {
659 struct btree_path *path;
660
661 b = as->b;
662 path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p);
663 /*
664 * @b is the node we did the final insert into:
665 *
666 * On failure to get a journal reservation, we still have to
667 * unblock the write and allow most of the write path to happen
668 * so that shutdown works, but the i->journal_seq mechanism
669 * won't work to prevent the btree write from being visible (we
670 * didn't get a journal sequence number) - instead
671 * __bch2_btree_node_write() doesn't do the actual write if
672 * we're in journal error state:
673 */
674
675 /*
676 * Ensure transaction is unlocked before using
677 * btree_node_lock_nopath() (the use of which is always suspect,
678 * we need to work on removing this in the future)
679 *
680 * It should be, but get_unlocked_mut_path() -> bch2_path_get()
681 * calls bch2_path_upgrade(), before we call path_make_mut(), so
682 * we may rarely end up with a locked path besides the one we
683 * have here:
684 */
685 bch2_trans_unlock(trans);
686 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent);
687 mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED);
688 path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock);
689 path->l[b->c.level].b = b;
690
691 bch2_btree_node_lock_write_nofail(trans, path, &b->c);
692
693 mutex_lock(&c->btree_interior_update_lock);
694
695 list_del(&as->write_blocked_list);
696 if (list_empty(&b->write_blocked))
697 clear_btree_node_write_blocked(b);
698
699 /*
700 * Node might have been freed, recheck under
701 * btree_interior_update_lock:
702 */
703 if (as->b == b) {
704 BUG_ON(!b->c.level);
705 BUG_ON(!btree_node_dirty(b));
706
707 if (!ret) {
708 struct bset *last = btree_bset_last(b);
709
710 last->journal_seq = cpu_to_le64(
711 max(journal_seq,
712 le64_to_cpu(last->journal_seq)));
713
714 bch2_btree_add_journal_pin(c, b, journal_seq);
715 } else {
716 /*
717 * If we didn't get a journal sequence number we
718 * can't write this btree node, because recovery
719 * won't know to ignore this write:
720 */
721 set_btree_node_never_write(b);
722 }
723 }
724
725 mutex_unlock(&c->btree_interior_update_lock);
726
727 mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED);
728 six_unlock_write(&b->c.lock);
729
730 btree_node_write_if_need(c, b, SIX_LOCK_intent);
731 btree_node_unlock(trans, path, b->c.level);
732 bch2_path_put(trans, path, true);
733 }
734
735 bch2_journal_pin_drop(&c->journal, &as->journal);
736
737 bch2_journal_preres_put(&c->journal, &as->journal_preres);
738
739 mutex_lock(&c->btree_interior_update_lock);
740 for (i = 0; i < as->nr_new_nodes; i++) {
741 b = as->new_nodes[i];
742
743 BUG_ON(b->will_make_reachable != (unsigned long) as);
744 b->will_make_reachable = 0;
745 clear_btree_node_will_make_reachable(b);
746 }
747 mutex_unlock(&c->btree_interior_update_lock);
748
749 for (i = 0; i < as->nr_new_nodes; i++) {
750 b = as->new_nodes[i];
751
752 btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read);
753 btree_node_write_if_need(c, b, SIX_LOCK_read);
754 six_unlock_read(&b->c.lock);
755 }
756
757 for (i = 0; i < as->nr_open_buckets; i++)
758 bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]);
759
760 bch2_btree_update_free(as, trans);
761 bch2_trans_put(trans);
762 }
763
764 static void btree_interior_update_work(struct work_struct *work)
765 {
766 struct bch_fs *c =
767 container_of(work, struct bch_fs, btree_interior_update_work);
768 struct btree_update *as;
769
770 while (1) {
771 mutex_lock(&c->btree_interior_update_lock);
772 as = list_first_entry_or_null(&c->btree_interior_updates_unwritten,
773 struct btree_update, unwritten_list);
774 if (as && !as->nodes_written)
775 as = NULL;
776 mutex_unlock(&c->btree_interior_update_lock);
777
778 if (!as)
779 break;
780
781 btree_update_nodes_written(as);
782 }
783 }
784
785 static void btree_update_set_nodes_written(struct closure *cl)
786 {
787 struct btree_update *as = container_of(cl, struct btree_update, cl);
788 struct bch_fs *c = as->c;
789
790 mutex_lock(&c->btree_interior_update_lock);
791 as->nodes_written = true;
792 mutex_unlock(&c->btree_interior_update_lock);
793
794 queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work);
795 }
796
797 /*
798 * We're updating @b with pointers to nodes that haven't finished writing yet:
799 * block @b from being written until @as completes
800 */
801 static void btree_update_updated_node(struct btree_update *as, struct btree *b)
802 {
803 struct bch_fs *c = as->c;
804
805 mutex_lock(&c->btree_interior_update_lock);
806 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
807
808 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
809 BUG_ON(!btree_node_dirty(b));
810 BUG_ON(!b->c.level);
811
812 as->mode = BTREE_INTERIOR_UPDATING_NODE;
813 as->b = b;
814
815 set_btree_node_write_blocked(b);
816 list_add(&as->write_blocked_list, &b->write_blocked);
817
818 mutex_unlock(&c->btree_interior_update_lock);
819 }
820
821 static void btree_update_reparent(struct btree_update *as,
822 struct btree_update *child)
823 {
824 struct bch_fs *c = as->c;
825
826 lockdep_assert_held(&c->btree_interior_update_lock);
827
828 child->b = NULL;
829 child->mode = BTREE_INTERIOR_UPDATING_AS;
830
831 bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL);
832 }
833
834 static void btree_update_updated_root(struct btree_update *as, struct btree *b)
835 {
836 struct bkey_i *insert = &b->key;
837 struct bch_fs *c = as->c;
838
839 BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE);
840
841 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
842 ARRAY_SIZE(as->journal_entries));
843
844 as->journal_u64s +=
845 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
846 BCH_JSET_ENTRY_btree_root,
847 b->c.btree_id, b->c.level,
848 insert, insert->k.u64s);
849
850 mutex_lock(&c->btree_interior_update_lock);
851 list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten);
852
853 as->mode = BTREE_INTERIOR_UPDATING_ROOT;
854 mutex_unlock(&c->btree_interior_update_lock);
855 }
856
857 /*
858 * bch2_btree_update_add_new_node:
859 *
860 * This causes @as to wait on @b to be written, before it gets to
861 * bch2_btree_update_nodes_written
862 *
863 * Additionally, it sets b->will_make_reachable to prevent any additional writes
864 * to @b from happening besides the first until @b is reachable on disk
865 *
866 * And it adds @b to the list of @as's new nodes, so that we can update sector
867 * counts in bch2_btree_update_nodes_written:
868 */
869 static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b)
870 {
871 struct bch_fs *c = as->c;
872
873 closure_get(&as->cl);
874
875 mutex_lock(&c->btree_interior_update_lock);
876 BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes));
877 BUG_ON(b->will_make_reachable);
878
879 as->new_nodes[as->nr_new_nodes++] = b;
880 b->will_make_reachable = 1UL|(unsigned long) as;
881 set_btree_node_will_make_reachable(b);
882
883 mutex_unlock(&c->btree_interior_update_lock);
884
885 btree_update_add_key(as, &as->new_keys, b);
886
887 if (b->key.k.type == KEY_TYPE_btree_ptr_v2) {
888 unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data;
889 unsigned sectors = round_up(bytes, block_bytes(c)) >> 9;
890
891 bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written =
892 cpu_to_le16(sectors);
893 }
894 }
895
896 /*
897 * returns true if @b was a new node
898 */
899 static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b)
900 {
901 struct btree_update *as;
902 unsigned long v;
903 unsigned i;
904
905 mutex_lock(&c->btree_interior_update_lock);
906 /*
907 * When b->will_make_reachable != 0, it owns a ref on as->cl that's
908 * dropped when it gets written by bch2_btree_complete_write - the
909 * xchg() is for synchronization with bch2_btree_complete_write:
910 */
911 v = xchg(&b->will_make_reachable, 0);
912 clear_btree_node_will_make_reachable(b);
913 as = (struct btree_update *) (v & ~1UL);
914
915 if (!as) {
916 mutex_unlock(&c->btree_interior_update_lock);
917 return;
918 }
919
920 for (i = 0; i < as->nr_new_nodes; i++)
921 if (as->new_nodes[i] == b)
922 goto found;
923
924 BUG();
925 found:
926 array_remove_item(as->new_nodes, as->nr_new_nodes, i);
927 mutex_unlock(&c->btree_interior_update_lock);
928
929 if (v & 1)
930 closure_put(&as->cl);
931 }
932
933 static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b)
934 {
935 while (b->ob.nr)
936 as->open_buckets[as->nr_open_buckets++] =
937 b->ob.v[--b->ob.nr];
938 }
939
940 /*
941 * @b is being split/rewritten: it may have pointers to not-yet-written btree
942 * nodes and thus outstanding btree_updates - redirect @b's
943 * btree_updates to point to this btree_update:
944 */
945 static void bch2_btree_interior_update_will_free_node(struct btree_update *as,
946 struct btree *b)
947 {
948 struct bch_fs *c = as->c;
949 struct btree_update *p, *n;
950 struct btree_write *w;
951
952 set_btree_node_dying(b);
953
954 if (btree_node_fake(b))
955 return;
956
957 mutex_lock(&c->btree_interior_update_lock);
958
959 /*
960 * Does this node have any btree_update operations preventing
961 * it from being written?
962 *
963 * If so, redirect them to point to this btree_update: we can
964 * write out our new nodes, but we won't make them visible until those
965 * operations complete
966 */
967 list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) {
968 list_del_init(&p->write_blocked_list);
969 btree_update_reparent(as, p);
970
971 /*
972 * for flush_held_btree_writes() waiting on updates to flush or
973 * nodes to be writeable:
974 */
975 closure_wake_up(&c->btree_interior_update_wait);
976 }
977
978 clear_btree_node_dirty_acct(c, b);
979 clear_btree_node_need_write(b);
980 clear_btree_node_write_blocked(b);
981
982 /*
983 * Does this node have unwritten data that has a pin on the journal?
984 *
985 * If so, transfer that pin to the btree_update operation -
986 * note that if we're freeing multiple nodes, we only need to keep the
987 * oldest pin of any of the nodes we're freeing. We'll release the pin
988 * when the new nodes are persistent and reachable on disk:
989 */
990 w = btree_current_write(b);
991 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
992 bch2_journal_pin_drop(&c->journal, &w->journal);
993
994 w = btree_prev_write(b);
995 bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL);
996 bch2_journal_pin_drop(&c->journal, &w->journal);
997
998 mutex_unlock(&c->btree_interior_update_lock);
999
1000 /*
1001 * Is this a node that isn't reachable on disk yet?
1002 *
1003 * Nodes that aren't reachable yet have writes blocked until they're
1004 * reachable - now that we've cancelled any pending writes and moved
1005 * things waiting on that write to wait on this update, we can drop this
1006 * node from the list of nodes that the other update is making
1007 * reachable, prior to freeing it:
1008 */
1009 btree_update_drop_new_node(c, b);
1010
1011 btree_update_add_key(as, &as->old_keys, b);
1012
1013 as->old_nodes[as->nr_old_nodes] = b;
1014 as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq;
1015 as->nr_old_nodes++;
1016 }
1017
1018 static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans)
1019 {
1020 struct bch_fs *c = as->c;
1021 u64 start_time = as->start_time;
1022
1023 BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE);
1024
1025 if (as->took_gc_lock)
1026 up_read(&as->c->gc_lock);
1027 as->took_gc_lock = false;
1028
1029 bch2_btree_reserve_put(as, trans);
1030
1031 continue_at(&as->cl, btree_update_set_nodes_written,
1032 as->c->btree_interior_update_worker);
1033
1034 bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground],
1035 start_time);
1036 }
1037
1038 static struct btree_update *
1039 bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path,
1040 unsigned level, bool split, unsigned flags)
1041 {
1042 struct bch_fs *c = trans->c;
1043 struct btree_update *as;
1044 u64 start_time = local_clock();
1045 int disk_res_flags = (flags & BTREE_INSERT_NOFAIL)
1046 ? BCH_DISK_RESERVATION_NOFAIL : 0;
1047 unsigned nr_nodes[2] = { 0, 0 };
1048 unsigned update_level = level;
1049 enum bch_watermark watermark = flags & BCH_WATERMARK_MASK;
1050 unsigned journal_flags = 0;
1051 int ret = 0;
1052 u32 restart_count = trans->restart_count;
1053
1054 BUG_ON(!path->should_be_locked);
1055
1056 if (watermark == BCH_WATERMARK_copygc)
1057 watermark = BCH_WATERMARK_btree_copygc;
1058 if (watermark < BCH_WATERMARK_btree)
1059 watermark = BCH_WATERMARK_btree;
1060
1061 flags &= ~BCH_WATERMARK_MASK;
1062 flags |= watermark;
1063
1064 if (flags & BTREE_INSERT_JOURNAL_RECLAIM)
1065 journal_flags |= JOURNAL_RES_GET_NONBLOCK;
1066 journal_flags |= watermark;
1067
1068 while (1) {
1069 nr_nodes[!!update_level] += 1 + split;
1070 update_level++;
1071
1072 ret = bch2_btree_path_upgrade(trans, path, update_level + 1);
1073 if (ret)
1074 return ERR_PTR(ret);
1075
1076 if (!btree_path_node(path, update_level)) {
1077 /* Allocating new root? */
1078 nr_nodes[1] += split;
1079 update_level = BTREE_MAX_DEPTH;
1080 break;
1081 }
1082
1083 if (bch2_btree_node_insert_fits(c, path->l[update_level].b,
1084 BKEY_BTREE_PTR_U64s_MAX * (1 + split)))
1085 break;
1086
1087 split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c);
1088 }
1089
1090 if (flags & BTREE_INSERT_GC_LOCK_HELD)
1091 lockdep_assert_held(&c->gc_lock);
1092 else if (!down_read_trylock(&c->gc_lock)) {
1093 ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0));
1094 if (ret) {
1095 up_read(&c->gc_lock);
1096 return ERR_PTR(ret);
1097 }
1098 }
1099
1100 as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS);
1101 memset(as, 0, sizeof(*as));
1102 closure_init(&as->cl, NULL);
1103 as->c = c;
1104 as->start_time = start_time;
1105 as->mode = BTREE_INTERIOR_NO_UPDATE;
1106 as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD);
1107 as->btree_id = path->btree_id;
1108 as->update_level = update_level;
1109 INIT_LIST_HEAD(&as->list);
1110 INIT_LIST_HEAD(&as->unwritten_list);
1111 INIT_LIST_HEAD(&as->write_blocked_list);
1112 bch2_keylist_init(&as->old_keys, as->_old_keys);
1113 bch2_keylist_init(&as->new_keys, as->_new_keys);
1114 bch2_keylist_init(&as->parent_keys, as->inline_keys);
1115
1116 mutex_lock(&c->btree_interior_update_lock);
1117 list_add_tail(&as->list, &c->btree_interior_update_list);
1118 mutex_unlock(&c->btree_interior_update_lock);
1119
1120 /*
1121 * We don't want to allocate if we're in an error state, that can cause
1122 * deadlock on emergency shutdown due to open buckets getting stuck in
1123 * the btree_reserve_cache after allocator shutdown has cleared it out.
1124 * This check needs to come after adding us to the btree_interior_update
1125 * list but before calling bch2_btree_reserve_get, to synchronize with
1126 * __bch2_fs_read_only().
1127 */
1128 ret = bch2_journal_error(&c->journal);
1129 if (ret)
1130 goto err;
1131
1132 ret = bch2_journal_preres_get(&c->journal, &as->journal_preres,
1133 BTREE_UPDATE_JOURNAL_RES,
1134 journal_flags|JOURNAL_RES_GET_NONBLOCK);
1135 if (ret) {
1136 if (flags & BTREE_INSERT_JOURNAL_RECLAIM) {
1137 ret = -BCH_ERR_journal_reclaim_would_deadlock;
1138 goto err;
1139 }
1140
1141 ret = drop_locks_do(trans,
1142 bch2_journal_preres_get(&c->journal, &as->journal_preres,
1143 BTREE_UPDATE_JOURNAL_RES,
1144 journal_flags));
1145 if (ret == -BCH_ERR_journal_preres_get_blocked) {
1146 trace_and_count(c, trans_restart_journal_preres_get, trans, _RET_IP_, journal_flags);
1147 ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_journal_preres_get);
1148 }
1149 if (ret)
1150 goto err;
1151 }
1152
1153 ret = bch2_disk_reservation_get(c, &as->disk_res,
1154 (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c),
1155 c->opts.metadata_replicas,
1156 disk_res_flags);
1157 if (ret)
1158 goto err;
1159
1160 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL);
1161 if (bch2_err_matches(ret, ENOSPC) ||
1162 bch2_err_matches(ret, ENOMEM)) {
1163 struct closure cl;
1164
1165 /*
1166 * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK
1167 * flag
1168 */
1169 if (bch2_err_matches(ret, ENOSPC) &&
1170 (flags & BTREE_INSERT_JOURNAL_RECLAIM) &&
1171 watermark != BCH_WATERMARK_reclaim) {
1172 ret = -BCH_ERR_journal_reclaim_would_deadlock;
1173 goto err;
1174 }
1175
1176 closure_init_stack(&cl);
1177
1178 do {
1179 ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl);
1180
1181 bch2_trans_unlock(trans);
1182 closure_sync(&cl);
1183 } while (bch2_err_matches(ret, BCH_ERR_operation_blocked));
1184 }
1185
1186 if (ret) {
1187 trace_and_count(c, btree_reserve_get_fail, trans->fn,
1188 _RET_IP_, nr_nodes[0] + nr_nodes[1], ret);
1189 goto err;
1190 }
1191
1192 ret = bch2_trans_relock(trans);
1193 if (ret)
1194 goto err;
1195
1196 bch2_trans_verify_not_restarted(trans, restart_count);
1197 return as;
1198 err:
1199 bch2_btree_update_free(as, trans);
1200 return ERR_PTR(ret);
1201 }
1202
1203 /* Btree root updates: */
1204
1205 static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b)
1206 {
1207 /* Root nodes cannot be reaped */
1208 mutex_lock(&c->btree_cache.lock);
1209 list_del_init(&b->list);
1210 mutex_unlock(&c->btree_cache.lock);
1211
1212 mutex_lock(&c->btree_root_lock);
1213 BUG_ON(btree_node_root(c, b) &&
1214 (b->c.level < btree_node_root(c, b)->c.level ||
1215 !btree_node_dying(btree_node_root(c, b))));
1216
1217 bch2_btree_id_root(c, b->c.btree_id)->b = b;
1218 mutex_unlock(&c->btree_root_lock);
1219
1220 bch2_recalc_btree_reserve(c);
1221 }
1222
1223 static void bch2_btree_set_root(struct btree_update *as,
1224 struct btree_trans *trans,
1225 struct btree_path *path,
1226 struct btree *b)
1227 {
1228 struct bch_fs *c = as->c;
1229 struct btree *old;
1230
1231 trace_and_count(c, btree_node_set_root, c, b);
1232
1233 old = btree_node_root(c, b);
1234
1235 /*
1236 * Ensure no one is using the old root while we switch to the
1237 * new root:
1238 */
1239 bch2_btree_node_lock_write_nofail(trans, path, &old->c);
1240
1241 bch2_btree_set_root_inmem(c, b);
1242
1243 btree_update_updated_root(as, b);
1244
1245 /*
1246 * Unlock old root after new root is visible:
1247 *
1248 * The new root isn't persistent, but that's ok: we still have
1249 * an intent lock on the new root, and any updates that would
1250 * depend on the new root would have to update the new root.
1251 */
1252 bch2_btree_node_unlock_write(trans, path, old);
1253 }
1254
1255 /* Interior node updates: */
1256
1257 static void bch2_insert_fixup_btree_ptr(struct btree_update *as,
1258 struct btree_trans *trans,
1259 struct btree_path *path,
1260 struct btree *b,
1261 struct btree_node_iter *node_iter,
1262 struct bkey_i *insert)
1263 {
1264 struct bch_fs *c = as->c;
1265 struct bkey_packed *k;
1266 struct printbuf buf = PRINTBUF;
1267 unsigned long old, new, v;
1268
1269 BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 &&
1270 !btree_ptr_sectors_written(insert));
1271
1272 if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)))
1273 bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p);
1274
1275 if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1276 btree_node_type(b), WRITE, &buf) ?:
1277 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf)) {
1278 printbuf_reset(&buf);
1279 prt_printf(&buf, "inserting invalid bkey\n ");
1280 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert));
1281 prt_printf(&buf, "\n ");
1282 bch2_bkey_invalid(c, bkey_i_to_s_c(insert),
1283 btree_node_type(b), WRITE, &buf);
1284 bch2_bkey_in_btree_node(c, b, bkey_i_to_s_c(insert), &buf);
1285
1286 bch2_fs_inconsistent(c, "%s", buf.buf);
1287 dump_stack();
1288 }
1289
1290 BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) >
1291 ARRAY_SIZE(as->journal_entries));
1292
1293 as->journal_u64s +=
1294 journal_entry_set((void *) &as->journal_entries[as->journal_u64s],
1295 BCH_JSET_ENTRY_btree_keys,
1296 b->c.btree_id, b->c.level,
1297 insert, insert->k.u64s);
1298
1299 while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) &&
1300 bkey_iter_pos_cmp(b, k, &insert->k.p) < 0)
1301 bch2_btree_node_iter_advance(node_iter, b);
1302
1303 bch2_btree_bset_insert_key(trans, path, b, node_iter, insert);
1304 set_btree_node_dirty_acct(c, b);
1305
1306 v = READ_ONCE(b->flags);
1307 do {
1308 old = new = v;
1309
1310 new &= ~BTREE_WRITE_TYPE_MASK;
1311 new |= BTREE_WRITE_interior;
1312 new |= 1 << BTREE_NODE_need_write;
1313 } while ((v = cmpxchg(&b->flags, old, new)) != old);
1314
1315 printbuf_exit(&buf);
1316 }
1317
1318 static void
1319 __bch2_btree_insert_keys_interior(struct btree_update *as,
1320 struct btree_trans *trans,
1321 struct btree_path *path,
1322 struct btree *b,
1323 struct btree_node_iter node_iter,
1324 struct keylist *keys)
1325 {
1326 struct bkey_i *insert = bch2_keylist_front(keys);
1327 struct bkey_packed *k;
1328
1329 BUG_ON(btree_node_type(b) != BKEY_TYPE_btree);
1330
1331 while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) &&
1332 (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0))
1333 ;
1334
1335 while (!bch2_keylist_empty(keys)) {
1336 insert = bch2_keylist_front(keys);
1337
1338 if (bpos_gt(insert->k.p, b->key.k.p))
1339 break;
1340
1341 bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert);
1342 bch2_keylist_pop_front(keys);
1343 }
1344 }
1345
1346 /*
1347 * Move keys from n1 (original replacement node, now lower node) to n2 (higher
1348 * node)
1349 */
1350 static void __btree_split_node(struct btree_update *as,
1351 struct btree_trans *trans,
1352 struct btree *b,
1353 struct btree *n[2])
1354 {
1355 struct bkey_packed *k;
1356 struct bpos n1_pos = POS_MIN;
1357 struct btree_node_iter iter;
1358 struct bset *bsets[2];
1359 struct bkey_format_state format[2];
1360 struct bkey_packed *out[2];
1361 struct bkey uk;
1362 unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5;
1363 int i;
1364
1365 for (i = 0; i < 2; i++) {
1366 BUG_ON(n[i]->nsets != 1);
1367
1368 bsets[i] = btree_bset_first(n[i]);
1369 out[i] = bsets[i]->start;
1370
1371 SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1);
1372 bch2_bkey_format_init(&format[i]);
1373 }
1374
1375 u64s = 0;
1376 for_each_btree_node_key(b, k, &iter) {
1377 if (bkey_deleted(k))
1378 continue;
1379
1380 i = u64s >= n1_u64s;
1381 u64s += k->u64s;
1382 uk = bkey_unpack_key(b, k);
1383 if (!i)
1384 n1_pos = uk.p;
1385 bch2_bkey_format_add_key(&format[i], &uk);
1386 }
1387
1388 btree_set_min(n[0], b->data->min_key);
1389 btree_set_max(n[0], n1_pos);
1390 btree_set_min(n[1], bpos_successor(n1_pos));
1391 btree_set_max(n[1], b->data->max_key);
1392
1393 for (i = 0; i < 2; i++) {
1394 bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key);
1395 bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key);
1396
1397 n[i]->data->format = bch2_bkey_format_done(&format[i]);
1398 btree_node_set_format(n[i], n[i]->data->format);
1399 }
1400
1401 u64s = 0;
1402 for_each_btree_node_key(b, k, &iter) {
1403 if (bkey_deleted(k))
1404 continue;
1405
1406 i = u64s >= n1_u64s;
1407 u64s += k->u64s;
1408
1409 if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k)
1410 ? &b->format: &bch2_bkey_format_current, k))
1411 out[i]->format = KEY_FORMAT_LOCAL_BTREE;
1412 else
1413 bch2_bkey_unpack(b, (void *) out[i], k);
1414
1415 out[i]->needs_whiteout = false;
1416
1417 btree_keys_account_key_add(&n[i]->nr, 0, out[i]);
1418 out[i] = bkey_p_next(out[i]);
1419 }
1420
1421 for (i = 0; i < 2; i++) {
1422 bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data);
1423
1424 BUG_ON(!bsets[i]->u64s);
1425
1426 set_btree_bset_end(n[i], n[i]->set);
1427
1428 btree_node_reset_sib_u64s(n[i]);
1429
1430 bch2_verify_btree_nr_keys(n[i]);
1431
1432 if (b->c.level)
1433 btree_node_interior_verify(as->c, n[i]);
1434 }
1435 }
1436
1437 /*
1438 * For updates to interior nodes, we've got to do the insert before we split
1439 * because the stuff we're inserting has to be inserted atomically. Post split,
1440 * the keys might have to go in different nodes and the split would no longer be
1441 * atomic.
1442 *
1443 * Worse, if the insert is from btree node coalescing, if we do the insert after
1444 * we do the split (and pick the pivot) - the pivot we pick might be between
1445 * nodes that were coalesced, and thus in the middle of a child node post
1446 * coalescing:
1447 */
1448 static void btree_split_insert_keys(struct btree_update *as,
1449 struct btree_trans *trans,
1450 struct btree_path *path,
1451 struct btree *b,
1452 struct keylist *keys)
1453 {
1454 if (!bch2_keylist_empty(keys) &&
1455 bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) {
1456 struct btree_node_iter node_iter;
1457
1458 bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p);
1459
1460 __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys);
1461
1462 btree_node_interior_verify(as->c, b);
1463 }
1464 }
1465
1466 static int btree_split(struct btree_update *as, struct btree_trans *trans,
1467 struct btree_path *path, struct btree *b,
1468 struct keylist *keys, unsigned flags)
1469 {
1470 struct bch_fs *c = as->c;
1471 struct btree *parent = btree_node_parent(path, b);
1472 struct btree *n1, *n2 = NULL, *n3 = NULL;
1473 struct btree_path *path1 = NULL, *path2 = NULL;
1474 u64 start_time = local_clock();
1475 int ret = 0;
1476
1477 BUG_ON(!parent && (b != btree_node_root(c, b)));
1478 BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1));
1479
1480 bch2_btree_interior_update_will_free_node(as, b);
1481
1482 if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) {
1483 struct btree *n[2];
1484
1485 trace_and_count(c, btree_node_split, c, b);
1486
1487 n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level);
1488 n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level);
1489
1490 __btree_split_node(as, trans, b, n);
1491
1492 if (keys) {
1493 btree_split_insert_keys(as, trans, path, n1, keys);
1494 btree_split_insert_keys(as, trans, path, n2, keys);
1495 BUG_ON(!bch2_keylist_empty(keys));
1496 }
1497
1498 bch2_btree_build_aux_trees(n2);
1499 bch2_btree_build_aux_trees(n1);
1500
1501 bch2_btree_update_add_new_node(as, n1);
1502 bch2_btree_update_add_new_node(as, n2);
1503 six_unlock_write(&n2->c.lock);
1504 six_unlock_write(&n1->c.lock);
1505
1506 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1507 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1508 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1509 bch2_btree_path_level_init(trans, path1, n1);
1510
1511 path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p);
1512 six_lock_increment(&n2->c.lock, SIX_LOCK_intent);
1513 mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED);
1514 bch2_btree_path_level_init(trans, path2, n2);
1515
1516 /*
1517 * Note that on recursive parent_keys == keys, so we
1518 * can't start adding new keys to parent_keys before emptying it
1519 * out (which we did with btree_split_insert_keys() above)
1520 */
1521 bch2_keylist_add(&as->parent_keys, &n1->key);
1522 bch2_keylist_add(&as->parent_keys, &n2->key);
1523
1524 if (!parent) {
1525 /* Depth increases, make a new root */
1526 n3 = __btree_root_alloc(as, trans, b->c.level + 1);
1527
1528 bch2_btree_update_add_new_node(as, n3);
1529 six_unlock_write(&n3->c.lock);
1530
1531 path2->locks_want++;
1532 BUG_ON(btree_node_locked(path2, n3->c.level));
1533 six_lock_increment(&n3->c.lock, SIX_LOCK_intent);
1534 mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED);
1535 bch2_btree_path_level_init(trans, path2, n3);
1536
1537 n3->sib_u64s[0] = U16_MAX;
1538 n3->sib_u64s[1] = U16_MAX;
1539
1540 btree_split_insert_keys(as, trans, path, n3, &as->parent_keys);
1541 }
1542 } else {
1543 trace_and_count(c, btree_node_compact, c, b);
1544
1545 n1 = bch2_btree_node_alloc_replacement(as, trans, b);
1546
1547 if (keys) {
1548 btree_split_insert_keys(as, trans, path, n1, keys);
1549 BUG_ON(!bch2_keylist_empty(keys));
1550 }
1551
1552 bch2_btree_build_aux_trees(n1);
1553 bch2_btree_update_add_new_node(as, n1);
1554 six_unlock_write(&n1->c.lock);
1555
1556 path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p);
1557 six_lock_increment(&n1->c.lock, SIX_LOCK_intent);
1558 mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED);
1559 bch2_btree_path_level_init(trans, path1, n1);
1560
1561 if (parent)
1562 bch2_keylist_add(&as->parent_keys, &n1->key);
1563 }
1564
1565 /* New nodes all written, now make them visible: */
1566
1567 if (parent) {
1568 /* Split a non root node */
1569 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1570 if (ret)
1571 goto err;
1572 } else if (n3) {
1573 bch2_btree_set_root(as, trans, path, n3);
1574 } else {
1575 /* Root filled up but didn't need to be split */
1576 bch2_btree_set_root(as, trans, path, n1);
1577 }
1578
1579 if (n3) {
1580 bch2_btree_update_get_open_buckets(as, n3);
1581 bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0);
1582 }
1583 if (n2) {
1584 bch2_btree_update_get_open_buckets(as, n2);
1585 bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0);
1586 }
1587 bch2_btree_update_get_open_buckets(as, n1);
1588 bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0);
1589
1590 /*
1591 * The old node must be freed (in memory) _before_ unlocking the new
1592 * nodes - else another thread could re-acquire a read lock on the old
1593 * node after another thread has locked and updated the new node, thus
1594 * seeing stale data:
1595 */
1596 bch2_btree_node_free_inmem(trans, path, b);
1597
1598 if (n3)
1599 bch2_trans_node_add(trans, n3);
1600 if (n2)
1601 bch2_trans_node_add(trans, n2);
1602 bch2_trans_node_add(trans, n1);
1603
1604 if (n3)
1605 six_unlock_intent(&n3->c.lock);
1606 if (n2)
1607 six_unlock_intent(&n2->c.lock);
1608 six_unlock_intent(&n1->c.lock);
1609 out:
1610 if (path2) {
1611 __bch2_btree_path_unlock(trans, path2);
1612 bch2_path_put(trans, path2, true);
1613 }
1614 if (path1) {
1615 __bch2_btree_path_unlock(trans, path1);
1616 bch2_path_put(trans, path1, true);
1617 }
1618
1619 bch2_trans_verify_locks(trans);
1620
1621 bch2_time_stats_update(&c->times[n2
1622 ? BCH_TIME_btree_node_split
1623 : BCH_TIME_btree_node_compact],
1624 start_time);
1625 return ret;
1626 err:
1627 if (n3)
1628 bch2_btree_node_free_never_used(as, trans, n3);
1629 if (n2)
1630 bch2_btree_node_free_never_used(as, trans, n2);
1631 bch2_btree_node_free_never_used(as, trans, n1);
1632 goto out;
1633 }
1634
1635 static void
1636 bch2_btree_insert_keys_interior(struct btree_update *as,
1637 struct btree_trans *trans,
1638 struct btree_path *path,
1639 struct btree *b,
1640 struct keylist *keys)
1641 {
1642 struct btree_path *linked;
1643
1644 __bch2_btree_insert_keys_interior(as, trans, path, b,
1645 path->l[b->c.level].iter, keys);
1646
1647 btree_update_updated_node(as, b);
1648
1649 trans_for_each_path_with_node(trans, b, linked)
1650 bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b);
1651
1652 bch2_trans_verify_paths(trans);
1653 }
1654
1655 /**
1656 * bch2_btree_insert_node - insert bkeys into a given btree node
1657 *
1658 * @as: btree_update object
1659 * @trans: btree_trans object
1660 * @path: path that points to current node
1661 * @b: node to insert keys into
1662 * @keys: list of keys to insert
1663 * @flags: transaction commit flags
1664 *
1665 * Returns: 0 on success, typically transaction restart error on failure
1666 *
1667 * Inserts as many keys as it can into a given btree node, splitting it if full.
1668 * If a split occurred, this function will return early. This can only happen
1669 * for leaf nodes -- inserts into interior nodes have to be atomic.
1670 */
1671 static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans,
1672 struct btree_path *path, struct btree *b,
1673 struct keylist *keys, unsigned flags)
1674 {
1675 struct bch_fs *c = as->c;
1676 int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s);
1677 int old_live_u64s = b->nr.live_u64s;
1678 int live_u64s_added, u64s_added;
1679 int ret;
1680
1681 lockdep_assert_held(&c->gc_lock);
1682 BUG_ON(!btree_node_intent_locked(path, b->c.level));
1683 BUG_ON(!b->c.level);
1684 BUG_ON(!as || as->b);
1685 bch2_verify_keylist_sorted(keys);
1686
1687 ret = bch2_btree_node_lock_write(trans, path, &b->c);
1688 if (ret)
1689 return ret;
1690
1691 bch2_btree_node_prep_for_write(trans, path, b);
1692
1693 if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) {
1694 bch2_btree_node_unlock_write(trans, path, b);
1695 goto split;
1696 }
1697
1698 btree_node_interior_verify(c, b);
1699
1700 bch2_btree_insert_keys_interior(as, trans, path, b, keys);
1701
1702 live_u64s_added = (int) b->nr.live_u64s - old_live_u64s;
1703 u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s;
1704
1705 if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0)
1706 b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added);
1707 if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0)
1708 b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added);
1709
1710 if (u64s_added > live_u64s_added &&
1711 bch2_maybe_compact_whiteouts(c, b))
1712 bch2_trans_node_reinit_iter(trans, b);
1713
1714 bch2_btree_node_unlock_write(trans, path, b);
1715
1716 btree_node_interior_verify(c, b);
1717 return 0;
1718 split:
1719 /*
1720 * We could attempt to avoid the transaction restart, by calling
1721 * bch2_btree_path_upgrade() and allocating more nodes:
1722 */
1723 if (b->c.level >= as->update_level) {
1724 trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b);
1725 return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race);
1726 }
1727
1728 return btree_split(as, trans, path, b, keys, flags);
1729 }
1730
1731 int bch2_btree_split_leaf(struct btree_trans *trans,
1732 struct btree_path *path,
1733 unsigned flags)
1734 {
1735 struct btree *b = path_l(path)->b;
1736 struct btree_update *as;
1737 unsigned l;
1738 int ret = 0;
1739
1740 as = bch2_btree_update_start(trans, path, path->level,
1741 true, flags);
1742 if (IS_ERR(as))
1743 return PTR_ERR(as);
1744
1745 ret = btree_split(as, trans, path, b, NULL, flags);
1746 if (ret) {
1747 bch2_btree_update_free(as, trans);
1748 return ret;
1749 }
1750
1751 bch2_btree_update_done(as, trans);
1752
1753 for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++)
1754 ret = bch2_foreground_maybe_merge(trans, path, l, flags);
1755
1756 return ret;
1757 }
1758
1759 int __bch2_foreground_maybe_merge(struct btree_trans *trans,
1760 struct btree_path *path,
1761 unsigned level,
1762 unsigned flags,
1763 enum btree_node_sibling sib)
1764 {
1765 struct bch_fs *c = trans->c;
1766 struct btree_path *sib_path = NULL, *new_path = NULL;
1767 struct btree_update *as;
1768 struct bkey_format_state new_s;
1769 struct bkey_format new_f;
1770 struct bkey_i delete;
1771 struct btree *b, *m, *n, *prev, *next, *parent;
1772 struct bpos sib_pos;
1773 size_t sib_u64s;
1774 u64 start_time = local_clock();
1775 int ret = 0;
1776
1777 BUG_ON(!path->should_be_locked);
1778 BUG_ON(!btree_node_locked(path, level));
1779
1780 b = path->l[level].b;
1781
1782 if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) ||
1783 (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) {
1784 b->sib_u64s[sib] = U16_MAX;
1785 return 0;
1786 }
1787
1788 sib_pos = sib == btree_prev_sib
1789 ? bpos_predecessor(b->data->min_key)
1790 : bpos_successor(b->data->max_key);
1791
1792 sib_path = bch2_path_get(trans, path->btree_id, sib_pos,
1793 U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_);
1794 ret = bch2_btree_path_traverse(trans, sib_path, false);
1795 if (ret)
1796 goto err;
1797
1798 btree_path_set_should_be_locked(sib_path);
1799
1800 m = sib_path->l[level].b;
1801
1802 if (btree_node_parent(path, b) !=
1803 btree_node_parent(sib_path, m)) {
1804 b->sib_u64s[sib] = U16_MAX;
1805 goto out;
1806 }
1807
1808 if (sib == btree_prev_sib) {
1809 prev = m;
1810 next = b;
1811 } else {
1812 prev = b;
1813 next = m;
1814 }
1815
1816 if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) {
1817 struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF;
1818
1819 bch2_bpos_to_text(&buf1, prev->data->max_key);
1820 bch2_bpos_to_text(&buf2, next->data->min_key);
1821 bch_err(c,
1822 "%s(): btree topology error:\n"
1823 " prev ends at %s\n"
1824 " next starts at %s",
1825 __func__, buf1.buf, buf2.buf);
1826 printbuf_exit(&buf1);
1827 printbuf_exit(&buf2);
1828 bch2_topology_error(c);
1829 ret = -EIO;
1830 goto err;
1831 }
1832
1833 bch2_bkey_format_init(&new_s);
1834 bch2_bkey_format_add_pos(&new_s, prev->data->min_key);
1835 __bch2_btree_calc_format(&new_s, prev);
1836 __bch2_btree_calc_format(&new_s, next);
1837 bch2_bkey_format_add_pos(&new_s, next->data->max_key);
1838 new_f = bch2_bkey_format_done(&new_s);
1839
1840 sib_u64s = btree_node_u64s_with_format(b, &new_f) +
1841 btree_node_u64s_with_format(m, &new_f);
1842
1843 if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) {
1844 sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1845 sib_u64s /= 2;
1846 sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c);
1847 }
1848
1849 sib_u64s = min(sib_u64s, btree_max_u64s(c));
1850 sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1);
1851 b->sib_u64s[sib] = sib_u64s;
1852
1853 if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold)
1854 goto out;
1855
1856 parent = btree_node_parent(path, b);
1857 as = bch2_btree_update_start(trans, path, level, false,
1858 BTREE_INSERT_NOFAIL|flags);
1859 ret = PTR_ERR_OR_ZERO(as);
1860 if (ret)
1861 goto err;
1862
1863 trace_and_count(c, btree_node_merge, c, b);
1864
1865 bch2_btree_interior_update_will_free_node(as, b);
1866 bch2_btree_interior_update_will_free_node(as, m);
1867
1868 n = bch2_btree_node_alloc(as, trans, b->c.level);
1869
1870 SET_BTREE_NODE_SEQ(n->data,
1871 max(BTREE_NODE_SEQ(b->data),
1872 BTREE_NODE_SEQ(m->data)) + 1);
1873
1874 btree_set_min(n, prev->data->min_key);
1875 btree_set_max(n, next->data->max_key);
1876
1877 n->data->format = new_f;
1878 btree_node_set_format(n, new_f);
1879
1880 bch2_btree_sort_into(c, n, prev);
1881 bch2_btree_sort_into(c, n, next);
1882
1883 bch2_btree_build_aux_trees(n);
1884 bch2_btree_update_add_new_node(as, n);
1885 six_unlock_write(&n->c.lock);
1886
1887 new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p);
1888 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1889 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1890 bch2_btree_path_level_init(trans, new_path, n);
1891
1892 bkey_init(&delete.k);
1893 delete.k.p = prev->key.k.p;
1894 bch2_keylist_add(&as->parent_keys, &delete);
1895 bch2_keylist_add(&as->parent_keys, &n->key);
1896
1897 bch2_trans_verify_paths(trans);
1898
1899 ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags);
1900 if (ret)
1901 goto err_free_update;
1902
1903 bch2_trans_verify_paths(trans);
1904
1905 bch2_btree_update_get_open_buckets(as, n);
1906 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1907
1908 bch2_btree_node_free_inmem(trans, path, b);
1909 bch2_btree_node_free_inmem(trans, sib_path, m);
1910
1911 bch2_trans_node_add(trans, n);
1912
1913 bch2_trans_verify_paths(trans);
1914
1915 six_unlock_intent(&n->c.lock);
1916
1917 bch2_btree_update_done(as, trans);
1918
1919 bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time);
1920 out:
1921 err:
1922 if (new_path)
1923 bch2_path_put(trans, new_path, true);
1924 bch2_path_put(trans, sib_path, true);
1925 bch2_trans_verify_locks(trans);
1926 return ret;
1927 err_free_update:
1928 bch2_btree_node_free_never_used(as, trans, n);
1929 bch2_btree_update_free(as, trans);
1930 goto out;
1931 }
1932
1933 int bch2_btree_node_rewrite(struct btree_trans *trans,
1934 struct btree_iter *iter,
1935 struct btree *b,
1936 unsigned flags)
1937 {
1938 struct bch_fs *c = trans->c;
1939 struct btree_path *new_path = NULL;
1940 struct btree *n, *parent;
1941 struct btree_update *as;
1942 int ret;
1943
1944 flags |= BTREE_INSERT_NOFAIL;
1945
1946 parent = btree_node_parent(iter->path, b);
1947 as = bch2_btree_update_start(trans, iter->path, b->c.level,
1948 false, flags);
1949 ret = PTR_ERR_OR_ZERO(as);
1950 if (ret)
1951 goto out;
1952
1953 bch2_btree_interior_update_will_free_node(as, b);
1954
1955 n = bch2_btree_node_alloc_replacement(as, trans, b);
1956
1957 bch2_btree_build_aux_trees(n);
1958 bch2_btree_update_add_new_node(as, n);
1959 six_unlock_write(&n->c.lock);
1960
1961 new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p);
1962 six_lock_increment(&n->c.lock, SIX_LOCK_intent);
1963 mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED);
1964 bch2_btree_path_level_init(trans, new_path, n);
1965
1966 trace_and_count(c, btree_node_rewrite, c, b);
1967
1968 if (parent) {
1969 bch2_keylist_add(&as->parent_keys, &n->key);
1970 ret = bch2_btree_insert_node(as, trans, iter->path, parent,
1971 &as->parent_keys, flags);
1972 if (ret)
1973 goto err;
1974 } else {
1975 bch2_btree_set_root(as, trans, iter->path, n);
1976 }
1977
1978 bch2_btree_update_get_open_buckets(as, n);
1979 bch2_btree_node_write(c, n, SIX_LOCK_intent, 0);
1980
1981 bch2_btree_node_free_inmem(trans, iter->path, b);
1982
1983 bch2_trans_node_add(trans, n);
1984 six_unlock_intent(&n->c.lock);
1985
1986 bch2_btree_update_done(as, trans);
1987 out:
1988 if (new_path)
1989 bch2_path_put(trans, new_path, true);
1990 bch2_trans_downgrade(trans);
1991 return ret;
1992 err:
1993 bch2_btree_node_free_never_used(as, trans, n);
1994 bch2_btree_update_free(as, trans);
1995 goto out;
1996 }
1997
1998 struct async_btree_rewrite {
1999 struct bch_fs *c;
2000 struct work_struct work;
2001 struct list_head list;
2002 enum btree_id btree_id;
2003 unsigned level;
2004 struct bpos pos;
2005 __le64 seq;
2006 };
2007
2008 static int async_btree_node_rewrite_trans(struct btree_trans *trans,
2009 struct async_btree_rewrite *a)
2010 {
2011 struct bch_fs *c = trans->c;
2012 struct btree_iter iter;
2013 struct btree *b;
2014 int ret;
2015
2016 bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos,
2017 BTREE_MAX_DEPTH, a->level, 0);
2018 b = bch2_btree_iter_peek_node(&iter);
2019 ret = PTR_ERR_OR_ZERO(b);
2020 if (ret)
2021 goto out;
2022
2023 if (!b || b->data->keys.seq != a->seq) {
2024 struct printbuf buf = PRINTBUF;
2025
2026 if (b)
2027 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key));
2028 else
2029 prt_str(&buf, "(null");
2030 bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s",
2031 __func__, a->seq, buf.buf);
2032 printbuf_exit(&buf);
2033 goto out;
2034 }
2035
2036 ret = bch2_btree_node_rewrite(trans, &iter, b, 0);
2037 out:
2038 bch2_trans_iter_exit(trans, &iter);
2039
2040 return ret;
2041 }
2042
2043 static void async_btree_node_rewrite_work(struct work_struct *work)
2044 {
2045 struct async_btree_rewrite *a =
2046 container_of(work, struct async_btree_rewrite, work);
2047 struct bch_fs *c = a->c;
2048 int ret;
2049
2050 ret = bch2_trans_do(c, NULL, NULL, 0,
2051 async_btree_node_rewrite_trans(trans, a));
2052 if (ret)
2053 bch_err_fn(c, ret);
2054 bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite);
2055 kfree(a);
2056 }
2057
2058 void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b)
2059 {
2060 struct async_btree_rewrite *a;
2061 int ret;
2062
2063 a = kmalloc(sizeof(*a), GFP_NOFS);
2064 if (!a) {
2065 bch_err(c, "%s: error allocating memory", __func__);
2066 return;
2067 }
2068
2069 a->c = c;
2070 a->btree_id = b->c.btree_id;
2071 a->level = b->c.level;
2072 a->pos = b->key.k.p;
2073 a->seq = b->data->keys.seq;
2074 INIT_WORK(&a->work, async_btree_node_rewrite_work);
2075
2076 if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) {
2077 mutex_lock(&c->pending_node_rewrites_lock);
2078 list_add(&a->list, &c->pending_node_rewrites);
2079 mutex_unlock(&c->pending_node_rewrites_lock);
2080 return;
2081 }
2082
2083 if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) {
2084 if (test_bit(BCH_FS_STARTED, &c->flags)) {
2085 bch_err(c, "%s: error getting c->writes ref", __func__);
2086 kfree(a);
2087 return;
2088 }
2089
2090 ret = bch2_fs_read_write_early(c);
2091 if (ret) {
2092 bch_err_msg(c, ret, "going read-write");
2093 kfree(a);
2094 return;
2095 }
2096
2097 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2098 }
2099
2100 queue_work(c->btree_interior_update_worker, &a->work);
2101 }
2102
2103 void bch2_do_pending_node_rewrites(struct bch_fs *c)
2104 {
2105 struct async_btree_rewrite *a, *n;
2106
2107 mutex_lock(&c->pending_node_rewrites_lock);
2108 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2109 list_del(&a->list);
2110
2111 bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite);
2112 queue_work(c->btree_interior_update_worker, &a->work);
2113 }
2114 mutex_unlock(&c->pending_node_rewrites_lock);
2115 }
2116
2117 void bch2_free_pending_node_rewrites(struct bch_fs *c)
2118 {
2119 struct async_btree_rewrite *a, *n;
2120
2121 mutex_lock(&c->pending_node_rewrites_lock);
2122 list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) {
2123 list_del(&a->list);
2124
2125 kfree(a);
2126 }
2127 mutex_unlock(&c->pending_node_rewrites_lock);
2128 }
2129
2130 static int __bch2_btree_node_update_key(struct btree_trans *trans,
2131 struct btree_iter *iter,
2132 struct btree *b, struct btree *new_hash,
2133 struct bkey_i *new_key,
2134 unsigned commit_flags,
2135 bool skip_triggers)
2136 {
2137 struct bch_fs *c = trans->c;
2138 struct btree_iter iter2 = { NULL };
2139 struct btree *parent;
2140 int ret;
2141
2142 if (!skip_triggers) {
2143 ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1,
2144 bkey_i_to_s_c(&b->key), 0);
2145 if (ret)
2146 return ret;
2147
2148 ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1,
2149 new_key, 0);
2150 if (ret)
2151 return ret;
2152 }
2153
2154 if (new_hash) {
2155 bkey_copy(&new_hash->key, new_key);
2156 ret = bch2_btree_node_hash_insert(&c->btree_cache,
2157 new_hash, b->c.level, b->c.btree_id);
2158 BUG_ON(ret);
2159 }
2160
2161 parent = btree_node_parent(iter->path, b);
2162 if (parent) {
2163 bch2_trans_copy_iter(&iter2, iter);
2164
2165 iter2.path = bch2_btree_path_make_mut(trans, iter2.path,
2166 iter2.flags & BTREE_ITER_INTENT,
2167 _THIS_IP_);
2168
2169 BUG_ON(iter2.path->level != b->c.level);
2170 BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p));
2171
2172 btree_path_set_level_up(trans, iter2.path);
2173
2174 trans->paths_sorted = false;
2175
2176 ret = bch2_btree_iter_traverse(&iter2) ?:
2177 bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN);
2178 if (ret)
2179 goto err;
2180 } else {
2181 BUG_ON(btree_node_root(c, b) != b);
2182
2183 ret = darray_make_room(&trans->extra_journal_entries,
2184 jset_u64s(new_key->k.u64s));
2185 if (ret)
2186 return ret;
2187
2188 journal_entry_set((void *) &darray_top(trans->extra_journal_entries),
2189 BCH_JSET_ENTRY_btree_root,
2190 b->c.btree_id, b->c.level,
2191 new_key, new_key->k.u64s);
2192 trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s);
2193 }
2194
2195 ret = bch2_trans_commit(trans, NULL, NULL, commit_flags);
2196 if (ret)
2197 goto err;
2198
2199 bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c);
2200
2201 if (new_hash) {
2202 mutex_lock(&c->btree_cache.lock);
2203 bch2_btree_node_hash_remove(&c->btree_cache, new_hash);
2204 bch2_btree_node_hash_remove(&c->btree_cache, b);
2205
2206 bkey_copy(&b->key, new_key);
2207 ret = __bch2_btree_node_hash_insert(&c->btree_cache, b);
2208 BUG_ON(ret);
2209 mutex_unlock(&c->btree_cache.lock);
2210 } else {
2211 bkey_copy(&b->key, new_key);
2212 }
2213
2214 bch2_btree_node_unlock_write(trans, iter->path, b);
2215 out:
2216 bch2_trans_iter_exit(trans, &iter2);
2217 return ret;
2218 err:
2219 if (new_hash) {
2220 mutex_lock(&c->btree_cache.lock);
2221 bch2_btree_node_hash_remove(&c->btree_cache, b);
2222 mutex_unlock(&c->btree_cache.lock);
2223 }
2224 goto out;
2225 }
2226
2227 int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter,
2228 struct btree *b, struct bkey_i *new_key,
2229 unsigned commit_flags, bool skip_triggers)
2230 {
2231 struct bch_fs *c = trans->c;
2232 struct btree *new_hash = NULL;
2233 struct btree_path *path = iter->path;
2234 struct closure cl;
2235 int ret = 0;
2236
2237 ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1);
2238 if (ret)
2239 return ret;
2240
2241 closure_init_stack(&cl);
2242
2243 /*
2244 * check btree_ptr_hash_val() after @b is locked by
2245 * btree_iter_traverse():
2246 */
2247 if (btree_ptr_hash_val(new_key) != b->hash_val) {
2248 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2249 if (ret) {
2250 ret = drop_locks_do(trans, (closure_sync(&cl), 0));
2251 if (ret)
2252 return ret;
2253 }
2254
2255 new_hash = bch2_btree_node_mem_alloc(trans, false);
2256 }
2257
2258 path->intent_ref++;
2259 ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key,
2260 commit_flags, skip_triggers);
2261 --path->intent_ref;
2262
2263 if (new_hash) {
2264 mutex_lock(&c->btree_cache.lock);
2265 list_move(&new_hash->list, &c->btree_cache.freeable);
2266 mutex_unlock(&c->btree_cache.lock);
2267
2268 six_unlock_write(&new_hash->c.lock);
2269 six_unlock_intent(&new_hash->c.lock);
2270 }
2271 closure_sync(&cl);
2272 bch2_btree_cache_cannibalize_unlock(c);
2273 return ret;
2274 }
2275
2276 int bch2_btree_node_update_key_get_iter(struct btree_trans *trans,
2277 struct btree *b, struct bkey_i *new_key,
2278 unsigned commit_flags, bool skip_triggers)
2279 {
2280 struct btree_iter iter;
2281 int ret;
2282
2283 bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p,
2284 BTREE_MAX_DEPTH, b->c.level,
2285 BTREE_ITER_INTENT);
2286 ret = bch2_btree_iter_traverse(&iter);
2287 if (ret)
2288 goto out;
2289
2290 /* has node been freed? */
2291 if (iter.path->l[b->c.level].b != b) {
2292 /* node has been freed: */
2293 BUG_ON(!btree_node_dying(b));
2294 goto out;
2295 }
2296
2297 BUG_ON(!btree_node_hashed(b));
2298
2299 ret = bch2_btree_node_update_key(trans, &iter, b, new_key,
2300 commit_flags, skip_triggers);
2301 out:
2302 bch2_trans_iter_exit(trans, &iter);
2303 return ret;
2304 }
2305
2306 /* Init code: */
2307
2308 /*
2309 * Only for filesystem bringup, when first reading the btree roots or allocating
2310 * btree roots when initializing a new filesystem:
2311 */
2312 void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b)
2313 {
2314 BUG_ON(btree_node_root(c, b));
2315
2316 bch2_btree_set_root_inmem(c, b);
2317 }
2318
2319 static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id)
2320 {
2321 struct bch_fs *c = trans->c;
2322 struct closure cl;
2323 struct btree *b;
2324 int ret;
2325
2326 closure_init_stack(&cl);
2327
2328 do {
2329 ret = bch2_btree_cache_cannibalize_lock(c, &cl);
2330 closure_sync(&cl);
2331 } while (ret);
2332
2333 b = bch2_btree_node_mem_alloc(trans, false);
2334 bch2_btree_cache_cannibalize_unlock(c);
2335
2336 set_btree_node_fake(b);
2337 set_btree_node_need_rewrite(b);
2338 b->c.level = 0;
2339 b->c.btree_id = id;
2340
2341 bkey_btree_ptr_init(&b->key);
2342 b->key.k.p = SPOS_MAX;
2343 *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id;
2344
2345 bch2_bset_init_first(b, &b->data->keys);
2346 bch2_btree_build_aux_trees(b);
2347
2348 b->data->flags = 0;
2349 btree_set_min(b, POS_MIN);
2350 btree_set_max(b, SPOS_MAX);
2351 b->data->format = bch2_btree_calc_format(b);
2352 btree_node_set_format(b, b->data->format);
2353
2354 ret = bch2_btree_node_hash_insert(&c->btree_cache, b,
2355 b->c.level, b->c.btree_id);
2356 BUG_ON(ret);
2357
2358 bch2_btree_set_root_inmem(c, b);
2359
2360 six_unlock_write(&b->c.lock);
2361 six_unlock_intent(&b->c.lock);
2362 return 0;
2363 }
2364
2365 void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id)
2366 {
2367 bch2_trans_run(c, __bch2_btree_root_alloc(trans, id));
2368 }
2369
2370 void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c)
2371 {
2372 struct btree_update *as;
2373
2374 mutex_lock(&c->btree_interior_update_lock);
2375 list_for_each_entry(as, &c->btree_interior_update_list, list)
2376 prt_printf(out, "%p m %u w %u r %u j %llu\n",
2377 as,
2378 as->mode,
2379 as->nodes_written,
2380 closure_nr_remaining(&as->cl),
2381 as->journal.seq);
2382 mutex_unlock(&c->btree_interior_update_lock);
2383 }
2384
2385 static bool bch2_btree_interior_updates_pending(struct bch_fs *c)
2386 {
2387 bool ret;
2388
2389 mutex_lock(&c->btree_interior_update_lock);
2390 ret = !list_empty(&c->btree_interior_update_list);
2391 mutex_unlock(&c->btree_interior_update_lock);
2392
2393 return ret;
2394 }
2395
2396 bool bch2_btree_interior_updates_flush(struct bch_fs *c)
2397 {
2398 bool ret = bch2_btree_interior_updates_pending(c);
2399
2400 if (ret)
2401 closure_wait_event(&c->btree_interior_update_wait,
2402 !bch2_btree_interior_updates_pending(c));
2403 return ret;
2404 }
2405
2406 void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry)
2407 {
2408 struct btree_root *r = bch2_btree_id_root(c, entry->btree_id);
2409
2410 mutex_lock(&c->btree_root_lock);
2411
2412 r->level = entry->level;
2413 r->alive = true;
2414 bkey_copy(&r->key, (struct bkey_i *) entry->start);
2415
2416 mutex_unlock(&c->btree_root_lock);
2417 }
2418
2419 struct jset_entry *
2420 bch2_btree_roots_to_journal_entries(struct bch_fs *c,
2421 struct jset_entry *end,
2422 unsigned long skip)
2423 {
2424 unsigned i;
2425
2426 mutex_lock(&c->btree_root_lock);
2427
2428 for (i = 0; i < btree_id_nr_alive(c); i++) {
2429 struct btree_root *r = bch2_btree_id_root(c, i);
2430
2431 if (r->alive && !test_bit(i, &skip)) {
2432 journal_entry_set(end, BCH_JSET_ENTRY_btree_root,
2433 i, r->level, &r->key, r->key.k.u64s);
2434 end = vstruct_next(end);
2435 }
2436 }
2437
2438 mutex_unlock(&c->btree_root_lock);
2439
2440 return end;
2441 }
2442
2443 void bch2_fs_btree_interior_update_exit(struct bch_fs *c)
2444 {
2445 if (c->btree_interior_update_worker)
2446 destroy_workqueue(c->btree_interior_update_worker);
2447 mempool_exit(&c->btree_interior_update_pool);
2448 }
2449
2450 void bch2_fs_btree_interior_update_init_early(struct bch_fs *c)
2451 {
2452 mutex_init(&c->btree_reserve_cache_lock);
2453 INIT_LIST_HEAD(&c->btree_interior_update_list);
2454 INIT_LIST_HEAD(&c->btree_interior_updates_unwritten);
2455 mutex_init(&c->btree_interior_update_lock);
2456 INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work);
2457
2458 INIT_LIST_HEAD(&c->pending_node_rewrites);
2459 mutex_init(&c->pending_node_rewrites_lock);
2460 }
2461
2462 int bch2_fs_btree_interior_update_init(struct bch_fs *c)
2463 {
2464 c->btree_interior_update_worker =
2465 alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
2466 if (!c->btree_interior_update_worker)
2467 return -BCH_ERR_ENOMEM_btree_interior_update_worker_init;
2468
2469 if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1,
2470 sizeof(struct btree_update)))
2471 return -BCH_ERR_ENOMEM_btree_interior_update_pool_init;
2472
2473 return 0;
2474 }