]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/binfmt_elf.c
Merge tag 'afs-fixes-b-20190516' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
58
59 static int load_elf_binary(struct linux_binprm *bprm);
60
61 #ifdef CONFIG_USELIB
62 static int load_elf_library(struct file *);
63 #else
64 #define load_elf_library NULL
65 #endif
66
67 /*
68 * If we don't support core dumping, then supply a NULL so we
69 * don't even try.
70 */
71 #ifdef CONFIG_ELF_CORE
72 static int elf_core_dump(struct coredump_params *cprm);
73 #else
74 #define elf_core_dump NULL
75 #endif
76
77 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
78 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
79 #else
80 #define ELF_MIN_ALIGN PAGE_SIZE
81 #endif
82
83 #ifndef ELF_CORE_EFLAGS
84 #define ELF_CORE_EFLAGS 0
85 #endif
86
87 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
88 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
89 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
90
91 static struct linux_binfmt elf_format = {
92 .module = THIS_MODULE,
93 .load_binary = load_elf_binary,
94 .load_shlib = load_elf_library,
95 .core_dump = elf_core_dump,
96 .min_coredump = ELF_EXEC_PAGESIZE,
97 };
98
99 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
100
101 static int set_brk(unsigned long start, unsigned long end, int prot)
102 {
103 start = ELF_PAGEALIGN(start);
104 end = ELF_PAGEALIGN(end);
105 if (end > start) {
106 /*
107 * Map the last of the bss segment.
108 * If the header is requesting these pages to be
109 * executable, honour that (ppc32 needs this).
110 */
111 int error = vm_brk_flags(start, end - start,
112 prot & PROT_EXEC ? VM_EXEC : 0);
113 if (error)
114 return error;
115 }
116 current->mm->start_brk = current->mm->brk = end;
117 return 0;
118 }
119
120 /* We need to explicitly zero any fractional pages
121 after the data section (i.e. bss). This would
122 contain the junk from the file that should not
123 be in memory
124 */
125 static int padzero(unsigned long elf_bss)
126 {
127 unsigned long nbyte;
128
129 nbyte = ELF_PAGEOFFSET(elf_bss);
130 if (nbyte) {
131 nbyte = ELF_MIN_ALIGN - nbyte;
132 if (clear_user((void __user *) elf_bss, nbyte))
133 return -EFAULT;
134 }
135 return 0;
136 }
137
138 /* Let's use some macros to make this stack manipulation a little clearer */
139 #ifdef CONFIG_STACK_GROWSUP
140 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
141 #define STACK_ROUND(sp, items) \
142 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
143 #define STACK_ALLOC(sp, len) ({ \
144 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
145 old_sp; })
146 #else
147 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
148 #define STACK_ROUND(sp, items) \
149 (((unsigned long) (sp - items)) &~ 15UL)
150 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
151 #endif
152
153 #ifndef ELF_BASE_PLATFORM
154 /*
155 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
156 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
157 * will be copied to the user stack in the same manner as AT_PLATFORM.
158 */
159 #define ELF_BASE_PLATFORM NULL
160 #endif
161
162 static int
163 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
164 unsigned long load_addr, unsigned long interp_load_addr)
165 {
166 unsigned long p = bprm->p;
167 int argc = bprm->argc;
168 int envc = bprm->envc;
169 elf_addr_t __user *sp;
170 elf_addr_t __user *u_platform;
171 elf_addr_t __user *u_base_platform;
172 elf_addr_t __user *u_rand_bytes;
173 const char *k_platform = ELF_PLATFORM;
174 const char *k_base_platform = ELF_BASE_PLATFORM;
175 unsigned char k_rand_bytes[16];
176 int items;
177 elf_addr_t *elf_info;
178 int ei_index = 0;
179 const struct cred *cred = current_cred();
180 struct vm_area_struct *vma;
181
182 /*
183 * In some cases (e.g. Hyper-Threading), we want to avoid L1
184 * evictions by the processes running on the same package. One
185 * thing we can do is to shuffle the initial stack for them.
186 */
187
188 p = arch_align_stack(p);
189
190 /*
191 * If this architecture has a platform capability string, copy it
192 * to userspace. In some cases (Sparc), this info is impossible
193 * for userspace to get any other way, in others (i386) it is
194 * merely difficult.
195 */
196 u_platform = NULL;
197 if (k_platform) {
198 size_t len = strlen(k_platform) + 1;
199
200 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
201 if (__copy_to_user(u_platform, k_platform, len))
202 return -EFAULT;
203 }
204
205 /*
206 * If this architecture has a "base" platform capability
207 * string, copy it to userspace.
208 */
209 u_base_platform = NULL;
210 if (k_base_platform) {
211 size_t len = strlen(k_base_platform) + 1;
212
213 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
214 if (__copy_to_user(u_base_platform, k_base_platform, len))
215 return -EFAULT;
216 }
217
218 /*
219 * Generate 16 random bytes for userspace PRNG seeding.
220 */
221 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
222 u_rand_bytes = (elf_addr_t __user *)
223 STACK_ALLOC(p, sizeof(k_rand_bytes));
224 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
225 return -EFAULT;
226
227 /* Create the ELF interpreter info */
228 elf_info = (elf_addr_t *)current->mm->saved_auxv;
229 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
230 #define NEW_AUX_ENT(id, val) \
231 do { \
232 elf_info[ei_index++] = id; \
233 elf_info[ei_index++] = val; \
234 } while (0)
235
236 #ifdef ARCH_DLINFO
237 /*
238 * ARCH_DLINFO must come first so PPC can do its special alignment of
239 * AUXV.
240 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
241 * ARCH_DLINFO changes
242 */
243 ARCH_DLINFO;
244 #endif
245 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
246 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
247 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
248 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
249 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
250 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
251 NEW_AUX_ENT(AT_BASE, interp_load_addr);
252 NEW_AUX_ENT(AT_FLAGS, 0);
253 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
254 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
255 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
256 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
257 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
258 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
259 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
260 #ifdef ELF_HWCAP2
261 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
262 #endif
263 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
264 if (k_platform) {
265 NEW_AUX_ENT(AT_PLATFORM,
266 (elf_addr_t)(unsigned long)u_platform);
267 }
268 if (k_base_platform) {
269 NEW_AUX_ENT(AT_BASE_PLATFORM,
270 (elf_addr_t)(unsigned long)u_base_platform);
271 }
272 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
273 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
274 }
275 #undef NEW_AUX_ENT
276 /* AT_NULL is zero; clear the rest too */
277 memset(&elf_info[ei_index], 0,
278 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
279
280 /* And advance past the AT_NULL entry. */
281 ei_index += 2;
282
283 sp = STACK_ADD(p, ei_index);
284
285 items = (argc + 1) + (envc + 1) + 1;
286 bprm->p = STACK_ROUND(sp, items);
287
288 /* Point sp at the lowest address on the stack */
289 #ifdef CONFIG_STACK_GROWSUP
290 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
291 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
292 #else
293 sp = (elf_addr_t __user *)bprm->p;
294 #endif
295
296
297 /*
298 * Grow the stack manually; some architectures have a limit on how
299 * far ahead a user-space access may be in order to grow the stack.
300 */
301 vma = find_extend_vma(current->mm, bprm->p);
302 if (!vma)
303 return -EFAULT;
304
305 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
306 if (__put_user(argc, sp++))
307 return -EFAULT;
308
309 /* Populate list of argv pointers back to argv strings. */
310 p = current->mm->arg_end = current->mm->arg_start;
311 while (argc-- > 0) {
312 size_t len;
313 if (__put_user((elf_addr_t)p, sp++))
314 return -EFAULT;
315 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
316 if (!len || len > MAX_ARG_STRLEN)
317 return -EINVAL;
318 p += len;
319 }
320 if (__put_user(0, sp++))
321 return -EFAULT;
322 current->mm->arg_end = p;
323
324 /* Populate list of envp pointers back to envp strings. */
325 current->mm->env_end = current->mm->env_start = p;
326 while (envc-- > 0) {
327 size_t len;
328 if (__put_user((elf_addr_t)p, sp++))
329 return -EFAULT;
330 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
331 if (!len || len > MAX_ARG_STRLEN)
332 return -EINVAL;
333 p += len;
334 }
335 if (__put_user(0, sp++))
336 return -EFAULT;
337 current->mm->env_end = p;
338
339 /* Put the elf_info on the stack in the right place. */
340 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
341 return -EFAULT;
342 return 0;
343 }
344
345 #ifndef elf_map
346
347 static unsigned long elf_map(struct file *filep, unsigned long addr,
348 const struct elf_phdr *eppnt, int prot, int type,
349 unsigned long total_size)
350 {
351 unsigned long map_addr;
352 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
353 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
354 addr = ELF_PAGESTART(addr);
355 size = ELF_PAGEALIGN(size);
356
357 /* mmap() will return -EINVAL if given a zero size, but a
358 * segment with zero filesize is perfectly valid */
359 if (!size)
360 return addr;
361
362 /*
363 * total_size is the size of the ELF (interpreter) image.
364 * The _first_ mmap needs to know the full size, otherwise
365 * randomization might put this image into an overlapping
366 * position with the ELF binary image. (since size < total_size)
367 * So we first map the 'big' image - and unmap the remainder at
368 * the end. (which unmap is needed for ELF images with holes.)
369 */
370 if (total_size) {
371 total_size = ELF_PAGEALIGN(total_size);
372 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
373 if (!BAD_ADDR(map_addr))
374 vm_munmap(map_addr+size, total_size-size);
375 } else
376 map_addr = vm_mmap(filep, addr, size, prot, type, off);
377
378 if ((type & MAP_FIXED_NOREPLACE) &&
379 PTR_ERR((void *)map_addr) == -EEXIST)
380 pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
381 task_pid_nr(current), current->comm, (void *)addr);
382
383 return(map_addr);
384 }
385
386 #endif /* !elf_map */
387
388 static unsigned long total_mapping_size(const struct elf_phdr *cmds, int nr)
389 {
390 int i, first_idx = -1, last_idx = -1;
391
392 for (i = 0; i < nr; i++) {
393 if (cmds[i].p_type == PT_LOAD) {
394 last_idx = i;
395 if (first_idx == -1)
396 first_idx = i;
397 }
398 }
399 if (first_idx == -1)
400 return 0;
401
402 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
403 ELF_PAGESTART(cmds[first_idx].p_vaddr);
404 }
405
406 /**
407 * load_elf_phdrs() - load ELF program headers
408 * @elf_ex: ELF header of the binary whose program headers should be loaded
409 * @elf_file: the opened ELF binary file
410 *
411 * Loads ELF program headers from the binary file elf_file, which has the ELF
412 * header pointed to by elf_ex, into a newly allocated array. The caller is
413 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
414 */
415 static struct elf_phdr *load_elf_phdrs(const struct elfhdr *elf_ex,
416 struct file *elf_file)
417 {
418 struct elf_phdr *elf_phdata = NULL;
419 int retval, err = -1;
420 loff_t pos = elf_ex->e_phoff;
421 unsigned int size;
422
423 /*
424 * If the size of this structure has changed, then punt, since
425 * we will be doing the wrong thing.
426 */
427 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
428 goto out;
429
430 /* Sanity check the number of program headers... */
431 /* ...and their total size. */
432 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
433 if (size == 0 || size > 65536 || size > ELF_MIN_ALIGN)
434 goto out;
435
436 elf_phdata = kmalloc(size, GFP_KERNEL);
437 if (!elf_phdata)
438 goto out;
439
440 /* Read in the program headers */
441 retval = kernel_read(elf_file, elf_phdata, size, &pos);
442 if (retval != size) {
443 err = (retval < 0) ? retval : -EIO;
444 goto out;
445 }
446
447 /* Success! */
448 err = 0;
449 out:
450 if (err) {
451 kfree(elf_phdata);
452 elf_phdata = NULL;
453 }
454 return elf_phdata;
455 }
456
457 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
458
459 /**
460 * struct arch_elf_state - arch-specific ELF loading state
461 *
462 * This structure is used to preserve architecture specific data during
463 * the loading of an ELF file, throughout the checking of architecture
464 * specific ELF headers & through to the point where the ELF load is
465 * known to be proceeding (ie. SET_PERSONALITY).
466 *
467 * This implementation is a dummy for architectures which require no
468 * specific state.
469 */
470 struct arch_elf_state {
471 };
472
473 #define INIT_ARCH_ELF_STATE {}
474
475 /**
476 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
477 * @ehdr: The main ELF header
478 * @phdr: The program header to check
479 * @elf: The open ELF file
480 * @is_interp: True if the phdr is from the interpreter of the ELF being
481 * loaded, else false.
482 * @state: Architecture-specific state preserved throughout the process
483 * of loading the ELF.
484 *
485 * Inspects the program header phdr to validate its correctness and/or
486 * suitability for the system. Called once per ELF program header in the
487 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
488 * interpreter.
489 *
490 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
491 * with that return code.
492 */
493 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
494 struct elf_phdr *phdr,
495 struct file *elf, bool is_interp,
496 struct arch_elf_state *state)
497 {
498 /* Dummy implementation, always proceed */
499 return 0;
500 }
501
502 /**
503 * arch_check_elf() - check an ELF executable
504 * @ehdr: The main ELF header
505 * @has_interp: True if the ELF has an interpreter, else false.
506 * @interp_ehdr: The interpreter's ELF header
507 * @state: Architecture-specific state preserved throughout the process
508 * of loading the ELF.
509 *
510 * Provides a final opportunity for architecture code to reject the loading
511 * of the ELF & cause an exec syscall to return an error. This is called after
512 * all program headers to be checked by arch_elf_pt_proc have been.
513 *
514 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
515 * with that return code.
516 */
517 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
518 struct elfhdr *interp_ehdr,
519 struct arch_elf_state *state)
520 {
521 /* Dummy implementation, always proceed */
522 return 0;
523 }
524
525 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
526
527 static inline int make_prot(u32 p_flags)
528 {
529 int prot = 0;
530
531 if (p_flags & PF_R)
532 prot |= PROT_READ;
533 if (p_flags & PF_W)
534 prot |= PROT_WRITE;
535 if (p_flags & PF_X)
536 prot |= PROT_EXEC;
537 return prot;
538 }
539
540 /* This is much more generalized than the library routine read function,
541 so we keep this separate. Technically the library read function
542 is only provided so that we can read a.out libraries that have
543 an ELF header */
544
545 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
546 struct file *interpreter, unsigned long *interp_map_addr,
547 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
548 {
549 struct elf_phdr *eppnt;
550 unsigned long load_addr = 0;
551 int load_addr_set = 0;
552 unsigned long last_bss = 0, elf_bss = 0;
553 int bss_prot = 0;
554 unsigned long error = ~0UL;
555 unsigned long total_size;
556 int i;
557
558 /* First of all, some simple consistency checks */
559 if (interp_elf_ex->e_type != ET_EXEC &&
560 interp_elf_ex->e_type != ET_DYN)
561 goto out;
562 if (!elf_check_arch(interp_elf_ex) ||
563 elf_check_fdpic(interp_elf_ex))
564 goto out;
565 if (!interpreter->f_op->mmap)
566 goto out;
567
568 total_size = total_mapping_size(interp_elf_phdata,
569 interp_elf_ex->e_phnum);
570 if (!total_size) {
571 error = -EINVAL;
572 goto out;
573 }
574
575 eppnt = interp_elf_phdata;
576 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
577 if (eppnt->p_type == PT_LOAD) {
578 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
579 int elf_prot = make_prot(eppnt->p_flags);
580 unsigned long vaddr = 0;
581 unsigned long k, map_addr;
582
583 vaddr = eppnt->p_vaddr;
584 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
585 elf_type |= MAP_FIXED_NOREPLACE;
586 else if (no_base && interp_elf_ex->e_type == ET_DYN)
587 load_addr = -vaddr;
588
589 map_addr = elf_map(interpreter, load_addr + vaddr,
590 eppnt, elf_prot, elf_type, total_size);
591 total_size = 0;
592 if (!*interp_map_addr)
593 *interp_map_addr = map_addr;
594 error = map_addr;
595 if (BAD_ADDR(map_addr))
596 goto out;
597
598 if (!load_addr_set &&
599 interp_elf_ex->e_type == ET_DYN) {
600 load_addr = map_addr - ELF_PAGESTART(vaddr);
601 load_addr_set = 1;
602 }
603
604 /*
605 * Check to see if the section's size will overflow the
606 * allowed task size. Note that p_filesz must always be
607 * <= p_memsize so it's only necessary to check p_memsz.
608 */
609 k = load_addr + eppnt->p_vaddr;
610 if (BAD_ADDR(k) ||
611 eppnt->p_filesz > eppnt->p_memsz ||
612 eppnt->p_memsz > TASK_SIZE ||
613 TASK_SIZE - eppnt->p_memsz < k) {
614 error = -ENOMEM;
615 goto out;
616 }
617
618 /*
619 * Find the end of the file mapping for this phdr, and
620 * keep track of the largest address we see for this.
621 */
622 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
623 if (k > elf_bss)
624 elf_bss = k;
625
626 /*
627 * Do the same thing for the memory mapping - between
628 * elf_bss and last_bss is the bss section.
629 */
630 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
631 if (k > last_bss) {
632 last_bss = k;
633 bss_prot = elf_prot;
634 }
635 }
636 }
637
638 /*
639 * Now fill out the bss section: first pad the last page from
640 * the file up to the page boundary, and zero it from elf_bss
641 * up to the end of the page.
642 */
643 if (padzero(elf_bss)) {
644 error = -EFAULT;
645 goto out;
646 }
647 /*
648 * Next, align both the file and mem bss up to the page size,
649 * since this is where elf_bss was just zeroed up to, and where
650 * last_bss will end after the vm_brk_flags() below.
651 */
652 elf_bss = ELF_PAGEALIGN(elf_bss);
653 last_bss = ELF_PAGEALIGN(last_bss);
654 /* Finally, if there is still more bss to allocate, do it. */
655 if (last_bss > elf_bss) {
656 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
657 bss_prot & PROT_EXEC ? VM_EXEC : 0);
658 if (error)
659 goto out;
660 }
661
662 error = load_addr;
663 out:
664 return error;
665 }
666
667 /*
668 * These are the functions used to load ELF style executables and shared
669 * libraries. There is no binary dependent code anywhere else.
670 */
671
672 #ifndef STACK_RND_MASK
673 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
674 #endif
675
676 static unsigned long randomize_stack_top(unsigned long stack_top)
677 {
678 unsigned long random_variable = 0;
679
680 if (current->flags & PF_RANDOMIZE) {
681 random_variable = get_random_long();
682 random_variable &= STACK_RND_MASK;
683 random_variable <<= PAGE_SHIFT;
684 }
685 #ifdef CONFIG_STACK_GROWSUP
686 return PAGE_ALIGN(stack_top) + random_variable;
687 #else
688 return PAGE_ALIGN(stack_top) - random_variable;
689 #endif
690 }
691
692 static int load_elf_binary(struct linux_binprm *bprm)
693 {
694 struct file *interpreter = NULL; /* to shut gcc up */
695 unsigned long load_addr = 0, load_bias = 0;
696 int load_addr_set = 0;
697 unsigned long error;
698 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
699 unsigned long elf_bss, elf_brk;
700 int bss_prot = 0;
701 int retval, i;
702 unsigned long elf_entry;
703 unsigned long interp_load_addr = 0;
704 unsigned long start_code, end_code, start_data, end_data;
705 unsigned long reloc_func_desc __maybe_unused = 0;
706 int executable_stack = EXSTACK_DEFAULT;
707 struct {
708 struct elfhdr elf_ex;
709 struct elfhdr interp_elf_ex;
710 } *loc;
711 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
712 struct pt_regs *regs;
713
714 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
715 if (!loc) {
716 retval = -ENOMEM;
717 goto out_ret;
718 }
719
720 /* Get the exec-header */
721 loc->elf_ex = *((struct elfhdr *)bprm->buf);
722
723 retval = -ENOEXEC;
724 /* First of all, some simple consistency checks */
725 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
726 goto out;
727
728 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
729 goto out;
730 if (!elf_check_arch(&loc->elf_ex))
731 goto out;
732 if (elf_check_fdpic(&loc->elf_ex))
733 goto out;
734 if (!bprm->file->f_op->mmap)
735 goto out;
736
737 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
738 if (!elf_phdata)
739 goto out;
740
741 elf_ppnt = elf_phdata;
742 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
743 char *elf_interpreter;
744 loff_t pos;
745
746 if (elf_ppnt->p_type != PT_INTERP)
747 continue;
748
749 /*
750 * This is the program interpreter used for shared libraries -
751 * for now assume that this is an a.out format binary.
752 */
753 retval = -ENOEXEC;
754 if (elf_ppnt->p_filesz > PATH_MAX || elf_ppnt->p_filesz < 2)
755 goto out_free_ph;
756
757 retval = -ENOMEM;
758 elf_interpreter = kmalloc(elf_ppnt->p_filesz, GFP_KERNEL);
759 if (!elf_interpreter)
760 goto out_free_ph;
761
762 pos = elf_ppnt->p_offset;
763 retval = kernel_read(bprm->file, elf_interpreter,
764 elf_ppnt->p_filesz, &pos);
765 if (retval != elf_ppnt->p_filesz) {
766 if (retval >= 0)
767 retval = -EIO;
768 goto out_free_interp;
769 }
770 /* make sure path is NULL terminated */
771 retval = -ENOEXEC;
772 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
773 goto out_free_interp;
774
775 interpreter = open_exec(elf_interpreter);
776 kfree(elf_interpreter);
777 retval = PTR_ERR(interpreter);
778 if (IS_ERR(interpreter))
779 goto out_free_ph;
780
781 /*
782 * If the binary is not readable then enforce mm->dumpable = 0
783 * regardless of the interpreter's permissions.
784 */
785 would_dump(bprm, interpreter);
786
787 /* Get the exec headers */
788 pos = 0;
789 retval = kernel_read(interpreter, &loc->interp_elf_ex,
790 sizeof(loc->interp_elf_ex), &pos);
791 if (retval != sizeof(loc->interp_elf_ex)) {
792 if (retval >= 0)
793 retval = -EIO;
794 goto out_free_dentry;
795 }
796
797 break;
798
799 out_free_interp:
800 kfree(elf_interpreter);
801 goto out_free_ph;
802 }
803
804 elf_ppnt = elf_phdata;
805 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
806 switch (elf_ppnt->p_type) {
807 case PT_GNU_STACK:
808 if (elf_ppnt->p_flags & PF_X)
809 executable_stack = EXSTACK_ENABLE_X;
810 else
811 executable_stack = EXSTACK_DISABLE_X;
812 break;
813
814 case PT_LOPROC ... PT_HIPROC:
815 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
816 bprm->file, false,
817 &arch_state);
818 if (retval)
819 goto out_free_dentry;
820 break;
821 }
822
823 /* Some simple consistency checks for the interpreter */
824 if (interpreter) {
825 retval = -ELIBBAD;
826 /* Not an ELF interpreter */
827 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
828 goto out_free_dentry;
829 /* Verify the interpreter has a valid arch */
830 if (!elf_check_arch(&loc->interp_elf_ex) ||
831 elf_check_fdpic(&loc->interp_elf_ex))
832 goto out_free_dentry;
833
834 /* Load the interpreter program headers */
835 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
836 interpreter);
837 if (!interp_elf_phdata)
838 goto out_free_dentry;
839
840 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
841 elf_ppnt = interp_elf_phdata;
842 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
843 switch (elf_ppnt->p_type) {
844 case PT_LOPROC ... PT_HIPROC:
845 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
846 elf_ppnt, interpreter,
847 true, &arch_state);
848 if (retval)
849 goto out_free_dentry;
850 break;
851 }
852 }
853
854 /*
855 * Allow arch code to reject the ELF at this point, whilst it's
856 * still possible to return an error to the code that invoked
857 * the exec syscall.
858 */
859 retval = arch_check_elf(&loc->elf_ex,
860 !!interpreter, &loc->interp_elf_ex,
861 &arch_state);
862 if (retval)
863 goto out_free_dentry;
864
865 /* Flush all traces of the currently running executable */
866 retval = flush_old_exec(bprm);
867 if (retval)
868 goto out_free_dentry;
869
870 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
871 may depend on the personality. */
872 SET_PERSONALITY2(loc->elf_ex, &arch_state);
873 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
874 current->personality |= READ_IMPLIES_EXEC;
875
876 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
877 current->flags |= PF_RANDOMIZE;
878
879 setup_new_exec(bprm);
880 install_exec_creds(bprm);
881
882 /* Do this so that we can load the interpreter, if need be. We will
883 change some of these later */
884 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
885 executable_stack);
886 if (retval < 0)
887 goto out_free_dentry;
888
889 elf_bss = 0;
890 elf_brk = 0;
891
892 start_code = ~0UL;
893 end_code = 0;
894 start_data = 0;
895 end_data = 0;
896
897 /* Now we do a little grungy work by mmapping the ELF image into
898 the correct location in memory. */
899 for(i = 0, elf_ppnt = elf_phdata;
900 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
901 int elf_prot, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
902 unsigned long k, vaddr;
903 unsigned long total_size = 0;
904
905 if (elf_ppnt->p_type != PT_LOAD)
906 continue;
907
908 if (unlikely (elf_brk > elf_bss)) {
909 unsigned long nbyte;
910
911 /* There was a PT_LOAD segment with p_memsz > p_filesz
912 before this one. Map anonymous pages, if needed,
913 and clear the area. */
914 retval = set_brk(elf_bss + load_bias,
915 elf_brk + load_bias,
916 bss_prot);
917 if (retval)
918 goto out_free_dentry;
919 nbyte = ELF_PAGEOFFSET(elf_bss);
920 if (nbyte) {
921 nbyte = ELF_MIN_ALIGN - nbyte;
922 if (nbyte > elf_brk - elf_bss)
923 nbyte = elf_brk - elf_bss;
924 if (clear_user((void __user *)elf_bss +
925 load_bias, nbyte)) {
926 /*
927 * This bss-zeroing can fail if the ELF
928 * file specifies odd protections. So
929 * we don't check the return value
930 */
931 }
932 }
933
934 /*
935 * Some binaries have overlapping elf segments and then
936 * we have to forcefully map over an existing mapping
937 * e.g. over this newly established brk mapping.
938 */
939 elf_fixed = MAP_FIXED;
940 }
941
942 elf_prot = make_prot(elf_ppnt->p_flags);
943
944 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
945
946 vaddr = elf_ppnt->p_vaddr;
947 /*
948 * If we are loading ET_EXEC or we have already performed
949 * the ET_DYN load_addr calculations, proceed normally.
950 */
951 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
952 elf_flags |= elf_fixed;
953 } else if (loc->elf_ex.e_type == ET_DYN) {
954 /*
955 * This logic is run once for the first LOAD Program
956 * Header for ET_DYN binaries to calculate the
957 * randomization (load_bias) for all the LOAD
958 * Program Headers, and to calculate the entire
959 * size of the ELF mapping (total_size). (Note that
960 * load_addr_set is set to true later once the
961 * initial mapping is performed.)
962 *
963 * There are effectively two types of ET_DYN
964 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
965 * and loaders (ET_DYN without INTERP, since they
966 * _are_ the ELF interpreter). The loaders must
967 * be loaded away from programs since the program
968 * may otherwise collide with the loader (especially
969 * for ET_EXEC which does not have a randomized
970 * position). For example to handle invocations of
971 * "./ld.so someprog" to test out a new version of
972 * the loader, the subsequent program that the
973 * loader loads must avoid the loader itself, so
974 * they cannot share the same load range. Sufficient
975 * room for the brk must be allocated with the
976 * loader as well, since brk must be available with
977 * the loader.
978 *
979 * Therefore, programs are loaded offset from
980 * ELF_ET_DYN_BASE and loaders are loaded into the
981 * independently randomized mmap region (0 load_bias
982 * without MAP_FIXED).
983 */
984 if (interpreter) {
985 load_bias = ELF_ET_DYN_BASE;
986 if (current->flags & PF_RANDOMIZE)
987 load_bias += arch_mmap_rnd();
988 elf_flags |= elf_fixed;
989 } else
990 load_bias = 0;
991
992 /*
993 * Since load_bias is used for all subsequent loading
994 * calculations, we must lower it by the first vaddr
995 * so that the remaining calculations based on the
996 * ELF vaddrs will be correctly offset. The result
997 * is then page aligned.
998 */
999 load_bias = ELF_PAGESTART(load_bias - vaddr);
1000
1001 total_size = total_mapping_size(elf_phdata,
1002 loc->elf_ex.e_phnum);
1003 if (!total_size) {
1004 retval = -EINVAL;
1005 goto out_free_dentry;
1006 }
1007 }
1008
1009 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1010 elf_prot, elf_flags, total_size);
1011 if (BAD_ADDR(error)) {
1012 retval = IS_ERR((void *)error) ?
1013 PTR_ERR((void*)error) : -EINVAL;
1014 goto out_free_dentry;
1015 }
1016
1017 if (!load_addr_set) {
1018 load_addr_set = 1;
1019 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1020 if (loc->elf_ex.e_type == ET_DYN) {
1021 load_bias += error -
1022 ELF_PAGESTART(load_bias + vaddr);
1023 load_addr += load_bias;
1024 reloc_func_desc = load_bias;
1025 }
1026 }
1027 k = elf_ppnt->p_vaddr;
1028 if (k < start_code)
1029 start_code = k;
1030 if (start_data < k)
1031 start_data = k;
1032
1033 /*
1034 * Check to see if the section's size will overflow the
1035 * allowed task size. Note that p_filesz must always be
1036 * <= p_memsz so it is only necessary to check p_memsz.
1037 */
1038 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1039 elf_ppnt->p_memsz > TASK_SIZE ||
1040 TASK_SIZE - elf_ppnt->p_memsz < k) {
1041 /* set_brk can never work. Avoid overflows. */
1042 retval = -EINVAL;
1043 goto out_free_dentry;
1044 }
1045
1046 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1047
1048 if (k > elf_bss)
1049 elf_bss = k;
1050 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1051 end_code = k;
1052 if (end_data < k)
1053 end_data = k;
1054 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1055 if (k > elf_brk) {
1056 bss_prot = elf_prot;
1057 elf_brk = k;
1058 }
1059 }
1060
1061 loc->elf_ex.e_entry += load_bias;
1062 elf_bss += load_bias;
1063 elf_brk += load_bias;
1064 start_code += load_bias;
1065 end_code += load_bias;
1066 start_data += load_bias;
1067 end_data += load_bias;
1068
1069 /* Calling set_brk effectively mmaps the pages that we need
1070 * for the bss and break sections. We must do this before
1071 * mapping in the interpreter, to make sure it doesn't wind
1072 * up getting placed where the bss needs to go.
1073 */
1074 retval = set_brk(elf_bss, elf_brk, bss_prot);
1075 if (retval)
1076 goto out_free_dentry;
1077 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1078 retval = -EFAULT; /* Nobody gets to see this, but.. */
1079 goto out_free_dentry;
1080 }
1081
1082 if (interpreter) {
1083 unsigned long interp_map_addr = 0;
1084
1085 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1086 interpreter,
1087 &interp_map_addr,
1088 load_bias, interp_elf_phdata);
1089 if (!IS_ERR((void *)elf_entry)) {
1090 /*
1091 * load_elf_interp() returns relocation
1092 * adjustment
1093 */
1094 interp_load_addr = elf_entry;
1095 elf_entry += loc->interp_elf_ex.e_entry;
1096 }
1097 if (BAD_ADDR(elf_entry)) {
1098 retval = IS_ERR((void *)elf_entry) ?
1099 (int)elf_entry : -EINVAL;
1100 goto out_free_dentry;
1101 }
1102 reloc_func_desc = interp_load_addr;
1103
1104 allow_write_access(interpreter);
1105 fput(interpreter);
1106 } else {
1107 elf_entry = loc->elf_ex.e_entry;
1108 if (BAD_ADDR(elf_entry)) {
1109 retval = -EINVAL;
1110 goto out_free_dentry;
1111 }
1112 }
1113
1114 kfree(interp_elf_phdata);
1115 kfree(elf_phdata);
1116
1117 set_binfmt(&elf_format);
1118
1119 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1120 retval = arch_setup_additional_pages(bprm, !!interpreter);
1121 if (retval < 0)
1122 goto out;
1123 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1124
1125 retval = create_elf_tables(bprm, &loc->elf_ex,
1126 load_addr, interp_load_addr);
1127 if (retval < 0)
1128 goto out;
1129 /* N.B. passed_fileno might not be initialized? */
1130 current->mm->end_code = end_code;
1131 current->mm->start_code = start_code;
1132 current->mm->start_data = start_data;
1133 current->mm->end_data = end_data;
1134 current->mm->start_stack = bprm->p;
1135
1136 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1137 /*
1138 * For architectures with ELF randomization, when executing
1139 * a loader directly (i.e. no interpreter listed in ELF
1140 * headers), move the brk area out of the mmap region
1141 * (since it grows up, and may collide early with the stack
1142 * growing down), and into the unused ELF_ET_DYN_BASE region.
1143 */
1144 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) && !interpreter)
1145 current->mm->brk = current->mm->start_brk =
1146 ELF_ET_DYN_BASE;
1147
1148 current->mm->brk = current->mm->start_brk =
1149 arch_randomize_brk(current->mm);
1150 #ifdef compat_brk_randomized
1151 current->brk_randomized = 1;
1152 #endif
1153 }
1154
1155 if (current->personality & MMAP_PAGE_ZERO) {
1156 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1157 and some applications "depend" upon this behavior.
1158 Since we do not have the power to recompile these, we
1159 emulate the SVr4 behavior. Sigh. */
1160 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1161 MAP_FIXED | MAP_PRIVATE, 0);
1162 }
1163
1164 regs = current_pt_regs();
1165 #ifdef ELF_PLAT_INIT
1166 /*
1167 * The ABI may specify that certain registers be set up in special
1168 * ways (on i386 %edx is the address of a DT_FINI function, for
1169 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1170 * that the e_entry field is the address of the function descriptor
1171 * for the startup routine, rather than the address of the startup
1172 * routine itself. This macro performs whatever initialization to
1173 * the regs structure is required as well as any relocations to the
1174 * function descriptor entries when executing dynamically links apps.
1175 */
1176 ELF_PLAT_INIT(regs, reloc_func_desc);
1177 #endif
1178
1179 finalize_exec(bprm);
1180 start_thread(regs, elf_entry, bprm->p);
1181 retval = 0;
1182 out:
1183 kfree(loc);
1184 out_ret:
1185 return retval;
1186
1187 /* error cleanup */
1188 out_free_dentry:
1189 kfree(interp_elf_phdata);
1190 allow_write_access(interpreter);
1191 if (interpreter)
1192 fput(interpreter);
1193 out_free_ph:
1194 kfree(elf_phdata);
1195 goto out;
1196 }
1197
1198 #ifdef CONFIG_USELIB
1199 /* This is really simpleminded and specialized - we are loading an
1200 a.out library that is given an ELF header. */
1201 static int load_elf_library(struct file *file)
1202 {
1203 struct elf_phdr *elf_phdata;
1204 struct elf_phdr *eppnt;
1205 unsigned long elf_bss, bss, len;
1206 int retval, error, i, j;
1207 struct elfhdr elf_ex;
1208 loff_t pos = 0;
1209
1210 error = -ENOEXEC;
1211 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1212 if (retval != sizeof(elf_ex))
1213 goto out;
1214
1215 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1216 goto out;
1217
1218 /* First of all, some simple consistency checks */
1219 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1220 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1221 goto out;
1222 if (elf_check_fdpic(&elf_ex))
1223 goto out;
1224
1225 /* Now read in all of the header information */
1226
1227 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1228 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1229
1230 error = -ENOMEM;
1231 elf_phdata = kmalloc(j, GFP_KERNEL);
1232 if (!elf_phdata)
1233 goto out;
1234
1235 eppnt = elf_phdata;
1236 error = -ENOEXEC;
1237 pos = elf_ex.e_phoff;
1238 retval = kernel_read(file, eppnt, j, &pos);
1239 if (retval != j)
1240 goto out_free_ph;
1241
1242 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1243 if ((eppnt + i)->p_type == PT_LOAD)
1244 j++;
1245 if (j != 1)
1246 goto out_free_ph;
1247
1248 while (eppnt->p_type != PT_LOAD)
1249 eppnt++;
1250
1251 /* Now use mmap to map the library into memory. */
1252 error = vm_mmap(file,
1253 ELF_PAGESTART(eppnt->p_vaddr),
1254 (eppnt->p_filesz +
1255 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1256 PROT_READ | PROT_WRITE | PROT_EXEC,
1257 MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1258 (eppnt->p_offset -
1259 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1260 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1261 goto out_free_ph;
1262
1263 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1264 if (padzero(elf_bss)) {
1265 error = -EFAULT;
1266 goto out_free_ph;
1267 }
1268
1269 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1270 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1271 if (bss > len) {
1272 error = vm_brk(len, bss - len);
1273 if (error)
1274 goto out_free_ph;
1275 }
1276 error = 0;
1277
1278 out_free_ph:
1279 kfree(elf_phdata);
1280 out:
1281 return error;
1282 }
1283 #endif /* #ifdef CONFIG_USELIB */
1284
1285 #ifdef CONFIG_ELF_CORE
1286 /*
1287 * ELF core dumper
1288 *
1289 * Modelled on fs/exec.c:aout_core_dump()
1290 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1291 */
1292
1293 /*
1294 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1295 * that are useful for post-mortem analysis are included in every core dump.
1296 * In that way we ensure that the core dump is fully interpretable later
1297 * without matching up the same kernel and hardware config to see what PC values
1298 * meant. These special mappings include - vDSO, vsyscall, and other
1299 * architecture specific mappings
1300 */
1301 static bool always_dump_vma(struct vm_area_struct *vma)
1302 {
1303 /* Any vsyscall mappings? */
1304 if (vma == get_gate_vma(vma->vm_mm))
1305 return true;
1306
1307 /*
1308 * Assume that all vmas with a .name op should always be dumped.
1309 * If this changes, a new vm_ops field can easily be added.
1310 */
1311 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1312 return true;
1313
1314 /*
1315 * arch_vma_name() returns non-NULL for special architecture mappings,
1316 * such as vDSO sections.
1317 */
1318 if (arch_vma_name(vma))
1319 return true;
1320
1321 return false;
1322 }
1323
1324 /*
1325 * Decide what to dump of a segment, part, all or none.
1326 */
1327 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1328 unsigned long mm_flags)
1329 {
1330 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1331
1332 /* always dump the vdso and vsyscall sections */
1333 if (always_dump_vma(vma))
1334 goto whole;
1335
1336 if (vma->vm_flags & VM_DONTDUMP)
1337 return 0;
1338
1339 /* support for DAX */
1340 if (vma_is_dax(vma)) {
1341 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1342 goto whole;
1343 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1344 goto whole;
1345 return 0;
1346 }
1347
1348 /* Hugetlb memory check */
1349 if (vma->vm_flags & VM_HUGETLB) {
1350 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1351 goto whole;
1352 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1353 goto whole;
1354 return 0;
1355 }
1356
1357 /* Do not dump I/O mapped devices or special mappings */
1358 if (vma->vm_flags & VM_IO)
1359 return 0;
1360
1361 /* By default, dump shared memory if mapped from an anonymous file. */
1362 if (vma->vm_flags & VM_SHARED) {
1363 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1364 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1365 goto whole;
1366 return 0;
1367 }
1368
1369 /* Dump segments that have been written to. */
1370 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1371 goto whole;
1372 if (vma->vm_file == NULL)
1373 return 0;
1374
1375 if (FILTER(MAPPED_PRIVATE))
1376 goto whole;
1377
1378 /*
1379 * If this looks like the beginning of a DSO or executable mapping,
1380 * check for an ELF header. If we find one, dump the first page to
1381 * aid in determining what was mapped here.
1382 */
1383 if (FILTER(ELF_HEADERS) &&
1384 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1385 u32 __user *header = (u32 __user *) vma->vm_start;
1386 u32 word;
1387 mm_segment_t fs = get_fs();
1388 /*
1389 * Doing it this way gets the constant folded by GCC.
1390 */
1391 union {
1392 u32 cmp;
1393 char elfmag[SELFMAG];
1394 } magic;
1395 BUILD_BUG_ON(SELFMAG != sizeof word);
1396 magic.elfmag[EI_MAG0] = ELFMAG0;
1397 magic.elfmag[EI_MAG1] = ELFMAG1;
1398 magic.elfmag[EI_MAG2] = ELFMAG2;
1399 magic.elfmag[EI_MAG3] = ELFMAG3;
1400 /*
1401 * Switch to the user "segment" for get_user(),
1402 * then put back what elf_core_dump() had in place.
1403 */
1404 set_fs(USER_DS);
1405 if (unlikely(get_user(word, header)))
1406 word = 0;
1407 set_fs(fs);
1408 if (word == magic.cmp)
1409 return PAGE_SIZE;
1410 }
1411
1412 #undef FILTER
1413
1414 return 0;
1415
1416 whole:
1417 return vma->vm_end - vma->vm_start;
1418 }
1419
1420 /* An ELF note in memory */
1421 struct memelfnote
1422 {
1423 const char *name;
1424 int type;
1425 unsigned int datasz;
1426 void *data;
1427 };
1428
1429 static int notesize(struct memelfnote *en)
1430 {
1431 int sz;
1432
1433 sz = sizeof(struct elf_note);
1434 sz += roundup(strlen(en->name) + 1, 4);
1435 sz += roundup(en->datasz, 4);
1436
1437 return sz;
1438 }
1439
1440 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1441 {
1442 struct elf_note en;
1443 en.n_namesz = strlen(men->name) + 1;
1444 en.n_descsz = men->datasz;
1445 en.n_type = men->type;
1446
1447 return dump_emit(cprm, &en, sizeof(en)) &&
1448 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1449 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1450 }
1451
1452 static void fill_elf_header(struct elfhdr *elf, int segs,
1453 u16 machine, u32 flags)
1454 {
1455 memset(elf, 0, sizeof(*elf));
1456
1457 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1458 elf->e_ident[EI_CLASS] = ELF_CLASS;
1459 elf->e_ident[EI_DATA] = ELF_DATA;
1460 elf->e_ident[EI_VERSION] = EV_CURRENT;
1461 elf->e_ident[EI_OSABI] = ELF_OSABI;
1462
1463 elf->e_type = ET_CORE;
1464 elf->e_machine = machine;
1465 elf->e_version = EV_CURRENT;
1466 elf->e_phoff = sizeof(struct elfhdr);
1467 elf->e_flags = flags;
1468 elf->e_ehsize = sizeof(struct elfhdr);
1469 elf->e_phentsize = sizeof(struct elf_phdr);
1470 elf->e_phnum = segs;
1471 }
1472
1473 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1474 {
1475 phdr->p_type = PT_NOTE;
1476 phdr->p_offset = offset;
1477 phdr->p_vaddr = 0;
1478 phdr->p_paddr = 0;
1479 phdr->p_filesz = sz;
1480 phdr->p_memsz = 0;
1481 phdr->p_flags = 0;
1482 phdr->p_align = 0;
1483 }
1484
1485 static void fill_note(struct memelfnote *note, const char *name, int type,
1486 unsigned int sz, void *data)
1487 {
1488 note->name = name;
1489 note->type = type;
1490 note->datasz = sz;
1491 note->data = data;
1492 }
1493
1494 /*
1495 * fill up all the fields in prstatus from the given task struct, except
1496 * registers which need to be filled up separately.
1497 */
1498 static void fill_prstatus(struct elf_prstatus *prstatus,
1499 struct task_struct *p, long signr)
1500 {
1501 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1502 prstatus->pr_sigpend = p->pending.signal.sig[0];
1503 prstatus->pr_sighold = p->blocked.sig[0];
1504 rcu_read_lock();
1505 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1506 rcu_read_unlock();
1507 prstatus->pr_pid = task_pid_vnr(p);
1508 prstatus->pr_pgrp = task_pgrp_vnr(p);
1509 prstatus->pr_sid = task_session_vnr(p);
1510 if (thread_group_leader(p)) {
1511 struct task_cputime cputime;
1512
1513 /*
1514 * This is the record for the group leader. It shows the
1515 * group-wide total, not its individual thread total.
1516 */
1517 thread_group_cputime(p, &cputime);
1518 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1519 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1520 } else {
1521 u64 utime, stime;
1522
1523 task_cputime(p, &utime, &stime);
1524 prstatus->pr_utime = ns_to_timeval(utime);
1525 prstatus->pr_stime = ns_to_timeval(stime);
1526 }
1527
1528 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1529 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1530 }
1531
1532 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1533 struct mm_struct *mm)
1534 {
1535 const struct cred *cred;
1536 unsigned int i, len;
1537
1538 /* first copy the parameters from user space */
1539 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1540
1541 len = mm->arg_end - mm->arg_start;
1542 if (len >= ELF_PRARGSZ)
1543 len = ELF_PRARGSZ-1;
1544 if (copy_from_user(&psinfo->pr_psargs,
1545 (const char __user *)mm->arg_start, len))
1546 return -EFAULT;
1547 for(i = 0; i < len; i++)
1548 if (psinfo->pr_psargs[i] == 0)
1549 psinfo->pr_psargs[i] = ' ';
1550 psinfo->pr_psargs[len] = 0;
1551
1552 rcu_read_lock();
1553 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1554 rcu_read_unlock();
1555 psinfo->pr_pid = task_pid_vnr(p);
1556 psinfo->pr_pgrp = task_pgrp_vnr(p);
1557 psinfo->pr_sid = task_session_vnr(p);
1558
1559 i = p->state ? ffz(~p->state) + 1 : 0;
1560 psinfo->pr_state = i;
1561 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1562 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1563 psinfo->pr_nice = task_nice(p);
1564 psinfo->pr_flag = p->flags;
1565 rcu_read_lock();
1566 cred = __task_cred(p);
1567 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1568 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1569 rcu_read_unlock();
1570 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1571
1572 return 0;
1573 }
1574
1575 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1576 {
1577 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1578 int i = 0;
1579 do
1580 i += 2;
1581 while (auxv[i - 2] != AT_NULL);
1582 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1583 }
1584
1585 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1586 const kernel_siginfo_t *siginfo)
1587 {
1588 mm_segment_t old_fs = get_fs();
1589 set_fs(KERNEL_DS);
1590 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1591 set_fs(old_fs);
1592 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1593 }
1594
1595 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1596 /*
1597 * Format of NT_FILE note:
1598 *
1599 * long count -- how many files are mapped
1600 * long page_size -- units for file_ofs
1601 * array of [COUNT] elements of
1602 * long start
1603 * long end
1604 * long file_ofs
1605 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1606 */
1607 static int fill_files_note(struct memelfnote *note)
1608 {
1609 struct vm_area_struct *vma;
1610 unsigned count, size, names_ofs, remaining, n;
1611 user_long_t *data;
1612 user_long_t *start_end_ofs;
1613 char *name_base, *name_curpos;
1614
1615 /* *Estimated* file count and total data size needed */
1616 count = current->mm->map_count;
1617 if (count > UINT_MAX / 64)
1618 return -EINVAL;
1619 size = count * 64;
1620
1621 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1622 alloc:
1623 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1624 return -EINVAL;
1625 size = round_up(size, PAGE_SIZE);
1626 data = kvmalloc(size, GFP_KERNEL);
1627 if (ZERO_OR_NULL_PTR(data))
1628 return -ENOMEM;
1629
1630 start_end_ofs = data + 2;
1631 name_base = name_curpos = ((char *)data) + names_ofs;
1632 remaining = size - names_ofs;
1633 count = 0;
1634 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1635 struct file *file;
1636 const char *filename;
1637
1638 file = vma->vm_file;
1639 if (!file)
1640 continue;
1641 filename = file_path(file, name_curpos, remaining);
1642 if (IS_ERR(filename)) {
1643 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1644 kvfree(data);
1645 size = size * 5 / 4;
1646 goto alloc;
1647 }
1648 continue;
1649 }
1650
1651 /* file_path() fills at the end, move name down */
1652 /* n = strlen(filename) + 1: */
1653 n = (name_curpos + remaining) - filename;
1654 remaining = filename - name_curpos;
1655 memmove(name_curpos, filename, n);
1656 name_curpos += n;
1657
1658 *start_end_ofs++ = vma->vm_start;
1659 *start_end_ofs++ = vma->vm_end;
1660 *start_end_ofs++ = vma->vm_pgoff;
1661 count++;
1662 }
1663
1664 /* Now we know exact count of files, can store it */
1665 data[0] = count;
1666 data[1] = PAGE_SIZE;
1667 /*
1668 * Count usually is less than current->mm->map_count,
1669 * we need to move filenames down.
1670 */
1671 n = current->mm->map_count - count;
1672 if (n != 0) {
1673 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1674 memmove(name_base - shift_bytes, name_base,
1675 name_curpos - name_base);
1676 name_curpos -= shift_bytes;
1677 }
1678
1679 size = name_curpos - (char *)data;
1680 fill_note(note, "CORE", NT_FILE, size, data);
1681 return 0;
1682 }
1683
1684 #ifdef CORE_DUMP_USE_REGSET
1685 #include <linux/regset.h>
1686
1687 struct elf_thread_core_info {
1688 struct elf_thread_core_info *next;
1689 struct task_struct *task;
1690 struct elf_prstatus prstatus;
1691 struct memelfnote notes[0];
1692 };
1693
1694 struct elf_note_info {
1695 struct elf_thread_core_info *thread;
1696 struct memelfnote psinfo;
1697 struct memelfnote signote;
1698 struct memelfnote auxv;
1699 struct memelfnote files;
1700 user_siginfo_t csigdata;
1701 size_t size;
1702 int thread_notes;
1703 };
1704
1705 /*
1706 * When a regset has a writeback hook, we call it on each thread before
1707 * dumping user memory. On register window machines, this makes sure the
1708 * user memory backing the register data is up to date before we read it.
1709 */
1710 static void do_thread_regset_writeback(struct task_struct *task,
1711 const struct user_regset *regset)
1712 {
1713 if (regset->writeback)
1714 regset->writeback(task, regset, 1);
1715 }
1716
1717 #ifndef PRSTATUS_SIZE
1718 #define PRSTATUS_SIZE(S, R) sizeof(S)
1719 #endif
1720
1721 #ifndef SET_PR_FPVALID
1722 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1723 #endif
1724
1725 static int fill_thread_core_info(struct elf_thread_core_info *t,
1726 const struct user_regset_view *view,
1727 long signr, size_t *total)
1728 {
1729 unsigned int i;
1730 unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1731
1732 /*
1733 * NT_PRSTATUS is the one special case, because the regset data
1734 * goes into the pr_reg field inside the note contents, rather
1735 * than being the whole note contents. We fill the reset in here.
1736 * We assume that regset 0 is NT_PRSTATUS.
1737 */
1738 fill_prstatus(&t->prstatus, t->task, signr);
1739 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1740 &t->prstatus.pr_reg, NULL);
1741
1742 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1743 PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1744 *total += notesize(&t->notes[0]);
1745
1746 do_thread_regset_writeback(t->task, &view->regsets[0]);
1747
1748 /*
1749 * Each other regset might generate a note too. For each regset
1750 * that has no core_note_type or is inactive, we leave t->notes[i]
1751 * all zero and we'll know to skip writing it later.
1752 */
1753 for (i = 1; i < view->n; ++i) {
1754 const struct user_regset *regset = &view->regsets[i];
1755 do_thread_regset_writeback(t->task, regset);
1756 if (regset->core_note_type && regset->get &&
1757 (!regset->active || regset->active(t->task, regset) > 0)) {
1758 int ret;
1759 size_t size = regset_size(t->task, regset);
1760 void *data = kmalloc(size, GFP_KERNEL);
1761 if (unlikely(!data))
1762 return 0;
1763 ret = regset->get(t->task, regset,
1764 0, size, data, NULL);
1765 if (unlikely(ret))
1766 kfree(data);
1767 else {
1768 if (regset->core_note_type != NT_PRFPREG)
1769 fill_note(&t->notes[i], "LINUX",
1770 regset->core_note_type,
1771 size, data);
1772 else {
1773 SET_PR_FPVALID(&t->prstatus,
1774 1, regset0_size);
1775 fill_note(&t->notes[i], "CORE",
1776 NT_PRFPREG, size, data);
1777 }
1778 *total += notesize(&t->notes[i]);
1779 }
1780 }
1781 }
1782
1783 return 1;
1784 }
1785
1786 static int fill_note_info(struct elfhdr *elf, int phdrs,
1787 struct elf_note_info *info,
1788 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
1789 {
1790 struct task_struct *dump_task = current;
1791 const struct user_regset_view *view = task_user_regset_view(dump_task);
1792 struct elf_thread_core_info *t;
1793 struct elf_prpsinfo *psinfo;
1794 struct core_thread *ct;
1795 unsigned int i;
1796
1797 info->size = 0;
1798 info->thread = NULL;
1799
1800 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1801 if (psinfo == NULL) {
1802 info->psinfo.data = NULL; /* So we don't free this wrongly */
1803 return 0;
1804 }
1805
1806 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1807
1808 /*
1809 * Figure out how many notes we're going to need for each thread.
1810 */
1811 info->thread_notes = 0;
1812 for (i = 0; i < view->n; ++i)
1813 if (view->regsets[i].core_note_type != 0)
1814 ++info->thread_notes;
1815
1816 /*
1817 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1818 * since it is our one special case.
1819 */
1820 if (unlikely(info->thread_notes == 0) ||
1821 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1822 WARN_ON(1);
1823 return 0;
1824 }
1825
1826 /*
1827 * Initialize the ELF file header.
1828 */
1829 fill_elf_header(elf, phdrs,
1830 view->e_machine, view->e_flags);
1831
1832 /*
1833 * Allocate a structure for each thread.
1834 */
1835 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1836 t = kzalloc(offsetof(struct elf_thread_core_info,
1837 notes[info->thread_notes]),
1838 GFP_KERNEL);
1839 if (unlikely(!t))
1840 return 0;
1841
1842 t->task = ct->task;
1843 if (ct->task == dump_task || !info->thread) {
1844 t->next = info->thread;
1845 info->thread = t;
1846 } else {
1847 /*
1848 * Make sure to keep the original task at
1849 * the head of the list.
1850 */
1851 t->next = info->thread->next;
1852 info->thread->next = t;
1853 }
1854 }
1855
1856 /*
1857 * Now fill in each thread's information.
1858 */
1859 for (t = info->thread; t != NULL; t = t->next)
1860 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1861 return 0;
1862
1863 /*
1864 * Fill in the two process-wide notes.
1865 */
1866 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1867 info->size += notesize(&info->psinfo);
1868
1869 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1870 info->size += notesize(&info->signote);
1871
1872 fill_auxv_note(&info->auxv, current->mm);
1873 info->size += notesize(&info->auxv);
1874
1875 if (fill_files_note(&info->files) == 0)
1876 info->size += notesize(&info->files);
1877
1878 return 1;
1879 }
1880
1881 static size_t get_note_info_size(struct elf_note_info *info)
1882 {
1883 return info->size;
1884 }
1885
1886 /*
1887 * Write all the notes for each thread. When writing the first thread, the
1888 * process-wide notes are interleaved after the first thread-specific note.
1889 */
1890 static int write_note_info(struct elf_note_info *info,
1891 struct coredump_params *cprm)
1892 {
1893 bool first = true;
1894 struct elf_thread_core_info *t = info->thread;
1895
1896 do {
1897 int i;
1898
1899 if (!writenote(&t->notes[0], cprm))
1900 return 0;
1901
1902 if (first && !writenote(&info->psinfo, cprm))
1903 return 0;
1904 if (first && !writenote(&info->signote, cprm))
1905 return 0;
1906 if (first && !writenote(&info->auxv, cprm))
1907 return 0;
1908 if (first && info->files.data &&
1909 !writenote(&info->files, cprm))
1910 return 0;
1911
1912 for (i = 1; i < info->thread_notes; ++i)
1913 if (t->notes[i].data &&
1914 !writenote(&t->notes[i], cprm))
1915 return 0;
1916
1917 first = false;
1918 t = t->next;
1919 } while (t);
1920
1921 return 1;
1922 }
1923
1924 static void free_note_info(struct elf_note_info *info)
1925 {
1926 struct elf_thread_core_info *threads = info->thread;
1927 while (threads) {
1928 unsigned int i;
1929 struct elf_thread_core_info *t = threads;
1930 threads = t->next;
1931 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1932 for (i = 1; i < info->thread_notes; ++i)
1933 kfree(t->notes[i].data);
1934 kfree(t);
1935 }
1936 kfree(info->psinfo.data);
1937 kvfree(info->files.data);
1938 }
1939
1940 #else
1941
1942 /* Here is the structure in which status of each thread is captured. */
1943 struct elf_thread_status
1944 {
1945 struct list_head list;
1946 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1947 elf_fpregset_t fpu; /* NT_PRFPREG */
1948 struct task_struct *thread;
1949 #ifdef ELF_CORE_COPY_XFPREGS
1950 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1951 #endif
1952 struct memelfnote notes[3];
1953 int num_notes;
1954 };
1955
1956 /*
1957 * In order to add the specific thread information for the elf file format,
1958 * we need to keep a linked list of every threads pr_status and then create
1959 * a single section for them in the final core file.
1960 */
1961 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1962 {
1963 int sz = 0;
1964 struct task_struct *p = t->thread;
1965 t->num_notes = 0;
1966
1967 fill_prstatus(&t->prstatus, p, signr);
1968 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1969
1970 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1971 &(t->prstatus));
1972 t->num_notes++;
1973 sz += notesize(&t->notes[0]);
1974
1975 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1976 &t->fpu))) {
1977 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1978 &(t->fpu));
1979 t->num_notes++;
1980 sz += notesize(&t->notes[1]);
1981 }
1982
1983 #ifdef ELF_CORE_COPY_XFPREGS
1984 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1985 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1986 sizeof(t->xfpu), &t->xfpu);
1987 t->num_notes++;
1988 sz += notesize(&t->notes[2]);
1989 }
1990 #endif
1991 return sz;
1992 }
1993
1994 struct elf_note_info {
1995 struct memelfnote *notes;
1996 struct memelfnote *notes_files;
1997 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1998 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1999 struct list_head thread_list;
2000 elf_fpregset_t *fpu;
2001 #ifdef ELF_CORE_COPY_XFPREGS
2002 elf_fpxregset_t *xfpu;
2003 #endif
2004 user_siginfo_t csigdata;
2005 int thread_status_size;
2006 int numnote;
2007 };
2008
2009 static int elf_note_info_init(struct elf_note_info *info)
2010 {
2011 memset(info, 0, sizeof(*info));
2012 INIT_LIST_HEAD(&info->thread_list);
2013
2014 /* Allocate space for ELF notes */
2015 info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2016 if (!info->notes)
2017 return 0;
2018 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2019 if (!info->psinfo)
2020 return 0;
2021 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2022 if (!info->prstatus)
2023 return 0;
2024 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2025 if (!info->fpu)
2026 return 0;
2027 #ifdef ELF_CORE_COPY_XFPREGS
2028 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2029 if (!info->xfpu)
2030 return 0;
2031 #endif
2032 return 1;
2033 }
2034
2035 static int fill_note_info(struct elfhdr *elf, int phdrs,
2036 struct elf_note_info *info,
2037 const kernel_siginfo_t *siginfo, struct pt_regs *regs)
2038 {
2039 struct core_thread *ct;
2040 struct elf_thread_status *ets;
2041
2042 if (!elf_note_info_init(info))
2043 return 0;
2044
2045 for (ct = current->mm->core_state->dumper.next;
2046 ct; ct = ct->next) {
2047 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2048 if (!ets)
2049 return 0;
2050
2051 ets->thread = ct->task;
2052 list_add(&ets->list, &info->thread_list);
2053 }
2054
2055 list_for_each_entry(ets, &info->thread_list, list) {
2056 int sz;
2057
2058 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2059 info->thread_status_size += sz;
2060 }
2061 /* now collect the dump for the current */
2062 memset(info->prstatus, 0, sizeof(*info->prstatus));
2063 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2064 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2065
2066 /* Set up header */
2067 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2068
2069 /*
2070 * Set up the notes in similar form to SVR4 core dumps made
2071 * with info from their /proc.
2072 */
2073
2074 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2075 sizeof(*info->prstatus), info->prstatus);
2076 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2077 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2078 sizeof(*info->psinfo), info->psinfo);
2079
2080 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2081 fill_auxv_note(info->notes + 3, current->mm);
2082 info->numnote = 4;
2083
2084 if (fill_files_note(info->notes + info->numnote) == 0) {
2085 info->notes_files = info->notes + info->numnote;
2086 info->numnote++;
2087 }
2088
2089 /* Try to dump the FPU. */
2090 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2091 info->fpu);
2092 if (info->prstatus->pr_fpvalid)
2093 fill_note(info->notes + info->numnote++,
2094 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2095 #ifdef ELF_CORE_COPY_XFPREGS
2096 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2097 fill_note(info->notes + info->numnote++,
2098 "LINUX", ELF_CORE_XFPREG_TYPE,
2099 sizeof(*info->xfpu), info->xfpu);
2100 #endif
2101
2102 return 1;
2103 }
2104
2105 static size_t get_note_info_size(struct elf_note_info *info)
2106 {
2107 int sz = 0;
2108 int i;
2109
2110 for (i = 0; i < info->numnote; i++)
2111 sz += notesize(info->notes + i);
2112
2113 sz += info->thread_status_size;
2114
2115 return sz;
2116 }
2117
2118 static int write_note_info(struct elf_note_info *info,
2119 struct coredump_params *cprm)
2120 {
2121 struct elf_thread_status *ets;
2122 int i;
2123
2124 for (i = 0; i < info->numnote; i++)
2125 if (!writenote(info->notes + i, cprm))
2126 return 0;
2127
2128 /* write out the thread status notes section */
2129 list_for_each_entry(ets, &info->thread_list, list) {
2130 for (i = 0; i < ets->num_notes; i++)
2131 if (!writenote(&ets->notes[i], cprm))
2132 return 0;
2133 }
2134
2135 return 1;
2136 }
2137
2138 static void free_note_info(struct elf_note_info *info)
2139 {
2140 while (!list_empty(&info->thread_list)) {
2141 struct list_head *tmp = info->thread_list.next;
2142 list_del(tmp);
2143 kfree(list_entry(tmp, struct elf_thread_status, list));
2144 }
2145
2146 /* Free data possibly allocated by fill_files_note(): */
2147 if (info->notes_files)
2148 kvfree(info->notes_files->data);
2149
2150 kfree(info->prstatus);
2151 kfree(info->psinfo);
2152 kfree(info->notes);
2153 kfree(info->fpu);
2154 #ifdef ELF_CORE_COPY_XFPREGS
2155 kfree(info->xfpu);
2156 #endif
2157 }
2158
2159 #endif
2160
2161 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2162 struct vm_area_struct *gate_vma)
2163 {
2164 struct vm_area_struct *ret = tsk->mm->mmap;
2165
2166 if (ret)
2167 return ret;
2168 return gate_vma;
2169 }
2170 /*
2171 * Helper function for iterating across a vma list. It ensures that the caller
2172 * will visit `gate_vma' prior to terminating the search.
2173 */
2174 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2175 struct vm_area_struct *gate_vma)
2176 {
2177 struct vm_area_struct *ret;
2178
2179 ret = this_vma->vm_next;
2180 if (ret)
2181 return ret;
2182 if (this_vma == gate_vma)
2183 return NULL;
2184 return gate_vma;
2185 }
2186
2187 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2188 elf_addr_t e_shoff, int segs)
2189 {
2190 elf->e_shoff = e_shoff;
2191 elf->e_shentsize = sizeof(*shdr4extnum);
2192 elf->e_shnum = 1;
2193 elf->e_shstrndx = SHN_UNDEF;
2194
2195 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2196
2197 shdr4extnum->sh_type = SHT_NULL;
2198 shdr4extnum->sh_size = elf->e_shnum;
2199 shdr4extnum->sh_link = elf->e_shstrndx;
2200 shdr4extnum->sh_info = segs;
2201 }
2202
2203 /*
2204 * Actual dumper
2205 *
2206 * This is a two-pass process; first we find the offsets of the bits,
2207 * and then they are actually written out. If we run out of core limit
2208 * we just truncate.
2209 */
2210 static int elf_core_dump(struct coredump_params *cprm)
2211 {
2212 int has_dumped = 0;
2213 mm_segment_t fs;
2214 int segs, i;
2215 size_t vma_data_size = 0;
2216 struct vm_area_struct *vma, *gate_vma;
2217 struct elfhdr *elf = NULL;
2218 loff_t offset = 0, dataoff;
2219 struct elf_note_info info = { };
2220 struct elf_phdr *phdr4note = NULL;
2221 struct elf_shdr *shdr4extnum = NULL;
2222 Elf_Half e_phnum;
2223 elf_addr_t e_shoff;
2224 elf_addr_t *vma_filesz = NULL;
2225
2226 /*
2227 * We no longer stop all VM operations.
2228 *
2229 * This is because those proceses that could possibly change map_count
2230 * or the mmap / vma pages are now blocked in do_exit on current
2231 * finishing this core dump.
2232 *
2233 * Only ptrace can touch these memory addresses, but it doesn't change
2234 * the map_count or the pages allocated. So no possibility of crashing
2235 * exists while dumping the mm->vm_next areas to the core file.
2236 */
2237
2238 /* alloc memory for large data structures: too large to be on stack */
2239 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2240 if (!elf)
2241 goto out;
2242 /*
2243 * The number of segs are recored into ELF header as 16bit value.
2244 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2245 */
2246 segs = current->mm->map_count;
2247 segs += elf_core_extra_phdrs();
2248
2249 gate_vma = get_gate_vma(current->mm);
2250 if (gate_vma != NULL)
2251 segs++;
2252
2253 /* for notes section */
2254 segs++;
2255
2256 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2257 * this, kernel supports extended numbering. Have a look at
2258 * include/linux/elf.h for further information. */
2259 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2260
2261 /*
2262 * Collect all the non-memory information about the process for the
2263 * notes. This also sets up the file header.
2264 */
2265 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2266 goto cleanup;
2267
2268 has_dumped = 1;
2269
2270 fs = get_fs();
2271 set_fs(KERNEL_DS);
2272
2273 offset += sizeof(*elf); /* Elf header */
2274 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2275
2276 /* Write notes phdr entry */
2277 {
2278 size_t sz = get_note_info_size(&info);
2279
2280 sz += elf_coredump_extra_notes_size();
2281
2282 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2283 if (!phdr4note)
2284 goto end_coredump;
2285
2286 fill_elf_note_phdr(phdr4note, sz, offset);
2287 offset += sz;
2288 }
2289
2290 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2291
2292 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2293 goto end_coredump;
2294 vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2295 GFP_KERNEL);
2296 if (ZERO_OR_NULL_PTR(vma_filesz))
2297 goto end_coredump;
2298
2299 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2300 vma = next_vma(vma, gate_vma)) {
2301 unsigned long dump_size;
2302
2303 dump_size = vma_dump_size(vma, cprm->mm_flags);
2304 vma_filesz[i++] = dump_size;
2305 vma_data_size += dump_size;
2306 }
2307
2308 offset += vma_data_size;
2309 offset += elf_core_extra_data_size();
2310 e_shoff = offset;
2311
2312 if (e_phnum == PN_XNUM) {
2313 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2314 if (!shdr4extnum)
2315 goto end_coredump;
2316 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2317 }
2318
2319 offset = dataoff;
2320
2321 if (!dump_emit(cprm, elf, sizeof(*elf)))
2322 goto end_coredump;
2323
2324 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2325 goto end_coredump;
2326
2327 /* Write program headers for segments dump */
2328 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2329 vma = next_vma(vma, gate_vma)) {
2330 struct elf_phdr phdr;
2331
2332 phdr.p_type = PT_LOAD;
2333 phdr.p_offset = offset;
2334 phdr.p_vaddr = vma->vm_start;
2335 phdr.p_paddr = 0;
2336 phdr.p_filesz = vma_filesz[i++];
2337 phdr.p_memsz = vma->vm_end - vma->vm_start;
2338 offset += phdr.p_filesz;
2339 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2340 if (vma->vm_flags & VM_WRITE)
2341 phdr.p_flags |= PF_W;
2342 if (vma->vm_flags & VM_EXEC)
2343 phdr.p_flags |= PF_X;
2344 phdr.p_align = ELF_EXEC_PAGESIZE;
2345
2346 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2347 goto end_coredump;
2348 }
2349
2350 if (!elf_core_write_extra_phdrs(cprm, offset))
2351 goto end_coredump;
2352
2353 /* write out the notes section */
2354 if (!write_note_info(&info, cprm))
2355 goto end_coredump;
2356
2357 if (elf_coredump_extra_notes_write(cprm))
2358 goto end_coredump;
2359
2360 /* Align to page */
2361 if (!dump_skip(cprm, dataoff - cprm->pos))
2362 goto end_coredump;
2363
2364 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2365 vma = next_vma(vma, gate_vma)) {
2366 unsigned long addr;
2367 unsigned long end;
2368
2369 end = vma->vm_start + vma_filesz[i++];
2370
2371 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2372 struct page *page;
2373 int stop;
2374
2375 page = get_dump_page(addr);
2376 if (page) {
2377 void *kaddr = kmap(page);
2378 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2379 kunmap(page);
2380 put_page(page);
2381 } else
2382 stop = !dump_skip(cprm, PAGE_SIZE);
2383 if (stop)
2384 goto end_coredump;
2385 }
2386 }
2387 dump_truncate(cprm);
2388
2389 if (!elf_core_write_extra_data(cprm))
2390 goto end_coredump;
2391
2392 if (e_phnum == PN_XNUM) {
2393 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2394 goto end_coredump;
2395 }
2396
2397 end_coredump:
2398 set_fs(fs);
2399
2400 cleanup:
2401 free_note_info(&info);
2402 kfree(shdr4extnum);
2403 kvfree(vma_filesz);
2404 kfree(phdr4note);
2405 kfree(elf);
2406 out:
2407 return has_dumped;
2408 }
2409
2410 #endif /* CONFIG_ELF_CORE */
2411
2412 static int __init init_elf_binfmt(void)
2413 {
2414 register_binfmt(&elf_format);
2415 return 0;
2416 }
2417
2418 static void __exit exit_elf_binfmt(void)
2419 {
2420 /* Remove the COFF and ELF loaders. */
2421 unregister_binfmt(&elf_format);
2422 }
2423
2424 core_initcall(init_elf_binfmt);
2425 module_exit(exit_elf_binfmt);
2426 MODULE_LICENSE("GPL");