]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/block-group.c
btrfs: zoned: fix memory leak after finding block group with super blocks
[thirdparty/linux.git] / fs / btrfs / block-group.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/sizes.h>
4 #include <linux/list_sort.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "block-group.h"
8 #include "space-info.h"
9 #include "disk-io.h"
10 #include "free-space-cache.h"
11 #include "free-space-tree.h"
12 #include "volumes.h"
13 #include "transaction.h"
14 #include "ref-verify.h"
15 #include "sysfs.h"
16 #include "tree-log.h"
17 #include "delalloc-space.h"
18 #include "discard.h"
19 #include "raid56.h"
20 #include "zoned.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24
25 #ifdef CONFIG_BTRFS_DEBUG
26 int btrfs_should_fragment_free_space(struct btrfs_block_group *block_group)
27 {
28 struct btrfs_fs_info *fs_info = block_group->fs_info;
29
30 return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
31 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
32 (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
33 block_group->flags & BTRFS_BLOCK_GROUP_DATA);
34 }
35 #endif
36
37 /*
38 * Return target flags in extended format or 0 if restripe for this chunk_type
39 * is not in progress
40 *
41 * Should be called with balance_lock held
42 */
43 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
44 {
45 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
46 u64 target = 0;
47
48 if (!bctl)
49 return 0;
50
51 if (flags & BTRFS_BLOCK_GROUP_DATA &&
52 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
53 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
54 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
55 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
56 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
57 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
58 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
59 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
60 }
61
62 return target;
63 }
64
65 /*
66 * @flags: available profiles in extended format (see ctree.h)
67 *
68 * Return reduced profile in chunk format. If profile changing is in progress
69 * (either running or paused) picks the target profile (if it's already
70 * available), otherwise falls back to plain reducing.
71 */
72 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
73 {
74 u64 num_devices = fs_info->fs_devices->rw_devices;
75 u64 target;
76 u64 raid_type;
77 u64 allowed = 0;
78
79 /*
80 * See if restripe for this chunk_type is in progress, if so try to
81 * reduce to the target profile
82 */
83 spin_lock(&fs_info->balance_lock);
84 target = get_restripe_target(fs_info, flags);
85 if (target) {
86 spin_unlock(&fs_info->balance_lock);
87 return extended_to_chunk(target);
88 }
89 spin_unlock(&fs_info->balance_lock);
90
91 /* First, mask out the RAID levels which aren't possible */
92 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
93 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
94 allowed |= btrfs_raid_array[raid_type].bg_flag;
95 }
96 allowed &= flags;
97
98 /* Select the highest-redundancy RAID level. */
99 if (allowed & BTRFS_BLOCK_GROUP_RAID1C4)
100 allowed = BTRFS_BLOCK_GROUP_RAID1C4;
101 else if (allowed & BTRFS_BLOCK_GROUP_RAID6)
102 allowed = BTRFS_BLOCK_GROUP_RAID6;
103 else if (allowed & BTRFS_BLOCK_GROUP_RAID1C3)
104 allowed = BTRFS_BLOCK_GROUP_RAID1C3;
105 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
106 allowed = BTRFS_BLOCK_GROUP_RAID5;
107 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
108 allowed = BTRFS_BLOCK_GROUP_RAID10;
109 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
110 allowed = BTRFS_BLOCK_GROUP_RAID1;
111 else if (allowed & BTRFS_BLOCK_GROUP_DUP)
112 allowed = BTRFS_BLOCK_GROUP_DUP;
113 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
114 allowed = BTRFS_BLOCK_GROUP_RAID0;
115
116 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
117
118 return extended_to_chunk(flags | allowed);
119 }
120
121 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
122 {
123 unsigned seq;
124 u64 flags;
125
126 do {
127 flags = orig_flags;
128 seq = read_seqbegin(&fs_info->profiles_lock);
129
130 if (flags & BTRFS_BLOCK_GROUP_DATA)
131 flags |= fs_info->avail_data_alloc_bits;
132 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
133 flags |= fs_info->avail_system_alloc_bits;
134 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
135 flags |= fs_info->avail_metadata_alloc_bits;
136 } while (read_seqretry(&fs_info->profiles_lock, seq));
137
138 return btrfs_reduce_alloc_profile(fs_info, flags);
139 }
140
141 void btrfs_get_block_group(struct btrfs_block_group *cache)
142 {
143 refcount_inc(&cache->refs);
144 }
145
146 void btrfs_put_block_group(struct btrfs_block_group *cache)
147 {
148 if (refcount_dec_and_test(&cache->refs)) {
149 WARN_ON(cache->pinned > 0);
150 /*
151 * If there was a failure to cleanup a log tree, very likely due
152 * to an IO failure on a writeback attempt of one or more of its
153 * extent buffers, we could not do proper (and cheap) unaccounting
154 * of their reserved space, so don't warn on reserved > 0 in that
155 * case.
156 */
157 if (!(cache->flags & BTRFS_BLOCK_GROUP_METADATA) ||
158 !BTRFS_FS_LOG_CLEANUP_ERROR(cache->fs_info))
159 WARN_ON(cache->reserved > 0);
160
161 /*
162 * A block_group shouldn't be on the discard_list anymore.
163 * Remove the block_group from the discard_list to prevent us
164 * from causing a panic due to NULL pointer dereference.
165 */
166 if (WARN_ON(!list_empty(&cache->discard_list)))
167 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
168 cache);
169
170 kfree(cache->free_space_ctl);
171 kfree(cache->physical_map);
172 kfree(cache);
173 }
174 }
175
176 /*
177 * This adds the block group to the fs_info rb tree for the block group cache
178 */
179 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
180 struct btrfs_block_group *block_group)
181 {
182 struct rb_node **p;
183 struct rb_node *parent = NULL;
184 struct btrfs_block_group *cache;
185 bool leftmost = true;
186
187 ASSERT(block_group->length != 0);
188
189 write_lock(&info->block_group_cache_lock);
190 p = &info->block_group_cache_tree.rb_root.rb_node;
191
192 while (*p) {
193 parent = *p;
194 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
195 if (block_group->start < cache->start) {
196 p = &(*p)->rb_left;
197 } else if (block_group->start > cache->start) {
198 p = &(*p)->rb_right;
199 leftmost = false;
200 } else {
201 write_unlock(&info->block_group_cache_lock);
202 return -EEXIST;
203 }
204 }
205
206 rb_link_node(&block_group->cache_node, parent, p);
207 rb_insert_color_cached(&block_group->cache_node,
208 &info->block_group_cache_tree, leftmost);
209
210 write_unlock(&info->block_group_cache_lock);
211
212 return 0;
213 }
214
215 /*
216 * This will return the block group at or after bytenr if contains is 0, else
217 * it will return the block group that contains the bytenr
218 */
219 static struct btrfs_block_group *block_group_cache_tree_search(
220 struct btrfs_fs_info *info, u64 bytenr, int contains)
221 {
222 struct btrfs_block_group *cache, *ret = NULL;
223 struct rb_node *n;
224 u64 end, start;
225
226 read_lock(&info->block_group_cache_lock);
227 n = info->block_group_cache_tree.rb_root.rb_node;
228
229 while (n) {
230 cache = rb_entry(n, struct btrfs_block_group, cache_node);
231 end = cache->start + cache->length - 1;
232 start = cache->start;
233
234 if (bytenr < start) {
235 if (!contains && (!ret || start < ret->start))
236 ret = cache;
237 n = n->rb_left;
238 } else if (bytenr > start) {
239 if (contains && bytenr <= end) {
240 ret = cache;
241 break;
242 }
243 n = n->rb_right;
244 } else {
245 ret = cache;
246 break;
247 }
248 }
249 if (ret)
250 btrfs_get_block_group(ret);
251 read_unlock(&info->block_group_cache_lock);
252
253 return ret;
254 }
255
256 /*
257 * Return the block group that starts at or after bytenr
258 */
259 struct btrfs_block_group *btrfs_lookup_first_block_group(
260 struct btrfs_fs_info *info, u64 bytenr)
261 {
262 return block_group_cache_tree_search(info, bytenr, 0);
263 }
264
265 /*
266 * Return the block group that contains the given bytenr
267 */
268 struct btrfs_block_group *btrfs_lookup_block_group(
269 struct btrfs_fs_info *info, u64 bytenr)
270 {
271 return block_group_cache_tree_search(info, bytenr, 1);
272 }
273
274 struct btrfs_block_group *btrfs_next_block_group(
275 struct btrfs_block_group *cache)
276 {
277 struct btrfs_fs_info *fs_info = cache->fs_info;
278 struct rb_node *node;
279
280 read_lock(&fs_info->block_group_cache_lock);
281
282 /* If our block group was removed, we need a full search. */
283 if (RB_EMPTY_NODE(&cache->cache_node)) {
284 const u64 next_bytenr = cache->start + cache->length;
285
286 read_unlock(&fs_info->block_group_cache_lock);
287 btrfs_put_block_group(cache);
288 return btrfs_lookup_first_block_group(fs_info, next_bytenr);
289 }
290 node = rb_next(&cache->cache_node);
291 btrfs_put_block_group(cache);
292 if (node) {
293 cache = rb_entry(node, struct btrfs_block_group, cache_node);
294 btrfs_get_block_group(cache);
295 } else
296 cache = NULL;
297 read_unlock(&fs_info->block_group_cache_lock);
298 return cache;
299 }
300
301 /*
302 * Check if we can do a NOCOW write for a given extent.
303 *
304 * @fs_info: The filesystem information object.
305 * @bytenr: Logical start address of the extent.
306 *
307 * Check if we can do a NOCOW write for the given extent, and increments the
308 * number of NOCOW writers in the block group that contains the extent, as long
309 * as the block group exists and it's currently not in read-only mode.
310 *
311 * Returns: A non-NULL block group pointer if we can do a NOCOW write, the caller
312 * is responsible for calling btrfs_dec_nocow_writers() later.
313 *
314 * Or NULL if we can not do a NOCOW write
315 */
316 struct btrfs_block_group *btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info,
317 u64 bytenr)
318 {
319 struct btrfs_block_group *bg;
320 bool can_nocow = true;
321
322 bg = btrfs_lookup_block_group(fs_info, bytenr);
323 if (!bg)
324 return NULL;
325
326 spin_lock(&bg->lock);
327 if (bg->ro)
328 can_nocow = false;
329 else
330 atomic_inc(&bg->nocow_writers);
331 spin_unlock(&bg->lock);
332
333 if (!can_nocow) {
334 btrfs_put_block_group(bg);
335 return NULL;
336 }
337
338 /* No put on block group, done by btrfs_dec_nocow_writers(). */
339 return bg;
340 }
341
342 /*
343 * Decrement the number of NOCOW writers in a block group.
344 *
345 * This is meant to be called after a previous call to btrfs_inc_nocow_writers(),
346 * and on the block group returned by that call. Typically this is called after
347 * creating an ordered extent for a NOCOW write, to prevent races with scrub and
348 * relocation.
349 *
350 * After this call, the caller should not use the block group anymore. It it wants
351 * to use it, then it should get a reference on it before calling this function.
352 */
353 void btrfs_dec_nocow_writers(struct btrfs_block_group *bg)
354 {
355 if (atomic_dec_and_test(&bg->nocow_writers))
356 wake_up_var(&bg->nocow_writers);
357
358 /* For the lookup done by a previous call to btrfs_inc_nocow_writers(). */
359 btrfs_put_block_group(bg);
360 }
361
362 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
363 {
364 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
365 }
366
367 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
368 const u64 start)
369 {
370 struct btrfs_block_group *bg;
371
372 bg = btrfs_lookup_block_group(fs_info, start);
373 ASSERT(bg);
374 if (atomic_dec_and_test(&bg->reservations))
375 wake_up_var(&bg->reservations);
376 btrfs_put_block_group(bg);
377 }
378
379 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
380 {
381 struct btrfs_space_info *space_info = bg->space_info;
382
383 ASSERT(bg->ro);
384
385 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
386 return;
387
388 /*
389 * Our block group is read only but before we set it to read only,
390 * some task might have had allocated an extent from it already, but it
391 * has not yet created a respective ordered extent (and added it to a
392 * root's list of ordered extents).
393 * Therefore wait for any task currently allocating extents, since the
394 * block group's reservations counter is incremented while a read lock
395 * on the groups' semaphore is held and decremented after releasing
396 * the read access on that semaphore and creating the ordered extent.
397 */
398 down_write(&space_info->groups_sem);
399 up_write(&space_info->groups_sem);
400
401 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
402 }
403
404 struct btrfs_caching_control *btrfs_get_caching_control(
405 struct btrfs_block_group *cache)
406 {
407 struct btrfs_caching_control *ctl;
408
409 spin_lock(&cache->lock);
410 if (!cache->caching_ctl) {
411 spin_unlock(&cache->lock);
412 return NULL;
413 }
414
415 ctl = cache->caching_ctl;
416 refcount_inc(&ctl->count);
417 spin_unlock(&cache->lock);
418 return ctl;
419 }
420
421 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
422 {
423 if (refcount_dec_and_test(&ctl->count))
424 kfree(ctl);
425 }
426
427 /*
428 * When we wait for progress in the block group caching, its because our
429 * allocation attempt failed at least once. So, we must sleep and let some
430 * progress happen before we try again.
431 *
432 * This function will sleep at least once waiting for new free space to show
433 * up, and then it will check the block group free space numbers for our min
434 * num_bytes. Another option is to have it go ahead and look in the rbtree for
435 * a free extent of a given size, but this is a good start.
436 *
437 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
438 * any of the information in this block group.
439 */
440 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
441 u64 num_bytes)
442 {
443 struct btrfs_caching_control *caching_ctl;
444
445 caching_ctl = btrfs_get_caching_control(cache);
446 if (!caching_ctl)
447 return;
448
449 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
450 (cache->free_space_ctl->free_space >= num_bytes));
451
452 btrfs_put_caching_control(caching_ctl);
453 }
454
455 static int btrfs_caching_ctl_wait_done(struct btrfs_block_group *cache,
456 struct btrfs_caching_control *caching_ctl)
457 {
458 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
459 return cache->cached == BTRFS_CACHE_ERROR ? -EIO : 0;
460 }
461
462 static int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
463 {
464 struct btrfs_caching_control *caching_ctl;
465 int ret;
466
467 caching_ctl = btrfs_get_caching_control(cache);
468 if (!caching_ctl)
469 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
470 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
471 btrfs_put_caching_control(caching_ctl);
472 return ret;
473 }
474
475 #ifdef CONFIG_BTRFS_DEBUG
476 static void fragment_free_space(struct btrfs_block_group *block_group)
477 {
478 struct btrfs_fs_info *fs_info = block_group->fs_info;
479 u64 start = block_group->start;
480 u64 len = block_group->length;
481 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
482 fs_info->nodesize : fs_info->sectorsize;
483 u64 step = chunk << 1;
484
485 while (len > chunk) {
486 btrfs_remove_free_space(block_group, start, chunk);
487 start += step;
488 if (len < step)
489 len = 0;
490 else
491 len -= step;
492 }
493 }
494 #endif
495
496 /*
497 * This is only called by btrfs_cache_block_group, since we could have freed
498 * extents we need to check the pinned_extents for any extents that can't be
499 * used yet since their free space will be released as soon as the transaction
500 * commits.
501 */
502 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
503 {
504 struct btrfs_fs_info *info = block_group->fs_info;
505 u64 extent_start, extent_end, size, total_added = 0;
506 int ret;
507
508 while (start < end) {
509 ret = find_first_extent_bit(&info->excluded_extents, start,
510 &extent_start, &extent_end,
511 EXTENT_DIRTY | EXTENT_UPTODATE,
512 NULL);
513 if (ret)
514 break;
515
516 if (extent_start <= start) {
517 start = extent_end + 1;
518 } else if (extent_start > start && extent_start < end) {
519 size = extent_start - start;
520 total_added += size;
521 ret = btrfs_add_free_space_async_trimmed(block_group,
522 start, size);
523 BUG_ON(ret); /* -ENOMEM or logic error */
524 start = extent_end + 1;
525 } else {
526 break;
527 }
528 }
529
530 if (start < end) {
531 size = end - start;
532 total_added += size;
533 ret = btrfs_add_free_space_async_trimmed(block_group, start,
534 size);
535 BUG_ON(ret); /* -ENOMEM or logic error */
536 }
537
538 return total_added;
539 }
540
541 /*
542 * Get an arbitrary extent item index / max_index through the block group
543 *
544 * @block_group the block group to sample from
545 * @index: the integral step through the block group to grab from
546 * @max_index: the granularity of the sampling
547 * @key: return value parameter for the item we find
548 *
549 * Pre-conditions on indices:
550 * 0 <= index <= max_index
551 * 0 < max_index
552 *
553 * Returns: 0 on success, 1 if the search didn't yield a useful item, negative
554 * error code on error.
555 */
556 static int sample_block_group_extent_item(struct btrfs_caching_control *caching_ctl,
557 struct btrfs_block_group *block_group,
558 int index, int max_index,
559 struct btrfs_key *found_key)
560 {
561 struct btrfs_fs_info *fs_info = block_group->fs_info;
562 struct btrfs_root *extent_root;
563 u64 search_offset;
564 u64 search_end = block_group->start + block_group->length;
565 struct btrfs_path *path;
566 struct btrfs_key search_key;
567 int ret = 0;
568
569 ASSERT(index >= 0);
570 ASSERT(index <= max_index);
571 ASSERT(max_index > 0);
572 lockdep_assert_held(&caching_ctl->mutex);
573 lockdep_assert_held_read(&fs_info->commit_root_sem);
574
575 path = btrfs_alloc_path();
576 if (!path)
577 return -ENOMEM;
578
579 extent_root = btrfs_extent_root(fs_info, max_t(u64, block_group->start,
580 BTRFS_SUPER_INFO_OFFSET));
581
582 path->skip_locking = 1;
583 path->search_commit_root = 1;
584 path->reada = READA_FORWARD;
585
586 search_offset = index * div_u64(block_group->length, max_index);
587 search_key.objectid = block_group->start + search_offset;
588 search_key.type = BTRFS_EXTENT_ITEM_KEY;
589 search_key.offset = 0;
590
591 btrfs_for_each_slot(extent_root, &search_key, found_key, path, ret) {
592 /* Success; sampled an extent item in the block group */
593 if (found_key->type == BTRFS_EXTENT_ITEM_KEY &&
594 found_key->objectid >= block_group->start &&
595 found_key->objectid + found_key->offset <= search_end)
596 break;
597
598 /* We can't possibly find a valid extent item anymore */
599 if (found_key->objectid >= search_end) {
600 ret = 1;
601 break;
602 }
603 }
604
605 lockdep_assert_held(&caching_ctl->mutex);
606 lockdep_assert_held_read(&fs_info->commit_root_sem);
607 btrfs_free_path(path);
608 return ret;
609 }
610
611 /*
612 * Best effort attempt to compute a block group's size class while caching it.
613 *
614 * @block_group: the block group we are caching
615 *
616 * We cannot infer the size class while adding free space extents, because that
617 * logic doesn't care about contiguous file extents (it doesn't differentiate
618 * between a 100M extent and 100 contiguous 1M extents). So we need to read the
619 * file extent items. Reading all of them is quite wasteful, because usually
620 * only a handful are enough to give a good answer. Therefore, we just grab 5 of
621 * them at even steps through the block group and pick the smallest size class
622 * we see. Since size class is best effort, and not guaranteed in general,
623 * inaccuracy is acceptable.
624 *
625 * To be more explicit about why this algorithm makes sense:
626 *
627 * If we are caching in a block group from disk, then there are three major cases
628 * to consider:
629 * 1. the block group is well behaved and all extents in it are the same size
630 * class.
631 * 2. the block group is mostly one size class with rare exceptions for last
632 * ditch allocations
633 * 3. the block group was populated before size classes and can have a totally
634 * arbitrary mix of size classes.
635 *
636 * In case 1, looking at any extent in the block group will yield the correct
637 * result. For the mixed cases, taking the minimum size class seems like a good
638 * approximation, since gaps from frees will be usable to the size class. For
639 * 2., a small handful of file extents is likely to yield the right answer. For
640 * 3, we can either read every file extent, or admit that this is best effort
641 * anyway and try to stay fast.
642 *
643 * Returns: 0 on success, negative error code on error.
644 */
645 static int load_block_group_size_class(struct btrfs_caching_control *caching_ctl,
646 struct btrfs_block_group *block_group)
647 {
648 struct btrfs_fs_info *fs_info = block_group->fs_info;
649 struct btrfs_key key;
650 int i;
651 u64 min_size = block_group->length;
652 enum btrfs_block_group_size_class size_class = BTRFS_BG_SZ_NONE;
653 int ret;
654
655 if (!btrfs_block_group_should_use_size_class(block_group))
656 return 0;
657
658 lockdep_assert_held(&caching_ctl->mutex);
659 lockdep_assert_held_read(&fs_info->commit_root_sem);
660 for (i = 0; i < 5; ++i) {
661 ret = sample_block_group_extent_item(caching_ctl, block_group, i, 5, &key);
662 if (ret < 0)
663 goto out;
664 if (ret > 0)
665 continue;
666 min_size = min_t(u64, min_size, key.offset);
667 size_class = btrfs_calc_block_group_size_class(min_size);
668 }
669 if (size_class != BTRFS_BG_SZ_NONE) {
670 spin_lock(&block_group->lock);
671 block_group->size_class = size_class;
672 spin_unlock(&block_group->lock);
673 }
674 out:
675 return ret;
676 }
677
678 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
679 {
680 struct btrfs_block_group *block_group = caching_ctl->block_group;
681 struct btrfs_fs_info *fs_info = block_group->fs_info;
682 struct btrfs_root *extent_root;
683 struct btrfs_path *path;
684 struct extent_buffer *leaf;
685 struct btrfs_key key;
686 u64 total_found = 0;
687 u64 last = 0;
688 u32 nritems;
689 int ret;
690 bool wakeup = true;
691
692 path = btrfs_alloc_path();
693 if (!path)
694 return -ENOMEM;
695
696 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
697 extent_root = btrfs_extent_root(fs_info, last);
698
699 #ifdef CONFIG_BTRFS_DEBUG
700 /*
701 * If we're fragmenting we don't want to make anybody think we can
702 * allocate from this block group until we've had a chance to fragment
703 * the free space.
704 */
705 if (btrfs_should_fragment_free_space(block_group))
706 wakeup = false;
707 #endif
708 /*
709 * We don't want to deadlock with somebody trying to allocate a new
710 * extent for the extent root while also trying to search the extent
711 * root to add free space. So we skip locking and search the commit
712 * root, since its read-only
713 */
714 path->skip_locking = 1;
715 path->search_commit_root = 1;
716 path->reada = READA_FORWARD;
717
718 key.objectid = last;
719 key.offset = 0;
720 key.type = BTRFS_EXTENT_ITEM_KEY;
721
722 next:
723 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
724 if (ret < 0)
725 goto out;
726
727 leaf = path->nodes[0];
728 nritems = btrfs_header_nritems(leaf);
729
730 while (1) {
731 if (btrfs_fs_closing(fs_info) > 1) {
732 last = (u64)-1;
733 break;
734 }
735
736 if (path->slots[0] < nritems) {
737 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
738 } else {
739 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
740 if (ret)
741 break;
742
743 if (need_resched() ||
744 rwsem_is_contended(&fs_info->commit_root_sem)) {
745 btrfs_release_path(path);
746 up_read(&fs_info->commit_root_sem);
747 mutex_unlock(&caching_ctl->mutex);
748 cond_resched();
749 mutex_lock(&caching_ctl->mutex);
750 down_read(&fs_info->commit_root_sem);
751 goto next;
752 }
753
754 ret = btrfs_next_leaf(extent_root, path);
755 if (ret < 0)
756 goto out;
757 if (ret)
758 break;
759 leaf = path->nodes[0];
760 nritems = btrfs_header_nritems(leaf);
761 continue;
762 }
763
764 if (key.objectid < last) {
765 key.objectid = last;
766 key.offset = 0;
767 key.type = BTRFS_EXTENT_ITEM_KEY;
768 btrfs_release_path(path);
769 goto next;
770 }
771
772 if (key.objectid < block_group->start) {
773 path->slots[0]++;
774 continue;
775 }
776
777 if (key.objectid >= block_group->start + block_group->length)
778 break;
779
780 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
781 key.type == BTRFS_METADATA_ITEM_KEY) {
782 total_found += add_new_free_space(block_group, last,
783 key.objectid);
784 if (key.type == BTRFS_METADATA_ITEM_KEY)
785 last = key.objectid +
786 fs_info->nodesize;
787 else
788 last = key.objectid + key.offset;
789
790 if (total_found > CACHING_CTL_WAKE_UP) {
791 total_found = 0;
792 if (wakeup)
793 wake_up(&caching_ctl->wait);
794 }
795 }
796 path->slots[0]++;
797 }
798 ret = 0;
799
800 total_found += add_new_free_space(block_group, last,
801 block_group->start + block_group->length);
802
803 out:
804 btrfs_free_path(path);
805 return ret;
806 }
807
808 static noinline void caching_thread(struct btrfs_work *work)
809 {
810 struct btrfs_block_group *block_group;
811 struct btrfs_fs_info *fs_info;
812 struct btrfs_caching_control *caching_ctl;
813 int ret;
814
815 caching_ctl = container_of(work, struct btrfs_caching_control, work);
816 block_group = caching_ctl->block_group;
817 fs_info = block_group->fs_info;
818
819 mutex_lock(&caching_ctl->mutex);
820 down_read(&fs_info->commit_root_sem);
821
822 load_block_group_size_class(caching_ctl, block_group);
823 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
824 ret = load_free_space_cache(block_group);
825 if (ret == 1) {
826 ret = 0;
827 goto done;
828 }
829
830 /*
831 * We failed to load the space cache, set ourselves to
832 * CACHE_STARTED and carry on.
833 */
834 spin_lock(&block_group->lock);
835 block_group->cached = BTRFS_CACHE_STARTED;
836 spin_unlock(&block_group->lock);
837 wake_up(&caching_ctl->wait);
838 }
839
840 /*
841 * If we are in the transaction that populated the free space tree we
842 * can't actually cache from the free space tree as our commit root and
843 * real root are the same, so we could change the contents of the blocks
844 * while caching. Instead do the slow caching in this case, and after
845 * the transaction has committed we will be safe.
846 */
847 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
848 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
849 ret = load_free_space_tree(caching_ctl);
850 else
851 ret = load_extent_tree_free(caching_ctl);
852 done:
853 spin_lock(&block_group->lock);
854 block_group->caching_ctl = NULL;
855 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
856 spin_unlock(&block_group->lock);
857
858 #ifdef CONFIG_BTRFS_DEBUG
859 if (btrfs_should_fragment_free_space(block_group)) {
860 u64 bytes_used;
861
862 spin_lock(&block_group->space_info->lock);
863 spin_lock(&block_group->lock);
864 bytes_used = block_group->length - block_group->used;
865 block_group->space_info->bytes_used += bytes_used >> 1;
866 spin_unlock(&block_group->lock);
867 spin_unlock(&block_group->space_info->lock);
868 fragment_free_space(block_group);
869 }
870 #endif
871
872 up_read(&fs_info->commit_root_sem);
873 btrfs_free_excluded_extents(block_group);
874 mutex_unlock(&caching_ctl->mutex);
875
876 wake_up(&caching_ctl->wait);
877
878 btrfs_put_caching_control(caching_ctl);
879 btrfs_put_block_group(block_group);
880 }
881
882 int btrfs_cache_block_group(struct btrfs_block_group *cache, bool wait)
883 {
884 struct btrfs_fs_info *fs_info = cache->fs_info;
885 struct btrfs_caching_control *caching_ctl = NULL;
886 int ret = 0;
887
888 /* Allocator for zoned filesystems does not use the cache at all */
889 if (btrfs_is_zoned(fs_info))
890 return 0;
891
892 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
893 if (!caching_ctl)
894 return -ENOMEM;
895
896 INIT_LIST_HEAD(&caching_ctl->list);
897 mutex_init(&caching_ctl->mutex);
898 init_waitqueue_head(&caching_ctl->wait);
899 caching_ctl->block_group = cache;
900 refcount_set(&caching_ctl->count, 2);
901 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
902
903 spin_lock(&cache->lock);
904 if (cache->cached != BTRFS_CACHE_NO) {
905 kfree(caching_ctl);
906
907 caching_ctl = cache->caching_ctl;
908 if (caching_ctl)
909 refcount_inc(&caching_ctl->count);
910 spin_unlock(&cache->lock);
911 goto out;
912 }
913 WARN_ON(cache->caching_ctl);
914 cache->caching_ctl = caching_ctl;
915 cache->cached = BTRFS_CACHE_STARTED;
916 spin_unlock(&cache->lock);
917
918 write_lock(&fs_info->block_group_cache_lock);
919 refcount_inc(&caching_ctl->count);
920 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
921 write_unlock(&fs_info->block_group_cache_lock);
922
923 btrfs_get_block_group(cache);
924
925 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
926 out:
927 if (wait && caching_ctl)
928 ret = btrfs_caching_ctl_wait_done(cache, caching_ctl);
929 if (caching_ctl)
930 btrfs_put_caching_control(caching_ctl);
931
932 return ret;
933 }
934
935 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
936 {
937 u64 extra_flags = chunk_to_extended(flags) &
938 BTRFS_EXTENDED_PROFILE_MASK;
939
940 write_seqlock(&fs_info->profiles_lock);
941 if (flags & BTRFS_BLOCK_GROUP_DATA)
942 fs_info->avail_data_alloc_bits &= ~extra_flags;
943 if (flags & BTRFS_BLOCK_GROUP_METADATA)
944 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
945 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
946 fs_info->avail_system_alloc_bits &= ~extra_flags;
947 write_sequnlock(&fs_info->profiles_lock);
948 }
949
950 /*
951 * Clear incompat bits for the following feature(s):
952 *
953 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
954 * in the whole filesystem
955 *
956 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
957 */
958 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
959 {
960 bool found_raid56 = false;
961 bool found_raid1c34 = false;
962
963 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
964 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
965 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
966 struct list_head *head = &fs_info->space_info;
967 struct btrfs_space_info *sinfo;
968
969 list_for_each_entry_rcu(sinfo, head, list) {
970 down_read(&sinfo->groups_sem);
971 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
972 found_raid56 = true;
973 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
974 found_raid56 = true;
975 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
976 found_raid1c34 = true;
977 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
978 found_raid1c34 = true;
979 up_read(&sinfo->groups_sem);
980 }
981 if (!found_raid56)
982 btrfs_clear_fs_incompat(fs_info, RAID56);
983 if (!found_raid1c34)
984 btrfs_clear_fs_incompat(fs_info, RAID1C34);
985 }
986 }
987
988 static int remove_block_group_item(struct btrfs_trans_handle *trans,
989 struct btrfs_path *path,
990 struct btrfs_block_group *block_group)
991 {
992 struct btrfs_fs_info *fs_info = trans->fs_info;
993 struct btrfs_root *root;
994 struct btrfs_key key;
995 int ret;
996
997 root = btrfs_block_group_root(fs_info);
998 key.objectid = block_group->start;
999 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1000 key.offset = block_group->length;
1001
1002 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1003 if (ret > 0)
1004 ret = -ENOENT;
1005 if (ret < 0)
1006 return ret;
1007
1008 ret = btrfs_del_item(trans, root, path);
1009 return ret;
1010 }
1011
1012 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
1013 u64 group_start, struct extent_map *em)
1014 {
1015 struct btrfs_fs_info *fs_info = trans->fs_info;
1016 struct btrfs_path *path;
1017 struct btrfs_block_group *block_group;
1018 struct btrfs_free_cluster *cluster;
1019 struct inode *inode;
1020 struct kobject *kobj = NULL;
1021 int ret;
1022 int index;
1023 int factor;
1024 struct btrfs_caching_control *caching_ctl = NULL;
1025 bool remove_em;
1026 bool remove_rsv = false;
1027
1028 block_group = btrfs_lookup_block_group(fs_info, group_start);
1029 BUG_ON(!block_group);
1030 BUG_ON(!block_group->ro);
1031
1032 trace_btrfs_remove_block_group(block_group);
1033 /*
1034 * Free the reserved super bytes from this block group before
1035 * remove it.
1036 */
1037 btrfs_free_excluded_extents(block_group);
1038 btrfs_free_ref_tree_range(fs_info, block_group->start,
1039 block_group->length);
1040
1041 index = btrfs_bg_flags_to_raid_index(block_group->flags);
1042 factor = btrfs_bg_type_to_factor(block_group->flags);
1043
1044 /* make sure this block group isn't part of an allocation cluster */
1045 cluster = &fs_info->data_alloc_cluster;
1046 spin_lock(&cluster->refill_lock);
1047 btrfs_return_cluster_to_free_space(block_group, cluster);
1048 spin_unlock(&cluster->refill_lock);
1049
1050 /*
1051 * make sure this block group isn't part of a metadata
1052 * allocation cluster
1053 */
1054 cluster = &fs_info->meta_alloc_cluster;
1055 spin_lock(&cluster->refill_lock);
1056 btrfs_return_cluster_to_free_space(block_group, cluster);
1057 spin_unlock(&cluster->refill_lock);
1058
1059 btrfs_clear_treelog_bg(block_group);
1060 btrfs_clear_data_reloc_bg(block_group);
1061
1062 path = btrfs_alloc_path();
1063 if (!path) {
1064 ret = -ENOMEM;
1065 goto out;
1066 }
1067
1068 /*
1069 * get the inode first so any iput calls done for the io_list
1070 * aren't the final iput (no unlinks allowed now)
1071 */
1072 inode = lookup_free_space_inode(block_group, path);
1073
1074 mutex_lock(&trans->transaction->cache_write_mutex);
1075 /*
1076 * Make sure our free space cache IO is done before removing the
1077 * free space inode
1078 */
1079 spin_lock(&trans->transaction->dirty_bgs_lock);
1080 if (!list_empty(&block_group->io_list)) {
1081 list_del_init(&block_group->io_list);
1082
1083 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
1084
1085 spin_unlock(&trans->transaction->dirty_bgs_lock);
1086 btrfs_wait_cache_io(trans, block_group, path);
1087 btrfs_put_block_group(block_group);
1088 spin_lock(&trans->transaction->dirty_bgs_lock);
1089 }
1090
1091 if (!list_empty(&block_group->dirty_list)) {
1092 list_del_init(&block_group->dirty_list);
1093 remove_rsv = true;
1094 btrfs_put_block_group(block_group);
1095 }
1096 spin_unlock(&trans->transaction->dirty_bgs_lock);
1097 mutex_unlock(&trans->transaction->cache_write_mutex);
1098
1099 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
1100 if (ret)
1101 goto out;
1102
1103 write_lock(&fs_info->block_group_cache_lock);
1104 rb_erase_cached(&block_group->cache_node,
1105 &fs_info->block_group_cache_tree);
1106 RB_CLEAR_NODE(&block_group->cache_node);
1107
1108 /* Once for the block groups rbtree */
1109 btrfs_put_block_group(block_group);
1110
1111 write_unlock(&fs_info->block_group_cache_lock);
1112
1113 down_write(&block_group->space_info->groups_sem);
1114 /*
1115 * we must use list_del_init so people can check to see if they
1116 * are still on the list after taking the semaphore
1117 */
1118 list_del_init(&block_group->list);
1119 if (list_empty(&block_group->space_info->block_groups[index])) {
1120 kobj = block_group->space_info->block_group_kobjs[index];
1121 block_group->space_info->block_group_kobjs[index] = NULL;
1122 clear_avail_alloc_bits(fs_info, block_group->flags);
1123 }
1124 up_write(&block_group->space_info->groups_sem);
1125 clear_incompat_bg_bits(fs_info, block_group->flags);
1126 if (kobj) {
1127 kobject_del(kobj);
1128 kobject_put(kobj);
1129 }
1130
1131 if (block_group->cached == BTRFS_CACHE_STARTED)
1132 btrfs_wait_block_group_cache_done(block_group);
1133
1134 write_lock(&fs_info->block_group_cache_lock);
1135 caching_ctl = btrfs_get_caching_control(block_group);
1136 if (!caching_ctl) {
1137 struct btrfs_caching_control *ctl;
1138
1139 list_for_each_entry(ctl, &fs_info->caching_block_groups, list) {
1140 if (ctl->block_group == block_group) {
1141 caching_ctl = ctl;
1142 refcount_inc(&caching_ctl->count);
1143 break;
1144 }
1145 }
1146 }
1147 if (caching_ctl)
1148 list_del_init(&caching_ctl->list);
1149 write_unlock(&fs_info->block_group_cache_lock);
1150
1151 if (caching_ctl) {
1152 /* Once for the caching bgs list and once for us. */
1153 btrfs_put_caching_control(caching_ctl);
1154 btrfs_put_caching_control(caching_ctl);
1155 }
1156
1157 spin_lock(&trans->transaction->dirty_bgs_lock);
1158 WARN_ON(!list_empty(&block_group->dirty_list));
1159 WARN_ON(!list_empty(&block_group->io_list));
1160 spin_unlock(&trans->transaction->dirty_bgs_lock);
1161
1162 btrfs_remove_free_space_cache(block_group);
1163
1164 spin_lock(&block_group->space_info->lock);
1165 list_del_init(&block_group->ro_list);
1166
1167 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1168 WARN_ON(block_group->space_info->total_bytes
1169 < block_group->length);
1170 WARN_ON(block_group->space_info->bytes_readonly
1171 < block_group->length - block_group->zone_unusable);
1172 WARN_ON(block_group->space_info->bytes_zone_unusable
1173 < block_group->zone_unusable);
1174 WARN_ON(block_group->space_info->disk_total
1175 < block_group->length * factor);
1176 }
1177 block_group->space_info->total_bytes -= block_group->length;
1178 block_group->space_info->bytes_readonly -=
1179 (block_group->length - block_group->zone_unusable);
1180 block_group->space_info->bytes_zone_unusable -=
1181 block_group->zone_unusable;
1182 block_group->space_info->disk_total -= block_group->length * factor;
1183
1184 spin_unlock(&block_group->space_info->lock);
1185
1186 /*
1187 * Remove the free space for the block group from the free space tree
1188 * and the block group's item from the extent tree before marking the
1189 * block group as removed. This is to prevent races with tasks that
1190 * freeze and unfreeze a block group, this task and another task
1191 * allocating a new block group - the unfreeze task ends up removing
1192 * the block group's extent map before the task calling this function
1193 * deletes the block group item from the extent tree, allowing for
1194 * another task to attempt to create another block group with the same
1195 * item key (and failing with -EEXIST and a transaction abort).
1196 */
1197 ret = remove_block_group_free_space(trans, block_group);
1198 if (ret)
1199 goto out;
1200
1201 ret = remove_block_group_item(trans, path, block_group);
1202 if (ret < 0)
1203 goto out;
1204
1205 spin_lock(&block_group->lock);
1206 set_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags);
1207
1208 /*
1209 * At this point trimming or scrub can't start on this block group,
1210 * because we removed the block group from the rbtree
1211 * fs_info->block_group_cache_tree so no one can't find it anymore and
1212 * even if someone already got this block group before we removed it
1213 * from the rbtree, they have already incremented block_group->frozen -
1214 * if they didn't, for the trimming case they won't find any free space
1215 * entries because we already removed them all when we called
1216 * btrfs_remove_free_space_cache().
1217 *
1218 * And we must not remove the extent map from the fs_info->mapping_tree
1219 * to prevent the same logical address range and physical device space
1220 * ranges from being reused for a new block group. This is needed to
1221 * avoid races with trimming and scrub.
1222 *
1223 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1224 * completely transactionless, so while it is trimming a range the
1225 * currently running transaction might finish and a new one start,
1226 * allowing for new block groups to be created that can reuse the same
1227 * physical device locations unless we take this special care.
1228 *
1229 * There may also be an implicit trim operation if the file system
1230 * is mounted with -odiscard. The same protections must remain
1231 * in place until the extents have been discarded completely when
1232 * the transaction commit has completed.
1233 */
1234 remove_em = (atomic_read(&block_group->frozen) == 0);
1235 spin_unlock(&block_group->lock);
1236
1237 if (remove_em) {
1238 struct extent_map_tree *em_tree;
1239
1240 em_tree = &fs_info->mapping_tree;
1241 write_lock(&em_tree->lock);
1242 remove_extent_mapping(em_tree, em);
1243 write_unlock(&em_tree->lock);
1244 /* once for the tree */
1245 free_extent_map(em);
1246 }
1247
1248 out:
1249 /* Once for the lookup reference */
1250 btrfs_put_block_group(block_group);
1251 if (remove_rsv)
1252 btrfs_delayed_refs_rsv_release(fs_info, 1);
1253 btrfs_free_path(path);
1254 return ret;
1255 }
1256
1257 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1258 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1259 {
1260 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1261 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1262 struct extent_map *em;
1263 struct map_lookup *map;
1264 unsigned int num_items;
1265
1266 read_lock(&em_tree->lock);
1267 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1268 read_unlock(&em_tree->lock);
1269 ASSERT(em && em->start == chunk_offset);
1270
1271 /*
1272 * We need to reserve 3 + N units from the metadata space info in order
1273 * to remove a block group (done at btrfs_remove_chunk() and at
1274 * btrfs_remove_block_group()), which are used for:
1275 *
1276 * 1 unit for adding the free space inode's orphan (located in the tree
1277 * of tree roots).
1278 * 1 unit for deleting the block group item (located in the extent
1279 * tree).
1280 * 1 unit for deleting the free space item (located in tree of tree
1281 * roots).
1282 * N units for deleting N device extent items corresponding to each
1283 * stripe (located in the device tree).
1284 *
1285 * In order to remove a block group we also need to reserve units in the
1286 * system space info in order to update the chunk tree (update one or
1287 * more device items and remove one chunk item), but this is done at
1288 * btrfs_remove_chunk() through a call to check_system_chunk().
1289 */
1290 map = em->map_lookup;
1291 num_items = 3 + map->num_stripes;
1292 free_extent_map(em);
1293
1294 return btrfs_start_transaction_fallback_global_rsv(root, num_items);
1295 }
1296
1297 /*
1298 * Mark block group @cache read-only, so later write won't happen to block
1299 * group @cache.
1300 *
1301 * If @force is not set, this function will only mark the block group readonly
1302 * if we have enough free space (1M) in other metadata/system block groups.
1303 * If @force is not set, this function will mark the block group readonly
1304 * without checking free space.
1305 *
1306 * NOTE: This function doesn't care if other block groups can contain all the
1307 * data in this block group. That check should be done by relocation routine,
1308 * not this function.
1309 */
1310 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1311 {
1312 struct btrfs_space_info *sinfo = cache->space_info;
1313 u64 num_bytes;
1314 int ret = -ENOSPC;
1315
1316 spin_lock(&sinfo->lock);
1317 spin_lock(&cache->lock);
1318
1319 if (cache->swap_extents) {
1320 ret = -ETXTBSY;
1321 goto out;
1322 }
1323
1324 if (cache->ro) {
1325 cache->ro++;
1326 ret = 0;
1327 goto out;
1328 }
1329
1330 num_bytes = cache->length - cache->reserved - cache->pinned -
1331 cache->bytes_super - cache->zone_unusable - cache->used;
1332
1333 /*
1334 * Data never overcommits, even in mixed mode, so do just the straight
1335 * check of left over space in how much we have allocated.
1336 */
1337 if (force) {
1338 ret = 0;
1339 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1340 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1341
1342 /*
1343 * Here we make sure if we mark this bg RO, we still have enough
1344 * free space as buffer.
1345 */
1346 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1347 ret = 0;
1348 } else {
1349 /*
1350 * We overcommit metadata, so we need to do the
1351 * btrfs_can_overcommit check here, and we need to pass in
1352 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1353 * leeway to allow us to mark this block group as read only.
1354 */
1355 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1356 BTRFS_RESERVE_NO_FLUSH))
1357 ret = 0;
1358 }
1359
1360 if (!ret) {
1361 sinfo->bytes_readonly += num_bytes;
1362 if (btrfs_is_zoned(cache->fs_info)) {
1363 /* Migrate zone_unusable bytes to readonly */
1364 sinfo->bytes_readonly += cache->zone_unusable;
1365 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1366 cache->zone_unusable = 0;
1367 }
1368 cache->ro++;
1369 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1370 }
1371 out:
1372 spin_unlock(&cache->lock);
1373 spin_unlock(&sinfo->lock);
1374 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1375 btrfs_info(cache->fs_info,
1376 "unable to make block group %llu ro", cache->start);
1377 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1378 }
1379 return ret;
1380 }
1381
1382 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1383 struct btrfs_block_group *bg)
1384 {
1385 struct btrfs_fs_info *fs_info = bg->fs_info;
1386 struct btrfs_transaction *prev_trans = NULL;
1387 const u64 start = bg->start;
1388 const u64 end = start + bg->length - 1;
1389 int ret;
1390
1391 spin_lock(&fs_info->trans_lock);
1392 if (trans->transaction->list.prev != &fs_info->trans_list) {
1393 prev_trans = list_last_entry(&trans->transaction->list,
1394 struct btrfs_transaction, list);
1395 refcount_inc(&prev_trans->use_count);
1396 }
1397 spin_unlock(&fs_info->trans_lock);
1398
1399 /*
1400 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1401 * btrfs_finish_extent_commit(). If we are at transaction N, another
1402 * task might be running finish_extent_commit() for the previous
1403 * transaction N - 1, and have seen a range belonging to the block
1404 * group in pinned_extents before we were able to clear the whole block
1405 * group range from pinned_extents. This means that task can lookup for
1406 * the block group after we unpinned it from pinned_extents and removed
1407 * it, leading to a BUG_ON() at unpin_extent_range().
1408 */
1409 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1410 if (prev_trans) {
1411 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1412 EXTENT_DIRTY);
1413 if (ret)
1414 goto out;
1415 }
1416
1417 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1418 EXTENT_DIRTY);
1419 out:
1420 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1421 if (prev_trans)
1422 btrfs_put_transaction(prev_trans);
1423
1424 return ret == 0;
1425 }
1426
1427 /*
1428 * Process the unused_bgs list and remove any that don't have any allocated
1429 * space inside of them.
1430 */
1431 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1432 {
1433 struct btrfs_block_group *block_group;
1434 struct btrfs_space_info *space_info;
1435 struct btrfs_trans_handle *trans;
1436 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1437 int ret = 0;
1438
1439 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1440 return;
1441
1442 if (btrfs_fs_closing(fs_info))
1443 return;
1444
1445 /*
1446 * Long running balances can keep us blocked here for eternity, so
1447 * simply skip deletion if we're unable to get the mutex.
1448 */
1449 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1450 return;
1451
1452 spin_lock(&fs_info->unused_bgs_lock);
1453 while (!list_empty(&fs_info->unused_bgs)) {
1454 int trimming;
1455
1456 block_group = list_first_entry(&fs_info->unused_bgs,
1457 struct btrfs_block_group,
1458 bg_list);
1459 list_del_init(&block_group->bg_list);
1460
1461 space_info = block_group->space_info;
1462
1463 if (ret || btrfs_mixed_space_info(space_info)) {
1464 btrfs_put_block_group(block_group);
1465 continue;
1466 }
1467 spin_unlock(&fs_info->unused_bgs_lock);
1468
1469 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1470
1471 /* Don't want to race with allocators so take the groups_sem */
1472 down_write(&space_info->groups_sem);
1473
1474 /*
1475 * Async discard moves the final block group discard to be prior
1476 * to the unused_bgs code path. Therefore, if it's not fully
1477 * trimmed, punt it back to the async discard lists.
1478 */
1479 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1480 !btrfs_is_free_space_trimmed(block_group)) {
1481 trace_btrfs_skip_unused_block_group(block_group);
1482 up_write(&space_info->groups_sem);
1483 /* Requeue if we failed because of async discard */
1484 btrfs_discard_queue_work(&fs_info->discard_ctl,
1485 block_group);
1486 goto next;
1487 }
1488
1489 spin_lock(&block_group->lock);
1490 if (block_group->reserved || block_group->pinned ||
1491 block_group->used || block_group->ro ||
1492 list_is_singular(&block_group->list)) {
1493 /*
1494 * We want to bail if we made new allocations or have
1495 * outstanding allocations in this block group. We do
1496 * the ro check in case balance is currently acting on
1497 * this block group.
1498 */
1499 trace_btrfs_skip_unused_block_group(block_group);
1500 spin_unlock(&block_group->lock);
1501 up_write(&space_info->groups_sem);
1502 goto next;
1503 }
1504 spin_unlock(&block_group->lock);
1505
1506 /* We don't want to force the issue, only flip if it's ok. */
1507 ret = inc_block_group_ro(block_group, 0);
1508 up_write(&space_info->groups_sem);
1509 if (ret < 0) {
1510 ret = 0;
1511 goto next;
1512 }
1513
1514 ret = btrfs_zone_finish(block_group);
1515 if (ret < 0) {
1516 btrfs_dec_block_group_ro(block_group);
1517 if (ret == -EAGAIN)
1518 ret = 0;
1519 goto next;
1520 }
1521
1522 /*
1523 * Want to do this before we do anything else so we can recover
1524 * properly if we fail to join the transaction.
1525 */
1526 trans = btrfs_start_trans_remove_block_group(fs_info,
1527 block_group->start);
1528 if (IS_ERR(trans)) {
1529 btrfs_dec_block_group_ro(block_group);
1530 ret = PTR_ERR(trans);
1531 goto next;
1532 }
1533
1534 /*
1535 * We could have pending pinned extents for this block group,
1536 * just delete them, we don't care about them anymore.
1537 */
1538 if (!clean_pinned_extents(trans, block_group)) {
1539 btrfs_dec_block_group_ro(block_group);
1540 goto end_trans;
1541 }
1542
1543 /*
1544 * At this point, the block_group is read only and should fail
1545 * new allocations. However, btrfs_finish_extent_commit() can
1546 * cause this block_group to be placed back on the discard
1547 * lists because now the block_group isn't fully discarded.
1548 * Bail here and try again later after discarding everything.
1549 */
1550 spin_lock(&fs_info->discard_ctl.lock);
1551 if (!list_empty(&block_group->discard_list)) {
1552 spin_unlock(&fs_info->discard_ctl.lock);
1553 btrfs_dec_block_group_ro(block_group);
1554 btrfs_discard_queue_work(&fs_info->discard_ctl,
1555 block_group);
1556 goto end_trans;
1557 }
1558 spin_unlock(&fs_info->discard_ctl.lock);
1559
1560 /* Reset pinned so btrfs_put_block_group doesn't complain */
1561 spin_lock(&space_info->lock);
1562 spin_lock(&block_group->lock);
1563
1564 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1565 -block_group->pinned);
1566 space_info->bytes_readonly += block_group->pinned;
1567 block_group->pinned = 0;
1568
1569 spin_unlock(&block_group->lock);
1570 spin_unlock(&space_info->lock);
1571
1572 /*
1573 * The normal path here is an unused block group is passed here,
1574 * then trimming is handled in the transaction commit path.
1575 * Async discard interposes before this to do the trimming
1576 * before coming down the unused block group path as trimming
1577 * will no longer be done later in the transaction commit path.
1578 */
1579 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1580 goto flip_async;
1581
1582 /*
1583 * DISCARD can flip during remount. On zoned filesystems, we
1584 * need to reset sequential-required zones.
1585 */
1586 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1587 btrfs_is_zoned(fs_info);
1588
1589 /* Implicit trim during transaction commit. */
1590 if (trimming)
1591 btrfs_freeze_block_group(block_group);
1592
1593 /*
1594 * Btrfs_remove_chunk will abort the transaction if things go
1595 * horribly wrong.
1596 */
1597 ret = btrfs_remove_chunk(trans, block_group->start);
1598
1599 if (ret) {
1600 if (trimming)
1601 btrfs_unfreeze_block_group(block_group);
1602 goto end_trans;
1603 }
1604
1605 /*
1606 * If we're not mounted with -odiscard, we can just forget
1607 * about this block group. Otherwise we'll need to wait
1608 * until transaction commit to do the actual discard.
1609 */
1610 if (trimming) {
1611 spin_lock(&fs_info->unused_bgs_lock);
1612 /*
1613 * A concurrent scrub might have added us to the list
1614 * fs_info->unused_bgs, so use a list_move operation
1615 * to add the block group to the deleted_bgs list.
1616 */
1617 list_move(&block_group->bg_list,
1618 &trans->transaction->deleted_bgs);
1619 spin_unlock(&fs_info->unused_bgs_lock);
1620 btrfs_get_block_group(block_group);
1621 }
1622 end_trans:
1623 btrfs_end_transaction(trans);
1624 next:
1625 btrfs_put_block_group(block_group);
1626 spin_lock(&fs_info->unused_bgs_lock);
1627 }
1628 spin_unlock(&fs_info->unused_bgs_lock);
1629 mutex_unlock(&fs_info->reclaim_bgs_lock);
1630 return;
1631
1632 flip_async:
1633 btrfs_end_transaction(trans);
1634 mutex_unlock(&fs_info->reclaim_bgs_lock);
1635 btrfs_put_block_group(block_group);
1636 btrfs_discard_punt_unused_bgs_list(fs_info);
1637 }
1638
1639 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1640 {
1641 struct btrfs_fs_info *fs_info = bg->fs_info;
1642
1643 spin_lock(&fs_info->unused_bgs_lock);
1644 if (list_empty(&bg->bg_list)) {
1645 btrfs_get_block_group(bg);
1646 trace_btrfs_add_unused_block_group(bg);
1647 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1648 } else if (!test_bit(BLOCK_GROUP_FLAG_NEW, &bg->runtime_flags)) {
1649 /* Pull out the block group from the reclaim_bgs list. */
1650 trace_btrfs_add_unused_block_group(bg);
1651 list_move_tail(&bg->bg_list, &fs_info->unused_bgs);
1652 }
1653 spin_unlock(&fs_info->unused_bgs_lock);
1654 }
1655
1656 /*
1657 * We want block groups with a low number of used bytes to be in the beginning
1658 * of the list, so they will get reclaimed first.
1659 */
1660 static int reclaim_bgs_cmp(void *unused, const struct list_head *a,
1661 const struct list_head *b)
1662 {
1663 const struct btrfs_block_group *bg1, *bg2;
1664
1665 bg1 = list_entry(a, struct btrfs_block_group, bg_list);
1666 bg2 = list_entry(b, struct btrfs_block_group, bg_list);
1667
1668 return bg1->used > bg2->used;
1669 }
1670
1671 static inline bool btrfs_should_reclaim(struct btrfs_fs_info *fs_info)
1672 {
1673 if (btrfs_is_zoned(fs_info))
1674 return btrfs_zoned_should_reclaim(fs_info);
1675 return true;
1676 }
1677
1678 static bool should_reclaim_block_group(struct btrfs_block_group *bg, u64 bytes_freed)
1679 {
1680 const struct btrfs_space_info *space_info = bg->space_info;
1681 const int reclaim_thresh = READ_ONCE(space_info->bg_reclaim_threshold);
1682 const u64 new_val = bg->used;
1683 const u64 old_val = new_val + bytes_freed;
1684 u64 thresh;
1685
1686 if (reclaim_thresh == 0)
1687 return false;
1688
1689 thresh = mult_perc(bg->length, reclaim_thresh);
1690
1691 /*
1692 * If we were below the threshold before don't reclaim, we are likely a
1693 * brand new block group and we don't want to relocate new block groups.
1694 */
1695 if (old_val < thresh)
1696 return false;
1697 if (new_val >= thresh)
1698 return false;
1699 return true;
1700 }
1701
1702 void btrfs_reclaim_bgs_work(struct work_struct *work)
1703 {
1704 struct btrfs_fs_info *fs_info =
1705 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1706 struct btrfs_block_group *bg;
1707 struct btrfs_space_info *space_info;
1708
1709 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1710 return;
1711
1712 if (btrfs_fs_closing(fs_info))
1713 return;
1714
1715 if (!btrfs_should_reclaim(fs_info))
1716 return;
1717
1718 sb_start_write(fs_info->sb);
1719
1720 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
1721 sb_end_write(fs_info->sb);
1722 return;
1723 }
1724
1725 /*
1726 * Long running balances can keep us blocked here for eternity, so
1727 * simply skip reclaim if we're unable to get the mutex.
1728 */
1729 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1730 btrfs_exclop_finish(fs_info);
1731 sb_end_write(fs_info->sb);
1732 return;
1733 }
1734
1735 spin_lock(&fs_info->unused_bgs_lock);
1736 /*
1737 * Sort happens under lock because we can't simply splice it and sort.
1738 * The block groups might still be in use and reachable via bg_list,
1739 * and their presence in the reclaim_bgs list must be preserved.
1740 */
1741 list_sort(NULL, &fs_info->reclaim_bgs, reclaim_bgs_cmp);
1742 while (!list_empty(&fs_info->reclaim_bgs)) {
1743 u64 zone_unusable;
1744 int ret = 0;
1745
1746 bg = list_first_entry(&fs_info->reclaim_bgs,
1747 struct btrfs_block_group,
1748 bg_list);
1749 list_del_init(&bg->bg_list);
1750
1751 space_info = bg->space_info;
1752 spin_unlock(&fs_info->unused_bgs_lock);
1753
1754 /* Don't race with allocators so take the groups_sem */
1755 down_write(&space_info->groups_sem);
1756
1757 spin_lock(&bg->lock);
1758 if (bg->reserved || bg->pinned || bg->ro) {
1759 /*
1760 * We want to bail if we made new allocations or have
1761 * outstanding allocations in this block group. We do
1762 * the ro check in case balance is currently acting on
1763 * this block group.
1764 */
1765 spin_unlock(&bg->lock);
1766 up_write(&space_info->groups_sem);
1767 goto next;
1768 }
1769 if (bg->used == 0) {
1770 /*
1771 * It is possible that we trigger relocation on a block
1772 * group as its extents are deleted and it first goes
1773 * below the threshold, then shortly after goes empty.
1774 *
1775 * In this case, relocating it does delete it, but has
1776 * some overhead in relocation specific metadata, looking
1777 * for the non-existent extents and running some extra
1778 * transactions, which we can avoid by using one of the
1779 * other mechanisms for dealing with empty block groups.
1780 */
1781 if (!btrfs_test_opt(fs_info, DISCARD_ASYNC))
1782 btrfs_mark_bg_unused(bg);
1783 spin_unlock(&bg->lock);
1784 up_write(&space_info->groups_sem);
1785 goto next;
1786
1787 }
1788 /*
1789 * The block group might no longer meet the reclaim condition by
1790 * the time we get around to reclaiming it, so to avoid
1791 * reclaiming overly full block_groups, skip reclaiming them.
1792 *
1793 * Since the decision making process also depends on the amount
1794 * being freed, pass in a fake giant value to skip that extra
1795 * check, which is more meaningful when adding to the list in
1796 * the first place.
1797 */
1798 if (!should_reclaim_block_group(bg, bg->length)) {
1799 spin_unlock(&bg->lock);
1800 up_write(&space_info->groups_sem);
1801 goto next;
1802 }
1803 spin_unlock(&bg->lock);
1804
1805 /*
1806 * Get out fast, in case we're read-only or unmounting the
1807 * filesystem. It is OK to drop block groups from the list even
1808 * for the read-only case. As we did sb_start_write(),
1809 * "mount -o remount,ro" won't happen and read-only filesystem
1810 * means it is forced read-only due to a fatal error. So, it
1811 * never gets back to read-write to let us reclaim again.
1812 */
1813 if (btrfs_need_cleaner_sleep(fs_info)) {
1814 up_write(&space_info->groups_sem);
1815 goto next;
1816 }
1817
1818 /*
1819 * Cache the zone_unusable value before turning the block group
1820 * to read only. As soon as the blog group is read only it's
1821 * zone_unusable value gets moved to the block group's read-only
1822 * bytes and isn't available for calculations anymore.
1823 */
1824 zone_unusable = bg->zone_unusable;
1825 ret = inc_block_group_ro(bg, 0);
1826 up_write(&space_info->groups_sem);
1827 if (ret < 0)
1828 goto next;
1829
1830 btrfs_info(fs_info,
1831 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1832 bg->start,
1833 div64_u64(bg->used * 100, bg->length),
1834 div64_u64(zone_unusable * 100, bg->length));
1835 trace_btrfs_reclaim_block_group(bg);
1836 ret = btrfs_relocate_chunk(fs_info, bg->start);
1837 if (ret) {
1838 btrfs_dec_block_group_ro(bg);
1839 btrfs_err(fs_info, "error relocating chunk %llu",
1840 bg->start);
1841 }
1842
1843 next:
1844 if (ret)
1845 btrfs_mark_bg_to_reclaim(bg);
1846 btrfs_put_block_group(bg);
1847
1848 mutex_unlock(&fs_info->reclaim_bgs_lock);
1849 /*
1850 * Reclaiming all the block groups in the list can take really
1851 * long. Prioritize cleaning up unused block groups.
1852 */
1853 btrfs_delete_unused_bgs(fs_info);
1854 /*
1855 * If we are interrupted by a balance, we can just bail out. The
1856 * cleaner thread restart again if necessary.
1857 */
1858 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1859 goto end;
1860 spin_lock(&fs_info->unused_bgs_lock);
1861 }
1862 spin_unlock(&fs_info->unused_bgs_lock);
1863 mutex_unlock(&fs_info->reclaim_bgs_lock);
1864 end:
1865 btrfs_exclop_finish(fs_info);
1866 sb_end_write(fs_info->sb);
1867 }
1868
1869 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1870 {
1871 spin_lock(&fs_info->unused_bgs_lock);
1872 if (!list_empty(&fs_info->reclaim_bgs))
1873 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1874 spin_unlock(&fs_info->unused_bgs_lock);
1875 }
1876
1877 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1878 {
1879 struct btrfs_fs_info *fs_info = bg->fs_info;
1880
1881 spin_lock(&fs_info->unused_bgs_lock);
1882 if (list_empty(&bg->bg_list)) {
1883 btrfs_get_block_group(bg);
1884 trace_btrfs_add_reclaim_block_group(bg);
1885 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1886 }
1887 spin_unlock(&fs_info->unused_bgs_lock);
1888 }
1889
1890 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1891 struct btrfs_path *path)
1892 {
1893 struct extent_map_tree *em_tree;
1894 struct extent_map *em;
1895 struct btrfs_block_group_item bg;
1896 struct extent_buffer *leaf;
1897 int slot;
1898 u64 flags;
1899 int ret = 0;
1900
1901 slot = path->slots[0];
1902 leaf = path->nodes[0];
1903
1904 em_tree = &fs_info->mapping_tree;
1905 read_lock(&em_tree->lock);
1906 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1907 read_unlock(&em_tree->lock);
1908 if (!em) {
1909 btrfs_err(fs_info,
1910 "logical %llu len %llu found bg but no related chunk",
1911 key->objectid, key->offset);
1912 return -ENOENT;
1913 }
1914
1915 if (em->start != key->objectid || em->len != key->offset) {
1916 btrfs_err(fs_info,
1917 "block group %llu len %llu mismatch with chunk %llu len %llu",
1918 key->objectid, key->offset, em->start, em->len);
1919 ret = -EUCLEAN;
1920 goto out_free_em;
1921 }
1922
1923 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1924 sizeof(bg));
1925 flags = btrfs_stack_block_group_flags(&bg) &
1926 BTRFS_BLOCK_GROUP_TYPE_MASK;
1927
1928 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1929 btrfs_err(fs_info,
1930 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1931 key->objectid, key->offset, flags,
1932 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1933 ret = -EUCLEAN;
1934 }
1935
1936 out_free_em:
1937 free_extent_map(em);
1938 return ret;
1939 }
1940
1941 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1942 struct btrfs_path *path,
1943 struct btrfs_key *key)
1944 {
1945 struct btrfs_root *root = btrfs_block_group_root(fs_info);
1946 int ret;
1947 struct btrfs_key found_key;
1948
1949 btrfs_for_each_slot(root, key, &found_key, path, ret) {
1950 if (found_key.objectid >= key->objectid &&
1951 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1952 return read_bg_from_eb(fs_info, &found_key, path);
1953 }
1954 }
1955 return ret;
1956 }
1957
1958 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1959 {
1960 u64 extra_flags = chunk_to_extended(flags) &
1961 BTRFS_EXTENDED_PROFILE_MASK;
1962
1963 write_seqlock(&fs_info->profiles_lock);
1964 if (flags & BTRFS_BLOCK_GROUP_DATA)
1965 fs_info->avail_data_alloc_bits |= extra_flags;
1966 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1967 fs_info->avail_metadata_alloc_bits |= extra_flags;
1968 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1969 fs_info->avail_system_alloc_bits |= extra_flags;
1970 write_sequnlock(&fs_info->profiles_lock);
1971 }
1972
1973 /*
1974 * Map a physical disk address to a list of logical addresses.
1975 *
1976 * @fs_info: the filesystem
1977 * @chunk_start: logical address of block group
1978 * @physical: physical address to map to logical addresses
1979 * @logical: return array of logical addresses which map to @physical
1980 * @naddrs: length of @logical
1981 * @stripe_len: size of IO stripe for the given block group
1982 *
1983 * Maps a particular @physical disk address to a list of @logical addresses.
1984 * Used primarily to exclude those portions of a block group that contain super
1985 * block copies.
1986 */
1987 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1988 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1989 {
1990 struct extent_map *em;
1991 struct map_lookup *map;
1992 u64 *buf;
1993 u64 bytenr;
1994 u64 data_stripe_length;
1995 u64 io_stripe_size;
1996 int i, nr = 0;
1997 int ret = 0;
1998
1999 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
2000 if (IS_ERR(em))
2001 return -EIO;
2002
2003 map = em->map_lookup;
2004 data_stripe_length = em->orig_block_len;
2005 io_stripe_size = BTRFS_STRIPE_LEN;
2006 chunk_start = em->start;
2007
2008 /* For RAID5/6 adjust to a full IO stripe length */
2009 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2010 io_stripe_size = nr_data_stripes(map) << BTRFS_STRIPE_LEN_SHIFT;
2011
2012 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
2013 if (!buf) {
2014 ret = -ENOMEM;
2015 goto out;
2016 }
2017
2018 for (i = 0; i < map->num_stripes; i++) {
2019 bool already_inserted = false;
2020 u32 stripe_nr;
2021 u32 offset;
2022 int j;
2023
2024 if (!in_range(physical, map->stripes[i].physical,
2025 data_stripe_length))
2026 continue;
2027
2028 stripe_nr = (physical - map->stripes[i].physical) >>
2029 BTRFS_STRIPE_LEN_SHIFT;
2030 offset = (physical - map->stripes[i].physical) &
2031 BTRFS_STRIPE_LEN_MASK;
2032
2033 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2034 BTRFS_BLOCK_GROUP_RAID10))
2035 stripe_nr = div_u64(stripe_nr * map->num_stripes + i,
2036 map->sub_stripes);
2037 /*
2038 * The remaining case would be for RAID56, multiply by
2039 * nr_data_stripes(). Alternatively, just use rmap_len below
2040 * instead of map->stripe_len
2041 */
2042 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
2043
2044 /* Ensure we don't add duplicate addresses */
2045 for (j = 0; j < nr; j++) {
2046 if (buf[j] == bytenr) {
2047 already_inserted = true;
2048 break;
2049 }
2050 }
2051
2052 if (!already_inserted)
2053 buf[nr++] = bytenr;
2054 }
2055
2056 *logical = buf;
2057 *naddrs = nr;
2058 *stripe_len = io_stripe_size;
2059 out:
2060 free_extent_map(em);
2061 return ret;
2062 }
2063
2064 static int exclude_super_stripes(struct btrfs_block_group *cache)
2065 {
2066 struct btrfs_fs_info *fs_info = cache->fs_info;
2067 const bool zoned = btrfs_is_zoned(fs_info);
2068 u64 bytenr;
2069 u64 *logical;
2070 int stripe_len;
2071 int i, nr, ret;
2072
2073 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
2074 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
2075 cache->bytes_super += stripe_len;
2076 ret = btrfs_add_excluded_extent(fs_info, cache->start,
2077 stripe_len);
2078 if (ret)
2079 return ret;
2080 }
2081
2082 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2083 bytenr = btrfs_sb_offset(i);
2084 ret = btrfs_rmap_block(fs_info, cache->start,
2085 bytenr, &logical, &nr, &stripe_len);
2086 if (ret)
2087 return ret;
2088
2089 /* Shouldn't have super stripes in sequential zones */
2090 if (zoned && nr) {
2091 kfree(logical);
2092 btrfs_err(fs_info,
2093 "zoned: block group %llu must not contain super block",
2094 cache->start);
2095 return -EUCLEAN;
2096 }
2097
2098 while (nr--) {
2099 u64 len = min_t(u64, stripe_len,
2100 cache->start + cache->length - logical[nr]);
2101
2102 cache->bytes_super += len;
2103 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
2104 len);
2105 if (ret) {
2106 kfree(logical);
2107 return ret;
2108 }
2109 }
2110
2111 kfree(logical);
2112 }
2113 return 0;
2114 }
2115
2116 static struct btrfs_block_group *btrfs_create_block_group_cache(
2117 struct btrfs_fs_info *fs_info, u64 start)
2118 {
2119 struct btrfs_block_group *cache;
2120
2121 cache = kzalloc(sizeof(*cache), GFP_NOFS);
2122 if (!cache)
2123 return NULL;
2124
2125 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
2126 GFP_NOFS);
2127 if (!cache->free_space_ctl) {
2128 kfree(cache);
2129 return NULL;
2130 }
2131
2132 cache->start = start;
2133
2134 cache->fs_info = fs_info;
2135 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
2136
2137 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
2138
2139 refcount_set(&cache->refs, 1);
2140 spin_lock_init(&cache->lock);
2141 init_rwsem(&cache->data_rwsem);
2142 INIT_LIST_HEAD(&cache->list);
2143 INIT_LIST_HEAD(&cache->cluster_list);
2144 INIT_LIST_HEAD(&cache->bg_list);
2145 INIT_LIST_HEAD(&cache->ro_list);
2146 INIT_LIST_HEAD(&cache->discard_list);
2147 INIT_LIST_HEAD(&cache->dirty_list);
2148 INIT_LIST_HEAD(&cache->io_list);
2149 INIT_LIST_HEAD(&cache->active_bg_list);
2150 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
2151 atomic_set(&cache->frozen, 0);
2152 mutex_init(&cache->free_space_lock);
2153
2154 return cache;
2155 }
2156
2157 /*
2158 * Iterate all chunks and verify that each of them has the corresponding block
2159 * group
2160 */
2161 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
2162 {
2163 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
2164 struct extent_map *em;
2165 struct btrfs_block_group *bg;
2166 u64 start = 0;
2167 int ret = 0;
2168
2169 while (1) {
2170 read_lock(&map_tree->lock);
2171 /*
2172 * lookup_extent_mapping will return the first extent map
2173 * intersecting the range, so setting @len to 1 is enough to
2174 * get the first chunk.
2175 */
2176 em = lookup_extent_mapping(map_tree, start, 1);
2177 read_unlock(&map_tree->lock);
2178 if (!em)
2179 break;
2180
2181 bg = btrfs_lookup_block_group(fs_info, em->start);
2182 if (!bg) {
2183 btrfs_err(fs_info,
2184 "chunk start=%llu len=%llu doesn't have corresponding block group",
2185 em->start, em->len);
2186 ret = -EUCLEAN;
2187 free_extent_map(em);
2188 break;
2189 }
2190 if (bg->start != em->start || bg->length != em->len ||
2191 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
2192 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
2193 btrfs_err(fs_info,
2194 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
2195 em->start, em->len,
2196 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
2197 bg->start, bg->length,
2198 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
2199 ret = -EUCLEAN;
2200 free_extent_map(em);
2201 btrfs_put_block_group(bg);
2202 break;
2203 }
2204 start = em->start + em->len;
2205 free_extent_map(em);
2206 btrfs_put_block_group(bg);
2207 }
2208 return ret;
2209 }
2210
2211 static int read_one_block_group(struct btrfs_fs_info *info,
2212 struct btrfs_block_group_item *bgi,
2213 const struct btrfs_key *key,
2214 int need_clear)
2215 {
2216 struct btrfs_block_group *cache;
2217 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
2218 int ret;
2219
2220 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
2221
2222 cache = btrfs_create_block_group_cache(info, key->objectid);
2223 if (!cache)
2224 return -ENOMEM;
2225
2226 cache->length = key->offset;
2227 cache->used = btrfs_stack_block_group_used(bgi);
2228 cache->commit_used = cache->used;
2229 cache->flags = btrfs_stack_block_group_flags(bgi);
2230 cache->global_root_id = btrfs_stack_block_group_chunk_objectid(bgi);
2231
2232 set_free_space_tree_thresholds(cache);
2233
2234 if (need_clear) {
2235 /*
2236 * When we mount with old space cache, we need to
2237 * set BTRFS_DC_CLEAR and set dirty flag.
2238 *
2239 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
2240 * truncate the old free space cache inode and
2241 * setup a new one.
2242 * b) Setting 'dirty flag' makes sure that we flush
2243 * the new space cache info onto disk.
2244 */
2245 if (btrfs_test_opt(info, SPACE_CACHE))
2246 cache->disk_cache_state = BTRFS_DC_CLEAR;
2247 }
2248 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2249 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
2250 btrfs_err(info,
2251 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2252 cache->start);
2253 ret = -EINVAL;
2254 goto error;
2255 }
2256
2257 ret = btrfs_load_block_group_zone_info(cache, false);
2258 if (ret) {
2259 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2260 cache->start);
2261 goto error;
2262 }
2263
2264 /*
2265 * We need to exclude the super stripes now so that the space info has
2266 * super bytes accounted for, otherwise we'll think we have more space
2267 * than we actually do.
2268 */
2269 ret = exclude_super_stripes(cache);
2270 if (ret) {
2271 /* We may have excluded something, so call this just in case. */
2272 btrfs_free_excluded_extents(cache);
2273 goto error;
2274 }
2275
2276 /*
2277 * For zoned filesystem, space after the allocation offset is the only
2278 * free space for a block group. So, we don't need any caching work.
2279 * btrfs_calc_zone_unusable() will set the amount of free space and
2280 * zone_unusable space.
2281 *
2282 * For regular filesystem, check for two cases, either we are full, and
2283 * therefore don't need to bother with the caching work since we won't
2284 * find any space, or we are empty, and we can just add all the space
2285 * in and be done with it. This saves us _a_lot_ of time, particularly
2286 * in the full case.
2287 */
2288 if (btrfs_is_zoned(info)) {
2289 btrfs_calc_zone_unusable(cache);
2290 /* Should not have any excluded extents. Just in case, though. */
2291 btrfs_free_excluded_extents(cache);
2292 } else if (cache->length == cache->used) {
2293 cache->cached = BTRFS_CACHE_FINISHED;
2294 btrfs_free_excluded_extents(cache);
2295 } else if (cache->used == 0) {
2296 cache->cached = BTRFS_CACHE_FINISHED;
2297 add_new_free_space(cache, cache->start,
2298 cache->start + cache->length);
2299 btrfs_free_excluded_extents(cache);
2300 }
2301
2302 ret = btrfs_add_block_group_cache(info, cache);
2303 if (ret) {
2304 btrfs_remove_free_space_cache(cache);
2305 goto error;
2306 }
2307 trace_btrfs_add_block_group(info, cache, 0);
2308 btrfs_add_bg_to_space_info(info, cache);
2309
2310 set_avail_alloc_bits(info, cache->flags);
2311 if (btrfs_chunk_writeable(info, cache->start)) {
2312 if (cache->used == 0) {
2313 ASSERT(list_empty(&cache->bg_list));
2314 if (btrfs_test_opt(info, DISCARD_ASYNC))
2315 btrfs_discard_queue_work(&info->discard_ctl, cache);
2316 else
2317 btrfs_mark_bg_unused(cache);
2318 }
2319 } else {
2320 inc_block_group_ro(cache, 1);
2321 }
2322
2323 return 0;
2324 error:
2325 btrfs_put_block_group(cache);
2326 return ret;
2327 }
2328
2329 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2330 {
2331 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2332 struct rb_node *node;
2333 int ret = 0;
2334
2335 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2336 struct extent_map *em;
2337 struct map_lookup *map;
2338 struct btrfs_block_group *bg;
2339
2340 em = rb_entry(node, struct extent_map, rb_node);
2341 map = em->map_lookup;
2342 bg = btrfs_create_block_group_cache(fs_info, em->start);
2343 if (!bg) {
2344 ret = -ENOMEM;
2345 break;
2346 }
2347
2348 /* Fill dummy cache as FULL */
2349 bg->length = em->len;
2350 bg->flags = map->type;
2351 bg->cached = BTRFS_CACHE_FINISHED;
2352 bg->used = em->len;
2353 bg->flags = map->type;
2354 ret = btrfs_add_block_group_cache(fs_info, bg);
2355 /*
2356 * We may have some valid block group cache added already, in
2357 * that case we skip to the next one.
2358 */
2359 if (ret == -EEXIST) {
2360 ret = 0;
2361 btrfs_put_block_group(bg);
2362 continue;
2363 }
2364
2365 if (ret) {
2366 btrfs_remove_free_space_cache(bg);
2367 btrfs_put_block_group(bg);
2368 break;
2369 }
2370
2371 btrfs_add_bg_to_space_info(fs_info, bg);
2372
2373 set_avail_alloc_bits(fs_info, bg->flags);
2374 }
2375 if (!ret)
2376 btrfs_init_global_block_rsv(fs_info);
2377 return ret;
2378 }
2379
2380 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2381 {
2382 struct btrfs_root *root = btrfs_block_group_root(info);
2383 struct btrfs_path *path;
2384 int ret;
2385 struct btrfs_block_group *cache;
2386 struct btrfs_space_info *space_info;
2387 struct btrfs_key key;
2388 int need_clear = 0;
2389 u64 cache_gen;
2390
2391 /*
2392 * Either no extent root (with ibadroots rescue option) or we have
2393 * unsupported RO options. The fs can never be mounted read-write, so no
2394 * need to waste time searching block group items.
2395 *
2396 * This also allows new extent tree related changes to be RO compat,
2397 * no need for a full incompat flag.
2398 */
2399 if (!root || (btrfs_super_compat_ro_flags(info->super_copy) &
2400 ~BTRFS_FEATURE_COMPAT_RO_SUPP))
2401 return fill_dummy_bgs(info);
2402
2403 key.objectid = 0;
2404 key.offset = 0;
2405 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2406 path = btrfs_alloc_path();
2407 if (!path)
2408 return -ENOMEM;
2409
2410 cache_gen = btrfs_super_cache_generation(info->super_copy);
2411 if (btrfs_test_opt(info, SPACE_CACHE) &&
2412 btrfs_super_generation(info->super_copy) != cache_gen)
2413 need_clear = 1;
2414 if (btrfs_test_opt(info, CLEAR_CACHE))
2415 need_clear = 1;
2416
2417 while (1) {
2418 struct btrfs_block_group_item bgi;
2419 struct extent_buffer *leaf;
2420 int slot;
2421
2422 ret = find_first_block_group(info, path, &key);
2423 if (ret > 0)
2424 break;
2425 if (ret != 0)
2426 goto error;
2427
2428 leaf = path->nodes[0];
2429 slot = path->slots[0];
2430
2431 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2432 sizeof(bgi));
2433
2434 btrfs_item_key_to_cpu(leaf, &key, slot);
2435 btrfs_release_path(path);
2436 ret = read_one_block_group(info, &bgi, &key, need_clear);
2437 if (ret < 0)
2438 goto error;
2439 key.objectid += key.offset;
2440 key.offset = 0;
2441 }
2442 btrfs_release_path(path);
2443
2444 list_for_each_entry(space_info, &info->space_info, list) {
2445 int i;
2446
2447 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2448 if (list_empty(&space_info->block_groups[i]))
2449 continue;
2450 cache = list_first_entry(&space_info->block_groups[i],
2451 struct btrfs_block_group,
2452 list);
2453 btrfs_sysfs_add_block_group_type(cache);
2454 }
2455
2456 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2457 (BTRFS_BLOCK_GROUP_RAID10 |
2458 BTRFS_BLOCK_GROUP_RAID1_MASK |
2459 BTRFS_BLOCK_GROUP_RAID56_MASK |
2460 BTRFS_BLOCK_GROUP_DUP)))
2461 continue;
2462 /*
2463 * Avoid allocating from un-mirrored block group if there are
2464 * mirrored block groups.
2465 */
2466 list_for_each_entry(cache,
2467 &space_info->block_groups[BTRFS_RAID_RAID0],
2468 list)
2469 inc_block_group_ro(cache, 1);
2470 list_for_each_entry(cache,
2471 &space_info->block_groups[BTRFS_RAID_SINGLE],
2472 list)
2473 inc_block_group_ro(cache, 1);
2474 }
2475
2476 btrfs_init_global_block_rsv(info);
2477 ret = check_chunk_block_group_mappings(info);
2478 error:
2479 btrfs_free_path(path);
2480 /*
2481 * We've hit some error while reading the extent tree, and have
2482 * rescue=ibadroots mount option.
2483 * Try to fill the tree using dummy block groups so that the user can
2484 * continue to mount and grab their data.
2485 */
2486 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2487 ret = fill_dummy_bgs(info);
2488 return ret;
2489 }
2490
2491 /*
2492 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2493 * allocation.
2494 *
2495 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2496 * phases.
2497 */
2498 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2499 struct btrfs_block_group *block_group)
2500 {
2501 struct btrfs_fs_info *fs_info = trans->fs_info;
2502 struct btrfs_block_group_item bgi;
2503 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2504 struct btrfs_key key;
2505 u64 old_commit_used;
2506 int ret;
2507
2508 spin_lock(&block_group->lock);
2509 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2510 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2511 block_group->global_root_id);
2512 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2513 old_commit_used = block_group->commit_used;
2514 block_group->commit_used = block_group->used;
2515 key.objectid = block_group->start;
2516 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2517 key.offset = block_group->length;
2518 spin_unlock(&block_group->lock);
2519
2520 ret = btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2521 if (ret < 0) {
2522 spin_lock(&block_group->lock);
2523 block_group->commit_used = old_commit_used;
2524 spin_unlock(&block_group->lock);
2525 }
2526
2527 return ret;
2528 }
2529
2530 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2531 struct btrfs_device *device, u64 chunk_offset,
2532 u64 start, u64 num_bytes)
2533 {
2534 struct btrfs_fs_info *fs_info = device->fs_info;
2535 struct btrfs_root *root = fs_info->dev_root;
2536 struct btrfs_path *path;
2537 struct btrfs_dev_extent *extent;
2538 struct extent_buffer *leaf;
2539 struct btrfs_key key;
2540 int ret;
2541
2542 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2543 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2544 path = btrfs_alloc_path();
2545 if (!path)
2546 return -ENOMEM;
2547
2548 key.objectid = device->devid;
2549 key.type = BTRFS_DEV_EXTENT_KEY;
2550 key.offset = start;
2551 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2552 if (ret)
2553 goto out;
2554
2555 leaf = path->nodes[0];
2556 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2557 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2558 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2559 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2560 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2561
2562 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2563 btrfs_mark_buffer_dirty(leaf);
2564 out:
2565 btrfs_free_path(path);
2566 return ret;
2567 }
2568
2569 /*
2570 * This function belongs to phase 2.
2571 *
2572 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2573 * phases.
2574 */
2575 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2576 u64 chunk_offset, u64 chunk_size)
2577 {
2578 struct btrfs_fs_info *fs_info = trans->fs_info;
2579 struct btrfs_device *device;
2580 struct extent_map *em;
2581 struct map_lookup *map;
2582 u64 dev_offset;
2583 u64 stripe_size;
2584 int i;
2585 int ret = 0;
2586
2587 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2588 if (IS_ERR(em))
2589 return PTR_ERR(em);
2590
2591 map = em->map_lookup;
2592 stripe_size = em->orig_block_len;
2593
2594 /*
2595 * Take the device list mutex to prevent races with the final phase of
2596 * a device replace operation that replaces the device object associated
2597 * with the map's stripes, because the device object's id can change
2598 * at any time during that final phase of the device replace operation
2599 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2600 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2601 * resulting in persisting a device extent item with such ID.
2602 */
2603 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2604 for (i = 0; i < map->num_stripes; i++) {
2605 device = map->stripes[i].dev;
2606 dev_offset = map->stripes[i].physical;
2607
2608 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2609 stripe_size);
2610 if (ret)
2611 break;
2612 }
2613 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2614
2615 free_extent_map(em);
2616 return ret;
2617 }
2618
2619 /*
2620 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2621 * chunk allocation.
2622 *
2623 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2624 * phases.
2625 */
2626 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2627 {
2628 struct btrfs_fs_info *fs_info = trans->fs_info;
2629 struct btrfs_block_group *block_group;
2630 int ret = 0;
2631
2632 while (!list_empty(&trans->new_bgs)) {
2633 int index;
2634
2635 block_group = list_first_entry(&trans->new_bgs,
2636 struct btrfs_block_group,
2637 bg_list);
2638 if (ret)
2639 goto next;
2640
2641 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2642
2643 ret = insert_block_group_item(trans, block_group);
2644 if (ret)
2645 btrfs_abort_transaction(trans, ret);
2646 if (!test_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED,
2647 &block_group->runtime_flags)) {
2648 mutex_lock(&fs_info->chunk_mutex);
2649 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2650 mutex_unlock(&fs_info->chunk_mutex);
2651 if (ret)
2652 btrfs_abort_transaction(trans, ret);
2653 }
2654 ret = insert_dev_extents(trans, block_group->start,
2655 block_group->length);
2656 if (ret)
2657 btrfs_abort_transaction(trans, ret);
2658 add_block_group_free_space(trans, block_group);
2659
2660 /*
2661 * If we restriped during balance, we may have added a new raid
2662 * type, so now add the sysfs entries when it is safe to do so.
2663 * We don't have to worry about locking here as it's handled in
2664 * btrfs_sysfs_add_block_group_type.
2665 */
2666 if (block_group->space_info->block_group_kobjs[index] == NULL)
2667 btrfs_sysfs_add_block_group_type(block_group);
2668
2669 /* Already aborted the transaction if it failed. */
2670 next:
2671 btrfs_delayed_refs_rsv_release(fs_info, 1);
2672 list_del_init(&block_group->bg_list);
2673 clear_bit(BLOCK_GROUP_FLAG_NEW, &block_group->runtime_flags);
2674 }
2675 btrfs_trans_release_chunk_metadata(trans);
2676 }
2677
2678 /*
2679 * For extent tree v2 we use the block_group_item->chunk_offset to point at our
2680 * global root id. For v1 it's always set to BTRFS_FIRST_CHUNK_TREE_OBJECTID.
2681 */
2682 static u64 calculate_global_root_id(struct btrfs_fs_info *fs_info, u64 offset)
2683 {
2684 u64 div = SZ_1G;
2685 u64 index;
2686
2687 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2688 return BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2689
2690 /* If we have a smaller fs index based on 128MiB. */
2691 if (btrfs_super_total_bytes(fs_info->super_copy) <= (SZ_1G * 10ULL))
2692 div = SZ_128M;
2693
2694 offset = div64_u64(offset, div);
2695 div64_u64_rem(offset, fs_info->nr_global_roots, &index);
2696 return index;
2697 }
2698
2699 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2700 u64 type,
2701 u64 chunk_offset, u64 size)
2702 {
2703 struct btrfs_fs_info *fs_info = trans->fs_info;
2704 struct btrfs_block_group *cache;
2705 int ret;
2706
2707 btrfs_set_log_full_commit(trans);
2708
2709 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2710 if (!cache)
2711 return ERR_PTR(-ENOMEM);
2712
2713 /*
2714 * Mark it as new before adding it to the rbtree of block groups or any
2715 * list, so that no other task finds it and calls btrfs_mark_bg_unused()
2716 * before the new flag is set.
2717 */
2718 set_bit(BLOCK_GROUP_FLAG_NEW, &cache->runtime_flags);
2719
2720 cache->length = size;
2721 set_free_space_tree_thresholds(cache);
2722 cache->flags = type;
2723 cache->cached = BTRFS_CACHE_FINISHED;
2724 cache->global_root_id = calculate_global_root_id(fs_info, cache->start);
2725
2726 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2727 set_bit(BLOCK_GROUP_FLAG_NEEDS_FREE_SPACE, &cache->runtime_flags);
2728
2729 ret = btrfs_load_block_group_zone_info(cache, true);
2730 if (ret) {
2731 btrfs_put_block_group(cache);
2732 return ERR_PTR(ret);
2733 }
2734
2735 ret = exclude_super_stripes(cache);
2736 if (ret) {
2737 /* We may have excluded something, so call this just in case */
2738 btrfs_free_excluded_extents(cache);
2739 btrfs_put_block_group(cache);
2740 return ERR_PTR(ret);
2741 }
2742
2743 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2744
2745 btrfs_free_excluded_extents(cache);
2746
2747 /*
2748 * Ensure the corresponding space_info object is created and
2749 * assigned to our block group. We want our bg to be added to the rbtree
2750 * with its ->space_info set.
2751 */
2752 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2753 ASSERT(cache->space_info);
2754
2755 ret = btrfs_add_block_group_cache(fs_info, cache);
2756 if (ret) {
2757 btrfs_remove_free_space_cache(cache);
2758 btrfs_put_block_group(cache);
2759 return ERR_PTR(ret);
2760 }
2761
2762 /*
2763 * Now that our block group has its ->space_info set and is inserted in
2764 * the rbtree, update the space info's counters.
2765 */
2766 trace_btrfs_add_block_group(fs_info, cache, 1);
2767 btrfs_add_bg_to_space_info(fs_info, cache);
2768 btrfs_update_global_block_rsv(fs_info);
2769
2770 #ifdef CONFIG_BTRFS_DEBUG
2771 if (btrfs_should_fragment_free_space(cache)) {
2772 cache->space_info->bytes_used += size >> 1;
2773 fragment_free_space(cache);
2774 }
2775 #endif
2776
2777 list_add_tail(&cache->bg_list, &trans->new_bgs);
2778 trans->delayed_ref_updates++;
2779 btrfs_update_delayed_refs_rsv(trans);
2780
2781 set_avail_alloc_bits(fs_info, type);
2782 return cache;
2783 }
2784
2785 /*
2786 * Mark one block group RO, can be called several times for the same block
2787 * group.
2788 *
2789 * @cache: the destination block group
2790 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2791 * ensure we still have some free space after marking this
2792 * block group RO.
2793 */
2794 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2795 bool do_chunk_alloc)
2796 {
2797 struct btrfs_fs_info *fs_info = cache->fs_info;
2798 struct btrfs_trans_handle *trans;
2799 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2800 u64 alloc_flags;
2801 int ret;
2802 bool dirty_bg_running;
2803
2804 /*
2805 * This can only happen when we are doing read-only scrub on read-only
2806 * mount.
2807 * In that case we should not start a new transaction on read-only fs.
2808 * Thus here we skip all chunk allocations.
2809 */
2810 if (sb_rdonly(fs_info->sb)) {
2811 mutex_lock(&fs_info->ro_block_group_mutex);
2812 ret = inc_block_group_ro(cache, 0);
2813 mutex_unlock(&fs_info->ro_block_group_mutex);
2814 return ret;
2815 }
2816
2817 do {
2818 trans = btrfs_join_transaction(root);
2819 if (IS_ERR(trans))
2820 return PTR_ERR(trans);
2821
2822 dirty_bg_running = false;
2823
2824 /*
2825 * We're not allowed to set block groups readonly after the dirty
2826 * block group cache has started writing. If it already started,
2827 * back off and let this transaction commit.
2828 */
2829 mutex_lock(&fs_info->ro_block_group_mutex);
2830 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2831 u64 transid = trans->transid;
2832
2833 mutex_unlock(&fs_info->ro_block_group_mutex);
2834 btrfs_end_transaction(trans);
2835
2836 ret = btrfs_wait_for_commit(fs_info, transid);
2837 if (ret)
2838 return ret;
2839 dirty_bg_running = true;
2840 }
2841 } while (dirty_bg_running);
2842
2843 if (do_chunk_alloc) {
2844 /*
2845 * If we are changing raid levels, try to allocate a
2846 * corresponding block group with the new raid level.
2847 */
2848 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2849 if (alloc_flags != cache->flags) {
2850 ret = btrfs_chunk_alloc(trans, alloc_flags,
2851 CHUNK_ALLOC_FORCE);
2852 /*
2853 * ENOSPC is allowed here, we may have enough space
2854 * already allocated at the new raid level to carry on
2855 */
2856 if (ret == -ENOSPC)
2857 ret = 0;
2858 if (ret < 0)
2859 goto out;
2860 }
2861 }
2862
2863 ret = inc_block_group_ro(cache, 0);
2864 if (!ret)
2865 goto out;
2866 if (ret == -ETXTBSY)
2867 goto unlock_out;
2868
2869 /*
2870 * Skip chunk alloction if the bg is SYSTEM, this is to avoid system
2871 * chunk allocation storm to exhaust the system chunk array. Otherwise
2872 * we still want to try our best to mark the block group read-only.
2873 */
2874 if (!do_chunk_alloc && ret == -ENOSPC &&
2875 (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM))
2876 goto unlock_out;
2877
2878 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2879 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2880 if (ret < 0)
2881 goto out;
2882 /*
2883 * We have allocated a new chunk. We also need to activate that chunk to
2884 * grant metadata tickets for zoned filesystem.
2885 */
2886 ret = btrfs_zoned_activate_one_bg(fs_info, cache->space_info, true);
2887 if (ret < 0)
2888 goto out;
2889
2890 ret = inc_block_group_ro(cache, 0);
2891 if (ret == -ETXTBSY)
2892 goto unlock_out;
2893 out:
2894 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2895 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2896 mutex_lock(&fs_info->chunk_mutex);
2897 check_system_chunk(trans, alloc_flags);
2898 mutex_unlock(&fs_info->chunk_mutex);
2899 }
2900 unlock_out:
2901 mutex_unlock(&fs_info->ro_block_group_mutex);
2902
2903 btrfs_end_transaction(trans);
2904 return ret;
2905 }
2906
2907 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2908 {
2909 struct btrfs_space_info *sinfo = cache->space_info;
2910 u64 num_bytes;
2911
2912 BUG_ON(!cache->ro);
2913
2914 spin_lock(&sinfo->lock);
2915 spin_lock(&cache->lock);
2916 if (!--cache->ro) {
2917 if (btrfs_is_zoned(cache->fs_info)) {
2918 /* Migrate zone_unusable bytes back */
2919 cache->zone_unusable =
2920 (cache->alloc_offset - cache->used) +
2921 (cache->length - cache->zone_capacity);
2922 sinfo->bytes_zone_unusable += cache->zone_unusable;
2923 sinfo->bytes_readonly -= cache->zone_unusable;
2924 }
2925 num_bytes = cache->length - cache->reserved -
2926 cache->pinned - cache->bytes_super -
2927 cache->zone_unusable - cache->used;
2928 sinfo->bytes_readonly -= num_bytes;
2929 list_del_init(&cache->ro_list);
2930 }
2931 spin_unlock(&cache->lock);
2932 spin_unlock(&sinfo->lock);
2933 }
2934
2935 static int update_block_group_item(struct btrfs_trans_handle *trans,
2936 struct btrfs_path *path,
2937 struct btrfs_block_group *cache)
2938 {
2939 struct btrfs_fs_info *fs_info = trans->fs_info;
2940 int ret;
2941 struct btrfs_root *root = btrfs_block_group_root(fs_info);
2942 unsigned long bi;
2943 struct extent_buffer *leaf;
2944 struct btrfs_block_group_item bgi;
2945 struct btrfs_key key;
2946 u64 old_commit_used;
2947 u64 used;
2948
2949 /*
2950 * Block group items update can be triggered out of commit transaction
2951 * critical section, thus we need a consistent view of used bytes.
2952 * We cannot use cache->used directly outside of the spin lock, as it
2953 * may be changed.
2954 */
2955 spin_lock(&cache->lock);
2956 old_commit_used = cache->commit_used;
2957 used = cache->used;
2958 /* No change in used bytes, can safely skip it. */
2959 if (cache->commit_used == used) {
2960 spin_unlock(&cache->lock);
2961 return 0;
2962 }
2963 cache->commit_used = used;
2964 spin_unlock(&cache->lock);
2965
2966 key.objectid = cache->start;
2967 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2968 key.offset = cache->length;
2969
2970 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2971 if (ret) {
2972 if (ret > 0)
2973 ret = -ENOENT;
2974 goto fail;
2975 }
2976
2977 leaf = path->nodes[0];
2978 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2979 btrfs_set_stack_block_group_used(&bgi, used);
2980 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2981 cache->global_root_id);
2982 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2983 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2984 btrfs_mark_buffer_dirty(leaf);
2985 fail:
2986 btrfs_release_path(path);
2987 /* We didn't update the block group item, need to revert @commit_used. */
2988 if (ret < 0) {
2989 spin_lock(&cache->lock);
2990 cache->commit_used = old_commit_used;
2991 spin_unlock(&cache->lock);
2992 }
2993 return ret;
2994
2995 }
2996
2997 static int cache_save_setup(struct btrfs_block_group *block_group,
2998 struct btrfs_trans_handle *trans,
2999 struct btrfs_path *path)
3000 {
3001 struct btrfs_fs_info *fs_info = block_group->fs_info;
3002 struct btrfs_root *root = fs_info->tree_root;
3003 struct inode *inode = NULL;
3004 struct extent_changeset *data_reserved = NULL;
3005 u64 alloc_hint = 0;
3006 int dcs = BTRFS_DC_ERROR;
3007 u64 cache_size = 0;
3008 int retries = 0;
3009 int ret = 0;
3010
3011 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
3012 return 0;
3013
3014 /*
3015 * If this block group is smaller than 100 megs don't bother caching the
3016 * block group.
3017 */
3018 if (block_group->length < (100 * SZ_1M)) {
3019 spin_lock(&block_group->lock);
3020 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3021 spin_unlock(&block_group->lock);
3022 return 0;
3023 }
3024
3025 if (TRANS_ABORTED(trans))
3026 return 0;
3027 again:
3028 inode = lookup_free_space_inode(block_group, path);
3029 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3030 ret = PTR_ERR(inode);
3031 btrfs_release_path(path);
3032 goto out;
3033 }
3034
3035 if (IS_ERR(inode)) {
3036 BUG_ON(retries);
3037 retries++;
3038
3039 if (block_group->ro)
3040 goto out_free;
3041
3042 ret = create_free_space_inode(trans, block_group, path);
3043 if (ret)
3044 goto out_free;
3045 goto again;
3046 }
3047
3048 /*
3049 * We want to set the generation to 0, that way if anything goes wrong
3050 * from here on out we know not to trust this cache when we load up next
3051 * time.
3052 */
3053 BTRFS_I(inode)->generation = 0;
3054 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
3055 if (ret) {
3056 /*
3057 * So theoretically we could recover from this, simply set the
3058 * super cache generation to 0 so we know to invalidate the
3059 * cache, but then we'd have to keep track of the block groups
3060 * that fail this way so we know we _have_ to reset this cache
3061 * before the next commit or risk reading stale cache. So to
3062 * limit our exposure to horrible edge cases lets just abort the
3063 * transaction, this only happens in really bad situations
3064 * anyway.
3065 */
3066 btrfs_abort_transaction(trans, ret);
3067 goto out_put;
3068 }
3069 WARN_ON(ret);
3070
3071 /* We've already setup this transaction, go ahead and exit */
3072 if (block_group->cache_generation == trans->transid &&
3073 i_size_read(inode)) {
3074 dcs = BTRFS_DC_SETUP;
3075 goto out_put;
3076 }
3077
3078 if (i_size_read(inode) > 0) {
3079 ret = btrfs_check_trunc_cache_free_space(fs_info,
3080 &fs_info->global_block_rsv);
3081 if (ret)
3082 goto out_put;
3083
3084 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3085 if (ret)
3086 goto out_put;
3087 }
3088
3089 spin_lock(&block_group->lock);
3090 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3091 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3092 /*
3093 * don't bother trying to write stuff out _if_
3094 * a) we're not cached,
3095 * b) we're with nospace_cache mount option,
3096 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3097 */
3098 dcs = BTRFS_DC_WRITTEN;
3099 spin_unlock(&block_group->lock);
3100 goto out_put;
3101 }
3102 spin_unlock(&block_group->lock);
3103
3104 /*
3105 * We hit an ENOSPC when setting up the cache in this transaction, just
3106 * skip doing the setup, we've already cleared the cache so we're safe.
3107 */
3108 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3109 ret = -ENOSPC;
3110 goto out_put;
3111 }
3112
3113 /*
3114 * Try to preallocate enough space based on how big the block group is.
3115 * Keep in mind this has to include any pinned space which could end up
3116 * taking up quite a bit since it's not folded into the other space
3117 * cache.
3118 */
3119 cache_size = div_u64(block_group->length, SZ_256M);
3120 if (!cache_size)
3121 cache_size = 1;
3122
3123 cache_size *= 16;
3124 cache_size *= fs_info->sectorsize;
3125
3126 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
3127 cache_size, false);
3128 if (ret)
3129 goto out_put;
3130
3131 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
3132 cache_size, cache_size,
3133 &alloc_hint);
3134 /*
3135 * Our cache requires contiguous chunks so that we don't modify a bunch
3136 * of metadata or split extents when writing the cache out, which means
3137 * we can enospc if we are heavily fragmented in addition to just normal
3138 * out of space conditions. So if we hit this just skip setting up any
3139 * other block groups for this transaction, maybe we'll unpin enough
3140 * space the next time around.
3141 */
3142 if (!ret)
3143 dcs = BTRFS_DC_SETUP;
3144 else if (ret == -ENOSPC)
3145 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3146
3147 out_put:
3148 iput(inode);
3149 out_free:
3150 btrfs_release_path(path);
3151 out:
3152 spin_lock(&block_group->lock);
3153 if (!ret && dcs == BTRFS_DC_SETUP)
3154 block_group->cache_generation = trans->transid;
3155 block_group->disk_cache_state = dcs;
3156 spin_unlock(&block_group->lock);
3157
3158 extent_changeset_free(data_reserved);
3159 return ret;
3160 }
3161
3162 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
3163 {
3164 struct btrfs_fs_info *fs_info = trans->fs_info;
3165 struct btrfs_block_group *cache, *tmp;
3166 struct btrfs_transaction *cur_trans = trans->transaction;
3167 struct btrfs_path *path;
3168
3169 if (list_empty(&cur_trans->dirty_bgs) ||
3170 !btrfs_test_opt(fs_info, SPACE_CACHE))
3171 return 0;
3172
3173 path = btrfs_alloc_path();
3174 if (!path)
3175 return -ENOMEM;
3176
3177 /* Could add new block groups, use _safe just in case */
3178 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3179 dirty_list) {
3180 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3181 cache_save_setup(cache, trans, path);
3182 }
3183
3184 btrfs_free_path(path);
3185 return 0;
3186 }
3187
3188 /*
3189 * Transaction commit does final block group cache writeback during a critical
3190 * section where nothing is allowed to change the FS. This is required in
3191 * order for the cache to actually match the block group, but can introduce a
3192 * lot of latency into the commit.
3193 *
3194 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
3195 * There's a chance we'll have to redo some of it if the block group changes
3196 * again during the commit, but it greatly reduces the commit latency by
3197 * getting rid of the easy block groups while we're still allowing others to
3198 * join the commit.
3199 */
3200 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3201 {
3202 struct btrfs_fs_info *fs_info = trans->fs_info;
3203 struct btrfs_block_group *cache;
3204 struct btrfs_transaction *cur_trans = trans->transaction;
3205 int ret = 0;
3206 int should_put;
3207 struct btrfs_path *path = NULL;
3208 LIST_HEAD(dirty);
3209 struct list_head *io = &cur_trans->io_bgs;
3210 int loops = 0;
3211
3212 spin_lock(&cur_trans->dirty_bgs_lock);
3213 if (list_empty(&cur_trans->dirty_bgs)) {
3214 spin_unlock(&cur_trans->dirty_bgs_lock);
3215 return 0;
3216 }
3217 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3218 spin_unlock(&cur_trans->dirty_bgs_lock);
3219
3220 again:
3221 /* Make sure all the block groups on our dirty list actually exist */
3222 btrfs_create_pending_block_groups(trans);
3223
3224 if (!path) {
3225 path = btrfs_alloc_path();
3226 if (!path) {
3227 ret = -ENOMEM;
3228 goto out;
3229 }
3230 }
3231
3232 /*
3233 * cache_write_mutex is here only to save us from balance or automatic
3234 * removal of empty block groups deleting this block group while we are
3235 * writing out the cache
3236 */
3237 mutex_lock(&trans->transaction->cache_write_mutex);
3238 while (!list_empty(&dirty)) {
3239 bool drop_reserve = true;
3240
3241 cache = list_first_entry(&dirty, struct btrfs_block_group,
3242 dirty_list);
3243 /*
3244 * This can happen if something re-dirties a block group that
3245 * is already under IO. Just wait for it to finish and then do
3246 * it all again
3247 */
3248 if (!list_empty(&cache->io_list)) {
3249 list_del_init(&cache->io_list);
3250 btrfs_wait_cache_io(trans, cache, path);
3251 btrfs_put_block_group(cache);
3252 }
3253
3254
3255 /*
3256 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
3257 * it should update the cache_state. Don't delete until after
3258 * we wait.
3259 *
3260 * Since we're not running in the commit critical section
3261 * we need the dirty_bgs_lock to protect from update_block_group
3262 */
3263 spin_lock(&cur_trans->dirty_bgs_lock);
3264 list_del_init(&cache->dirty_list);
3265 spin_unlock(&cur_trans->dirty_bgs_lock);
3266
3267 should_put = 1;
3268
3269 cache_save_setup(cache, trans, path);
3270
3271 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3272 cache->io_ctl.inode = NULL;
3273 ret = btrfs_write_out_cache(trans, cache, path);
3274 if (ret == 0 && cache->io_ctl.inode) {
3275 should_put = 0;
3276
3277 /*
3278 * The cache_write_mutex is protecting the
3279 * io_list, also refer to the definition of
3280 * btrfs_transaction::io_bgs for more details
3281 */
3282 list_add_tail(&cache->io_list, io);
3283 } else {
3284 /*
3285 * If we failed to write the cache, the
3286 * generation will be bad and life goes on
3287 */
3288 ret = 0;
3289 }
3290 }
3291 if (!ret) {
3292 ret = update_block_group_item(trans, path, cache);
3293 /*
3294 * Our block group might still be attached to the list
3295 * of new block groups in the transaction handle of some
3296 * other task (struct btrfs_trans_handle->new_bgs). This
3297 * means its block group item isn't yet in the extent
3298 * tree. If this happens ignore the error, as we will
3299 * try again later in the critical section of the
3300 * transaction commit.
3301 */
3302 if (ret == -ENOENT) {
3303 ret = 0;
3304 spin_lock(&cur_trans->dirty_bgs_lock);
3305 if (list_empty(&cache->dirty_list)) {
3306 list_add_tail(&cache->dirty_list,
3307 &cur_trans->dirty_bgs);
3308 btrfs_get_block_group(cache);
3309 drop_reserve = false;
3310 }
3311 spin_unlock(&cur_trans->dirty_bgs_lock);
3312 } else if (ret) {
3313 btrfs_abort_transaction(trans, ret);
3314 }
3315 }
3316
3317 /* If it's not on the io list, we need to put the block group */
3318 if (should_put)
3319 btrfs_put_block_group(cache);
3320 if (drop_reserve)
3321 btrfs_delayed_refs_rsv_release(fs_info, 1);
3322 /*
3323 * Avoid blocking other tasks for too long. It might even save
3324 * us from writing caches for block groups that are going to be
3325 * removed.
3326 */
3327 mutex_unlock(&trans->transaction->cache_write_mutex);
3328 if (ret)
3329 goto out;
3330 mutex_lock(&trans->transaction->cache_write_mutex);
3331 }
3332 mutex_unlock(&trans->transaction->cache_write_mutex);
3333
3334 /*
3335 * Go through delayed refs for all the stuff we've just kicked off
3336 * and then loop back (just once)
3337 */
3338 if (!ret)
3339 ret = btrfs_run_delayed_refs(trans, 0);
3340 if (!ret && loops == 0) {
3341 loops++;
3342 spin_lock(&cur_trans->dirty_bgs_lock);
3343 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3344 /*
3345 * dirty_bgs_lock protects us from concurrent block group
3346 * deletes too (not just cache_write_mutex).
3347 */
3348 if (!list_empty(&dirty)) {
3349 spin_unlock(&cur_trans->dirty_bgs_lock);
3350 goto again;
3351 }
3352 spin_unlock(&cur_trans->dirty_bgs_lock);
3353 }
3354 out:
3355 if (ret < 0) {
3356 spin_lock(&cur_trans->dirty_bgs_lock);
3357 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3358 spin_unlock(&cur_trans->dirty_bgs_lock);
3359 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3360 }
3361
3362 btrfs_free_path(path);
3363 return ret;
3364 }
3365
3366 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3367 {
3368 struct btrfs_fs_info *fs_info = trans->fs_info;
3369 struct btrfs_block_group *cache;
3370 struct btrfs_transaction *cur_trans = trans->transaction;
3371 int ret = 0;
3372 int should_put;
3373 struct btrfs_path *path;
3374 struct list_head *io = &cur_trans->io_bgs;
3375
3376 path = btrfs_alloc_path();
3377 if (!path)
3378 return -ENOMEM;
3379
3380 /*
3381 * Even though we are in the critical section of the transaction commit,
3382 * we can still have concurrent tasks adding elements to this
3383 * transaction's list of dirty block groups. These tasks correspond to
3384 * endio free space workers started when writeback finishes for a
3385 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3386 * allocate new block groups as a result of COWing nodes of the root
3387 * tree when updating the free space inode. The writeback for the space
3388 * caches is triggered by an earlier call to
3389 * btrfs_start_dirty_block_groups() and iterations of the following
3390 * loop.
3391 * Also we want to do the cache_save_setup first and then run the
3392 * delayed refs to make sure we have the best chance at doing this all
3393 * in one shot.
3394 */
3395 spin_lock(&cur_trans->dirty_bgs_lock);
3396 while (!list_empty(&cur_trans->dirty_bgs)) {
3397 cache = list_first_entry(&cur_trans->dirty_bgs,
3398 struct btrfs_block_group,
3399 dirty_list);
3400
3401 /*
3402 * This can happen if cache_save_setup re-dirties a block group
3403 * that is already under IO. Just wait for it to finish and
3404 * then do it all again
3405 */
3406 if (!list_empty(&cache->io_list)) {
3407 spin_unlock(&cur_trans->dirty_bgs_lock);
3408 list_del_init(&cache->io_list);
3409 btrfs_wait_cache_io(trans, cache, path);
3410 btrfs_put_block_group(cache);
3411 spin_lock(&cur_trans->dirty_bgs_lock);
3412 }
3413
3414 /*
3415 * Don't remove from the dirty list until after we've waited on
3416 * any pending IO
3417 */
3418 list_del_init(&cache->dirty_list);
3419 spin_unlock(&cur_trans->dirty_bgs_lock);
3420 should_put = 1;
3421
3422 cache_save_setup(cache, trans, path);
3423
3424 if (!ret)
3425 ret = btrfs_run_delayed_refs(trans,
3426 (unsigned long) -1);
3427
3428 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3429 cache->io_ctl.inode = NULL;
3430 ret = btrfs_write_out_cache(trans, cache, path);
3431 if (ret == 0 && cache->io_ctl.inode) {
3432 should_put = 0;
3433 list_add_tail(&cache->io_list, io);
3434 } else {
3435 /*
3436 * If we failed to write the cache, the
3437 * generation will be bad and life goes on
3438 */
3439 ret = 0;
3440 }
3441 }
3442 if (!ret) {
3443 ret = update_block_group_item(trans, path, cache);
3444 /*
3445 * One of the free space endio workers might have
3446 * created a new block group while updating a free space
3447 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3448 * and hasn't released its transaction handle yet, in
3449 * which case the new block group is still attached to
3450 * its transaction handle and its creation has not
3451 * finished yet (no block group item in the extent tree
3452 * yet, etc). If this is the case, wait for all free
3453 * space endio workers to finish and retry. This is a
3454 * very rare case so no need for a more efficient and
3455 * complex approach.
3456 */
3457 if (ret == -ENOENT) {
3458 wait_event(cur_trans->writer_wait,
3459 atomic_read(&cur_trans->num_writers) == 1);
3460 ret = update_block_group_item(trans, path, cache);
3461 }
3462 if (ret)
3463 btrfs_abort_transaction(trans, ret);
3464 }
3465
3466 /* If its not on the io list, we need to put the block group */
3467 if (should_put)
3468 btrfs_put_block_group(cache);
3469 btrfs_delayed_refs_rsv_release(fs_info, 1);
3470 spin_lock(&cur_trans->dirty_bgs_lock);
3471 }
3472 spin_unlock(&cur_trans->dirty_bgs_lock);
3473
3474 /*
3475 * Refer to the definition of io_bgs member for details why it's safe
3476 * to use it without any locking
3477 */
3478 while (!list_empty(io)) {
3479 cache = list_first_entry(io, struct btrfs_block_group,
3480 io_list);
3481 list_del_init(&cache->io_list);
3482 btrfs_wait_cache_io(trans, cache, path);
3483 btrfs_put_block_group(cache);
3484 }
3485
3486 btrfs_free_path(path);
3487 return ret;
3488 }
3489
3490 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3491 u64 bytenr, u64 num_bytes, bool alloc)
3492 {
3493 struct btrfs_fs_info *info = trans->fs_info;
3494 struct btrfs_block_group *cache = NULL;
3495 u64 total = num_bytes;
3496 u64 old_val;
3497 u64 byte_in_group;
3498 int factor;
3499 int ret = 0;
3500
3501 /* Block accounting for super block */
3502 spin_lock(&info->delalloc_root_lock);
3503 old_val = btrfs_super_bytes_used(info->super_copy);
3504 if (alloc)
3505 old_val += num_bytes;
3506 else
3507 old_val -= num_bytes;
3508 btrfs_set_super_bytes_used(info->super_copy, old_val);
3509 spin_unlock(&info->delalloc_root_lock);
3510
3511 while (total) {
3512 struct btrfs_space_info *space_info;
3513 bool reclaim = false;
3514
3515 cache = btrfs_lookup_block_group(info, bytenr);
3516 if (!cache) {
3517 ret = -ENOENT;
3518 break;
3519 }
3520 space_info = cache->space_info;
3521 factor = btrfs_bg_type_to_factor(cache->flags);
3522
3523 /*
3524 * If this block group has free space cache written out, we
3525 * need to make sure to load it if we are removing space. This
3526 * is because we need the unpinning stage to actually add the
3527 * space back to the block group, otherwise we will leak space.
3528 */
3529 if (!alloc && !btrfs_block_group_done(cache))
3530 btrfs_cache_block_group(cache, true);
3531
3532 byte_in_group = bytenr - cache->start;
3533 WARN_ON(byte_in_group > cache->length);
3534
3535 spin_lock(&space_info->lock);
3536 spin_lock(&cache->lock);
3537
3538 if (btrfs_test_opt(info, SPACE_CACHE) &&
3539 cache->disk_cache_state < BTRFS_DC_CLEAR)
3540 cache->disk_cache_state = BTRFS_DC_CLEAR;
3541
3542 old_val = cache->used;
3543 num_bytes = min(total, cache->length - byte_in_group);
3544 if (alloc) {
3545 old_val += num_bytes;
3546 cache->used = old_val;
3547 cache->reserved -= num_bytes;
3548 space_info->bytes_reserved -= num_bytes;
3549 space_info->bytes_used += num_bytes;
3550 space_info->disk_used += num_bytes * factor;
3551 spin_unlock(&cache->lock);
3552 spin_unlock(&space_info->lock);
3553 } else {
3554 old_val -= num_bytes;
3555 cache->used = old_val;
3556 cache->pinned += num_bytes;
3557 btrfs_space_info_update_bytes_pinned(info, space_info,
3558 num_bytes);
3559 space_info->bytes_used -= num_bytes;
3560 space_info->disk_used -= num_bytes * factor;
3561
3562 reclaim = should_reclaim_block_group(cache, num_bytes);
3563
3564 spin_unlock(&cache->lock);
3565 spin_unlock(&space_info->lock);
3566
3567 set_extent_bit(&trans->transaction->pinned_extents,
3568 bytenr, bytenr + num_bytes - 1,
3569 EXTENT_DIRTY, NULL);
3570 }
3571
3572 spin_lock(&trans->transaction->dirty_bgs_lock);
3573 if (list_empty(&cache->dirty_list)) {
3574 list_add_tail(&cache->dirty_list,
3575 &trans->transaction->dirty_bgs);
3576 trans->delayed_ref_updates++;
3577 btrfs_get_block_group(cache);
3578 }
3579 spin_unlock(&trans->transaction->dirty_bgs_lock);
3580
3581 /*
3582 * No longer have used bytes in this block group, queue it for
3583 * deletion. We do this after adding the block group to the
3584 * dirty list to avoid races between cleaner kthread and space
3585 * cache writeout.
3586 */
3587 if (!alloc && old_val == 0) {
3588 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3589 btrfs_mark_bg_unused(cache);
3590 } else if (!alloc && reclaim) {
3591 btrfs_mark_bg_to_reclaim(cache);
3592 }
3593
3594 btrfs_put_block_group(cache);
3595 total -= num_bytes;
3596 bytenr += num_bytes;
3597 }
3598
3599 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3600 btrfs_update_delayed_refs_rsv(trans);
3601 return ret;
3602 }
3603
3604 /*
3605 * Update the block_group and space info counters.
3606 *
3607 * @cache: The cache we are manipulating
3608 * @ram_bytes: The number of bytes of file content, and will be same to
3609 * @num_bytes except for the compress path.
3610 * @num_bytes: The number of bytes in question
3611 * @delalloc: The blocks are allocated for the delalloc write
3612 *
3613 * This is called by the allocator when it reserves space. If this is a
3614 * reservation and the block group has become read only we cannot make the
3615 * reservation and return -EAGAIN, otherwise this function always succeeds.
3616 */
3617 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3618 u64 ram_bytes, u64 num_bytes, int delalloc,
3619 bool force_wrong_size_class)
3620 {
3621 struct btrfs_space_info *space_info = cache->space_info;
3622 enum btrfs_block_group_size_class size_class;
3623 int ret = 0;
3624
3625 spin_lock(&space_info->lock);
3626 spin_lock(&cache->lock);
3627 if (cache->ro) {
3628 ret = -EAGAIN;
3629 goto out;
3630 }
3631
3632 if (btrfs_block_group_should_use_size_class(cache)) {
3633 size_class = btrfs_calc_block_group_size_class(num_bytes);
3634 ret = btrfs_use_block_group_size_class(cache, size_class, force_wrong_size_class);
3635 if (ret)
3636 goto out;
3637 }
3638 cache->reserved += num_bytes;
3639 space_info->bytes_reserved += num_bytes;
3640 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3641 space_info->flags, num_bytes, 1);
3642 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3643 space_info, -ram_bytes);
3644 if (delalloc)
3645 cache->delalloc_bytes += num_bytes;
3646
3647 /*
3648 * Compression can use less space than we reserved, so wake tickets if
3649 * that happens.
3650 */
3651 if (num_bytes < ram_bytes)
3652 btrfs_try_granting_tickets(cache->fs_info, space_info);
3653 out:
3654 spin_unlock(&cache->lock);
3655 spin_unlock(&space_info->lock);
3656 return ret;
3657 }
3658
3659 /*
3660 * Update the block_group and space info counters.
3661 *
3662 * @cache: The cache we are manipulating
3663 * @num_bytes: The number of bytes in question
3664 * @delalloc: The blocks are allocated for the delalloc write
3665 *
3666 * This is called by somebody who is freeing space that was never actually used
3667 * on disk. For example if you reserve some space for a new leaf in transaction
3668 * A and before transaction A commits you free that leaf, you call this with
3669 * reserve set to 0 in order to clear the reservation.
3670 */
3671 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3672 u64 num_bytes, int delalloc)
3673 {
3674 struct btrfs_space_info *space_info = cache->space_info;
3675
3676 spin_lock(&space_info->lock);
3677 spin_lock(&cache->lock);
3678 if (cache->ro)
3679 space_info->bytes_readonly += num_bytes;
3680 cache->reserved -= num_bytes;
3681 space_info->bytes_reserved -= num_bytes;
3682 space_info->max_extent_size = 0;
3683
3684 if (delalloc)
3685 cache->delalloc_bytes -= num_bytes;
3686 spin_unlock(&cache->lock);
3687
3688 btrfs_try_granting_tickets(cache->fs_info, space_info);
3689 spin_unlock(&space_info->lock);
3690 }
3691
3692 static void force_metadata_allocation(struct btrfs_fs_info *info)
3693 {
3694 struct list_head *head = &info->space_info;
3695 struct btrfs_space_info *found;
3696
3697 list_for_each_entry(found, head, list) {
3698 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3699 found->force_alloc = CHUNK_ALLOC_FORCE;
3700 }
3701 }
3702
3703 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3704 struct btrfs_space_info *sinfo, int force)
3705 {
3706 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3707 u64 thresh;
3708
3709 if (force == CHUNK_ALLOC_FORCE)
3710 return 1;
3711
3712 /*
3713 * in limited mode, we want to have some free space up to
3714 * about 1% of the FS size.
3715 */
3716 if (force == CHUNK_ALLOC_LIMITED) {
3717 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3718 thresh = max_t(u64, SZ_64M, mult_perc(thresh, 1));
3719
3720 if (sinfo->total_bytes - bytes_used < thresh)
3721 return 1;
3722 }
3723
3724 if (bytes_used + SZ_2M < mult_perc(sinfo->total_bytes, 80))
3725 return 0;
3726 return 1;
3727 }
3728
3729 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3730 {
3731 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3732
3733 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3734 }
3735
3736 static struct btrfs_block_group *do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3737 {
3738 struct btrfs_block_group *bg;
3739 int ret;
3740
3741 /*
3742 * Check if we have enough space in the system space info because we
3743 * will need to update device items in the chunk btree and insert a new
3744 * chunk item in the chunk btree as well. This will allocate a new
3745 * system block group if needed.
3746 */
3747 check_system_chunk(trans, flags);
3748
3749 bg = btrfs_create_chunk(trans, flags);
3750 if (IS_ERR(bg)) {
3751 ret = PTR_ERR(bg);
3752 goto out;
3753 }
3754
3755 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3756 /*
3757 * Normally we are not expected to fail with -ENOSPC here, since we have
3758 * previously reserved space in the system space_info and allocated one
3759 * new system chunk if necessary. However there are three exceptions:
3760 *
3761 * 1) We may have enough free space in the system space_info but all the
3762 * existing system block groups have a profile which can not be used
3763 * for extent allocation.
3764 *
3765 * This happens when mounting in degraded mode. For example we have a
3766 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3767 * using the other device in degraded mode. If we then allocate a chunk,
3768 * we may have enough free space in the existing system space_info, but
3769 * none of the block groups can be used for extent allocation since they
3770 * have a RAID1 profile, and because we are in degraded mode with a
3771 * single device, we are forced to allocate a new system chunk with a
3772 * SINGLE profile. Making check_system_chunk() iterate over all system
3773 * block groups and check if they have a usable profile and enough space
3774 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3775 * try again after forcing allocation of a new system chunk. Like this
3776 * we avoid paying the cost of that search in normal circumstances, when
3777 * we were not mounted in degraded mode;
3778 *
3779 * 2) We had enough free space info the system space_info, and one suitable
3780 * block group to allocate from when we called check_system_chunk()
3781 * above. However right after we called it, the only system block group
3782 * with enough free space got turned into RO mode by a running scrub,
3783 * and in this case we have to allocate a new one and retry. We only
3784 * need do this allocate and retry once, since we have a transaction
3785 * handle and scrub uses the commit root to search for block groups;
3786 *
3787 * 3) We had one system block group with enough free space when we called
3788 * check_system_chunk(), but after that, right before we tried to
3789 * allocate the last extent buffer we needed, a discard operation came
3790 * in and it temporarily removed the last free space entry from the
3791 * block group (discard removes a free space entry, discards it, and
3792 * then adds back the entry to the block group cache).
3793 */
3794 if (ret == -ENOSPC) {
3795 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3796 struct btrfs_block_group *sys_bg;
3797
3798 sys_bg = btrfs_create_chunk(trans, sys_flags);
3799 if (IS_ERR(sys_bg)) {
3800 ret = PTR_ERR(sys_bg);
3801 btrfs_abort_transaction(trans, ret);
3802 goto out;
3803 }
3804
3805 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3806 if (ret) {
3807 btrfs_abort_transaction(trans, ret);
3808 goto out;
3809 }
3810
3811 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3812 if (ret) {
3813 btrfs_abort_transaction(trans, ret);
3814 goto out;
3815 }
3816 } else if (ret) {
3817 btrfs_abort_transaction(trans, ret);
3818 goto out;
3819 }
3820 out:
3821 btrfs_trans_release_chunk_metadata(trans);
3822
3823 if (ret)
3824 return ERR_PTR(ret);
3825
3826 btrfs_get_block_group(bg);
3827 return bg;
3828 }
3829
3830 /*
3831 * Chunk allocation is done in 2 phases:
3832 *
3833 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3834 * the chunk, the chunk mapping, create its block group and add the items
3835 * that belong in the chunk btree to it - more specifically, we need to
3836 * update device items in the chunk btree and add a new chunk item to it.
3837 *
3838 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3839 * group item to the extent btree and the device extent items to the devices
3840 * btree.
3841 *
3842 * This is done to prevent deadlocks. For example when COWing a node from the
3843 * extent btree we are holding a write lock on the node's parent and if we
3844 * trigger chunk allocation and attempted to insert the new block group item
3845 * in the extent btree right way, we could deadlock because the path for the
3846 * insertion can include that parent node. At first glance it seems impossible
3847 * to trigger chunk allocation after starting a transaction since tasks should
3848 * reserve enough transaction units (metadata space), however while that is true
3849 * most of the time, chunk allocation may still be triggered for several reasons:
3850 *
3851 * 1) When reserving metadata, we check if there is enough free space in the
3852 * metadata space_info and therefore don't trigger allocation of a new chunk.
3853 * However later when the task actually tries to COW an extent buffer from
3854 * the extent btree or from the device btree for example, it is forced to
3855 * allocate a new block group (chunk) because the only one that had enough
3856 * free space was just turned to RO mode by a running scrub for example (or
3857 * device replace, block group reclaim thread, etc), so we can not use it
3858 * for allocating an extent and end up being forced to allocate a new one;
3859 *
3860 * 2) Because we only check that the metadata space_info has enough free bytes,
3861 * we end up not allocating a new metadata chunk in that case. However if
3862 * the filesystem was mounted in degraded mode, none of the existing block
3863 * groups might be suitable for extent allocation due to their incompatible
3864 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3865 * use a RAID1 profile, in degraded mode using a single device). In this case
3866 * when the task attempts to COW some extent buffer of the extent btree for
3867 * example, it will trigger allocation of a new metadata block group with a
3868 * suitable profile (SINGLE profile in the example of the degraded mount of
3869 * the RAID1 filesystem);
3870 *
3871 * 3) The task has reserved enough transaction units / metadata space, but when
3872 * it attempts to COW an extent buffer from the extent or device btree for
3873 * example, it does not find any free extent in any metadata block group,
3874 * therefore forced to try to allocate a new metadata block group.
3875 * This is because some other task allocated all available extents in the
3876 * meanwhile - this typically happens with tasks that don't reserve space
3877 * properly, either intentionally or as a bug. One example where this is
3878 * done intentionally is fsync, as it does not reserve any transaction units
3879 * and ends up allocating a variable number of metadata extents for log
3880 * tree extent buffers;
3881 *
3882 * 4) The task has reserved enough transaction units / metadata space, but right
3883 * before it tries to allocate the last extent buffer it needs, a discard
3884 * operation comes in and, temporarily, removes the last free space entry from
3885 * the only metadata block group that had free space (discard starts by
3886 * removing a free space entry from a block group, then does the discard
3887 * operation and, once it's done, it adds back the free space entry to the
3888 * block group).
3889 *
3890 * We also need this 2 phases setup when adding a device to a filesystem with
3891 * a seed device - we must create new metadata and system chunks without adding
3892 * any of the block group items to the chunk, extent and device btrees. If we
3893 * did not do it this way, we would get ENOSPC when attempting to update those
3894 * btrees, since all the chunks from the seed device are read-only.
3895 *
3896 * Phase 1 does the updates and insertions to the chunk btree because if we had
3897 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3898 * parallel, we risk having too many system chunks allocated by many tasks if
3899 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3900 * extreme case this leads to exhaustion of the system chunk array in the
3901 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3902 * and with RAID filesystems (so we have more device items in the chunk btree).
3903 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3904 * the system chunk array due to concurrent allocations") provides more details.
3905 *
3906 * Allocation of system chunks does not happen through this function. A task that
3907 * needs to update the chunk btree (the only btree that uses system chunks), must
3908 * preallocate chunk space by calling either check_system_chunk() or
3909 * btrfs_reserve_chunk_metadata() - the former is used when allocating a data or
3910 * metadata chunk or when removing a chunk, while the later is used before doing
3911 * a modification to the chunk btree - use cases for the later are adding,
3912 * removing and resizing a device as well as relocation of a system chunk.
3913 * See the comment below for more details.
3914 *
3915 * The reservation of system space, done through check_system_chunk(), as well
3916 * as all the updates and insertions into the chunk btree must be done while
3917 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3918 * an extent buffer from the chunks btree we never trigger allocation of a new
3919 * system chunk, which would result in a deadlock (trying to lock twice an
3920 * extent buffer of the chunk btree, first time before triggering the chunk
3921 * allocation and the second time during chunk allocation while attempting to
3922 * update the chunks btree). The system chunk array is also updated while holding
3923 * that mutex. The same logic applies to removing chunks - we must reserve system
3924 * space, update the chunk btree and the system chunk array in the superblock
3925 * while holding fs_info->chunk_mutex.
3926 *
3927 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3928 *
3929 * If @force is CHUNK_ALLOC_FORCE:
3930 * - return 1 if it successfully allocates a chunk,
3931 * - return errors including -ENOSPC otherwise.
3932 * If @force is NOT CHUNK_ALLOC_FORCE:
3933 * - return 0 if it doesn't need to allocate a new chunk,
3934 * - return 1 if it successfully allocates a chunk,
3935 * - return errors including -ENOSPC otherwise.
3936 */
3937 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3938 enum btrfs_chunk_alloc_enum force)
3939 {
3940 struct btrfs_fs_info *fs_info = trans->fs_info;
3941 struct btrfs_space_info *space_info;
3942 struct btrfs_block_group *ret_bg;
3943 bool wait_for_alloc = false;
3944 bool should_alloc = false;
3945 bool from_extent_allocation = false;
3946 int ret = 0;
3947
3948 if (force == CHUNK_ALLOC_FORCE_FOR_EXTENT) {
3949 from_extent_allocation = true;
3950 force = CHUNK_ALLOC_FORCE;
3951 }
3952
3953 /* Don't re-enter if we're already allocating a chunk */
3954 if (trans->allocating_chunk)
3955 return -ENOSPC;
3956 /*
3957 * Allocation of system chunks can not happen through this path, as we
3958 * could end up in a deadlock if we are allocating a data or metadata
3959 * chunk and there is another task modifying the chunk btree.
3960 *
3961 * This is because while we are holding the chunk mutex, we will attempt
3962 * to add the new chunk item to the chunk btree or update an existing
3963 * device item in the chunk btree, while the other task that is modifying
3964 * the chunk btree is attempting to COW an extent buffer while holding a
3965 * lock on it and on its parent - if the COW operation triggers a system
3966 * chunk allocation, then we can deadlock because we are holding the
3967 * chunk mutex and we may need to access that extent buffer or its parent
3968 * in order to add the chunk item or update a device item.
3969 *
3970 * Tasks that want to modify the chunk tree should reserve system space
3971 * before updating the chunk btree, by calling either
3972 * btrfs_reserve_chunk_metadata() or check_system_chunk().
3973 * It's possible that after a task reserves the space, it still ends up
3974 * here - this happens in the cases described above at do_chunk_alloc().
3975 * The task will have to either retry or fail.
3976 */
3977 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3978 return -ENOSPC;
3979
3980 space_info = btrfs_find_space_info(fs_info, flags);
3981 ASSERT(space_info);
3982
3983 do {
3984 spin_lock(&space_info->lock);
3985 if (force < space_info->force_alloc)
3986 force = space_info->force_alloc;
3987 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3988 if (space_info->full) {
3989 /* No more free physical space */
3990 if (should_alloc)
3991 ret = -ENOSPC;
3992 else
3993 ret = 0;
3994 spin_unlock(&space_info->lock);
3995 return ret;
3996 } else if (!should_alloc) {
3997 spin_unlock(&space_info->lock);
3998 return 0;
3999 } else if (space_info->chunk_alloc) {
4000 /*
4001 * Someone is already allocating, so we need to block
4002 * until this someone is finished and then loop to
4003 * recheck if we should continue with our allocation
4004 * attempt.
4005 */
4006 wait_for_alloc = true;
4007 force = CHUNK_ALLOC_NO_FORCE;
4008 spin_unlock(&space_info->lock);
4009 mutex_lock(&fs_info->chunk_mutex);
4010 mutex_unlock(&fs_info->chunk_mutex);
4011 } else {
4012 /* Proceed with allocation */
4013 space_info->chunk_alloc = 1;
4014 wait_for_alloc = false;
4015 spin_unlock(&space_info->lock);
4016 }
4017
4018 cond_resched();
4019 } while (wait_for_alloc);
4020
4021 mutex_lock(&fs_info->chunk_mutex);
4022 trans->allocating_chunk = true;
4023
4024 /*
4025 * If we have mixed data/metadata chunks we want to make sure we keep
4026 * allocating mixed chunks instead of individual chunks.
4027 */
4028 if (btrfs_mixed_space_info(space_info))
4029 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4030
4031 /*
4032 * if we're doing a data chunk, go ahead and make sure that
4033 * we keep a reasonable number of metadata chunks allocated in the
4034 * FS as well.
4035 */
4036 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4037 fs_info->data_chunk_allocations++;
4038 if (!(fs_info->data_chunk_allocations %
4039 fs_info->metadata_ratio))
4040 force_metadata_allocation(fs_info);
4041 }
4042
4043 ret_bg = do_chunk_alloc(trans, flags);
4044 trans->allocating_chunk = false;
4045
4046 if (IS_ERR(ret_bg)) {
4047 ret = PTR_ERR(ret_bg);
4048 } else if (from_extent_allocation) {
4049 /*
4050 * New block group is likely to be used soon. Try to activate
4051 * it now. Failure is OK for now.
4052 */
4053 btrfs_zone_activate(ret_bg);
4054 }
4055
4056 if (!ret)
4057 btrfs_put_block_group(ret_bg);
4058
4059 spin_lock(&space_info->lock);
4060 if (ret < 0) {
4061 if (ret == -ENOSPC)
4062 space_info->full = 1;
4063 else
4064 goto out;
4065 } else {
4066 ret = 1;
4067 space_info->max_extent_size = 0;
4068 }
4069
4070 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4071 out:
4072 space_info->chunk_alloc = 0;
4073 spin_unlock(&space_info->lock);
4074 mutex_unlock(&fs_info->chunk_mutex);
4075
4076 return ret;
4077 }
4078
4079 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4080 {
4081 u64 num_dev;
4082
4083 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
4084 if (!num_dev)
4085 num_dev = fs_info->fs_devices->rw_devices;
4086
4087 return num_dev;
4088 }
4089
4090 static void reserve_chunk_space(struct btrfs_trans_handle *trans,
4091 u64 bytes,
4092 u64 type)
4093 {
4094 struct btrfs_fs_info *fs_info = trans->fs_info;
4095 struct btrfs_space_info *info;
4096 u64 left;
4097 int ret = 0;
4098
4099 /*
4100 * Needed because we can end up allocating a system chunk and for an
4101 * atomic and race free space reservation in the chunk block reserve.
4102 */
4103 lockdep_assert_held(&fs_info->chunk_mutex);
4104
4105 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4106 spin_lock(&info->lock);
4107 left = info->total_bytes - btrfs_space_info_used(info, true);
4108 spin_unlock(&info->lock);
4109
4110 if (left < bytes && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4111 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4112 left, bytes, type);
4113 btrfs_dump_space_info(fs_info, info, 0, 0);
4114 }
4115
4116 if (left < bytes) {
4117 u64 flags = btrfs_system_alloc_profile(fs_info);
4118 struct btrfs_block_group *bg;
4119
4120 /*
4121 * Ignore failure to create system chunk. We might end up not
4122 * needing it, as we might not need to COW all nodes/leafs from
4123 * the paths we visit in the chunk tree (they were already COWed
4124 * or created in the current transaction for example).
4125 */
4126 bg = btrfs_create_chunk(trans, flags);
4127 if (IS_ERR(bg)) {
4128 ret = PTR_ERR(bg);
4129 } else {
4130 /*
4131 * We have a new chunk. We also need to activate it for
4132 * zoned filesystem.
4133 */
4134 ret = btrfs_zoned_activate_one_bg(fs_info, info, true);
4135 if (ret < 0)
4136 return;
4137
4138 /*
4139 * If we fail to add the chunk item here, we end up
4140 * trying again at phase 2 of chunk allocation, at
4141 * btrfs_create_pending_block_groups(). So ignore
4142 * any error here. An ENOSPC here could happen, due to
4143 * the cases described at do_chunk_alloc() - the system
4144 * block group we just created was just turned into RO
4145 * mode by a scrub for example, or a running discard
4146 * temporarily removed its free space entries, etc.
4147 */
4148 btrfs_chunk_alloc_add_chunk_item(trans, bg);
4149 }
4150 }
4151
4152 if (!ret) {
4153 ret = btrfs_block_rsv_add(fs_info,
4154 &fs_info->chunk_block_rsv,
4155 bytes, BTRFS_RESERVE_NO_FLUSH);
4156 if (!ret)
4157 trans->chunk_bytes_reserved += bytes;
4158 }
4159 }
4160
4161 /*
4162 * Reserve space in the system space for allocating or removing a chunk.
4163 * The caller must be holding fs_info->chunk_mutex.
4164 */
4165 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4166 {
4167 struct btrfs_fs_info *fs_info = trans->fs_info;
4168 const u64 num_devs = get_profile_num_devs(fs_info, type);
4169 u64 bytes;
4170
4171 /* num_devs device items to update and 1 chunk item to add or remove. */
4172 bytes = btrfs_calc_metadata_size(fs_info, num_devs) +
4173 btrfs_calc_insert_metadata_size(fs_info, 1);
4174
4175 reserve_chunk_space(trans, bytes, type);
4176 }
4177
4178 /*
4179 * Reserve space in the system space, if needed, for doing a modification to the
4180 * chunk btree.
4181 *
4182 * @trans: A transaction handle.
4183 * @is_item_insertion: Indicate if the modification is for inserting a new item
4184 * in the chunk btree or if it's for the deletion or update
4185 * of an existing item.
4186 *
4187 * This is used in a context where we need to update the chunk btree outside
4188 * block group allocation and removal, to avoid a deadlock with a concurrent
4189 * task that is allocating a metadata or data block group and therefore needs to
4190 * update the chunk btree while holding the chunk mutex. After the update to the
4191 * chunk btree is done, btrfs_trans_release_chunk_metadata() should be called.
4192 *
4193 */
4194 void btrfs_reserve_chunk_metadata(struct btrfs_trans_handle *trans,
4195 bool is_item_insertion)
4196 {
4197 struct btrfs_fs_info *fs_info = trans->fs_info;
4198 u64 bytes;
4199
4200 if (is_item_insertion)
4201 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
4202 else
4203 bytes = btrfs_calc_metadata_size(fs_info, 1);
4204
4205 mutex_lock(&fs_info->chunk_mutex);
4206 reserve_chunk_space(trans, bytes, BTRFS_BLOCK_GROUP_SYSTEM);
4207 mutex_unlock(&fs_info->chunk_mutex);
4208 }
4209
4210 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
4211 {
4212 struct btrfs_block_group *block_group;
4213
4214 block_group = btrfs_lookup_first_block_group(info, 0);
4215 while (block_group) {
4216 btrfs_wait_block_group_cache_done(block_group);
4217 spin_lock(&block_group->lock);
4218 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF,
4219 &block_group->runtime_flags)) {
4220 struct inode *inode = block_group->inode;
4221
4222 block_group->inode = NULL;
4223 spin_unlock(&block_group->lock);
4224
4225 ASSERT(block_group->io_ctl.inode == NULL);
4226 iput(inode);
4227 } else {
4228 spin_unlock(&block_group->lock);
4229 }
4230 block_group = btrfs_next_block_group(block_group);
4231 }
4232 }
4233
4234 /*
4235 * Must be called only after stopping all workers, since we could have block
4236 * group caching kthreads running, and therefore they could race with us if we
4237 * freed the block groups before stopping them.
4238 */
4239 int btrfs_free_block_groups(struct btrfs_fs_info *info)
4240 {
4241 struct btrfs_block_group *block_group;
4242 struct btrfs_space_info *space_info;
4243 struct btrfs_caching_control *caching_ctl;
4244 struct rb_node *n;
4245
4246 write_lock(&info->block_group_cache_lock);
4247 while (!list_empty(&info->caching_block_groups)) {
4248 caching_ctl = list_entry(info->caching_block_groups.next,
4249 struct btrfs_caching_control, list);
4250 list_del(&caching_ctl->list);
4251 btrfs_put_caching_control(caching_ctl);
4252 }
4253 write_unlock(&info->block_group_cache_lock);
4254
4255 spin_lock(&info->unused_bgs_lock);
4256 while (!list_empty(&info->unused_bgs)) {
4257 block_group = list_first_entry(&info->unused_bgs,
4258 struct btrfs_block_group,
4259 bg_list);
4260 list_del_init(&block_group->bg_list);
4261 btrfs_put_block_group(block_group);
4262 }
4263
4264 while (!list_empty(&info->reclaim_bgs)) {
4265 block_group = list_first_entry(&info->reclaim_bgs,
4266 struct btrfs_block_group,
4267 bg_list);
4268 list_del_init(&block_group->bg_list);
4269 btrfs_put_block_group(block_group);
4270 }
4271 spin_unlock(&info->unused_bgs_lock);
4272
4273 spin_lock(&info->zone_active_bgs_lock);
4274 while (!list_empty(&info->zone_active_bgs)) {
4275 block_group = list_first_entry(&info->zone_active_bgs,
4276 struct btrfs_block_group,
4277 active_bg_list);
4278 list_del_init(&block_group->active_bg_list);
4279 btrfs_put_block_group(block_group);
4280 }
4281 spin_unlock(&info->zone_active_bgs_lock);
4282
4283 write_lock(&info->block_group_cache_lock);
4284 while ((n = rb_last(&info->block_group_cache_tree.rb_root)) != NULL) {
4285 block_group = rb_entry(n, struct btrfs_block_group,
4286 cache_node);
4287 rb_erase_cached(&block_group->cache_node,
4288 &info->block_group_cache_tree);
4289 RB_CLEAR_NODE(&block_group->cache_node);
4290 write_unlock(&info->block_group_cache_lock);
4291
4292 down_write(&block_group->space_info->groups_sem);
4293 list_del(&block_group->list);
4294 up_write(&block_group->space_info->groups_sem);
4295
4296 /*
4297 * We haven't cached this block group, which means we could
4298 * possibly have excluded extents on this block group.
4299 */
4300 if (block_group->cached == BTRFS_CACHE_NO ||
4301 block_group->cached == BTRFS_CACHE_ERROR)
4302 btrfs_free_excluded_extents(block_group);
4303
4304 btrfs_remove_free_space_cache(block_group);
4305 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
4306 ASSERT(list_empty(&block_group->dirty_list));
4307 ASSERT(list_empty(&block_group->io_list));
4308 ASSERT(list_empty(&block_group->bg_list));
4309 ASSERT(refcount_read(&block_group->refs) == 1);
4310 ASSERT(block_group->swap_extents == 0);
4311 btrfs_put_block_group(block_group);
4312
4313 write_lock(&info->block_group_cache_lock);
4314 }
4315 write_unlock(&info->block_group_cache_lock);
4316
4317 btrfs_release_global_block_rsv(info);
4318
4319 while (!list_empty(&info->space_info)) {
4320 space_info = list_entry(info->space_info.next,
4321 struct btrfs_space_info,
4322 list);
4323
4324 /*
4325 * Do not hide this behind enospc_debug, this is actually
4326 * important and indicates a real bug if this happens.
4327 */
4328 if (WARN_ON(space_info->bytes_pinned > 0 ||
4329 space_info->bytes_may_use > 0))
4330 btrfs_dump_space_info(info, space_info, 0, 0);
4331
4332 /*
4333 * If there was a failure to cleanup a log tree, very likely due
4334 * to an IO failure on a writeback attempt of one or more of its
4335 * extent buffers, we could not do proper (and cheap) unaccounting
4336 * of their reserved space, so don't warn on bytes_reserved > 0 in
4337 * that case.
4338 */
4339 if (!(space_info->flags & BTRFS_BLOCK_GROUP_METADATA) ||
4340 !BTRFS_FS_LOG_CLEANUP_ERROR(info)) {
4341 if (WARN_ON(space_info->bytes_reserved > 0))
4342 btrfs_dump_space_info(info, space_info, 0, 0);
4343 }
4344
4345 WARN_ON(space_info->reclaim_size > 0);
4346 list_del(&space_info->list);
4347 btrfs_sysfs_remove_space_info(space_info);
4348 }
4349 return 0;
4350 }
4351
4352 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
4353 {
4354 atomic_inc(&cache->frozen);
4355 }
4356
4357 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
4358 {
4359 struct btrfs_fs_info *fs_info = block_group->fs_info;
4360 struct extent_map_tree *em_tree;
4361 struct extent_map *em;
4362 bool cleanup;
4363
4364 spin_lock(&block_group->lock);
4365 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
4366 test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags));
4367 spin_unlock(&block_group->lock);
4368
4369 if (cleanup) {
4370 em_tree = &fs_info->mapping_tree;
4371 write_lock(&em_tree->lock);
4372 em = lookup_extent_mapping(em_tree, block_group->start,
4373 1);
4374 BUG_ON(!em); /* logic error, can't happen */
4375 remove_extent_mapping(em_tree, em);
4376 write_unlock(&em_tree->lock);
4377
4378 /* once for us and once for the tree */
4379 free_extent_map(em);
4380 free_extent_map(em);
4381
4382 /*
4383 * We may have left one free space entry and other possible
4384 * tasks trimming this block group have left 1 entry each one.
4385 * Free them if any.
4386 */
4387 btrfs_remove_free_space_cache(block_group);
4388 }
4389 }
4390
4391 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
4392 {
4393 bool ret = true;
4394
4395 spin_lock(&bg->lock);
4396 if (bg->ro)
4397 ret = false;
4398 else
4399 bg->swap_extents++;
4400 spin_unlock(&bg->lock);
4401
4402 return ret;
4403 }
4404
4405 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
4406 {
4407 spin_lock(&bg->lock);
4408 ASSERT(!bg->ro);
4409 ASSERT(bg->swap_extents >= amount);
4410 bg->swap_extents -= amount;
4411 spin_unlock(&bg->lock);
4412 }
4413
4414 enum btrfs_block_group_size_class btrfs_calc_block_group_size_class(u64 size)
4415 {
4416 if (size <= SZ_128K)
4417 return BTRFS_BG_SZ_SMALL;
4418 if (size <= SZ_8M)
4419 return BTRFS_BG_SZ_MEDIUM;
4420 return BTRFS_BG_SZ_LARGE;
4421 }
4422
4423 /*
4424 * Handle a block group allocating an extent in a size class
4425 *
4426 * @bg: The block group we allocated in.
4427 * @size_class: The size class of the allocation.
4428 * @force_wrong_size_class: Whether we are desperate enough to allow
4429 * mismatched size classes.
4430 *
4431 * Returns: 0 if the size class was valid for this block_group, -EAGAIN in the
4432 * case of a race that leads to the wrong size class without
4433 * force_wrong_size_class set.
4434 *
4435 * find_free_extent will skip block groups with a mismatched size class until
4436 * it really needs to avoid ENOSPC. In that case it will set
4437 * force_wrong_size_class. However, if a block group is newly allocated and
4438 * doesn't yet have a size class, then it is possible for two allocations of
4439 * different sizes to race and both try to use it. The loser is caught here and
4440 * has to retry.
4441 */
4442 int btrfs_use_block_group_size_class(struct btrfs_block_group *bg,
4443 enum btrfs_block_group_size_class size_class,
4444 bool force_wrong_size_class)
4445 {
4446 ASSERT(size_class != BTRFS_BG_SZ_NONE);
4447
4448 /* The new allocation is in the right size class, do nothing */
4449 if (bg->size_class == size_class)
4450 return 0;
4451 /*
4452 * The new allocation is in a mismatched size class.
4453 * This means one of two things:
4454 *
4455 * 1. Two tasks in find_free_extent for different size_classes raced
4456 * and hit the same empty block_group. Make the loser try again.
4457 * 2. A call to find_free_extent got desperate enough to set
4458 * 'force_wrong_slab'. Don't change the size_class, but allow the
4459 * allocation.
4460 */
4461 if (bg->size_class != BTRFS_BG_SZ_NONE) {
4462 if (force_wrong_size_class)
4463 return 0;
4464 return -EAGAIN;
4465 }
4466 /*
4467 * The happy new block group case: the new allocation is the first
4468 * one in the block_group so we set size_class.
4469 */
4470 bg->size_class = size_class;
4471
4472 return 0;
4473 }
4474
4475 bool btrfs_block_group_should_use_size_class(struct btrfs_block_group *bg)
4476 {
4477 if (btrfs_is_zoned(bg->fs_info))
4478 return false;
4479 if (!btrfs_is_block_group_data_only(bg))
4480 return false;
4481 return true;
4482 }