]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/bcachefs/super.c
Merge tag 'bcachefs-2024-03-19' of https://evilpiepirate.org/git/bcachefs
[thirdparty/linux.git] / fs / bcachefs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcachefs setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_update_interior.h"
19 #include "btree_io.h"
20 #include "btree_write_buffer.h"
21 #include "buckets_waiting_for_journal.h"
22 #include "chardev.h"
23 #include "checksum.h"
24 #include "clock.h"
25 #include "compress.h"
26 #include "debug.h"
27 #include "disk_groups.h"
28 #include "ec.h"
29 #include "errcode.h"
30 #include "error.h"
31 #include "fs.h"
32 #include "fs-io.h"
33 #include "fs-io-buffered.h"
34 #include "fs-io-direct.h"
35 #include "fsck.h"
36 #include "inode.h"
37 #include "io_read.h"
38 #include "io_write.h"
39 #include "journal.h"
40 #include "journal_reclaim.h"
41 #include "journal_seq_blacklist.h"
42 #include "move.h"
43 #include "migrate.h"
44 #include "movinggc.h"
45 #include "nocow_locking.h"
46 #include "quota.h"
47 #include "rebalance.h"
48 #include "recovery.h"
49 #include "replicas.h"
50 #include "sb-clean.h"
51 #include "sb-counters.h"
52 #include "sb-errors.h"
53 #include "sb-members.h"
54 #include "snapshot.h"
55 #include "subvolume.h"
56 #include "super.h"
57 #include "super-io.h"
58 #include "sysfs.h"
59 #include "thread_with_file.h"
60 #include "trace.h"
61
62 #include <linux/backing-dev.h>
63 #include <linux/blkdev.h>
64 #include <linux/debugfs.h>
65 #include <linux/device.h>
66 #include <linux/idr.h>
67 #include <linux/module.h>
68 #include <linux/percpu.h>
69 #include <linux/random.h>
70 #include <linux/sysfs.h>
71 #include <crypto/hash.h>
72
73 MODULE_LICENSE("GPL");
74 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
75 MODULE_DESCRIPTION("bcachefs filesystem");
76 MODULE_SOFTDEP("pre: crc32c");
77 MODULE_SOFTDEP("pre: crc64");
78 MODULE_SOFTDEP("pre: sha256");
79 MODULE_SOFTDEP("pre: chacha20");
80 MODULE_SOFTDEP("pre: poly1305");
81 MODULE_SOFTDEP("pre: xxhash");
82
83 const char * const bch2_fs_flag_strs[] = {
84 #define x(n) #n,
85 BCH_FS_FLAGS()
86 #undef x
87 NULL
88 };
89
90 __printf(2, 0)
91 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
92 {
93 #ifdef __KERNEL__
94 if (unlikely(stdio)) {
95 if (fmt[0] == KERN_SOH[0])
96 fmt += 2;
97
98 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
99 return;
100 }
101 #endif
102 vprintk(fmt, args);
103 }
104
105 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
106 {
107 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
108
109 va_list args;
110 va_start(args, fmt);
111 bch2_print_maybe_redirect(stdio, fmt, args);
112 va_end(args);
113 }
114
115 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
116 {
117 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
118
119 va_list args;
120 va_start(args, fmt);
121 bch2_print_maybe_redirect(stdio, fmt, args);
122 va_end(args);
123 }
124
125 #define KTYPE(type) \
126 static const struct attribute_group type ## _group = { \
127 .attrs = type ## _files \
128 }; \
129 \
130 static const struct attribute_group *type ## _groups[] = { \
131 &type ## _group, \
132 NULL \
133 }; \
134 \
135 static const struct kobj_type type ## _ktype = { \
136 .release = type ## _release, \
137 .sysfs_ops = &type ## _sysfs_ops, \
138 .default_groups = type ## _groups \
139 }
140
141 static void bch2_fs_release(struct kobject *);
142 static void bch2_dev_release(struct kobject *);
143 static void bch2_fs_counters_release(struct kobject *k)
144 {
145 }
146
147 static void bch2_fs_internal_release(struct kobject *k)
148 {
149 }
150
151 static void bch2_fs_opts_dir_release(struct kobject *k)
152 {
153 }
154
155 static void bch2_fs_time_stats_release(struct kobject *k)
156 {
157 }
158
159 KTYPE(bch2_fs);
160 KTYPE(bch2_fs_counters);
161 KTYPE(bch2_fs_internal);
162 KTYPE(bch2_fs_opts_dir);
163 KTYPE(bch2_fs_time_stats);
164 KTYPE(bch2_dev);
165
166 static struct kset *bcachefs_kset;
167 static LIST_HEAD(bch_fs_list);
168 static DEFINE_MUTEX(bch_fs_list_lock);
169
170 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
171
172 static void bch2_dev_free(struct bch_dev *);
173 static int bch2_dev_alloc(struct bch_fs *, unsigned);
174 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
175 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
176
177 struct bch_fs *bch2_dev_to_fs(dev_t dev)
178 {
179 struct bch_fs *c;
180
181 mutex_lock(&bch_fs_list_lock);
182 rcu_read_lock();
183
184 list_for_each_entry(c, &bch_fs_list, list)
185 for_each_member_device_rcu(c, ca, NULL)
186 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
187 closure_get(&c->cl);
188 goto found;
189 }
190 c = NULL;
191 found:
192 rcu_read_unlock();
193 mutex_unlock(&bch_fs_list_lock);
194
195 return c;
196 }
197
198 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
199 {
200 struct bch_fs *c;
201
202 lockdep_assert_held(&bch_fs_list_lock);
203
204 list_for_each_entry(c, &bch_fs_list, list)
205 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
206 return c;
207
208 return NULL;
209 }
210
211 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
212 {
213 struct bch_fs *c;
214
215 mutex_lock(&bch_fs_list_lock);
216 c = __bch2_uuid_to_fs(uuid);
217 if (c)
218 closure_get(&c->cl);
219 mutex_unlock(&bch_fs_list_lock);
220
221 return c;
222 }
223
224 static void bch2_dev_usage_journal_reserve(struct bch_fs *c)
225 {
226 unsigned nr = 0, u64s =
227 ((sizeof(struct jset_entry_dev_usage) +
228 sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) /
229 sizeof(u64);
230
231 rcu_read_lock();
232 for_each_member_device_rcu(c, ca, NULL)
233 nr++;
234 rcu_read_unlock();
235
236 bch2_journal_entry_res_resize(&c->journal,
237 &c->dev_usage_journal_res, u64s * nr);
238 }
239
240 /* Filesystem RO/RW: */
241
242 /*
243 * For startup/shutdown of RW stuff, the dependencies are:
244 *
245 * - foreground writes depend on copygc and rebalance (to free up space)
246 *
247 * - copygc and rebalance depend on mark and sweep gc (they actually probably
248 * don't because they either reserve ahead of time or don't block if
249 * allocations fail, but allocations can require mark and sweep gc to run
250 * because of generation number wraparound)
251 *
252 * - all of the above depends on the allocator threads
253 *
254 * - allocator depends on the journal (when it rewrites prios and gens)
255 */
256
257 static void __bch2_fs_read_only(struct bch_fs *c)
258 {
259 unsigned clean_passes = 0;
260 u64 seq = 0;
261
262 bch2_fs_ec_stop(c);
263 bch2_open_buckets_stop(c, NULL, true);
264 bch2_rebalance_stop(c);
265 bch2_copygc_stop(c);
266 bch2_gc_thread_stop(c);
267 bch2_fs_ec_flush(c);
268
269 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
270 journal_cur_seq(&c->journal));
271
272 do {
273 clean_passes++;
274
275 if (bch2_btree_interior_updates_flush(c) ||
276 bch2_journal_flush_all_pins(&c->journal) ||
277 bch2_btree_flush_all_writes(c) ||
278 seq != atomic64_read(&c->journal.seq)) {
279 seq = atomic64_read(&c->journal.seq);
280 clean_passes = 0;
281 }
282 } while (clean_passes < 2);
283
284 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
285 journal_cur_seq(&c->journal));
286
287 if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) &&
288 !test_bit(BCH_FS_emergency_ro, &c->flags))
289 set_bit(BCH_FS_clean_shutdown, &c->flags);
290 bch2_fs_journal_stop(&c->journal);
291
292 /*
293 * After stopping journal:
294 */
295 for_each_member_device(c, ca)
296 bch2_dev_allocator_remove(c, ca);
297 }
298
299 #ifndef BCH_WRITE_REF_DEBUG
300 static void bch2_writes_disabled(struct percpu_ref *writes)
301 {
302 struct bch_fs *c = container_of(writes, struct bch_fs, writes);
303
304 set_bit(BCH_FS_write_disable_complete, &c->flags);
305 wake_up(&bch2_read_only_wait);
306 }
307 #endif
308
309 void bch2_fs_read_only(struct bch_fs *c)
310 {
311 if (!test_bit(BCH_FS_rw, &c->flags)) {
312 bch2_journal_reclaim_stop(&c->journal);
313 return;
314 }
315
316 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
317
318 bch_verbose(c, "going read-only");
319
320 /*
321 * Block new foreground-end write operations from starting - any new
322 * writes will return -EROFS:
323 */
324 set_bit(BCH_FS_going_ro, &c->flags);
325 #ifndef BCH_WRITE_REF_DEBUG
326 percpu_ref_kill(&c->writes);
327 #else
328 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
329 bch2_write_ref_put(c, i);
330 #endif
331
332 /*
333 * If we're not doing an emergency shutdown, we want to wait on
334 * outstanding writes to complete so they don't see spurious errors due
335 * to shutting down the allocator:
336 *
337 * If we are doing an emergency shutdown outstanding writes may
338 * hang until we shutdown the allocator so we don't want to wait
339 * on outstanding writes before shutting everything down - but
340 * we do need to wait on them before returning and signalling
341 * that going RO is complete:
342 */
343 wait_event(bch2_read_only_wait,
344 test_bit(BCH_FS_write_disable_complete, &c->flags) ||
345 test_bit(BCH_FS_emergency_ro, &c->flags));
346
347 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
348 if (writes_disabled)
349 bch_verbose(c, "finished waiting for writes to stop");
350
351 __bch2_fs_read_only(c);
352
353 wait_event(bch2_read_only_wait,
354 test_bit(BCH_FS_write_disable_complete, &c->flags));
355
356 if (!writes_disabled)
357 bch_verbose(c, "finished waiting for writes to stop");
358
359 clear_bit(BCH_FS_write_disable_complete, &c->flags);
360 clear_bit(BCH_FS_going_ro, &c->flags);
361 clear_bit(BCH_FS_rw, &c->flags);
362
363 if (!bch2_journal_error(&c->journal) &&
364 !test_bit(BCH_FS_error, &c->flags) &&
365 !test_bit(BCH_FS_emergency_ro, &c->flags) &&
366 test_bit(BCH_FS_started, &c->flags) &&
367 test_bit(BCH_FS_clean_shutdown, &c->flags) &&
368 !c->opts.norecovery) {
369 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
370 BUG_ON(atomic_read(&c->btree_cache.dirty));
371 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
372 BUG_ON(c->btree_write_buffer.inc.keys.nr);
373 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
374
375 bch_verbose(c, "marking filesystem clean");
376 bch2_fs_mark_clean(c);
377 } else {
378 bch_verbose(c, "done going read-only, filesystem not clean");
379 }
380 }
381
382 static void bch2_fs_read_only_work(struct work_struct *work)
383 {
384 struct bch_fs *c =
385 container_of(work, struct bch_fs, read_only_work);
386
387 down_write(&c->state_lock);
388 bch2_fs_read_only(c);
389 up_write(&c->state_lock);
390 }
391
392 static void bch2_fs_read_only_async(struct bch_fs *c)
393 {
394 queue_work(system_long_wq, &c->read_only_work);
395 }
396
397 bool bch2_fs_emergency_read_only(struct bch_fs *c)
398 {
399 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
400
401 bch2_journal_halt(&c->journal);
402 bch2_fs_read_only_async(c);
403
404 wake_up(&bch2_read_only_wait);
405 return ret;
406 }
407
408 static int bch2_fs_read_write_late(struct bch_fs *c)
409 {
410 int ret;
411
412 /*
413 * Data move operations can't run until after check_snapshots has
414 * completed, and bch2_snapshot_is_ancestor() is available.
415 *
416 * Ideally we'd start copygc/rebalance earlier instead of waiting for
417 * all of recovery/fsck to complete:
418 */
419 ret = bch2_copygc_start(c);
420 if (ret) {
421 bch_err(c, "error starting copygc thread");
422 return ret;
423 }
424
425 ret = bch2_rebalance_start(c);
426 if (ret) {
427 bch_err(c, "error starting rebalance thread");
428 return ret;
429 }
430
431 return 0;
432 }
433
434 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
435 {
436 int ret;
437
438 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
439 bch_err(c, "cannot go rw, unfixed btree errors");
440 return -BCH_ERR_erofs_unfixed_errors;
441 }
442
443 if (test_bit(BCH_FS_rw, &c->flags))
444 return 0;
445
446 bch_info(c, "going read-write");
447
448 ret = bch2_sb_members_v2_init(c);
449 if (ret)
450 goto err;
451
452 ret = bch2_fs_mark_dirty(c);
453 if (ret)
454 goto err;
455
456 clear_bit(BCH_FS_clean_shutdown, &c->flags);
457
458 /*
459 * First journal write must be a flush write: after a clean shutdown we
460 * don't read the journal, so the first journal write may end up
461 * overwriting whatever was there previously, and there must always be
462 * at least one non-flush write in the journal or recovery will fail:
463 */
464 set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags);
465
466 for_each_rw_member(c, ca)
467 bch2_dev_allocator_add(c, ca);
468 bch2_recalc_capacity(c);
469
470 set_bit(BCH_FS_rw, &c->flags);
471 set_bit(BCH_FS_was_rw, &c->flags);
472
473 #ifndef BCH_WRITE_REF_DEBUG
474 percpu_ref_reinit(&c->writes);
475 #else
476 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
477 BUG_ON(atomic_long_read(&c->writes[i]));
478 atomic_long_inc(&c->writes[i]);
479 }
480 #endif
481
482 ret = bch2_gc_thread_start(c);
483 if (ret) {
484 bch_err(c, "error starting gc thread");
485 return ret;
486 }
487
488 ret = bch2_journal_reclaim_start(&c->journal);
489 if (ret)
490 goto err;
491
492 if (!early) {
493 ret = bch2_fs_read_write_late(c);
494 if (ret)
495 goto err;
496 }
497
498 bch2_do_discards(c);
499 bch2_do_invalidates(c);
500 bch2_do_stripe_deletes(c);
501 bch2_do_pending_node_rewrites(c);
502 return 0;
503 err:
504 if (test_bit(BCH_FS_rw, &c->flags))
505 bch2_fs_read_only(c);
506 else
507 __bch2_fs_read_only(c);
508 return ret;
509 }
510
511 int bch2_fs_read_write(struct bch_fs *c)
512 {
513 if (c->opts.norecovery)
514 return -BCH_ERR_erofs_norecovery;
515
516 if (c->opts.nochanges)
517 return -BCH_ERR_erofs_nochanges;
518
519 return __bch2_fs_read_write(c, false);
520 }
521
522 int bch2_fs_read_write_early(struct bch_fs *c)
523 {
524 lockdep_assert_held(&c->state_lock);
525
526 return __bch2_fs_read_write(c, true);
527 }
528
529 /* Filesystem startup/shutdown: */
530
531 static void __bch2_fs_free(struct bch_fs *c)
532 {
533 unsigned i;
534
535 for (i = 0; i < BCH_TIME_STAT_NR; i++)
536 bch2_time_stats_exit(&c->times[i]);
537
538 bch2_free_pending_node_rewrites(c);
539 bch2_fs_sb_errors_exit(c);
540 bch2_fs_counters_exit(c);
541 bch2_fs_snapshots_exit(c);
542 bch2_fs_quota_exit(c);
543 bch2_fs_fs_io_direct_exit(c);
544 bch2_fs_fs_io_buffered_exit(c);
545 bch2_fs_fsio_exit(c);
546 bch2_fs_ec_exit(c);
547 bch2_fs_encryption_exit(c);
548 bch2_fs_nocow_locking_exit(c);
549 bch2_fs_io_write_exit(c);
550 bch2_fs_io_read_exit(c);
551 bch2_fs_buckets_waiting_for_journal_exit(c);
552 bch2_fs_btree_interior_update_exit(c);
553 bch2_fs_btree_iter_exit(c);
554 bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
555 bch2_fs_btree_cache_exit(c);
556 bch2_fs_replicas_exit(c);
557 bch2_fs_journal_exit(&c->journal);
558 bch2_io_clock_exit(&c->io_clock[WRITE]);
559 bch2_io_clock_exit(&c->io_clock[READ]);
560 bch2_fs_compress_exit(c);
561 bch2_journal_keys_put_initial(c);
562 BUG_ON(atomic_read(&c->journal_keys.ref));
563 bch2_fs_btree_write_buffer_exit(c);
564 percpu_free_rwsem(&c->mark_lock);
565 free_percpu(c->online_reserved);
566
567 darray_exit(&c->btree_roots_extra);
568 free_percpu(c->pcpu);
569 mempool_exit(&c->large_bkey_pool);
570 mempool_exit(&c->btree_bounce_pool);
571 bioset_exit(&c->btree_bio);
572 mempool_exit(&c->fill_iter);
573 #ifndef BCH_WRITE_REF_DEBUG
574 percpu_ref_exit(&c->writes);
575 #endif
576 kfree(rcu_dereference_protected(c->disk_groups, 1));
577 kfree(c->journal_seq_blacklist_table);
578 kfree(c->unused_inode_hints);
579
580 if (c->write_ref_wq)
581 destroy_workqueue(c->write_ref_wq);
582 if (c->io_complete_wq)
583 destroy_workqueue(c->io_complete_wq);
584 if (c->copygc_wq)
585 destroy_workqueue(c->copygc_wq);
586 if (c->btree_io_complete_wq)
587 destroy_workqueue(c->btree_io_complete_wq);
588 if (c->btree_update_wq)
589 destroy_workqueue(c->btree_update_wq);
590
591 bch2_free_super(&c->disk_sb);
592 kvfree(c);
593 module_put(THIS_MODULE);
594 }
595
596 static void bch2_fs_release(struct kobject *kobj)
597 {
598 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
599
600 __bch2_fs_free(c);
601 }
602
603 void __bch2_fs_stop(struct bch_fs *c)
604 {
605 bch_verbose(c, "shutting down");
606
607 set_bit(BCH_FS_stopping, &c->flags);
608
609 cancel_work_sync(&c->journal_seq_blacklist_gc_work);
610
611 down_write(&c->state_lock);
612 bch2_fs_read_only(c);
613 up_write(&c->state_lock);
614
615 for_each_member_device(c, ca)
616 if (ca->kobj.state_in_sysfs &&
617 ca->disk_sb.bdev)
618 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
619
620 if (c->kobj.state_in_sysfs)
621 kobject_del(&c->kobj);
622
623 bch2_fs_debug_exit(c);
624 bch2_fs_chardev_exit(c);
625
626 bch2_ro_ref_put(c);
627 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
628
629 kobject_put(&c->counters_kobj);
630 kobject_put(&c->time_stats);
631 kobject_put(&c->opts_dir);
632 kobject_put(&c->internal);
633
634 /* btree prefetch might have kicked off reads in the background: */
635 bch2_btree_flush_all_reads(c);
636
637 for_each_member_device(c, ca)
638 cancel_work_sync(&ca->io_error_work);
639
640 cancel_work_sync(&c->read_only_work);
641 }
642
643 void bch2_fs_free(struct bch_fs *c)
644 {
645 unsigned i;
646
647 mutex_lock(&bch_fs_list_lock);
648 list_del(&c->list);
649 mutex_unlock(&bch_fs_list_lock);
650
651 closure_sync(&c->cl);
652 closure_debug_destroy(&c->cl);
653
654 for (i = 0; i < c->sb.nr_devices; i++) {
655 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
656
657 if (ca) {
658 bch2_free_super(&ca->disk_sb);
659 bch2_dev_free(ca);
660 }
661 }
662
663 bch_verbose(c, "shutdown complete");
664
665 kobject_put(&c->kobj);
666 }
667
668 void bch2_fs_stop(struct bch_fs *c)
669 {
670 __bch2_fs_stop(c);
671 bch2_fs_free(c);
672 }
673
674 static int bch2_fs_online(struct bch_fs *c)
675 {
676 int ret = 0;
677
678 lockdep_assert_held(&bch_fs_list_lock);
679
680 if (__bch2_uuid_to_fs(c->sb.uuid)) {
681 bch_err(c, "filesystem UUID already open");
682 return -EINVAL;
683 }
684
685 ret = bch2_fs_chardev_init(c);
686 if (ret) {
687 bch_err(c, "error creating character device");
688 return ret;
689 }
690
691 bch2_fs_debug_init(c);
692
693 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
694 kobject_add(&c->internal, &c->kobj, "internal") ?:
695 kobject_add(&c->opts_dir, &c->kobj, "options") ?:
696 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
697 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
698 #endif
699 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
700 bch2_opts_create_sysfs_files(&c->opts_dir);
701 if (ret) {
702 bch_err(c, "error creating sysfs objects");
703 return ret;
704 }
705
706 down_write(&c->state_lock);
707
708 for_each_member_device(c, ca) {
709 ret = bch2_dev_sysfs_online(c, ca);
710 if (ret) {
711 bch_err(c, "error creating sysfs objects");
712 percpu_ref_put(&ca->ref);
713 goto err;
714 }
715 }
716
717 BUG_ON(!list_empty(&c->list));
718 list_add(&c->list, &bch_fs_list);
719 err:
720 up_write(&c->state_lock);
721 return ret;
722 }
723
724 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
725 {
726 struct bch_fs *c;
727 struct printbuf name = PRINTBUF;
728 unsigned i, iter_size;
729 int ret = 0;
730
731 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
732 if (!c) {
733 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
734 goto out;
735 }
736
737 c->stdio = (void *)(unsigned long) opts.stdio;
738
739 __module_get(THIS_MODULE);
740
741 closure_init(&c->cl, NULL);
742
743 c->kobj.kset = bcachefs_kset;
744 kobject_init(&c->kobj, &bch2_fs_ktype);
745 kobject_init(&c->internal, &bch2_fs_internal_ktype);
746 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
747 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
748 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
749
750 c->minor = -1;
751 c->disk_sb.fs_sb = true;
752
753 init_rwsem(&c->state_lock);
754 mutex_init(&c->sb_lock);
755 mutex_init(&c->replicas_gc_lock);
756 mutex_init(&c->btree_root_lock);
757 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
758
759 refcount_set(&c->ro_ref, 1);
760 init_waitqueue_head(&c->ro_ref_wait);
761 sema_init(&c->online_fsck_mutex, 1);
762
763 init_rwsem(&c->gc_lock);
764 mutex_init(&c->gc_gens_lock);
765 atomic_set(&c->journal_keys.ref, 1);
766 c->journal_keys.initial_ref_held = true;
767
768 for (i = 0; i < BCH_TIME_STAT_NR; i++)
769 bch2_time_stats_init(&c->times[i]);
770
771 bch2_fs_copygc_init(c);
772 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
773 bch2_fs_btree_iter_init_early(c);
774 bch2_fs_btree_interior_update_init_early(c);
775 bch2_fs_allocator_background_init(c);
776 bch2_fs_allocator_foreground_init(c);
777 bch2_fs_rebalance_init(c);
778 bch2_fs_quota_init(c);
779 bch2_fs_ec_init_early(c);
780 bch2_fs_move_init(c);
781 bch2_fs_sb_errors_init_early(c);
782
783 INIT_LIST_HEAD(&c->list);
784
785 mutex_init(&c->usage_scratch_lock);
786
787 mutex_init(&c->bio_bounce_pages_lock);
788 mutex_init(&c->snapshot_table_lock);
789 init_rwsem(&c->snapshot_create_lock);
790
791 spin_lock_init(&c->btree_write_error_lock);
792
793 INIT_WORK(&c->journal_seq_blacklist_gc_work,
794 bch2_blacklist_entries_gc);
795
796 INIT_LIST_HEAD(&c->journal_iters);
797
798 INIT_LIST_HEAD(&c->fsck_error_msgs);
799 mutex_init(&c->fsck_error_msgs_lock);
800
801 seqcount_init(&c->gc_pos_lock);
802
803 seqcount_init(&c->usage_lock);
804
805 sema_init(&c->io_in_flight, 128);
806
807 INIT_LIST_HEAD(&c->vfs_inodes_list);
808 mutex_init(&c->vfs_inodes_lock);
809
810 c->copy_gc_enabled = 1;
811 c->rebalance.enabled = 1;
812 c->promote_whole_extents = true;
813
814 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write];
815 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write];
816 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
817
818 bch2_fs_btree_cache_init_early(&c->btree_cache);
819
820 mutex_init(&c->sectors_available_lock);
821
822 ret = percpu_init_rwsem(&c->mark_lock);
823 if (ret)
824 goto err;
825
826 mutex_lock(&c->sb_lock);
827 ret = bch2_sb_to_fs(c, sb);
828 mutex_unlock(&c->sb_lock);
829
830 if (ret)
831 goto err;
832
833 pr_uuid(&name, c->sb.user_uuid.b);
834 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
835 if (ret)
836 goto err;
837
838 strscpy(c->name, name.buf, sizeof(c->name));
839 printbuf_exit(&name);
840
841 /* Compat: */
842 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
843 !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
844 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
845
846 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
847 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
848 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
849
850 c->opts = bch2_opts_default;
851 ret = bch2_opts_from_sb(&c->opts, sb);
852 if (ret)
853 goto err;
854
855 bch2_opts_apply(&c->opts, opts);
856
857 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
858 if (c->opts.inodes_use_key_cache)
859 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
860 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
861
862 c->block_bits = ilog2(block_sectors(c));
863 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
864
865 if (bch2_fs_init_fault("fs_alloc")) {
866 bch_err(c, "fs_alloc fault injected");
867 ret = -EFAULT;
868 goto err;
869 }
870
871 iter_size = sizeof(struct sort_iter) +
872 (btree_blocks(c) + 1) * 2 *
873 sizeof(struct sort_iter_set);
874
875 c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus()));
876
877 if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
879 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
881 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
883 !(c->io_complete_wq = alloc_workqueue("bcachefs_io",
884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
885 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
886 WQ_FREEZABLE, 0)) ||
887 #ifndef BCH_WRITE_REF_DEBUG
888 percpu_ref_init(&c->writes, bch2_writes_disabled,
889 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
890 #endif
891 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
892 bioset_init(&c->btree_bio, 1,
893 max(offsetof(struct btree_read_bio, bio),
894 offsetof(struct btree_write_bio, wbio.bio)),
895 BIOSET_NEED_BVECS) ||
896 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
897 !(c->online_reserved = alloc_percpu(u64)) ||
898 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
899 c->opts.btree_node_size) ||
900 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) ||
901 !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits,
902 sizeof(u64), GFP_KERNEL))) {
903 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
904 goto err;
905 }
906
907 ret = bch2_fs_counters_init(c) ?:
908 bch2_fs_sb_errors_init(c) ?:
909 bch2_io_clock_init(&c->io_clock[READ]) ?:
910 bch2_io_clock_init(&c->io_clock[WRITE]) ?:
911 bch2_fs_journal_init(&c->journal) ?:
912 bch2_fs_replicas_init(c) ?:
913 bch2_fs_btree_cache_init(c) ?:
914 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
915 bch2_fs_btree_iter_init(c) ?:
916 bch2_fs_btree_interior_update_init(c) ?:
917 bch2_fs_buckets_waiting_for_journal_init(c) ?:
918 bch2_fs_btree_write_buffer_init(c) ?:
919 bch2_fs_subvolumes_init(c) ?:
920 bch2_fs_io_read_init(c) ?:
921 bch2_fs_io_write_init(c) ?:
922 bch2_fs_nocow_locking_init(c) ?:
923 bch2_fs_encryption_init(c) ?:
924 bch2_fs_compress_init(c) ?:
925 bch2_fs_ec_init(c) ?:
926 bch2_fs_fsio_init(c) ?:
927 bch2_fs_fs_io_buffered_init(c) ?:
928 bch2_fs_fs_io_direct_init(c);
929 if (ret)
930 goto err;
931
932 for (i = 0; i < c->sb.nr_devices; i++)
933 if (bch2_dev_exists(c->disk_sb.sb, i) &&
934 bch2_dev_alloc(c, i)) {
935 ret = -EEXIST;
936 goto err;
937 }
938
939 bch2_journal_entry_res_resize(&c->journal,
940 &c->btree_root_journal_res,
941 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
942 bch2_dev_usage_journal_reserve(c);
943 bch2_journal_entry_res_resize(&c->journal,
944 &c->clock_journal_res,
945 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
946
947 mutex_lock(&bch_fs_list_lock);
948 ret = bch2_fs_online(c);
949 mutex_unlock(&bch_fs_list_lock);
950
951 if (ret)
952 goto err;
953 out:
954 return c;
955 err:
956 bch2_fs_free(c);
957 c = ERR_PTR(ret);
958 goto out;
959 }
960
961 noinline_for_stack
962 static void print_mount_opts(struct bch_fs *c)
963 {
964 enum bch_opt_id i;
965 struct printbuf p = PRINTBUF;
966 bool first = true;
967
968 prt_str(&p, "mounting version ");
969 bch2_version_to_text(&p, c->sb.version);
970
971 if (c->opts.read_only) {
972 prt_str(&p, " opts=");
973 first = false;
974 prt_printf(&p, "ro");
975 }
976
977 for (i = 0; i < bch2_opts_nr; i++) {
978 const struct bch_option *opt = &bch2_opt_table[i];
979 u64 v = bch2_opt_get_by_id(&c->opts, i);
980
981 if (!(opt->flags & OPT_MOUNT))
982 continue;
983
984 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
985 continue;
986
987 prt_str(&p, first ? " opts=" : ",");
988 first = false;
989 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
990 }
991
992 bch_info(c, "%s", p.buf);
993 printbuf_exit(&p);
994 }
995
996 int bch2_fs_start(struct bch_fs *c)
997 {
998 time64_t now = ktime_get_real_seconds();
999 int ret;
1000
1001 print_mount_opts(c);
1002
1003 down_write(&c->state_lock);
1004
1005 BUG_ON(test_bit(BCH_FS_started, &c->flags));
1006
1007 mutex_lock(&c->sb_lock);
1008
1009 ret = bch2_sb_members_v2_init(c);
1010 if (ret) {
1011 mutex_unlock(&c->sb_lock);
1012 goto err;
1013 }
1014
1015 for_each_online_member(c, ca)
1016 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1017
1018 mutex_unlock(&c->sb_lock);
1019
1020 for_each_rw_member(c, ca)
1021 bch2_dev_allocator_add(c, ca);
1022 bch2_recalc_capacity(c);
1023
1024 ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1025 ? bch2_fs_recovery(c)
1026 : bch2_fs_initialize(c);
1027 if (ret)
1028 goto err;
1029
1030 ret = bch2_opts_check_may_set(c);
1031 if (ret)
1032 goto err;
1033
1034 if (bch2_fs_init_fault("fs_start")) {
1035 bch_err(c, "fs_start fault injected");
1036 ret = -EINVAL;
1037 goto err;
1038 }
1039
1040 set_bit(BCH_FS_started, &c->flags);
1041
1042 if (c->opts.read_only) {
1043 bch2_fs_read_only(c);
1044 } else {
1045 ret = !test_bit(BCH_FS_rw, &c->flags)
1046 ? bch2_fs_read_write(c)
1047 : bch2_fs_read_write_late(c);
1048 if (ret)
1049 goto err;
1050 }
1051
1052 ret = 0;
1053 err:
1054 if (ret)
1055 bch_err_msg(c, ret, "starting filesystem");
1056 else
1057 bch_verbose(c, "done starting filesystem");
1058 up_write(&c->state_lock);
1059 return ret;
1060 }
1061
1062 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1063 {
1064 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1065
1066 if (le16_to_cpu(sb->block_size) != block_sectors(c))
1067 return -BCH_ERR_mismatched_block_size;
1068
1069 if (le16_to_cpu(m.bucket_size) <
1070 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1071 return -BCH_ERR_bucket_size_too_small;
1072
1073 return 0;
1074 }
1075
1076 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1077 struct bch_sb_handle *sb,
1078 struct bch_opts *opts)
1079 {
1080 if (fs == sb)
1081 return 0;
1082
1083 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1084 return -BCH_ERR_device_not_a_member_of_filesystem;
1085
1086 if (!bch2_dev_exists(fs->sb, sb->sb->dev_idx))
1087 return -BCH_ERR_device_has_been_removed;
1088
1089 if (fs->sb->block_size != sb->sb->block_size)
1090 return -BCH_ERR_mismatched_block_size;
1091
1092 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1093 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1094 return 0;
1095
1096 if (fs->sb->seq == sb->sb->seq &&
1097 fs->sb->write_time != sb->sb->write_time) {
1098 struct printbuf buf = PRINTBUF;
1099
1100 prt_str(&buf, "Split brain detected between ");
1101 prt_bdevname(&buf, sb->bdev);
1102 prt_str(&buf, " and ");
1103 prt_bdevname(&buf, fs->bdev);
1104 prt_char(&buf, ':');
1105 prt_newline(&buf);
1106 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1107 prt_newline(&buf);
1108
1109 prt_bdevname(&buf, fs->bdev);
1110 prt_char(&buf, ' ');
1111 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));;
1112 prt_newline(&buf);
1113
1114 prt_bdevname(&buf, sb->bdev);
1115 prt_char(&buf, ' ');
1116 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));;
1117 prt_newline(&buf);
1118
1119 if (!opts->no_splitbrain_check)
1120 prt_printf(&buf, "Not using older sb");
1121
1122 pr_err("%s", buf.buf);
1123 printbuf_exit(&buf);
1124
1125 if (!opts->no_splitbrain_check)
1126 return -BCH_ERR_device_splitbrain;
1127 }
1128
1129 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1130 u64 seq_from_fs = le64_to_cpu(m.seq);
1131 u64 seq_from_member = le64_to_cpu(sb->sb->seq);
1132
1133 if (seq_from_fs && seq_from_fs < seq_from_member) {
1134 struct printbuf buf = PRINTBUF;
1135
1136 prt_str(&buf, "Split brain detected between ");
1137 prt_bdevname(&buf, sb->bdev);
1138 prt_str(&buf, " and ");
1139 prt_bdevname(&buf, fs->bdev);
1140 prt_char(&buf, ':');
1141 prt_newline(&buf);
1142
1143 prt_bdevname(&buf, fs->bdev);
1144 prt_str(&buf, " believes seq of ");
1145 prt_bdevname(&buf, sb->bdev);
1146 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1147 prt_bdevname(&buf, sb->bdev);
1148 prt_printf(&buf, " has %llu\n", seq_from_member);
1149
1150 if (!opts->no_splitbrain_check) {
1151 prt_str(&buf, "Not using ");
1152 prt_bdevname(&buf, sb->bdev);
1153 }
1154
1155 pr_err("%s", buf.buf);
1156 printbuf_exit(&buf);
1157
1158 if (!opts->no_splitbrain_check)
1159 return -BCH_ERR_device_splitbrain;
1160 }
1161
1162 return 0;
1163 }
1164
1165 /* Device startup/shutdown: */
1166
1167 static void bch2_dev_release(struct kobject *kobj)
1168 {
1169 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1170
1171 kfree(ca);
1172 }
1173
1174 static void bch2_dev_free(struct bch_dev *ca)
1175 {
1176 cancel_work_sync(&ca->io_error_work);
1177
1178 if (ca->kobj.state_in_sysfs &&
1179 ca->disk_sb.bdev)
1180 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1181
1182 if (ca->kobj.state_in_sysfs)
1183 kobject_del(&ca->kobj);
1184
1185 bch2_free_super(&ca->disk_sb);
1186 bch2_dev_journal_exit(ca);
1187
1188 free_percpu(ca->io_done);
1189 bioset_exit(&ca->replica_set);
1190 bch2_dev_buckets_free(ca);
1191 free_page((unsigned long) ca->sb_read_scratch);
1192
1193 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1194 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1195
1196 percpu_ref_exit(&ca->io_ref);
1197 percpu_ref_exit(&ca->ref);
1198 kobject_put(&ca->kobj);
1199 }
1200
1201 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1202 {
1203
1204 lockdep_assert_held(&c->state_lock);
1205
1206 if (percpu_ref_is_zero(&ca->io_ref))
1207 return;
1208
1209 __bch2_dev_read_only(c, ca);
1210
1211 reinit_completion(&ca->io_ref_completion);
1212 percpu_ref_kill(&ca->io_ref);
1213 wait_for_completion(&ca->io_ref_completion);
1214
1215 if (ca->kobj.state_in_sysfs) {
1216 sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs");
1217 sysfs_remove_link(&ca->kobj, "block");
1218 }
1219
1220 bch2_free_super(&ca->disk_sb);
1221 bch2_dev_journal_exit(ca);
1222 }
1223
1224 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1225 {
1226 struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1227
1228 complete(&ca->ref_completion);
1229 }
1230
1231 static void bch2_dev_io_ref_complete(struct percpu_ref *ref)
1232 {
1233 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref);
1234
1235 complete(&ca->io_ref_completion);
1236 }
1237
1238 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1239 {
1240 int ret;
1241
1242 if (!c->kobj.state_in_sysfs)
1243 return 0;
1244
1245 if (!ca->kobj.state_in_sysfs) {
1246 ret = kobject_add(&ca->kobj, &c->kobj,
1247 "dev-%u", ca->dev_idx);
1248 if (ret)
1249 return ret;
1250 }
1251
1252 if (ca->disk_sb.bdev) {
1253 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1254
1255 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1256 if (ret)
1257 return ret;
1258
1259 ret = sysfs_create_link(&ca->kobj, block, "block");
1260 if (ret)
1261 return ret;
1262 }
1263
1264 return 0;
1265 }
1266
1267 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1268 struct bch_member *member)
1269 {
1270 struct bch_dev *ca;
1271 unsigned i;
1272
1273 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1274 if (!ca)
1275 return NULL;
1276
1277 kobject_init(&ca->kobj, &bch2_dev_ktype);
1278 init_completion(&ca->ref_completion);
1279 init_completion(&ca->io_ref_completion);
1280
1281 init_rwsem(&ca->bucket_lock);
1282
1283 INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1284
1285 bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1286 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1287
1288 ca->mi = bch2_mi_to_cpu(member);
1289
1290 for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1291 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1292
1293 ca->uuid = member->uuid;
1294
1295 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1296 ca->mi.bucket_size / btree_sectors(c));
1297
1298 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete,
1299 0, GFP_KERNEL) ||
1300 percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete,
1301 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1302 !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) ||
1303 bch2_dev_buckets_alloc(c, ca) ||
1304 bioset_init(&ca->replica_set, 4,
1305 offsetof(struct bch_write_bio, bio), 0) ||
1306 !(ca->io_done = alloc_percpu(*ca->io_done)))
1307 goto err;
1308
1309 return ca;
1310 err:
1311 bch2_dev_free(ca);
1312 return NULL;
1313 }
1314
1315 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1316 unsigned dev_idx)
1317 {
1318 ca->dev_idx = dev_idx;
1319 __set_bit(ca->dev_idx, ca->self.d);
1320 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1321
1322 ca->fs = c;
1323 rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1324
1325 if (bch2_dev_sysfs_online(c, ca))
1326 pr_warn("error creating sysfs objects");
1327 }
1328
1329 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1330 {
1331 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1332 struct bch_dev *ca = NULL;
1333 int ret = 0;
1334
1335 if (bch2_fs_init_fault("dev_alloc"))
1336 goto err;
1337
1338 ca = __bch2_dev_alloc(c, &member);
1339 if (!ca)
1340 goto err;
1341
1342 ca->fs = c;
1343
1344 bch2_dev_attach(c, ca, dev_idx);
1345 return ret;
1346 err:
1347 if (ca)
1348 bch2_dev_free(ca);
1349 return -BCH_ERR_ENOMEM_dev_alloc;
1350 }
1351
1352 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1353 {
1354 unsigned ret;
1355
1356 if (bch2_dev_is_online(ca)) {
1357 bch_err(ca, "already have device online in slot %u",
1358 sb->sb->dev_idx);
1359 return -BCH_ERR_device_already_online;
1360 }
1361
1362 if (get_capacity(sb->bdev->bd_disk) <
1363 ca->mi.bucket_size * ca->mi.nbuckets) {
1364 bch_err(ca, "cannot online: device too small");
1365 return -BCH_ERR_device_size_too_small;
1366 }
1367
1368 BUG_ON(!percpu_ref_is_zero(&ca->io_ref));
1369
1370 ret = bch2_dev_journal_init(ca, sb->sb);
1371 if (ret)
1372 return ret;
1373
1374 /* Commit: */
1375 ca->disk_sb = *sb;
1376 memset(sb, 0, sizeof(*sb));
1377
1378 ca->dev = ca->disk_sb.bdev->bd_dev;
1379
1380 percpu_ref_reinit(&ca->io_ref);
1381
1382 return 0;
1383 }
1384
1385 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1386 {
1387 struct bch_dev *ca;
1388 int ret;
1389
1390 lockdep_assert_held(&c->state_lock);
1391
1392 if (le64_to_cpu(sb->sb->seq) >
1393 le64_to_cpu(c->disk_sb.sb->seq))
1394 bch2_sb_to_fs(c, sb->sb);
1395
1396 BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices ||
1397 !c->devs[sb->sb->dev_idx]);
1398
1399 ca = bch_dev_locked(c, sb->sb->dev_idx);
1400
1401 ret = __bch2_dev_attach_bdev(ca, sb);
1402 if (ret)
1403 return ret;
1404
1405 bch2_dev_sysfs_online(c, ca);
1406
1407 struct printbuf name = PRINTBUF;
1408 prt_bdevname(&name, ca->disk_sb.bdev);
1409
1410 if (c->sb.nr_devices == 1)
1411 strscpy(c->name, name.buf, sizeof(c->name));
1412 strscpy(ca->name, name.buf, sizeof(ca->name));
1413
1414 printbuf_exit(&name);
1415
1416 rebalance_wakeup(c);
1417 return 0;
1418 }
1419
1420 /* Device management: */
1421
1422 /*
1423 * Note: this function is also used by the error paths - when a particular
1424 * device sees an error, we call it to determine whether we can just set the
1425 * device RO, or - if this function returns false - we'll set the whole
1426 * filesystem RO:
1427 *
1428 * XXX: maybe we should be more explicit about whether we're changing state
1429 * because we got an error or what have you?
1430 */
1431 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1432 enum bch_member_state new_state, int flags)
1433 {
1434 struct bch_devs_mask new_online_devs;
1435 int nr_rw = 0, required;
1436
1437 lockdep_assert_held(&c->state_lock);
1438
1439 switch (new_state) {
1440 case BCH_MEMBER_STATE_rw:
1441 return true;
1442 case BCH_MEMBER_STATE_ro:
1443 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1444 return true;
1445
1446 /* do we have enough devices to write to? */
1447 for_each_member_device(c, ca2)
1448 if (ca2 != ca)
1449 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1450
1451 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1452 ? c->opts.metadata_replicas
1453 : metadata_replicas_required(c),
1454 !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1455 ? c->opts.data_replicas
1456 : data_replicas_required(c));
1457
1458 return nr_rw >= required;
1459 case BCH_MEMBER_STATE_failed:
1460 case BCH_MEMBER_STATE_spare:
1461 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1462 ca->mi.state != BCH_MEMBER_STATE_ro)
1463 return true;
1464
1465 /* do we have enough devices to read from? */
1466 new_online_devs = bch2_online_devs(c);
1467 __clear_bit(ca->dev_idx, new_online_devs.d);
1468
1469 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1470 default:
1471 BUG();
1472 }
1473 }
1474
1475 static bool bch2_fs_may_start(struct bch_fs *c)
1476 {
1477 struct bch_dev *ca;
1478 unsigned i, flags = 0;
1479
1480 if (c->opts.very_degraded)
1481 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1482
1483 if (c->opts.degraded)
1484 flags |= BCH_FORCE_IF_DEGRADED;
1485
1486 if (!c->opts.degraded &&
1487 !c->opts.very_degraded) {
1488 mutex_lock(&c->sb_lock);
1489
1490 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1491 if (!bch2_dev_exists(c->disk_sb.sb, i))
1492 continue;
1493
1494 ca = bch_dev_locked(c, i);
1495
1496 if (!bch2_dev_is_online(ca) &&
1497 (ca->mi.state == BCH_MEMBER_STATE_rw ||
1498 ca->mi.state == BCH_MEMBER_STATE_ro)) {
1499 mutex_unlock(&c->sb_lock);
1500 return false;
1501 }
1502 }
1503 mutex_unlock(&c->sb_lock);
1504 }
1505
1506 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1507 }
1508
1509 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1510 {
1511 /*
1512 * The allocator thread itself allocates btree nodes, so stop it first:
1513 */
1514 bch2_dev_allocator_remove(c, ca);
1515 bch2_dev_journal_stop(&c->journal, ca);
1516 }
1517
1518 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1519 {
1520 lockdep_assert_held(&c->state_lock);
1521
1522 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1523
1524 bch2_dev_allocator_add(c, ca);
1525 bch2_recalc_capacity(c);
1526 }
1527
1528 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1529 enum bch_member_state new_state, int flags)
1530 {
1531 struct bch_member *m;
1532 int ret = 0;
1533
1534 if (ca->mi.state == new_state)
1535 return 0;
1536
1537 if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1538 return -BCH_ERR_device_state_not_allowed;
1539
1540 if (new_state != BCH_MEMBER_STATE_rw)
1541 __bch2_dev_read_only(c, ca);
1542
1543 bch_notice(ca, "%s", bch2_member_states[new_state]);
1544
1545 mutex_lock(&c->sb_lock);
1546 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1547 SET_BCH_MEMBER_STATE(m, new_state);
1548 bch2_write_super(c);
1549 mutex_unlock(&c->sb_lock);
1550
1551 if (new_state == BCH_MEMBER_STATE_rw)
1552 __bch2_dev_read_write(c, ca);
1553
1554 rebalance_wakeup(c);
1555
1556 return ret;
1557 }
1558
1559 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1560 enum bch_member_state new_state, int flags)
1561 {
1562 int ret;
1563
1564 down_write(&c->state_lock);
1565 ret = __bch2_dev_set_state(c, ca, new_state, flags);
1566 up_write(&c->state_lock);
1567
1568 return ret;
1569 }
1570
1571 /* Device add/removal: */
1572
1573 static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca)
1574 {
1575 struct bpos start = POS(ca->dev_idx, 0);
1576 struct bpos end = POS(ca->dev_idx, U64_MAX);
1577 int ret;
1578
1579 /*
1580 * We clear the LRU and need_discard btrees first so that we don't race
1581 * with bch2_do_invalidates() and bch2_do_discards()
1582 */
1583 ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end,
1584 BTREE_TRIGGER_NORUN, NULL) ?:
1585 bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end,
1586 BTREE_TRIGGER_NORUN, NULL) ?:
1587 bch2_btree_delete_range(c, BTREE_ID_freespace, start, end,
1588 BTREE_TRIGGER_NORUN, NULL) ?:
1589 bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end,
1590 BTREE_TRIGGER_NORUN, NULL) ?:
1591 bch2_btree_delete_range(c, BTREE_ID_alloc, start, end,
1592 BTREE_TRIGGER_NORUN, NULL) ?:
1593 bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end,
1594 BTREE_TRIGGER_NORUN, NULL);
1595 bch_err_msg(c, ret, "removing dev alloc info");
1596 return ret;
1597 }
1598
1599 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1600 {
1601 struct bch_member *m;
1602 unsigned dev_idx = ca->dev_idx, data;
1603 int ret;
1604
1605 down_write(&c->state_lock);
1606
1607 /*
1608 * We consume a reference to ca->ref, regardless of whether we succeed
1609 * or fail:
1610 */
1611 percpu_ref_put(&ca->ref);
1612
1613 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1614 bch_err(ca, "Cannot remove without losing data");
1615 ret = -BCH_ERR_device_state_not_allowed;
1616 goto err;
1617 }
1618
1619 __bch2_dev_read_only(c, ca);
1620
1621 ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1622 bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1623 if (ret)
1624 goto err;
1625
1626 ret = bch2_dev_remove_alloc(c, ca);
1627 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1628 if (ret)
1629 goto err;
1630
1631 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1632 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1633 if (ret)
1634 goto err;
1635
1636 ret = bch2_journal_flush(&c->journal);
1637 bch_err_msg(ca, ret, "bch2_journal_flush()");
1638 if (ret)
1639 goto err;
1640
1641 ret = bch2_replicas_gc2(c);
1642 bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1643 if (ret)
1644 goto err;
1645
1646 data = bch2_dev_has_data(c, ca);
1647 if (data) {
1648 struct printbuf data_has = PRINTBUF;
1649
1650 prt_bitflags(&data_has, __bch2_data_types, data);
1651 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1652 printbuf_exit(&data_has);
1653 ret = -EBUSY;
1654 goto err;
1655 }
1656
1657 __bch2_dev_offline(c, ca);
1658
1659 mutex_lock(&c->sb_lock);
1660 rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1661 mutex_unlock(&c->sb_lock);
1662
1663 percpu_ref_kill(&ca->ref);
1664 wait_for_completion(&ca->ref_completion);
1665
1666 bch2_dev_free(ca);
1667
1668 /*
1669 * At this point the device object has been removed in-core, but the
1670 * on-disk journal might still refer to the device index via sb device
1671 * usage entries. Recovery fails if it sees usage information for an
1672 * invalid device. Flush journal pins to push the back of the journal
1673 * past now invalid device index references before we update the
1674 * superblock, but after the device object has been removed so any
1675 * further journal writes elide usage info for the device.
1676 */
1677 bch2_journal_flush_all_pins(&c->journal);
1678
1679 /*
1680 * Free this device's slot in the bch_member array - all pointers to
1681 * this device must be gone:
1682 */
1683 mutex_lock(&c->sb_lock);
1684 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1685 memset(&m->uuid, 0, sizeof(m->uuid));
1686
1687 bch2_write_super(c);
1688
1689 mutex_unlock(&c->sb_lock);
1690 up_write(&c->state_lock);
1691
1692 bch2_dev_usage_journal_reserve(c);
1693 return 0;
1694 err:
1695 if (ca->mi.state == BCH_MEMBER_STATE_rw &&
1696 !percpu_ref_is_zero(&ca->io_ref))
1697 __bch2_dev_read_write(c, ca);
1698 up_write(&c->state_lock);
1699 return ret;
1700 }
1701
1702 /* Add new device to running filesystem: */
1703 int bch2_dev_add(struct bch_fs *c, const char *path)
1704 {
1705 struct bch_opts opts = bch2_opts_empty();
1706 struct bch_sb_handle sb;
1707 struct bch_dev *ca = NULL;
1708 struct bch_sb_field_members_v2 *mi;
1709 struct bch_member dev_mi;
1710 unsigned dev_idx, nr_devices, u64s;
1711 struct printbuf errbuf = PRINTBUF;
1712 struct printbuf label = PRINTBUF;
1713 int ret;
1714
1715 ret = bch2_read_super(path, &opts, &sb);
1716 bch_err_msg(c, ret, "reading super");
1717 if (ret)
1718 goto err;
1719
1720 dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1721
1722 if (BCH_MEMBER_GROUP(&dev_mi)) {
1723 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1724 if (label.allocation_failure) {
1725 ret = -ENOMEM;
1726 goto err;
1727 }
1728 }
1729
1730 ret = bch2_dev_may_add(sb.sb, c);
1731 if (ret)
1732 goto err;
1733
1734 ca = __bch2_dev_alloc(c, &dev_mi);
1735 if (!ca) {
1736 ret = -ENOMEM;
1737 goto err;
1738 }
1739
1740 bch2_dev_usage_init(ca);
1741
1742 ret = __bch2_dev_attach_bdev(ca, &sb);
1743 if (ret)
1744 goto err;
1745
1746 ret = bch2_dev_journal_alloc(ca);
1747 bch_err_msg(c, ret, "allocating journal");
1748 if (ret)
1749 goto err;
1750
1751 down_write(&c->state_lock);
1752 mutex_lock(&c->sb_lock);
1753
1754 ret = bch2_sb_from_fs(c, ca);
1755 bch_err_msg(c, ret, "setting up new superblock");
1756 if (ret)
1757 goto err_unlock;
1758
1759 if (dynamic_fault("bcachefs:add:no_slot"))
1760 goto no_slot;
1761
1762 for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++)
1763 if (!bch2_dev_exists(c->disk_sb.sb, dev_idx))
1764 goto have_slot;
1765 no_slot:
1766 ret = -BCH_ERR_ENOSPC_sb_members;
1767 bch_err_msg(c, ret, "setting up new superblock");
1768 goto err_unlock;
1769
1770 have_slot:
1771 nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices);
1772
1773 mi = bch2_sb_field_get(c->disk_sb.sb, members_v2);
1774 u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) +
1775 le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64));
1776
1777 mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s);
1778 if (!mi) {
1779 ret = -BCH_ERR_ENOSPC_sb_members;
1780 bch_err_msg(c, ret, "setting up new superblock");
1781 goto err_unlock;
1782 }
1783 struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1784
1785 /* success: */
1786
1787 *m = dev_mi;
1788 m->last_mount = cpu_to_le64(ktime_get_real_seconds());
1789 c->disk_sb.sb->nr_devices = nr_devices;
1790
1791 ca->disk_sb.sb->dev_idx = dev_idx;
1792 bch2_dev_attach(c, ca, dev_idx);
1793
1794 if (BCH_MEMBER_GROUP(&dev_mi)) {
1795 ret = __bch2_dev_group_set(c, ca, label.buf);
1796 bch_err_msg(c, ret, "creating new label");
1797 if (ret)
1798 goto err_unlock;
1799 }
1800
1801 bch2_write_super(c);
1802 mutex_unlock(&c->sb_lock);
1803
1804 bch2_dev_usage_journal_reserve(c);
1805
1806 ret = bch2_trans_mark_dev_sb(c, ca);
1807 bch_err_msg(ca, ret, "marking new superblock");
1808 if (ret)
1809 goto err_late;
1810
1811 ret = bch2_fs_freespace_init(c);
1812 bch_err_msg(ca, ret, "initializing free space");
1813 if (ret)
1814 goto err_late;
1815
1816 ca->new_fs_bucket_idx = 0;
1817
1818 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1819 __bch2_dev_read_write(c, ca);
1820
1821 up_write(&c->state_lock);
1822 return 0;
1823
1824 err_unlock:
1825 mutex_unlock(&c->sb_lock);
1826 up_write(&c->state_lock);
1827 err:
1828 if (ca)
1829 bch2_dev_free(ca);
1830 bch2_free_super(&sb);
1831 printbuf_exit(&label);
1832 printbuf_exit(&errbuf);
1833 bch_err_fn(c, ret);
1834 return ret;
1835 err_late:
1836 up_write(&c->state_lock);
1837 ca = NULL;
1838 goto err;
1839 }
1840
1841 /* Hot add existing device to running filesystem: */
1842 int bch2_dev_online(struct bch_fs *c, const char *path)
1843 {
1844 struct bch_opts opts = bch2_opts_empty();
1845 struct bch_sb_handle sb = { NULL };
1846 struct bch_dev *ca;
1847 unsigned dev_idx;
1848 int ret;
1849
1850 down_write(&c->state_lock);
1851
1852 ret = bch2_read_super(path, &opts, &sb);
1853 if (ret) {
1854 up_write(&c->state_lock);
1855 return ret;
1856 }
1857
1858 dev_idx = sb.sb->dev_idx;
1859
1860 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1861 bch_err_msg(c, ret, "bringing %s online", path);
1862 if (ret)
1863 goto err;
1864
1865 ret = bch2_dev_attach_bdev(c, &sb);
1866 if (ret)
1867 goto err;
1868
1869 ca = bch_dev_locked(c, dev_idx);
1870
1871 ret = bch2_trans_mark_dev_sb(c, ca);
1872 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1873 if (ret)
1874 goto err;
1875
1876 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1877 __bch2_dev_read_write(c, ca);
1878
1879 if (!ca->mi.freespace_initialized) {
1880 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1881 bch_err_msg(ca, ret, "initializing free space");
1882 if (ret)
1883 goto err;
1884 }
1885
1886 if (!ca->journal.nr) {
1887 ret = bch2_dev_journal_alloc(ca);
1888 bch_err_msg(ca, ret, "allocating journal");
1889 if (ret)
1890 goto err;
1891 }
1892
1893 mutex_lock(&c->sb_lock);
1894 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1895 cpu_to_le64(ktime_get_real_seconds());
1896 bch2_write_super(c);
1897 mutex_unlock(&c->sb_lock);
1898
1899 up_write(&c->state_lock);
1900 return 0;
1901 err:
1902 up_write(&c->state_lock);
1903 bch2_free_super(&sb);
1904 return ret;
1905 }
1906
1907 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1908 {
1909 down_write(&c->state_lock);
1910
1911 if (!bch2_dev_is_online(ca)) {
1912 bch_err(ca, "Already offline");
1913 up_write(&c->state_lock);
1914 return 0;
1915 }
1916
1917 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1918 bch_err(ca, "Cannot offline required disk");
1919 up_write(&c->state_lock);
1920 return -BCH_ERR_device_state_not_allowed;
1921 }
1922
1923 __bch2_dev_offline(c, ca);
1924
1925 up_write(&c->state_lock);
1926 return 0;
1927 }
1928
1929 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1930 {
1931 struct bch_member *m;
1932 u64 old_nbuckets;
1933 int ret = 0;
1934
1935 down_write(&c->state_lock);
1936 old_nbuckets = ca->mi.nbuckets;
1937
1938 if (nbuckets < ca->mi.nbuckets) {
1939 bch_err(ca, "Cannot shrink yet");
1940 ret = -EINVAL;
1941 goto err;
1942 }
1943
1944 if (bch2_dev_is_online(ca) &&
1945 get_capacity(ca->disk_sb.bdev->bd_disk) <
1946 ca->mi.bucket_size * nbuckets) {
1947 bch_err(ca, "New size larger than device");
1948 ret = -BCH_ERR_device_size_too_small;
1949 goto err;
1950 }
1951
1952 ret = bch2_dev_buckets_resize(c, ca, nbuckets);
1953 bch_err_msg(ca, ret, "resizing buckets");
1954 if (ret)
1955 goto err;
1956
1957 ret = bch2_trans_mark_dev_sb(c, ca);
1958 if (ret)
1959 goto err;
1960
1961 mutex_lock(&c->sb_lock);
1962 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1963 m->nbuckets = cpu_to_le64(nbuckets);
1964
1965 bch2_write_super(c);
1966 mutex_unlock(&c->sb_lock);
1967
1968 if (ca->mi.freespace_initialized) {
1969 ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
1970 if (ret)
1971 goto err;
1972
1973 /*
1974 * XXX: this is all wrong transactionally - we'll be able to do
1975 * this correctly after the disk space accounting rewrite
1976 */
1977 ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets;
1978 }
1979
1980 bch2_recalc_capacity(c);
1981 err:
1982 up_write(&c->state_lock);
1983 return ret;
1984 }
1985
1986 /* return with ref on ca->ref: */
1987 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
1988 {
1989 rcu_read_lock();
1990 for_each_member_device_rcu(c, ca, NULL)
1991 if (!strcmp(name, ca->name)) {
1992 rcu_read_unlock();
1993 return ca;
1994 }
1995 rcu_read_unlock();
1996 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
1997 }
1998
1999 /* Filesystem open: */
2000
2001 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2002 {
2003 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2004 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2005 }
2006
2007 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2008 struct bch_opts opts)
2009 {
2010 DARRAY(struct bch_sb_handle) sbs = { 0 };
2011 struct bch_fs *c = NULL;
2012 struct bch_sb_handle *best = NULL;
2013 struct printbuf errbuf = PRINTBUF;
2014 int ret = 0;
2015
2016 if (!try_module_get(THIS_MODULE))
2017 return ERR_PTR(-ENODEV);
2018
2019 if (!nr_devices) {
2020 ret = -EINVAL;
2021 goto err;
2022 }
2023
2024 ret = darray_make_room(&sbs, nr_devices);
2025 if (ret)
2026 goto err;
2027
2028 for (unsigned i = 0; i < nr_devices; i++) {
2029 struct bch_sb_handle sb = { NULL };
2030
2031 ret = bch2_read_super(devices[i], &opts, &sb);
2032 if (ret)
2033 goto err;
2034
2035 BUG_ON(darray_push(&sbs, sb));
2036 }
2037
2038 if (opts.nochanges && !opts.read_only) {
2039 ret = -BCH_ERR_erofs_nochanges;
2040 goto err_print;
2041 }
2042
2043 darray_for_each(sbs, sb)
2044 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2045 best = sb;
2046
2047 darray_for_each_reverse(sbs, sb) {
2048 ret = bch2_dev_in_fs(best, sb, &opts);
2049
2050 if (ret == -BCH_ERR_device_has_been_removed ||
2051 ret == -BCH_ERR_device_splitbrain) {
2052 bch2_free_super(sb);
2053 darray_remove_item(&sbs, sb);
2054 best -= best > sb;
2055 ret = 0;
2056 continue;
2057 }
2058
2059 if (ret)
2060 goto err_print;
2061 }
2062
2063 c = bch2_fs_alloc(best->sb, opts);
2064 ret = PTR_ERR_OR_ZERO(c);
2065 if (ret)
2066 goto err;
2067
2068 down_write(&c->state_lock);
2069 darray_for_each(sbs, sb) {
2070 ret = bch2_dev_attach_bdev(c, sb);
2071 if (ret) {
2072 up_write(&c->state_lock);
2073 goto err;
2074 }
2075 }
2076 up_write(&c->state_lock);
2077
2078 if (!bch2_fs_may_start(c)) {
2079 ret = -BCH_ERR_insufficient_devices_to_start;
2080 goto err_print;
2081 }
2082
2083 if (!c->opts.nostart) {
2084 ret = bch2_fs_start(c);
2085 if (ret)
2086 goto err;
2087 }
2088 out:
2089 darray_for_each(sbs, sb)
2090 bch2_free_super(sb);
2091 darray_exit(&sbs);
2092 printbuf_exit(&errbuf);
2093 module_put(THIS_MODULE);
2094 return c;
2095 err_print:
2096 pr_err("bch_fs_open err opening %s: %s",
2097 devices[0], bch2_err_str(ret));
2098 err:
2099 if (!IS_ERR_OR_NULL(c))
2100 bch2_fs_stop(c);
2101 c = ERR_PTR(ret);
2102 goto out;
2103 }
2104
2105 /* Global interfaces/init */
2106
2107 static void bcachefs_exit(void)
2108 {
2109 bch2_debug_exit();
2110 bch2_vfs_exit();
2111 bch2_chardev_exit();
2112 bch2_btree_key_cache_exit();
2113 if (bcachefs_kset)
2114 kset_unregister(bcachefs_kset);
2115 }
2116
2117 static int __init bcachefs_init(void)
2118 {
2119 bch2_bkey_pack_test();
2120
2121 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2122 bch2_btree_key_cache_init() ||
2123 bch2_chardev_init() ||
2124 bch2_vfs_init() ||
2125 bch2_debug_init())
2126 goto err;
2127
2128 return 0;
2129 err:
2130 bcachefs_exit();
2131 return -ENOMEM;
2132 }
2133
2134 #define BCH_DEBUG_PARAM(name, description) \
2135 bool bch2_##name; \
2136 module_param_named(name, bch2_##name, bool, 0644); \
2137 MODULE_PARM_DESC(name, description);
2138 BCH_DEBUG_PARAMS()
2139 #undef BCH_DEBUG_PARAM
2140
2141 __maybe_unused
2142 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2143 module_param_named(version, bch2_metadata_version, uint, 0400);
2144
2145 module_exit(bcachefs_exit);
2146 module_init(bcachefs_init);