]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/bcachefs/journal.h
Merge tag 'kvm-x86-generic-6.8' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / fs / bcachefs / journal.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _BCACHEFS_JOURNAL_H
3 #define _BCACHEFS_JOURNAL_H
4
5 /*
6 * THE JOURNAL:
7 *
8 * The primary purpose of the journal is to log updates (insertions) to the
9 * b-tree, to avoid having to do synchronous updates to the b-tree on disk.
10 *
11 * Without the journal, the b-tree is always internally consistent on
12 * disk - and in fact, in the earliest incarnations bcache didn't have a journal
13 * but did handle unclean shutdowns by doing all index updates synchronously
14 * (with coalescing).
15 *
16 * Updates to interior nodes still happen synchronously and without the journal
17 * (for simplicity) - this may change eventually but updates to interior nodes
18 * are rare enough it's not a huge priority.
19 *
20 * This means the journal is relatively separate from the b-tree; it consists of
21 * just a list of keys and journal replay consists of just redoing those
22 * insertions in same order that they appear in the journal.
23 *
24 * PERSISTENCE:
25 *
26 * For synchronous updates (where we're waiting on the index update to hit
27 * disk), the journal entry will be written out immediately (or as soon as
28 * possible, if the write for the previous journal entry was still in flight).
29 *
30 * Synchronous updates are specified by passing a closure (@flush_cl) to
31 * bch2_btree_insert() or bch_btree_insert_node(), which then pass that parameter
32 * down to the journalling code. That closure will wait on the journal write to
33 * complete (via closure_wait()).
34 *
35 * If the index update wasn't synchronous, the journal entry will be
36 * written out after 10 ms have elapsed, by default (the delay_ms field
37 * in struct journal).
38 *
39 * JOURNAL ENTRIES:
40 *
41 * A journal entry is variable size (struct jset), it's got a fixed length
42 * header and then a variable number of struct jset_entry entries.
43 *
44 * Journal entries are identified by monotonically increasing 64 bit sequence
45 * numbers - jset->seq; other places in the code refer to this sequence number.
46 *
47 * A jset_entry entry contains one or more bkeys (which is what gets inserted
48 * into the b-tree). We need a container to indicate which b-tree the key is
49 * for; also, the roots of the various b-trees are stored in jset_entry entries
50 * (one for each b-tree) - this lets us add new b-tree types without changing
51 * the on disk format.
52 *
53 * We also keep some things in the journal header that are logically part of the
54 * superblock - all the things that are frequently updated. This is for future
55 * bcache on raw flash support; the superblock (which will become another
56 * journal) can't be moved or wear leveled, so it contains just enough
57 * information to find the main journal, and the superblock only has to be
58 * rewritten when we want to move/wear level the main journal.
59 *
60 * JOURNAL LAYOUT ON DISK:
61 *
62 * The journal is written to a ringbuffer of buckets (which is kept in the
63 * superblock); the individual buckets are not necessarily contiguous on disk
64 * which means that journal entries are not allowed to span buckets, but also
65 * that we can resize the journal at runtime if desired (unimplemented).
66 *
67 * The journal buckets exist in the same pool as all the other buckets that are
68 * managed by the allocator and garbage collection - garbage collection marks
69 * the journal buckets as metadata buckets.
70 *
71 * OPEN/DIRTY JOURNAL ENTRIES:
72 *
73 * Open/dirty journal entries are journal entries that contain b-tree updates
74 * that have not yet been written out to the b-tree on disk. We have to track
75 * which journal entries are dirty, and we also have to avoid wrapping around
76 * the journal and overwriting old but still dirty journal entries with new
77 * journal entries.
78 *
79 * On disk, this is represented with the "last_seq" field of struct jset;
80 * last_seq is the first sequence number that journal replay has to replay.
81 *
82 * To avoid overwriting dirty journal entries on disk, we keep a mapping (in
83 * journal_device->seq) of for each journal bucket, the highest sequence number
84 * any journal entry it contains. Then, by comparing that against last_seq we
85 * can determine whether that journal bucket contains dirty journal entries or
86 * not.
87 *
88 * To track which journal entries are dirty, we maintain a fifo of refcounts
89 * (where each entry corresponds to a specific sequence number) - when a ref
90 * goes to 0, that journal entry is no longer dirty.
91 *
92 * Journalling of index updates is done at the same time as the b-tree itself is
93 * being modified (see btree_insert_key()); when we add the key to the journal
94 * the pending b-tree write takes a ref on the journal entry the key was added
95 * to. If a pending b-tree write would need to take refs on multiple dirty
96 * journal entries, it only keeps the ref on the oldest one (since a newer
97 * journal entry will still be replayed if an older entry was dirty).
98 *
99 * JOURNAL FILLING UP:
100 *
101 * There are two ways the journal could fill up; either we could run out of
102 * space to write to, or we could have too many open journal entries and run out
103 * of room in the fifo of refcounts. Since those refcounts are decremented
104 * without any locking we can't safely resize that fifo, so we handle it the
105 * same way.
106 *
107 * If the journal fills up, we start flushing dirty btree nodes until we can
108 * allocate space for a journal write again - preferentially flushing btree
109 * nodes that are pinning the oldest journal entries first.
110 */
111
112 #include <linux/hash.h>
113
114 #include "journal_types.h"
115
116 struct bch_fs;
117
118 static inline void journal_wake(struct journal *j)
119 {
120 wake_up(&j->wait);
121 closure_wake_up(&j->async_wait);
122 closure_wake_up(&j->preres_wait);
123 }
124
125 static inline struct journal_buf *journal_cur_buf(struct journal *j)
126 {
127 return j->buf + j->reservations.idx;
128 }
129
130 /* Sequence number of oldest dirty journal entry */
131
132 static inline u64 journal_last_seq(struct journal *j)
133 {
134 return j->pin.front;
135 }
136
137 static inline u64 journal_cur_seq(struct journal *j)
138 {
139 return atomic64_read(&j->seq);
140 }
141
142 static inline u64 journal_last_unwritten_seq(struct journal *j)
143 {
144 return j->seq_ondisk + 1;
145 }
146
147 static inline int journal_state_count(union journal_res_state s, int idx)
148 {
149 switch (idx) {
150 case 0: return s.buf0_count;
151 case 1: return s.buf1_count;
152 case 2: return s.buf2_count;
153 case 3: return s.buf3_count;
154 }
155 BUG();
156 }
157
158 static inline void journal_state_inc(union journal_res_state *s)
159 {
160 s->buf0_count += s->idx == 0;
161 s->buf1_count += s->idx == 1;
162 s->buf2_count += s->idx == 2;
163 s->buf3_count += s->idx == 3;
164 }
165
166 /*
167 * Amount of space that will be taken up by some keys in the journal (i.e.
168 * including the jset header)
169 */
170 static inline unsigned jset_u64s(unsigned u64s)
171 {
172 return u64s + sizeof(struct jset_entry) / sizeof(u64);
173 }
174
175 static inline int journal_entry_overhead(struct journal *j)
176 {
177 return sizeof(struct jset) / sizeof(u64) + j->entry_u64s_reserved;
178 }
179
180 static inline struct jset_entry *
181 bch2_journal_add_entry_noreservation(struct journal_buf *buf, size_t u64s)
182 {
183 struct jset *jset = buf->data;
184 struct jset_entry *entry = vstruct_idx(jset, le32_to_cpu(jset->u64s));
185
186 memset(entry, 0, sizeof(*entry));
187 entry->u64s = cpu_to_le16(u64s);
188
189 le32_add_cpu(&jset->u64s, jset_u64s(u64s));
190
191 return entry;
192 }
193
194 static inline struct jset_entry *
195 journal_res_entry(struct journal *j, struct journal_res *res)
196 {
197 return vstruct_idx(j->buf[res->idx].data, res->offset);
198 }
199
200 static inline unsigned journal_entry_init(struct jset_entry *entry, unsigned type,
201 enum btree_id id, unsigned level,
202 unsigned u64s)
203 {
204 entry->u64s = cpu_to_le16(u64s);
205 entry->btree_id = id;
206 entry->level = level;
207 entry->type = type;
208 entry->pad[0] = 0;
209 entry->pad[1] = 0;
210 entry->pad[2] = 0;
211 return jset_u64s(u64s);
212 }
213
214 static inline unsigned journal_entry_set(struct jset_entry *entry, unsigned type,
215 enum btree_id id, unsigned level,
216 const void *data, unsigned u64s)
217 {
218 unsigned ret = journal_entry_init(entry, type, id, level, u64s);
219
220 memcpy_u64s_small(entry->_data, data, u64s);
221 return ret;
222 }
223
224 static inline struct jset_entry *
225 bch2_journal_add_entry(struct journal *j, struct journal_res *res,
226 unsigned type, enum btree_id id,
227 unsigned level, unsigned u64s)
228 {
229 struct jset_entry *entry = journal_res_entry(j, res);
230 unsigned actual = journal_entry_init(entry, type, id, level, u64s);
231
232 EBUG_ON(!res->ref);
233 EBUG_ON(actual > res->u64s);
234
235 res->offset += actual;
236 res->u64s -= actual;
237 return entry;
238 }
239
240 static inline bool journal_entry_empty(struct jset *j)
241 {
242 struct jset_entry *i;
243
244 if (j->seq != j->last_seq)
245 return false;
246
247 vstruct_for_each(j, i)
248 if (i->type == BCH_JSET_ENTRY_btree_keys && i->u64s)
249 return false;
250 return true;
251 }
252
253 /*
254 * Drop reference on a buffer index and return true if the count has hit zero.
255 */
256 static inline union journal_res_state journal_state_buf_put(struct journal *j, unsigned idx)
257 {
258 union journal_res_state s;
259
260 s.v = atomic64_sub_return(((union journal_res_state) {
261 .buf0_count = idx == 0,
262 .buf1_count = idx == 1,
263 .buf2_count = idx == 2,
264 .buf3_count = idx == 3,
265 }).v, &j->reservations.counter);
266 return s;
267 }
268
269 bool bch2_journal_entry_close(struct journal *);
270 void bch2_journal_buf_put_final(struct journal *, u64, bool);
271
272 static inline void __bch2_journal_buf_put(struct journal *j, unsigned idx, u64 seq)
273 {
274 union journal_res_state s;
275
276 s = journal_state_buf_put(j, idx);
277 if (!journal_state_count(s, idx))
278 bch2_journal_buf_put_final(j, seq, idx == s.unwritten_idx);
279 }
280
281 static inline void bch2_journal_buf_put(struct journal *j, unsigned idx, u64 seq)
282 {
283 union journal_res_state s;
284
285 s = journal_state_buf_put(j, idx);
286 if (!journal_state_count(s, idx)) {
287 spin_lock(&j->lock);
288 bch2_journal_buf_put_final(j, seq, idx == s.unwritten_idx);
289 spin_unlock(&j->lock);
290 }
291 }
292
293 /*
294 * This function releases the journal write structure so other threads can
295 * then proceed to add their keys as well.
296 */
297 static inline void bch2_journal_res_put(struct journal *j,
298 struct journal_res *res)
299 {
300 if (!res->ref)
301 return;
302
303 lock_release(&j->res_map, _THIS_IP_);
304
305 while (res->u64s)
306 bch2_journal_add_entry(j, res,
307 BCH_JSET_ENTRY_btree_keys,
308 0, 0, 0);
309
310 bch2_journal_buf_put(j, res->idx, res->seq);
311
312 res->ref = 0;
313 }
314
315 int bch2_journal_res_get_slowpath(struct journal *, struct journal_res *,
316 unsigned);
317
318 /* First bits for BCH_WATERMARK: */
319 enum journal_res_flags {
320 __JOURNAL_RES_GET_NONBLOCK = BCH_WATERMARK_BITS,
321 __JOURNAL_RES_GET_CHECK,
322 };
323
324 #define JOURNAL_RES_GET_NONBLOCK (1 << __JOURNAL_RES_GET_NONBLOCK)
325 #define JOURNAL_RES_GET_CHECK (1 << __JOURNAL_RES_GET_CHECK)
326
327 static inline int journal_res_get_fast(struct journal *j,
328 struct journal_res *res,
329 unsigned flags)
330 {
331 union journal_res_state old, new;
332 u64 v = atomic64_read(&j->reservations.counter);
333
334 do {
335 old.v = new.v = v;
336
337 /*
338 * Check if there is still room in the current journal
339 * entry:
340 */
341 if (new.cur_entry_offset + res->u64s > j->cur_entry_u64s)
342 return 0;
343
344 EBUG_ON(!journal_state_count(new, new.idx));
345
346 if ((flags & BCH_WATERMARK_MASK) < j->watermark)
347 return 0;
348
349 new.cur_entry_offset += res->u64s;
350 journal_state_inc(&new);
351
352 /*
353 * If the refcount would overflow, we have to wait:
354 * XXX - tracepoint this:
355 */
356 if (!journal_state_count(new, new.idx))
357 return 0;
358
359 if (flags & JOURNAL_RES_GET_CHECK)
360 return 1;
361 } while ((v = atomic64_cmpxchg(&j->reservations.counter,
362 old.v, new.v)) != old.v);
363
364 res->ref = true;
365 res->idx = old.idx;
366 res->offset = old.cur_entry_offset;
367 res->seq = le64_to_cpu(j->buf[old.idx].data->seq);
368 return 1;
369 }
370
371 static inline int bch2_journal_res_get(struct journal *j, struct journal_res *res,
372 unsigned u64s, unsigned flags)
373 {
374 int ret;
375
376 EBUG_ON(res->ref);
377 EBUG_ON(!test_bit(JOURNAL_STARTED, &j->flags));
378
379 res->u64s = u64s;
380
381 if (journal_res_get_fast(j, res, flags))
382 goto out;
383
384 ret = bch2_journal_res_get_slowpath(j, res, flags);
385 if (ret)
386 return ret;
387 out:
388 if (!(flags & JOURNAL_RES_GET_CHECK)) {
389 lock_acquire_shared(&j->res_map, 0,
390 (flags & JOURNAL_RES_GET_NONBLOCK) != 0,
391 NULL, _THIS_IP_);
392 EBUG_ON(!res->ref);
393 }
394 return 0;
395 }
396
397 /* journal_entry_res: */
398
399 void bch2_journal_entry_res_resize(struct journal *,
400 struct journal_entry_res *,
401 unsigned);
402
403 int bch2_journal_flush_seq_async(struct journal *, u64, struct closure *);
404 void bch2_journal_flush_async(struct journal *, struct closure *);
405
406 int bch2_journal_flush_seq(struct journal *, u64);
407 int bch2_journal_flush(struct journal *);
408 bool bch2_journal_noflush_seq(struct journal *, u64);
409 int bch2_journal_meta(struct journal *);
410
411 void bch2_journal_halt(struct journal *);
412
413 static inline int bch2_journal_error(struct journal *j)
414 {
415 return j->reservations.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL
416 ? -EIO : 0;
417 }
418
419 struct bch_dev;
420
421 static inline void bch2_journal_set_replay_done(struct journal *j)
422 {
423 BUG_ON(!test_bit(JOURNAL_STARTED, &j->flags));
424 set_bit(JOURNAL_REPLAY_DONE, &j->flags);
425 }
426
427 void bch2_journal_unblock(struct journal *);
428 void bch2_journal_block(struct journal *);
429
430 void __bch2_journal_debug_to_text(struct printbuf *, struct journal *);
431 void bch2_journal_debug_to_text(struct printbuf *, struct journal *);
432 void bch2_journal_pins_to_text(struct printbuf *, struct journal *);
433 bool bch2_journal_seq_pins_to_text(struct printbuf *, struct journal *, u64 *);
434
435 int bch2_set_nr_journal_buckets(struct bch_fs *, struct bch_dev *,
436 unsigned nr);
437 int bch2_dev_journal_alloc(struct bch_dev *);
438 int bch2_fs_journal_alloc(struct bch_fs *);
439
440 void bch2_dev_journal_stop(struct journal *, struct bch_dev *);
441
442 void bch2_fs_journal_stop(struct journal *);
443 int bch2_fs_journal_start(struct journal *, u64);
444
445 void bch2_dev_journal_exit(struct bch_dev *);
446 int bch2_dev_journal_init(struct bch_dev *, struct bch_sb *);
447 void bch2_fs_journal_exit(struct journal *);
448 int bch2_fs_journal_init(struct journal *);
449
450 #endif /* _BCACHEFS_JOURNAL_H */