]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/backref.c
Merge branch 'nvme-5.7' of git://git.infradead.org/nvme into block-5.7
[thirdparty/linux.git] / fs / btrfs / backref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19
20 struct extent_inode_elem {
21 u64 inum;
22 u64 offset;
23 struct extent_inode_elem *next;
24 };
25
26 static int check_extent_in_eb(const struct btrfs_key *key,
27 const struct extent_buffer *eb,
28 const struct btrfs_file_extent_item *fi,
29 u64 extent_item_pos,
30 struct extent_inode_elem **eie,
31 bool ignore_offset)
32 {
33 u64 offset = 0;
34 struct extent_inode_elem *e;
35
36 if (!ignore_offset &&
37 !btrfs_file_extent_compression(eb, fi) &&
38 !btrfs_file_extent_encryption(eb, fi) &&
39 !btrfs_file_extent_other_encoding(eb, fi)) {
40 u64 data_offset;
41 u64 data_len;
42
43 data_offset = btrfs_file_extent_offset(eb, fi);
44 data_len = btrfs_file_extent_num_bytes(eb, fi);
45
46 if (extent_item_pos < data_offset ||
47 extent_item_pos >= data_offset + data_len)
48 return 1;
49 offset = extent_item_pos - data_offset;
50 }
51
52 e = kmalloc(sizeof(*e), GFP_NOFS);
53 if (!e)
54 return -ENOMEM;
55
56 e->next = *eie;
57 e->inum = key->objectid;
58 e->offset = key->offset + offset;
59 *eie = e;
60
61 return 0;
62 }
63
64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 struct extent_inode_elem *eie_next;
67
68 for (; eie; eie = eie_next) {
69 eie_next = eie->next;
70 kfree(eie);
71 }
72 }
73
74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 u64 wanted_disk_byte, u64 extent_item_pos,
76 struct extent_inode_elem **eie,
77 bool ignore_offset)
78 {
79 u64 disk_byte;
80 struct btrfs_key key;
81 struct btrfs_file_extent_item *fi;
82 int slot;
83 int nritems;
84 int extent_type;
85 int ret;
86
87 /*
88 * from the shared data ref, we only have the leaf but we need
89 * the key. thus, we must look into all items and see that we
90 * find one (some) with a reference to our extent item.
91 */
92 nritems = btrfs_header_nritems(eb);
93 for (slot = 0; slot < nritems; ++slot) {
94 btrfs_item_key_to_cpu(eb, &key, slot);
95 if (key.type != BTRFS_EXTENT_DATA_KEY)
96 continue;
97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 extent_type = btrfs_file_extent_type(eb, fi);
99 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 continue;
101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 if (disk_byte != wanted_disk_byte)
104 continue;
105
106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 if (ret < 0)
108 return ret;
109 }
110
111 return 0;
112 }
113
114 struct preftree {
115 struct rb_root_cached root;
116 unsigned int count;
117 };
118
119 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
120
121 struct preftrees {
122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 struct preftree indirect_missing_keys;
125 };
126
127 /*
128 * Checks for a shared extent during backref search.
129 *
130 * The share_count tracks prelim_refs (direct and indirect) having a
131 * ref->count >0:
132 * - incremented when a ref->count transitions to >0
133 * - decremented when a ref->count transitions to <1
134 */
135 struct share_check {
136 u64 root_objectid;
137 u64 inum;
138 int share_count;
139 };
140
141 static inline int extent_is_shared(struct share_check *sc)
142 {
143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144 }
145
146 static struct kmem_cache *btrfs_prelim_ref_cache;
147
148 int __init btrfs_prelim_ref_init(void)
149 {
150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 sizeof(struct prelim_ref),
152 0,
153 SLAB_MEM_SPREAD,
154 NULL);
155 if (!btrfs_prelim_ref_cache)
156 return -ENOMEM;
157 return 0;
158 }
159
160 void __cold btrfs_prelim_ref_exit(void)
161 {
162 kmem_cache_destroy(btrfs_prelim_ref_cache);
163 }
164
165 static void free_pref(struct prelim_ref *ref)
166 {
167 kmem_cache_free(btrfs_prelim_ref_cache, ref);
168 }
169
170 /*
171 * Return 0 when both refs are for the same block (and can be merged).
172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173 * indicates a 'higher' block.
174 */
175 static int prelim_ref_compare(struct prelim_ref *ref1,
176 struct prelim_ref *ref2)
177 {
178 if (ref1->level < ref2->level)
179 return -1;
180 if (ref1->level > ref2->level)
181 return 1;
182 if (ref1->root_id < ref2->root_id)
183 return -1;
184 if (ref1->root_id > ref2->root_id)
185 return 1;
186 if (ref1->key_for_search.type < ref2->key_for_search.type)
187 return -1;
188 if (ref1->key_for_search.type > ref2->key_for_search.type)
189 return 1;
190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 return -1;
192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 return 1;
194 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 return -1;
196 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 return 1;
198 if (ref1->parent < ref2->parent)
199 return -1;
200 if (ref1->parent > ref2->parent)
201 return 1;
202
203 return 0;
204 }
205
206 static void update_share_count(struct share_check *sc, int oldcount,
207 int newcount)
208 {
209 if ((!sc) || (oldcount == 0 && newcount < 1))
210 return;
211
212 if (oldcount > 0 && newcount < 1)
213 sc->share_count--;
214 else if (oldcount < 1 && newcount > 0)
215 sc->share_count++;
216 }
217
218 /*
219 * Add @newref to the @root rbtree, merging identical refs.
220 *
221 * Callers should assume that newref has been freed after calling.
222 */
223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 struct preftree *preftree,
225 struct prelim_ref *newref,
226 struct share_check *sc)
227 {
228 struct rb_root_cached *root;
229 struct rb_node **p;
230 struct rb_node *parent = NULL;
231 struct prelim_ref *ref;
232 int result;
233 bool leftmost = true;
234
235 root = &preftree->root;
236 p = &root->rb_root.rb_node;
237
238 while (*p) {
239 parent = *p;
240 ref = rb_entry(parent, struct prelim_ref, rbnode);
241 result = prelim_ref_compare(ref, newref);
242 if (result < 0) {
243 p = &(*p)->rb_left;
244 } else if (result > 0) {
245 p = &(*p)->rb_right;
246 leftmost = false;
247 } else {
248 /* Identical refs, merge them and free @newref */
249 struct extent_inode_elem *eie = ref->inode_list;
250
251 while (eie && eie->next)
252 eie = eie->next;
253
254 if (!eie)
255 ref->inode_list = newref->inode_list;
256 else
257 eie->next = newref->inode_list;
258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 preftree->count);
260 /*
261 * A delayed ref can have newref->count < 0.
262 * The ref->count is updated to follow any
263 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 */
265 update_share_count(sc, ref->count,
266 ref->count + newref->count);
267 ref->count += newref->count;
268 free_pref(newref);
269 return;
270 }
271 }
272
273 update_share_count(sc, 0, newref->count);
274 preftree->count++;
275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276 rb_link_node(&newref->rbnode, parent, p);
277 rb_insert_color_cached(&newref->rbnode, root, leftmost);
278 }
279
280 /*
281 * Release the entire tree. We don't care about internal consistency so
282 * just free everything and then reset the tree root.
283 */
284 static void prelim_release(struct preftree *preftree)
285 {
286 struct prelim_ref *ref, *next_ref;
287
288 rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 &preftree->root.rb_root, rbnode)
290 free_pref(ref);
291
292 preftree->root = RB_ROOT_CACHED;
293 preftree->count = 0;
294 }
295
296 /*
297 * the rules for all callers of this function are:
298 * - obtaining the parent is the goal
299 * - if you add a key, you must know that it is a correct key
300 * - if you cannot add the parent or a correct key, then we will look into the
301 * block later to set a correct key
302 *
303 * delayed refs
304 * ============
305 * backref type | shared | indirect | shared | indirect
306 * information | tree | tree | data | data
307 * --------------------+--------+----------+--------+----------
308 * parent logical | y | - | - | -
309 * key to resolve | - | y | y | y
310 * tree block logical | - | - | - | -
311 * root for resolving | y | y | y | y
312 *
313 * - column 1: we've the parent -> done
314 * - column 2, 3, 4: we use the key to find the parent
315 *
316 * on disk refs (inline or keyed)
317 * ==============================
318 * backref type | shared | indirect | shared | indirect
319 * information | tree | tree | data | data
320 * --------------------+--------+----------+--------+----------
321 * parent logical | y | - | y | -
322 * key to resolve | - | - | - | y
323 * tree block logical | y | y | y | y
324 * root for resolving | - | y | y | y
325 *
326 * - column 1, 3: we've the parent -> done
327 * - column 2: we take the first key from the block to find the parent
328 * (see add_missing_keys)
329 * - column 4: we use the key to find the parent
330 *
331 * additional information that's available but not required to find the parent
332 * block might help in merging entries to gain some speed.
333 */
334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 struct preftree *preftree, u64 root_id,
336 const struct btrfs_key *key, int level, u64 parent,
337 u64 wanted_disk_byte, int count,
338 struct share_check *sc, gfp_t gfp_mask)
339 {
340 struct prelim_ref *ref;
341
342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 return 0;
344
345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 if (!ref)
347 return -ENOMEM;
348
349 ref->root_id = root_id;
350 if (key)
351 ref->key_for_search = *key;
352 else
353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
354
355 ref->inode_list = NULL;
356 ref->level = level;
357 ref->count = count;
358 ref->parent = parent;
359 ref->wanted_disk_byte = wanted_disk_byte;
360 prelim_ref_insert(fs_info, preftree, ref, sc);
361 return extent_is_shared(sc);
362 }
363
364 /* direct refs use root == 0, key == NULL */
365 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 struct preftrees *preftrees, int level, u64 parent,
367 u64 wanted_disk_byte, int count,
368 struct share_check *sc, gfp_t gfp_mask)
369 {
370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
371 parent, wanted_disk_byte, count, sc, gfp_mask);
372 }
373
374 /* indirect refs use parent == 0 */
375 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 struct preftrees *preftrees, u64 root_id,
377 const struct btrfs_key *key, int level,
378 u64 wanted_disk_byte, int count,
379 struct share_check *sc, gfp_t gfp_mask)
380 {
381 struct preftree *tree = &preftrees->indirect;
382
383 if (!key)
384 tree = &preftrees->indirect_missing_keys;
385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
386 wanted_disk_byte, count, sc, gfp_mask);
387 }
388
389 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
390 {
391 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
392 struct rb_node *parent = NULL;
393 struct prelim_ref *ref = NULL;
394 struct prelim_ref target = {0};
395 int result;
396
397 target.parent = bytenr;
398
399 while (*p) {
400 parent = *p;
401 ref = rb_entry(parent, struct prelim_ref, rbnode);
402 result = prelim_ref_compare(ref, &target);
403
404 if (result < 0)
405 p = &(*p)->rb_left;
406 else if (result > 0)
407 p = &(*p)->rb_right;
408 else
409 return 1;
410 }
411 return 0;
412 }
413
414 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
415 struct ulist *parents,
416 struct preftrees *preftrees, struct prelim_ref *ref,
417 int level, u64 time_seq, const u64 *extent_item_pos,
418 bool ignore_offset)
419 {
420 int ret = 0;
421 int slot;
422 struct extent_buffer *eb;
423 struct btrfs_key key;
424 struct btrfs_key *key_for_search = &ref->key_for_search;
425 struct btrfs_file_extent_item *fi;
426 struct extent_inode_elem *eie = NULL, *old = NULL;
427 u64 disk_byte;
428 u64 wanted_disk_byte = ref->wanted_disk_byte;
429 u64 count = 0;
430 u64 data_offset;
431
432 if (level != 0) {
433 eb = path->nodes[level];
434 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
435 if (ret < 0)
436 return ret;
437 return 0;
438 }
439
440 /*
441 * 1. We normally enter this function with the path already pointing to
442 * the first item to check. But sometimes, we may enter it with
443 * slot == nritems.
444 * 2. We are searching for normal backref but bytenr of this leaf
445 * matches shared data backref
446 * 3. The leaf owner is not equal to the root we are searching
447 *
448 * For these cases, go to the next leaf before we continue.
449 */
450 eb = path->nodes[0];
451 if (path->slots[0] >= btrfs_header_nritems(eb) ||
452 is_shared_data_backref(preftrees, eb->start) ||
453 ref->root_id != btrfs_header_owner(eb)) {
454 if (time_seq == SEQ_LAST)
455 ret = btrfs_next_leaf(root, path);
456 else
457 ret = btrfs_next_old_leaf(root, path, time_seq);
458 }
459
460 while (!ret && count < ref->count) {
461 eb = path->nodes[0];
462 slot = path->slots[0];
463
464 btrfs_item_key_to_cpu(eb, &key, slot);
465
466 if (key.objectid != key_for_search->objectid ||
467 key.type != BTRFS_EXTENT_DATA_KEY)
468 break;
469
470 /*
471 * We are searching for normal backref but bytenr of this leaf
472 * matches shared data backref, OR
473 * the leaf owner is not equal to the root we are searching for
474 */
475 if (slot == 0 &&
476 (is_shared_data_backref(preftrees, eb->start) ||
477 ref->root_id != btrfs_header_owner(eb))) {
478 if (time_seq == SEQ_LAST)
479 ret = btrfs_next_leaf(root, path);
480 else
481 ret = btrfs_next_old_leaf(root, path, time_seq);
482 continue;
483 }
484 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
485 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
486 data_offset = btrfs_file_extent_offset(eb, fi);
487
488 if (disk_byte == wanted_disk_byte) {
489 eie = NULL;
490 old = NULL;
491 if (ref->key_for_search.offset == key.offset - data_offset)
492 count++;
493 else
494 goto next;
495 if (extent_item_pos) {
496 ret = check_extent_in_eb(&key, eb, fi,
497 *extent_item_pos,
498 &eie, ignore_offset);
499 if (ret < 0)
500 break;
501 }
502 if (ret > 0)
503 goto next;
504 ret = ulist_add_merge_ptr(parents, eb->start,
505 eie, (void **)&old, GFP_NOFS);
506 if (ret < 0)
507 break;
508 if (!ret && extent_item_pos) {
509 while (old->next)
510 old = old->next;
511 old->next = eie;
512 }
513 eie = NULL;
514 }
515 next:
516 if (time_seq == SEQ_LAST)
517 ret = btrfs_next_item(root, path);
518 else
519 ret = btrfs_next_old_item(root, path, time_seq);
520 }
521
522 if (ret > 0)
523 ret = 0;
524 else if (ret < 0)
525 free_inode_elem_list(eie);
526 return ret;
527 }
528
529 /*
530 * resolve an indirect backref in the form (root_id, key, level)
531 * to a logical address
532 */
533 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
534 struct btrfs_path *path, u64 time_seq,
535 struct preftrees *preftrees,
536 struct prelim_ref *ref, struct ulist *parents,
537 const u64 *extent_item_pos, bool ignore_offset)
538 {
539 struct btrfs_root *root;
540 struct btrfs_key root_key;
541 struct extent_buffer *eb;
542 int ret = 0;
543 int root_level;
544 int level = ref->level;
545 struct btrfs_key search_key = ref->key_for_search;
546
547 root_key.objectid = ref->root_id;
548 root_key.type = BTRFS_ROOT_ITEM_KEY;
549 root_key.offset = (u64)-1;
550
551 root = btrfs_get_fs_root(fs_info, &root_key, false);
552 if (IS_ERR(root)) {
553 ret = PTR_ERR(root);
554 goto out_free;
555 }
556
557 if (!path->search_commit_root &&
558 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
559 ret = -ENOENT;
560 goto out;
561 }
562
563 if (btrfs_is_testing(fs_info)) {
564 ret = -ENOENT;
565 goto out;
566 }
567
568 if (path->search_commit_root)
569 root_level = btrfs_header_level(root->commit_root);
570 else if (time_seq == SEQ_LAST)
571 root_level = btrfs_header_level(root->node);
572 else
573 root_level = btrfs_old_root_level(root, time_seq);
574
575 if (root_level + 1 == level)
576 goto out;
577
578 /*
579 * We can often find data backrefs with an offset that is too large
580 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
581 * subtracting a file's offset with the data offset of its
582 * corresponding extent data item. This can happen for example in the
583 * clone ioctl.
584 *
585 * So if we detect such case we set the search key's offset to zero to
586 * make sure we will find the matching file extent item at
587 * add_all_parents(), otherwise we will miss it because the offset
588 * taken form the backref is much larger then the offset of the file
589 * extent item. This can make us scan a very large number of file
590 * extent items, but at least it will not make us miss any.
591 *
592 * This is an ugly workaround for a behaviour that should have never
593 * existed, but it does and a fix for the clone ioctl would touch a lot
594 * of places, cause backwards incompatibility and would not fix the
595 * problem for extents cloned with older kernels.
596 */
597 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
598 search_key.offset >= LLONG_MAX)
599 search_key.offset = 0;
600 path->lowest_level = level;
601 if (time_seq == SEQ_LAST)
602 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
603 else
604 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
605
606 btrfs_debug(fs_info,
607 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
608 ref->root_id, level, ref->count, ret,
609 ref->key_for_search.objectid, ref->key_for_search.type,
610 ref->key_for_search.offset);
611 if (ret < 0)
612 goto out;
613
614 eb = path->nodes[level];
615 while (!eb) {
616 if (WARN_ON(!level)) {
617 ret = 1;
618 goto out;
619 }
620 level--;
621 eb = path->nodes[level];
622 }
623
624 ret = add_all_parents(root, path, parents, preftrees, ref, level,
625 time_seq, extent_item_pos, ignore_offset);
626 out:
627 btrfs_put_root(root);
628 out_free:
629 path->lowest_level = 0;
630 btrfs_release_path(path);
631 return ret;
632 }
633
634 static struct extent_inode_elem *
635 unode_aux_to_inode_list(struct ulist_node *node)
636 {
637 if (!node)
638 return NULL;
639 return (struct extent_inode_elem *)(uintptr_t)node->aux;
640 }
641
642 /*
643 * We maintain three separate rbtrees: one for direct refs, one for
644 * indirect refs which have a key, and one for indirect refs which do not
645 * have a key. Each tree does merge on insertion.
646 *
647 * Once all of the references are located, we iterate over the tree of
648 * indirect refs with missing keys. An appropriate key is located and
649 * the ref is moved onto the tree for indirect refs. After all missing
650 * keys are thus located, we iterate over the indirect ref tree, resolve
651 * each reference, and then insert the resolved reference onto the
652 * direct tree (merging there too).
653 *
654 * New backrefs (i.e., for parent nodes) are added to the appropriate
655 * rbtree as they are encountered. The new backrefs are subsequently
656 * resolved as above.
657 */
658 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
659 struct btrfs_path *path, u64 time_seq,
660 struct preftrees *preftrees,
661 const u64 *extent_item_pos,
662 struct share_check *sc, bool ignore_offset)
663 {
664 int err;
665 int ret = 0;
666 struct ulist *parents;
667 struct ulist_node *node;
668 struct ulist_iterator uiter;
669 struct rb_node *rnode;
670
671 parents = ulist_alloc(GFP_NOFS);
672 if (!parents)
673 return -ENOMEM;
674
675 /*
676 * We could trade memory usage for performance here by iterating
677 * the tree, allocating new refs for each insertion, and then
678 * freeing the entire indirect tree when we're done. In some test
679 * cases, the tree can grow quite large (~200k objects).
680 */
681 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
682 struct prelim_ref *ref;
683
684 ref = rb_entry(rnode, struct prelim_ref, rbnode);
685 if (WARN(ref->parent,
686 "BUG: direct ref found in indirect tree")) {
687 ret = -EINVAL;
688 goto out;
689 }
690
691 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
692 preftrees->indirect.count--;
693
694 if (ref->count == 0) {
695 free_pref(ref);
696 continue;
697 }
698
699 if (sc && sc->root_objectid &&
700 ref->root_id != sc->root_objectid) {
701 free_pref(ref);
702 ret = BACKREF_FOUND_SHARED;
703 goto out;
704 }
705 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
706 ref, parents, extent_item_pos,
707 ignore_offset);
708 /*
709 * we can only tolerate ENOENT,otherwise,we should catch error
710 * and return directly.
711 */
712 if (err == -ENOENT) {
713 prelim_ref_insert(fs_info, &preftrees->direct, ref,
714 NULL);
715 continue;
716 } else if (err) {
717 free_pref(ref);
718 ret = err;
719 goto out;
720 }
721
722 /* we put the first parent into the ref at hand */
723 ULIST_ITER_INIT(&uiter);
724 node = ulist_next(parents, &uiter);
725 ref->parent = node ? node->val : 0;
726 ref->inode_list = unode_aux_to_inode_list(node);
727
728 /* Add a prelim_ref(s) for any other parent(s). */
729 while ((node = ulist_next(parents, &uiter))) {
730 struct prelim_ref *new_ref;
731
732 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
733 GFP_NOFS);
734 if (!new_ref) {
735 free_pref(ref);
736 ret = -ENOMEM;
737 goto out;
738 }
739 memcpy(new_ref, ref, sizeof(*ref));
740 new_ref->parent = node->val;
741 new_ref->inode_list = unode_aux_to_inode_list(node);
742 prelim_ref_insert(fs_info, &preftrees->direct,
743 new_ref, NULL);
744 }
745
746 /*
747 * Now it's a direct ref, put it in the direct tree. We must
748 * do this last because the ref could be merged/freed here.
749 */
750 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
751
752 ulist_reinit(parents);
753 cond_resched();
754 }
755 out:
756 ulist_free(parents);
757 return ret;
758 }
759
760 /*
761 * read tree blocks and add keys where required.
762 */
763 static int add_missing_keys(struct btrfs_fs_info *fs_info,
764 struct preftrees *preftrees, bool lock)
765 {
766 struct prelim_ref *ref;
767 struct extent_buffer *eb;
768 struct preftree *tree = &preftrees->indirect_missing_keys;
769 struct rb_node *node;
770
771 while ((node = rb_first_cached(&tree->root))) {
772 ref = rb_entry(node, struct prelim_ref, rbnode);
773 rb_erase_cached(node, &tree->root);
774
775 BUG_ON(ref->parent); /* should not be a direct ref */
776 BUG_ON(ref->key_for_search.type);
777 BUG_ON(!ref->wanted_disk_byte);
778
779 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
780 ref->level - 1, NULL);
781 if (IS_ERR(eb)) {
782 free_pref(ref);
783 return PTR_ERR(eb);
784 } else if (!extent_buffer_uptodate(eb)) {
785 free_pref(ref);
786 free_extent_buffer(eb);
787 return -EIO;
788 }
789 if (lock)
790 btrfs_tree_read_lock(eb);
791 if (btrfs_header_level(eb) == 0)
792 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
793 else
794 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
795 if (lock)
796 btrfs_tree_read_unlock(eb);
797 free_extent_buffer(eb);
798 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
799 cond_resched();
800 }
801 return 0;
802 }
803
804 /*
805 * add all currently queued delayed refs from this head whose seq nr is
806 * smaller or equal that seq to the list
807 */
808 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
809 struct btrfs_delayed_ref_head *head, u64 seq,
810 struct preftrees *preftrees, struct share_check *sc)
811 {
812 struct btrfs_delayed_ref_node *node;
813 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
814 struct btrfs_key key;
815 struct btrfs_key tmp_op_key;
816 struct rb_node *n;
817 int count;
818 int ret = 0;
819
820 if (extent_op && extent_op->update_key)
821 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
822
823 spin_lock(&head->lock);
824 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
825 node = rb_entry(n, struct btrfs_delayed_ref_node,
826 ref_node);
827 if (node->seq > seq)
828 continue;
829
830 switch (node->action) {
831 case BTRFS_ADD_DELAYED_EXTENT:
832 case BTRFS_UPDATE_DELAYED_HEAD:
833 WARN_ON(1);
834 continue;
835 case BTRFS_ADD_DELAYED_REF:
836 count = node->ref_mod;
837 break;
838 case BTRFS_DROP_DELAYED_REF:
839 count = node->ref_mod * -1;
840 break;
841 default:
842 BUG();
843 }
844 switch (node->type) {
845 case BTRFS_TREE_BLOCK_REF_KEY: {
846 /* NORMAL INDIRECT METADATA backref */
847 struct btrfs_delayed_tree_ref *ref;
848
849 ref = btrfs_delayed_node_to_tree_ref(node);
850 ret = add_indirect_ref(fs_info, preftrees, ref->root,
851 &tmp_op_key, ref->level + 1,
852 node->bytenr, count, sc,
853 GFP_ATOMIC);
854 break;
855 }
856 case BTRFS_SHARED_BLOCK_REF_KEY: {
857 /* SHARED DIRECT METADATA backref */
858 struct btrfs_delayed_tree_ref *ref;
859
860 ref = btrfs_delayed_node_to_tree_ref(node);
861
862 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
863 ref->parent, node->bytenr, count,
864 sc, GFP_ATOMIC);
865 break;
866 }
867 case BTRFS_EXTENT_DATA_REF_KEY: {
868 /* NORMAL INDIRECT DATA backref */
869 struct btrfs_delayed_data_ref *ref;
870 ref = btrfs_delayed_node_to_data_ref(node);
871
872 key.objectid = ref->objectid;
873 key.type = BTRFS_EXTENT_DATA_KEY;
874 key.offset = ref->offset;
875
876 /*
877 * Found a inum that doesn't match our known inum, we
878 * know it's shared.
879 */
880 if (sc && sc->inum && ref->objectid != sc->inum) {
881 ret = BACKREF_FOUND_SHARED;
882 goto out;
883 }
884
885 ret = add_indirect_ref(fs_info, preftrees, ref->root,
886 &key, 0, node->bytenr, count, sc,
887 GFP_ATOMIC);
888 break;
889 }
890 case BTRFS_SHARED_DATA_REF_KEY: {
891 /* SHARED DIRECT FULL backref */
892 struct btrfs_delayed_data_ref *ref;
893
894 ref = btrfs_delayed_node_to_data_ref(node);
895
896 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
897 node->bytenr, count, sc,
898 GFP_ATOMIC);
899 break;
900 }
901 default:
902 WARN_ON(1);
903 }
904 /*
905 * We must ignore BACKREF_FOUND_SHARED until all delayed
906 * refs have been checked.
907 */
908 if (ret && (ret != BACKREF_FOUND_SHARED))
909 break;
910 }
911 if (!ret)
912 ret = extent_is_shared(sc);
913 out:
914 spin_unlock(&head->lock);
915 return ret;
916 }
917
918 /*
919 * add all inline backrefs for bytenr to the list
920 *
921 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
922 */
923 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
924 struct btrfs_path *path, u64 bytenr,
925 int *info_level, struct preftrees *preftrees,
926 struct share_check *sc)
927 {
928 int ret = 0;
929 int slot;
930 struct extent_buffer *leaf;
931 struct btrfs_key key;
932 struct btrfs_key found_key;
933 unsigned long ptr;
934 unsigned long end;
935 struct btrfs_extent_item *ei;
936 u64 flags;
937 u64 item_size;
938
939 /*
940 * enumerate all inline refs
941 */
942 leaf = path->nodes[0];
943 slot = path->slots[0];
944
945 item_size = btrfs_item_size_nr(leaf, slot);
946 BUG_ON(item_size < sizeof(*ei));
947
948 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
949 flags = btrfs_extent_flags(leaf, ei);
950 btrfs_item_key_to_cpu(leaf, &found_key, slot);
951
952 ptr = (unsigned long)(ei + 1);
953 end = (unsigned long)ei + item_size;
954
955 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
956 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
957 struct btrfs_tree_block_info *info;
958
959 info = (struct btrfs_tree_block_info *)ptr;
960 *info_level = btrfs_tree_block_level(leaf, info);
961 ptr += sizeof(struct btrfs_tree_block_info);
962 BUG_ON(ptr > end);
963 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
964 *info_level = found_key.offset;
965 } else {
966 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
967 }
968
969 while (ptr < end) {
970 struct btrfs_extent_inline_ref *iref;
971 u64 offset;
972 int type;
973
974 iref = (struct btrfs_extent_inline_ref *)ptr;
975 type = btrfs_get_extent_inline_ref_type(leaf, iref,
976 BTRFS_REF_TYPE_ANY);
977 if (type == BTRFS_REF_TYPE_INVALID)
978 return -EUCLEAN;
979
980 offset = btrfs_extent_inline_ref_offset(leaf, iref);
981
982 switch (type) {
983 case BTRFS_SHARED_BLOCK_REF_KEY:
984 ret = add_direct_ref(fs_info, preftrees,
985 *info_level + 1, offset,
986 bytenr, 1, NULL, GFP_NOFS);
987 break;
988 case BTRFS_SHARED_DATA_REF_KEY: {
989 struct btrfs_shared_data_ref *sdref;
990 int count;
991
992 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
993 count = btrfs_shared_data_ref_count(leaf, sdref);
994
995 ret = add_direct_ref(fs_info, preftrees, 0, offset,
996 bytenr, count, sc, GFP_NOFS);
997 break;
998 }
999 case BTRFS_TREE_BLOCK_REF_KEY:
1000 ret = add_indirect_ref(fs_info, preftrees, offset,
1001 NULL, *info_level + 1,
1002 bytenr, 1, NULL, GFP_NOFS);
1003 break;
1004 case BTRFS_EXTENT_DATA_REF_KEY: {
1005 struct btrfs_extent_data_ref *dref;
1006 int count;
1007 u64 root;
1008
1009 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1010 count = btrfs_extent_data_ref_count(leaf, dref);
1011 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1012 dref);
1013 key.type = BTRFS_EXTENT_DATA_KEY;
1014 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1015
1016 if (sc && sc->inum && key.objectid != sc->inum) {
1017 ret = BACKREF_FOUND_SHARED;
1018 break;
1019 }
1020
1021 root = btrfs_extent_data_ref_root(leaf, dref);
1022
1023 ret = add_indirect_ref(fs_info, preftrees, root,
1024 &key, 0, bytenr, count,
1025 sc, GFP_NOFS);
1026 break;
1027 }
1028 default:
1029 WARN_ON(1);
1030 }
1031 if (ret)
1032 return ret;
1033 ptr += btrfs_extent_inline_ref_size(type);
1034 }
1035
1036 return 0;
1037 }
1038
1039 /*
1040 * add all non-inline backrefs for bytenr to the list
1041 *
1042 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1043 */
1044 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1045 struct btrfs_path *path, u64 bytenr,
1046 int info_level, struct preftrees *preftrees,
1047 struct share_check *sc)
1048 {
1049 struct btrfs_root *extent_root = fs_info->extent_root;
1050 int ret;
1051 int slot;
1052 struct extent_buffer *leaf;
1053 struct btrfs_key key;
1054
1055 while (1) {
1056 ret = btrfs_next_item(extent_root, path);
1057 if (ret < 0)
1058 break;
1059 if (ret) {
1060 ret = 0;
1061 break;
1062 }
1063
1064 slot = path->slots[0];
1065 leaf = path->nodes[0];
1066 btrfs_item_key_to_cpu(leaf, &key, slot);
1067
1068 if (key.objectid != bytenr)
1069 break;
1070 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1071 continue;
1072 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1073 break;
1074
1075 switch (key.type) {
1076 case BTRFS_SHARED_BLOCK_REF_KEY:
1077 /* SHARED DIRECT METADATA backref */
1078 ret = add_direct_ref(fs_info, preftrees,
1079 info_level + 1, key.offset,
1080 bytenr, 1, NULL, GFP_NOFS);
1081 break;
1082 case BTRFS_SHARED_DATA_REF_KEY: {
1083 /* SHARED DIRECT FULL backref */
1084 struct btrfs_shared_data_ref *sdref;
1085 int count;
1086
1087 sdref = btrfs_item_ptr(leaf, slot,
1088 struct btrfs_shared_data_ref);
1089 count = btrfs_shared_data_ref_count(leaf, sdref);
1090 ret = add_direct_ref(fs_info, preftrees, 0,
1091 key.offset, bytenr, count,
1092 sc, GFP_NOFS);
1093 break;
1094 }
1095 case BTRFS_TREE_BLOCK_REF_KEY:
1096 /* NORMAL INDIRECT METADATA backref */
1097 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1098 NULL, info_level + 1, bytenr,
1099 1, NULL, GFP_NOFS);
1100 break;
1101 case BTRFS_EXTENT_DATA_REF_KEY: {
1102 /* NORMAL INDIRECT DATA backref */
1103 struct btrfs_extent_data_ref *dref;
1104 int count;
1105 u64 root;
1106
1107 dref = btrfs_item_ptr(leaf, slot,
1108 struct btrfs_extent_data_ref);
1109 count = btrfs_extent_data_ref_count(leaf, dref);
1110 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1111 dref);
1112 key.type = BTRFS_EXTENT_DATA_KEY;
1113 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1114
1115 if (sc && sc->inum && key.objectid != sc->inum) {
1116 ret = BACKREF_FOUND_SHARED;
1117 break;
1118 }
1119
1120 root = btrfs_extent_data_ref_root(leaf, dref);
1121 ret = add_indirect_ref(fs_info, preftrees, root,
1122 &key, 0, bytenr, count,
1123 sc, GFP_NOFS);
1124 break;
1125 }
1126 default:
1127 WARN_ON(1);
1128 }
1129 if (ret)
1130 return ret;
1131
1132 }
1133
1134 return ret;
1135 }
1136
1137 /*
1138 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1139 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1140 * indirect refs to their parent bytenr.
1141 * When roots are found, they're added to the roots list
1142 *
1143 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1144 * much like trans == NULL case, the difference only lies in it will not
1145 * commit root.
1146 * The special case is for qgroup to search roots in commit_transaction().
1147 *
1148 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1149 * shared extent is detected.
1150 *
1151 * Otherwise this returns 0 for success and <0 for an error.
1152 *
1153 * If ignore_offset is set to false, only extent refs whose offsets match
1154 * extent_item_pos are returned. If true, every extent ref is returned
1155 * and extent_item_pos is ignored.
1156 *
1157 * FIXME some caching might speed things up
1158 */
1159 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1160 struct btrfs_fs_info *fs_info, u64 bytenr,
1161 u64 time_seq, struct ulist *refs,
1162 struct ulist *roots, const u64 *extent_item_pos,
1163 struct share_check *sc, bool ignore_offset)
1164 {
1165 struct btrfs_key key;
1166 struct btrfs_path *path;
1167 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1168 struct btrfs_delayed_ref_head *head;
1169 int info_level = 0;
1170 int ret;
1171 struct prelim_ref *ref;
1172 struct rb_node *node;
1173 struct extent_inode_elem *eie = NULL;
1174 struct preftrees preftrees = {
1175 .direct = PREFTREE_INIT,
1176 .indirect = PREFTREE_INIT,
1177 .indirect_missing_keys = PREFTREE_INIT
1178 };
1179
1180 key.objectid = bytenr;
1181 key.offset = (u64)-1;
1182 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1183 key.type = BTRFS_METADATA_ITEM_KEY;
1184 else
1185 key.type = BTRFS_EXTENT_ITEM_KEY;
1186
1187 path = btrfs_alloc_path();
1188 if (!path)
1189 return -ENOMEM;
1190 if (!trans) {
1191 path->search_commit_root = 1;
1192 path->skip_locking = 1;
1193 }
1194
1195 if (time_seq == SEQ_LAST)
1196 path->skip_locking = 1;
1197
1198 /*
1199 * grab both a lock on the path and a lock on the delayed ref head.
1200 * We need both to get a consistent picture of how the refs look
1201 * at a specified point in time
1202 */
1203 again:
1204 head = NULL;
1205
1206 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1207 if (ret < 0)
1208 goto out;
1209 BUG_ON(ret == 0);
1210
1211 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1212 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1213 time_seq != SEQ_LAST) {
1214 #else
1215 if (trans && time_seq != SEQ_LAST) {
1216 #endif
1217 /*
1218 * look if there are updates for this ref queued and lock the
1219 * head
1220 */
1221 delayed_refs = &trans->transaction->delayed_refs;
1222 spin_lock(&delayed_refs->lock);
1223 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1224 if (head) {
1225 if (!mutex_trylock(&head->mutex)) {
1226 refcount_inc(&head->refs);
1227 spin_unlock(&delayed_refs->lock);
1228
1229 btrfs_release_path(path);
1230
1231 /*
1232 * Mutex was contended, block until it's
1233 * released and try again
1234 */
1235 mutex_lock(&head->mutex);
1236 mutex_unlock(&head->mutex);
1237 btrfs_put_delayed_ref_head(head);
1238 goto again;
1239 }
1240 spin_unlock(&delayed_refs->lock);
1241 ret = add_delayed_refs(fs_info, head, time_seq,
1242 &preftrees, sc);
1243 mutex_unlock(&head->mutex);
1244 if (ret)
1245 goto out;
1246 } else {
1247 spin_unlock(&delayed_refs->lock);
1248 }
1249 }
1250
1251 if (path->slots[0]) {
1252 struct extent_buffer *leaf;
1253 int slot;
1254
1255 path->slots[0]--;
1256 leaf = path->nodes[0];
1257 slot = path->slots[0];
1258 btrfs_item_key_to_cpu(leaf, &key, slot);
1259 if (key.objectid == bytenr &&
1260 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1261 key.type == BTRFS_METADATA_ITEM_KEY)) {
1262 ret = add_inline_refs(fs_info, path, bytenr,
1263 &info_level, &preftrees, sc);
1264 if (ret)
1265 goto out;
1266 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1267 &preftrees, sc);
1268 if (ret)
1269 goto out;
1270 }
1271 }
1272
1273 btrfs_release_path(path);
1274
1275 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1276 if (ret)
1277 goto out;
1278
1279 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1280
1281 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1282 extent_item_pos, sc, ignore_offset);
1283 if (ret)
1284 goto out;
1285
1286 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1287
1288 /*
1289 * This walks the tree of merged and resolved refs. Tree blocks are
1290 * read in as needed. Unique entries are added to the ulist, and
1291 * the list of found roots is updated.
1292 *
1293 * We release the entire tree in one go before returning.
1294 */
1295 node = rb_first_cached(&preftrees.direct.root);
1296 while (node) {
1297 ref = rb_entry(node, struct prelim_ref, rbnode);
1298 node = rb_next(&ref->rbnode);
1299 /*
1300 * ref->count < 0 can happen here if there are delayed
1301 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1302 * prelim_ref_insert() relies on this when merging
1303 * identical refs to keep the overall count correct.
1304 * prelim_ref_insert() will merge only those refs
1305 * which compare identically. Any refs having
1306 * e.g. different offsets would not be merged,
1307 * and would retain their original ref->count < 0.
1308 */
1309 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1310 if (sc && sc->root_objectid &&
1311 ref->root_id != sc->root_objectid) {
1312 ret = BACKREF_FOUND_SHARED;
1313 goto out;
1314 }
1315
1316 /* no parent == root of tree */
1317 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1318 if (ret < 0)
1319 goto out;
1320 }
1321 if (ref->count && ref->parent) {
1322 if (extent_item_pos && !ref->inode_list &&
1323 ref->level == 0) {
1324 struct extent_buffer *eb;
1325
1326 eb = read_tree_block(fs_info, ref->parent, 0,
1327 ref->level, NULL);
1328 if (IS_ERR(eb)) {
1329 ret = PTR_ERR(eb);
1330 goto out;
1331 } else if (!extent_buffer_uptodate(eb)) {
1332 free_extent_buffer(eb);
1333 ret = -EIO;
1334 goto out;
1335 }
1336
1337 if (!path->skip_locking) {
1338 btrfs_tree_read_lock(eb);
1339 btrfs_set_lock_blocking_read(eb);
1340 }
1341 ret = find_extent_in_eb(eb, bytenr,
1342 *extent_item_pos, &eie, ignore_offset);
1343 if (!path->skip_locking)
1344 btrfs_tree_read_unlock_blocking(eb);
1345 free_extent_buffer(eb);
1346 if (ret < 0)
1347 goto out;
1348 ref->inode_list = eie;
1349 }
1350 ret = ulist_add_merge_ptr(refs, ref->parent,
1351 ref->inode_list,
1352 (void **)&eie, GFP_NOFS);
1353 if (ret < 0)
1354 goto out;
1355 if (!ret && extent_item_pos) {
1356 /*
1357 * we've recorded that parent, so we must extend
1358 * its inode list here
1359 */
1360 BUG_ON(!eie);
1361 while (eie->next)
1362 eie = eie->next;
1363 eie->next = ref->inode_list;
1364 }
1365 eie = NULL;
1366 }
1367 cond_resched();
1368 }
1369
1370 out:
1371 btrfs_free_path(path);
1372
1373 prelim_release(&preftrees.direct);
1374 prelim_release(&preftrees.indirect);
1375 prelim_release(&preftrees.indirect_missing_keys);
1376
1377 if (ret < 0)
1378 free_inode_elem_list(eie);
1379 return ret;
1380 }
1381
1382 static void free_leaf_list(struct ulist *blocks)
1383 {
1384 struct ulist_node *node = NULL;
1385 struct extent_inode_elem *eie;
1386 struct ulist_iterator uiter;
1387
1388 ULIST_ITER_INIT(&uiter);
1389 while ((node = ulist_next(blocks, &uiter))) {
1390 if (!node->aux)
1391 continue;
1392 eie = unode_aux_to_inode_list(node);
1393 free_inode_elem_list(eie);
1394 node->aux = 0;
1395 }
1396
1397 ulist_free(blocks);
1398 }
1399
1400 /*
1401 * Finds all leafs with a reference to the specified combination of bytenr and
1402 * offset. key_list_head will point to a list of corresponding keys (caller must
1403 * free each list element). The leafs will be stored in the leafs ulist, which
1404 * must be freed with ulist_free.
1405 *
1406 * returns 0 on success, <0 on error
1407 */
1408 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1409 struct btrfs_fs_info *fs_info, u64 bytenr,
1410 u64 time_seq, struct ulist **leafs,
1411 const u64 *extent_item_pos, bool ignore_offset)
1412 {
1413 int ret;
1414
1415 *leafs = ulist_alloc(GFP_NOFS);
1416 if (!*leafs)
1417 return -ENOMEM;
1418
1419 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1420 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1421 if (ret < 0 && ret != -ENOENT) {
1422 free_leaf_list(*leafs);
1423 return ret;
1424 }
1425
1426 return 0;
1427 }
1428
1429 /*
1430 * walk all backrefs for a given extent to find all roots that reference this
1431 * extent. Walking a backref means finding all extents that reference this
1432 * extent and in turn walk the backrefs of those, too. Naturally this is a
1433 * recursive process, but here it is implemented in an iterative fashion: We
1434 * find all referencing extents for the extent in question and put them on a
1435 * list. In turn, we find all referencing extents for those, further appending
1436 * to the list. The way we iterate the list allows adding more elements after
1437 * the current while iterating. The process stops when we reach the end of the
1438 * list. Found roots are added to the roots list.
1439 *
1440 * returns 0 on success, < 0 on error.
1441 */
1442 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1443 struct btrfs_fs_info *fs_info, u64 bytenr,
1444 u64 time_seq, struct ulist **roots,
1445 bool ignore_offset)
1446 {
1447 struct ulist *tmp;
1448 struct ulist_node *node = NULL;
1449 struct ulist_iterator uiter;
1450 int ret;
1451
1452 tmp = ulist_alloc(GFP_NOFS);
1453 if (!tmp)
1454 return -ENOMEM;
1455 *roots = ulist_alloc(GFP_NOFS);
1456 if (!*roots) {
1457 ulist_free(tmp);
1458 return -ENOMEM;
1459 }
1460
1461 ULIST_ITER_INIT(&uiter);
1462 while (1) {
1463 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1464 tmp, *roots, NULL, NULL, ignore_offset);
1465 if (ret < 0 && ret != -ENOENT) {
1466 ulist_free(tmp);
1467 ulist_free(*roots);
1468 return ret;
1469 }
1470 node = ulist_next(tmp, &uiter);
1471 if (!node)
1472 break;
1473 bytenr = node->val;
1474 cond_resched();
1475 }
1476
1477 ulist_free(tmp);
1478 return 0;
1479 }
1480
1481 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1482 struct btrfs_fs_info *fs_info, u64 bytenr,
1483 u64 time_seq, struct ulist **roots,
1484 bool ignore_offset)
1485 {
1486 int ret;
1487
1488 if (!trans)
1489 down_read(&fs_info->commit_root_sem);
1490 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1491 time_seq, roots, ignore_offset);
1492 if (!trans)
1493 up_read(&fs_info->commit_root_sem);
1494 return ret;
1495 }
1496
1497 /**
1498 * btrfs_check_shared - tell us whether an extent is shared
1499 *
1500 * btrfs_check_shared uses the backref walking code but will short
1501 * circuit as soon as it finds a root or inode that doesn't match the
1502 * one passed in. This provides a significant performance benefit for
1503 * callers (such as fiemap) which want to know whether the extent is
1504 * shared but do not need a ref count.
1505 *
1506 * This attempts to attach to the running transaction in order to account for
1507 * delayed refs, but continues on even when no running transaction exists.
1508 *
1509 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1510 */
1511 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1512 struct ulist *roots, struct ulist *tmp)
1513 {
1514 struct btrfs_fs_info *fs_info = root->fs_info;
1515 struct btrfs_trans_handle *trans;
1516 struct ulist_iterator uiter;
1517 struct ulist_node *node;
1518 struct seq_list elem = SEQ_LIST_INIT(elem);
1519 int ret = 0;
1520 struct share_check shared = {
1521 .root_objectid = root->root_key.objectid,
1522 .inum = inum,
1523 .share_count = 0,
1524 };
1525
1526 ulist_init(roots);
1527 ulist_init(tmp);
1528
1529 trans = btrfs_join_transaction_nostart(root);
1530 if (IS_ERR(trans)) {
1531 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1532 ret = PTR_ERR(trans);
1533 goto out;
1534 }
1535 trans = NULL;
1536 down_read(&fs_info->commit_root_sem);
1537 } else {
1538 btrfs_get_tree_mod_seq(fs_info, &elem);
1539 }
1540
1541 ULIST_ITER_INIT(&uiter);
1542 while (1) {
1543 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1544 roots, NULL, &shared, false);
1545 if (ret == BACKREF_FOUND_SHARED) {
1546 /* this is the only condition under which we return 1 */
1547 ret = 1;
1548 break;
1549 }
1550 if (ret < 0 && ret != -ENOENT)
1551 break;
1552 ret = 0;
1553 node = ulist_next(tmp, &uiter);
1554 if (!node)
1555 break;
1556 bytenr = node->val;
1557 shared.share_count = 0;
1558 cond_resched();
1559 }
1560
1561 if (trans) {
1562 btrfs_put_tree_mod_seq(fs_info, &elem);
1563 btrfs_end_transaction(trans);
1564 } else {
1565 up_read(&fs_info->commit_root_sem);
1566 }
1567 out:
1568 ulist_release(roots);
1569 ulist_release(tmp);
1570 return ret;
1571 }
1572
1573 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1574 u64 start_off, struct btrfs_path *path,
1575 struct btrfs_inode_extref **ret_extref,
1576 u64 *found_off)
1577 {
1578 int ret, slot;
1579 struct btrfs_key key;
1580 struct btrfs_key found_key;
1581 struct btrfs_inode_extref *extref;
1582 const struct extent_buffer *leaf;
1583 unsigned long ptr;
1584
1585 key.objectid = inode_objectid;
1586 key.type = BTRFS_INODE_EXTREF_KEY;
1587 key.offset = start_off;
1588
1589 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1590 if (ret < 0)
1591 return ret;
1592
1593 while (1) {
1594 leaf = path->nodes[0];
1595 slot = path->slots[0];
1596 if (slot >= btrfs_header_nritems(leaf)) {
1597 /*
1598 * If the item at offset is not found,
1599 * btrfs_search_slot will point us to the slot
1600 * where it should be inserted. In our case
1601 * that will be the slot directly before the
1602 * next INODE_REF_KEY_V2 item. In the case
1603 * that we're pointing to the last slot in a
1604 * leaf, we must move one leaf over.
1605 */
1606 ret = btrfs_next_leaf(root, path);
1607 if (ret) {
1608 if (ret >= 1)
1609 ret = -ENOENT;
1610 break;
1611 }
1612 continue;
1613 }
1614
1615 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1616
1617 /*
1618 * Check that we're still looking at an extended ref key for
1619 * this particular objectid. If we have different
1620 * objectid or type then there are no more to be found
1621 * in the tree and we can exit.
1622 */
1623 ret = -ENOENT;
1624 if (found_key.objectid != inode_objectid)
1625 break;
1626 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1627 break;
1628
1629 ret = 0;
1630 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1631 extref = (struct btrfs_inode_extref *)ptr;
1632 *ret_extref = extref;
1633 if (found_off)
1634 *found_off = found_key.offset;
1635 break;
1636 }
1637
1638 return ret;
1639 }
1640
1641 /*
1642 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1643 * Elements of the path are separated by '/' and the path is guaranteed to be
1644 * 0-terminated. the path is only given within the current file system.
1645 * Therefore, it never starts with a '/'. the caller is responsible to provide
1646 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1647 * the start point of the resulting string is returned. this pointer is within
1648 * dest, normally.
1649 * in case the path buffer would overflow, the pointer is decremented further
1650 * as if output was written to the buffer, though no more output is actually
1651 * generated. that way, the caller can determine how much space would be
1652 * required for the path to fit into the buffer. in that case, the returned
1653 * value will be smaller than dest. callers must check this!
1654 */
1655 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1656 u32 name_len, unsigned long name_off,
1657 struct extent_buffer *eb_in, u64 parent,
1658 char *dest, u32 size)
1659 {
1660 int slot;
1661 u64 next_inum;
1662 int ret;
1663 s64 bytes_left = ((s64)size) - 1;
1664 struct extent_buffer *eb = eb_in;
1665 struct btrfs_key found_key;
1666 int leave_spinning = path->leave_spinning;
1667 struct btrfs_inode_ref *iref;
1668
1669 if (bytes_left >= 0)
1670 dest[bytes_left] = '\0';
1671
1672 path->leave_spinning = 1;
1673 while (1) {
1674 bytes_left -= name_len;
1675 if (bytes_left >= 0)
1676 read_extent_buffer(eb, dest + bytes_left,
1677 name_off, name_len);
1678 if (eb != eb_in) {
1679 if (!path->skip_locking)
1680 btrfs_tree_read_unlock_blocking(eb);
1681 free_extent_buffer(eb);
1682 }
1683 ret = btrfs_find_item(fs_root, path, parent, 0,
1684 BTRFS_INODE_REF_KEY, &found_key);
1685 if (ret > 0)
1686 ret = -ENOENT;
1687 if (ret)
1688 break;
1689
1690 next_inum = found_key.offset;
1691
1692 /* regular exit ahead */
1693 if (parent == next_inum)
1694 break;
1695
1696 slot = path->slots[0];
1697 eb = path->nodes[0];
1698 /* make sure we can use eb after releasing the path */
1699 if (eb != eb_in) {
1700 if (!path->skip_locking)
1701 btrfs_set_lock_blocking_read(eb);
1702 path->nodes[0] = NULL;
1703 path->locks[0] = 0;
1704 }
1705 btrfs_release_path(path);
1706 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1707
1708 name_len = btrfs_inode_ref_name_len(eb, iref);
1709 name_off = (unsigned long)(iref + 1);
1710
1711 parent = next_inum;
1712 --bytes_left;
1713 if (bytes_left >= 0)
1714 dest[bytes_left] = '/';
1715 }
1716
1717 btrfs_release_path(path);
1718 path->leave_spinning = leave_spinning;
1719
1720 if (ret)
1721 return ERR_PTR(ret);
1722
1723 return dest + bytes_left;
1724 }
1725
1726 /*
1727 * this makes the path point to (logical EXTENT_ITEM *)
1728 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1729 * tree blocks and <0 on error.
1730 */
1731 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1732 struct btrfs_path *path, struct btrfs_key *found_key,
1733 u64 *flags_ret)
1734 {
1735 int ret;
1736 u64 flags;
1737 u64 size = 0;
1738 u32 item_size;
1739 const struct extent_buffer *eb;
1740 struct btrfs_extent_item *ei;
1741 struct btrfs_key key;
1742
1743 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1744 key.type = BTRFS_METADATA_ITEM_KEY;
1745 else
1746 key.type = BTRFS_EXTENT_ITEM_KEY;
1747 key.objectid = logical;
1748 key.offset = (u64)-1;
1749
1750 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1751 if (ret < 0)
1752 return ret;
1753
1754 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1755 if (ret) {
1756 if (ret > 0)
1757 ret = -ENOENT;
1758 return ret;
1759 }
1760 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1761 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1762 size = fs_info->nodesize;
1763 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1764 size = found_key->offset;
1765
1766 if (found_key->objectid > logical ||
1767 found_key->objectid + size <= logical) {
1768 btrfs_debug(fs_info,
1769 "logical %llu is not within any extent", logical);
1770 return -ENOENT;
1771 }
1772
1773 eb = path->nodes[0];
1774 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1775 BUG_ON(item_size < sizeof(*ei));
1776
1777 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1778 flags = btrfs_extent_flags(eb, ei);
1779
1780 btrfs_debug(fs_info,
1781 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1782 logical, logical - found_key->objectid, found_key->objectid,
1783 found_key->offset, flags, item_size);
1784
1785 WARN_ON(!flags_ret);
1786 if (flags_ret) {
1787 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1788 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1789 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1790 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1791 else
1792 BUG();
1793 return 0;
1794 }
1795
1796 return -EIO;
1797 }
1798
1799 /*
1800 * helper function to iterate extent inline refs. ptr must point to a 0 value
1801 * for the first call and may be modified. it is used to track state.
1802 * if more refs exist, 0 is returned and the next call to
1803 * get_extent_inline_ref must pass the modified ptr parameter to get the
1804 * next ref. after the last ref was processed, 1 is returned.
1805 * returns <0 on error
1806 */
1807 static int get_extent_inline_ref(unsigned long *ptr,
1808 const struct extent_buffer *eb,
1809 const struct btrfs_key *key,
1810 const struct btrfs_extent_item *ei,
1811 u32 item_size,
1812 struct btrfs_extent_inline_ref **out_eiref,
1813 int *out_type)
1814 {
1815 unsigned long end;
1816 u64 flags;
1817 struct btrfs_tree_block_info *info;
1818
1819 if (!*ptr) {
1820 /* first call */
1821 flags = btrfs_extent_flags(eb, ei);
1822 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1823 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1824 /* a skinny metadata extent */
1825 *out_eiref =
1826 (struct btrfs_extent_inline_ref *)(ei + 1);
1827 } else {
1828 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1829 info = (struct btrfs_tree_block_info *)(ei + 1);
1830 *out_eiref =
1831 (struct btrfs_extent_inline_ref *)(info + 1);
1832 }
1833 } else {
1834 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1835 }
1836 *ptr = (unsigned long)*out_eiref;
1837 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1838 return -ENOENT;
1839 }
1840
1841 end = (unsigned long)ei + item_size;
1842 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1843 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1844 BTRFS_REF_TYPE_ANY);
1845 if (*out_type == BTRFS_REF_TYPE_INVALID)
1846 return -EUCLEAN;
1847
1848 *ptr += btrfs_extent_inline_ref_size(*out_type);
1849 WARN_ON(*ptr > end);
1850 if (*ptr == end)
1851 return 1; /* last */
1852
1853 return 0;
1854 }
1855
1856 /*
1857 * reads the tree block backref for an extent. tree level and root are returned
1858 * through out_level and out_root. ptr must point to a 0 value for the first
1859 * call and may be modified (see get_extent_inline_ref comment).
1860 * returns 0 if data was provided, 1 if there was no more data to provide or
1861 * <0 on error.
1862 */
1863 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1864 struct btrfs_key *key, struct btrfs_extent_item *ei,
1865 u32 item_size, u64 *out_root, u8 *out_level)
1866 {
1867 int ret;
1868 int type;
1869 struct btrfs_extent_inline_ref *eiref;
1870
1871 if (*ptr == (unsigned long)-1)
1872 return 1;
1873
1874 while (1) {
1875 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1876 &eiref, &type);
1877 if (ret < 0)
1878 return ret;
1879
1880 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1881 type == BTRFS_SHARED_BLOCK_REF_KEY)
1882 break;
1883
1884 if (ret == 1)
1885 return 1;
1886 }
1887
1888 /* we can treat both ref types equally here */
1889 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1890
1891 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1892 struct btrfs_tree_block_info *info;
1893
1894 info = (struct btrfs_tree_block_info *)(ei + 1);
1895 *out_level = btrfs_tree_block_level(eb, info);
1896 } else {
1897 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1898 *out_level = (u8)key->offset;
1899 }
1900
1901 if (ret == 1)
1902 *ptr = (unsigned long)-1;
1903
1904 return 0;
1905 }
1906
1907 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1908 struct extent_inode_elem *inode_list,
1909 u64 root, u64 extent_item_objectid,
1910 iterate_extent_inodes_t *iterate, void *ctx)
1911 {
1912 struct extent_inode_elem *eie;
1913 int ret = 0;
1914
1915 for (eie = inode_list; eie; eie = eie->next) {
1916 btrfs_debug(fs_info,
1917 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1918 extent_item_objectid, eie->inum,
1919 eie->offset, root);
1920 ret = iterate(eie->inum, eie->offset, root, ctx);
1921 if (ret) {
1922 btrfs_debug(fs_info,
1923 "stopping iteration for %llu due to ret=%d",
1924 extent_item_objectid, ret);
1925 break;
1926 }
1927 }
1928
1929 return ret;
1930 }
1931
1932 /*
1933 * calls iterate() for every inode that references the extent identified by
1934 * the given parameters.
1935 * when the iterator function returns a non-zero value, iteration stops.
1936 */
1937 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1938 u64 extent_item_objectid, u64 extent_item_pos,
1939 int search_commit_root,
1940 iterate_extent_inodes_t *iterate, void *ctx,
1941 bool ignore_offset)
1942 {
1943 int ret;
1944 struct btrfs_trans_handle *trans = NULL;
1945 struct ulist *refs = NULL;
1946 struct ulist *roots = NULL;
1947 struct ulist_node *ref_node = NULL;
1948 struct ulist_node *root_node = NULL;
1949 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1950 struct ulist_iterator ref_uiter;
1951 struct ulist_iterator root_uiter;
1952
1953 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1954 extent_item_objectid);
1955
1956 if (!search_commit_root) {
1957 trans = btrfs_attach_transaction(fs_info->extent_root);
1958 if (IS_ERR(trans)) {
1959 if (PTR_ERR(trans) != -ENOENT &&
1960 PTR_ERR(trans) != -EROFS)
1961 return PTR_ERR(trans);
1962 trans = NULL;
1963 }
1964 }
1965
1966 if (trans)
1967 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1968 else
1969 down_read(&fs_info->commit_root_sem);
1970
1971 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1972 tree_mod_seq_elem.seq, &refs,
1973 &extent_item_pos, ignore_offset);
1974 if (ret)
1975 goto out;
1976
1977 ULIST_ITER_INIT(&ref_uiter);
1978 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1979 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1980 tree_mod_seq_elem.seq, &roots,
1981 ignore_offset);
1982 if (ret)
1983 break;
1984 ULIST_ITER_INIT(&root_uiter);
1985 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1986 btrfs_debug(fs_info,
1987 "root %llu references leaf %llu, data list %#llx",
1988 root_node->val, ref_node->val,
1989 ref_node->aux);
1990 ret = iterate_leaf_refs(fs_info,
1991 (struct extent_inode_elem *)
1992 (uintptr_t)ref_node->aux,
1993 root_node->val,
1994 extent_item_objectid,
1995 iterate, ctx);
1996 }
1997 ulist_free(roots);
1998 }
1999
2000 free_leaf_list(refs);
2001 out:
2002 if (trans) {
2003 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2004 btrfs_end_transaction(trans);
2005 } else {
2006 up_read(&fs_info->commit_root_sem);
2007 }
2008
2009 return ret;
2010 }
2011
2012 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2013 struct btrfs_path *path,
2014 iterate_extent_inodes_t *iterate, void *ctx,
2015 bool ignore_offset)
2016 {
2017 int ret;
2018 u64 extent_item_pos;
2019 u64 flags = 0;
2020 struct btrfs_key found_key;
2021 int search_commit_root = path->search_commit_root;
2022
2023 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2024 btrfs_release_path(path);
2025 if (ret < 0)
2026 return ret;
2027 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2028 return -EINVAL;
2029
2030 extent_item_pos = logical - found_key.objectid;
2031 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2032 extent_item_pos, search_commit_root,
2033 iterate, ctx, ignore_offset);
2034
2035 return ret;
2036 }
2037
2038 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2039 struct extent_buffer *eb, void *ctx);
2040
2041 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2042 struct btrfs_path *path,
2043 iterate_irefs_t *iterate, void *ctx)
2044 {
2045 int ret = 0;
2046 int slot;
2047 u32 cur;
2048 u32 len;
2049 u32 name_len;
2050 u64 parent = 0;
2051 int found = 0;
2052 struct extent_buffer *eb;
2053 struct btrfs_item *item;
2054 struct btrfs_inode_ref *iref;
2055 struct btrfs_key found_key;
2056
2057 while (!ret) {
2058 ret = btrfs_find_item(fs_root, path, inum,
2059 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2060 &found_key);
2061
2062 if (ret < 0)
2063 break;
2064 if (ret) {
2065 ret = found ? 0 : -ENOENT;
2066 break;
2067 }
2068 ++found;
2069
2070 parent = found_key.offset;
2071 slot = path->slots[0];
2072 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2073 if (!eb) {
2074 ret = -ENOMEM;
2075 break;
2076 }
2077 btrfs_release_path(path);
2078
2079 item = btrfs_item_nr(slot);
2080 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2081
2082 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2083 name_len = btrfs_inode_ref_name_len(eb, iref);
2084 /* path must be released before calling iterate()! */
2085 btrfs_debug(fs_root->fs_info,
2086 "following ref at offset %u for inode %llu in tree %llu",
2087 cur, found_key.objectid,
2088 fs_root->root_key.objectid);
2089 ret = iterate(parent, name_len,
2090 (unsigned long)(iref + 1), eb, ctx);
2091 if (ret)
2092 break;
2093 len = sizeof(*iref) + name_len;
2094 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2095 }
2096 free_extent_buffer(eb);
2097 }
2098
2099 btrfs_release_path(path);
2100
2101 return ret;
2102 }
2103
2104 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2105 struct btrfs_path *path,
2106 iterate_irefs_t *iterate, void *ctx)
2107 {
2108 int ret;
2109 int slot;
2110 u64 offset = 0;
2111 u64 parent;
2112 int found = 0;
2113 struct extent_buffer *eb;
2114 struct btrfs_inode_extref *extref;
2115 u32 item_size;
2116 u32 cur_offset;
2117 unsigned long ptr;
2118
2119 while (1) {
2120 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2121 &offset);
2122 if (ret < 0)
2123 break;
2124 if (ret) {
2125 ret = found ? 0 : -ENOENT;
2126 break;
2127 }
2128 ++found;
2129
2130 slot = path->slots[0];
2131 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2132 if (!eb) {
2133 ret = -ENOMEM;
2134 break;
2135 }
2136 btrfs_release_path(path);
2137
2138 item_size = btrfs_item_size_nr(eb, slot);
2139 ptr = btrfs_item_ptr_offset(eb, slot);
2140 cur_offset = 0;
2141
2142 while (cur_offset < item_size) {
2143 u32 name_len;
2144
2145 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2146 parent = btrfs_inode_extref_parent(eb, extref);
2147 name_len = btrfs_inode_extref_name_len(eb, extref);
2148 ret = iterate(parent, name_len,
2149 (unsigned long)&extref->name, eb, ctx);
2150 if (ret)
2151 break;
2152
2153 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2154 cur_offset += sizeof(*extref);
2155 }
2156 free_extent_buffer(eb);
2157
2158 offset++;
2159 }
2160
2161 btrfs_release_path(path);
2162
2163 return ret;
2164 }
2165
2166 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2167 struct btrfs_path *path, iterate_irefs_t *iterate,
2168 void *ctx)
2169 {
2170 int ret;
2171 int found_refs = 0;
2172
2173 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2174 if (!ret)
2175 ++found_refs;
2176 else if (ret != -ENOENT)
2177 return ret;
2178
2179 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2180 if (ret == -ENOENT && found_refs)
2181 return 0;
2182
2183 return ret;
2184 }
2185
2186 /*
2187 * returns 0 if the path could be dumped (probably truncated)
2188 * returns <0 in case of an error
2189 */
2190 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2191 struct extent_buffer *eb, void *ctx)
2192 {
2193 struct inode_fs_paths *ipath = ctx;
2194 char *fspath;
2195 char *fspath_min;
2196 int i = ipath->fspath->elem_cnt;
2197 const int s_ptr = sizeof(char *);
2198 u32 bytes_left;
2199
2200 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2201 ipath->fspath->bytes_left - s_ptr : 0;
2202
2203 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2204 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2205 name_off, eb, inum, fspath_min, bytes_left);
2206 if (IS_ERR(fspath))
2207 return PTR_ERR(fspath);
2208
2209 if (fspath > fspath_min) {
2210 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2211 ++ipath->fspath->elem_cnt;
2212 ipath->fspath->bytes_left = fspath - fspath_min;
2213 } else {
2214 ++ipath->fspath->elem_missed;
2215 ipath->fspath->bytes_missing += fspath_min - fspath;
2216 ipath->fspath->bytes_left = 0;
2217 }
2218
2219 return 0;
2220 }
2221
2222 /*
2223 * this dumps all file system paths to the inode into the ipath struct, provided
2224 * is has been created large enough. each path is zero-terminated and accessed
2225 * from ipath->fspath->val[i].
2226 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2227 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2228 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2229 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2230 * have been needed to return all paths.
2231 */
2232 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2233 {
2234 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2235 inode_to_path, ipath);
2236 }
2237
2238 struct btrfs_data_container *init_data_container(u32 total_bytes)
2239 {
2240 struct btrfs_data_container *data;
2241 size_t alloc_bytes;
2242
2243 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2244 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2245 if (!data)
2246 return ERR_PTR(-ENOMEM);
2247
2248 if (total_bytes >= sizeof(*data)) {
2249 data->bytes_left = total_bytes - sizeof(*data);
2250 data->bytes_missing = 0;
2251 } else {
2252 data->bytes_missing = sizeof(*data) - total_bytes;
2253 data->bytes_left = 0;
2254 }
2255
2256 data->elem_cnt = 0;
2257 data->elem_missed = 0;
2258
2259 return data;
2260 }
2261
2262 /*
2263 * allocates space to return multiple file system paths for an inode.
2264 * total_bytes to allocate are passed, note that space usable for actual path
2265 * information will be total_bytes - sizeof(struct inode_fs_paths).
2266 * the returned pointer must be freed with free_ipath() in the end.
2267 */
2268 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2269 struct btrfs_path *path)
2270 {
2271 struct inode_fs_paths *ifp;
2272 struct btrfs_data_container *fspath;
2273
2274 fspath = init_data_container(total_bytes);
2275 if (IS_ERR(fspath))
2276 return ERR_CAST(fspath);
2277
2278 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2279 if (!ifp) {
2280 kvfree(fspath);
2281 return ERR_PTR(-ENOMEM);
2282 }
2283
2284 ifp->btrfs_path = path;
2285 ifp->fspath = fspath;
2286 ifp->fs_root = fs_root;
2287
2288 return ifp;
2289 }
2290
2291 void free_ipath(struct inode_fs_paths *ipath)
2292 {
2293 if (!ipath)
2294 return;
2295 kvfree(ipath->fspath);
2296 kfree(ipath);
2297 }