]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/bcachefs/journal_reclaim.c
Merge tag 'loongarch-kvm-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhu...
[thirdparty/kernel/stable.git] / fs / bcachefs / journal_reclaim.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "bcachefs.h"
4 #include "btree_key_cache.h"
5 #include "btree_update.h"
6 #include "buckets.h"
7 #include "errcode.h"
8 #include "error.h"
9 #include "journal.h"
10 #include "journal_io.h"
11 #include "journal_reclaim.h"
12 #include "replicas.h"
13 #include "sb-members.h"
14 #include "trace.h"
15
16 #include <linux/kthread.h>
17 #include <linux/sched/mm.h>
18
19 /* Free space calculations: */
20
21 static unsigned journal_space_from(struct journal_device *ja,
22 enum journal_space_from from)
23 {
24 switch (from) {
25 case journal_space_discarded:
26 return ja->discard_idx;
27 case journal_space_clean_ondisk:
28 return ja->dirty_idx_ondisk;
29 case journal_space_clean:
30 return ja->dirty_idx;
31 default:
32 BUG();
33 }
34 }
35
36 unsigned bch2_journal_dev_buckets_available(struct journal *j,
37 struct journal_device *ja,
38 enum journal_space_from from)
39 {
40 unsigned available = (journal_space_from(ja, from) -
41 ja->cur_idx - 1 + ja->nr) % ja->nr;
42
43 /*
44 * Don't use the last bucket unless writing the new last_seq
45 * will make another bucket available:
46 */
47 if (available && ja->dirty_idx_ondisk == ja->dirty_idx)
48 --available;
49
50 return available;
51 }
52
53 static inline void journal_set_watermark(struct journal *j, bool low_on_space)
54 {
55 unsigned watermark = BCH_WATERMARK_stripe;
56
57 if (low_on_space)
58 watermark = max_t(unsigned, watermark, BCH_WATERMARK_reclaim);
59 if (fifo_free(&j->pin) < j->pin.size / 4)
60 watermark = max_t(unsigned, watermark, BCH_WATERMARK_reclaim);
61
62 if (watermark == j->watermark)
63 return;
64
65 swap(watermark, j->watermark);
66 if (watermark > j->watermark)
67 journal_wake(j);
68 }
69
70 static struct journal_space
71 journal_dev_space_available(struct journal *j, struct bch_dev *ca,
72 enum journal_space_from from)
73 {
74 struct journal_device *ja = &ca->journal;
75 unsigned sectors, buckets, unwritten;
76 u64 seq;
77
78 if (from == journal_space_total)
79 return (struct journal_space) {
80 .next_entry = ca->mi.bucket_size,
81 .total = ca->mi.bucket_size * ja->nr,
82 };
83
84 buckets = bch2_journal_dev_buckets_available(j, ja, from);
85 sectors = ja->sectors_free;
86
87 /*
88 * We that we don't allocate the space for a journal entry
89 * until we write it out - thus, account for it here:
90 */
91 for (seq = journal_last_unwritten_seq(j);
92 seq <= journal_cur_seq(j);
93 seq++) {
94 unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors;
95
96 if (!unwritten)
97 continue;
98
99 /* entry won't fit on this device, skip: */
100 if (unwritten > ca->mi.bucket_size)
101 continue;
102
103 if (unwritten >= sectors) {
104 if (!buckets) {
105 sectors = 0;
106 break;
107 }
108
109 buckets--;
110 sectors = ca->mi.bucket_size;
111 }
112
113 sectors -= unwritten;
114 }
115
116 if (sectors < ca->mi.bucket_size && buckets) {
117 buckets--;
118 sectors = ca->mi.bucket_size;
119 }
120
121 return (struct journal_space) {
122 .next_entry = sectors,
123 .total = sectors + buckets * ca->mi.bucket_size,
124 };
125 }
126
127 static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want,
128 enum journal_space_from from)
129 {
130 struct bch_fs *c = container_of(j, struct bch_fs, journal);
131 struct bch_dev *ca;
132 unsigned i, pos, nr_devs = 0;
133 struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX];
134
135 BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space));
136
137 rcu_read_lock();
138 for_each_member_device_rcu(ca, c, i,
139 &c->rw_devs[BCH_DATA_journal]) {
140 if (!ca->journal.nr)
141 continue;
142
143 space = journal_dev_space_available(j, ca, from);
144 if (!space.next_entry)
145 continue;
146
147 for (pos = 0; pos < nr_devs; pos++)
148 if (space.total > dev_space[pos].total)
149 break;
150
151 array_insert_item(dev_space, nr_devs, pos, space);
152 }
153 rcu_read_unlock();
154
155 if (nr_devs < nr_devs_want)
156 return (struct journal_space) { 0, 0 };
157
158 /*
159 * We sorted largest to smallest, and we want the smallest out of the
160 * @nr_devs_want largest devices:
161 */
162 return dev_space[nr_devs_want - 1];
163 }
164
165 void bch2_journal_space_available(struct journal *j)
166 {
167 struct bch_fs *c = container_of(j, struct bch_fs, journal);
168 struct bch_dev *ca;
169 unsigned clean, clean_ondisk, total;
170 unsigned max_entry_size = min(j->buf[0].buf_size >> 9,
171 j->buf[1].buf_size >> 9);
172 unsigned i, nr_online = 0, nr_devs_want;
173 bool can_discard = false;
174 int ret = 0;
175
176 lockdep_assert_held(&j->lock);
177
178 rcu_read_lock();
179 for_each_member_device_rcu(ca, c, i,
180 &c->rw_devs[BCH_DATA_journal]) {
181 struct journal_device *ja = &ca->journal;
182
183 if (!ja->nr)
184 continue;
185
186 while (ja->dirty_idx != ja->cur_idx &&
187 ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j))
188 ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr;
189
190 while (ja->dirty_idx_ondisk != ja->dirty_idx &&
191 ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk)
192 ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr;
193
194 if (ja->discard_idx != ja->dirty_idx_ondisk)
195 can_discard = true;
196
197 max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size);
198 nr_online++;
199 }
200 rcu_read_unlock();
201
202 j->can_discard = can_discard;
203
204 if (nr_online < c->opts.metadata_replicas_required) {
205 ret = JOURNAL_ERR_insufficient_devices;
206 goto out;
207 }
208
209 nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas);
210
211 for (i = 0; i < journal_space_nr; i++)
212 j->space[i] = __journal_space_available(j, nr_devs_want, i);
213
214 clean_ondisk = j->space[journal_space_clean_ondisk].total;
215 clean = j->space[journal_space_clean].total;
216 total = j->space[journal_space_total].total;
217
218 if (!j->space[journal_space_discarded].next_entry)
219 ret = JOURNAL_ERR_journal_full;
220
221 if ((j->space[journal_space_clean_ondisk].next_entry <
222 j->space[journal_space_clean_ondisk].total) &&
223 (clean - clean_ondisk <= total / 8) &&
224 (clean_ondisk * 2 > clean))
225 set_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags);
226 else
227 clear_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags);
228
229 journal_set_watermark(j, clean * 4 <= total);
230 out:
231 j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0;
232 j->cur_entry_error = ret;
233
234 if (!ret)
235 journal_wake(j);
236 }
237
238 /* Discards - last part of journal reclaim: */
239
240 static bool should_discard_bucket(struct journal *j, struct journal_device *ja)
241 {
242 bool ret;
243
244 spin_lock(&j->lock);
245 ret = ja->discard_idx != ja->dirty_idx_ondisk;
246 spin_unlock(&j->lock);
247
248 return ret;
249 }
250
251 /*
252 * Advance ja->discard_idx as long as it points to buckets that are no longer
253 * dirty, issuing discards if necessary:
254 */
255 void bch2_journal_do_discards(struct journal *j)
256 {
257 struct bch_fs *c = container_of(j, struct bch_fs, journal);
258 struct bch_dev *ca;
259 unsigned iter;
260
261 mutex_lock(&j->discard_lock);
262
263 for_each_rw_member(ca, c, iter) {
264 struct journal_device *ja = &ca->journal;
265
266 while (should_discard_bucket(j, ja)) {
267 if (!c->opts.nochanges &&
268 ca->mi.discard &&
269 bdev_max_discard_sectors(ca->disk_sb.bdev))
270 blkdev_issue_discard(ca->disk_sb.bdev,
271 bucket_to_sector(ca,
272 ja->buckets[ja->discard_idx]),
273 ca->mi.bucket_size, GFP_NOFS);
274
275 spin_lock(&j->lock);
276 ja->discard_idx = (ja->discard_idx + 1) % ja->nr;
277
278 bch2_journal_space_available(j);
279 spin_unlock(&j->lock);
280 }
281 }
282
283 mutex_unlock(&j->discard_lock);
284 }
285
286 /*
287 * Journal entry pinning - machinery for holding a reference on a given journal
288 * entry, holding it open to ensure it gets replayed during recovery:
289 */
290
291 void bch2_journal_reclaim_fast(struct journal *j)
292 {
293 bool popped = false;
294
295 lockdep_assert_held(&j->lock);
296
297 /*
298 * Unpin journal entries whose reference counts reached zero, meaning
299 * all btree nodes got written out
300 */
301 while (!fifo_empty(&j->pin) &&
302 !atomic_read(&fifo_peek_front(&j->pin).count)) {
303 j->pin.front++;
304 popped = true;
305 }
306
307 if (popped)
308 bch2_journal_space_available(j);
309 }
310
311 bool __bch2_journal_pin_put(struct journal *j, u64 seq)
312 {
313 struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq);
314
315 return atomic_dec_and_test(&pin_list->count);
316 }
317
318 void bch2_journal_pin_put(struct journal *j, u64 seq)
319 {
320 if (__bch2_journal_pin_put(j, seq)) {
321 spin_lock(&j->lock);
322 bch2_journal_reclaim_fast(j);
323 spin_unlock(&j->lock);
324 }
325 }
326
327 static inline bool __journal_pin_drop(struct journal *j,
328 struct journal_entry_pin *pin)
329 {
330 struct journal_entry_pin_list *pin_list;
331
332 if (!journal_pin_active(pin))
333 return false;
334
335 if (j->flush_in_progress == pin)
336 j->flush_in_progress_dropped = true;
337
338 pin_list = journal_seq_pin(j, pin->seq);
339 pin->seq = 0;
340 list_del_init(&pin->list);
341
342 /*
343 * Unpinning a journal entry may make journal_next_bucket() succeed, if
344 * writing a new last_seq will now make another bucket available:
345 */
346 return atomic_dec_and_test(&pin_list->count) &&
347 pin_list == &fifo_peek_front(&j->pin);
348 }
349
350 void bch2_journal_pin_drop(struct journal *j,
351 struct journal_entry_pin *pin)
352 {
353 spin_lock(&j->lock);
354 if (__journal_pin_drop(j, pin))
355 bch2_journal_reclaim_fast(j);
356 spin_unlock(&j->lock);
357 }
358
359 static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn)
360 {
361 if (fn == bch2_btree_node_flush0 ||
362 fn == bch2_btree_node_flush1)
363 return JOURNAL_PIN_btree;
364 else if (fn == bch2_btree_key_cache_journal_flush)
365 return JOURNAL_PIN_key_cache;
366 else
367 return JOURNAL_PIN_other;
368 }
369
370 void bch2_journal_pin_set(struct journal *j, u64 seq,
371 struct journal_entry_pin *pin,
372 journal_pin_flush_fn flush_fn)
373 {
374 struct journal_entry_pin_list *pin_list;
375 bool reclaim;
376
377 spin_lock(&j->lock);
378
379 if (seq < journal_last_seq(j)) {
380 /*
381 * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on
382 * the src pin - with the pin dropped, the entry to pin might no
383 * longer to exist, but that means there's no longer anything to
384 * copy and we can bail out here:
385 */
386 spin_unlock(&j->lock);
387 return;
388 }
389
390 pin_list = journal_seq_pin(j, seq);
391
392 reclaim = __journal_pin_drop(j, pin);
393
394 atomic_inc(&pin_list->count);
395 pin->seq = seq;
396 pin->flush = flush_fn;
397
398 if (flush_fn)
399 list_add(&pin->list, &pin_list->list[journal_pin_type(flush_fn)]);
400 else
401 list_add(&pin->list, &pin_list->flushed);
402
403 if (reclaim)
404 bch2_journal_reclaim_fast(j);
405 spin_unlock(&j->lock);
406
407 /*
408 * If the journal is currently full, we might want to call flush_fn
409 * immediately:
410 */
411 journal_wake(j);
412 }
413
414 /**
415 * bch2_journal_pin_flush: ensure journal pin callback is no longer running
416 * @j: journal object
417 * @pin: pin to flush
418 */
419 void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin)
420 {
421 BUG_ON(journal_pin_active(pin));
422
423 wait_event(j->pin_flush_wait, j->flush_in_progress != pin);
424 }
425
426 /*
427 * Journal reclaim: flush references to open journal entries to reclaim space in
428 * the journal
429 *
430 * May be done by the journal code in the background as needed to free up space
431 * for more journal entries, or as part of doing a clean shutdown, or to migrate
432 * data off of a specific device:
433 */
434
435 static struct journal_entry_pin *
436 journal_get_next_pin(struct journal *j,
437 u64 seq_to_flush,
438 unsigned allowed_below_seq,
439 unsigned allowed_above_seq,
440 u64 *seq)
441 {
442 struct journal_entry_pin_list *pin_list;
443 struct journal_entry_pin *ret = NULL;
444 unsigned i;
445
446 fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) {
447 if (*seq > seq_to_flush && !allowed_above_seq)
448 break;
449
450 for (i = 0; i < JOURNAL_PIN_NR; i++)
451 if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) ||
452 ((1U << i) & allowed_above_seq)) {
453 ret = list_first_entry_or_null(&pin_list->list[i],
454 struct journal_entry_pin, list);
455 if (ret)
456 return ret;
457 }
458 }
459
460 return NULL;
461 }
462
463 /* returns true if we did work */
464 static size_t journal_flush_pins(struct journal *j,
465 u64 seq_to_flush,
466 unsigned allowed_below_seq,
467 unsigned allowed_above_seq,
468 unsigned min_any,
469 unsigned min_key_cache)
470 {
471 struct journal_entry_pin *pin;
472 size_t nr_flushed = 0;
473 journal_pin_flush_fn flush_fn;
474 u64 seq;
475 int err;
476
477 lockdep_assert_held(&j->reclaim_lock);
478
479 while (1) {
480 unsigned allowed_above = allowed_above_seq;
481 unsigned allowed_below = allowed_below_seq;
482
483 if (min_any) {
484 allowed_above |= ~0;
485 allowed_below |= ~0;
486 }
487
488 if (min_key_cache) {
489 allowed_above |= 1U << JOURNAL_PIN_key_cache;
490 allowed_below |= 1U << JOURNAL_PIN_key_cache;
491 }
492
493 cond_resched();
494
495 j->last_flushed = jiffies;
496
497 spin_lock(&j->lock);
498 pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq);
499 if (pin) {
500 BUG_ON(j->flush_in_progress);
501 j->flush_in_progress = pin;
502 j->flush_in_progress_dropped = false;
503 flush_fn = pin->flush;
504 }
505 spin_unlock(&j->lock);
506
507 if (!pin)
508 break;
509
510 if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush)
511 min_key_cache--;
512
513 if (min_any)
514 min_any--;
515
516 err = flush_fn(j, pin, seq);
517
518 spin_lock(&j->lock);
519 /* Pin might have been dropped or rearmed: */
520 if (likely(!err && !j->flush_in_progress_dropped))
521 list_move(&pin->list, &journal_seq_pin(j, seq)->flushed);
522 j->flush_in_progress = NULL;
523 j->flush_in_progress_dropped = false;
524 spin_unlock(&j->lock);
525
526 wake_up(&j->pin_flush_wait);
527
528 if (err)
529 break;
530
531 nr_flushed++;
532 }
533
534 return nr_flushed;
535 }
536
537 static u64 journal_seq_to_flush(struct journal *j)
538 {
539 struct bch_fs *c = container_of(j, struct bch_fs, journal);
540 struct bch_dev *ca;
541 u64 seq_to_flush = 0;
542 unsigned iter;
543
544 spin_lock(&j->lock);
545
546 for_each_rw_member(ca, c, iter) {
547 struct journal_device *ja = &ca->journal;
548 unsigned nr_buckets, bucket_to_flush;
549
550 if (!ja->nr)
551 continue;
552
553 /* Try to keep the journal at most half full: */
554 nr_buckets = ja->nr / 2;
555
556 nr_buckets = min(nr_buckets, ja->nr);
557
558 bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr;
559 seq_to_flush = max(seq_to_flush,
560 ja->bucket_seq[bucket_to_flush]);
561 }
562
563 /* Also flush if the pin fifo is more than half full */
564 seq_to_flush = max_t(s64, seq_to_flush,
565 (s64) journal_cur_seq(j) -
566 (j->pin.size >> 1));
567 spin_unlock(&j->lock);
568
569 return seq_to_flush;
570 }
571
572 /**
573 * __bch2_journal_reclaim - free up journal buckets
574 * @j: journal object
575 * @direct: direct or background reclaim?
576 * @kicked: requested to run since we last ran?
577 * Returns: 0 on success, or -EIO if the journal has been shutdown
578 *
579 * Background journal reclaim writes out btree nodes. It should be run
580 * early enough so that we never completely run out of journal buckets.
581 *
582 * High watermarks for triggering background reclaim:
583 * - FIFO has fewer than 512 entries left
584 * - fewer than 25% journal buckets free
585 *
586 * Background reclaim runs until low watermarks are reached:
587 * - FIFO has more than 1024 entries left
588 * - more than 50% journal buckets free
589 *
590 * As long as a reclaim can complete in the time it takes to fill up
591 * 512 journal entries or 25% of all journal buckets, then
592 * journal_next_bucket() should not stall.
593 */
594 static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked)
595 {
596 struct bch_fs *c = container_of(j, struct bch_fs, journal);
597 bool kthread = (current->flags & PF_KTHREAD) != 0;
598 u64 seq_to_flush;
599 size_t min_nr, min_key_cache, nr_flushed;
600 unsigned flags;
601 int ret = 0;
602
603 /*
604 * We can't invoke memory reclaim while holding the reclaim_lock -
605 * journal reclaim is required to make progress for memory reclaim
606 * (cleaning the caches), so we can't get stuck in memory reclaim while
607 * we're holding the reclaim lock:
608 */
609 lockdep_assert_held(&j->reclaim_lock);
610 flags = memalloc_noreclaim_save();
611
612 do {
613 if (kthread && kthread_should_stop())
614 break;
615
616 if (bch2_journal_error(j)) {
617 ret = -EIO;
618 break;
619 }
620
621 bch2_journal_do_discards(j);
622
623 seq_to_flush = journal_seq_to_flush(j);
624 min_nr = 0;
625
626 /*
627 * If it's been longer than j->reclaim_delay_ms since we last flushed,
628 * make sure to flush at least one journal pin:
629 */
630 if (time_after(jiffies, j->last_flushed +
631 msecs_to_jiffies(c->opts.journal_reclaim_delay)))
632 min_nr = 1;
633
634 if (j->watermark != BCH_WATERMARK_stripe)
635 min_nr = 1;
636
637 if (atomic_read(&c->btree_cache.dirty) * 2 > c->btree_cache.used)
638 min_nr = 1;
639
640 min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128);
641
642 trace_and_count(c, journal_reclaim_start, c,
643 direct, kicked,
644 min_nr, min_key_cache,
645 atomic_read(&c->btree_cache.dirty),
646 c->btree_cache.used,
647 atomic_long_read(&c->btree_key_cache.nr_dirty),
648 atomic_long_read(&c->btree_key_cache.nr_keys));
649
650 nr_flushed = journal_flush_pins(j, seq_to_flush,
651 ~0, 0,
652 min_nr, min_key_cache);
653
654 if (direct)
655 j->nr_direct_reclaim += nr_flushed;
656 else
657 j->nr_background_reclaim += nr_flushed;
658 trace_and_count(c, journal_reclaim_finish, c, nr_flushed);
659
660 if (nr_flushed)
661 wake_up(&j->reclaim_wait);
662 } while ((min_nr || min_key_cache) && nr_flushed && !direct);
663
664 memalloc_noreclaim_restore(flags);
665
666 return ret;
667 }
668
669 int bch2_journal_reclaim(struct journal *j)
670 {
671 return __bch2_journal_reclaim(j, true, true);
672 }
673
674 static int bch2_journal_reclaim_thread(void *arg)
675 {
676 struct journal *j = arg;
677 struct bch_fs *c = container_of(j, struct bch_fs, journal);
678 unsigned long delay, now;
679 bool journal_empty;
680 int ret = 0;
681
682 set_freezable();
683
684 j->last_flushed = jiffies;
685
686 while (!ret && !kthread_should_stop()) {
687 bool kicked = j->reclaim_kicked;
688
689 j->reclaim_kicked = false;
690
691 mutex_lock(&j->reclaim_lock);
692 ret = __bch2_journal_reclaim(j, false, kicked);
693 mutex_unlock(&j->reclaim_lock);
694
695 now = jiffies;
696 delay = msecs_to_jiffies(c->opts.journal_reclaim_delay);
697 j->next_reclaim = j->last_flushed + delay;
698
699 if (!time_in_range(j->next_reclaim, now, now + delay))
700 j->next_reclaim = now + delay;
701
702 while (1) {
703 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
704 if (kthread_should_stop())
705 break;
706 if (j->reclaim_kicked)
707 break;
708
709 spin_lock(&j->lock);
710 journal_empty = fifo_empty(&j->pin);
711 spin_unlock(&j->lock);
712
713 if (journal_empty)
714 schedule();
715 else if (time_after(j->next_reclaim, jiffies))
716 schedule_timeout(j->next_reclaim - jiffies);
717 else
718 break;
719 }
720 __set_current_state(TASK_RUNNING);
721 }
722
723 return 0;
724 }
725
726 void bch2_journal_reclaim_stop(struct journal *j)
727 {
728 struct task_struct *p = j->reclaim_thread;
729
730 j->reclaim_thread = NULL;
731
732 if (p) {
733 kthread_stop(p);
734 put_task_struct(p);
735 }
736 }
737
738 int bch2_journal_reclaim_start(struct journal *j)
739 {
740 struct bch_fs *c = container_of(j, struct bch_fs, journal);
741 struct task_struct *p;
742 int ret;
743
744 if (j->reclaim_thread)
745 return 0;
746
747 p = kthread_create(bch2_journal_reclaim_thread, j,
748 "bch-reclaim/%s", c->name);
749 ret = PTR_ERR_OR_ZERO(p);
750 if (ret) {
751 bch_err_msg(c, ret, "creating journal reclaim thread");
752 return ret;
753 }
754
755 get_task_struct(p);
756 j->reclaim_thread = p;
757 wake_up_process(p);
758 return 0;
759 }
760
761 static int journal_flush_done(struct journal *j, u64 seq_to_flush,
762 bool *did_work)
763 {
764 int ret;
765
766 ret = bch2_journal_error(j);
767 if (ret)
768 return ret;
769
770 mutex_lock(&j->reclaim_lock);
771
772 if (journal_flush_pins(j, seq_to_flush,
773 (1U << JOURNAL_PIN_key_cache)|
774 (1U << JOURNAL_PIN_other), 0, 0, 0) ||
775 journal_flush_pins(j, seq_to_flush,
776 (1U << JOURNAL_PIN_btree), 0, 0, 0))
777 *did_work = true;
778
779 if (seq_to_flush > journal_cur_seq(j))
780 bch2_journal_entry_close(j);
781
782 spin_lock(&j->lock);
783 /*
784 * If journal replay hasn't completed, the unreplayed journal entries
785 * hold refs on their corresponding sequence numbers
786 */
787 ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) ||
788 journal_last_seq(j) > seq_to_flush ||
789 !fifo_used(&j->pin);
790
791 spin_unlock(&j->lock);
792 mutex_unlock(&j->reclaim_lock);
793
794 return ret;
795 }
796
797 bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush)
798 {
799 bool did_work = false;
800
801 if (!test_bit(JOURNAL_STARTED, &j->flags))
802 return false;
803
804 closure_wait_event(&j->async_wait,
805 journal_flush_done(j, seq_to_flush, &did_work));
806
807 return did_work;
808 }
809
810 int bch2_journal_flush_device_pins(struct journal *j, int dev_idx)
811 {
812 struct bch_fs *c = container_of(j, struct bch_fs, journal);
813 struct journal_entry_pin_list *p;
814 u64 iter, seq = 0;
815 int ret = 0;
816
817 spin_lock(&j->lock);
818 fifo_for_each_entry_ptr(p, &j->pin, iter)
819 if (dev_idx >= 0
820 ? bch2_dev_list_has_dev(p->devs, dev_idx)
821 : p->devs.nr < c->opts.metadata_replicas)
822 seq = iter;
823 spin_unlock(&j->lock);
824
825 bch2_journal_flush_pins(j, seq);
826
827 ret = bch2_journal_error(j);
828 if (ret)
829 return ret;
830
831 mutex_lock(&c->replicas_gc_lock);
832 bch2_replicas_gc_start(c, 1 << BCH_DATA_journal);
833
834 /*
835 * Now that we've populated replicas_gc, write to the journal to mark
836 * active journal devices. This handles the case where the journal might
837 * be empty. Otherwise we could clear all journal replicas and
838 * temporarily put the fs into an unrecoverable state. Journal recovery
839 * expects to find devices marked for journal data on unclean mount.
840 */
841 ret = bch2_journal_meta(&c->journal);
842 if (ret)
843 goto err;
844
845 seq = 0;
846 spin_lock(&j->lock);
847 while (!ret) {
848 struct bch_replicas_padded replicas;
849
850 seq = max(seq, journal_last_seq(j));
851 if (seq >= j->pin.back)
852 break;
853 bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal,
854 journal_seq_pin(j, seq)->devs);
855 seq++;
856
857 spin_unlock(&j->lock);
858 ret = bch2_mark_replicas(c, &replicas.e);
859 spin_lock(&j->lock);
860 }
861 spin_unlock(&j->lock);
862 err:
863 ret = bch2_replicas_gc_end(c, ret);
864 mutex_unlock(&c->replicas_gc_lock);
865
866 return ret;
867 }