]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/defrag.c
btrfs: move btrfs_defrag_root() to defrag.{c,h}
[thirdparty/linux.git] / fs / btrfs / defrag.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "print-tree.h"
10 #include "transaction.h"
11 #include "locking.h"
12 #include "accessors.h"
13 #include "messages.h"
14 #include "delalloc-space.h"
15 #include "subpage.h"
16 #include "defrag.h"
17 #include "file-item.h"
18 #include "super.h"
19
20 static struct kmem_cache *btrfs_inode_defrag_cachep;
21
22 /*
23 * When auto defrag is enabled we queue up these defrag structs to remember
24 * which inodes need defragging passes.
25 */
26 struct inode_defrag {
27 struct rb_node rb_node;
28 /* Inode number */
29 u64 ino;
30 /*
31 * Transid where the defrag was added, we search for extents newer than
32 * this.
33 */
34 u64 transid;
35
36 /* Root objectid */
37 u64 root;
38
39 /*
40 * The extent size threshold for autodefrag.
41 *
42 * This value is different for compressed/non-compressed extents, thus
43 * needs to be passed from higher layer.
44 * (aka, inode_should_defrag())
45 */
46 u32 extent_thresh;
47 };
48
49 static int __compare_inode_defrag(struct inode_defrag *defrag1,
50 struct inode_defrag *defrag2)
51 {
52 if (defrag1->root > defrag2->root)
53 return 1;
54 else if (defrag1->root < defrag2->root)
55 return -1;
56 else if (defrag1->ino > defrag2->ino)
57 return 1;
58 else if (defrag1->ino < defrag2->ino)
59 return -1;
60 else
61 return 0;
62 }
63
64 /*
65 * Pop a record for an inode into the defrag tree. The lock must be held
66 * already.
67 *
68 * If you're inserting a record for an older transid than an existing record,
69 * the transid already in the tree is lowered.
70 *
71 * If an existing record is found the defrag item you pass in is freed.
72 */
73 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
74 struct inode_defrag *defrag)
75 {
76 struct btrfs_fs_info *fs_info = inode->root->fs_info;
77 struct inode_defrag *entry;
78 struct rb_node **p;
79 struct rb_node *parent = NULL;
80 int ret;
81
82 p = &fs_info->defrag_inodes.rb_node;
83 while (*p) {
84 parent = *p;
85 entry = rb_entry(parent, struct inode_defrag, rb_node);
86
87 ret = __compare_inode_defrag(defrag, entry);
88 if (ret < 0)
89 p = &parent->rb_left;
90 else if (ret > 0)
91 p = &parent->rb_right;
92 else {
93 /*
94 * If we're reinserting an entry for an old defrag run,
95 * make sure to lower the transid of our existing
96 * record.
97 */
98 if (defrag->transid < entry->transid)
99 entry->transid = defrag->transid;
100 entry->extent_thresh = min(defrag->extent_thresh,
101 entry->extent_thresh);
102 return -EEXIST;
103 }
104 }
105 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
106 rb_link_node(&defrag->rb_node, parent, p);
107 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
108 return 0;
109 }
110
111 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
112 {
113 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
114 return 0;
115
116 if (btrfs_fs_closing(fs_info))
117 return 0;
118
119 return 1;
120 }
121
122 /*
123 * Insert a defrag record for this inode if auto defrag is enabled.
124 */
125 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
126 struct btrfs_inode *inode, u32 extent_thresh)
127 {
128 struct btrfs_root *root = inode->root;
129 struct btrfs_fs_info *fs_info = root->fs_info;
130 struct inode_defrag *defrag;
131 u64 transid;
132 int ret;
133
134 if (!__need_auto_defrag(fs_info))
135 return 0;
136
137 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
138 return 0;
139
140 if (trans)
141 transid = trans->transid;
142 else
143 transid = inode->root->last_trans;
144
145 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
146 if (!defrag)
147 return -ENOMEM;
148
149 defrag->ino = btrfs_ino(inode);
150 defrag->transid = transid;
151 defrag->root = root->root_key.objectid;
152 defrag->extent_thresh = extent_thresh;
153
154 spin_lock(&fs_info->defrag_inodes_lock);
155 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
156 /*
157 * If we set IN_DEFRAG flag and evict the inode from memory,
158 * and then re-read this inode, this new inode doesn't have
159 * IN_DEFRAG flag. At the case, we may find the existed defrag.
160 */
161 ret = __btrfs_add_inode_defrag(inode, defrag);
162 if (ret)
163 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
164 } else {
165 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
166 }
167 spin_unlock(&fs_info->defrag_inodes_lock);
168 return 0;
169 }
170
171 /*
172 * Pick the defragable inode that we want, if it doesn't exist, we will get the
173 * next one.
174 */
175 static struct inode_defrag *btrfs_pick_defrag_inode(
176 struct btrfs_fs_info *fs_info, u64 root, u64 ino)
177 {
178 struct inode_defrag *entry = NULL;
179 struct inode_defrag tmp;
180 struct rb_node *p;
181 struct rb_node *parent = NULL;
182 int ret;
183
184 tmp.ino = ino;
185 tmp.root = root;
186
187 spin_lock(&fs_info->defrag_inodes_lock);
188 p = fs_info->defrag_inodes.rb_node;
189 while (p) {
190 parent = p;
191 entry = rb_entry(parent, struct inode_defrag, rb_node);
192
193 ret = __compare_inode_defrag(&tmp, entry);
194 if (ret < 0)
195 p = parent->rb_left;
196 else if (ret > 0)
197 p = parent->rb_right;
198 else
199 goto out;
200 }
201
202 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
203 parent = rb_next(parent);
204 if (parent)
205 entry = rb_entry(parent, struct inode_defrag, rb_node);
206 else
207 entry = NULL;
208 }
209 out:
210 if (entry)
211 rb_erase(parent, &fs_info->defrag_inodes);
212 spin_unlock(&fs_info->defrag_inodes_lock);
213 return entry;
214 }
215
216 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
217 {
218 struct inode_defrag *defrag;
219 struct rb_node *node;
220
221 spin_lock(&fs_info->defrag_inodes_lock);
222 node = rb_first(&fs_info->defrag_inodes);
223 while (node) {
224 rb_erase(node, &fs_info->defrag_inodes);
225 defrag = rb_entry(node, struct inode_defrag, rb_node);
226 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
227
228 cond_resched_lock(&fs_info->defrag_inodes_lock);
229
230 node = rb_first(&fs_info->defrag_inodes);
231 }
232 spin_unlock(&fs_info->defrag_inodes_lock);
233 }
234
235 #define BTRFS_DEFRAG_BATCH 1024
236
237 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
238 struct inode_defrag *defrag)
239 {
240 struct btrfs_root *inode_root;
241 struct inode *inode;
242 struct btrfs_ioctl_defrag_range_args range;
243 int ret = 0;
244 u64 cur = 0;
245
246 again:
247 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
248 goto cleanup;
249 if (!__need_auto_defrag(fs_info))
250 goto cleanup;
251
252 /* Get the inode */
253 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
254 if (IS_ERR(inode_root)) {
255 ret = PTR_ERR(inode_root);
256 goto cleanup;
257 }
258
259 inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
260 btrfs_put_root(inode_root);
261 if (IS_ERR(inode)) {
262 ret = PTR_ERR(inode);
263 goto cleanup;
264 }
265
266 if (cur >= i_size_read(inode)) {
267 iput(inode);
268 goto cleanup;
269 }
270
271 /* Do a chunk of defrag */
272 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
273 memset(&range, 0, sizeof(range));
274 range.len = (u64)-1;
275 range.start = cur;
276 range.extent_thresh = defrag->extent_thresh;
277
278 sb_start_write(fs_info->sb);
279 ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
280 BTRFS_DEFRAG_BATCH);
281 sb_end_write(fs_info->sb);
282 iput(inode);
283
284 if (ret < 0)
285 goto cleanup;
286
287 cur = max(cur + fs_info->sectorsize, range.start);
288 goto again;
289
290 cleanup:
291 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
292 return ret;
293 }
294
295 /*
296 * Run through the list of inodes in the FS that need defragging.
297 */
298 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
299 {
300 struct inode_defrag *defrag;
301 u64 first_ino = 0;
302 u64 root_objectid = 0;
303
304 atomic_inc(&fs_info->defrag_running);
305 while (1) {
306 /* Pause the auto defragger. */
307 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
308 break;
309
310 if (!__need_auto_defrag(fs_info))
311 break;
312
313 /* find an inode to defrag */
314 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
315 if (!defrag) {
316 if (root_objectid || first_ino) {
317 root_objectid = 0;
318 first_ino = 0;
319 continue;
320 } else {
321 break;
322 }
323 }
324
325 first_ino = defrag->ino + 1;
326 root_objectid = defrag->root;
327
328 __btrfs_run_defrag_inode(fs_info, defrag);
329 }
330 atomic_dec(&fs_info->defrag_running);
331
332 /*
333 * During unmount, we use the transaction_wait queue to wait for the
334 * defragger to stop.
335 */
336 wake_up(&fs_info->transaction_wait);
337 return 0;
338 }
339
340 /*
341 * Defrag all the leaves in a given btree.
342 * Read all the leaves and try to get key order to
343 * better reflect disk order
344 */
345
346 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
347 struct btrfs_root *root)
348 {
349 struct btrfs_path *path = NULL;
350 struct btrfs_key key;
351 int ret = 0;
352 int wret;
353 int level;
354 int next_key_ret = 0;
355 u64 last_ret = 0;
356
357 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
358 goto out;
359
360 path = btrfs_alloc_path();
361 if (!path) {
362 ret = -ENOMEM;
363 goto out;
364 }
365
366 level = btrfs_header_level(root->node);
367
368 if (level == 0)
369 goto out;
370
371 if (root->defrag_progress.objectid == 0) {
372 struct extent_buffer *root_node;
373 u32 nritems;
374
375 root_node = btrfs_lock_root_node(root);
376 nritems = btrfs_header_nritems(root_node);
377 root->defrag_max.objectid = 0;
378 /* from above we know this is not a leaf */
379 btrfs_node_key_to_cpu(root_node, &root->defrag_max,
380 nritems - 1);
381 btrfs_tree_unlock(root_node);
382 free_extent_buffer(root_node);
383 memset(&key, 0, sizeof(key));
384 } else {
385 memcpy(&key, &root->defrag_progress, sizeof(key));
386 }
387
388 path->keep_locks = 1;
389
390 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
391 if (ret < 0)
392 goto out;
393 if (ret > 0) {
394 ret = 0;
395 goto out;
396 }
397 btrfs_release_path(path);
398 /*
399 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
400 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
401 * a deadlock (attempting to write lock an already write locked leaf).
402 */
403 path->lowest_level = 1;
404 wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
405
406 if (wret < 0) {
407 ret = wret;
408 goto out;
409 }
410 if (!path->nodes[1]) {
411 ret = 0;
412 goto out;
413 }
414 /*
415 * The node at level 1 must always be locked when our path has
416 * keep_locks set and lowest_level is 1, regardless of the value of
417 * path->slots[1].
418 */
419 BUG_ON(path->locks[1] == 0);
420 ret = btrfs_realloc_node(trans, root,
421 path->nodes[1], 0,
422 &last_ret,
423 &root->defrag_progress);
424 if (ret) {
425 WARN_ON(ret == -EAGAIN);
426 goto out;
427 }
428 /*
429 * Now that we reallocated the node we can find the next key. Note that
430 * btrfs_find_next_key() can release our path and do another search
431 * without COWing, this is because even with path->keep_locks = 1,
432 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
433 * node when path->slots[node_level - 1] does not point to the last
434 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
435 * we search for the next key after reallocating our node.
436 */
437 path->slots[1] = btrfs_header_nritems(path->nodes[1]);
438 next_key_ret = btrfs_find_next_key(root, path, &key, 1,
439 BTRFS_OLDEST_GENERATION);
440 if (next_key_ret == 0) {
441 memcpy(&root->defrag_progress, &key, sizeof(key));
442 ret = -EAGAIN;
443 }
444 out:
445 btrfs_free_path(path);
446 if (ret == -EAGAIN) {
447 if (root->defrag_max.objectid > root->defrag_progress.objectid)
448 goto done;
449 if (root->defrag_max.type > root->defrag_progress.type)
450 goto done;
451 if (root->defrag_max.offset > root->defrag_progress.offset)
452 goto done;
453 ret = 0;
454 }
455 done:
456 if (ret != -EAGAIN)
457 memset(&root->defrag_progress, 0,
458 sizeof(root->defrag_progress));
459
460 return ret;
461 }
462
463 /*
464 * Defrag a given btree. Every leaf in the btree is read and defragmented.
465 */
466 int btrfs_defrag_root(struct btrfs_root *root)
467 {
468 struct btrfs_fs_info *fs_info = root->fs_info;
469 int ret;
470
471 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
472 return 0;
473
474 while (1) {
475 struct btrfs_trans_handle *trans;
476
477 trans = btrfs_start_transaction(root, 0);
478 if (IS_ERR(trans)) {
479 ret = PTR_ERR(trans);
480 break;
481 }
482
483 ret = btrfs_defrag_leaves(trans, root);
484
485 btrfs_end_transaction(trans);
486 btrfs_btree_balance_dirty(fs_info);
487 cond_resched();
488
489 if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
490 break;
491
492 if (btrfs_defrag_cancelled(fs_info)) {
493 btrfs_debug(fs_info, "defrag_root cancelled");
494 ret = -EAGAIN;
495 break;
496 }
497 }
498 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
499 return ret;
500 }
501
502 /*
503 * Defrag specific helper to get an extent map.
504 *
505 * Differences between this and btrfs_get_extent() are:
506 *
507 * - No extent_map will be added to inode->extent_tree
508 * To reduce memory usage in the long run.
509 *
510 * - Extra optimization to skip file extents older than @newer_than
511 * By using btrfs_search_forward() we can skip entire file ranges that
512 * have extents created in past transactions, because btrfs_search_forward()
513 * will not visit leaves and nodes with a generation smaller than given
514 * minimal generation threshold (@newer_than).
515 *
516 * Return valid em if we find a file extent matching the requirement.
517 * Return NULL if we can not find a file extent matching the requirement.
518 *
519 * Return ERR_PTR() for error.
520 */
521 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
522 u64 start, u64 newer_than)
523 {
524 struct btrfs_root *root = inode->root;
525 struct btrfs_file_extent_item *fi;
526 struct btrfs_path path = { 0 };
527 struct extent_map *em;
528 struct btrfs_key key;
529 u64 ino = btrfs_ino(inode);
530 int ret;
531
532 em = alloc_extent_map();
533 if (!em) {
534 ret = -ENOMEM;
535 goto err;
536 }
537
538 key.objectid = ino;
539 key.type = BTRFS_EXTENT_DATA_KEY;
540 key.offset = start;
541
542 if (newer_than) {
543 ret = btrfs_search_forward(root, &key, &path, newer_than);
544 if (ret < 0)
545 goto err;
546 /* Can't find anything newer */
547 if (ret > 0)
548 goto not_found;
549 } else {
550 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
551 if (ret < 0)
552 goto err;
553 }
554 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
555 /*
556 * If btrfs_search_slot() makes path to point beyond nritems,
557 * we should not have an empty leaf, as this inode must at
558 * least have its INODE_ITEM.
559 */
560 ASSERT(btrfs_header_nritems(path.nodes[0]));
561 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
562 }
563 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
564 /* Perfect match, no need to go one slot back */
565 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
566 key.offset == start)
567 goto iterate;
568
569 /* We didn't find a perfect match, needs to go one slot back */
570 if (path.slots[0] > 0) {
571 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
572 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
573 path.slots[0]--;
574 }
575
576 iterate:
577 /* Iterate through the path to find a file extent covering @start */
578 while (true) {
579 u64 extent_end;
580
581 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
582 goto next;
583
584 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
585
586 /*
587 * We may go one slot back to INODE_REF/XATTR item, then
588 * need to go forward until we reach an EXTENT_DATA.
589 * But we should still has the correct ino as key.objectid.
590 */
591 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
592 goto next;
593
594 /* It's beyond our target range, definitely not extent found */
595 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
596 goto not_found;
597
598 /*
599 * | |<- File extent ->|
600 * \- start
601 *
602 * This means there is a hole between start and key.offset.
603 */
604 if (key.offset > start) {
605 em->start = start;
606 em->orig_start = start;
607 em->block_start = EXTENT_MAP_HOLE;
608 em->len = key.offset - start;
609 break;
610 }
611
612 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
613 struct btrfs_file_extent_item);
614 extent_end = btrfs_file_extent_end(&path);
615
616 /*
617 * |<- file extent ->| |
618 * \- start
619 *
620 * We haven't reached start, search next slot.
621 */
622 if (extent_end <= start)
623 goto next;
624
625 /* Now this extent covers @start, convert it to em */
626 btrfs_extent_item_to_extent_map(inode, &path, fi, em);
627 break;
628 next:
629 ret = btrfs_next_item(root, &path);
630 if (ret < 0)
631 goto err;
632 if (ret > 0)
633 goto not_found;
634 }
635 btrfs_release_path(&path);
636 return em;
637
638 not_found:
639 btrfs_release_path(&path);
640 free_extent_map(em);
641 return NULL;
642
643 err:
644 btrfs_release_path(&path);
645 free_extent_map(em);
646 return ERR_PTR(ret);
647 }
648
649 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
650 u64 newer_than, bool locked)
651 {
652 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
653 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
654 struct extent_map *em;
655 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
656
657 /*
658 * Hopefully we have this extent in the tree already, try without the
659 * full extent lock.
660 */
661 read_lock(&em_tree->lock);
662 em = lookup_extent_mapping(em_tree, start, sectorsize);
663 read_unlock(&em_tree->lock);
664
665 /*
666 * We can get a merged extent, in that case, we need to re-search
667 * tree to get the original em for defrag.
668 *
669 * If @newer_than is 0 or em::generation < newer_than, we can trust
670 * this em, as either we don't care about the generation, or the
671 * merged extent map will be rejected anyway.
672 */
673 if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
674 newer_than && em->generation >= newer_than) {
675 free_extent_map(em);
676 em = NULL;
677 }
678
679 if (!em) {
680 struct extent_state *cached = NULL;
681 u64 end = start + sectorsize - 1;
682
683 /* Get the big lock and read metadata off disk. */
684 if (!locked)
685 lock_extent(io_tree, start, end, &cached);
686 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
687 if (!locked)
688 unlock_extent(io_tree, start, end, &cached);
689
690 if (IS_ERR(em))
691 return NULL;
692 }
693
694 return em;
695 }
696
697 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
698 const struct extent_map *em)
699 {
700 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
701 return BTRFS_MAX_COMPRESSED;
702 return fs_info->max_extent_size;
703 }
704
705 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
706 u32 extent_thresh, u64 newer_than, bool locked)
707 {
708 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
709 struct extent_map *next;
710 bool ret = false;
711
712 /* This is the last extent */
713 if (em->start + em->len >= i_size_read(inode))
714 return false;
715
716 /*
717 * Here we need to pass @newer_then when checking the next extent, or
718 * we will hit a case we mark current extent for defrag, but the next
719 * one will not be a target.
720 * This will just cause extra IO without really reducing the fragments.
721 */
722 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
723 /* No more em or hole */
724 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
725 goto out;
726 if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
727 goto out;
728 /*
729 * If the next extent is at its max capacity, defragging current extent
730 * makes no sense, as the total number of extents won't change.
731 */
732 if (next->len >= get_extent_max_capacity(fs_info, em))
733 goto out;
734 /* Skip older extent */
735 if (next->generation < newer_than)
736 goto out;
737 /* Also check extent size */
738 if (next->len >= extent_thresh)
739 goto out;
740
741 ret = true;
742 out:
743 free_extent_map(next);
744 return ret;
745 }
746
747 /*
748 * Prepare one page to be defragged.
749 *
750 * This will ensure:
751 *
752 * - Returned page is locked and has been set up properly.
753 * - No ordered extent exists in the page.
754 * - The page is uptodate.
755 *
756 * NOTE: Caller should also wait for page writeback after the cluster is
757 * prepared, here we don't do writeback wait for each page.
758 */
759 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
760 {
761 struct address_space *mapping = inode->vfs_inode.i_mapping;
762 gfp_t mask = btrfs_alloc_write_mask(mapping);
763 u64 page_start = (u64)index << PAGE_SHIFT;
764 u64 page_end = page_start + PAGE_SIZE - 1;
765 struct extent_state *cached_state = NULL;
766 struct page *page;
767 int ret;
768
769 again:
770 page = find_or_create_page(mapping, index, mask);
771 if (!page)
772 return ERR_PTR(-ENOMEM);
773
774 /*
775 * Since we can defragment files opened read-only, we can encounter
776 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
777 * can't do I/O using huge pages yet, so return an error for now.
778 * Filesystem transparent huge pages are typically only used for
779 * executables that explicitly enable them, so this isn't very
780 * restrictive.
781 */
782 if (PageCompound(page)) {
783 unlock_page(page);
784 put_page(page);
785 return ERR_PTR(-ETXTBSY);
786 }
787
788 ret = set_page_extent_mapped(page);
789 if (ret < 0) {
790 unlock_page(page);
791 put_page(page);
792 return ERR_PTR(ret);
793 }
794
795 /* Wait for any existing ordered extent in the range */
796 while (1) {
797 struct btrfs_ordered_extent *ordered;
798
799 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
800 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
801 unlock_extent(&inode->io_tree, page_start, page_end,
802 &cached_state);
803 if (!ordered)
804 break;
805
806 unlock_page(page);
807 btrfs_start_ordered_extent(ordered);
808 btrfs_put_ordered_extent(ordered);
809 lock_page(page);
810 /*
811 * We unlocked the page above, so we need check if it was
812 * released or not.
813 */
814 if (page->mapping != mapping || !PagePrivate(page)) {
815 unlock_page(page);
816 put_page(page);
817 goto again;
818 }
819 }
820
821 /*
822 * Now the page range has no ordered extent any more. Read the page to
823 * make it uptodate.
824 */
825 if (!PageUptodate(page)) {
826 btrfs_read_folio(NULL, page_folio(page));
827 lock_page(page);
828 if (page->mapping != mapping || !PagePrivate(page)) {
829 unlock_page(page);
830 put_page(page);
831 goto again;
832 }
833 if (!PageUptodate(page)) {
834 unlock_page(page);
835 put_page(page);
836 return ERR_PTR(-EIO);
837 }
838 }
839 return page;
840 }
841
842 struct defrag_target_range {
843 struct list_head list;
844 u64 start;
845 u64 len;
846 };
847
848 /*
849 * Collect all valid target extents.
850 *
851 * @start: file offset to lookup
852 * @len: length to lookup
853 * @extent_thresh: file extent size threshold, any extent size >= this value
854 * will be ignored
855 * @newer_than: only defrag extents newer than this value
856 * @do_compress: whether the defrag is doing compression
857 * if true, @extent_thresh will be ignored and all regular
858 * file extents meeting @newer_than will be targets.
859 * @locked: if the range has already held extent lock
860 * @target_list: list of targets file extents
861 */
862 static int defrag_collect_targets(struct btrfs_inode *inode,
863 u64 start, u64 len, u32 extent_thresh,
864 u64 newer_than, bool do_compress,
865 bool locked, struct list_head *target_list,
866 u64 *last_scanned_ret)
867 {
868 struct btrfs_fs_info *fs_info = inode->root->fs_info;
869 bool last_is_target = false;
870 u64 cur = start;
871 int ret = 0;
872
873 while (cur < start + len) {
874 struct extent_map *em;
875 struct defrag_target_range *new;
876 bool next_mergeable = true;
877 u64 range_len;
878
879 last_is_target = false;
880 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
881 if (!em)
882 break;
883
884 /*
885 * If the file extent is an inlined one, we may still want to
886 * defrag it (fallthrough) if it will cause a regular extent.
887 * This is for users who want to convert inline extents to
888 * regular ones through max_inline= mount option.
889 */
890 if (em->block_start == EXTENT_MAP_INLINE &&
891 em->len <= inode->root->fs_info->max_inline)
892 goto next;
893
894 /* Skip hole/delalloc/preallocated extents */
895 if (em->block_start == EXTENT_MAP_HOLE ||
896 em->block_start == EXTENT_MAP_DELALLOC ||
897 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
898 goto next;
899
900 /* Skip older extent */
901 if (em->generation < newer_than)
902 goto next;
903
904 /* This em is under writeback, no need to defrag */
905 if (em->generation == (u64)-1)
906 goto next;
907
908 /*
909 * Our start offset might be in the middle of an existing extent
910 * map, so take that into account.
911 */
912 range_len = em->len - (cur - em->start);
913 /*
914 * If this range of the extent map is already flagged for delalloc,
915 * skip it, because:
916 *
917 * 1) We could deadlock later, when trying to reserve space for
918 * delalloc, because in case we can't immediately reserve space
919 * the flusher can start delalloc and wait for the respective
920 * ordered extents to complete. The deadlock would happen
921 * because we do the space reservation while holding the range
922 * locked, and starting writeback, or finishing an ordered
923 * extent, requires locking the range;
924 *
925 * 2) If there's delalloc there, it means there's dirty pages for
926 * which writeback has not started yet (we clean the delalloc
927 * flag when starting writeback and after creating an ordered
928 * extent). If we mark pages in an adjacent range for defrag,
929 * then we will have a larger contiguous range for delalloc,
930 * very likely resulting in a larger extent after writeback is
931 * triggered (except in a case of free space fragmentation).
932 */
933 if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
934 EXTENT_DELALLOC, 0, NULL))
935 goto next;
936
937 /*
938 * For do_compress case, we want to compress all valid file
939 * extents, thus no @extent_thresh or mergeable check.
940 */
941 if (do_compress)
942 goto add;
943
944 /* Skip too large extent */
945 if (range_len >= extent_thresh)
946 goto next;
947
948 /*
949 * Skip extents already at its max capacity, this is mostly for
950 * compressed extents, which max cap is only 128K.
951 */
952 if (em->len >= get_extent_max_capacity(fs_info, em))
953 goto next;
954
955 /*
956 * Normally there are no more extents after an inline one, thus
957 * @next_mergeable will normally be false and not defragged.
958 * So if an inline extent passed all above checks, just add it
959 * for defrag, and be converted to regular extents.
960 */
961 if (em->block_start == EXTENT_MAP_INLINE)
962 goto add;
963
964 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
965 extent_thresh, newer_than, locked);
966 if (!next_mergeable) {
967 struct defrag_target_range *last;
968
969 /* Empty target list, no way to merge with last entry */
970 if (list_empty(target_list))
971 goto next;
972 last = list_entry(target_list->prev,
973 struct defrag_target_range, list);
974 /* Not mergeable with last entry */
975 if (last->start + last->len != cur)
976 goto next;
977
978 /* Mergeable, fall through to add it to @target_list. */
979 }
980
981 add:
982 last_is_target = true;
983 range_len = min(extent_map_end(em), start + len) - cur;
984 /*
985 * This one is a good target, check if it can be merged into
986 * last range of the target list.
987 */
988 if (!list_empty(target_list)) {
989 struct defrag_target_range *last;
990
991 last = list_entry(target_list->prev,
992 struct defrag_target_range, list);
993 ASSERT(last->start + last->len <= cur);
994 if (last->start + last->len == cur) {
995 /* Mergeable, enlarge the last entry */
996 last->len += range_len;
997 goto next;
998 }
999 /* Fall through to allocate a new entry */
1000 }
1001
1002 /* Allocate new defrag_target_range */
1003 new = kmalloc(sizeof(*new), GFP_NOFS);
1004 if (!new) {
1005 free_extent_map(em);
1006 ret = -ENOMEM;
1007 break;
1008 }
1009 new->start = cur;
1010 new->len = range_len;
1011 list_add_tail(&new->list, target_list);
1012
1013 next:
1014 cur = extent_map_end(em);
1015 free_extent_map(em);
1016 }
1017 if (ret < 0) {
1018 struct defrag_target_range *entry;
1019 struct defrag_target_range *tmp;
1020
1021 list_for_each_entry_safe(entry, tmp, target_list, list) {
1022 list_del_init(&entry->list);
1023 kfree(entry);
1024 }
1025 }
1026 if (!ret && last_scanned_ret) {
1027 /*
1028 * If the last extent is not a target, the caller can skip to
1029 * the end of that extent.
1030 * Otherwise, we can only go the end of the specified range.
1031 */
1032 if (!last_is_target)
1033 *last_scanned_ret = max(cur, *last_scanned_ret);
1034 else
1035 *last_scanned_ret = max(start + len, *last_scanned_ret);
1036 }
1037 return ret;
1038 }
1039
1040 #define CLUSTER_SIZE (SZ_256K)
1041 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1042
1043 /*
1044 * Defrag one contiguous target range.
1045 *
1046 * @inode: target inode
1047 * @target: target range to defrag
1048 * @pages: locked pages covering the defrag range
1049 * @nr_pages: number of locked pages
1050 *
1051 * Caller should ensure:
1052 *
1053 * - Pages are prepared
1054 * Pages should be locked, no ordered extent in the pages range,
1055 * no writeback.
1056 *
1057 * - Extent bits are locked
1058 */
1059 static int defrag_one_locked_target(struct btrfs_inode *inode,
1060 struct defrag_target_range *target,
1061 struct page **pages, int nr_pages,
1062 struct extent_state **cached_state)
1063 {
1064 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1065 struct extent_changeset *data_reserved = NULL;
1066 const u64 start = target->start;
1067 const u64 len = target->len;
1068 unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1069 unsigned long start_index = start >> PAGE_SHIFT;
1070 unsigned long first_index = page_index(pages[0]);
1071 int ret = 0;
1072 int i;
1073
1074 ASSERT(last_index - first_index + 1 <= nr_pages);
1075
1076 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1077 if (ret < 0)
1078 return ret;
1079 clear_extent_bit(&inode->io_tree, start, start + len - 1,
1080 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1081 EXTENT_DEFRAG, cached_state);
1082 set_extent_bit(&inode->io_tree, start, start + len - 1,
1083 EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1084
1085 /* Update the page status */
1086 for (i = start_index - first_index; i <= last_index - first_index; i++) {
1087 ClearPageChecked(pages[i]);
1088 btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1089 }
1090 btrfs_delalloc_release_extents(inode, len);
1091 extent_changeset_free(data_reserved);
1092
1093 return ret;
1094 }
1095
1096 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1097 u32 extent_thresh, u64 newer_than, bool do_compress,
1098 u64 *last_scanned_ret)
1099 {
1100 struct extent_state *cached_state = NULL;
1101 struct defrag_target_range *entry;
1102 struct defrag_target_range *tmp;
1103 LIST_HEAD(target_list);
1104 struct page **pages;
1105 const u32 sectorsize = inode->root->fs_info->sectorsize;
1106 u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1107 u64 start_index = start >> PAGE_SHIFT;
1108 unsigned int nr_pages = last_index - start_index + 1;
1109 int ret = 0;
1110 int i;
1111
1112 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1113 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1114
1115 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1116 if (!pages)
1117 return -ENOMEM;
1118
1119 /* Prepare all pages */
1120 for (i = 0; i < nr_pages; i++) {
1121 pages[i] = defrag_prepare_one_page(inode, start_index + i);
1122 if (IS_ERR(pages[i])) {
1123 ret = PTR_ERR(pages[i]);
1124 pages[i] = NULL;
1125 goto free_pages;
1126 }
1127 }
1128 for (i = 0; i < nr_pages; i++)
1129 wait_on_page_writeback(pages[i]);
1130
1131 /* Lock the pages range */
1132 lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1133 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1134 &cached_state);
1135 /*
1136 * Now we have a consistent view about the extent map, re-check
1137 * which range really needs to be defragged.
1138 *
1139 * And this time we have extent locked already, pass @locked = true
1140 * so that we won't relock the extent range and cause deadlock.
1141 */
1142 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1143 newer_than, do_compress, true,
1144 &target_list, last_scanned_ret);
1145 if (ret < 0)
1146 goto unlock_extent;
1147
1148 list_for_each_entry(entry, &target_list, list) {
1149 ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1150 &cached_state);
1151 if (ret < 0)
1152 break;
1153 }
1154
1155 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1156 list_del_init(&entry->list);
1157 kfree(entry);
1158 }
1159 unlock_extent:
1160 unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1161 (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1162 &cached_state);
1163 free_pages:
1164 for (i = 0; i < nr_pages; i++) {
1165 if (pages[i]) {
1166 unlock_page(pages[i]);
1167 put_page(pages[i]);
1168 }
1169 }
1170 kfree(pages);
1171 return ret;
1172 }
1173
1174 static int defrag_one_cluster(struct btrfs_inode *inode,
1175 struct file_ra_state *ra,
1176 u64 start, u32 len, u32 extent_thresh,
1177 u64 newer_than, bool do_compress,
1178 unsigned long *sectors_defragged,
1179 unsigned long max_sectors,
1180 u64 *last_scanned_ret)
1181 {
1182 const u32 sectorsize = inode->root->fs_info->sectorsize;
1183 struct defrag_target_range *entry;
1184 struct defrag_target_range *tmp;
1185 LIST_HEAD(target_list);
1186 int ret;
1187
1188 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1189 newer_than, do_compress, false,
1190 &target_list, NULL);
1191 if (ret < 0)
1192 goto out;
1193
1194 list_for_each_entry(entry, &target_list, list) {
1195 u32 range_len = entry->len;
1196
1197 /* Reached or beyond the limit */
1198 if (max_sectors && *sectors_defragged >= max_sectors) {
1199 ret = 1;
1200 break;
1201 }
1202
1203 if (max_sectors)
1204 range_len = min_t(u32, range_len,
1205 (max_sectors - *sectors_defragged) * sectorsize);
1206
1207 /*
1208 * If defrag_one_range() has updated last_scanned_ret,
1209 * our range may already be invalid (e.g. hole punched).
1210 * Skip if our range is before last_scanned_ret, as there is
1211 * no need to defrag the range anymore.
1212 */
1213 if (entry->start + range_len <= *last_scanned_ret)
1214 continue;
1215
1216 if (ra)
1217 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1218 ra, NULL, entry->start >> PAGE_SHIFT,
1219 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1220 (entry->start >> PAGE_SHIFT) + 1);
1221 /*
1222 * Here we may not defrag any range if holes are punched before
1223 * we locked the pages.
1224 * But that's fine, it only affects the @sectors_defragged
1225 * accounting.
1226 */
1227 ret = defrag_one_range(inode, entry->start, range_len,
1228 extent_thresh, newer_than, do_compress,
1229 last_scanned_ret);
1230 if (ret < 0)
1231 break;
1232 *sectors_defragged += range_len >>
1233 inode->root->fs_info->sectorsize_bits;
1234 }
1235 out:
1236 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1237 list_del_init(&entry->list);
1238 kfree(entry);
1239 }
1240 if (ret >= 0)
1241 *last_scanned_ret = max(*last_scanned_ret, start + len);
1242 return ret;
1243 }
1244
1245 /*
1246 * Entry point to file defragmentation.
1247 *
1248 * @inode: inode to be defragged
1249 * @ra: readahead state (can be NUL)
1250 * @range: defrag options including range and flags
1251 * @newer_than: minimum transid to defrag
1252 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1253 * will be defragged.
1254 *
1255 * Return <0 for error.
1256 * Return >=0 for the number of sectors defragged, and range->start will be updated
1257 * to indicate the file offset where next defrag should be started at.
1258 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1259 * defragging all the range).
1260 */
1261 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1262 struct btrfs_ioctl_defrag_range_args *range,
1263 u64 newer_than, unsigned long max_to_defrag)
1264 {
1265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1266 unsigned long sectors_defragged = 0;
1267 u64 isize = i_size_read(inode);
1268 u64 cur;
1269 u64 last_byte;
1270 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1271 bool ra_allocated = false;
1272 int compress_type = BTRFS_COMPRESS_ZLIB;
1273 int ret = 0;
1274 u32 extent_thresh = range->extent_thresh;
1275 pgoff_t start_index;
1276
1277 if (isize == 0)
1278 return 0;
1279
1280 if (range->start >= isize)
1281 return -EINVAL;
1282
1283 if (do_compress) {
1284 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1285 return -EINVAL;
1286 if (range->compress_type)
1287 compress_type = range->compress_type;
1288 }
1289
1290 if (extent_thresh == 0)
1291 extent_thresh = SZ_256K;
1292
1293 if (range->start + range->len > range->start) {
1294 /* Got a specific range */
1295 last_byte = min(isize, range->start + range->len);
1296 } else {
1297 /* Defrag until file end */
1298 last_byte = isize;
1299 }
1300
1301 /* Align the range */
1302 cur = round_down(range->start, fs_info->sectorsize);
1303 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1304
1305 /*
1306 * If we were not given a ra, allocate a readahead context. As
1307 * readahead is just an optimization, defrag will work without it so
1308 * we don't error out.
1309 */
1310 if (!ra) {
1311 ra_allocated = true;
1312 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1313 if (ra)
1314 file_ra_state_init(ra, inode->i_mapping);
1315 }
1316
1317 /*
1318 * Make writeback start from the beginning of the range, so that the
1319 * defrag range can be written sequentially.
1320 */
1321 start_index = cur >> PAGE_SHIFT;
1322 if (start_index < inode->i_mapping->writeback_index)
1323 inode->i_mapping->writeback_index = start_index;
1324
1325 while (cur < last_byte) {
1326 const unsigned long prev_sectors_defragged = sectors_defragged;
1327 u64 last_scanned = cur;
1328 u64 cluster_end;
1329
1330 if (btrfs_defrag_cancelled(fs_info)) {
1331 ret = -EAGAIN;
1332 break;
1333 }
1334
1335 /* We want the cluster end at page boundary when possible */
1336 cluster_end = (((cur >> PAGE_SHIFT) +
1337 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1338 cluster_end = min(cluster_end, last_byte);
1339
1340 btrfs_inode_lock(BTRFS_I(inode), 0);
1341 if (IS_SWAPFILE(inode)) {
1342 ret = -ETXTBSY;
1343 btrfs_inode_unlock(BTRFS_I(inode), 0);
1344 break;
1345 }
1346 if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1347 btrfs_inode_unlock(BTRFS_I(inode), 0);
1348 break;
1349 }
1350 if (do_compress)
1351 BTRFS_I(inode)->defrag_compress = compress_type;
1352 ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1353 cluster_end + 1 - cur, extent_thresh,
1354 newer_than, do_compress, &sectors_defragged,
1355 max_to_defrag, &last_scanned);
1356
1357 if (sectors_defragged > prev_sectors_defragged)
1358 balance_dirty_pages_ratelimited(inode->i_mapping);
1359
1360 btrfs_inode_unlock(BTRFS_I(inode), 0);
1361 if (ret < 0)
1362 break;
1363 cur = max(cluster_end + 1, last_scanned);
1364 if (ret > 0) {
1365 ret = 0;
1366 break;
1367 }
1368 cond_resched();
1369 }
1370
1371 if (ra_allocated)
1372 kfree(ra);
1373 /*
1374 * Update range.start for autodefrag, this will indicate where to start
1375 * in next run.
1376 */
1377 range->start = cur;
1378 if (sectors_defragged) {
1379 /*
1380 * We have defragged some sectors, for compression case they
1381 * need to be written back immediately.
1382 */
1383 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1384 filemap_flush(inode->i_mapping);
1385 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1386 &BTRFS_I(inode)->runtime_flags))
1387 filemap_flush(inode->i_mapping);
1388 }
1389 if (range->compress_type == BTRFS_COMPRESS_LZO)
1390 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1391 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1392 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1393 ret = sectors_defragged;
1394 }
1395 if (do_compress) {
1396 btrfs_inode_lock(BTRFS_I(inode), 0);
1397 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1398 btrfs_inode_unlock(BTRFS_I(inode), 0);
1399 }
1400 return ret;
1401 }
1402
1403 void __cold btrfs_auto_defrag_exit(void)
1404 {
1405 kmem_cache_destroy(btrfs_inode_defrag_cachep);
1406 }
1407
1408 int __init btrfs_auto_defrag_init(void)
1409 {
1410 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1411 sizeof(struct inode_defrag), 0,
1412 SLAB_MEM_SPREAD,
1413 NULL);
1414 if (!btrfs_inode_defrag_cachep)
1415 return -ENOMEM;
1416
1417 return 0;
1418 }