]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/delayed-inode.c
Merge branch 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/kernel/stable.git] / fs / btrfs / delayed-inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "delayed-inode.h"
10 #include "disk-io.h"
11 #include "transaction.h"
12 #include "ctree.h"
13 #include "qgroup.h"
14
15 #define BTRFS_DELAYED_WRITEBACK 512
16 #define BTRFS_DELAYED_BACKGROUND 128
17 #define BTRFS_DELAYED_BATCH 16
18
19 static struct kmem_cache *delayed_node_cache;
20
21 int __init btrfs_delayed_inode_init(void)
22 {
23 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 sizeof(struct btrfs_delayed_node),
25 0,
26 SLAB_MEM_SPREAD,
27 NULL);
28 if (!delayed_node_cache)
29 return -ENOMEM;
30 return 0;
31 }
32
33 void __cold btrfs_delayed_inode_exit(void)
34 {
35 kmem_cache_destroy(delayed_node_cache);
36 }
37
38 static inline void btrfs_init_delayed_node(
39 struct btrfs_delayed_node *delayed_node,
40 struct btrfs_root *root, u64 inode_id)
41 {
42 delayed_node->root = root;
43 delayed_node->inode_id = inode_id;
44 refcount_set(&delayed_node->refs, 0);
45 delayed_node->ins_root = RB_ROOT_CACHED;
46 delayed_node->del_root = RB_ROOT_CACHED;
47 mutex_init(&delayed_node->mutex);
48 INIT_LIST_HEAD(&delayed_node->n_list);
49 INIT_LIST_HEAD(&delayed_node->p_list);
50 }
51
52 static inline int btrfs_is_continuous_delayed_item(
53 struct btrfs_delayed_item *item1,
54 struct btrfs_delayed_item *item2)
55 {
56 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57 item1->key.objectid == item2->key.objectid &&
58 item1->key.type == item2->key.type &&
59 item1->key.offset + 1 == item2->key.offset)
60 return 1;
61 return 0;
62 }
63
64 static struct btrfs_delayed_node *btrfs_get_delayed_node(
65 struct btrfs_inode *btrfs_inode)
66 {
67 struct btrfs_root *root = btrfs_inode->root;
68 u64 ino = btrfs_ino(btrfs_inode);
69 struct btrfs_delayed_node *node;
70
71 node = READ_ONCE(btrfs_inode->delayed_node);
72 if (node) {
73 refcount_inc(&node->refs);
74 return node;
75 }
76
77 spin_lock(&root->inode_lock);
78 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79
80 if (node) {
81 if (btrfs_inode->delayed_node) {
82 refcount_inc(&node->refs); /* can be accessed */
83 BUG_ON(btrfs_inode->delayed_node != node);
84 spin_unlock(&root->inode_lock);
85 return node;
86 }
87
88 /*
89 * It's possible that we're racing into the middle of removing
90 * this node from the radix tree. In this case, the refcount
91 * was zero and it should never go back to one. Just return
92 * NULL like it was never in the radix at all; our release
93 * function is in the process of removing it.
94 *
95 * Some implementations of refcount_inc refuse to bump the
96 * refcount once it has hit zero. If we don't do this dance
97 * here, refcount_inc() may decide to just WARN_ONCE() instead
98 * of actually bumping the refcount.
99 *
100 * If this node is properly in the radix, we want to bump the
101 * refcount twice, once for the inode and once for this get
102 * operation.
103 */
104 if (refcount_inc_not_zero(&node->refs)) {
105 refcount_inc(&node->refs);
106 btrfs_inode->delayed_node = node;
107 } else {
108 node = NULL;
109 }
110
111 spin_unlock(&root->inode_lock);
112 return node;
113 }
114 spin_unlock(&root->inode_lock);
115
116 return NULL;
117 }
118
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 struct btrfs_inode *btrfs_inode)
122 {
123 struct btrfs_delayed_node *node;
124 struct btrfs_root *root = btrfs_inode->root;
125 u64 ino = btrfs_ino(btrfs_inode);
126 int ret;
127
128 again:
129 node = btrfs_get_delayed_node(btrfs_inode);
130 if (node)
131 return node;
132
133 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 if (!node)
135 return ERR_PTR(-ENOMEM);
136 btrfs_init_delayed_node(node, root, ino);
137
138 /* cached in the btrfs inode and can be accessed */
139 refcount_set(&node->refs, 2);
140
141 ret = radix_tree_preload(GFP_NOFS);
142 if (ret) {
143 kmem_cache_free(delayed_node_cache, node);
144 return ERR_PTR(ret);
145 }
146
147 spin_lock(&root->inode_lock);
148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 if (ret == -EEXIST) {
150 spin_unlock(&root->inode_lock);
151 kmem_cache_free(delayed_node_cache, node);
152 radix_tree_preload_end();
153 goto again;
154 }
155 btrfs_inode->delayed_node = node;
156 spin_unlock(&root->inode_lock);
157 radix_tree_preload_end();
158
159 return node;
160 }
161
162 /*
163 * Call it when holding delayed_node->mutex
164 *
165 * If mod = 1, add this node into the prepared list.
166 */
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 struct btrfs_delayed_node *node,
169 int mod)
170 {
171 spin_lock(&root->lock);
172 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 if (!list_empty(&node->p_list))
174 list_move_tail(&node->p_list, &root->prepare_list);
175 else if (mod)
176 list_add_tail(&node->p_list, &root->prepare_list);
177 } else {
178 list_add_tail(&node->n_list, &root->node_list);
179 list_add_tail(&node->p_list, &root->prepare_list);
180 refcount_inc(&node->refs); /* inserted into list */
181 root->nodes++;
182 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 }
184 spin_unlock(&root->lock);
185 }
186
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 struct btrfs_delayed_node *node)
190 {
191 spin_lock(&root->lock);
192 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193 root->nodes--;
194 refcount_dec(&node->refs); /* not in the list */
195 list_del_init(&node->n_list);
196 if (!list_empty(&node->p_list))
197 list_del_init(&node->p_list);
198 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 }
200 spin_unlock(&root->lock);
201 }
202
203 static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 struct btrfs_delayed_root *delayed_root)
205 {
206 struct list_head *p;
207 struct btrfs_delayed_node *node = NULL;
208
209 spin_lock(&delayed_root->lock);
210 if (list_empty(&delayed_root->node_list))
211 goto out;
212
213 p = delayed_root->node_list.next;
214 node = list_entry(p, struct btrfs_delayed_node, n_list);
215 refcount_inc(&node->refs);
216 out:
217 spin_unlock(&delayed_root->lock);
218
219 return node;
220 }
221
222 static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 struct btrfs_delayed_node *node)
224 {
225 struct btrfs_delayed_root *delayed_root;
226 struct list_head *p;
227 struct btrfs_delayed_node *next = NULL;
228
229 delayed_root = node->root->fs_info->delayed_root;
230 spin_lock(&delayed_root->lock);
231 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232 /* not in the list */
233 if (list_empty(&delayed_root->node_list))
234 goto out;
235 p = delayed_root->node_list.next;
236 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 goto out;
238 else
239 p = node->n_list.next;
240
241 next = list_entry(p, struct btrfs_delayed_node, n_list);
242 refcount_inc(&next->refs);
243 out:
244 spin_unlock(&delayed_root->lock);
245
246 return next;
247 }
248
249 static void __btrfs_release_delayed_node(
250 struct btrfs_delayed_node *delayed_node,
251 int mod)
252 {
253 struct btrfs_delayed_root *delayed_root;
254
255 if (!delayed_node)
256 return;
257
258 delayed_root = delayed_node->root->fs_info->delayed_root;
259
260 mutex_lock(&delayed_node->mutex);
261 if (delayed_node->count)
262 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 else
264 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 mutex_unlock(&delayed_node->mutex);
266
267 if (refcount_dec_and_test(&delayed_node->refs)) {
268 struct btrfs_root *root = delayed_node->root;
269
270 spin_lock(&root->inode_lock);
271 /*
272 * Once our refcount goes to zero, nobody is allowed to bump it
273 * back up. We can delete it now.
274 */
275 ASSERT(refcount_read(&delayed_node->refs) == 0);
276 radix_tree_delete(&root->delayed_nodes_tree,
277 delayed_node->inode_id);
278 spin_unlock(&root->inode_lock);
279 kmem_cache_free(delayed_node_cache, delayed_node);
280 }
281 }
282
283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284 {
285 __btrfs_release_delayed_node(node, 0);
286 }
287
288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 struct btrfs_delayed_root *delayed_root)
290 {
291 struct list_head *p;
292 struct btrfs_delayed_node *node = NULL;
293
294 spin_lock(&delayed_root->lock);
295 if (list_empty(&delayed_root->prepare_list))
296 goto out;
297
298 p = delayed_root->prepare_list.next;
299 list_del_init(p);
300 node = list_entry(p, struct btrfs_delayed_node, p_list);
301 refcount_inc(&node->refs);
302 out:
303 spin_unlock(&delayed_root->lock);
304
305 return node;
306 }
307
308 static inline void btrfs_release_prepared_delayed_node(
309 struct btrfs_delayed_node *node)
310 {
311 __btrfs_release_delayed_node(node, 1);
312 }
313
314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 {
316 struct btrfs_delayed_item *item;
317 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318 if (item) {
319 item->data_len = data_len;
320 item->ins_or_del = 0;
321 item->bytes_reserved = 0;
322 item->delayed_node = NULL;
323 refcount_set(&item->refs, 1);
324 }
325 return item;
326 }
327
328 /*
329 * __btrfs_lookup_delayed_item - look up the delayed item by key
330 * @delayed_node: pointer to the delayed node
331 * @key: the key to look up
332 * @prev: used to store the prev item if the right item isn't found
333 * @next: used to store the next item if the right item isn't found
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 struct btrfs_key *key,
341 struct btrfs_delayed_item **prev,
342 struct btrfs_delayed_item **next)
343 {
344 struct rb_node *node, *prev_node = NULL;
345 struct btrfs_delayed_item *delayed_item = NULL;
346 int ret = 0;
347
348 node = root->rb_node;
349
350 while (node) {
351 delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 rb_node);
353 prev_node = node;
354 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355 if (ret < 0)
356 node = node->rb_right;
357 else if (ret > 0)
358 node = node->rb_left;
359 else
360 return delayed_item;
361 }
362
363 if (prev) {
364 if (!prev_node)
365 *prev = NULL;
366 else if (ret < 0)
367 *prev = delayed_item;
368 else if ((node = rb_prev(prev_node)) != NULL) {
369 *prev = rb_entry(node, struct btrfs_delayed_item,
370 rb_node);
371 } else
372 *prev = NULL;
373 }
374
375 if (next) {
376 if (!prev_node)
377 *next = NULL;
378 else if (ret > 0)
379 *next = delayed_item;
380 else if ((node = rb_next(prev_node)) != NULL) {
381 *next = rb_entry(node, struct btrfs_delayed_item,
382 rb_node);
383 } else
384 *next = NULL;
385 }
386 return NULL;
387 }
388
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 struct btrfs_delayed_node *delayed_node,
391 struct btrfs_key *key)
392 {
393 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
394 NULL, NULL);
395 }
396
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398 struct btrfs_delayed_item *ins,
399 int action)
400 {
401 struct rb_node **p, *node;
402 struct rb_node *parent_node = NULL;
403 struct rb_root_cached *root;
404 struct btrfs_delayed_item *item;
405 int cmp;
406 bool leftmost = true;
407
408 if (action == BTRFS_DELAYED_INSERTION_ITEM)
409 root = &delayed_node->ins_root;
410 else if (action == BTRFS_DELAYED_DELETION_ITEM)
411 root = &delayed_node->del_root;
412 else
413 BUG();
414 p = &root->rb_root.rb_node;
415 node = &ins->rb_node;
416
417 while (*p) {
418 parent_node = *p;
419 item = rb_entry(parent_node, struct btrfs_delayed_item,
420 rb_node);
421
422 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423 if (cmp < 0) {
424 p = &(*p)->rb_right;
425 leftmost = false;
426 } else if (cmp > 0) {
427 p = &(*p)->rb_left;
428 } else {
429 return -EEXIST;
430 }
431 }
432
433 rb_link_node(node, parent_node, p);
434 rb_insert_color_cached(node, root, leftmost);
435 ins->delayed_node = delayed_node;
436 ins->ins_or_del = action;
437
438 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
439 action == BTRFS_DELAYED_INSERTION_ITEM &&
440 ins->key.offset >= delayed_node->index_cnt)
441 delayed_node->index_cnt = ins->key.offset + 1;
442
443 delayed_node->count++;
444 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
445 return 0;
446 }
447
448 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
449 struct btrfs_delayed_item *item)
450 {
451 return __btrfs_add_delayed_item(node, item,
452 BTRFS_DELAYED_INSERTION_ITEM);
453 }
454
455 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
456 struct btrfs_delayed_item *item)
457 {
458 return __btrfs_add_delayed_item(node, item,
459 BTRFS_DELAYED_DELETION_ITEM);
460 }
461
462 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
463 {
464 int seq = atomic_inc_return(&delayed_root->items_seq);
465
466 /* atomic_dec_return implies a barrier */
467 if ((atomic_dec_return(&delayed_root->items) <
468 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
469 cond_wake_up_nomb(&delayed_root->wait);
470 }
471
472 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473 {
474 struct rb_root_cached *root;
475 struct btrfs_delayed_root *delayed_root;
476
477 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478
479 BUG_ON(!delayed_root);
480 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482
483 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484 root = &delayed_item->delayed_node->ins_root;
485 else
486 root = &delayed_item->delayed_node->del_root;
487
488 rb_erase_cached(&delayed_item->rb_node, root);
489 delayed_item->delayed_node->count--;
490
491 finish_one_item(delayed_root);
492 }
493
494 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495 {
496 if (item) {
497 __btrfs_remove_delayed_item(item);
498 if (refcount_dec_and_test(&item->refs))
499 kfree(item);
500 }
501 }
502
503 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 struct btrfs_delayed_node *delayed_node)
505 {
506 struct rb_node *p;
507 struct btrfs_delayed_item *item = NULL;
508
509 p = rb_first_cached(&delayed_node->ins_root);
510 if (p)
511 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512
513 return item;
514 }
515
516 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 struct btrfs_delayed_node *delayed_node)
518 {
519 struct rb_node *p;
520 struct btrfs_delayed_item *item = NULL;
521
522 p = rb_first_cached(&delayed_node->del_root);
523 if (p)
524 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525
526 return item;
527 }
528
529 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 struct btrfs_delayed_item *item)
531 {
532 struct rb_node *p;
533 struct btrfs_delayed_item *next = NULL;
534
535 p = rb_next(&item->rb_node);
536 if (p)
537 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538
539 return next;
540 }
541
542 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543 struct btrfs_root *root,
544 struct btrfs_delayed_item *item)
545 {
546 struct btrfs_block_rsv *src_rsv;
547 struct btrfs_block_rsv *dst_rsv;
548 struct btrfs_fs_info *fs_info = root->fs_info;
549 u64 num_bytes;
550 int ret;
551
552 if (!trans->bytes_reserved)
553 return 0;
554
555 src_rsv = trans->block_rsv;
556 dst_rsv = &fs_info->delayed_block_rsv;
557
558 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559
560 /*
561 * Here we migrate space rsv from transaction rsv, since have already
562 * reserved space when starting a transaction. So no need to reserve
563 * qgroup space here.
564 */
565 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
566 if (!ret) {
567 trace_btrfs_space_reservation(fs_info, "delayed_item",
568 item->key.objectid,
569 num_bytes, 1);
570 item->bytes_reserved = num_bytes;
571 }
572
573 return ret;
574 }
575
576 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
577 struct btrfs_delayed_item *item)
578 {
579 struct btrfs_block_rsv *rsv;
580 struct btrfs_fs_info *fs_info = root->fs_info;
581
582 if (!item->bytes_reserved)
583 return;
584
585 rsv = &fs_info->delayed_block_rsv;
586 /*
587 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
588 * to release/reserve qgroup space.
589 */
590 trace_btrfs_space_reservation(fs_info, "delayed_item",
591 item->key.objectid, item->bytes_reserved,
592 0);
593 btrfs_block_rsv_release(fs_info, rsv,
594 item->bytes_reserved);
595 }
596
597 static int btrfs_delayed_inode_reserve_metadata(
598 struct btrfs_trans_handle *trans,
599 struct btrfs_root *root,
600 struct btrfs_inode *inode,
601 struct btrfs_delayed_node *node)
602 {
603 struct btrfs_fs_info *fs_info = root->fs_info;
604 struct btrfs_block_rsv *src_rsv;
605 struct btrfs_block_rsv *dst_rsv;
606 u64 num_bytes;
607 int ret;
608
609 src_rsv = trans->block_rsv;
610 dst_rsv = &fs_info->delayed_block_rsv;
611
612 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613
614 /*
615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 * which doesn't reserve space for speed. This is a problem since we
617 * still need to reserve space for this update, so try to reserve the
618 * space.
619 *
620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 * we always reserve enough to update the inode item.
622 */
623 if (!src_rsv || (!trans->bytes_reserved &&
624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 ret = btrfs_qgroup_reserve_meta_prealloc(root,
626 fs_info->nodesize, true);
627 if (ret < 0)
628 return ret;
629 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
630 BTRFS_RESERVE_NO_FLUSH);
631 /*
632 * Since we're under a transaction reserve_metadata_bytes could
633 * try to commit the transaction which will make it return
634 * EAGAIN to make us stop the transaction we have, so return
635 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636 */
637 if (ret == -EAGAIN) {
638 ret = -ENOSPC;
639 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640 }
641 if (!ret) {
642 node->bytes_reserved = num_bytes;
643 trace_btrfs_space_reservation(fs_info,
644 "delayed_inode",
645 btrfs_ino(inode),
646 num_bytes, 1);
647 } else {
648 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
649 }
650 return ret;
651 }
652
653 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
654 if (!ret) {
655 trace_btrfs_space_reservation(fs_info, "delayed_inode",
656 btrfs_ino(inode), num_bytes, 1);
657 node->bytes_reserved = num_bytes;
658 }
659
660 return ret;
661 }
662
663 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664 struct btrfs_delayed_node *node,
665 bool qgroup_free)
666 {
667 struct btrfs_block_rsv *rsv;
668
669 if (!node->bytes_reserved)
670 return;
671
672 rsv = &fs_info->delayed_block_rsv;
673 trace_btrfs_space_reservation(fs_info, "delayed_inode",
674 node->inode_id, node->bytes_reserved, 0);
675 btrfs_block_rsv_release(fs_info, rsv,
676 node->bytes_reserved);
677 if (qgroup_free)
678 btrfs_qgroup_free_meta_prealloc(node->root,
679 node->bytes_reserved);
680 else
681 btrfs_qgroup_convert_reserved_meta(node->root,
682 node->bytes_reserved);
683 node->bytes_reserved = 0;
684 }
685
686 /*
687 * This helper will insert some continuous items into the same leaf according
688 * to the free space of the leaf.
689 */
690 static int btrfs_batch_insert_items(struct btrfs_root *root,
691 struct btrfs_path *path,
692 struct btrfs_delayed_item *item)
693 {
694 struct btrfs_delayed_item *curr, *next;
695 int free_space;
696 int total_data_size = 0, total_size = 0;
697 struct extent_buffer *leaf;
698 char *data_ptr;
699 struct btrfs_key *keys;
700 u32 *data_size;
701 struct list_head head;
702 int slot;
703 int nitems;
704 int i;
705 int ret = 0;
706
707 BUG_ON(!path->nodes[0]);
708
709 leaf = path->nodes[0];
710 free_space = btrfs_leaf_free_space(leaf);
711 INIT_LIST_HEAD(&head);
712
713 next = item;
714 nitems = 0;
715
716 /*
717 * count the number of the continuous items that we can insert in batch
718 */
719 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
720 free_space) {
721 total_data_size += next->data_len;
722 total_size += next->data_len + sizeof(struct btrfs_item);
723 list_add_tail(&next->tree_list, &head);
724 nitems++;
725
726 curr = next;
727 next = __btrfs_next_delayed_item(curr);
728 if (!next)
729 break;
730
731 if (!btrfs_is_continuous_delayed_item(curr, next))
732 break;
733 }
734
735 if (!nitems) {
736 ret = 0;
737 goto out;
738 }
739
740 /*
741 * we need allocate some memory space, but it might cause the task
742 * to sleep, so we set all locked nodes in the path to blocking locks
743 * first.
744 */
745 btrfs_set_path_blocking(path);
746
747 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
748 if (!keys) {
749 ret = -ENOMEM;
750 goto out;
751 }
752
753 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
754 if (!data_size) {
755 ret = -ENOMEM;
756 goto error;
757 }
758
759 /* get keys of all the delayed items */
760 i = 0;
761 list_for_each_entry(next, &head, tree_list) {
762 keys[i] = next->key;
763 data_size[i] = next->data_len;
764 i++;
765 }
766
767 /* insert the keys of the items */
768 setup_items_for_insert(root, path, keys, data_size,
769 total_data_size, total_size, nitems);
770
771 /* insert the dir index items */
772 slot = path->slots[0];
773 list_for_each_entry_safe(curr, next, &head, tree_list) {
774 data_ptr = btrfs_item_ptr(leaf, slot, char);
775 write_extent_buffer(leaf, &curr->data,
776 (unsigned long)data_ptr,
777 curr->data_len);
778 slot++;
779
780 btrfs_delayed_item_release_metadata(root, curr);
781
782 list_del(&curr->tree_list);
783 btrfs_release_delayed_item(curr);
784 }
785
786 error:
787 kfree(data_size);
788 kfree(keys);
789 out:
790 return ret;
791 }
792
793 /*
794 * This helper can just do simple insertion that needn't extend item for new
795 * data, such as directory name index insertion, inode insertion.
796 */
797 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
798 struct btrfs_root *root,
799 struct btrfs_path *path,
800 struct btrfs_delayed_item *delayed_item)
801 {
802 struct extent_buffer *leaf;
803 char *ptr;
804 int ret;
805
806 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
807 delayed_item->data_len);
808 if (ret < 0 && ret != -EEXIST)
809 return ret;
810
811 leaf = path->nodes[0];
812
813 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
814
815 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
816 delayed_item->data_len);
817 btrfs_mark_buffer_dirty(leaf);
818
819 btrfs_delayed_item_release_metadata(root, delayed_item);
820 return 0;
821 }
822
823 /*
824 * we insert an item first, then if there are some continuous items, we try
825 * to insert those items into the same leaf.
826 */
827 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
828 struct btrfs_path *path,
829 struct btrfs_root *root,
830 struct btrfs_delayed_node *node)
831 {
832 struct btrfs_delayed_item *curr, *prev;
833 int ret = 0;
834
835 do_again:
836 mutex_lock(&node->mutex);
837 curr = __btrfs_first_delayed_insertion_item(node);
838 if (!curr)
839 goto insert_end;
840
841 ret = btrfs_insert_delayed_item(trans, root, path, curr);
842 if (ret < 0) {
843 btrfs_release_path(path);
844 goto insert_end;
845 }
846
847 prev = curr;
848 curr = __btrfs_next_delayed_item(prev);
849 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
850 /* insert the continuous items into the same leaf */
851 path->slots[0]++;
852 btrfs_batch_insert_items(root, path, curr);
853 }
854 btrfs_release_delayed_item(prev);
855 btrfs_mark_buffer_dirty(path->nodes[0]);
856
857 btrfs_release_path(path);
858 mutex_unlock(&node->mutex);
859 goto do_again;
860
861 insert_end:
862 mutex_unlock(&node->mutex);
863 return ret;
864 }
865
866 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
867 struct btrfs_root *root,
868 struct btrfs_path *path,
869 struct btrfs_delayed_item *item)
870 {
871 struct btrfs_delayed_item *curr, *next;
872 struct extent_buffer *leaf;
873 struct btrfs_key key;
874 struct list_head head;
875 int nitems, i, last_item;
876 int ret = 0;
877
878 BUG_ON(!path->nodes[0]);
879
880 leaf = path->nodes[0];
881
882 i = path->slots[0];
883 last_item = btrfs_header_nritems(leaf) - 1;
884 if (i > last_item)
885 return -ENOENT; /* FIXME: Is errno suitable? */
886
887 next = item;
888 INIT_LIST_HEAD(&head);
889 btrfs_item_key_to_cpu(leaf, &key, i);
890 nitems = 0;
891 /*
892 * count the number of the dir index items that we can delete in batch
893 */
894 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
895 list_add_tail(&next->tree_list, &head);
896 nitems++;
897
898 curr = next;
899 next = __btrfs_next_delayed_item(curr);
900 if (!next)
901 break;
902
903 if (!btrfs_is_continuous_delayed_item(curr, next))
904 break;
905
906 i++;
907 if (i > last_item)
908 break;
909 btrfs_item_key_to_cpu(leaf, &key, i);
910 }
911
912 if (!nitems)
913 return 0;
914
915 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
916 if (ret)
917 goto out;
918
919 list_for_each_entry_safe(curr, next, &head, tree_list) {
920 btrfs_delayed_item_release_metadata(root, curr);
921 list_del(&curr->tree_list);
922 btrfs_release_delayed_item(curr);
923 }
924
925 out:
926 return ret;
927 }
928
929 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
930 struct btrfs_path *path,
931 struct btrfs_root *root,
932 struct btrfs_delayed_node *node)
933 {
934 struct btrfs_delayed_item *curr, *prev;
935 int ret = 0;
936
937 do_again:
938 mutex_lock(&node->mutex);
939 curr = __btrfs_first_delayed_deletion_item(node);
940 if (!curr)
941 goto delete_fail;
942
943 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
944 if (ret < 0)
945 goto delete_fail;
946 else if (ret > 0) {
947 /*
948 * can't find the item which the node points to, so this node
949 * is invalid, just drop it.
950 */
951 prev = curr;
952 curr = __btrfs_next_delayed_item(prev);
953 btrfs_release_delayed_item(prev);
954 ret = 0;
955 btrfs_release_path(path);
956 if (curr) {
957 mutex_unlock(&node->mutex);
958 goto do_again;
959 } else
960 goto delete_fail;
961 }
962
963 btrfs_batch_delete_items(trans, root, path, curr);
964 btrfs_release_path(path);
965 mutex_unlock(&node->mutex);
966 goto do_again;
967
968 delete_fail:
969 btrfs_release_path(path);
970 mutex_unlock(&node->mutex);
971 return ret;
972 }
973
974 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
975 {
976 struct btrfs_delayed_root *delayed_root;
977
978 if (delayed_node &&
979 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
980 BUG_ON(!delayed_node->root);
981 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
982 delayed_node->count--;
983
984 delayed_root = delayed_node->root->fs_info->delayed_root;
985 finish_one_item(delayed_root);
986 }
987 }
988
989 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
990 {
991 struct btrfs_delayed_root *delayed_root;
992
993 ASSERT(delayed_node->root);
994 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
995 delayed_node->count--;
996
997 delayed_root = delayed_node->root->fs_info->delayed_root;
998 finish_one_item(delayed_root);
999 }
1000
1001 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1002 struct btrfs_root *root,
1003 struct btrfs_path *path,
1004 struct btrfs_delayed_node *node)
1005 {
1006 struct btrfs_fs_info *fs_info = root->fs_info;
1007 struct btrfs_key key;
1008 struct btrfs_inode_item *inode_item;
1009 struct extent_buffer *leaf;
1010 int mod;
1011 int ret;
1012
1013 key.objectid = node->inode_id;
1014 key.type = BTRFS_INODE_ITEM_KEY;
1015 key.offset = 0;
1016
1017 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1018 mod = -1;
1019 else
1020 mod = 1;
1021
1022 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1023 if (ret > 0) {
1024 btrfs_release_path(path);
1025 return -ENOENT;
1026 } else if (ret < 0) {
1027 return ret;
1028 }
1029
1030 leaf = path->nodes[0];
1031 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1032 struct btrfs_inode_item);
1033 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1034 sizeof(struct btrfs_inode_item));
1035 btrfs_mark_buffer_dirty(leaf);
1036
1037 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1038 goto no_iref;
1039
1040 path->slots[0]++;
1041 if (path->slots[0] >= btrfs_header_nritems(leaf))
1042 goto search;
1043 again:
1044 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1045 if (key.objectid != node->inode_id)
1046 goto out;
1047
1048 if (key.type != BTRFS_INODE_REF_KEY &&
1049 key.type != BTRFS_INODE_EXTREF_KEY)
1050 goto out;
1051
1052 /*
1053 * Delayed iref deletion is for the inode who has only one link,
1054 * so there is only one iref. The case that several irefs are
1055 * in the same item doesn't exist.
1056 */
1057 btrfs_del_item(trans, root, path);
1058 out:
1059 btrfs_release_delayed_iref(node);
1060 no_iref:
1061 btrfs_release_path(path);
1062 err_out:
1063 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1064 btrfs_release_delayed_inode(node);
1065
1066 return ret;
1067
1068 search:
1069 btrfs_release_path(path);
1070
1071 key.type = BTRFS_INODE_EXTREF_KEY;
1072 key.offset = -1;
1073 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1074 if (ret < 0)
1075 goto err_out;
1076 ASSERT(ret);
1077
1078 ret = 0;
1079 leaf = path->nodes[0];
1080 path->slots[0]--;
1081 goto again;
1082 }
1083
1084 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1085 struct btrfs_root *root,
1086 struct btrfs_path *path,
1087 struct btrfs_delayed_node *node)
1088 {
1089 int ret;
1090
1091 mutex_lock(&node->mutex);
1092 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1093 mutex_unlock(&node->mutex);
1094 return 0;
1095 }
1096
1097 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1098 mutex_unlock(&node->mutex);
1099 return ret;
1100 }
1101
1102 static inline int
1103 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1104 struct btrfs_path *path,
1105 struct btrfs_delayed_node *node)
1106 {
1107 int ret;
1108
1109 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1110 if (ret)
1111 return ret;
1112
1113 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1114 if (ret)
1115 return ret;
1116
1117 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1118 return ret;
1119 }
1120
1121 /*
1122 * Called when committing the transaction.
1123 * Returns 0 on success.
1124 * Returns < 0 on error and returns with an aborted transaction with any
1125 * outstanding delayed items cleaned up.
1126 */
1127 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1128 {
1129 struct btrfs_fs_info *fs_info = trans->fs_info;
1130 struct btrfs_delayed_root *delayed_root;
1131 struct btrfs_delayed_node *curr_node, *prev_node;
1132 struct btrfs_path *path;
1133 struct btrfs_block_rsv *block_rsv;
1134 int ret = 0;
1135 bool count = (nr > 0);
1136
1137 if (trans->aborted)
1138 return -EIO;
1139
1140 path = btrfs_alloc_path();
1141 if (!path)
1142 return -ENOMEM;
1143 path->leave_spinning = 1;
1144
1145 block_rsv = trans->block_rsv;
1146 trans->block_rsv = &fs_info->delayed_block_rsv;
1147
1148 delayed_root = fs_info->delayed_root;
1149
1150 curr_node = btrfs_first_delayed_node(delayed_root);
1151 while (curr_node && (!count || (count && nr--))) {
1152 ret = __btrfs_commit_inode_delayed_items(trans, path,
1153 curr_node);
1154 if (ret) {
1155 btrfs_release_delayed_node(curr_node);
1156 curr_node = NULL;
1157 btrfs_abort_transaction(trans, ret);
1158 break;
1159 }
1160
1161 prev_node = curr_node;
1162 curr_node = btrfs_next_delayed_node(curr_node);
1163 btrfs_release_delayed_node(prev_node);
1164 }
1165
1166 if (curr_node)
1167 btrfs_release_delayed_node(curr_node);
1168 btrfs_free_path(path);
1169 trans->block_rsv = block_rsv;
1170
1171 return ret;
1172 }
1173
1174 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1175 {
1176 return __btrfs_run_delayed_items(trans, -1);
1177 }
1178
1179 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1180 {
1181 return __btrfs_run_delayed_items(trans, nr);
1182 }
1183
1184 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1185 struct btrfs_inode *inode)
1186 {
1187 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1188 struct btrfs_path *path;
1189 struct btrfs_block_rsv *block_rsv;
1190 int ret;
1191
1192 if (!delayed_node)
1193 return 0;
1194
1195 mutex_lock(&delayed_node->mutex);
1196 if (!delayed_node->count) {
1197 mutex_unlock(&delayed_node->mutex);
1198 btrfs_release_delayed_node(delayed_node);
1199 return 0;
1200 }
1201 mutex_unlock(&delayed_node->mutex);
1202
1203 path = btrfs_alloc_path();
1204 if (!path) {
1205 btrfs_release_delayed_node(delayed_node);
1206 return -ENOMEM;
1207 }
1208 path->leave_spinning = 1;
1209
1210 block_rsv = trans->block_rsv;
1211 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1212
1213 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1214
1215 btrfs_release_delayed_node(delayed_node);
1216 btrfs_free_path(path);
1217 trans->block_rsv = block_rsv;
1218
1219 return ret;
1220 }
1221
1222 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1223 {
1224 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1225 struct btrfs_trans_handle *trans;
1226 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1227 struct btrfs_path *path;
1228 struct btrfs_block_rsv *block_rsv;
1229 int ret;
1230
1231 if (!delayed_node)
1232 return 0;
1233
1234 mutex_lock(&delayed_node->mutex);
1235 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1236 mutex_unlock(&delayed_node->mutex);
1237 btrfs_release_delayed_node(delayed_node);
1238 return 0;
1239 }
1240 mutex_unlock(&delayed_node->mutex);
1241
1242 trans = btrfs_join_transaction(delayed_node->root);
1243 if (IS_ERR(trans)) {
1244 ret = PTR_ERR(trans);
1245 goto out;
1246 }
1247
1248 path = btrfs_alloc_path();
1249 if (!path) {
1250 ret = -ENOMEM;
1251 goto trans_out;
1252 }
1253 path->leave_spinning = 1;
1254
1255 block_rsv = trans->block_rsv;
1256 trans->block_rsv = &fs_info->delayed_block_rsv;
1257
1258 mutex_lock(&delayed_node->mutex);
1259 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1260 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1261 path, delayed_node);
1262 else
1263 ret = 0;
1264 mutex_unlock(&delayed_node->mutex);
1265
1266 btrfs_free_path(path);
1267 trans->block_rsv = block_rsv;
1268 trans_out:
1269 btrfs_end_transaction(trans);
1270 btrfs_btree_balance_dirty(fs_info);
1271 out:
1272 btrfs_release_delayed_node(delayed_node);
1273
1274 return ret;
1275 }
1276
1277 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1278 {
1279 struct btrfs_delayed_node *delayed_node;
1280
1281 delayed_node = READ_ONCE(inode->delayed_node);
1282 if (!delayed_node)
1283 return;
1284
1285 inode->delayed_node = NULL;
1286 btrfs_release_delayed_node(delayed_node);
1287 }
1288
1289 struct btrfs_async_delayed_work {
1290 struct btrfs_delayed_root *delayed_root;
1291 int nr;
1292 struct btrfs_work work;
1293 };
1294
1295 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1296 {
1297 struct btrfs_async_delayed_work *async_work;
1298 struct btrfs_delayed_root *delayed_root;
1299 struct btrfs_trans_handle *trans;
1300 struct btrfs_path *path;
1301 struct btrfs_delayed_node *delayed_node = NULL;
1302 struct btrfs_root *root;
1303 struct btrfs_block_rsv *block_rsv;
1304 int total_done = 0;
1305
1306 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1307 delayed_root = async_work->delayed_root;
1308
1309 path = btrfs_alloc_path();
1310 if (!path)
1311 goto out;
1312
1313 do {
1314 if (atomic_read(&delayed_root->items) <
1315 BTRFS_DELAYED_BACKGROUND / 2)
1316 break;
1317
1318 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1319 if (!delayed_node)
1320 break;
1321
1322 path->leave_spinning = 1;
1323 root = delayed_node->root;
1324
1325 trans = btrfs_join_transaction(root);
1326 if (IS_ERR(trans)) {
1327 btrfs_release_path(path);
1328 btrfs_release_prepared_delayed_node(delayed_node);
1329 total_done++;
1330 continue;
1331 }
1332
1333 block_rsv = trans->block_rsv;
1334 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1335
1336 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1337
1338 trans->block_rsv = block_rsv;
1339 btrfs_end_transaction(trans);
1340 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1341
1342 btrfs_release_path(path);
1343 btrfs_release_prepared_delayed_node(delayed_node);
1344 total_done++;
1345
1346 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1347 || total_done < async_work->nr);
1348
1349 btrfs_free_path(path);
1350 out:
1351 wake_up(&delayed_root->wait);
1352 kfree(async_work);
1353 }
1354
1355
1356 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1357 struct btrfs_fs_info *fs_info, int nr)
1358 {
1359 struct btrfs_async_delayed_work *async_work;
1360
1361 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1362 if (!async_work)
1363 return -ENOMEM;
1364
1365 async_work->delayed_root = delayed_root;
1366 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1367 btrfs_async_run_delayed_root, NULL, NULL);
1368 async_work->nr = nr;
1369
1370 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1371 return 0;
1372 }
1373
1374 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1375 {
1376 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1377 }
1378
1379 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1380 {
1381 int val = atomic_read(&delayed_root->items_seq);
1382
1383 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1384 return 1;
1385
1386 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1387 return 1;
1388
1389 return 0;
1390 }
1391
1392 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1393 {
1394 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1395
1396 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1397 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1398 return;
1399
1400 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1401 int seq;
1402 int ret;
1403
1404 seq = atomic_read(&delayed_root->items_seq);
1405
1406 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1407 if (ret)
1408 return;
1409
1410 wait_event_interruptible(delayed_root->wait,
1411 could_end_wait(delayed_root, seq));
1412 return;
1413 }
1414
1415 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1416 }
1417
1418 /* Will return 0 or -ENOMEM */
1419 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1420 const char *name, int name_len,
1421 struct btrfs_inode *dir,
1422 struct btrfs_disk_key *disk_key, u8 type,
1423 u64 index)
1424 {
1425 struct btrfs_delayed_node *delayed_node;
1426 struct btrfs_delayed_item *delayed_item;
1427 struct btrfs_dir_item *dir_item;
1428 int ret;
1429
1430 delayed_node = btrfs_get_or_create_delayed_node(dir);
1431 if (IS_ERR(delayed_node))
1432 return PTR_ERR(delayed_node);
1433
1434 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1435 if (!delayed_item) {
1436 ret = -ENOMEM;
1437 goto release_node;
1438 }
1439
1440 delayed_item->key.objectid = btrfs_ino(dir);
1441 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1442 delayed_item->key.offset = index;
1443
1444 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1445 dir_item->location = *disk_key;
1446 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1447 btrfs_set_stack_dir_data_len(dir_item, 0);
1448 btrfs_set_stack_dir_name_len(dir_item, name_len);
1449 btrfs_set_stack_dir_type(dir_item, type);
1450 memcpy((char *)(dir_item + 1), name, name_len);
1451
1452 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1453 /*
1454 * we have reserved enough space when we start a new transaction,
1455 * so reserving metadata failure is impossible
1456 */
1457 BUG_ON(ret);
1458
1459 mutex_lock(&delayed_node->mutex);
1460 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1461 if (unlikely(ret)) {
1462 btrfs_err(trans->fs_info,
1463 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1464 name_len, name, delayed_node->root->root_key.objectid,
1465 delayed_node->inode_id, ret);
1466 BUG();
1467 }
1468 mutex_unlock(&delayed_node->mutex);
1469
1470 release_node:
1471 btrfs_release_delayed_node(delayed_node);
1472 return ret;
1473 }
1474
1475 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1476 struct btrfs_delayed_node *node,
1477 struct btrfs_key *key)
1478 {
1479 struct btrfs_delayed_item *item;
1480
1481 mutex_lock(&node->mutex);
1482 item = __btrfs_lookup_delayed_insertion_item(node, key);
1483 if (!item) {
1484 mutex_unlock(&node->mutex);
1485 return 1;
1486 }
1487
1488 btrfs_delayed_item_release_metadata(node->root, item);
1489 btrfs_release_delayed_item(item);
1490 mutex_unlock(&node->mutex);
1491 return 0;
1492 }
1493
1494 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1495 struct btrfs_inode *dir, u64 index)
1496 {
1497 struct btrfs_delayed_node *node;
1498 struct btrfs_delayed_item *item;
1499 struct btrfs_key item_key;
1500 int ret;
1501
1502 node = btrfs_get_or_create_delayed_node(dir);
1503 if (IS_ERR(node))
1504 return PTR_ERR(node);
1505
1506 item_key.objectid = btrfs_ino(dir);
1507 item_key.type = BTRFS_DIR_INDEX_KEY;
1508 item_key.offset = index;
1509
1510 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1511 &item_key);
1512 if (!ret)
1513 goto end;
1514
1515 item = btrfs_alloc_delayed_item(0);
1516 if (!item) {
1517 ret = -ENOMEM;
1518 goto end;
1519 }
1520
1521 item->key = item_key;
1522
1523 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1524 /*
1525 * we have reserved enough space when we start a new transaction,
1526 * so reserving metadata failure is impossible.
1527 */
1528 BUG_ON(ret);
1529
1530 mutex_lock(&node->mutex);
1531 ret = __btrfs_add_delayed_deletion_item(node, item);
1532 if (unlikely(ret)) {
1533 btrfs_err(trans->fs_info,
1534 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1535 index, node->root->root_key.objectid,
1536 node->inode_id, ret);
1537 BUG();
1538 }
1539 mutex_unlock(&node->mutex);
1540 end:
1541 btrfs_release_delayed_node(node);
1542 return ret;
1543 }
1544
1545 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1546 {
1547 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1548
1549 if (!delayed_node)
1550 return -ENOENT;
1551
1552 /*
1553 * Since we have held i_mutex of this directory, it is impossible that
1554 * a new directory index is added into the delayed node and index_cnt
1555 * is updated now. So we needn't lock the delayed node.
1556 */
1557 if (!delayed_node->index_cnt) {
1558 btrfs_release_delayed_node(delayed_node);
1559 return -EINVAL;
1560 }
1561
1562 inode->index_cnt = delayed_node->index_cnt;
1563 btrfs_release_delayed_node(delayed_node);
1564 return 0;
1565 }
1566
1567 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568 struct list_head *ins_list,
1569 struct list_head *del_list)
1570 {
1571 struct btrfs_delayed_node *delayed_node;
1572 struct btrfs_delayed_item *item;
1573
1574 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1575 if (!delayed_node)
1576 return false;
1577
1578 /*
1579 * We can only do one readdir with delayed items at a time because of
1580 * item->readdir_list.
1581 */
1582 inode_unlock_shared(inode);
1583 inode_lock(inode);
1584
1585 mutex_lock(&delayed_node->mutex);
1586 item = __btrfs_first_delayed_insertion_item(delayed_node);
1587 while (item) {
1588 refcount_inc(&item->refs);
1589 list_add_tail(&item->readdir_list, ins_list);
1590 item = __btrfs_next_delayed_item(item);
1591 }
1592
1593 item = __btrfs_first_delayed_deletion_item(delayed_node);
1594 while (item) {
1595 refcount_inc(&item->refs);
1596 list_add_tail(&item->readdir_list, del_list);
1597 item = __btrfs_next_delayed_item(item);
1598 }
1599 mutex_unlock(&delayed_node->mutex);
1600 /*
1601 * This delayed node is still cached in the btrfs inode, so refs
1602 * must be > 1 now, and we needn't check it is going to be freed
1603 * or not.
1604 *
1605 * Besides that, this function is used to read dir, we do not
1606 * insert/delete delayed items in this period. So we also needn't
1607 * requeue or dequeue this delayed node.
1608 */
1609 refcount_dec(&delayed_node->refs);
1610
1611 return true;
1612 }
1613
1614 void btrfs_readdir_put_delayed_items(struct inode *inode,
1615 struct list_head *ins_list,
1616 struct list_head *del_list)
1617 {
1618 struct btrfs_delayed_item *curr, *next;
1619
1620 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621 list_del(&curr->readdir_list);
1622 if (refcount_dec_and_test(&curr->refs))
1623 kfree(curr);
1624 }
1625
1626 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627 list_del(&curr->readdir_list);
1628 if (refcount_dec_and_test(&curr->refs))
1629 kfree(curr);
1630 }
1631
1632 /*
1633 * The VFS is going to do up_read(), so we need to downgrade back to a
1634 * read lock.
1635 */
1636 downgrade_write(&inode->i_rwsem);
1637 }
1638
1639 int btrfs_should_delete_dir_index(struct list_head *del_list,
1640 u64 index)
1641 {
1642 struct btrfs_delayed_item *curr;
1643 int ret = 0;
1644
1645 list_for_each_entry(curr, del_list, readdir_list) {
1646 if (curr->key.offset > index)
1647 break;
1648 if (curr->key.offset == index) {
1649 ret = 1;
1650 break;
1651 }
1652 }
1653 return ret;
1654 }
1655
1656 /*
1657 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1658 *
1659 */
1660 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1661 struct list_head *ins_list)
1662 {
1663 struct btrfs_dir_item *di;
1664 struct btrfs_delayed_item *curr, *next;
1665 struct btrfs_key location;
1666 char *name;
1667 int name_len;
1668 int over = 0;
1669 unsigned char d_type;
1670
1671 if (list_empty(ins_list))
1672 return 0;
1673
1674 /*
1675 * Changing the data of the delayed item is impossible. So
1676 * we needn't lock them. And we have held i_mutex of the
1677 * directory, nobody can delete any directory indexes now.
1678 */
1679 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680 list_del(&curr->readdir_list);
1681
1682 if (curr->key.offset < ctx->pos) {
1683 if (refcount_dec_and_test(&curr->refs))
1684 kfree(curr);
1685 continue;
1686 }
1687
1688 ctx->pos = curr->key.offset;
1689
1690 di = (struct btrfs_dir_item *)curr->data;
1691 name = (char *)(di + 1);
1692 name_len = btrfs_stack_dir_name_len(di);
1693
1694 d_type = fs_ftype_to_dtype(di->type);
1695 btrfs_disk_key_to_cpu(&location, &di->location);
1696
1697 over = !dir_emit(ctx, name, name_len,
1698 location.objectid, d_type);
1699
1700 if (refcount_dec_and_test(&curr->refs))
1701 kfree(curr);
1702
1703 if (over)
1704 return 1;
1705 ctx->pos++;
1706 }
1707 return 0;
1708 }
1709
1710 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711 struct btrfs_inode_item *inode_item,
1712 struct inode *inode)
1713 {
1714 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720 btrfs_set_stack_inode_generation(inode_item,
1721 BTRFS_I(inode)->generation);
1722 btrfs_set_stack_inode_sequence(inode_item,
1723 inode_peek_iversion(inode));
1724 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727 btrfs_set_stack_inode_block_group(inode_item, 0);
1728
1729 btrfs_set_stack_timespec_sec(&inode_item->atime,
1730 inode->i_atime.tv_sec);
1731 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732 inode->i_atime.tv_nsec);
1733
1734 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735 inode->i_mtime.tv_sec);
1736 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737 inode->i_mtime.tv_nsec);
1738
1739 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740 inode->i_ctime.tv_sec);
1741 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742 inode->i_ctime.tv_nsec);
1743
1744 btrfs_set_stack_timespec_sec(&inode_item->otime,
1745 BTRFS_I(inode)->i_otime.tv_sec);
1746 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747 BTRFS_I(inode)->i_otime.tv_nsec);
1748 }
1749
1750 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1751 {
1752 struct btrfs_delayed_node *delayed_node;
1753 struct btrfs_inode_item *inode_item;
1754
1755 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1756 if (!delayed_node)
1757 return -ENOENT;
1758
1759 mutex_lock(&delayed_node->mutex);
1760 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1761 mutex_unlock(&delayed_node->mutex);
1762 btrfs_release_delayed_node(delayed_node);
1763 return -ENOENT;
1764 }
1765
1766 inode_item = &delayed_node->inode_item;
1767
1768 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1769 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1770 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1771 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1772 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1773 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1774 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1775 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1776
1777 inode_set_iversion_queried(inode,
1778 btrfs_stack_inode_sequence(inode_item));
1779 inode->i_rdev = 0;
1780 *rdev = btrfs_stack_inode_rdev(inode_item);
1781 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1782
1783 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1784 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1785
1786 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1787 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1788
1789 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1790 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1791
1792 BTRFS_I(inode)->i_otime.tv_sec =
1793 btrfs_stack_timespec_sec(&inode_item->otime);
1794 BTRFS_I(inode)->i_otime.tv_nsec =
1795 btrfs_stack_timespec_nsec(&inode_item->otime);
1796
1797 inode->i_generation = BTRFS_I(inode)->generation;
1798 BTRFS_I(inode)->index_cnt = (u64)-1;
1799
1800 mutex_unlock(&delayed_node->mutex);
1801 btrfs_release_delayed_node(delayed_node);
1802 return 0;
1803 }
1804
1805 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1806 struct btrfs_root *root, struct inode *inode)
1807 {
1808 struct btrfs_delayed_node *delayed_node;
1809 int ret = 0;
1810
1811 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1812 if (IS_ERR(delayed_node))
1813 return PTR_ERR(delayed_node);
1814
1815 mutex_lock(&delayed_node->mutex);
1816 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1817 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1818 goto release_node;
1819 }
1820
1821 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1822 delayed_node);
1823 if (ret)
1824 goto release_node;
1825
1826 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1827 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1828 delayed_node->count++;
1829 atomic_inc(&root->fs_info->delayed_root->items);
1830 release_node:
1831 mutex_unlock(&delayed_node->mutex);
1832 btrfs_release_delayed_node(delayed_node);
1833 return ret;
1834 }
1835
1836 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1837 {
1838 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1839 struct btrfs_delayed_node *delayed_node;
1840
1841 /*
1842 * we don't do delayed inode updates during log recovery because it
1843 * leads to enospc problems. This means we also can't do
1844 * delayed inode refs
1845 */
1846 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1847 return -EAGAIN;
1848
1849 delayed_node = btrfs_get_or_create_delayed_node(inode);
1850 if (IS_ERR(delayed_node))
1851 return PTR_ERR(delayed_node);
1852
1853 /*
1854 * We don't reserve space for inode ref deletion is because:
1855 * - We ONLY do async inode ref deletion for the inode who has only
1856 * one link(i_nlink == 1), it means there is only one inode ref.
1857 * And in most case, the inode ref and the inode item are in the
1858 * same leaf, and we will deal with them at the same time.
1859 * Since we are sure we will reserve the space for the inode item,
1860 * it is unnecessary to reserve space for inode ref deletion.
1861 * - If the inode ref and the inode item are not in the same leaf,
1862 * We also needn't worry about enospc problem, because we reserve
1863 * much more space for the inode update than it needs.
1864 * - At the worst, we can steal some space from the global reservation.
1865 * It is very rare.
1866 */
1867 mutex_lock(&delayed_node->mutex);
1868 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1869 goto release_node;
1870
1871 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1872 delayed_node->count++;
1873 atomic_inc(&fs_info->delayed_root->items);
1874 release_node:
1875 mutex_unlock(&delayed_node->mutex);
1876 btrfs_release_delayed_node(delayed_node);
1877 return 0;
1878 }
1879
1880 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1881 {
1882 struct btrfs_root *root = delayed_node->root;
1883 struct btrfs_fs_info *fs_info = root->fs_info;
1884 struct btrfs_delayed_item *curr_item, *prev_item;
1885
1886 mutex_lock(&delayed_node->mutex);
1887 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1888 while (curr_item) {
1889 btrfs_delayed_item_release_metadata(root, curr_item);
1890 prev_item = curr_item;
1891 curr_item = __btrfs_next_delayed_item(prev_item);
1892 btrfs_release_delayed_item(prev_item);
1893 }
1894
1895 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1896 while (curr_item) {
1897 btrfs_delayed_item_release_metadata(root, curr_item);
1898 prev_item = curr_item;
1899 curr_item = __btrfs_next_delayed_item(prev_item);
1900 btrfs_release_delayed_item(prev_item);
1901 }
1902
1903 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1904 btrfs_release_delayed_iref(delayed_node);
1905
1906 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1907 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1908 btrfs_release_delayed_inode(delayed_node);
1909 }
1910 mutex_unlock(&delayed_node->mutex);
1911 }
1912
1913 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1914 {
1915 struct btrfs_delayed_node *delayed_node;
1916
1917 delayed_node = btrfs_get_delayed_node(inode);
1918 if (!delayed_node)
1919 return;
1920
1921 __btrfs_kill_delayed_node(delayed_node);
1922 btrfs_release_delayed_node(delayed_node);
1923 }
1924
1925 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1926 {
1927 u64 inode_id = 0;
1928 struct btrfs_delayed_node *delayed_nodes[8];
1929 int i, n;
1930
1931 while (1) {
1932 spin_lock(&root->inode_lock);
1933 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1934 (void **)delayed_nodes, inode_id,
1935 ARRAY_SIZE(delayed_nodes));
1936 if (!n) {
1937 spin_unlock(&root->inode_lock);
1938 break;
1939 }
1940
1941 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1942
1943 for (i = 0; i < n; i++)
1944 refcount_inc(&delayed_nodes[i]->refs);
1945 spin_unlock(&root->inode_lock);
1946
1947 for (i = 0; i < n; i++) {
1948 __btrfs_kill_delayed_node(delayed_nodes[i]);
1949 btrfs_release_delayed_node(delayed_nodes[i]);
1950 }
1951 }
1952 }
1953
1954 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1955 {
1956 struct btrfs_delayed_node *curr_node, *prev_node;
1957
1958 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1959 while (curr_node) {
1960 __btrfs_kill_delayed_node(curr_node);
1961
1962 prev_node = curr_node;
1963 curr_node = btrfs_next_delayed_node(curr_node);
1964 btrfs_release_delayed_node(prev_node);
1965 }
1966 }
1967