]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/block_dev.c
Revert "NFS: readdirplus optimization by cache mechanism" (memleak)
[thirdparty/kernel/stable.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 int i;
214 struct bvec_iter_all iter_all;
215
216 if ((pos | iov_iter_alignment(iter)) &
217 (bdev_logical_block_size(bdev) - 1))
218 return -EINVAL;
219
220 if (nr_pages <= DIO_INLINE_BIO_VECS)
221 vecs = inline_vecs;
222 else {
223 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
224 GFP_KERNEL);
225 if (!vecs)
226 return -ENOMEM;
227 }
228
229 bio_init(&bio, vecs, nr_pages);
230 bio_set_dev(&bio, bdev);
231 bio.bi_iter.bi_sector = pos >> 9;
232 bio.bi_write_hint = iocb->ki_hint;
233 bio.bi_private = current;
234 bio.bi_end_io = blkdev_bio_end_io_simple;
235 bio.bi_ioprio = iocb->ki_ioprio;
236
237 ret = bio_iov_iter_get_pages(&bio, iter);
238 if (unlikely(ret))
239 goto out;
240 ret = bio.bi_iter.bi_size;
241
242 if (iov_iter_rw(iter) == READ) {
243 bio.bi_opf = REQ_OP_READ;
244 if (iter_is_iovec(iter))
245 should_dirty = true;
246 } else {
247 bio.bi_opf = dio_bio_write_op(iocb);
248 task_io_account_write(ret);
249 }
250 if (iocb->ki_flags & IOCB_HIPRI)
251 bio_set_polled(&bio, iocb);
252
253 qc = submit_bio(&bio);
254 for (;;) {
255 set_current_state(TASK_UNINTERRUPTIBLE);
256 if (!READ_ONCE(bio.bi_private))
257 break;
258 if (!(iocb->ki_flags & IOCB_HIPRI) ||
259 !blk_poll(bdev_get_queue(bdev), qc, true))
260 io_schedule();
261 }
262 __set_current_state(TASK_RUNNING);
263
264 bio_for_each_segment_all(bvec, &bio, i, iter_all) {
265 if (should_dirty && !PageCompound(bvec->bv_page))
266 set_page_dirty_lock(bvec->bv_page);
267 if (!bio_flagged(&bio, BIO_NO_PAGE_REF))
268 put_page(bvec->bv_page);
269 }
270
271 if (unlikely(bio.bi_status))
272 ret = blk_status_to_errno(bio.bi_status);
273
274 out:
275 if (vecs != inline_vecs)
276 kfree(vecs);
277
278 bio_uninit(&bio);
279
280 return ret;
281 }
282
283 struct blkdev_dio {
284 union {
285 struct kiocb *iocb;
286 struct task_struct *waiter;
287 };
288 size_t size;
289 atomic_t ref;
290 bool multi_bio : 1;
291 bool should_dirty : 1;
292 bool is_sync : 1;
293 struct bio bio;
294 };
295
296 static struct bio_set blkdev_dio_pool;
297
298 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
299 {
300 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
301 struct request_queue *q = bdev_get_queue(bdev);
302
303 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
304 }
305
306 static void blkdev_bio_end_io(struct bio *bio)
307 {
308 struct blkdev_dio *dio = bio->bi_private;
309 bool should_dirty = dio->should_dirty;
310
311 if (bio->bi_status && !dio->bio.bi_status)
312 dio->bio.bi_status = bio->bi_status;
313
314 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
315 if (!dio->is_sync) {
316 struct kiocb *iocb = dio->iocb;
317 ssize_t ret;
318
319 if (likely(!dio->bio.bi_status)) {
320 ret = dio->size;
321 iocb->ki_pos += ret;
322 } else {
323 ret = blk_status_to_errno(dio->bio.bi_status);
324 }
325
326 dio->iocb->ki_complete(iocb, ret, 0);
327 if (dio->multi_bio)
328 bio_put(&dio->bio);
329 } else {
330 struct task_struct *waiter = dio->waiter;
331
332 WRITE_ONCE(dio->waiter, NULL);
333 blk_wake_io_task(waiter);
334 }
335 }
336
337 if (should_dirty) {
338 bio_check_pages_dirty(bio);
339 } else {
340 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) {
341 struct bvec_iter_all iter_all;
342 struct bio_vec *bvec;
343 int i;
344
345 bio_for_each_segment_all(bvec, bio, i, iter_all)
346 put_page(bvec->bv_page);
347 }
348 bio_put(bio);
349 }
350 }
351
352 static ssize_t
353 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
354 {
355 struct file *file = iocb->ki_filp;
356 struct inode *inode = bdev_file_inode(file);
357 struct block_device *bdev = I_BDEV(inode);
358 struct blk_plug plug;
359 struct blkdev_dio *dio;
360 struct bio *bio;
361 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
362 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
363 loff_t pos = iocb->ki_pos;
364 blk_qc_t qc = BLK_QC_T_NONE;
365 int ret = 0;
366
367 if ((pos | iov_iter_alignment(iter)) &
368 (bdev_logical_block_size(bdev) - 1))
369 return -EINVAL;
370
371 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
372
373 dio = container_of(bio, struct blkdev_dio, bio);
374 dio->is_sync = is_sync = is_sync_kiocb(iocb);
375 if (dio->is_sync) {
376 dio->waiter = current;
377 bio_get(bio);
378 } else {
379 dio->iocb = iocb;
380 }
381
382 dio->size = 0;
383 dio->multi_bio = false;
384 dio->should_dirty = is_read && iter_is_iovec(iter);
385
386 /*
387 * Don't plug for HIPRI/polled IO, as those should go straight
388 * to issue
389 */
390 if (!is_poll)
391 blk_start_plug(&plug);
392
393 for (;;) {
394 bio_set_dev(bio, bdev);
395 bio->bi_iter.bi_sector = pos >> 9;
396 bio->bi_write_hint = iocb->ki_hint;
397 bio->bi_private = dio;
398 bio->bi_end_io = blkdev_bio_end_io;
399 bio->bi_ioprio = iocb->ki_ioprio;
400
401 ret = bio_iov_iter_get_pages(bio, iter);
402 if (unlikely(ret)) {
403 bio->bi_status = BLK_STS_IOERR;
404 bio_endio(bio);
405 break;
406 }
407
408 if (is_read) {
409 bio->bi_opf = REQ_OP_READ;
410 if (dio->should_dirty)
411 bio_set_pages_dirty(bio);
412 } else {
413 bio->bi_opf = dio_bio_write_op(iocb);
414 task_io_account_write(bio->bi_iter.bi_size);
415 }
416
417 dio->size += bio->bi_iter.bi_size;
418 pos += bio->bi_iter.bi_size;
419
420 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
421 if (!nr_pages) {
422 bool polled = false;
423
424 if (iocb->ki_flags & IOCB_HIPRI) {
425 bio_set_polled(bio, iocb);
426 polled = true;
427 }
428
429 qc = submit_bio(bio);
430
431 if (polled)
432 WRITE_ONCE(iocb->ki_cookie, qc);
433 break;
434 }
435
436 if (!dio->multi_bio) {
437 /*
438 * AIO needs an extra reference to ensure the dio
439 * structure which is embedded into the first bio
440 * stays around.
441 */
442 if (!is_sync)
443 bio_get(bio);
444 dio->multi_bio = true;
445 atomic_set(&dio->ref, 2);
446 } else {
447 atomic_inc(&dio->ref);
448 }
449
450 submit_bio(bio);
451 bio = bio_alloc(GFP_KERNEL, nr_pages);
452 }
453
454 if (!is_poll)
455 blk_finish_plug(&plug);
456
457 if (!is_sync)
458 return -EIOCBQUEUED;
459
460 for (;;) {
461 set_current_state(TASK_UNINTERRUPTIBLE);
462 if (!READ_ONCE(dio->waiter))
463 break;
464
465 if (!(iocb->ki_flags & IOCB_HIPRI) ||
466 !blk_poll(bdev_get_queue(bdev), qc, true))
467 io_schedule();
468 }
469 __set_current_state(TASK_RUNNING);
470
471 if (!ret)
472 ret = blk_status_to_errno(dio->bio.bi_status);
473 if (likely(!ret))
474 ret = dio->size;
475
476 bio_put(&dio->bio);
477 return ret;
478 }
479
480 static ssize_t
481 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
482 {
483 int nr_pages;
484
485 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
486 if (!nr_pages)
487 return 0;
488 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
489 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
490
491 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
492 }
493
494 static __init int blkdev_init(void)
495 {
496 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
497 }
498 module_init(blkdev_init);
499
500 int __sync_blockdev(struct block_device *bdev, int wait)
501 {
502 if (!bdev)
503 return 0;
504 if (!wait)
505 return filemap_flush(bdev->bd_inode->i_mapping);
506 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
507 }
508
509 /*
510 * Write out and wait upon all the dirty data associated with a block
511 * device via its mapping. Does not take the superblock lock.
512 */
513 int sync_blockdev(struct block_device *bdev)
514 {
515 return __sync_blockdev(bdev, 1);
516 }
517 EXPORT_SYMBOL(sync_blockdev);
518
519 /*
520 * Write out and wait upon all dirty data associated with this
521 * device. Filesystem data as well as the underlying block
522 * device. Takes the superblock lock.
523 */
524 int fsync_bdev(struct block_device *bdev)
525 {
526 struct super_block *sb = get_super(bdev);
527 if (sb) {
528 int res = sync_filesystem(sb);
529 drop_super(sb);
530 return res;
531 }
532 return sync_blockdev(bdev);
533 }
534 EXPORT_SYMBOL(fsync_bdev);
535
536 /**
537 * freeze_bdev -- lock a filesystem and force it into a consistent state
538 * @bdev: blockdevice to lock
539 *
540 * If a superblock is found on this device, we take the s_umount semaphore
541 * on it to make sure nobody unmounts until the snapshot creation is done.
542 * The reference counter (bd_fsfreeze_count) guarantees that only the last
543 * unfreeze process can unfreeze the frozen filesystem actually when multiple
544 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
545 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
546 * actually.
547 */
548 struct super_block *freeze_bdev(struct block_device *bdev)
549 {
550 struct super_block *sb;
551 int error = 0;
552
553 mutex_lock(&bdev->bd_fsfreeze_mutex);
554 if (++bdev->bd_fsfreeze_count > 1) {
555 /*
556 * We don't even need to grab a reference - the first call
557 * to freeze_bdev grab an active reference and only the last
558 * thaw_bdev drops it.
559 */
560 sb = get_super(bdev);
561 if (sb)
562 drop_super(sb);
563 mutex_unlock(&bdev->bd_fsfreeze_mutex);
564 return sb;
565 }
566
567 sb = get_active_super(bdev);
568 if (!sb)
569 goto out;
570 if (sb->s_op->freeze_super)
571 error = sb->s_op->freeze_super(sb);
572 else
573 error = freeze_super(sb);
574 if (error) {
575 deactivate_super(sb);
576 bdev->bd_fsfreeze_count--;
577 mutex_unlock(&bdev->bd_fsfreeze_mutex);
578 return ERR_PTR(error);
579 }
580 deactivate_super(sb);
581 out:
582 sync_blockdev(bdev);
583 mutex_unlock(&bdev->bd_fsfreeze_mutex);
584 return sb; /* thaw_bdev releases s->s_umount */
585 }
586 EXPORT_SYMBOL(freeze_bdev);
587
588 /**
589 * thaw_bdev -- unlock filesystem
590 * @bdev: blockdevice to unlock
591 * @sb: associated superblock
592 *
593 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
594 */
595 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
596 {
597 int error = -EINVAL;
598
599 mutex_lock(&bdev->bd_fsfreeze_mutex);
600 if (!bdev->bd_fsfreeze_count)
601 goto out;
602
603 error = 0;
604 if (--bdev->bd_fsfreeze_count > 0)
605 goto out;
606
607 if (!sb)
608 goto out;
609
610 if (sb->s_op->thaw_super)
611 error = sb->s_op->thaw_super(sb);
612 else
613 error = thaw_super(sb);
614 if (error)
615 bdev->bd_fsfreeze_count++;
616 out:
617 mutex_unlock(&bdev->bd_fsfreeze_mutex);
618 return error;
619 }
620 EXPORT_SYMBOL(thaw_bdev);
621
622 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
623 {
624 return block_write_full_page(page, blkdev_get_block, wbc);
625 }
626
627 static int blkdev_readpage(struct file * file, struct page * page)
628 {
629 return block_read_full_page(page, blkdev_get_block);
630 }
631
632 static int blkdev_readpages(struct file *file, struct address_space *mapping,
633 struct list_head *pages, unsigned nr_pages)
634 {
635 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
636 }
637
638 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
639 loff_t pos, unsigned len, unsigned flags,
640 struct page **pagep, void **fsdata)
641 {
642 return block_write_begin(mapping, pos, len, flags, pagep,
643 blkdev_get_block);
644 }
645
646 static int blkdev_write_end(struct file *file, struct address_space *mapping,
647 loff_t pos, unsigned len, unsigned copied,
648 struct page *page, void *fsdata)
649 {
650 int ret;
651 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
652
653 unlock_page(page);
654 put_page(page);
655
656 return ret;
657 }
658
659 /*
660 * private llseek:
661 * for a block special file file_inode(file)->i_size is zero
662 * so we compute the size by hand (just as in block_read/write above)
663 */
664 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
665 {
666 struct inode *bd_inode = bdev_file_inode(file);
667 loff_t retval;
668
669 inode_lock(bd_inode);
670 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
671 inode_unlock(bd_inode);
672 return retval;
673 }
674
675 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
676 {
677 struct inode *bd_inode = bdev_file_inode(filp);
678 struct block_device *bdev = I_BDEV(bd_inode);
679 int error;
680
681 error = file_write_and_wait_range(filp, start, end);
682 if (error)
683 return error;
684
685 /*
686 * There is no need to serialise calls to blkdev_issue_flush with
687 * i_mutex and doing so causes performance issues with concurrent
688 * O_SYNC writers to a block device.
689 */
690 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
691 if (error == -EOPNOTSUPP)
692 error = 0;
693
694 return error;
695 }
696 EXPORT_SYMBOL(blkdev_fsync);
697
698 /**
699 * bdev_read_page() - Start reading a page from a block device
700 * @bdev: The device to read the page from
701 * @sector: The offset on the device to read the page to (need not be aligned)
702 * @page: The page to read
703 *
704 * On entry, the page should be locked. It will be unlocked when the page
705 * has been read. If the block driver implements rw_page synchronously,
706 * that will be true on exit from this function, but it need not be.
707 *
708 * Errors returned by this function are usually "soft", eg out of memory, or
709 * queue full; callers should try a different route to read this page rather
710 * than propagate an error back up the stack.
711 *
712 * Return: negative errno if an error occurs, 0 if submission was successful.
713 */
714 int bdev_read_page(struct block_device *bdev, sector_t sector,
715 struct page *page)
716 {
717 const struct block_device_operations *ops = bdev->bd_disk->fops;
718 int result = -EOPNOTSUPP;
719
720 if (!ops->rw_page || bdev_get_integrity(bdev))
721 return result;
722
723 result = blk_queue_enter(bdev->bd_queue, 0);
724 if (result)
725 return result;
726 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
727 REQ_OP_READ);
728 blk_queue_exit(bdev->bd_queue);
729 return result;
730 }
731 EXPORT_SYMBOL_GPL(bdev_read_page);
732
733 /**
734 * bdev_write_page() - Start writing a page to a block device
735 * @bdev: The device to write the page to
736 * @sector: The offset on the device to write the page to (need not be aligned)
737 * @page: The page to write
738 * @wbc: The writeback_control for the write
739 *
740 * On entry, the page should be locked and not currently under writeback.
741 * On exit, if the write started successfully, the page will be unlocked and
742 * under writeback. If the write failed already (eg the driver failed to
743 * queue the page to the device), the page will still be locked. If the
744 * caller is a ->writepage implementation, it will need to unlock the page.
745 *
746 * Errors returned by this function are usually "soft", eg out of memory, or
747 * queue full; callers should try a different route to write this page rather
748 * than propagate an error back up the stack.
749 *
750 * Return: negative errno if an error occurs, 0 if submission was successful.
751 */
752 int bdev_write_page(struct block_device *bdev, sector_t sector,
753 struct page *page, struct writeback_control *wbc)
754 {
755 int result;
756 const struct block_device_operations *ops = bdev->bd_disk->fops;
757
758 if (!ops->rw_page || bdev_get_integrity(bdev))
759 return -EOPNOTSUPP;
760 result = blk_queue_enter(bdev->bd_queue, 0);
761 if (result)
762 return result;
763
764 set_page_writeback(page);
765 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
766 REQ_OP_WRITE);
767 if (result) {
768 end_page_writeback(page);
769 } else {
770 clean_page_buffers(page);
771 unlock_page(page);
772 }
773 blk_queue_exit(bdev->bd_queue);
774 return result;
775 }
776 EXPORT_SYMBOL_GPL(bdev_write_page);
777
778 /*
779 * pseudo-fs
780 */
781
782 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
783 static struct kmem_cache * bdev_cachep __read_mostly;
784
785 static struct inode *bdev_alloc_inode(struct super_block *sb)
786 {
787 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
788 if (!ei)
789 return NULL;
790 return &ei->vfs_inode;
791 }
792
793 static void bdev_i_callback(struct rcu_head *head)
794 {
795 struct inode *inode = container_of(head, struct inode, i_rcu);
796 struct bdev_inode *bdi = BDEV_I(inode);
797
798 kmem_cache_free(bdev_cachep, bdi);
799 }
800
801 static void bdev_destroy_inode(struct inode *inode)
802 {
803 call_rcu(&inode->i_rcu, bdev_i_callback);
804 }
805
806 static void init_once(void *foo)
807 {
808 struct bdev_inode *ei = (struct bdev_inode *) foo;
809 struct block_device *bdev = &ei->bdev;
810
811 memset(bdev, 0, sizeof(*bdev));
812 mutex_init(&bdev->bd_mutex);
813 INIT_LIST_HEAD(&bdev->bd_list);
814 #ifdef CONFIG_SYSFS
815 INIT_LIST_HEAD(&bdev->bd_holder_disks);
816 #endif
817 bdev->bd_bdi = &noop_backing_dev_info;
818 inode_init_once(&ei->vfs_inode);
819 /* Initialize mutex for freeze. */
820 mutex_init(&bdev->bd_fsfreeze_mutex);
821 }
822
823 static void bdev_evict_inode(struct inode *inode)
824 {
825 struct block_device *bdev = &BDEV_I(inode)->bdev;
826 truncate_inode_pages_final(&inode->i_data);
827 invalidate_inode_buffers(inode); /* is it needed here? */
828 clear_inode(inode);
829 spin_lock(&bdev_lock);
830 list_del_init(&bdev->bd_list);
831 spin_unlock(&bdev_lock);
832 /* Detach inode from wb early as bdi_put() may free bdi->wb */
833 inode_detach_wb(inode);
834 if (bdev->bd_bdi != &noop_backing_dev_info) {
835 bdi_put(bdev->bd_bdi);
836 bdev->bd_bdi = &noop_backing_dev_info;
837 }
838 }
839
840 static const struct super_operations bdev_sops = {
841 .statfs = simple_statfs,
842 .alloc_inode = bdev_alloc_inode,
843 .destroy_inode = bdev_destroy_inode,
844 .drop_inode = generic_delete_inode,
845 .evict_inode = bdev_evict_inode,
846 };
847
848 static struct dentry *bd_mount(struct file_system_type *fs_type,
849 int flags, const char *dev_name, void *data)
850 {
851 struct dentry *dent;
852 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
853 if (!IS_ERR(dent))
854 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
855 return dent;
856 }
857
858 static struct file_system_type bd_type = {
859 .name = "bdev",
860 .mount = bd_mount,
861 .kill_sb = kill_anon_super,
862 };
863
864 struct super_block *blockdev_superblock __read_mostly;
865 EXPORT_SYMBOL_GPL(blockdev_superblock);
866
867 void __init bdev_cache_init(void)
868 {
869 int err;
870 static struct vfsmount *bd_mnt;
871
872 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
873 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
874 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
875 init_once);
876 err = register_filesystem(&bd_type);
877 if (err)
878 panic("Cannot register bdev pseudo-fs");
879 bd_mnt = kern_mount(&bd_type);
880 if (IS_ERR(bd_mnt))
881 panic("Cannot create bdev pseudo-fs");
882 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
883 }
884
885 /*
886 * Most likely _very_ bad one - but then it's hardly critical for small
887 * /dev and can be fixed when somebody will need really large one.
888 * Keep in mind that it will be fed through icache hash function too.
889 */
890 static inline unsigned long hash(dev_t dev)
891 {
892 return MAJOR(dev)+MINOR(dev);
893 }
894
895 static int bdev_test(struct inode *inode, void *data)
896 {
897 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
898 }
899
900 static int bdev_set(struct inode *inode, void *data)
901 {
902 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
903 return 0;
904 }
905
906 static LIST_HEAD(all_bdevs);
907
908 /*
909 * If there is a bdev inode for this device, unhash it so that it gets evicted
910 * as soon as last inode reference is dropped.
911 */
912 void bdev_unhash_inode(dev_t dev)
913 {
914 struct inode *inode;
915
916 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
917 if (inode) {
918 remove_inode_hash(inode);
919 iput(inode);
920 }
921 }
922
923 struct block_device *bdget(dev_t dev)
924 {
925 struct block_device *bdev;
926 struct inode *inode;
927
928 inode = iget5_locked(blockdev_superblock, hash(dev),
929 bdev_test, bdev_set, &dev);
930
931 if (!inode)
932 return NULL;
933
934 bdev = &BDEV_I(inode)->bdev;
935
936 if (inode->i_state & I_NEW) {
937 bdev->bd_contains = NULL;
938 bdev->bd_super = NULL;
939 bdev->bd_inode = inode;
940 bdev->bd_block_size = i_blocksize(inode);
941 bdev->bd_part_count = 0;
942 bdev->bd_invalidated = 0;
943 inode->i_mode = S_IFBLK;
944 inode->i_rdev = dev;
945 inode->i_bdev = bdev;
946 inode->i_data.a_ops = &def_blk_aops;
947 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
948 spin_lock(&bdev_lock);
949 list_add(&bdev->bd_list, &all_bdevs);
950 spin_unlock(&bdev_lock);
951 unlock_new_inode(inode);
952 }
953 return bdev;
954 }
955
956 EXPORT_SYMBOL(bdget);
957
958 /**
959 * bdgrab -- Grab a reference to an already referenced block device
960 * @bdev: Block device to grab a reference to.
961 */
962 struct block_device *bdgrab(struct block_device *bdev)
963 {
964 ihold(bdev->bd_inode);
965 return bdev;
966 }
967 EXPORT_SYMBOL(bdgrab);
968
969 long nr_blockdev_pages(void)
970 {
971 struct block_device *bdev;
972 long ret = 0;
973 spin_lock(&bdev_lock);
974 list_for_each_entry(bdev, &all_bdevs, bd_list) {
975 ret += bdev->bd_inode->i_mapping->nrpages;
976 }
977 spin_unlock(&bdev_lock);
978 return ret;
979 }
980
981 void bdput(struct block_device *bdev)
982 {
983 iput(bdev->bd_inode);
984 }
985
986 EXPORT_SYMBOL(bdput);
987
988 static struct block_device *bd_acquire(struct inode *inode)
989 {
990 struct block_device *bdev;
991
992 spin_lock(&bdev_lock);
993 bdev = inode->i_bdev;
994 if (bdev && !inode_unhashed(bdev->bd_inode)) {
995 bdgrab(bdev);
996 spin_unlock(&bdev_lock);
997 return bdev;
998 }
999 spin_unlock(&bdev_lock);
1000
1001 /*
1002 * i_bdev references block device inode that was already shut down
1003 * (corresponding device got removed). Remove the reference and look
1004 * up block device inode again just in case new device got
1005 * reestablished under the same device number.
1006 */
1007 if (bdev)
1008 bd_forget(inode);
1009
1010 bdev = bdget(inode->i_rdev);
1011 if (bdev) {
1012 spin_lock(&bdev_lock);
1013 if (!inode->i_bdev) {
1014 /*
1015 * We take an additional reference to bd_inode,
1016 * and it's released in clear_inode() of inode.
1017 * So, we can access it via ->i_mapping always
1018 * without igrab().
1019 */
1020 bdgrab(bdev);
1021 inode->i_bdev = bdev;
1022 inode->i_mapping = bdev->bd_inode->i_mapping;
1023 }
1024 spin_unlock(&bdev_lock);
1025 }
1026 return bdev;
1027 }
1028
1029 /* Call when you free inode */
1030
1031 void bd_forget(struct inode *inode)
1032 {
1033 struct block_device *bdev = NULL;
1034
1035 spin_lock(&bdev_lock);
1036 if (!sb_is_blkdev_sb(inode->i_sb))
1037 bdev = inode->i_bdev;
1038 inode->i_bdev = NULL;
1039 inode->i_mapping = &inode->i_data;
1040 spin_unlock(&bdev_lock);
1041
1042 if (bdev)
1043 bdput(bdev);
1044 }
1045
1046 /**
1047 * bd_may_claim - test whether a block device can be claimed
1048 * @bdev: block device of interest
1049 * @whole: whole block device containing @bdev, may equal @bdev
1050 * @holder: holder trying to claim @bdev
1051 *
1052 * Test whether @bdev can be claimed by @holder.
1053 *
1054 * CONTEXT:
1055 * spin_lock(&bdev_lock).
1056 *
1057 * RETURNS:
1058 * %true if @bdev can be claimed, %false otherwise.
1059 */
1060 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1061 void *holder)
1062 {
1063 if (bdev->bd_holder == holder)
1064 return true; /* already a holder */
1065 else if (bdev->bd_holder != NULL)
1066 return false; /* held by someone else */
1067 else if (whole == bdev)
1068 return true; /* is a whole device which isn't held */
1069
1070 else if (whole->bd_holder == bd_may_claim)
1071 return true; /* is a partition of a device that is being partitioned */
1072 else if (whole->bd_holder != NULL)
1073 return false; /* is a partition of a held device */
1074 else
1075 return true; /* is a partition of an un-held device */
1076 }
1077
1078 /**
1079 * bd_prepare_to_claim - prepare to claim a block device
1080 * @bdev: block device of interest
1081 * @whole: the whole device containing @bdev, may equal @bdev
1082 * @holder: holder trying to claim @bdev
1083 *
1084 * Prepare to claim @bdev. This function fails if @bdev is already
1085 * claimed by another holder and waits if another claiming is in
1086 * progress. This function doesn't actually claim. On successful
1087 * return, the caller has ownership of bd_claiming and bd_holder[s].
1088 *
1089 * CONTEXT:
1090 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1091 * it multiple times.
1092 *
1093 * RETURNS:
1094 * 0 if @bdev can be claimed, -EBUSY otherwise.
1095 */
1096 static int bd_prepare_to_claim(struct block_device *bdev,
1097 struct block_device *whole, void *holder)
1098 {
1099 retry:
1100 /* if someone else claimed, fail */
1101 if (!bd_may_claim(bdev, whole, holder))
1102 return -EBUSY;
1103
1104 /* if claiming is already in progress, wait for it to finish */
1105 if (whole->bd_claiming) {
1106 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1107 DEFINE_WAIT(wait);
1108
1109 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1110 spin_unlock(&bdev_lock);
1111 schedule();
1112 finish_wait(wq, &wait);
1113 spin_lock(&bdev_lock);
1114 goto retry;
1115 }
1116
1117 /* yay, all mine */
1118 return 0;
1119 }
1120
1121 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1122 {
1123 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1124
1125 if (!disk)
1126 return NULL;
1127 /*
1128 * Now that we hold gendisk reference we make sure bdev we looked up is
1129 * not stale. If it is, it means device got removed and created before
1130 * we looked up gendisk and we fail open in such case. Associating
1131 * unhashed bdev with newly created gendisk could lead to two bdevs
1132 * (and thus two independent caches) being associated with one device
1133 * which is bad.
1134 */
1135 if (inode_unhashed(bdev->bd_inode)) {
1136 put_disk_and_module(disk);
1137 return NULL;
1138 }
1139 return disk;
1140 }
1141
1142 /**
1143 * bd_start_claiming - start claiming a block device
1144 * @bdev: block device of interest
1145 * @holder: holder trying to claim @bdev
1146 *
1147 * @bdev is about to be opened exclusively. Check @bdev can be opened
1148 * exclusively and mark that an exclusive open is in progress. Each
1149 * successful call to this function must be matched with a call to
1150 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1151 * fail).
1152 *
1153 * This function is used to gain exclusive access to the block device
1154 * without actually causing other exclusive open attempts to fail. It
1155 * should be used when the open sequence itself requires exclusive
1156 * access but may subsequently fail.
1157 *
1158 * CONTEXT:
1159 * Might sleep.
1160 *
1161 * RETURNS:
1162 * Pointer to the block device containing @bdev on success, ERR_PTR()
1163 * value on failure.
1164 */
1165 static struct block_device *bd_start_claiming(struct block_device *bdev,
1166 void *holder)
1167 {
1168 struct gendisk *disk;
1169 struct block_device *whole;
1170 int partno, err;
1171
1172 might_sleep();
1173
1174 /*
1175 * @bdev might not have been initialized properly yet, look up
1176 * and grab the outer block device the hard way.
1177 */
1178 disk = bdev_get_gendisk(bdev, &partno);
1179 if (!disk)
1180 return ERR_PTR(-ENXIO);
1181
1182 /*
1183 * Normally, @bdev should equal what's returned from bdget_disk()
1184 * if partno is 0; however, some drivers (floppy) use multiple
1185 * bdev's for the same physical device and @bdev may be one of the
1186 * aliases. Keep @bdev if partno is 0. This means claimer
1187 * tracking is broken for those devices but it has always been that
1188 * way.
1189 */
1190 if (partno)
1191 whole = bdget_disk(disk, 0);
1192 else
1193 whole = bdgrab(bdev);
1194
1195 put_disk_and_module(disk);
1196 if (!whole)
1197 return ERR_PTR(-ENOMEM);
1198
1199 /* prepare to claim, if successful, mark claiming in progress */
1200 spin_lock(&bdev_lock);
1201
1202 err = bd_prepare_to_claim(bdev, whole, holder);
1203 if (err == 0) {
1204 whole->bd_claiming = holder;
1205 spin_unlock(&bdev_lock);
1206 return whole;
1207 } else {
1208 spin_unlock(&bdev_lock);
1209 bdput(whole);
1210 return ERR_PTR(err);
1211 }
1212 }
1213
1214 #ifdef CONFIG_SYSFS
1215 struct bd_holder_disk {
1216 struct list_head list;
1217 struct gendisk *disk;
1218 int refcnt;
1219 };
1220
1221 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1222 struct gendisk *disk)
1223 {
1224 struct bd_holder_disk *holder;
1225
1226 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1227 if (holder->disk == disk)
1228 return holder;
1229 return NULL;
1230 }
1231
1232 static int add_symlink(struct kobject *from, struct kobject *to)
1233 {
1234 return sysfs_create_link(from, to, kobject_name(to));
1235 }
1236
1237 static void del_symlink(struct kobject *from, struct kobject *to)
1238 {
1239 sysfs_remove_link(from, kobject_name(to));
1240 }
1241
1242 /**
1243 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1244 * @bdev: the claimed slave bdev
1245 * @disk: the holding disk
1246 *
1247 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1248 *
1249 * This functions creates the following sysfs symlinks.
1250 *
1251 * - from "slaves" directory of the holder @disk to the claimed @bdev
1252 * - from "holders" directory of the @bdev to the holder @disk
1253 *
1254 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1255 * passed to bd_link_disk_holder(), then:
1256 *
1257 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1258 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1259 *
1260 * The caller must have claimed @bdev before calling this function and
1261 * ensure that both @bdev and @disk are valid during the creation and
1262 * lifetime of these symlinks.
1263 *
1264 * CONTEXT:
1265 * Might sleep.
1266 *
1267 * RETURNS:
1268 * 0 on success, -errno on failure.
1269 */
1270 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1271 {
1272 struct bd_holder_disk *holder;
1273 int ret = 0;
1274
1275 mutex_lock(&bdev->bd_mutex);
1276
1277 WARN_ON_ONCE(!bdev->bd_holder);
1278
1279 /* FIXME: remove the following once add_disk() handles errors */
1280 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1281 goto out_unlock;
1282
1283 holder = bd_find_holder_disk(bdev, disk);
1284 if (holder) {
1285 holder->refcnt++;
1286 goto out_unlock;
1287 }
1288
1289 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1290 if (!holder) {
1291 ret = -ENOMEM;
1292 goto out_unlock;
1293 }
1294
1295 INIT_LIST_HEAD(&holder->list);
1296 holder->disk = disk;
1297 holder->refcnt = 1;
1298
1299 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1300 if (ret)
1301 goto out_free;
1302
1303 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1304 if (ret)
1305 goto out_del;
1306 /*
1307 * bdev could be deleted beneath us which would implicitly destroy
1308 * the holder directory. Hold on to it.
1309 */
1310 kobject_get(bdev->bd_part->holder_dir);
1311
1312 list_add(&holder->list, &bdev->bd_holder_disks);
1313 goto out_unlock;
1314
1315 out_del:
1316 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1317 out_free:
1318 kfree(holder);
1319 out_unlock:
1320 mutex_unlock(&bdev->bd_mutex);
1321 return ret;
1322 }
1323 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1324
1325 /**
1326 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1327 * @bdev: the calimed slave bdev
1328 * @disk: the holding disk
1329 *
1330 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1331 *
1332 * CONTEXT:
1333 * Might sleep.
1334 */
1335 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1336 {
1337 struct bd_holder_disk *holder;
1338
1339 mutex_lock(&bdev->bd_mutex);
1340
1341 holder = bd_find_holder_disk(bdev, disk);
1342
1343 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1344 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1345 del_symlink(bdev->bd_part->holder_dir,
1346 &disk_to_dev(disk)->kobj);
1347 kobject_put(bdev->bd_part->holder_dir);
1348 list_del_init(&holder->list);
1349 kfree(holder);
1350 }
1351
1352 mutex_unlock(&bdev->bd_mutex);
1353 }
1354 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1355 #endif
1356
1357 /**
1358 * flush_disk - invalidates all buffer-cache entries on a disk
1359 *
1360 * @bdev: struct block device to be flushed
1361 * @kill_dirty: flag to guide handling of dirty inodes
1362 *
1363 * Invalidates all buffer-cache entries on a disk. It should be called
1364 * when a disk has been changed -- either by a media change or online
1365 * resize.
1366 */
1367 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1368 {
1369 if (__invalidate_device(bdev, kill_dirty)) {
1370 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1371 "resized disk %s\n",
1372 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1373 }
1374
1375 if (!bdev->bd_disk)
1376 return;
1377 if (disk_part_scan_enabled(bdev->bd_disk))
1378 bdev->bd_invalidated = 1;
1379 }
1380
1381 /**
1382 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1383 * @disk: struct gendisk to check
1384 * @bdev: struct bdev to adjust.
1385 * @verbose: if %true log a message about a size change if there is any
1386 *
1387 * This routine checks to see if the bdev size does not match the disk size
1388 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1389 * are freed.
1390 */
1391 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1392 bool verbose)
1393 {
1394 loff_t disk_size, bdev_size;
1395
1396 disk_size = (loff_t)get_capacity(disk) << 9;
1397 bdev_size = i_size_read(bdev->bd_inode);
1398 if (disk_size != bdev_size) {
1399 if (verbose) {
1400 printk(KERN_INFO
1401 "%s: detected capacity change from %lld to %lld\n",
1402 disk->disk_name, bdev_size, disk_size);
1403 }
1404 i_size_write(bdev->bd_inode, disk_size);
1405 if (bdev_size > disk_size)
1406 flush_disk(bdev, false);
1407 }
1408 }
1409
1410 /**
1411 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1412 * @disk: struct gendisk to be revalidated
1413 *
1414 * This routine is a wrapper for lower-level driver's revalidate_disk
1415 * call-backs. It is used to do common pre and post operations needed
1416 * for all revalidate_disk operations.
1417 */
1418 int revalidate_disk(struct gendisk *disk)
1419 {
1420 struct block_device *bdev;
1421 int ret = 0;
1422
1423 if (disk->fops->revalidate_disk)
1424 ret = disk->fops->revalidate_disk(disk);
1425 bdev = bdget_disk(disk, 0);
1426 if (!bdev)
1427 return ret;
1428
1429 mutex_lock(&bdev->bd_mutex);
1430 check_disk_size_change(disk, bdev, ret == 0);
1431 bdev->bd_invalidated = 0;
1432 mutex_unlock(&bdev->bd_mutex);
1433 bdput(bdev);
1434 return ret;
1435 }
1436 EXPORT_SYMBOL(revalidate_disk);
1437
1438 /*
1439 * This routine checks whether a removable media has been changed,
1440 * and invalidates all buffer-cache-entries in that case. This
1441 * is a relatively slow routine, so we have to try to minimize using
1442 * it. Thus it is called only upon a 'mount' or 'open'. This
1443 * is the best way of combining speed and utility, I think.
1444 * People changing diskettes in the middle of an operation deserve
1445 * to lose :-)
1446 */
1447 int check_disk_change(struct block_device *bdev)
1448 {
1449 struct gendisk *disk = bdev->bd_disk;
1450 const struct block_device_operations *bdops = disk->fops;
1451 unsigned int events;
1452
1453 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1454 DISK_EVENT_EJECT_REQUEST);
1455 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1456 return 0;
1457
1458 flush_disk(bdev, true);
1459 if (bdops->revalidate_disk)
1460 bdops->revalidate_disk(bdev->bd_disk);
1461 return 1;
1462 }
1463
1464 EXPORT_SYMBOL(check_disk_change);
1465
1466 void bd_set_size(struct block_device *bdev, loff_t size)
1467 {
1468 inode_lock(bdev->bd_inode);
1469 i_size_write(bdev->bd_inode, size);
1470 inode_unlock(bdev->bd_inode);
1471 }
1472 EXPORT_SYMBOL(bd_set_size);
1473
1474 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1475
1476 /*
1477 * bd_mutex locking:
1478 *
1479 * mutex_lock(part->bd_mutex)
1480 * mutex_lock_nested(whole->bd_mutex, 1)
1481 */
1482
1483 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1484 {
1485 struct gendisk *disk;
1486 int ret;
1487 int partno;
1488 int perm = 0;
1489 bool first_open = false;
1490
1491 if (mode & FMODE_READ)
1492 perm |= MAY_READ;
1493 if (mode & FMODE_WRITE)
1494 perm |= MAY_WRITE;
1495 /*
1496 * hooks: /n/, see "layering violations".
1497 */
1498 if (!for_part) {
1499 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1500 if (ret != 0) {
1501 bdput(bdev);
1502 return ret;
1503 }
1504 }
1505
1506 restart:
1507
1508 ret = -ENXIO;
1509 disk = bdev_get_gendisk(bdev, &partno);
1510 if (!disk)
1511 goto out;
1512
1513 disk_block_events(disk);
1514 mutex_lock_nested(&bdev->bd_mutex, for_part);
1515 if (!bdev->bd_openers) {
1516 first_open = true;
1517 bdev->bd_disk = disk;
1518 bdev->bd_queue = disk->queue;
1519 bdev->bd_contains = bdev;
1520 bdev->bd_partno = partno;
1521
1522 if (!partno) {
1523 ret = -ENXIO;
1524 bdev->bd_part = disk_get_part(disk, partno);
1525 if (!bdev->bd_part)
1526 goto out_clear;
1527
1528 ret = 0;
1529 if (disk->fops->open) {
1530 ret = disk->fops->open(bdev, mode);
1531 if (ret == -ERESTARTSYS) {
1532 /* Lost a race with 'disk' being
1533 * deleted, try again.
1534 * See md.c
1535 */
1536 disk_put_part(bdev->bd_part);
1537 bdev->bd_part = NULL;
1538 bdev->bd_disk = NULL;
1539 bdev->bd_queue = NULL;
1540 mutex_unlock(&bdev->bd_mutex);
1541 disk_unblock_events(disk);
1542 put_disk_and_module(disk);
1543 goto restart;
1544 }
1545 }
1546
1547 if (!ret) {
1548 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1549 set_init_blocksize(bdev);
1550 }
1551
1552 /*
1553 * If the device is invalidated, rescan partition
1554 * if open succeeded or failed with -ENOMEDIUM.
1555 * The latter is necessary to prevent ghost
1556 * partitions on a removed medium.
1557 */
1558 if (bdev->bd_invalidated) {
1559 if (!ret)
1560 rescan_partitions(disk, bdev);
1561 else if (ret == -ENOMEDIUM)
1562 invalidate_partitions(disk, bdev);
1563 }
1564
1565 if (ret)
1566 goto out_clear;
1567 } else {
1568 struct block_device *whole;
1569 whole = bdget_disk(disk, 0);
1570 ret = -ENOMEM;
1571 if (!whole)
1572 goto out_clear;
1573 BUG_ON(for_part);
1574 ret = __blkdev_get(whole, mode, 1);
1575 if (ret)
1576 goto out_clear;
1577 bdev->bd_contains = whole;
1578 bdev->bd_part = disk_get_part(disk, partno);
1579 if (!(disk->flags & GENHD_FL_UP) ||
1580 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1581 ret = -ENXIO;
1582 goto out_clear;
1583 }
1584 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1585 set_init_blocksize(bdev);
1586 }
1587
1588 if (bdev->bd_bdi == &noop_backing_dev_info)
1589 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1590 } else {
1591 if (bdev->bd_contains == bdev) {
1592 ret = 0;
1593 if (bdev->bd_disk->fops->open)
1594 ret = bdev->bd_disk->fops->open(bdev, mode);
1595 /* the same as first opener case, read comment there */
1596 if (bdev->bd_invalidated) {
1597 if (!ret)
1598 rescan_partitions(bdev->bd_disk, bdev);
1599 else if (ret == -ENOMEDIUM)
1600 invalidate_partitions(bdev->bd_disk, bdev);
1601 }
1602 if (ret)
1603 goto out_unlock_bdev;
1604 }
1605 }
1606 bdev->bd_openers++;
1607 if (for_part)
1608 bdev->bd_part_count++;
1609 mutex_unlock(&bdev->bd_mutex);
1610 disk_unblock_events(disk);
1611 /* only one opener holds refs to the module and disk */
1612 if (!first_open)
1613 put_disk_and_module(disk);
1614 return 0;
1615
1616 out_clear:
1617 disk_put_part(bdev->bd_part);
1618 bdev->bd_disk = NULL;
1619 bdev->bd_part = NULL;
1620 bdev->bd_queue = NULL;
1621 if (bdev != bdev->bd_contains)
1622 __blkdev_put(bdev->bd_contains, mode, 1);
1623 bdev->bd_contains = NULL;
1624 out_unlock_bdev:
1625 mutex_unlock(&bdev->bd_mutex);
1626 disk_unblock_events(disk);
1627 put_disk_and_module(disk);
1628 out:
1629 bdput(bdev);
1630
1631 return ret;
1632 }
1633
1634 /**
1635 * blkdev_get - open a block device
1636 * @bdev: block_device to open
1637 * @mode: FMODE_* mask
1638 * @holder: exclusive holder identifier
1639 *
1640 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1641 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1642 * @holder is invalid. Exclusive opens may nest for the same @holder.
1643 *
1644 * On success, the reference count of @bdev is unchanged. On failure,
1645 * @bdev is put.
1646 *
1647 * CONTEXT:
1648 * Might sleep.
1649 *
1650 * RETURNS:
1651 * 0 on success, -errno on failure.
1652 */
1653 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1654 {
1655 struct block_device *whole = NULL;
1656 int res;
1657
1658 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1659
1660 if ((mode & FMODE_EXCL) && holder) {
1661 whole = bd_start_claiming(bdev, holder);
1662 if (IS_ERR(whole)) {
1663 bdput(bdev);
1664 return PTR_ERR(whole);
1665 }
1666 }
1667
1668 res = __blkdev_get(bdev, mode, 0);
1669
1670 if (whole) {
1671 struct gendisk *disk = whole->bd_disk;
1672
1673 /* finish claiming */
1674 mutex_lock(&bdev->bd_mutex);
1675 spin_lock(&bdev_lock);
1676
1677 if (!res) {
1678 BUG_ON(!bd_may_claim(bdev, whole, holder));
1679 /*
1680 * Note that for a whole device bd_holders
1681 * will be incremented twice, and bd_holder
1682 * will be set to bd_may_claim before being
1683 * set to holder
1684 */
1685 whole->bd_holders++;
1686 whole->bd_holder = bd_may_claim;
1687 bdev->bd_holders++;
1688 bdev->bd_holder = holder;
1689 }
1690
1691 /* tell others that we're done */
1692 BUG_ON(whole->bd_claiming != holder);
1693 whole->bd_claiming = NULL;
1694 wake_up_bit(&whole->bd_claiming, 0);
1695
1696 spin_unlock(&bdev_lock);
1697
1698 /*
1699 * Block event polling for write claims if requested. Any
1700 * write holder makes the write_holder state stick until
1701 * all are released. This is good enough and tracking
1702 * individual writeable reference is too fragile given the
1703 * way @mode is used in blkdev_get/put().
1704 */
1705 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1706 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1707 bdev->bd_write_holder = true;
1708 disk_block_events(disk);
1709 }
1710
1711 mutex_unlock(&bdev->bd_mutex);
1712 bdput(whole);
1713 }
1714
1715 return res;
1716 }
1717 EXPORT_SYMBOL(blkdev_get);
1718
1719 /**
1720 * blkdev_get_by_path - open a block device by name
1721 * @path: path to the block device to open
1722 * @mode: FMODE_* mask
1723 * @holder: exclusive holder identifier
1724 *
1725 * Open the blockdevice described by the device file at @path. @mode
1726 * and @holder are identical to blkdev_get().
1727 *
1728 * On success, the returned block_device has reference count of one.
1729 *
1730 * CONTEXT:
1731 * Might sleep.
1732 *
1733 * RETURNS:
1734 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1735 */
1736 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1737 void *holder)
1738 {
1739 struct block_device *bdev;
1740 int err;
1741
1742 bdev = lookup_bdev(path);
1743 if (IS_ERR(bdev))
1744 return bdev;
1745
1746 err = blkdev_get(bdev, mode, holder);
1747 if (err)
1748 return ERR_PTR(err);
1749
1750 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1751 blkdev_put(bdev, mode);
1752 return ERR_PTR(-EACCES);
1753 }
1754
1755 return bdev;
1756 }
1757 EXPORT_SYMBOL(blkdev_get_by_path);
1758
1759 /**
1760 * blkdev_get_by_dev - open a block device by device number
1761 * @dev: device number of block device to open
1762 * @mode: FMODE_* mask
1763 * @holder: exclusive holder identifier
1764 *
1765 * Open the blockdevice described by device number @dev. @mode and
1766 * @holder are identical to blkdev_get().
1767 *
1768 * Use it ONLY if you really do not have anything better - i.e. when
1769 * you are behind a truly sucky interface and all you are given is a
1770 * device number. _Never_ to be used for internal purposes. If you
1771 * ever need it - reconsider your API.
1772 *
1773 * On success, the returned block_device has reference count of one.
1774 *
1775 * CONTEXT:
1776 * Might sleep.
1777 *
1778 * RETURNS:
1779 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1780 */
1781 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1782 {
1783 struct block_device *bdev;
1784 int err;
1785
1786 bdev = bdget(dev);
1787 if (!bdev)
1788 return ERR_PTR(-ENOMEM);
1789
1790 err = blkdev_get(bdev, mode, holder);
1791 if (err)
1792 return ERR_PTR(err);
1793
1794 return bdev;
1795 }
1796 EXPORT_SYMBOL(blkdev_get_by_dev);
1797
1798 static int blkdev_open(struct inode * inode, struct file * filp)
1799 {
1800 struct block_device *bdev;
1801
1802 /*
1803 * Preserve backwards compatibility and allow large file access
1804 * even if userspace doesn't ask for it explicitly. Some mkfs
1805 * binary needs it. We might want to drop this workaround
1806 * during an unstable branch.
1807 */
1808 filp->f_flags |= O_LARGEFILE;
1809
1810 filp->f_mode |= FMODE_NOWAIT;
1811
1812 if (filp->f_flags & O_NDELAY)
1813 filp->f_mode |= FMODE_NDELAY;
1814 if (filp->f_flags & O_EXCL)
1815 filp->f_mode |= FMODE_EXCL;
1816 if ((filp->f_flags & O_ACCMODE) == 3)
1817 filp->f_mode |= FMODE_WRITE_IOCTL;
1818
1819 bdev = bd_acquire(inode);
1820 if (bdev == NULL)
1821 return -ENOMEM;
1822
1823 filp->f_mapping = bdev->bd_inode->i_mapping;
1824 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1825
1826 return blkdev_get(bdev, filp->f_mode, filp);
1827 }
1828
1829 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1830 {
1831 struct gendisk *disk = bdev->bd_disk;
1832 struct block_device *victim = NULL;
1833
1834 mutex_lock_nested(&bdev->bd_mutex, for_part);
1835 if (for_part)
1836 bdev->bd_part_count--;
1837
1838 if (!--bdev->bd_openers) {
1839 WARN_ON_ONCE(bdev->bd_holders);
1840 sync_blockdev(bdev);
1841 kill_bdev(bdev);
1842
1843 bdev_write_inode(bdev);
1844 }
1845 if (bdev->bd_contains == bdev) {
1846 if (disk->fops->release)
1847 disk->fops->release(disk, mode);
1848 }
1849 if (!bdev->bd_openers) {
1850 disk_put_part(bdev->bd_part);
1851 bdev->bd_part = NULL;
1852 bdev->bd_disk = NULL;
1853 if (bdev != bdev->bd_contains)
1854 victim = bdev->bd_contains;
1855 bdev->bd_contains = NULL;
1856
1857 put_disk_and_module(disk);
1858 }
1859 mutex_unlock(&bdev->bd_mutex);
1860 bdput(bdev);
1861 if (victim)
1862 __blkdev_put(victim, mode, 1);
1863 }
1864
1865 void blkdev_put(struct block_device *bdev, fmode_t mode)
1866 {
1867 mutex_lock(&bdev->bd_mutex);
1868
1869 if (mode & FMODE_EXCL) {
1870 bool bdev_free;
1871
1872 /*
1873 * Release a claim on the device. The holder fields
1874 * are protected with bdev_lock. bd_mutex is to
1875 * synchronize disk_holder unlinking.
1876 */
1877 spin_lock(&bdev_lock);
1878
1879 WARN_ON_ONCE(--bdev->bd_holders < 0);
1880 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1881
1882 /* bd_contains might point to self, check in a separate step */
1883 if ((bdev_free = !bdev->bd_holders))
1884 bdev->bd_holder = NULL;
1885 if (!bdev->bd_contains->bd_holders)
1886 bdev->bd_contains->bd_holder = NULL;
1887
1888 spin_unlock(&bdev_lock);
1889
1890 /*
1891 * If this was the last claim, remove holder link and
1892 * unblock evpoll if it was a write holder.
1893 */
1894 if (bdev_free && bdev->bd_write_holder) {
1895 disk_unblock_events(bdev->bd_disk);
1896 bdev->bd_write_holder = false;
1897 }
1898 }
1899
1900 /*
1901 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1902 * event. This is to ensure detection of media removal commanded
1903 * from userland - e.g. eject(1).
1904 */
1905 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1906
1907 mutex_unlock(&bdev->bd_mutex);
1908
1909 __blkdev_put(bdev, mode, 0);
1910 }
1911 EXPORT_SYMBOL(blkdev_put);
1912
1913 static int blkdev_close(struct inode * inode, struct file * filp)
1914 {
1915 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1916 blkdev_put(bdev, filp->f_mode);
1917 return 0;
1918 }
1919
1920 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1921 {
1922 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1923 fmode_t mode = file->f_mode;
1924
1925 /*
1926 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1927 * to updated it before every ioctl.
1928 */
1929 if (file->f_flags & O_NDELAY)
1930 mode |= FMODE_NDELAY;
1931 else
1932 mode &= ~FMODE_NDELAY;
1933
1934 return blkdev_ioctl(bdev, mode, cmd, arg);
1935 }
1936
1937 /*
1938 * Write data to the block device. Only intended for the block device itself
1939 * and the raw driver which basically is a fake block device.
1940 *
1941 * Does not take i_mutex for the write and thus is not for general purpose
1942 * use.
1943 */
1944 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1945 {
1946 struct file *file = iocb->ki_filp;
1947 struct inode *bd_inode = bdev_file_inode(file);
1948 loff_t size = i_size_read(bd_inode);
1949 struct blk_plug plug;
1950 ssize_t ret;
1951
1952 if (bdev_read_only(I_BDEV(bd_inode)))
1953 return -EPERM;
1954
1955 if (!iov_iter_count(from))
1956 return 0;
1957
1958 if (iocb->ki_pos >= size)
1959 return -ENOSPC;
1960
1961 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1962 return -EOPNOTSUPP;
1963
1964 iov_iter_truncate(from, size - iocb->ki_pos);
1965
1966 blk_start_plug(&plug);
1967 ret = __generic_file_write_iter(iocb, from);
1968 if (ret > 0)
1969 ret = generic_write_sync(iocb, ret);
1970 blk_finish_plug(&plug);
1971 return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1974
1975 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1976 {
1977 struct file *file = iocb->ki_filp;
1978 struct inode *bd_inode = bdev_file_inode(file);
1979 loff_t size = i_size_read(bd_inode);
1980 loff_t pos = iocb->ki_pos;
1981
1982 if (pos >= size)
1983 return 0;
1984
1985 size -= pos;
1986 iov_iter_truncate(to, size);
1987 return generic_file_read_iter(iocb, to);
1988 }
1989 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1990
1991 /*
1992 * Try to release a page associated with block device when the system
1993 * is under memory pressure.
1994 */
1995 static int blkdev_releasepage(struct page *page, gfp_t wait)
1996 {
1997 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1998
1999 if (super && super->s_op->bdev_try_to_free_page)
2000 return super->s_op->bdev_try_to_free_page(super, page, wait);
2001
2002 return try_to_free_buffers(page);
2003 }
2004
2005 static int blkdev_writepages(struct address_space *mapping,
2006 struct writeback_control *wbc)
2007 {
2008 return generic_writepages(mapping, wbc);
2009 }
2010
2011 static const struct address_space_operations def_blk_aops = {
2012 .readpage = blkdev_readpage,
2013 .readpages = blkdev_readpages,
2014 .writepage = blkdev_writepage,
2015 .write_begin = blkdev_write_begin,
2016 .write_end = blkdev_write_end,
2017 .writepages = blkdev_writepages,
2018 .releasepage = blkdev_releasepage,
2019 .direct_IO = blkdev_direct_IO,
2020 .migratepage = buffer_migrate_page_norefs,
2021 .is_dirty_writeback = buffer_check_dirty_writeback,
2022 };
2023
2024 #define BLKDEV_FALLOC_FL_SUPPORTED \
2025 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2026 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2027
2028 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2029 loff_t len)
2030 {
2031 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2032 struct address_space *mapping;
2033 loff_t end = start + len - 1;
2034 loff_t isize;
2035 int error;
2036
2037 /* Fail if we don't recognize the flags. */
2038 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2039 return -EOPNOTSUPP;
2040
2041 /* Don't go off the end of the device. */
2042 isize = i_size_read(bdev->bd_inode);
2043 if (start >= isize)
2044 return -EINVAL;
2045 if (end >= isize) {
2046 if (mode & FALLOC_FL_KEEP_SIZE) {
2047 len = isize - start;
2048 end = start + len - 1;
2049 } else
2050 return -EINVAL;
2051 }
2052
2053 /*
2054 * Don't allow IO that isn't aligned to logical block size.
2055 */
2056 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2057 return -EINVAL;
2058
2059 /* Invalidate the page cache, including dirty pages. */
2060 mapping = bdev->bd_inode->i_mapping;
2061 truncate_inode_pages_range(mapping, start, end);
2062
2063 switch (mode) {
2064 case FALLOC_FL_ZERO_RANGE:
2065 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2066 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2067 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2068 break;
2069 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2070 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2071 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2072 break;
2073 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2074 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2075 GFP_KERNEL, 0);
2076 break;
2077 default:
2078 return -EOPNOTSUPP;
2079 }
2080 if (error)
2081 return error;
2082
2083 /*
2084 * Invalidate again; if someone wandered in and dirtied a page,
2085 * the caller will be given -EBUSY. The third argument is
2086 * inclusive, so the rounding here is safe.
2087 */
2088 return invalidate_inode_pages2_range(mapping,
2089 start >> PAGE_SHIFT,
2090 end >> PAGE_SHIFT);
2091 }
2092
2093 const struct file_operations def_blk_fops = {
2094 .open = blkdev_open,
2095 .release = blkdev_close,
2096 .llseek = block_llseek,
2097 .read_iter = blkdev_read_iter,
2098 .write_iter = blkdev_write_iter,
2099 .iopoll = blkdev_iopoll,
2100 .mmap = generic_file_mmap,
2101 .fsync = blkdev_fsync,
2102 .unlocked_ioctl = block_ioctl,
2103 #ifdef CONFIG_COMPAT
2104 .compat_ioctl = compat_blkdev_ioctl,
2105 #endif
2106 .splice_read = generic_file_splice_read,
2107 .splice_write = iter_file_splice_write,
2108 .fallocate = blkdev_fallocate,
2109 };
2110
2111 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2112 {
2113 int res;
2114 mm_segment_t old_fs = get_fs();
2115 set_fs(KERNEL_DS);
2116 res = blkdev_ioctl(bdev, 0, cmd, arg);
2117 set_fs(old_fs);
2118 return res;
2119 }
2120
2121 EXPORT_SYMBOL(ioctl_by_bdev);
2122
2123 /**
2124 * lookup_bdev - lookup a struct block_device by name
2125 * @pathname: special file representing the block device
2126 *
2127 * Get a reference to the blockdevice at @pathname in the current
2128 * namespace if possible and return it. Return ERR_PTR(error)
2129 * otherwise.
2130 */
2131 struct block_device *lookup_bdev(const char *pathname)
2132 {
2133 struct block_device *bdev;
2134 struct inode *inode;
2135 struct path path;
2136 int error;
2137
2138 if (!pathname || !*pathname)
2139 return ERR_PTR(-EINVAL);
2140
2141 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2142 if (error)
2143 return ERR_PTR(error);
2144
2145 inode = d_backing_inode(path.dentry);
2146 error = -ENOTBLK;
2147 if (!S_ISBLK(inode->i_mode))
2148 goto fail;
2149 error = -EACCES;
2150 if (!may_open_dev(&path))
2151 goto fail;
2152 error = -ENOMEM;
2153 bdev = bd_acquire(inode);
2154 if (!bdev)
2155 goto fail;
2156 out:
2157 path_put(&path);
2158 return bdev;
2159 fail:
2160 bdev = ERR_PTR(error);
2161 goto out;
2162 }
2163 EXPORT_SYMBOL(lookup_bdev);
2164
2165 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2166 {
2167 struct super_block *sb = get_super(bdev);
2168 int res = 0;
2169
2170 if (sb) {
2171 /*
2172 * no need to lock the super, get_super holds the
2173 * read mutex so the filesystem cannot go away
2174 * under us (->put_super runs with the write lock
2175 * hold).
2176 */
2177 shrink_dcache_sb(sb);
2178 res = invalidate_inodes(sb, kill_dirty);
2179 drop_super(sb);
2180 }
2181 invalidate_bdev(bdev);
2182 return res;
2183 }
2184 EXPORT_SYMBOL(__invalidate_device);
2185
2186 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2187 {
2188 struct inode *inode, *old_inode = NULL;
2189
2190 spin_lock(&blockdev_superblock->s_inode_list_lock);
2191 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2192 struct address_space *mapping = inode->i_mapping;
2193 struct block_device *bdev;
2194
2195 spin_lock(&inode->i_lock);
2196 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2197 mapping->nrpages == 0) {
2198 spin_unlock(&inode->i_lock);
2199 continue;
2200 }
2201 __iget(inode);
2202 spin_unlock(&inode->i_lock);
2203 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2204 /*
2205 * We hold a reference to 'inode' so it couldn't have been
2206 * removed from s_inodes list while we dropped the
2207 * s_inode_list_lock We cannot iput the inode now as we can
2208 * be holding the last reference and we cannot iput it under
2209 * s_inode_list_lock. So we keep the reference and iput it
2210 * later.
2211 */
2212 iput(old_inode);
2213 old_inode = inode;
2214 bdev = I_BDEV(inode);
2215
2216 mutex_lock(&bdev->bd_mutex);
2217 if (bdev->bd_openers)
2218 func(bdev, arg);
2219 mutex_unlock(&bdev->bd_mutex);
2220
2221 spin_lock(&blockdev_superblock->s_inode_list_lock);
2222 }
2223 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2224 iput(old_inode);
2225 }