]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/block-group.c
btrfs: get rid of block group caching progress logic
[thirdparty/linux.git] / fs / btrfs / block-group.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/list_sort.h>
4 #include "misc.h"
5 #include "ctree.h"
6 #include "block-group.h"
7 #include "space-info.h"
8 #include "disk-io.h"
9 #include "free-space-cache.h"
10 #include "free-space-tree.h"
11 #include "volumes.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
14 #include "sysfs.h"
15 #include "tree-log.h"
16 #include "delalloc-space.h"
17 #include "discard.h"
18 #include "raid56.h"
19 #include "zoned.h"
20
21 /*
22 * Return target flags in extended format or 0 if restripe for this chunk_type
23 * is not in progress
24 *
25 * Should be called with balance_lock held
26 */
27 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
28 {
29 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
30 u64 target = 0;
31
32 if (!bctl)
33 return 0;
34
35 if (flags & BTRFS_BLOCK_GROUP_DATA &&
36 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
37 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
38 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
39 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
40 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
41 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
42 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
43 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
44 }
45
46 return target;
47 }
48
49 /*
50 * @flags: available profiles in extended format (see ctree.h)
51 *
52 * Return reduced profile in chunk format. If profile changing is in progress
53 * (either running or paused) picks the target profile (if it's already
54 * available), otherwise falls back to plain reducing.
55 */
56 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
57 {
58 u64 num_devices = fs_info->fs_devices->rw_devices;
59 u64 target;
60 u64 raid_type;
61 u64 allowed = 0;
62
63 /*
64 * See if restripe for this chunk_type is in progress, if so try to
65 * reduce to the target profile
66 */
67 spin_lock(&fs_info->balance_lock);
68 target = get_restripe_target(fs_info, flags);
69 if (target) {
70 spin_unlock(&fs_info->balance_lock);
71 return extended_to_chunk(target);
72 }
73 spin_unlock(&fs_info->balance_lock);
74
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
77 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
78 allowed |= btrfs_raid_array[raid_type].bg_flag;
79 }
80 allowed &= flags;
81
82 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
83 allowed = BTRFS_BLOCK_GROUP_RAID6;
84 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
85 allowed = BTRFS_BLOCK_GROUP_RAID5;
86 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
87 allowed = BTRFS_BLOCK_GROUP_RAID10;
88 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
89 allowed = BTRFS_BLOCK_GROUP_RAID1;
90 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
91 allowed = BTRFS_BLOCK_GROUP_RAID0;
92
93 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
94
95 return extended_to_chunk(flags | allowed);
96 }
97
98 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
99 {
100 unsigned seq;
101 u64 flags;
102
103 do {
104 flags = orig_flags;
105 seq = read_seqbegin(&fs_info->profiles_lock);
106
107 if (flags & BTRFS_BLOCK_GROUP_DATA)
108 flags |= fs_info->avail_data_alloc_bits;
109 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
110 flags |= fs_info->avail_system_alloc_bits;
111 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
112 flags |= fs_info->avail_metadata_alloc_bits;
113 } while (read_seqretry(&fs_info->profiles_lock, seq));
114
115 return btrfs_reduce_alloc_profile(fs_info, flags);
116 }
117
118 void btrfs_get_block_group(struct btrfs_block_group *cache)
119 {
120 refcount_inc(&cache->refs);
121 }
122
123 void btrfs_put_block_group(struct btrfs_block_group *cache)
124 {
125 if (refcount_dec_and_test(&cache->refs)) {
126 WARN_ON(cache->pinned > 0);
127 /*
128 * If there was a failure to cleanup a log tree, very likely due
129 * to an IO failure on a writeback attempt of one or more of its
130 * extent buffers, we could not do proper (and cheap) unaccounting
131 * of their reserved space, so don't warn on reserved > 0 in that
132 * case.
133 */
134 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
135 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
136 WARN_ON(cache->reserved > 0);
137
138 /*
139 * A block_group shouldn't be on the discard_list anymore.
140 * Remove the block_group from the discard_list to prevent us
141 * from causing a panic due to NULL pointer dereference.
142 */
143 if (WARN_ON(!list_empty(&cache->discard_list)))
144 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
145 cache);
146
147 /*
148 * If not empty, someone is still holding mutex of
149 * full_stripe_lock, which can only be released by caller.
150 * And it will definitely cause use-after-free when caller
151 * tries to release full stripe lock.
152 *
153 * No better way to resolve, but only to warn.
154 */
155 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
156 kfree(cache->free_space_ctl);
157 kfree(cache->physical_map);
158 kfree(cache);
159 }
160 }
161
162 /*
163 * This adds the block group to the fs_info rb tree for the block group cache
164 */
165 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
166 struct btrfs_block_group *block_group)
167 {
168 struct rb_node **p;
169 struct rb_node *parent = NULL;
170 struct btrfs_block_group *cache;
171 bool leftmost = true;
172
173 ASSERT(block_group->length != 0);
174
175 write_lock(&info->block_group_cache_lock);
176 p = &info->block_group_cache_tree.rb_root.rb_node;
177
178 while (*p) {
179 parent = *p;
180 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
181 if (block_group->start < cache->start) {
182 p = &(*p)->rb_left;
183 } else if (block_group->start > cache->start) {
184 p = &(*p)->rb_right;
185 leftmost = false;
186 } else {
187 write_unlock(&info->block_group_cache_lock);
188 return -EEXIST;
189 }
190 }
191
192 rb_link_node(&block_group->cache_node, parent, p);
193 rb_insert_color_cached(&block_group->cache_node,
194 &info->block_group_cache_tree, leftmost);
195
196 write_unlock(&info->block_group_cache_lock);
197
198 return 0;
199 }
200
201 /*
202 * This will return the block group at or after bytenr if contains is 0, else
203 * it will return the block group that contains the bytenr
204 */
205 static struct btrfs_block_group *block_group_cache_tree_search(
206 struct btrfs_fs_info *info, u64 bytenr, int contains)
207 {
208 struct btrfs_block_group *cache, *ret = NULL;
209 struct rb_node *n;
210 u64 end, start;
211
212 read_lock(&info->block_group_cache_lock);
213 n = info->block_group_cache_tree.rb_root.rb_node;
214
215 while (n) {
216 cache = rb_entry(n, struct btrfs_block_group, cache_node);
217 end = cache->start + cache->length - 1;
218 start = cache->start;
219
220 if (bytenr < start) {
221 if (!contains && (!ret || start < ret->start))
222 ret = cache;
223 n = n->rb_left;
224 } else if (bytenr > start) {
225 if (contains && bytenr <= end) {
226 ret = cache;
227 break;
228 }
229 n = n->rb_right;
230 } else {
231 ret = cache;
232 break;
233 }
234 }
235 if (ret)
236 btrfs_get_block_group(ret);
237 read_unlock(&info->block_group_cache_lock);
238
239 return ret;
240 }
241
242 /*
243 * Return the block group that starts at or after bytenr
244 */
245 struct btrfs_block_group *btrfs_lookup_first_block_group(
246 struct btrfs_fs_info *info, u64 bytenr)
247 {
248 return block_group_cache_tree_search(info, bytenr, 0);
249 }
250
251 /*
252 * Return the block group that contains the given bytenr
253 */
254 struct btrfs_block_group *btrfs_lookup_block_group(
255 struct btrfs_fs_info *info, u64 bytenr)
256 {
257 return block_group_cache_tree_search(info, bytenr, 1);
258 }
259
260 struct btrfs_block_group *btrfs_next_block_group(
261 struct btrfs_block_group *cache)
262 {
263 struct btrfs_fs_info *fs_info = cache->fs_info;
264 struct rb_node *node;
265
266 read_lock(&fs_info->block_group_cache_lock);
267
268 /* If our block group was removed, we need a full search. */
269 if (RB_EMPTY_NODE(&cache->cache_node)) {
270 const u64 next_bytenr = cache->start + cache->length;
271
272 read_unlock(&fs_info->block_group_cache_lock);
273 btrfs_put_block_group(cache);
274 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
275 }
276 node = rb_next(&cache->cache_node);
277 btrfs_put_block_group(cache);
278 if (node) {
279 cache = rb_entry(node, struct btrfs_block_group, cache_node);
280 btrfs_get_block_group(cache);
281 } else
282 cache = NULL;
283 read_unlock(&fs_info->block_group_cache_lock);
284 return cache;
285 }
286
287 /**
288 * Check if we can do a NOCOW write for a given extent.
289 *
290 * @fs_info: The filesystem information object.
291 * @bytenr: Logical start address of the extent.
292 *
293 * Check if we can do a NOCOW write for the given extent, and increments the
294 * number of NOCOW writers in the block group that contains the extent, as long
295 * as the block group exists and it's currently not in read-only mode.
296 *
297 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
298 * is responsible for calling btrfs_dec_nocow_writers() later.
299 *
300 * Or NULL if we can not do a NOCOW write
301 */
302 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
303 u64 bytenr)
304 {
305 struct btrfs_block_group *bg;
306 bool can_nocow = true;
307
308 bg = btrfs_lookup_block_group(fs_info, bytenr);
309 if (!bg)
310 return NULL;
311
312 spin_lock(&bg->lock);
313 if (bg->ro)
314 can_nocow = false;
315 else
316 atomic_inc(&bg->nocow_writers);
317 spin_unlock(&bg->lock);
318
319 if (!can_nocow) {
320 btrfs_put_block_group(bg);
321 return NULL;
322 }
323
324 /* No put on block group, done by btrfs_dec_nocow_writers(). */
325 return bg;
326 }
327
328 /**
329 * Decrement the number of NOCOW writers in a block group.
330 *
331 * @bg: The block group.
332 *
333 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
334 * and on the block group returned by that call. Typically this is called after
335 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
336 * relocation.
337 *
338 * After this call, the caller should not use the block group anymore. It it wants
339 * to use it, then it should get a reference on it before calling this function.
340 */
341 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
342 {
343 if (atomic_dec_and_test(&bg->nocow_writers))
344 wake_up_var(&bg->nocow_writers);
345
346 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
347 btrfs_put_block_group(bg);
348 }
349
350 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
351 {
352 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
353 }
354
355 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
356 const u64 start)
357 {
358 struct btrfs_block_group *bg;
359
360 bg = btrfs_lookup_block_group(fs_info, start);
361 ASSERT(bg);
362 if (atomic_dec_and_test(&bg->reservations))
363 wake_up_var(&bg->reservations);
364 btrfs_put_block_group(bg);
365 }
366
367 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
368 {
369 struct btrfs_space_info *space_info = bg->space_info;
370
371 ASSERT(bg->ro);
372
373 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
374 return;
375
376 /*
377 * Our block group is read only but before we set it to read only,
378 * some task might have had allocated an extent from it already, but it
379 * has not yet created a respective ordered extent (and added it to a
380 * root's list of ordered extents).
381 * Therefore wait for any task currently allocating extents, since the
382 * block group's reservations counter is incremented while a read lock
383 * on the groups' semaphore is held and decremented after releasing
384 * the read access on that semaphore and creating the ordered extent.
385 */
386 down_write(&space_info->groups_sem);
387 up_write(&space_info->groups_sem);
388
389 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
390 }
391
392 struct btrfs_caching_control *btrfs_get_caching_control(
393 struct btrfs_block_group *cache)
394 {
395 struct btrfs_caching_control *ctl;
396
397 spin_lock(&cache->lock);
398 if (!cache->caching_ctl) {
399 spin_unlock(&cache->lock);
400 return NULL;
401 }
402
403 ctl = cache->caching_ctl;
404 refcount_inc(&ctl->count);
405 spin_unlock(&cache->lock);
406 return ctl;
407 }
408
409 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
410 {
411 if (refcount_dec_and_test(&ctl->count))
412 kfree(ctl);
413 }
414
415 /*
416 * When we wait for progress in the block group caching, its because our
417 * allocation attempt failed at least once. So, we must sleep and let some
418 * progress happen before we try again.
419 *
420 * This function will sleep at least once waiting for new free space to show
421 * up, and then it will check the block group free space numbers for our min
422 * num_bytes. Another option is to have it go ahead and look in the rbtree for
423 * a free extent of a given size, but this is a good start.
424 *
425 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
426 * any of the information in this block group.
427 */
428 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
429 u64 num_bytes)
430 {
431 struct btrfs_caching_control *caching_ctl;
432
433 caching_ctl = btrfs_get_caching_control(cache);
434 if (!caching_ctl)
435 return;
436
437 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
438 (cache->free_space_ctl->free_space >= num_bytes));
439
440 btrfs_put_caching_control(caching_ctl);
441 }
442
443 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
444 struct btrfs_caching_control *caching_ctl)
445 {
446 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
447 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
448 }
449
450 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
451 {
452 struct btrfs_caching_control *caching_ctl;
453 int ret;
454
455 caching_ctl = btrfs_get_caching_control(cache);
456 if (!caching_ctl)
457 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
458 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
459 btrfs_put_caching_control(caching_ctl);
460 return ret;
461 }
462
463 #ifdef CONFIG_BTRFS_DEBUG
464 static void fragment_free_space(struct btrfs_block_group *block_group)
465 {
466 struct btrfs_fs_info *fs_info = block_group->fs_info;
467 u64 start = block_group->start;
468 u64 len = block_group->length;
469 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
470 fs_info->nodesize : fs_info->sectorsize;
471 u64 step = chunk << 1;
472
473 while (len > chunk) {
474 btrfs_remove_free_space(block_group, start, chunk);
475 start += step;
476 if (len < step)
477 len = 0;
478 else
479 len -= step;
480 }
481 }
482 #endif
483
484 /*
485 * This is only called by btrfs_cache_block_group, since we could have freed
486 * extents we need to check the pinned_extents for any extents that can't be
487 * used yet since their free space will be released as soon as the transaction
488 * commits.
489 */
490 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
491 {
492 struct btrfs_fs_info *info = block_group->fs_info;
493 u64 extent_start, extent_end, size, total_added = 0;
494 int ret;
495
496 while (start < end) {
497 ret = find_first_extent_bit(&info->excluded_extents, start,
498 &extent_start, &extent_end,
499 EXTENT_DIRTY | EXTENT_UPTODATE,
500 NULL);
501 if (ret)
502 break;
503
504 if (extent_start <= start) {
505 start = extent_end + 1;
506 } else if (extent_start > start && extent_start < end) {
507 size = extent_start - start;
508 total_added += size;
509 ret = btrfs_add_free_space_async_trimmed(block_group,
510 start, size);
511 BUG_ON(ret); /* -ENOMEM or logic error */
512 start = extent_end + 1;
513 } else {
514 break;
515 }
516 }
517
518 if (start < end) {
519 size = end - start;
520 total_added += size;
521 ret = btrfs_add_free_space_async_trimmed(block_group, start,
522 size);
523 BUG_ON(ret); /* -ENOMEM or logic error */
524 }
525
526 return total_added;
527 }
528
529 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
530 {
531 struct btrfs_block_group *block_group = caching_ctl->block_group;
532 struct btrfs_fs_info *fs_info = block_group->fs_info;
533 struct btrfs_root *extent_root;
534 struct btrfs_path *path;
535 struct extent_buffer *leaf;
536 struct btrfs_key key;
537 u64 total_found = 0;
538 u64 last = 0;
539 u32 nritems;
540 int ret;
541 bool wakeup = true;
542
543 path = btrfs_alloc_path();
544 if (!path)
545 return -ENOMEM;
546
547 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
548 extent_root = btrfs_extent_root(fs_info, last);
549
550 #ifdef CONFIG_BTRFS_DEBUG
551 /*
552 * If we're fragmenting we don't want to make anybody think we can
553 * allocate from this block group until we've had a chance to fragment
554 * the free space.
555 */
556 if (btrfs_should_fragment_free_space(block_group))
557 wakeup = false;
558 #endif
559 /*
560 * We don't want to deadlock with somebody trying to allocate a new
561 * extent for the extent root while also trying to search the extent
562 * root to add free space. So we skip locking and search the commit
563 * root, since its read-only
564 */
565 path->skip_locking = 1;
566 path->search_commit_root = 1;
567 path->reada = READA_FORWARD;
568
569 key.objectid = last;
570 key.offset = 0;
571 key.type = BTRFS_EXTENT_ITEM_KEY;
572
573 next:
574 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
575 if (ret < 0)
576 goto out;
577
578 leaf = path->nodes[0];
579 nritems = btrfs_header_nritems(leaf);
580
581 while (1) {
582 if (btrfs_fs_closing(fs_info) > 1) {
583 last = (u64)-1;
584 break;
585 }
586
587 if (path->slots[0] < nritems) {
588 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
589 } else {
590 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
591 if (ret)
592 break;
593
594 if (need_resched() ||
595 rwsem_is_contended(&fs_info->commit_root_sem)) {
596 btrfs_release_path(path);
597 up_read(&fs_info->commit_root_sem);
598 mutex_unlock(&caching_ctl->mutex);
599 cond_resched();
600 mutex_lock(&caching_ctl->mutex);
601 down_read(&fs_info->commit_root_sem);
602 goto next;
603 }
604
605 ret = btrfs_next_leaf(extent_root, path);
606 if (ret < 0)
607 goto out;
608 if (ret)
609 break;
610 leaf = path->nodes[0];
611 nritems = btrfs_header_nritems(leaf);
612 continue;
613 }
614
615 if (key.objectid < last) {
616 key.objectid = last;
617 key.offset = 0;
618 key.type = BTRFS_EXTENT_ITEM_KEY;
619 btrfs_release_path(path);
620 goto next;
621 }
622
623 if (key.objectid < block_group->start) {
624 path->slots[0]++;
625 continue;
626 }
627
628 if (key.objectid >= block_group->start + block_group->length)
629 break;
630
631 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
632 key.type == BTRFS_METADATA_ITEM_KEY) {
633 total_found += add_new_free_space(block_group, last,
634 key.objectid);
635 if (key.type == BTRFS_METADATA_ITEM_KEY)
636 last = key.objectid +
637 fs_info->nodesize;
638 else
639 last = key.objectid + key.offset;
640
641 if (total_found > CACHING_CTL_WAKE_UP) {
642 total_found = 0;
643 if (wakeup)
644 wake_up(&caching_ctl->wait);
645 }
646 }
647 path->slots[0]++;
648 }
649 ret = 0;
650
651 total_found += add_new_free_space(block_group, last,
652 block_group->start + block_group->length);
653
654 out:
655 btrfs_free_path(path);
656 return ret;
657 }
658
659 static noinline void caching_thread(struct btrfs_work *work)
660 {
661 struct btrfs_block_group *block_group;
662 struct btrfs_fs_info *fs_info;
663 struct btrfs_caching_control *caching_ctl;
664 int ret;
665
666 caching_ctl = container_of(work, struct btrfs_caching_control, work);
667 block_group = caching_ctl->block_group;
668 fs_info = block_group->fs_info;
669
670 mutex_lock(&caching_ctl->mutex);
671 down_read(&fs_info->commit_root_sem);
672
673 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
674 ret = load_free_space_cache(block_group);
675 if (ret == 1) {
676 ret = 0;
677 goto done;
678 }
679
680 /*
681 * We failed to load the space cache, set ourselves to
682 * CACHE_STARTED and carry on.
683 */
684 spin_lock(&block_group->lock);
685 block_group->cached = BTRFS_CACHE_STARTED;
686 spin_unlock(&block_group->lock);
687 wake_up(&caching_ctl->wait);
688 }
689
690 /*
691 * If we are in the transaction that populated the free space tree we
692 * can't actually cache from the free space tree as our commit root and
693 * real root are the same, so we could change the contents of the blocks
694 * while caching. Instead do the slow caching in this case, and after
695 * the transaction has committed we will be safe.
696 */
697 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
698 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
699 ret = load_free_space_tree(caching_ctl);
700 else
701 ret = load_extent_tree_free(caching_ctl);
702 done:
703 spin_lock(&block_group->lock);
704 block_group->caching_ctl = NULL;
705 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
706 spin_unlock(&block_group->lock);
707
708 #ifdef CONFIG_BTRFS_DEBUG
709 if (btrfs_should_fragment_free_space(block_group)) {
710 u64 bytes_used;
711
712 spin_lock(&block_group->space_info->lock);
713 spin_lock(&block_group->lock);
714 bytes_used = block_group->length - block_group->used;
715 block_group->space_info->bytes_used += bytes_used >> 1;
716 spin_unlock(&block_group->lock);
717 spin_unlock(&block_group->space_info->lock);
718 fragment_free_space(block_group);
719 }
720 #endif
721
722 up_read(&fs_info->commit_root_sem);
723 btrfs_free_excluded_extents(block_group);
724 mutex_unlock(&caching_ctl->mutex);
725
726 wake_up(&caching_ctl->wait);
727
728 btrfs_put_caching_control(caching_ctl);
729 btrfs_put_block_group(block_group);
730 }
731
732 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
733 {
734 struct btrfs_fs_info *fs_info = cache->fs_info;
735 struct btrfs_caching_control *caching_ctl = NULL;
736 int ret = 0;
737
738 /* Allocator for zoned filesystems does not use the cache at all */
739 if (btrfs_is_zoned(fs_info))
740 return 0;
741
742 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
743 if (!caching_ctl)
744 return -ENOMEM;
745
746 INIT_LIST_HEAD(&caching_ctl->list);
747 mutex_init(&caching_ctl->mutex);
748 init_waitqueue_head(&caching_ctl->wait);
749 caching_ctl->block_group = cache;
750 refcount_set(&caching_ctl->count, 2);
751 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
752
753 spin_lock(&cache->lock);
754 if (cache->cached != BTRFS_CACHE_NO) {
755 kfree(caching_ctl);
756
757 caching_ctl = cache->caching_ctl;
758 if (caching_ctl)
759 refcount_inc(&caching_ctl->count);
760 spin_unlock(&cache->lock);
761 goto out;
762 }
763 WARN_ON(cache->caching_ctl);
764 cache->caching_ctl = caching_ctl;
765 cache->cached = BTRFS_CACHE_STARTED;
766 spin_unlock(&cache->lock);
767
768 write_lock(&fs_info->block_group_cache_lock);
769 refcount_inc(&caching_ctl->count);
770 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
771 write_unlock(&fs_info->block_group_cache_lock);
772
773 btrfs_get_block_group(cache);
774
775 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
776 out:
777 /* REVIEW */
778 if (wait && caching_ctl)
779 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
780 /* wait_event(caching_ctl->wait, space_cache_v1_done(cache)); */
781 if (caching_ctl)
782 btrfs_put_caching_control(caching_ctl);
783
784 return ret;
785 }
786
787 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
788 {
789 u64 extra_flags = chunk_to_extended(flags) &
790 BTRFS_EXTENDED_PROFILE_MASK;
791
792 write_seqlock(&fs_info->profiles_lock);
793 if (flags & BTRFS_BLOCK_GROUP_DATA)
794 fs_info->avail_data_alloc_bits &= ~extra_flags;
795 if (flags & BTRFS_BLOCK_GROUP_METADATA)
796 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
797 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
798 fs_info->avail_system_alloc_bits &= ~extra_flags;
799 write_sequnlock(&fs_info->profiles_lock);
800 }
801
802 /*
803 * Clear incompat bits for the following feature(s):
804 *
805 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
806 * in the whole filesystem
807 *
808 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
809 */
810 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
811 {
812 bool found_raid56 = false;
813 bool found_raid1c34 = false;
814
815 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
816 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
817 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
818 struct list_head *head = &fs_info->space_info;
819 struct btrfs_space_info *sinfo;
820
821 list_for_each_entry_rcu(sinfo, head, list) {
822 down_read(&sinfo->groups_sem);
823 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
824 found_raid56 = true;
825 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
826 found_raid56 = true;
827 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
828 found_raid1c34 = true;
829 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
830 found_raid1c34 = true;
831 up_read(&sinfo->groups_sem);
832 }
833 if (!found_raid56)
834 btrfs_clear_fs_incompat(fs_info, RAID56);
835 if (!found_raid1c34)
836 btrfs_clear_fs_incompat(fs_info, RAID1C34);
837 }
838 }
839
840 static int remove_block_group_item(struct btrfs_trans_handle *trans,
841 struct btrfs_path *path,
842 struct btrfs_block_group *block_group)
843 {
844 struct btrfs_fs_info *fs_info = trans->fs_info;
845 struct btrfs_root *root;
846 struct btrfs_key key;
847 int ret;
848
849 root = btrfs_block_group_root(fs_info);
850 key.objectid = block_group->start;
851 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
852 key.offset = block_group->length;
853
854 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
855 if (ret > 0)
856 ret = -ENOENT;
857 if (ret < 0)
858 return ret;
859
860 ret = btrfs_del_item(trans, root, path);
861 return ret;
862 }
863
864 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
865 u64 group_start, struct extent_map *em)
866 {
867 struct btrfs_fs_info *fs_info = trans->fs_info;
868 struct btrfs_path *path;
869 struct btrfs_block_group *block_group;
870 struct btrfs_free_cluster *cluster;
871 struct inode *inode;
872 struct kobject *kobj = NULL;
873 int ret;
874 int index;
875 int factor;
876 struct btrfs_caching_control *caching_ctl = NULL;
877 bool remove_em;
878 bool remove_rsv = false;
879
880 block_group = btrfs_lookup_block_group(fs_info, group_start);
881 BUG_ON(!block_group);
882 BUG_ON(!block_group->ro);
883
884 trace_btrfs_remove_block_group(block_group);
885 /*
886 * Free the reserved super bytes from this block group before
887 * remove it.
888 */
889 btrfs_free_excluded_extents(block_group);
890 btrfs_free_ref_tree_range(fs_info, block_group->start,
891 block_group->length);
892
893 index = btrfs_bg_flags_to_raid_index(block_group->flags);
894 factor = btrfs_bg_type_to_factor(block_group->flags);
895
896 /* make sure this block group isn't part of an allocation cluster */
897 cluster = &fs_info->data_alloc_cluster;
898 spin_lock(&cluster->refill_lock);
899 btrfs_return_cluster_to_free_space(block_group, cluster);
900 spin_unlock(&cluster->refill_lock);
901
902 /*
903 * make sure this block group isn't part of a metadata
904 * allocation cluster
905 */
906 cluster = &fs_info->meta_alloc_cluster;
907 spin_lock(&cluster->refill_lock);
908 btrfs_return_cluster_to_free_space(block_group, cluster);
909 spin_unlock(&cluster->refill_lock);
910
911 btrfs_clear_treelog_bg(block_group);
912 btrfs_clear_data_reloc_bg(block_group);
913
914 path = btrfs_alloc_path();
915 if (!path) {
916 ret = -ENOMEM;
917 goto out;
918 }
919
920 /*
921 * get the inode first so any iput calls done for the io_list
922 * aren't the final iput (no unlinks allowed now)
923 */
924 inode = lookup_free_space_inode(block_group, path);
925
926 mutex_lock(&trans->transaction->cache_write_mutex);
927 /*
928 * Make sure our free space cache IO is done before removing the
929 * free space inode
930 */
931 spin_lock(&trans->transaction->dirty_bgs_lock);
932 if (!list_empty(&block_group->io_list)) {
933 list_del_init(&block_group->io_list);
934
935 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
936
937 spin_unlock(&trans->transaction->dirty_bgs_lock);
938 btrfs_wait_cache_io(trans, block_group, path);
939 btrfs_put_block_group(block_group);
940 spin_lock(&trans->transaction->dirty_bgs_lock);
941 }
942
943 if (!list_empty(&block_group->dirty_list)) {
944 list_del_init(&block_group->dirty_list);
945 remove_rsv = true;
946 btrfs_put_block_group(block_group);
947 }
948 spin_unlock(&trans->transaction->dirty_bgs_lock);
949 mutex_unlock(&trans->transaction->cache_write_mutex);
950
951 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
952 if (ret)
953 goto out;
954
955 write_lock(&fs_info->block_group_cache_lock);
956 rb_erase_cached(&block_group->cache_node,
957 &fs_info->block_group_cache_tree);
958 RB_CLEAR_NODE(&block_group->cache_node);
959
960 /* Once for the block groups rbtree */
961 btrfs_put_block_group(block_group);
962
963 write_unlock(&fs_info->block_group_cache_lock);
964
965 down_write(&block_group->space_info->groups_sem);
966 /*
967 * we must use list_del_init so people can check to see if they
968 * are still on the list after taking the semaphore
969 */
970 list_del_init(&block_group->list);
971 if (list_empty(&block_group->space_info->block_groups[index])) {
972 kobj = block_group->space_info->block_group_kobjs[index];
973 block_group->space_info->block_group_kobjs[index] = NULL;
974 clear_avail_alloc_bits(fs_info, block_group->flags);
975 }
976 up_write(&block_group->space_info->groups_sem);
977 clear_incompat_bg_bits(fs_info, block_group->flags);
978 if (kobj) {
979 kobject_del(kobj);
980 kobject_put(kobj);
981 }
982
983 if (block_group->cached == BTRFS_CACHE_STARTED)
984 btrfs_wait_block_group_cache_done(block_group);
985
986 write_lock(&fs_info->block_group_cache_lock);
987 caching_ctl = btrfs_get_caching_control(block_group);
988 if (!caching_ctl) {
989 struct btrfs_caching_control *ctl;
990
991 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
992 if (ctl->block_group == block_group) {
993 caching_ctl = ctl;
994 refcount_inc(&caching_ctl->count);
995 break;
996 }
997 }
998 }
999 if (caching_ctl)
1000 list_del_init(&caching_ctl->list);
1001 write_unlock(&fs_info->block_group_cache_lock);
1002
1003 if (caching_ctl) {
1004 /* Once for the caching bgs list and once for us. */
1005 btrfs_put_caching_control(caching_ctl);
1006 btrfs_put_caching_control(caching_ctl);
1007 }
1008
1009 spin_lock(&trans->transaction->dirty_bgs_lock);
1010 WARN_ON(!list_empty(&block_group->dirty_list));
1011 WARN_ON(!list_empty(&block_group->io_list));
1012 spin_unlock(&trans->transaction->dirty_bgs_lock);
1013
1014 btrfs_remove_free_space_cache(block_group);
1015
1016 spin_lock(&block_group->space_info->lock);
1017 list_del_init(&block_group->ro_list);
1018
1019 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1020 WARN_ON(block_group->space_info->total_bytes
1021 < block_group->length);
1022 WARN_ON(block_group->space_info->bytes_readonly
1023 < block_group->length - block_group->zone_unusable);
1024 WARN_ON(block_group->space_info->bytes_zone_unusable
1025 < block_group->zone_unusable);
1026 WARN_ON(block_group->space_info->disk_total
1027 < block_group->length * factor);
1028 WARN_ON(test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1029 &block_group->runtime_flags) &&
1030 block_group->space_info->active_total_bytes
1031 < block_group->length);
1032 }
1033 block_group->space_info->total_bytes -= block_group->length;
1034 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1035 block_group->space_info->active_total_bytes -= block_group->length;
1036 block_group->space_info->bytes_readonly -=
1037 (block_group->length - block_group->zone_unusable);
1038 block_group->space_info->bytes_zone_unusable -=
1039 block_group->zone_unusable;
1040 block_group->space_info->disk_total -= block_group->length * factor;
1041
1042 spin_unlock(&block_group->space_info->lock);
1043
1044 /*
1045 * Remove the free space for the block group from the free space tree
1046 * and the block group's item from the extent tree before marking the
1047 * block group as removed. This is to prevent races with tasks that
1048 * freeze and unfreeze a block group, this task and another task
1049 * allocating a new block group - the unfreeze task ends up removing
1050 * the block group's extent map before the task calling this function
1051 * deletes the block group item from the extent tree, allowing for
1052 * another task to attempt to create another block group with the same
1053 * item key (and failing with -EEXIST and a transaction abort).
1054 */
1055 ret = remove_block_group_free_space(trans, block_group);
1056 if (ret)
1057 goto out;
1058
1059 ret = remove_block_group_item(trans, path, block_group);
1060 if (ret < 0)
1061 goto out;
1062
1063 spin_lock(&block_group->lock);
1064 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1065
1066 /*
1067 * At this point trimming or scrub can't start on this block group,
1068 * because we removed the block group from the rbtree
1069 * fs_info->block_group_cache_tree so no one can't find it anymore and
1070 * even if someone already got this block group before we removed it
1071 * from the rbtree, they have already incremented block_group->frozen -
1072 * if they didn't, for the trimming case they won't find any free space
1073 * entries because we already removed them all when we called
1074 * btrfs_remove_free_space_cache().
1075 *
1076 * And we must not remove the extent map from the fs_info->mapping_tree
1077 * to prevent the same logical address range and physical device space
1078 * ranges from being reused for a new block group. This is needed to
1079 * avoid races with trimming and scrub.
1080 *
1081 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1082 * completely transactionless, so while it is trimming a range the
1083 * currently running transaction might finish and a new one start,
1084 * allowing for new block groups to be created that can reuse the same
1085 * physical device locations unless we take this special care.
1086 *
1087 * There may also be an implicit trim operation if the file system
1088 * is mounted with -odiscard. The same protections must remain
1089 * in place until the extents have been discarded completely when
1090 * the transaction commit has completed.
1091 */
1092 remove_em = (atomic_read(&block_group->frozen) == 0);
1093 spin_unlock(&block_group->lock);
1094
1095 if (remove_em) {
1096 struct extent_map_tree *em_tree;
1097
1098 em_tree = &fs_info->mapping_tree;
1099 write_lock(&em_tree->lock);
1100 remove_extent_mapping(em_tree, em);
1101 write_unlock(&em_tree->lock);
1102 /* once for the tree */
1103 free_extent_map(em);
1104 }
1105
1106 out:
1107 /* Once for the lookup reference */
1108 btrfs_put_block_group(block_group);
1109 if (remove_rsv)
1110 btrfs_delayed_refs_rsv_release(fs_info, 1);
1111 btrfs_free_path(path);
1112 return ret;
1113 }
1114
1115 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1116 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1117 {
1118 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1119 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1120 struct extent_map *em;
1121 struct map_lookup *map;
1122 unsigned int num_items;
1123
1124 read_lock(&em_tree->lock);
1125 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1126 read_unlock(&em_tree->lock);
1127 ASSERT(em && em->start == chunk_offset);
1128
1129 /*
1130 * We need to reserve 3 + N units from the metadata space info in order
1131 * to remove a block group (done at btrfs_remove_chunk() and at
1132 * btrfs_remove_block_group()), which are used for:
1133 *
1134 * 1 unit for adding the free space inode's orphan (located in the tree
1135 * of tree roots).
1136 * 1 unit for deleting the block group item (located in the extent
1137 * tree).
1138 * 1 unit for deleting the free space item (located in tree of tree
1139 * roots).
1140 * N units for deleting N device extent items corresponding to each
1141 * stripe (located in the device tree).
1142 *
1143 * In order to remove a block group we also need to reserve units in the
1144 * system space info in order to update the chunk tree (update one or
1145 * more device items and remove one chunk item), but this is done at
1146 * btrfs_remove_chunk() through a call to check_system_chunk().
1147 */
1148 map = em->map_lookup;
1149 num_items = 3 + map->num_stripes;
1150 free_extent_map(em);
1151
1152 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1153 }
1154
1155 /*
1156 * Mark block group @cache read-only, so later write won't happen to block
1157 * group @cache.
1158 *
1159 * If @force is not set, this function will only mark the block group readonly
1160 * if we have enough free space (1M) in other metadata/system block groups.
1161 * If @force is not set, this function will mark the block group readonly
1162 * without checking free space.
1163 *
1164 * NOTE: This function doesn't care if other block groups can contain all the
1165 * data in this block group. That check should be done by relocation routine,
1166 * not this function.
1167 */
1168 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1169 {
1170 struct btrfs_space_info *sinfo = cache->space_info;
1171 u64 num_bytes;
1172 int ret = -ENOSPC;
1173
1174 spin_lock(&sinfo->lock);
1175 spin_lock(&cache->lock);
1176
1177 if (cache->swap_extents) {
1178 ret = -ETXTBSY;
1179 goto out;
1180 }
1181
1182 if (cache->ro) {
1183 cache->ro++;
1184 ret = 0;
1185 goto out;
1186 }
1187
1188 num_bytes = cache->length - cache->reserved - cache->pinned -
1189 cache->bytes_super - cache->zone_unusable - cache->used;
1190
1191 /*
1192 * Data never overcommits, even in mixed mode, so do just the straight
1193 * check of left over space in how much we have allocated.
1194 */
1195 if (force) {
1196 ret = 0;
1197 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1198 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1199
1200 /*
1201 * Here we make sure if we mark this bg RO, we still have enough
1202 * free space as buffer.
1203 */
1204 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1205 ret = 0;
1206 } else {
1207 /*
1208 * We overcommit metadata, so we need to do the
1209 * btrfs_can_overcommit check here, and we need to pass in
1210 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1211 * leeway to allow us to mark this block group as read only.
1212 */
1213 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1214 BTRFS_RESERVE_NO_FLUSH))
1215 ret = 0;
1216 }
1217
1218 if (!ret) {
1219 sinfo->bytes_readonly += num_bytes;
1220 if (btrfs_is_zoned(cache->fs_info)) {
1221 /* Migrate zone_unusable bytes to readonly */
1222 sinfo->bytes_readonly += cache->zone_unusable;
1223 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1224 cache->zone_unusable = 0;
1225 }
1226 cache->ro++;
1227 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1228 }
1229 out:
1230 spin_unlock(&cache->lock);
1231 spin_unlock(&sinfo->lock);
1232 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1233 btrfs_info(cache->fs_info,
1234 "unable to make block group %llu ro", cache->start);
1235 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1236 }
1237 return ret;
1238 }
1239
1240 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1241 struct btrfs_block_group *bg)
1242 {
1243 struct btrfs_fs_info *fs_info = bg->fs_info;
1244 struct btrfs_transaction *prev_trans = NULL;
1245 const u64 start = bg->start;
1246 const u64 end = start + bg->length - 1;
1247 int ret;
1248
1249 spin_lock(&fs_info->trans_lock);
1250 if (trans->transaction->list.prev != &fs_info->trans_list) {
1251 prev_trans = list_last_entry(&trans->transaction->list,
1252 struct btrfs_transaction, list);
1253 refcount_inc(&prev_trans->use_count);
1254 }
1255 spin_unlock(&fs_info->trans_lock);
1256
1257 /*
1258 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1259 * btrfs_finish_extent_commit(). If we are at transaction N, another
1260 * task might be running finish_extent_commit() for the previous
1261 * transaction N - 1, and have seen a range belonging to the block
1262 * group in pinned_extents before we were able to clear the whole block
1263 * group range from pinned_extents. This means that task can lookup for
1264 * the block group after we unpinned it from pinned_extents and removed
1265 * it, leading to a BUG_ON() at unpin_extent_range().
1266 */
1267 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1268 if (prev_trans) {
1269 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1270 EXTENT_DIRTY);
1271 if (ret)
1272 goto out;
1273 }
1274
1275 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1276 EXTENT_DIRTY);
1277 out:
1278 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1279 if (prev_trans)
1280 btrfs_put_transaction(prev_trans);
1281
1282 return ret == 0;
1283 }
1284
1285 /*
1286 * Process the unused_bgs list and remove any that don't have any allocated
1287 * space inside of them.
1288 */
1289 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1290 {
1291 struct btrfs_block_group *block_group;
1292 struct btrfs_space_info *space_info;
1293 struct btrfs_trans_handle *trans;
1294 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1295 int ret = 0;
1296
1297 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1298 return;
1299
1300 if (btrfs_fs_closing(fs_info))
1301 return;
1302
1303 /*
1304 * Long running balances can keep us blocked here for eternity, so
1305 * simply skip deletion if we're unable to get the mutex.
1306 */
1307 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1308 return;
1309
1310 spin_lock(&fs_info->unused_bgs_lock);
1311 while (!list_empty(&fs_info->unused_bgs)) {
1312 int trimming;
1313
1314 block_group = list_first_entry(&fs_info->unused_bgs,
1315 struct btrfs_block_group,
1316 bg_list);
1317 list_del_init(&block_group->bg_list);
1318
1319 space_info = block_group->space_info;
1320
1321 if (ret || btrfs_mixed_space_info(space_info)) {
1322 btrfs_put_block_group(block_group);
1323 continue;
1324 }
1325 spin_unlock(&fs_info->unused_bgs_lock);
1326
1327 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1328
1329 /* Don't want to race with allocators so take the groups_sem */
1330 down_write(&space_info->groups_sem);
1331
1332 /*
1333 * Async discard moves the final block group discard to be prior
1334 * to the unused_bgs code path. Therefore, if it's not fully
1335 * trimmed, punt it back to the async discard lists.
1336 */
1337 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1338 !btrfs_is_free_space_trimmed(block_group)) {
1339 trace_btrfs_skip_unused_block_group(block_group);
1340 up_write(&space_info->groups_sem);
1341 /* Requeue if we failed because of async discard */
1342 btrfs_discard_queue_work(&fs_info->discard_ctl,
1343 block_group);
1344 goto next;
1345 }
1346
1347 spin_lock(&block_group->lock);
1348 if (block_group->reserved || block_group->pinned ||
1349 block_group->used || block_group->ro ||
1350 list_is_singular(&block_group->list)) {
1351 /*
1352 * We want to bail if we made new allocations or have
1353 * outstanding allocations in this block group. We do
1354 * the ro check in case balance is currently acting on
1355 * this block group.
1356 */
1357 trace_btrfs_skip_unused_block_group(block_group);
1358 spin_unlock(&block_group->lock);
1359 up_write(&space_info->groups_sem);
1360 goto next;
1361 }
1362 spin_unlock(&block_group->lock);
1363
1364 /* We don't want to force the issue, only flip if it's ok. */
1365 ret = inc_block_group_ro(block_group, 0);
1366 up_write(&space_info->groups_sem);
1367 if (ret < 0) {
1368 ret = 0;
1369 goto next;
1370 }
1371
1372 ret = btrfs_zone_finish(block_group);
1373 if (ret < 0) {
1374 btrfs_dec_block_group_ro(block_group);
1375 if (ret == -EAGAIN)
1376 ret = 0;
1377 goto next;
1378 }
1379
1380 /*
1381 * Want to do this before we do anything else so we can recover
1382 * properly if we fail to join the transaction.
1383 */
1384 trans = btrfs_start_trans_remove_block_group(fs_info,
1385 block_group->start);
1386 if (IS_ERR(trans)) {
1387 btrfs_dec_block_group_ro(block_group);
1388 ret = PTR_ERR(trans);
1389 goto next;
1390 }
1391
1392 /*
1393 * We could have pending pinned extents for this block group,
1394 * just delete them, we don't care about them anymore.
1395 */
1396 if (!clean_pinned_extents(trans, block_group)) {
1397 btrfs_dec_block_group_ro(block_group);
1398 goto end_trans;
1399 }
1400
1401 /*
1402 * At this point, the block_group is read only and should fail
1403 * new allocations. However, btrfs_finish_extent_commit() can
1404 * cause this block_group to be placed back on the discard
1405 * lists because now the block_group isn't fully discarded.
1406 * Bail here and try again later after discarding everything.
1407 */
1408 spin_lock(&fs_info->discard_ctl.lock);
1409 if (!list_empty(&block_group->discard_list)) {
1410 spin_unlock(&fs_info->discard_ctl.lock);
1411 btrfs_dec_block_group_ro(block_group);
1412 btrfs_discard_queue_work(&fs_info->discard_ctl,
1413 block_group);
1414 goto end_trans;
1415 }
1416 spin_unlock(&fs_info->discard_ctl.lock);
1417
1418 /* Reset pinned so btrfs_put_block_group doesn't complain */
1419 spin_lock(&space_info->lock);
1420 spin_lock(&block_group->lock);
1421
1422 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1423 -block_group->pinned);
1424 space_info->bytes_readonly += block_group->pinned;
1425 block_group->pinned = 0;
1426
1427 spin_unlock(&block_group->lock);
1428 spin_unlock(&space_info->lock);
1429
1430 /*
1431 * The normal path here is an unused block group is passed here,
1432 * then trimming is handled in the transaction commit path.
1433 * Async discard interposes before this to do the trimming
1434 * before coming down the unused block group path as trimming
1435 * will no longer be done later in the transaction commit path.
1436 */
1437 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1438 goto flip_async;
1439
1440 /*
1441 * DISCARD can flip during remount. On zoned filesystems, we
1442 * need to reset sequential-required zones.
1443 */
1444 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1445 btrfs_is_zoned(fs_info);
1446
1447 /* Implicit trim during transaction commit. */
1448 if (trimming)
1449 btrfs_freeze_block_group(block_group);
1450
1451 /*
1452 * Btrfs_remove_chunk will abort the transaction if things go
1453 * horribly wrong.
1454 */
1455 ret = btrfs_remove_chunk(trans, block_group->start);
1456
1457 if (ret) {
1458 if (trimming)
1459 btrfs_unfreeze_block_group(block_group);
1460 goto end_trans;
1461 }
1462
1463 /*
1464 * If we're not mounted with -odiscard, we can just forget
1465 * about this block group. Otherwise we'll need to wait
1466 * until transaction commit to do the actual discard.
1467 */
1468 if (trimming) {
1469 spin_lock(&fs_info->unused_bgs_lock);
1470 /*
1471 * A concurrent scrub might have added us to the list
1472 * fs_info->unused_bgs, so use a list_move operation
1473 * to add the block group to the deleted_bgs list.
1474 */
1475 list_move(&block_group->bg_list,
1476 &trans->transaction->deleted_bgs);
1477 spin_unlock(&fs_info->unused_bgs_lock);
1478 btrfs_get_block_group(block_group);
1479 }
1480 end_trans:
1481 btrfs_end_transaction(trans);
1482 next:
1483 btrfs_put_block_group(block_group);
1484 spin_lock(&fs_info->unused_bgs_lock);
1485 }
1486 spin_unlock(&fs_info->unused_bgs_lock);
1487 mutex_unlock(&fs_info->reclaim_bgs_lock);
1488 return;
1489
1490 flip_async:
1491 btrfs_end_transaction(trans);
1492 mutex_unlock(&fs_info->reclaim_bgs_lock);
1493 btrfs_put_block_group(block_group);
1494 btrfs_discard_punt_unused_bgs_list(fs_info);
1495 }
1496
1497 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1498 {
1499 struct btrfs_fs_info *fs_info = bg->fs_info;
1500
1501 spin_lock(&fs_info->unused_bgs_lock);
1502 if (list_empty(&bg->bg_list)) {
1503 btrfs_get_block_group(bg);
1504 trace_btrfs_add_unused_block_group(bg);
1505 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1506 }
1507 spin_unlock(&fs_info->unused_bgs_lock);
1508 }
1509
1510 /*
1511 * We want block groups with a low number of used bytes to be in the beginning
1512 * of the list, so they will get reclaimed first.
1513 */
1514 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1515 const struct list_head *b)
1516 {
1517 const struct btrfs_block_group *bg1, *bg2;
1518
1519 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1520 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1521
1522 return bg1->used > bg2->used;
1523 }
1524
1525 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1526 {
1527 if (btrfs_is_zoned(fs_info))
1528 return btrfs_zoned_should_reclaim(fs_info);
1529 return true;
1530 }
1531
1532 void btrfs_reclaim_bgs_work(struct work_struct *work)
1533 {
1534 struct btrfs_fs_info *fs_info =
1535 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1536 struct btrfs_block_group *bg;
1537 struct btrfs_space_info *space_info;
1538
1539 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1540 return;
1541
1542 if (btrfs_fs_closing(fs_info))
1543 return;
1544
1545 if (!btrfs_should_reclaim(fs_info))
1546 return;
1547
1548 sb_start_write(fs_info->sb);
1549
1550 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1551 sb_end_write(fs_info->sb);
1552 return;
1553 }
1554
1555 /*
1556 * Long running balances can keep us blocked here for eternity, so
1557 * simply skip reclaim if we're unable to get the mutex.
1558 */
1559 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1560 btrfs_exclop_finish(fs_info);
1561 sb_end_write(fs_info->sb);
1562 return;
1563 }
1564
1565 spin_lock(&fs_info->unused_bgs_lock);
1566 /*
1567 * Sort happens under lock because we can't simply splice it and sort.
1568 * The block groups might still be in use and reachable via bg_list,
1569 * and their presence in the reclaim_bgs list must be preserved.
1570 */
1571 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1572 while (!list_empty(&fs_info->reclaim_bgs)) {
1573 u64 zone_unusable;
1574 int ret = 0;
1575
1576 bg = list_first_entry(&fs_info->reclaim_bgs,
1577 struct btrfs_block_group,
1578 bg_list);
1579 list_del_init(&bg->bg_list);
1580
1581 space_info = bg->space_info;
1582 spin_unlock(&fs_info->unused_bgs_lock);
1583
1584 /* Don't race with allocators so take the groups_sem */
1585 down_write(&space_info->groups_sem);
1586
1587 spin_lock(&bg->lock);
1588 if (bg->reserved || bg->pinned || bg->ro) {
1589 /*
1590 * We want to bail if we made new allocations or have
1591 * outstanding allocations in this block group. We do
1592 * the ro check in case balance is currently acting on
1593 * this block group.
1594 */
1595 spin_unlock(&bg->lock);
1596 up_write(&space_info->groups_sem);
1597 goto next;
1598 }
1599 spin_unlock(&bg->lock);
1600
1601 /* Get out fast, in case we're unmounting the filesystem */
1602 if (btrfs_fs_closing(fs_info)) {
1603 up_write(&space_info->groups_sem);
1604 goto next;
1605 }
1606
1607 /*
1608 * Cache the zone_unusable value before turning the block group
1609 * to read only. As soon as the blog group is read only it's
1610 * zone_unusable value gets moved to the block group's read-only
1611 * bytes and isn't available for calculations anymore.
1612 */
1613 zone_unusable = bg->zone_unusable;
1614 ret = inc_block_group_ro(bg, 0);
1615 up_write(&space_info->groups_sem);
1616 if (ret < 0)
1617 goto next;
1618
1619 btrfs_info(fs_info,
1620 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1621 bg->start, div_u64(bg->used * 100, bg->length),
1622 div64_u64(zone_unusable * 100, bg->length));
1623 trace_btrfs_reclaim_block_group(bg);
1624 ret = btrfs_relocate_chunk(fs_info, bg->start);
1625 if (ret) {
1626 btrfs_dec_block_group_ro(bg);
1627 btrfs_err(fs_info, "error relocating chunk %llu",
1628 bg->start);
1629 }
1630
1631 next:
1632 btrfs_put_block_group(bg);
1633 spin_lock(&fs_info->unused_bgs_lock);
1634 }
1635 spin_unlock(&fs_info->unused_bgs_lock);
1636 mutex_unlock(&fs_info->reclaim_bgs_lock);
1637 btrfs_exclop_finish(fs_info);
1638 sb_end_write(fs_info->sb);
1639 }
1640
1641 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1642 {
1643 spin_lock(&fs_info->unused_bgs_lock);
1644 if (!list_empty(&fs_info->reclaim_bgs))
1645 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1646 spin_unlock(&fs_info->unused_bgs_lock);
1647 }
1648
1649 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1650 {
1651 struct btrfs_fs_info *fs_info = bg->fs_info;
1652
1653 spin_lock(&fs_info->unused_bgs_lock);
1654 if (list_empty(&bg->bg_list)) {
1655 btrfs_get_block_group(bg);
1656 trace_btrfs_add_reclaim_block_group(bg);
1657 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1658 }
1659 spin_unlock(&fs_info->unused_bgs_lock);
1660 }
1661
1662 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1663 struct btrfs_path *path)
1664 {
1665 struct extent_map_tree *em_tree;
1666 struct extent_map *em;
1667 struct btrfs_block_group_item bg;
1668 struct extent_buffer *leaf;
1669 int slot;
1670 u64 flags;
1671 int ret = 0;
1672
1673 slot = path->slots[0];
1674 leaf = path->nodes[0];
1675
1676 em_tree = &fs_info->mapping_tree;
1677 read_lock(&em_tree->lock);
1678 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1679 read_unlock(&em_tree->lock);
1680 if (!em) {
1681 btrfs_err(fs_info,
1682 "logical %llu len %llu found bg but no related chunk",
1683 key->objectid, key->offset);
1684 return -ENOENT;
1685 }
1686
1687 if (em->start != key->objectid || em->len != key->offset) {
1688 btrfs_err(fs_info,
1689 "block group %llu len %llu mismatch with chunk %llu len %llu",
1690 key->objectid, key->offset, em->start, em->len);
1691 ret = -EUCLEAN;
1692 goto out_free_em;
1693 }
1694
1695 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1696 sizeof(bg));
1697 flags = btrfs_stack_block_group_flags(&bg) &
1698 BTRFS_BLOCK_GROUP_TYPE_MASK;
1699
1700 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1701 btrfs_err(fs_info,
1702 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1703 key->objectid, key->offset, flags,
1704 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1705 ret = -EUCLEAN;
1706 }
1707
1708 out_free_em:
1709 free_extent_map(em);
1710 return ret;
1711 }
1712
1713 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1714 struct btrfs_path *path,
1715 struct btrfs_key *key)
1716 {
1717 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1718 int ret;
1719 struct btrfs_key found_key;
1720
1721 btrfs_for_each_slot(root, key, &found_key, path, ret) {
1722 if (found_key.objectid >= key->objectid &&
1723 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1724 return read_bg_from_eb(fs_info, &found_key, path);
1725 }
1726 }
1727 return ret;
1728 }
1729
1730 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1731 {
1732 u64 extra_flags = chunk_to_extended(flags) &
1733 BTRFS_EXTENDED_PROFILE_MASK;
1734
1735 write_seqlock(&fs_info->profiles_lock);
1736 if (flags & BTRFS_BLOCK_GROUP_DATA)
1737 fs_info->avail_data_alloc_bits |= extra_flags;
1738 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1739 fs_info->avail_metadata_alloc_bits |= extra_flags;
1740 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1741 fs_info->avail_system_alloc_bits |= extra_flags;
1742 write_sequnlock(&fs_info->profiles_lock);
1743 }
1744
1745 /**
1746 * Map a physical disk address to a list of logical addresses
1747 *
1748 * @fs_info: the filesystem
1749 * @chunk_start: logical address of block group
1750 * @bdev: physical device to resolve, can be NULL to indicate any device
1751 * @physical: physical address to map to logical addresses
1752 * @logical: return array of logical addresses which map to @physical
1753 * @naddrs: length of @logical
1754 * @stripe_len: size of IO stripe for the given block group
1755 *
1756 * Maps a particular @physical disk address to a list of @logical addresses.
1757 * Used primarily to exclude those portions of a block group that contain super
1758 * block copies.
1759 */
1760 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1761 struct block_device *bdev, u64 physical, u64 **logical,
1762 int *naddrs, int *stripe_len)
1763 {
1764 struct extent_map *em;
1765 struct map_lookup *map;
1766 u64 *buf;
1767 u64 bytenr;
1768 u64 data_stripe_length;
1769 u64 io_stripe_size;
1770 int i, nr = 0;
1771 int ret = 0;
1772
1773 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1774 if (IS_ERR(em))
1775 return -EIO;
1776
1777 map = em->map_lookup;
1778 data_stripe_length = em->orig_block_len;
1779 io_stripe_size = map->stripe_len;
1780 chunk_start = em->start;
1781
1782 /* For RAID5/6 adjust to a full IO stripe length */
1783 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1784 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1785
1786 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1787 if (!buf) {
1788 ret = -ENOMEM;
1789 goto out;
1790 }
1791
1792 for (i = 0; i < map->num_stripes; i++) {
1793 bool already_inserted = false;
1794 u64 stripe_nr;
1795 u64 offset;
1796 int j;
1797
1798 if (!in_range(physical, map->stripes[i].physical,
1799 data_stripe_length))
1800 continue;
1801
1802 if (bdev && map->stripes[i].dev->bdev != bdev)
1803 continue;
1804
1805 stripe_nr = physical - map->stripes[i].physical;
1806 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1807
1808 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
1809 BTRFS_BLOCK_GROUP_RAID10)) {
1810 stripe_nr = stripe_nr * map->num_stripes + i;
1811 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1812 }
1813 /*
1814 * The remaining case would be for RAID56, multiply by
1815 * nr_data_stripes(). Alternatively, just use rmap_len below
1816 * instead of map->stripe_len
1817 */
1818
1819 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1820
1821 /* Ensure we don't add duplicate addresses */
1822 for (j = 0; j < nr; j++) {
1823 if (buf[j] == bytenr) {
1824 already_inserted = true;
1825 break;
1826 }
1827 }
1828
1829 if (!already_inserted)
1830 buf[nr++] = bytenr;
1831 }
1832
1833 *logical = buf;
1834 *naddrs = nr;
1835 *stripe_len = io_stripe_size;
1836 out:
1837 free_extent_map(em);
1838 return ret;
1839 }
1840
1841 static int exclude_super_stripes(struct btrfs_block_group *cache)
1842 {
1843 struct btrfs_fs_info *fs_info = cache->fs_info;
1844 const bool zoned = btrfs_is_zoned(fs_info);
1845 u64 bytenr;
1846 u64 *logical;
1847 int stripe_len;
1848 int i, nr, ret;
1849
1850 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1851 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1852 cache->bytes_super += stripe_len;
1853 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1854 stripe_len);
1855 if (ret)
1856 return ret;
1857 }
1858
1859 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1860 bytenr = btrfs_sb_offset(i);
1861 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1862 bytenr, &logical, &nr, &stripe_len);
1863 if (ret)
1864 return ret;
1865
1866 /* Shouldn't have super stripes in sequential zones */
1867 if (zoned && nr) {
1868 btrfs_err(fs_info,
1869 "zoned: block group %llu must not contain super block",
1870 cache->start);
1871 return -EUCLEAN;
1872 }
1873
1874 while (nr--) {
1875 u64 len = min_t(u64, stripe_len,
1876 cache->start + cache->length - logical[nr]);
1877
1878 cache->bytes_super += len;
1879 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1880 len);
1881 if (ret) {
1882 kfree(logical);
1883 return ret;
1884 }
1885 }
1886
1887 kfree(logical);
1888 }
1889 return 0;
1890 }
1891
1892 static struct btrfs_block_group *btrfs_create_block_group_cache(
1893 struct btrfs_fs_info *fs_info, u64 start)
1894 {
1895 struct btrfs_block_group *cache;
1896
1897 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1898 if (!cache)
1899 return NULL;
1900
1901 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1902 GFP_NOFS);
1903 if (!cache->free_space_ctl) {
1904 kfree(cache);
1905 return NULL;
1906 }
1907
1908 cache->start = start;
1909
1910 cache->fs_info = fs_info;
1911 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1912
1913 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1914
1915 refcount_set(&cache->refs, 1);
1916 spin_lock_init(&cache->lock);
1917 init_rwsem(&cache->data_rwsem);
1918 INIT_LIST_HEAD(&cache->list);
1919 INIT_LIST_HEAD(&cache->cluster_list);
1920 INIT_LIST_HEAD(&cache->bg_list);
1921 INIT_LIST_HEAD(&cache->ro_list);
1922 INIT_LIST_HEAD(&cache->discard_list);
1923 INIT_LIST_HEAD(&cache->dirty_list);
1924 INIT_LIST_HEAD(&cache->io_list);
1925 INIT_LIST_HEAD(&cache->active_bg_list);
1926 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1927 atomic_set(&cache->frozen, 0);
1928 mutex_init(&cache->free_space_lock);
1929 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1930
1931 return cache;
1932 }
1933
1934 /*
1935 * Iterate all chunks and verify that each of them has the corresponding block
1936 * group
1937 */
1938 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1939 {
1940 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1941 struct extent_map *em;
1942 struct btrfs_block_group *bg;
1943 u64 start = 0;
1944 int ret = 0;
1945
1946 while (1) {
1947 read_lock(&map_tree->lock);
1948 /*
1949 * lookup_extent_mapping will return the first extent map
1950 * intersecting the range, so setting @len to 1 is enough to
1951 * get the first chunk.
1952 */
1953 em = lookup_extent_mapping(map_tree, start, 1);
1954 read_unlock(&map_tree->lock);
1955 if (!em)
1956 break;
1957
1958 bg = btrfs_lookup_block_group(fs_info, em->start);
1959 if (!bg) {
1960 btrfs_err(fs_info,
1961 "chunk start=%llu len=%llu doesn't have corresponding block group",
1962 em->start, em->len);
1963 ret = -EUCLEAN;
1964 free_extent_map(em);
1965 break;
1966 }
1967 if (bg->start != em->start || bg->length != em->len ||
1968 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1969 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1970 btrfs_err(fs_info,
1971 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1972 em->start, em->len,
1973 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1974 bg->start, bg->length,
1975 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1976 ret = -EUCLEAN;
1977 free_extent_map(em);
1978 btrfs_put_block_group(bg);
1979 break;
1980 }
1981 start = em->start + em->len;
1982 free_extent_map(em);
1983 btrfs_put_block_group(bg);
1984 }
1985 return ret;
1986 }
1987
1988 static int read_one_block_group(struct btrfs_fs_info *info,
1989 struct btrfs_block_group_item *bgi,
1990 const struct btrfs_key *key,
1991 int need_clear)
1992 {
1993 struct btrfs_block_group *cache;
1994 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1995 int ret;
1996
1997 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1998
1999 cache = btrfs_create_block_group_cache(info, key->objectid);
2000 if (!cache)
2001 return -ENOMEM;
2002
2003 cache->length = key->offset;
2004 cache->used = btrfs_stack_block_group_used(bgi);
2005 cache->flags = btrfs_stack_block_group_flags(bgi);
2006 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2007
2008 set_free_space_tree_thresholds(cache);
2009
2010 if (need_clear) {
2011 /*
2012 * When we mount with old space cache, we need to
2013 * set BTRFS_DC_CLEAR and set dirty flag.
2014 *
2015 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2016 * truncate the old free space cache inode and
2017 * setup a new one.
2018 * b) Setting 'dirty flag' makes sure that we flush
2019 * the new space cache info onto disk.
2020 */
2021 if (btrfs_test_opt(info, SPACE_CACHE))
2022 cache->disk_cache_state = BTRFS_DC_CLEAR;
2023 }
2024 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2025 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2026 btrfs_err(info,
2027 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2028 cache->start);
2029 ret = -EINVAL;
2030 goto error;
2031 }
2032
2033 ret = btrfs_load_block_group_zone_info(cache, false);
2034 if (ret) {
2035 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2036 cache->start);
2037 goto error;
2038 }
2039
2040 /*
2041 * We need to exclude the super stripes now so that the space info has
2042 * super bytes accounted for, otherwise we'll think we have more space
2043 * than we actually do.
2044 */
2045 ret = exclude_super_stripes(cache);
2046 if (ret) {
2047 /* We may have excluded something, so call this just in case. */
2048 btrfs_free_excluded_extents(cache);
2049 goto error;
2050 }
2051
2052 /*
2053 * For zoned filesystem, space after the allocation offset is the only
2054 * free space for a block group. So, we don't need any caching work.
2055 * btrfs_calc_zone_unusable() will set the amount of free space and
2056 * zone_unusable space.
2057 *
2058 * For regular filesystem, check for two cases, either we are full, and
2059 * therefore don't need to bother with the caching work since we won't
2060 * find any space, or we are empty, and we can just add all the space
2061 * in and be done with it. This saves us _a_lot_ of time, particularly
2062 * in the full case.
2063 */
2064 if (btrfs_is_zoned(info)) {
2065 btrfs_calc_zone_unusable(cache);
2066 /* Should not have any excluded extents. Just in case, though. */
2067 btrfs_free_excluded_extents(cache);
2068 } else if (cache->length == cache->used) {
2069 cache->cached = BTRFS_CACHE_FINISHED;
2070 btrfs_free_excluded_extents(cache);
2071 } else if (cache->used == 0) {
2072 cache->cached = BTRFS_CACHE_FINISHED;
2073 add_new_free_space(cache, cache->start,
2074 cache->start + cache->length);
2075 btrfs_free_excluded_extents(cache);
2076 }
2077
2078 ret = btrfs_add_block_group_cache(info, cache);
2079 if (ret) {
2080 btrfs_remove_free_space_cache(cache);
2081 goto error;
2082 }
2083 trace_btrfs_add_block_group(info, cache, 0);
2084 btrfs_add_bg_to_space_info(info, cache);
2085
2086 set_avail_alloc_bits(info, cache->flags);
2087 if (btrfs_chunk_writeable(info, cache->start)) {
2088 if (cache->used == 0) {
2089 ASSERT(list_empty(&cache->bg_list));
2090 if (btrfs_test_opt(info, DISCARD_ASYNC))
2091 btrfs_discard_queue_work(&info->discard_ctl, cache);
2092 else
2093 btrfs_mark_bg_unused(cache);
2094 }
2095 } else {
2096 inc_block_group_ro(cache, 1);
2097 }
2098
2099 return 0;
2100 error:
2101 btrfs_put_block_group(cache);
2102 return ret;
2103 }
2104
2105 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2106 {
2107 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2108 struct rb_node *node;
2109 int ret = 0;
2110
2111 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2112 struct extent_map *em;
2113 struct map_lookup *map;
2114 struct btrfs_block_group *bg;
2115
2116 em = rb_entry(node, struct extent_map, rb_node);
2117 map = em->map_lookup;
2118 bg = btrfs_create_block_group_cache(fs_info, em->start);
2119 if (!bg) {
2120 ret = -ENOMEM;
2121 break;
2122 }
2123
2124 /* Fill dummy cache as FULL */
2125 bg->length = em->len;
2126 bg->flags = map->type;
2127 bg->cached = BTRFS_CACHE_FINISHED;
2128 bg->used = em->len;
2129 bg->flags = map->type;
2130 ret = btrfs_add_block_group_cache(fs_info, bg);
2131 /*
2132 * We may have some valid block group cache added already, in
2133 * that case we skip to the next one.
2134 */
2135 if (ret == -EEXIST) {
2136 ret = 0;
2137 btrfs_put_block_group(bg);
2138 continue;
2139 }
2140
2141 if (ret) {
2142 btrfs_remove_free_space_cache(bg);
2143 btrfs_put_block_group(bg);
2144 break;
2145 }
2146
2147 btrfs_add_bg_to_space_info(fs_info, bg);
2148
2149 set_avail_alloc_bits(fs_info, bg->flags);
2150 }
2151 if (!ret)
2152 btrfs_init_global_block_rsv(fs_info);
2153 return ret;
2154 }
2155
2156 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2157 {
2158 struct btrfs_root *root = btrfs_block_group_root(info);
2159 struct btrfs_path *path;
2160 int ret;
2161 struct btrfs_block_group *cache;
2162 struct btrfs_space_info *space_info;
2163 struct btrfs_key key;
2164 int need_clear = 0;
2165 u64 cache_gen;
2166
2167 if (!root)
2168 return fill_dummy_bgs(info);
2169
2170 key.objectid = 0;
2171 key.offset = 0;
2172 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2173 path = btrfs_alloc_path();
2174 if (!path)
2175 return -ENOMEM;
2176
2177 cache_gen = btrfs_super_cache_generation(info->super_copy);
2178 if (btrfs_test_opt(info, SPACE_CACHE) &&
2179 btrfs_super_generation(info->super_copy) != cache_gen)
2180 need_clear = 1;
2181 if (btrfs_test_opt(info, CLEAR_CACHE))
2182 need_clear = 1;
2183
2184 while (1) {
2185 struct btrfs_block_group_item bgi;
2186 struct extent_buffer *leaf;
2187 int slot;
2188
2189 ret = find_first_block_group(info, path, &key);
2190 if (ret > 0)
2191 break;
2192 if (ret != 0)
2193 goto error;
2194
2195 leaf = path->nodes[0];
2196 slot = path->slots[0];
2197
2198 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2199 sizeof(bgi));
2200
2201 btrfs_item_key_to_cpu(leaf, &key, slot);
2202 btrfs_release_path(path);
2203 ret = read_one_block_group(info, &bgi, &key, need_clear);
2204 if (ret < 0)
2205 goto error;
2206 key.objectid += key.offset;
2207 key.offset = 0;
2208 }
2209 btrfs_release_path(path);
2210
2211 list_for_each_entry(space_info, &info->space_info, list) {
2212 int i;
2213
2214 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2215 if (list_empty(&space_info->block_groups[i]))
2216 continue;
2217 cache = list_first_entry(&space_info->block_groups[i],
2218 struct btrfs_block_group,
2219 list);
2220 btrfs_sysfs_add_block_group_type(cache);
2221 }
2222
2223 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2224 (BTRFS_BLOCK_GROUP_RAID10 |
2225 BTRFS_BLOCK_GROUP_RAID1_MASK |
2226 BTRFS_BLOCK_GROUP_RAID56_MASK |
2227 BTRFS_BLOCK_GROUP_DUP)))
2228 continue;
2229 /*
2230 * Avoid allocating from un-mirrored block group if there are
2231 * mirrored block groups.
2232 */
2233 list_for_each_entry(cache,
2234 &space_info->block_groups[BTRFS_RAID_RAID0],
2235 list)
2236 inc_block_group_ro(cache, 1);
2237 list_for_each_entry(cache,
2238 &space_info->block_groups[BTRFS_RAID_SINGLE],
2239 list)
2240 inc_block_group_ro(cache, 1);
2241 }
2242
2243 btrfs_init_global_block_rsv(info);
2244 ret = check_chunk_block_group_mappings(info);
2245 error:
2246 btrfs_free_path(path);
2247 /*
2248 * We've hit some error while reading the extent tree, and have
2249 * rescue=ibadroots mount option.
2250 * Try to fill the tree using dummy block groups so that the user can
2251 * continue to mount and grab their data.
2252 */
2253 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2254 ret = fill_dummy_bgs(info);
2255 return ret;
2256 }
2257
2258 /*
2259 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2260 * allocation.
2261 *
2262 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2263 * phases.
2264 */
2265 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2266 struct btrfs_block_group *block_group)
2267 {
2268 struct btrfs_fs_info *fs_info = trans->fs_info;
2269 struct btrfs_block_group_item bgi;
2270 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2271 struct btrfs_key key;
2272
2273 spin_lock(&block_group->lock);
2274 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2275 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2276 block_group->global_root_id);
2277 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2278 key.objectid = block_group->start;
2279 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2280 key.offset = block_group->length;
2281 spin_unlock(&block_group->lock);
2282
2283 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2284 }
2285
2286 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2287 struct btrfs_device *device, u64 chunk_offset,
2288 u64 start, u64 num_bytes)
2289 {
2290 struct btrfs_fs_info *fs_info = device->fs_info;
2291 struct btrfs_root *root = fs_info->dev_root;
2292 struct btrfs_path *path;
2293 struct btrfs_dev_extent *extent;
2294 struct extent_buffer *leaf;
2295 struct btrfs_key key;
2296 int ret;
2297
2298 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2299 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2300 path = btrfs_alloc_path();
2301 if (!path)
2302 return -ENOMEM;
2303
2304 key.objectid = device->devid;
2305 key.type = BTRFS_DEV_EXTENT_KEY;
2306 key.offset = start;
2307 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2308 if (ret)
2309 goto out;
2310
2311 leaf = path->nodes[0];
2312 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2313 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2314 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2315 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2316 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2317
2318 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2319 btrfs_mark_buffer_dirty(leaf);
2320 out:
2321 btrfs_free_path(path);
2322 return ret;
2323 }
2324
2325 /*
2326 * This function belongs to phase 2.
2327 *
2328 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2329 * phases.
2330 */
2331 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2332 u64 chunk_offset, u64 chunk_size)
2333 {
2334 struct btrfs_fs_info *fs_info = trans->fs_info;
2335 struct btrfs_device *device;
2336 struct extent_map *em;
2337 struct map_lookup *map;
2338 u64 dev_offset;
2339 u64 stripe_size;
2340 int i;
2341 int ret = 0;
2342
2343 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2344 if (IS_ERR(em))
2345 return PTR_ERR(em);
2346
2347 map = em->map_lookup;
2348 stripe_size = em->orig_block_len;
2349
2350 /*
2351 * Take the device list mutex to prevent races with the final phase of
2352 * a device replace operation that replaces the device object associated
2353 * with the map's stripes, because the device object's id can change
2354 * at any time during that final phase of the device replace operation
2355 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2356 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2357 * resulting in persisting a device extent item with such ID.
2358 */
2359 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2360 for (i = 0; i < map->num_stripes; i++) {
2361 device = map->stripes[i].dev;
2362 dev_offset = map->stripes[i].physical;
2363
2364 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2365 stripe_size);
2366 if (ret)
2367 break;
2368 }
2369 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2370
2371 free_extent_map(em);
2372 return ret;
2373 }
2374
2375 /*
2376 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2377 * chunk allocation.
2378 *
2379 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2380 * phases.
2381 */
2382 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2383 {
2384 struct btrfs_fs_info *fs_info = trans->fs_info;
2385 struct btrfs_block_group *block_group;
2386 int ret = 0;
2387
2388 while (!list_empty(&trans->new_bgs)) {
2389 int index;
2390
2391 block_group = list_first_entry(&trans->new_bgs,
2392 struct btrfs_block_group,
2393 bg_list);
2394 if (ret)
2395 goto next;
2396
2397 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2398
2399 ret = insert_block_group_item(trans, block_group);
2400 if (ret)
2401 btrfs_abort_transaction(trans, ret);
2402 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2403 &block_group->runtime_flags)) {
2404 mutex_lock(&fs_info->chunk_mutex);
2405 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2406 mutex_unlock(&fs_info->chunk_mutex);
2407 if (ret)
2408 btrfs_abort_transaction(trans, ret);
2409 }
2410 ret = insert_dev_extents(trans, block_group->start,
2411 block_group->length);
2412 if (ret)
2413 btrfs_abort_transaction(trans, ret);
2414 add_block_group_free_space(trans, block_group);
2415
2416 /*
2417 * If we restriped during balance, we may have added a new raid
2418 * type, so now add the sysfs entries when it is safe to do so.
2419 * We don't have to worry about locking here as it's handled in
2420 * btrfs_sysfs_add_block_group_type.
2421 */
2422 if (block_group->space_info->block_group_kobjs[index] == NULL)
2423 btrfs_sysfs_add_block_group_type(block_group);
2424
2425 /* Already aborted the transaction if it failed. */
2426 next:
2427 btrfs_delayed_refs_rsv_release(fs_info, 1);
2428 list_del_init(&block_group->bg_list);
2429 }
2430 btrfs_trans_release_chunk_metadata(trans);
2431 }
2432
2433 /*
2434 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2435 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2436 */
2437 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2438 {
2439 u64 div = SZ_1G;
2440 u64 index;
2441
2442 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2443 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2444
2445 /* If we have a smaller fs index based on 128MiB. */
2446 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2447 div = SZ_128M;
2448
2449 offset = div64_u64(offset, div);
2450 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2451 return index;
2452 }
2453
2454 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2455 u64 bytes_used, u64 type,
2456 u64 chunk_offset, u64 size)
2457 {
2458 struct btrfs_fs_info *fs_info = trans->fs_info;
2459 struct btrfs_block_group *cache;
2460 int ret;
2461
2462 btrfs_set_log_full_commit(trans);
2463
2464 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2465 if (!cache)
2466 return ERR_PTR(-ENOMEM);
2467
2468 cache->length = size;
2469 set_free_space_tree_thresholds(cache);
2470 cache->used = bytes_used;
2471 cache->flags = type;
2472 cache->cached = BTRFS_CACHE_FINISHED;
2473 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2474
2475 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2476 cache->needs_free_space = 1;
2477
2478 ret = btrfs_load_block_group_zone_info(cache, true);
2479 if (ret) {
2480 btrfs_put_block_group(cache);
2481 return ERR_PTR(ret);
2482 }
2483
2484 ret = exclude_super_stripes(cache);
2485 if (ret) {
2486 /* We may have excluded something, so call this just in case */
2487 btrfs_free_excluded_extents(cache);
2488 btrfs_put_block_group(cache);
2489 return ERR_PTR(ret);
2490 }
2491
2492 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2493
2494 btrfs_free_excluded_extents(cache);
2495
2496 /*
2497 * Ensure the corresponding space_info object is created and
2498 * assigned to our block group. We want our bg to be added to the rbtree
2499 * with its ->space_info set.
2500 */
2501 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2502 ASSERT(cache->space_info);
2503
2504 ret = btrfs_add_block_group_cache(fs_info, cache);
2505 if (ret) {
2506 btrfs_remove_free_space_cache(cache);
2507 btrfs_put_block_group(cache);
2508 return ERR_PTR(ret);
2509 }
2510
2511 /*
2512 * Now that our block group has its ->space_info set and is inserted in
2513 * the rbtree, update the space info's counters.
2514 */
2515 trace_btrfs_add_block_group(fs_info, cache, 1);
2516 btrfs_add_bg_to_space_info(fs_info, cache);
2517 btrfs_update_global_block_rsv(fs_info);
2518
2519 #ifdef CONFIG_BTRFS_DEBUG
2520 if (btrfs_should_fragment_free_space(cache)) {
2521 u64 new_bytes_used = size - bytes_used;
2522
2523 cache->space_info->bytes_used += new_bytes_used >> 1;
2524 fragment_free_space(cache);
2525 }
2526 #endif
2527
2528 list_add_tail(&cache->bg_list, &trans->new_bgs);
2529 trans->delayed_ref_updates++;
2530 btrfs_update_delayed_refs_rsv(trans);
2531
2532 set_avail_alloc_bits(fs_info, type);
2533 return cache;
2534 }
2535
2536 /*
2537 * Mark one block group RO, can be called several times for the same block
2538 * group.
2539 *
2540 * @cache: the destination block group
2541 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2542 * ensure we still have some free space after marking this
2543 * block group RO.
2544 */
2545 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2546 bool do_chunk_alloc)
2547 {
2548 struct btrfs_fs_info *fs_info = cache->fs_info;
2549 struct btrfs_trans_handle *trans;
2550 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2551 u64 alloc_flags;
2552 int ret;
2553 bool dirty_bg_running;
2554
2555 /*
2556 * This can only happen when we are doing read-only scrub on read-only
2557 * mount.
2558 * In that case we should not start a new transaction on read-only fs.
2559 * Thus here we skip all chunk allocations.
2560 */
2561 if (sb_rdonly(fs_info->sb)) {
2562 mutex_lock(&fs_info->ro_block_group_mutex);
2563 ret = inc_block_group_ro(cache, 0);
2564 mutex_unlock(&fs_info->ro_block_group_mutex);
2565 return ret;
2566 }
2567
2568 do {
2569 trans = btrfs_join_transaction(root);
2570 if (IS_ERR(trans))
2571 return PTR_ERR(trans);
2572
2573 dirty_bg_running = false;
2574
2575 /*
2576 * We're not allowed to set block groups readonly after the dirty
2577 * block group cache has started writing. If it already started,
2578 * back off and let this transaction commit.
2579 */
2580 mutex_lock(&fs_info->ro_block_group_mutex);
2581 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2582 u64 transid = trans->transid;
2583
2584 mutex_unlock(&fs_info->ro_block_group_mutex);
2585 btrfs_end_transaction(trans);
2586
2587 ret = btrfs_wait_for_commit(fs_info, transid);
2588 if (ret)
2589 return ret;
2590 dirty_bg_running = true;
2591 }
2592 } while (dirty_bg_running);
2593
2594 if (do_chunk_alloc) {
2595 /*
2596 * If we are changing raid levels, try to allocate a
2597 * corresponding block group with the new raid level.
2598 */
2599 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2600 if (alloc_flags != cache->flags) {
2601 ret = btrfs_chunk_alloc(trans, alloc_flags,
2602 CHUNK_ALLOC_FORCE);
2603 /*
2604 * ENOSPC is allowed here, we may have enough space
2605 * already allocated at the new raid level to carry on
2606 */
2607 if (ret == -ENOSPC)
2608 ret = 0;
2609 if (ret < 0)
2610 goto out;
2611 }
2612 }
2613
2614 ret = inc_block_group_ro(cache, 0);
2615 if (!do_chunk_alloc || ret == -ETXTBSY)
2616 goto unlock_out;
2617 if (!ret)
2618 goto out;
2619 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2620 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2621 if (ret < 0)
2622 goto out;
2623 /*
2624 * We have allocated a new chunk. We also need to activate that chunk to
2625 * grant metadata tickets for zoned filesystem.
2626 */
2627 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2628 if (ret < 0)
2629 goto out;
2630
2631 ret = inc_block_group_ro(cache, 0);
2632 if (ret == -ETXTBSY)
2633 goto unlock_out;
2634 out:
2635 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2636 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2637 mutex_lock(&fs_info->chunk_mutex);
2638 check_system_chunk(trans, alloc_flags);
2639 mutex_unlock(&fs_info->chunk_mutex);
2640 }
2641 unlock_out:
2642 mutex_unlock(&fs_info->ro_block_group_mutex);
2643
2644 btrfs_end_transaction(trans);
2645 return ret;
2646 }
2647
2648 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2649 {
2650 struct btrfs_space_info *sinfo = cache->space_info;
2651 u64 num_bytes;
2652
2653 BUG_ON(!cache->ro);
2654
2655 spin_lock(&sinfo->lock);
2656 spin_lock(&cache->lock);
2657 if (!--cache->ro) {
2658 if (btrfs_is_zoned(cache->fs_info)) {
2659 /* Migrate zone_unusable bytes back */
2660 cache->zone_unusable =
2661 (cache->alloc_offset - cache->used) +
2662 (cache->length - cache->zone_capacity);
2663 sinfo->bytes_zone_unusable += cache->zone_unusable;
2664 sinfo->bytes_readonly -= cache->zone_unusable;
2665 }
2666 num_bytes = cache->length - cache->reserved -
2667 cache->pinned - cache->bytes_super -
2668 cache->zone_unusable - cache->used;
2669 sinfo->bytes_readonly -= num_bytes;
2670 list_del_init(&cache->ro_list);
2671 }
2672 spin_unlock(&cache->lock);
2673 spin_unlock(&sinfo->lock);
2674 }
2675
2676 static int update_block_group_item(struct btrfs_trans_handle *trans,
2677 struct btrfs_path *path,
2678 struct btrfs_block_group *cache)
2679 {
2680 struct btrfs_fs_info *fs_info = trans->fs_info;
2681 int ret;
2682 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2683 unsigned long bi;
2684 struct extent_buffer *leaf;
2685 struct btrfs_block_group_item bgi;
2686 struct btrfs_key key;
2687
2688 key.objectid = cache->start;
2689 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2690 key.offset = cache->length;
2691
2692 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2693 if (ret) {
2694 if (ret > 0)
2695 ret = -ENOENT;
2696 goto fail;
2697 }
2698
2699 leaf = path->nodes[0];
2700 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2701 btrfs_set_stack_block_group_used(&bgi, cache->used);
2702 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2703 cache->global_root_id);
2704 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2705 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2706 btrfs_mark_buffer_dirty(leaf);
2707 fail:
2708 btrfs_release_path(path);
2709 return ret;
2710
2711 }
2712
2713 static int cache_save_setup(struct btrfs_block_group *block_group,
2714 struct btrfs_trans_handle *trans,
2715 struct btrfs_path *path)
2716 {
2717 struct btrfs_fs_info *fs_info = block_group->fs_info;
2718 struct btrfs_root *root = fs_info->tree_root;
2719 struct inode *inode = NULL;
2720 struct extent_changeset *data_reserved = NULL;
2721 u64 alloc_hint = 0;
2722 int dcs = BTRFS_DC_ERROR;
2723 u64 cache_size = 0;
2724 int retries = 0;
2725 int ret = 0;
2726
2727 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2728 return 0;
2729
2730 /*
2731 * If this block group is smaller than 100 megs don't bother caching the
2732 * block group.
2733 */
2734 if (block_group->length < (100 * SZ_1M)) {
2735 spin_lock(&block_group->lock);
2736 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2737 spin_unlock(&block_group->lock);
2738 return 0;
2739 }
2740
2741 if (TRANS_ABORTED(trans))
2742 return 0;
2743 again:
2744 inode = lookup_free_space_inode(block_group, path);
2745 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2746 ret = PTR_ERR(inode);
2747 btrfs_release_path(path);
2748 goto out;
2749 }
2750
2751 if (IS_ERR(inode)) {
2752 BUG_ON(retries);
2753 retries++;
2754
2755 if (block_group->ro)
2756 goto out_free;
2757
2758 ret = create_free_space_inode(trans, block_group, path);
2759 if (ret)
2760 goto out_free;
2761 goto again;
2762 }
2763
2764 /*
2765 * We want to set the generation to 0, that way if anything goes wrong
2766 * from here on out we know not to trust this cache when we load up next
2767 * time.
2768 */
2769 BTRFS_I(inode)->generation = 0;
2770 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2771 if (ret) {
2772 /*
2773 * So theoretically we could recover from this, simply set the
2774 * super cache generation to 0 so we know to invalidate the
2775 * cache, but then we'd have to keep track of the block groups
2776 * that fail this way so we know we _have_ to reset this cache
2777 * before the next commit or risk reading stale cache. So to
2778 * limit our exposure to horrible edge cases lets just abort the
2779 * transaction, this only happens in really bad situations
2780 * anyway.
2781 */
2782 btrfs_abort_transaction(trans, ret);
2783 goto out_put;
2784 }
2785 WARN_ON(ret);
2786
2787 /* We've already setup this transaction, go ahead and exit */
2788 if (block_group->cache_generation == trans->transid &&
2789 i_size_read(inode)) {
2790 dcs = BTRFS_DC_SETUP;
2791 goto out_put;
2792 }
2793
2794 if (i_size_read(inode) > 0) {
2795 ret = btrfs_check_trunc_cache_free_space(fs_info,
2796 &fs_info->global_block_rsv);
2797 if (ret)
2798 goto out_put;
2799
2800 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2801 if (ret)
2802 goto out_put;
2803 }
2804
2805 spin_lock(&block_group->lock);
2806 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2807 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2808 /*
2809 * don't bother trying to write stuff out _if_
2810 * a) we're not cached,
2811 * b) we're with nospace_cache mount option,
2812 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2813 */
2814 dcs = BTRFS_DC_WRITTEN;
2815 spin_unlock(&block_group->lock);
2816 goto out_put;
2817 }
2818 spin_unlock(&block_group->lock);
2819
2820 /*
2821 * We hit an ENOSPC when setting up the cache in this transaction, just
2822 * skip doing the setup, we've already cleared the cache so we're safe.
2823 */
2824 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2825 ret = -ENOSPC;
2826 goto out_put;
2827 }
2828
2829 /*
2830 * Try to preallocate enough space based on how big the block group is.
2831 * Keep in mind this has to include any pinned space which could end up
2832 * taking up quite a bit since it's not folded into the other space
2833 * cache.
2834 */
2835 cache_size = div_u64(block_group->length, SZ_256M);
2836 if (!cache_size)
2837 cache_size = 1;
2838
2839 cache_size *= 16;
2840 cache_size *= fs_info->sectorsize;
2841
2842 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2843 cache_size);
2844 if (ret)
2845 goto out_put;
2846
2847 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2848 cache_size, cache_size,
2849 &alloc_hint);
2850 /*
2851 * Our cache requires contiguous chunks so that we don't modify a bunch
2852 * of metadata or split extents when writing the cache out, which means
2853 * we can enospc if we are heavily fragmented in addition to just normal
2854 * out of space conditions. So if we hit this just skip setting up any
2855 * other block groups for this transaction, maybe we'll unpin enough
2856 * space the next time around.
2857 */
2858 if (!ret)
2859 dcs = BTRFS_DC_SETUP;
2860 else if (ret == -ENOSPC)
2861 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2862
2863 out_put:
2864 iput(inode);
2865 out_free:
2866 btrfs_release_path(path);
2867 out:
2868 spin_lock(&block_group->lock);
2869 if (!ret && dcs == BTRFS_DC_SETUP)
2870 block_group->cache_generation = trans->transid;
2871 block_group->disk_cache_state = dcs;
2872 spin_unlock(&block_group->lock);
2873
2874 extent_changeset_free(data_reserved);
2875 return ret;
2876 }
2877
2878 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2879 {
2880 struct btrfs_fs_info *fs_info = trans->fs_info;
2881 struct btrfs_block_group *cache, *tmp;
2882 struct btrfs_transaction *cur_trans = trans->transaction;
2883 struct btrfs_path *path;
2884
2885 if (list_empty(&cur_trans->dirty_bgs) ||
2886 !btrfs_test_opt(fs_info, SPACE_CACHE))
2887 return 0;
2888
2889 path = btrfs_alloc_path();
2890 if (!path)
2891 return -ENOMEM;
2892
2893 /* Could add new block groups, use _safe just in case */
2894 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2895 dirty_list) {
2896 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2897 cache_save_setup(cache, trans, path);
2898 }
2899
2900 btrfs_free_path(path);
2901 return 0;
2902 }
2903
2904 /*
2905 * Transaction commit does final block group cache writeback during a critical
2906 * section where nothing is allowed to change the FS. This is required in
2907 * order for the cache to actually match the block group, but can introduce a
2908 * lot of latency into the commit.
2909 *
2910 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2911 * There's a chance we'll have to redo some of it if the block group changes
2912 * again during the commit, but it greatly reduces the commit latency by
2913 * getting rid of the easy block groups while we're still allowing others to
2914 * join the commit.
2915 */
2916 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2917 {
2918 struct btrfs_fs_info *fs_info = trans->fs_info;
2919 struct btrfs_block_group *cache;
2920 struct btrfs_transaction *cur_trans = trans->transaction;
2921 int ret = 0;
2922 int should_put;
2923 struct btrfs_path *path = NULL;
2924 LIST_HEAD(dirty);
2925 struct list_head *io = &cur_trans->io_bgs;
2926 int loops = 0;
2927
2928 spin_lock(&cur_trans->dirty_bgs_lock);
2929 if (list_empty(&cur_trans->dirty_bgs)) {
2930 spin_unlock(&cur_trans->dirty_bgs_lock);
2931 return 0;
2932 }
2933 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2934 spin_unlock(&cur_trans->dirty_bgs_lock);
2935
2936 again:
2937 /* Make sure all the block groups on our dirty list actually exist */
2938 btrfs_create_pending_block_groups(trans);
2939
2940 if (!path) {
2941 path = btrfs_alloc_path();
2942 if (!path) {
2943 ret = -ENOMEM;
2944 goto out;
2945 }
2946 }
2947
2948 /*
2949 * cache_write_mutex is here only to save us from balance or automatic
2950 * removal of empty block groups deleting this block group while we are
2951 * writing out the cache
2952 */
2953 mutex_lock(&trans->transaction->cache_write_mutex);
2954 while (!list_empty(&dirty)) {
2955 bool drop_reserve = true;
2956
2957 cache = list_first_entry(&dirty, struct btrfs_block_group,
2958 dirty_list);
2959 /*
2960 * This can happen if something re-dirties a block group that
2961 * is already under IO. Just wait for it to finish and then do
2962 * it all again
2963 */
2964 if (!list_empty(&cache->io_list)) {
2965 list_del_init(&cache->io_list);
2966 btrfs_wait_cache_io(trans, cache, path);
2967 btrfs_put_block_group(cache);
2968 }
2969
2970
2971 /*
2972 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2973 * it should update the cache_state. Don't delete until after
2974 * we wait.
2975 *
2976 * Since we're not running in the commit critical section
2977 * we need the dirty_bgs_lock to protect from update_block_group
2978 */
2979 spin_lock(&cur_trans->dirty_bgs_lock);
2980 list_del_init(&cache->dirty_list);
2981 spin_unlock(&cur_trans->dirty_bgs_lock);
2982
2983 should_put = 1;
2984
2985 cache_save_setup(cache, trans, path);
2986
2987 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2988 cache->io_ctl.inode = NULL;
2989 ret = btrfs_write_out_cache(trans, cache, path);
2990 if (ret == 0 && cache->io_ctl.inode) {
2991 should_put = 0;
2992
2993 /*
2994 * The cache_write_mutex is protecting the
2995 * io_list, also refer to the definition of
2996 * btrfs_transaction::io_bgs for more details
2997 */
2998 list_add_tail(&cache->io_list, io);
2999 } else {
3000 /*
3001 * If we failed to write the cache, the
3002 * generation will be bad and life goes on
3003 */
3004 ret = 0;
3005 }
3006 }
3007 if (!ret) {
3008 ret = update_block_group_item(trans, path, cache);
3009 /*
3010 * Our block group might still be attached to the list
3011 * of new block groups in the transaction handle of some
3012 * other task (struct btrfs_trans_handle->new_bgs). This
3013 * means its block group item isn't yet in the extent
3014 * tree. If this happens ignore the error, as we will
3015 * try again later in the critical section of the
3016 * transaction commit.
3017 */
3018 if (ret == -ENOENT) {
3019 ret = 0;
3020 spin_lock(&cur_trans->dirty_bgs_lock);
3021 if (list_empty(&cache->dirty_list)) {
3022 list_add_tail(&cache->dirty_list,
3023 &cur_trans->dirty_bgs);
3024 btrfs_get_block_group(cache);
3025 drop_reserve = false;
3026 }
3027 spin_unlock(&cur_trans->dirty_bgs_lock);
3028 } else if (ret) {
3029 btrfs_abort_transaction(trans, ret);
3030 }
3031 }
3032
3033 /* If it's not on the io list, we need to put the block group */
3034 if (should_put)
3035 btrfs_put_block_group(cache);
3036 if (drop_reserve)
3037 btrfs_delayed_refs_rsv_release(fs_info, 1);
3038 /*
3039 * Avoid blocking other tasks for too long. It might even save
3040 * us from writing caches for block groups that are going to be
3041 * removed.
3042 */
3043 mutex_unlock(&trans->transaction->cache_write_mutex);
3044 if (ret)
3045 goto out;
3046 mutex_lock(&trans->transaction->cache_write_mutex);
3047 }
3048 mutex_unlock(&trans->transaction->cache_write_mutex);
3049
3050 /*
3051 * Go through delayed refs for all the stuff we've just kicked off
3052 * and then loop back (just once)
3053 */
3054 if (!ret)
3055 ret = btrfs_run_delayed_refs(trans, 0);
3056 if (!ret && loops == 0) {
3057 loops++;
3058 spin_lock(&cur_trans->dirty_bgs_lock);
3059 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3060 /*
3061 * dirty_bgs_lock protects us from concurrent block group
3062 * deletes too (not just cache_write_mutex).
3063 */
3064 if (!list_empty(&dirty)) {
3065 spin_unlock(&cur_trans->dirty_bgs_lock);
3066 goto again;
3067 }
3068 spin_unlock(&cur_trans->dirty_bgs_lock);
3069 }
3070 out:
3071 if (ret < 0) {
3072 spin_lock(&cur_trans->dirty_bgs_lock);
3073 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3074 spin_unlock(&cur_trans->dirty_bgs_lock);
3075 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3076 }
3077
3078 btrfs_free_path(path);
3079 return ret;
3080 }
3081
3082 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3083 {
3084 struct btrfs_fs_info *fs_info = trans->fs_info;
3085 struct btrfs_block_group *cache;
3086 struct btrfs_transaction *cur_trans = trans->transaction;
3087 int ret = 0;
3088 int should_put;
3089 struct btrfs_path *path;
3090 struct list_head *io = &cur_trans->io_bgs;
3091
3092 path = btrfs_alloc_path();
3093 if (!path)
3094 return -ENOMEM;
3095
3096 /*
3097 * Even though we are in the critical section of the transaction commit,
3098 * we can still have concurrent tasks adding elements to this
3099 * transaction's list of dirty block groups. These tasks correspond to
3100 * endio free space workers started when writeback finishes for a
3101 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3102 * allocate new block groups as a result of COWing nodes of the root
3103 * tree when updating the free space inode. The writeback for the space
3104 * caches is triggered by an earlier call to
3105 * btrfs_start_dirty_block_groups() and iterations of the following
3106 * loop.
3107 * Also we want to do the cache_save_setup first and then run the
3108 * delayed refs to make sure we have the best chance at doing this all
3109 * in one shot.
3110 */
3111 spin_lock(&cur_trans->dirty_bgs_lock);
3112 while (!list_empty(&cur_trans->dirty_bgs)) {
3113 cache = list_first_entry(&cur_trans->dirty_bgs,
3114 struct btrfs_block_group,
3115 dirty_list);
3116
3117 /*
3118 * This can happen if cache_save_setup re-dirties a block group
3119 * that is already under IO. Just wait for it to finish and
3120 * then do it all again
3121 */
3122 if (!list_empty(&cache->io_list)) {
3123 spin_unlock(&cur_trans->dirty_bgs_lock);
3124 list_del_init(&cache->io_list);
3125 btrfs_wait_cache_io(trans, cache, path);
3126 btrfs_put_block_group(cache);
3127 spin_lock(&cur_trans->dirty_bgs_lock);
3128 }
3129
3130 /*
3131 * Don't remove from the dirty list until after we've waited on
3132 * any pending IO
3133 */
3134 list_del_init(&cache->dirty_list);
3135 spin_unlock(&cur_trans->dirty_bgs_lock);
3136 should_put = 1;
3137
3138 cache_save_setup(cache, trans, path);
3139
3140 if (!ret)
3141 ret = btrfs_run_delayed_refs(trans,
3142 (unsigned long) -1);
3143
3144 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3145 cache->io_ctl.inode = NULL;
3146 ret = btrfs_write_out_cache(trans, cache, path);
3147 if (ret == 0 && cache->io_ctl.inode) {
3148 should_put = 0;
3149 list_add_tail(&cache->io_list, io);
3150 } else {
3151 /*
3152 * If we failed to write the cache, the
3153 * generation will be bad and life goes on
3154 */
3155 ret = 0;
3156 }
3157 }
3158 if (!ret) {
3159 ret = update_block_group_item(trans, path, cache);
3160 /*
3161 * One of the free space endio workers might have
3162 * created a new block group while updating a free space
3163 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3164 * and hasn't released its transaction handle yet, in
3165 * which case the new block group is still attached to
3166 * its transaction handle and its creation has not
3167 * finished yet (no block group item in the extent tree
3168 * yet, etc). If this is the case, wait for all free
3169 * space endio workers to finish and retry. This is a
3170 * very rare case so no need for a more efficient and
3171 * complex approach.
3172 */
3173 if (ret == -ENOENT) {
3174 wait_event(cur_trans->writer_wait,
3175 atomic_read(&cur_trans->num_writers) == 1);
3176 ret = update_block_group_item(trans, path, cache);
3177 }
3178 if (ret)
3179 btrfs_abort_transaction(trans, ret);
3180 }
3181
3182 /* If its not on the io list, we need to put the block group */
3183 if (should_put)
3184 btrfs_put_block_group(cache);
3185 btrfs_delayed_refs_rsv_release(fs_info, 1);
3186 spin_lock(&cur_trans->dirty_bgs_lock);
3187 }
3188 spin_unlock(&cur_trans->dirty_bgs_lock);
3189
3190 /*
3191 * Refer to the definition of io_bgs member for details why it's safe
3192 * to use it without any locking
3193 */
3194 while (!list_empty(io)) {
3195 cache = list_first_entry(io, struct btrfs_block_group,
3196 io_list);
3197 list_del_init(&cache->io_list);
3198 btrfs_wait_cache_io(trans, cache, path);
3199 btrfs_put_block_group(cache);
3200 }
3201
3202 btrfs_free_path(path);
3203 return ret;
3204 }
3205
3206 static inline bool should_reclaim_block_group(struct btrfs_block_group *bg,
3207 u64 bytes_freed)
3208 {
3209 const struct btrfs_space_info *space_info = bg->space_info;
3210 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
3211 const u64 new_val = bg->used;
3212 const u64 old_val = new_val + bytes_freed;
3213 u64 thresh;
3214
3215 if (reclaim_thresh == 0)
3216 return false;
3217
3218 thresh = div_factor_fine(bg->length, reclaim_thresh);
3219
3220 /*
3221 * If we were below the threshold before don't reclaim, we are likely a
3222 * brand new block group and we don't want to relocate new block groups.
3223 */
3224 if (old_val < thresh)
3225 return false;
3226 if (new_val >= thresh)
3227 return false;
3228 return true;
3229 }
3230
3231 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3232 u64 bytenr, u64 num_bytes, bool alloc)
3233 {
3234 struct btrfs_fs_info *info = trans->fs_info;
3235 struct btrfs_block_group *cache = NULL;
3236 u64 total = num_bytes;
3237 u64 old_val;
3238 u64 byte_in_group;
3239 int factor;
3240 int ret = 0;
3241
3242 /* Block accounting for super block */
3243 spin_lock(&info->delalloc_root_lock);
3244 old_val = btrfs_super_bytes_used(info->super_copy);
3245 if (alloc)
3246 old_val += num_bytes;
3247 else
3248 old_val -= num_bytes;
3249 btrfs_set_super_bytes_used(info->super_copy, old_val);
3250 spin_unlock(&info->delalloc_root_lock);
3251
3252 while (total) {
3253 bool reclaim;
3254
3255 cache = btrfs_lookup_block_group(info, bytenr);
3256 if (!cache) {
3257 ret = -ENOENT;
3258 break;
3259 }
3260 factor = btrfs_bg_type_to_factor(cache->flags);
3261
3262 /*
3263 * If this block group has free space cache written out, we
3264 * need to make sure to load it if we are removing space. This
3265 * is because we need the unpinning stage to actually add the
3266 * space back to the block group, otherwise we will leak space.
3267 */
3268 if (!alloc && !btrfs_block_group_done(cache))
3269 btrfs_cache_block_group(cache, true);
3270
3271 byte_in_group = bytenr - cache->start;
3272 WARN_ON(byte_in_group > cache->length);
3273
3274 spin_lock(&cache->space_info->lock);
3275 spin_lock(&cache->lock);
3276
3277 if (btrfs_test_opt(info, SPACE_CACHE) &&
3278 cache->disk_cache_state < BTRFS_DC_CLEAR)
3279 cache->disk_cache_state = BTRFS_DC_CLEAR;
3280
3281 old_val = cache->used;
3282 num_bytes = min(total, cache->length - byte_in_group);
3283 if (alloc) {
3284 old_val += num_bytes;
3285 cache->used = old_val;
3286 cache->reserved -= num_bytes;
3287 cache->space_info->bytes_reserved -= num_bytes;
3288 cache->space_info->bytes_used += num_bytes;
3289 cache->space_info->disk_used += num_bytes * factor;
3290 spin_unlock(&cache->lock);
3291 spin_unlock(&cache->space_info->lock);
3292 } else {
3293 old_val -= num_bytes;
3294 cache->used = old_val;
3295 cache->pinned += num_bytes;
3296 btrfs_space_info_update_bytes_pinned(info,
3297 cache->space_info, num_bytes);
3298 cache->space_info->bytes_used -= num_bytes;
3299 cache->space_info->disk_used -= num_bytes * factor;
3300
3301 reclaim = should_reclaim_block_group(cache, num_bytes);
3302 spin_unlock(&cache->lock);
3303 spin_unlock(&cache->space_info->lock);
3304
3305 set_extent_dirty(&trans->transaction->pinned_extents,
3306 bytenr, bytenr + num_bytes - 1,
3307 GFP_NOFS | __GFP_NOFAIL);
3308 }
3309
3310 spin_lock(&trans->transaction->dirty_bgs_lock);
3311 if (list_empty(&cache->dirty_list)) {
3312 list_add_tail(&cache->dirty_list,
3313 &trans->transaction->dirty_bgs);
3314 trans->delayed_ref_updates++;
3315 btrfs_get_block_group(cache);
3316 }
3317 spin_unlock(&trans->transaction->dirty_bgs_lock);
3318
3319 /*
3320 * No longer have used bytes in this block group, queue it for
3321 * deletion. We do this after adding the block group to the
3322 * dirty list to avoid races between cleaner kthread and space
3323 * cache writeout.
3324 */
3325 if (!alloc && old_val == 0) {
3326 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3327 btrfs_mark_bg_unused(cache);
3328 } else if (!alloc && reclaim) {
3329 btrfs_mark_bg_to_reclaim(cache);
3330 }
3331
3332 btrfs_put_block_group(cache);
3333 total -= num_bytes;
3334 bytenr += num_bytes;
3335 }
3336
3337 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3338 btrfs_update_delayed_refs_rsv(trans);
3339 return ret;
3340 }
3341
3342 /**
3343 * btrfs_add_reserved_bytes - update the block_group and space info counters
3344 * @cache: The cache we are manipulating
3345 * @ram_bytes: The number of bytes of file content, and will be same to
3346 * @num_bytes except for the compress path.
3347 * @num_bytes: The number of bytes in question
3348 * @delalloc: The blocks are allocated for the delalloc write
3349 *
3350 * This is called by the allocator when it reserves space. If this is a
3351 * reservation and the block group has become read only we cannot make the
3352 * reservation and return -EAGAIN, otherwise this function always succeeds.
3353 */
3354 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3355 u64 ram_bytes, u64 num_bytes, int delalloc)
3356 {
3357 struct btrfs_space_info *space_info = cache->space_info;
3358 int ret = 0;
3359
3360 spin_lock(&space_info->lock);
3361 spin_lock(&cache->lock);
3362 if (cache->ro) {
3363 ret = -EAGAIN;
3364 } else {
3365 cache->reserved += num_bytes;
3366 space_info->bytes_reserved += num_bytes;
3367 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3368 space_info->flags, num_bytes, 1);
3369 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3370 space_info, -ram_bytes);
3371 if (delalloc)
3372 cache->delalloc_bytes += num_bytes;
3373
3374 /*
3375 * Compression can use less space than we reserved, so wake
3376 * tickets if that happens
3377 */
3378 if (num_bytes < ram_bytes)
3379 btrfs_try_granting_tickets(cache->fs_info, space_info);
3380 }
3381 spin_unlock(&cache->lock);
3382 spin_unlock(&space_info->lock);
3383 return ret;
3384 }
3385
3386 /**
3387 * btrfs_free_reserved_bytes - update the block_group and space info counters
3388 * @cache: The cache we are manipulating
3389 * @num_bytes: The number of bytes in question
3390 * @delalloc: The blocks are allocated for the delalloc write
3391 *
3392 * This is called by somebody who is freeing space that was never actually used
3393 * on disk. For example if you reserve some space for a new leaf in transaction
3394 * A and before transaction A commits you free that leaf, you call this with
3395 * reserve set to 0 in order to clear the reservation.
3396 */
3397 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3398 u64 num_bytes, int delalloc)
3399 {
3400 struct btrfs_space_info *space_info = cache->space_info;
3401
3402 spin_lock(&space_info->lock);
3403 spin_lock(&cache->lock);
3404 if (cache->ro)
3405 space_info->bytes_readonly += num_bytes;
3406 cache->reserved -= num_bytes;
3407 space_info->bytes_reserved -= num_bytes;
3408 space_info->max_extent_size = 0;
3409
3410 if (delalloc)
3411 cache->delalloc_bytes -= num_bytes;
3412 spin_unlock(&cache->lock);
3413
3414 btrfs_try_granting_tickets(cache->fs_info, space_info);
3415 spin_unlock(&space_info->lock);
3416 }
3417
3418 static void force_metadata_allocation(struct btrfs_fs_info *info)
3419 {
3420 struct list_head *head = &info->space_info;
3421 struct btrfs_space_info *found;
3422
3423 list_for_each_entry(found, head, list) {
3424 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3425 found->force_alloc = CHUNK_ALLOC_FORCE;
3426 }
3427 }
3428
3429 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3430 struct btrfs_space_info *sinfo, int force)
3431 {
3432 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3433 u64 thresh;
3434
3435 if (force == CHUNK_ALLOC_FORCE)
3436 return 1;
3437
3438 /*
3439 * in limited mode, we want to have some free space up to
3440 * about 1% of the FS size.
3441 */
3442 if (force == CHUNK_ALLOC_LIMITED) {
3443 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3444 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3445
3446 if (sinfo->total_bytes - bytes_used < thresh)
3447 return 1;
3448 }
3449
3450 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3451 return 0;
3452 return 1;
3453 }
3454
3455 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3456 {
3457 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3458
3459 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3460 }
3461
3462 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3463 {
3464 struct btrfs_block_group *bg;
3465 int ret;
3466
3467 /*
3468 * Check if we have enough space in the system space info because we
3469 * will need to update device items in the chunk btree and insert a new
3470 * chunk item in the chunk btree as well. This will allocate a new
3471 * system block group if needed.
3472 */
3473 check_system_chunk(trans, flags);
3474
3475 bg = btrfs_create_chunk(trans, flags);
3476 if (IS_ERR(bg)) {
3477 ret = PTR_ERR(bg);
3478 goto out;
3479 }
3480
3481 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3482 /*
3483 * Normally we are not expected to fail with -ENOSPC here, since we have
3484 * previously reserved space in the system space_info and allocated one
3485 * new system chunk if necessary. However there are three exceptions:
3486 *
3487 * 1) We may have enough free space in the system space_info but all the
3488 * existing system block groups have a profile which can not be used
3489 * for extent allocation.
3490 *
3491 * This happens when mounting in degraded mode. For example we have a
3492 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3493 * using the other device in degraded mode. If we then allocate a chunk,
3494 * we may have enough free space in the existing system space_info, but
3495 * none of the block groups can be used for extent allocation since they
3496 * have a RAID1 profile, and because we are in degraded mode with a
3497 * single device, we are forced to allocate a new system chunk with a
3498 * SINGLE profile. Making check_system_chunk() iterate over all system
3499 * block groups and check if they have a usable profile and enough space
3500 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3501 * try again after forcing allocation of a new system chunk. Like this
3502 * we avoid paying the cost of that search in normal circumstances, when
3503 * we were not mounted in degraded mode;
3504 *
3505 * 2) We had enough free space info the system space_info, and one suitable
3506 * block group to allocate from when we called check_system_chunk()
3507 * above. However right after we called it, the only system block group
3508 * with enough free space got turned into RO mode by a running scrub,
3509 * and in this case we have to allocate a new one and retry. We only
3510 * need do this allocate and retry once, since we have a transaction
3511 * handle and scrub uses the commit root to search for block groups;
3512 *
3513 * 3) We had one system block group with enough free space when we called
3514 * check_system_chunk(), but after that, right before we tried to
3515 * allocate the last extent buffer we needed, a discard operation came
3516 * in and it temporarily removed the last free space entry from the
3517 * block group (discard removes a free space entry, discards it, and
3518 * then adds back the entry to the block group cache).
3519 */
3520 if (ret == -ENOSPC) {
3521 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3522 struct btrfs_block_group *sys_bg;
3523
3524 sys_bg = btrfs_create_chunk(trans, sys_flags);
3525 if (IS_ERR(sys_bg)) {
3526 ret = PTR_ERR(sys_bg);
3527 btrfs_abort_transaction(trans, ret);
3528 goto out;
3529 }
3530
3531 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3532 if (ret) {
3533 btrfs_abort_transaction(trans, ret);
3534 goto out;
3535 }
3536
3537 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3538 if (ret) {
3539 btrfs_abort_transaction(trans, ret);
3540 goto out;
3541 }
3542 } else if (ret) {
3543 btrfs_abort_transaction(trans, ret);
3544 goto out;
3545 }
3546 out:
3547 btrfs_trans_release_chunk_metadata(trans);
3548
3549 if (ret)
3550 return ERR_PTR(ret);
3551
3552 btrfs_get_block_group(bg);
3553 return bg;
3554 }
3555
3556 /*
3557 * Chunk allocation is done in 2 phases:
3558 *
3559 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3560 * the chunk, the chunk mapping, create its block group and add the items
3561 * that belong in the chunk btree to it - more specifically, we need to
3562 * update device items in the chunk btree and add a new chunk item to it.
3563 *
3564 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3565 * group item to the extent btree and the device extent items to the devices
3566 * btree.
3567 *
3568 * This is done to prevent deadlocks. For example when COWing a node from the
3569 * extent btree we are holding a write lock on the node's parent and if we
3570 * trigger chunk allocation and attempted to insert the new block group item
3571 * in the extent btree right way, we could deadlock because the path for the
3572 * insertion can include that parent node. At first glance it seems impossible
3573 * to trigger chunk allocation after starting a transaction since tasks should
3574 * reserve enough transaction units (metadata space), however while that is true
3575 * most of the time, chunk allocation may still be triggered for several reasons:
3576 *
3577 * 1) When reserving metadata, we check if there is enough free space in the
3578 * metadata space_info and therefore don't trigger allocation of a new chunk.
3579 * However later when the task actually tries to COW an extent buffer from
3580 * the extent btree or from the device btree for example, it is forced to
3581 * allocate a new block group (chunk) because the only one that had enough
3582 * free space was just turned to RO mode by a running scrub for example (or
3583 * device replace, block group reclaim thread, etc), so we can not use it
3584 * for allocating an extent and end up being forced to allocate a new one;
3585 *
3586 * 2) Because we only check that the metadata space_info has enough free bytes,
3587 * we end up not allocating a new metadata chunk in that case. However if
3588 * the filesystem was mounted in degraded mode, none of the existing block
3589 * groups might be suitable for extent allocation due to their incompatible
3590 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3591 * use a RAID1 profile, in degraded mode using a single device). In this case
3592 * when the task attempts to COW some extent buffer of the extent btree for
3593 * example, it will trigger allocation of a new metadata block group with a
3594 * suitable profile (SINGLE profile in the example of the degraded mount of
3595 * the RAID1 filesystem);
3596 *
3597 * 3) The task has reserved enough transaction units / metadata space, but when
3598 * it attempts to COW an extent buffer from the extent or device btree for
3599 * example, it does not find any free extent in any metadata block group,
3600 * therefore forced to try to allocate a new metadata block group.
3601 * This is because some other task allocated all available extents in the
3602 * meanwhile - this typically happens with tasks that don't reserve space
3603 * properly, either intentionally or as a bug. One example where this is
3604 * done intentionally is fsync, as it does not reserve any transaction units
3605 * and ends up allocating a variable number of metadata extents for log
3606 * tree extent buffers;
3607 *
3608 * 4) The task has reserved enough transaction units / metadata space, but right
3609 * before it tries to allocate the last extent buffer it needs, a discard
3610 * operation comes in and, temporarily, removes the last free space entry from
3611 * the only metadata block group that had free space (discard starts by
3612 * removing a free space entry from a block group, then does the discard
3613 * operation and, once it's done, it adds back the free space entry to the
3614 * block group).
3615 *
3616 * We also need this 2 phases setup when adding a device to a filesystem with
3617 * a seed device - we must create new metadata and system chunks without adding
3618 * any of the block group items to the chunk, extent and device btrees. If we
3619 * did not do it this way, we would get ENOSPC when attempting to update those
3620 * btrees, since all the chunks from the seed device are read-only.
3621 *
3622 * Phase 1 does the updates and insertions to the chunk btree because if we had
3623 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3624 * parallel, we risk having too many system chunks allocated by many tasks if
3625 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3626 * extreme case this leads to exhaustion of the system chunk array in the
3627 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3628 * and with RAID filesystems (so we have more device items in the chunk btree).
3629 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3630 * the system chunk array due to concurrent allocations") provides more details.
3631 *
3632 * Allocation of system chunks does not happen through this function. A task that
3633 * needs to update the chunk btree (the only btree that uses system chunks), must
3634 * preallocate chunk space by calling either check_system_chunk() or
3635 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3636 * metadata chunk or when removing a chunk, while the later is used before doing
3637 * a modification to the chunk btree - use cases for the later are adding,
3638 * removing and resizing a device as well as relocation of a system chunk.
3639 * See the comment below for more details.
3640 *
3641 * The reservation of system space, done through check_system_chunk(), as well
3642 * as all the updates and insertions into the chunk btree must be done while
3643 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3644 * an extent buffer from the chunks btree we never trigger allocation of a new
3645 * system chunk, which would result in a deadlock (trying to lock twice an
3646 * extent buffer of the chunk btree, first time before triggering the chunk
3647 * allocation and the second time during chunk allocation while attempting to
3648 * update the chunks btree). The system chunk array is also updated while holding
3649 * that mutex. The same logic applies to removing chunks - we must reserve system
3650 * space, update the chunk btree and the system chunk array in the superblock
3651 * while holding fs_info->chunk_mutex.
3652 *
3653 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3654 *
3655 * If @force is CHUNK_ALLOC_FORCE:
3656 * - return 1 if it successfully allocates a chunk,
3657 * - return errors including -ENOSPC otherwise.
3658 * If @force is NOT CHUNK_ALLOC_FORCE:
3659 * - return 0 if it doesn't need to allocate a new chunk,
3660 * - return 1 if it successfully allocates a chunk,
3661 * - return errors including -ENOSPC otherwise.
3662 */
3663 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3664 enum btrfs_chunk_alloc_enum force)
3665 {
3666 struct btrfs_fs_info *fs_info = trans->fs_info;
3667 struct btrfs_space_info *space_info;
3668 struct btrfs_block_group *ret_bg;
3669 bool wait_for_alloc = false;
3670 bool should_alloc = false;
3671 bool from_extent_allocation = false;
3672 int ret = 0;
3673
3674 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3675 from_extent_allocation = true;
3676 force = CHUNK_ALLOC_FORCE;
3677 }
3678
3679 /* Don't re-enter if we're already allocating a chunk */
3680 if (trans->allocating_chunk)
3681 return -ENOSPC;
3682 /*
3683 * Allocation of system chunks can not happen through this path, as we
3684 * could end up in a deadlock if we are allocating a data or metadata
3685 * chunk and there is another task modifying the chunk btree.
3686 *
3687 * This is because while we are holding the chunk mutex, we will attempt
3688 * to add the new chunk item to the chunk btree or update an existing
3689 * device item in the chunk btree, while the other task that is modifying
3690 * the chunk btree is attempting to COW an extent buffer while holding a
3691 * lock on it and on its parent - if the COW operation triggers a system
3692 * chunk allocation, then we can deadlock because we are holding the
3693 * chunk mutex and we may need to access that extent buffer or its parent
3694 * in order to add the chunk item or update a device item.
3695 *
3696 * Tasks that want to modify the chunk tree should reserve system space
3697 * before updating the chunk btree, by calling either
3698 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3699 * It's possible that after a task reserves the space, it still ends up
3700 * here - this happens in the cases described above at do_chunk_alloc().
3701 * The task will have to either retry or fail.
3702 */
3703 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3704 return -ENOSPC;
3705
3706 space_info = btrfs_find_space_info(fs_info, flags);
3707 ASSERT(space_info);
3708
3709 do {
3710 spin_lock(&space_info->lock);
3711 if (force < space_info->force_alloc)
3712 force = space_info->force_alloc;
3713 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3714 if (space_info->full) {
3715 /* No more free physical space */
3716 if (should_alloc)
3717 ret = -ENOSPC;
3718 else
3719 ret = 0;
3720 spin_unlock(&space_info->lock);
3721 return ret;
3722 } else if (!should_alloc) {
3723 spin_unlock(&space_info->lock);
3724 return 0;
3725 } else if (space_info->chunk_alloc) {
3726 /*
3727 * Someone is already allocating, so we need to block
3728 * until this someone is finished and then loop to
3729 * recheck if we should continue with our allocation
3730 * attempt.
3731 */
3732 wait_for_alloc = true;
3733 force = CHUNK_ALLOC_NO_FORCE;
3734 spin_unlock(&space_info->lock);
3735 mutex_lock(&fs_info->chunk_mutex);
3736 mutex_unlock(&fs_info->chunk_mutex);
3737 } else {
3738 /* Proceed with allocation */
3739 space_info->chunk_alloc = 1;
3740 wait_for_alloc = false;
3741 spin_unlock(&space_info->lock);
3742 }
3743
3744 cond_resched();
3745 } while (wait_for_alloc);
3746
3747 mutex_lock(&fs_info->chunk_mutex);
3748 trans->allocating_chunk = true;
3749
3750 /*
3751 * If we have mixed data/metadata chunks we want to make sure we keep
3752 * allocating mixed chunks instead of individual chunks.
3753 */
3754 if (btrfs_mixed_space_info(space_info))
3755 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3756
3757 /*
3758 * if we're doing a data chunk, go ahead and make sure that
3759 * we keep a reasonable number of metadata chunks allocated in the
3760 * FS as well.
3761 */
3762 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3763 fs_info->data_chunk_allocations++;
3764 if (!(fs_info->data_chunk_allocations %
3765 fs_info->metadata_ratio))
3766 force_metadata_allocation(fs_info);
3767 }
3768
3769 ret_bg = do_chunk_alloc(trans, flags);
3770 trans->allocating_chunk = false;
3771
3772 if (IS_ERR(ret_bg)) {
3773 ret = PTR_ERR(ret_bg);
3774 } else if (from_extent_allocation) {
3775 /*
3776 * New block group is likely to be used soon. Try to activate
3777 * it now. Failure is OK for now.
3778 */
3779 btrfs_zone_activate(ret_bg);
3780 }
3781
3782 if (!ret)
3783 btrfs_put_block_group(ret_bg);
3784
3785 spin_lock(&space_info->lock);
3786 if (ret < 0) {
3787 if (ret == -ENOSPC)
3788 space_info->full = 1;
3789 else
3790 goto out;
3791 } else {
3792 ret = 1;
3793 space_info->max_extent_size = 0;
3794 }
3795
3796 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3797 out:
3798 space_info->chunk_alloc = 0;
3799 spin_unlock(&space_info->lock);
3800 mutex_unlock(&fs_info->chunk_mutex);
3801
3802 return ret;
3803 }
3804
3805 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3806 {
3807 u64 num_dev;
3808
3809 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3810 if (!num_dev)
3811 num_dev = fs_info->fs_devices->rw_devices;
3812
3813 return num_dev;
3814 }
3815
3816 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
3817 u64 bytes,
3818 u64 type)
3819 {
3820 struct btrfs_fs_info *fs_info = trans->fs_info;
3821 struct btrfs_space_info *info;
3822 u64 left;
3823 int ret = 0;
3824
3825 /*
3826 * Needed because we can end up allocating a system chunk and for an
3827 * atomic and race free space reservation in the chunk block reserve.
3828 */
3829 lockdep_assert_held(&fs_info->chunk_mutex);
3830
3831 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3832 spin_lock(&info->lock);
3833 left = info->total_bytes - btrfs_space_info_used(info, true);
3834 spin_unlock(&info->lock);
3835
3836 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3837 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3838 left, bytes, type);
3839 btrfs_dump_space_info(fs_info, info, 0, 0);
3840 }
3841
3842 if (left < bytes) {
3843 u64 flags = btrfs_system_alloc_profile(fs_info);
3844 struct btrfs_block_group *bg;
3845
3846 /*
3847 * Ignore failure to create system chunk. We might end up not
3848 * needing it, as we might not need to COW all nodes/leafs from
3849 * the paths we visit in the chunk tree (they were already COWed
3850 * or created in the current transaction for example).
3851 */
3852 bg = btrfs_create_chunk(trans, flags);
3853 if (IS_ERR(bg)) {
3854 ret = PTR_ERR(bg);
3855 } else {
3856 /*
3857 * We have a new chunk. We also need to activate it for
3858 * zoned filesystem.
3859 */
3860 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
3861 if (ret < 0)
3862 return;
3863
3864 /*
3865 * If we fail to add the chunk item here, we end up
3866 * trying again at phase 2 of chunk allocation, at
3867 * btrfs_create_pending_block_groups(). So ignore
3868 * any error here. An ENOSPC here could happen, due to
3869 * the cases described at do_chunk_alloc() - the system
3870 * block group we just created was just turned into RO
3871 * mode by a scrub for example, or a running discard
3872 * temporarily removed its free space entries, etc.
3873 */
3874 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3875 }
3876 }
3877
3878 if (!ret) {
3879 ret = btrfs_block_rsv_add(fs_info,
3880 &fs_info->chunk_block_rsv,
3881 bytes, BTRFS_RESERVE_NO_FLUSH);
3882 if (!ret)
3883 trans->chunk_bytes_reserved += bytes;
3884 }
3885 }
3886
3887 /*
3888 * Reserve space in the system space for allocating or removing a chunk.
3889 * The caller must be holding fs_info->chunk_mutex.
3890 */
3891 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3892 {
3893 struct btrfs_fs_info *fs_info = trans->fs_info;
3894 const u64 num_devs = get_profile_num_devs(fs_info, type);
3895 u64 bytes;
3896
3897 /* num_devs device items to update and 1 chunk item to add or remove. */
3898 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
3899 btrfs_calc_insert_metadata_size(fs_info, 1);
3900
3901 reserve_chunk_space(trans, bytes, type);
3902 }
3903
3904 /*
3905 * Reserve space in the system space, if needed, for doing a modification to the
3906 * chunk btree.
3907 *
3908 * @trans: A transaction handle.
3909 * @is_item_insertion: Indicate if the modification is for inserting a new item
3910 * in the chunk btree or if it's for the deletion or update
3911 * of an existing item.
3912 *
3913 * This is used in a context where we need to update the chunk btree outside
3914 * block group allocation and removal, to avoid a deadlock with a concurrent
3915 * task that is allocating a metadata or data block group and therefore needs to
3916 * update the chunk btree while holding the chunk mutex. After the update to the
3917 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
3918 *
3919 */
3920 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
3921 bool is_item_insertion)
3922 {
3923 struct btrfs_fs_info *fs_info = trans->fs_info;
3924 u64 bytes;
3925
3926 if (is_item_insertion)
3927 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
3928 else
3929 bytes = btrfs_calc_metadata_size(fs_info, 1);
3930
3931 mutex_lock(&fs_info->chunk_mutex);
3932 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
3933 mutex_unlock(&fs_info->chunk_mutex);
3934 }
3935
3936 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3937 {
3938 struct btrfs_block_group *block_group;
3939
3940 block_group = btrfs_lookup_first_block_group(info, 0);
3941 while (block_group) {
3942 btrfs_wait_block_group_cache_done(block_group);
3943 spin_lock(&block_group->lock);
3944 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
3945 &block_group->runtime_flags)) {
3946 struct inode *inode = block_group->inode;
3947
3948 block_group->inode = NULL;
3949 spin_unlock(&block_group->lock);
3950
3951 ASSERT(block_group->io_ctl.inode == NULL);
3952 iput(inode);
3953 } else {
3954 spin_unlock(&block_group->lock);
3955 }
3956 block_group = btrfs_next_block_group(block_group);
3957 }
3958 }
3959
3960 /*
3961 * Must be called only after stopping all workers, since we could have block
3962 * group caching kthreads running, and therefore they could race with us if we
3963 * freed the block groups before stopping them.
3964 */
3965 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3966 {
3967 struct btrfs_block_group *block_group;
3968 struct btrfs_space_info *space_info;
3969 struct btrfs_caching_control *caching_ctl;
3970 struct rb_node *n;
3971
3972 write_lock(&info->block_group_cache_lock);
3973 while (!list_empty(&info->caching_block_groups)) {
3974 caching_ctl = list_entry(info->caching_block_groups.next,
3975 struct btrfs_caching_control, list);
3976 list_del(&caching_ctl->list);
3977 btrfs_put_caching_control(caching_ctl);
3978 }
3979 write_unlock(&info->block_group_cache_lock);
3980
3981 spin_lock(&info->unused_bgs_lock);
3982 while (!list_empty(&info->unused_bgs)) {
3983 block_group = list_first_entry(&info->unused_bgs,
3984 struct btrfs_block_group,
3985 bg_list);
3986 list_del_init(&block_group->bg_list);
3987 btrfs_put_block_group(block_group);
3988 }
3989
3990 while (!list_empty(&info->reclaim_bgs)) {
3991 block_group = list_first_entry(&info->reclaim_bgs,
3992 struct btrfs_block_group,
3993 bg_list);
3994 list_del_init(&block_group->bg_list);
3995 btrfs_put_block_group(block_group);
3996 }
3997 spin_unlock(&info->unused_bgs_lock);
3998
3999 spin_lock(&info->zone_active_bgs_lock);
4000 while (!list_empty(&info->zone_active_bgs)) {
4001 block_group = list_first_entry(&info->zone_active_bgs,
4002 struct btrfs_block_group,
4003 active_bg_list);
4004 list_del_init(&block_group->active_bg_list);
4005 btrfs_put_block_group(block_group);
4006 }
4007 spin_unlock(&info->zone_active_bgs_lock);
4008
4009 write_lock(&info->block_group_cache_lock);
4010 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4011 block_group = rb_entry(n, struct btrfs_block_group,
4012 cache_node);
4013 rb_erase_cached(&block_group->cache_node,
4014 &info->block_group_cache_tree);
4015 RB_CLEAR_NODE(&block_group->cache_node);
4016 write_unlock(&info->block_group_cache_lock);
4017
4018 down_write(&block_group->space_info->groups_sem);
4019 list_del(&block_group->list);
4020 up_write(&block_group->space_info->groups_sem);
4021
4022 /*
4023 * We haven't cached this block group, which means we could
4024 * possibly have excluded extents on this block group.
4025 */
4026 if (block_group->cached == BTRFS_CACHE_NO ||
4027 block_group->cached == BTRFS_CACHE_ERROR)
4028 btrfs_free_excluded_extents(block_group);
4029
4030 btrfs_remove_free_space_cache(block_group);
4031 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4032 ASSERT(list_empty(&block_group->dirty_list));
4033 ASSERT(list_empty(&block_group->io_list));
4034 ASSERT(list_empty(&block_group->bg_list));
4035 ASSERT(refcount_read(&block_group->refs) == 1);
4036 ASSERT(block_group->swap_extents == 0);
4037 btrfs_put_block_group(block_group);
4038
4039 write_lock(&info->block_group_cache_lock);
4040 }
4041 write_unlock(&info->block_group_cache_lock);
4042
4043 btrfs_release_global_block_rsv(info);
4044
4045 while (!list_empty(&info->space_info)) {
4046 space_info = list_entry(info->space_info.next,
4047 struct btrfs_space_info,
4048 list);
4049
4050 /*
4051 * Do not hide this behind enospc_debug, this is actually
4052 * important and indicates a real bug if this happens.
4053 */
4054 if (WARN_ON(space_info->bytes_pinned > 0 ||
4055 space_info->bytes_may_use > 0))
4056 btrfs_dump_space_info(info, space_info, 0, 0);
4057
4058 /*
4059 * If there was a failure to cleanup a log tree, very likely due
4060 * to an IO failure on a writeback attempt of one or more of its
4061 * extent buffers, we could not do proper (and cheap) unaccounting
4062 * of their reserved space, so don't warn on bytes_reserved > 0 in
4063 * that case.
4064 */
4065 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4066 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4067 if (WARN_ON(space_info->bytes_reserved > 0))
4068 btrfs_dump_space_info(info, space_info, 0, 0);
4069 }
4070
4071 WARN_ON(space_info->reclaim_size > 0);
4072 list_del(&space_info->list);
4073 btrfs_sysfs_remove_space_info(space_info);
4074 }
4075 return 0;
4076 }
4077
4078 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4079 {
4080 atomic_inc(&cache->frozen);
4081 }
4082
4083 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4084 {
4085 struct btrfs_fs_info *fs_info = block_group->fs_info;
4086 struct extent_map_tree *em_tree;
4087 struct extent_map *em;
4088 bool cleanup;
4089
4090 spin_lock(&block_group->lock);
4091 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4092 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4093 spin_unlock(&block_group->lock);
4094
4095 if (cleanup) {
4096 em_tree = &fs_info->mapping_tree;
4097 write_lock(&em_tree->lock);
4098 em = lookup_extent_mapping(em_tree, block_group->start,
4099 1);
4100 BUG_ON(!em); /* logic error, can't happen */
4101 remove_extent_mapping(em_tree, em);
4102 write_unlock(&em_tree->lock);
4103
4104 /* once for us and once for the tree */
4105 free_extent_map(em);
4106 free_extent_map(em);
4107
4108 /*
4109 * We may have left one free space entry and other possible
4110 * tasks trimming this block group have left 1 entry each one.
4111 * Free them if any.
4112 */
4113 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
4114 }
4115 }
4116
4117 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4118 {
4119 bool ret = true;
4120
4121 spin_lock(&bg->lock);
4122 if (bg->ro)
4123 ret = false;
4124 else
4125 bg->swap_extents++;
4126 spin_unlock(&bg->lock);
4127
4128 return ret;
4129 }
4130
4131 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4132 {
4133 spin_lock(&bg->lock);
4134 ASSERT(!bg->ro);
4135 ASSERT(bg->swap_extents >= amount);
4136 bg->swap_extents -= amount;
4137 spin_unlock(&bg->lock);
4138 }