]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/delayed-inode.c
btrfs: fix lockdep splat and potential deadlock after failure running delayed items
[thirdparty/linux.git] / fs / btrfs / delayed-inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011 Fujitsu. All rights reserved.
4 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "ctree.h"
10 #include "fs.h"
11 #include "messages.h"
12 #include "misc.h"
13 #include "delayed-inode.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "qgroup.h"
17 #include "locking.h"
18 #include "inode-item.h"
19 #include "space-info.h"
20 #include "accessors.h"
21 #include "file-item.h"
22
23 #define BTRFS_DELAYED_WRITEBACK 512
24 #define BTRFS_DELAYED_BACKGROUND 128
25 #define BTRFS_DELAYED_BATCH 16
26
27 static struct kmem_cache *delayed_node_cache;
28
29 int __init btrfs_delayed_inode_init(void)
30 {
31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
32 sizeof(struct btrfs_delayed_node),
33 0,
34 SLAB_MEM_SPREAD,
35 NULL);
36 if (!delayed_node_cache)
37 return -ENOMEM;
38 return 0;
39 }
40
41 void __cold btrfs_delayed_inode_exit(void)
42 {
43 kmem_cache_destroy(delayed_node_cache);
44 }
45
46 static inline void btrfs_init_delayed_node(
47 struct btrfs_delayed_node *delayed_node,
48 struct btrfs_root *root, u64 inode_id)
49 {
50 delayed_node->root = root;
51 delayed_node->inode_id = inode_id;
52 refcount_set(&delayed_node->refs, 0);
53 delayed_node->ins_root = RB_ROOT_CACHED;
54 delayed_node->del_root = RB_ROOT_CACHED;
55 mutex_init(&delayed_node->mutex);
56 INIT_LIST_HEAD(&delayed_node->n_list);
57 INIT_LIST_HEAD(&delayed_node->p_list);
58 }
59
60 static struct btrfs_delayed_node *btrfs_get_delayed_node(
61 struct btrfs_inode *btrfs_inode)
62 {
63 struct btrfs_root *root = btrfs_inode->root;
64 u64 ino = btrfs_ino(btrfs_inode);
65 struct btrfs_delayed_node *node;
66
67 node = READ_ONCE(btrfs_inode->delayed_node);
68 if (node) {
69 refcount_inc(&node->refs);
70 return node;
71 }
72
73 spin_lock(&root->inode_lock);
74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
75
76 if (node) {
77 if (btrfs_inode->delayed_node) {
78 refcount_inc(&node->refs); /* can be accessed */
79 BUG_ON(btrfs_inode->delayed_node != node);
80 spin_unlock(&root->inode_lock);
81 return node;
82 }
83
84 /*
85 * It's possible that we're racing into the middle of removing
86 * this node from the radix tree. In this case, the refcount
87 * was zero and it should never go back to one. Just return
88 * NULL like it was never in the radix at all; our release
89 * function is in the process of removing it.
90 *
91 * Some implementations of refcount_inc refuse to bump the
92 * refcount once it has hit zero. If we don't do this dance
93 * here, refcount_inc() may decide to just WARN_ONCE() instead
94 * of actually bumping the refcount.
95 *
96 * If this node is properly in the radix, we want to bump the
97 * refcount twice, once for the inode and once for this get
98 * operation.
99 */
100 if (refcount_inc_not_zero(&node->refs)) {
101 refcount_inc(&node->refs);
102 btrfs_inode->delayed_node = node;
103 } else {
104 node = NULL;
105 }
106
107 spin_unlock(&root->inode_lock);
108 return node;
109 }
110 spin_unlock(&root->inode_lock);
111
112 return NULL;
113 }
114
115 /* Will return either the node or PTR_ERR(-ENOMEM) */
116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
117 struct btrfs_inode *btrfs_inode)
118 {
119 struct btrfs_delayed_node *node;
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(btrfs_inode);
122 int ret;
123
124 again:
125 node = btrfs_get_delayed_node(btrfs_inode);
126 if (node)
127 return node;
128
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
133
134 /* cached in the btrfs inode and can be accessed */
135 refcount_set(&node->refs, 2);
136
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
154
155 return node;
156 }
157
158 /*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166 {
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 refcount_inc(&node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 }
180 spin_unlock(&root->lock);
181 }
182
183 /* Call it when holding delayed_node->mutex */
184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186 {
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 refcount_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 }
196 spin_unlock(&root->lock);
197 }
198
199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
201 {
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 refcount_inc(&node->refs);
212 out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216 }
217
218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
220 {
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 refcount_inc(&next->refs);
239 out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243 }
244
245 static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248 {
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
263 if (refcount_dec_and_test(&delayed_node->refs)) {
264 struct btrfs_root *root = delayed_node->root;
265
266 spin_lock(&root->inode_lock);
267 /*
268 * Once our refcount goes to zero, nobody is allowed to bump it
269 * back up. We can delete it now.
270 */
271 ASSERT(refcount_read(&delayed_node->refs) == 0);
272 radix_tree_delete(&root->delayed_nodes_tree,
273 delayed_node->inode_id);
274 spin_unlock(&root->inode_lock);
275 kmem_cache_free(delayed_node_cache, delayed_node);
276 }
277 }
278
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 __btrfs_release_delayed_node(node, 0);
282 }
283
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 struct btrfs_delayed_root *delayed_root)
286 {
287 struct list_head *p;
288 struct btrfs_delayed_node *node = NULL;
289
290 spin_lock(&delayed_root->lock);
291 if (list_empty(&delayed_root->prepare_list))
292 goto out;
293
294 p = delayed_root->prepare_list.next;
295 list_del_init(p);
296 node = list_entry(p, struct btrfs_delayed_node, p_list);
297 refcount_inc(&node->refs);
298 out:
299 spin_unlock(&delayed_root->lock);
300
301 return node;
302 }
303
304 static inline void btrfs_release_prepared_delayed_node(
305 struct btrfs_delayed_node *node)
306 {
307 __btrfs_release_delayed_node(node, 1);
308 }
309
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len,
311 struct btrfs_delayed_node *node,
312 enum btrfs_delayed_item_type type)
313 {
314 struct btrfs_delayed_item *item;
315
316 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
317 if (item) {
318 item->data_len = data_len;
319 item->type = type;
320 item->bytes_reserved = 0;
321 item->delayed_node = node;
322 RB_CLEAR_NODE(&item->rb_node);
323 INIT_LIST_HEAD(&item->log_list);
324 item->logged = false;
325 refcount_set(&item->refs, 1);
326 }
327 return item;
328 }
329
330 /*
331 * __btrfs_lookup_delayed_item - look up the delayed item by key
332 * @delayed_node: pointer to the delayed node
333 * @index: the dir index value to lookup (offset of a dir index key)
334 *
335 * Note: if we don't find the right item, we will return the prev item and
336 * the next item.
337 */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 struct rb_root *root,
340 u64 index)
341 {
342 struct rb_node *node = root->rb_node;
343 struct btrfs_delayed_item *delayed_item = NULL;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 if (delayed_item->index < index)
349 node = node->rb_right;
350 else if (delayed_item->index > index)
351 node = node->rb_left;
352 else
353 return delayed_item;
354 }
355
356 return NULL;
357 }
358
359 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
360 struct btrfs_delayed_item *ins)
361 {
362 struct rb_node **p, *node;
363 struct rb_node *parent_node = NULL;
364 struct rb_root_cached *root;
365 struct btrfs_delayed_item *item;
366 bool leftmost = true;
367
368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM)
369 root = &delayed_node->ins_root;
370 else
371 root = &delayed_node->del_root;
372
373 p = &root->rb_root.rb_node;
374 node = &ins->rb_node;
375
376 while (*p) {
377 parent_node = *p;
378 item = rb_entry(parent_node, struct btrfs_delayed_item,
379 rb_node);
380
381 if (item->index < ins->index) {
382 p = &(*p)->rb_right;
383 leftmost = false;
384 } else if (item->index > ins->index) {
385 p = &(*p)->rb_left;
386 } else {
387 return -EEXIST;
388 }
389 }
390
391 rb_link_node(node, parent_node, p);
392 rb_insert_color_cached(node, root, leftmost);
393
394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM &&
395 ins->index >= delayed_node->index_cnt)
396 delayed_node->index_cnt = ins->index + 1;
397
398 delayed_node->count++;
399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
400 return 0;
401 }
402
403 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
404 {
405 int seq = atomic_inc_return(&delayed_root->items_seq);
406
407 /* atomic_dec_return implies a barrier */
408 if ((atomic_dec_return(&delayed_root->items) <
409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
410 cond_wake_up_nomb(&delayed_root->wait);
411 }
412
413 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
414 {
415 struct rb_root_cached *root;
416 struct btrfs_delayed_root *delayed_root;
417
418 /* Not inserted, ignore it. */
419 if (RB_EMPTY_NODE(&delayed_item->rb_node))
420 return;
421
422 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
423
424 BUG_ON(!delayed_root);
425
426 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM)
427 root = &delayed_item->delayed_node->ins_root;
428 else
429 root = &delayed_item->delayed_node->del_root;
430
431 rb_erase_cached(&delayed_item->rb_node, root);
432 RB_CLEAR_NODE(&delayed_item->rb_node);
433 delayed_item->delayed_node->count--;
434
435 finish_one_item(delayed_root);
436 }
437
438 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
439 {
440 if (item) {
441 __btrfs_remove_delayed_item(item);
442 if (refcount_dec_and_test(&item->refs))
443 kfree(item);
444 }
445 }
446
447 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
448 struct btrfs_delayed_node *delayed_node)
449 {
450 struct rb_node *p;
451 struct btrfs_delayed_item *item = NULL;
452
453 p = rb_first_cached(&delayed_node->ins_root);
454 if (p)
455 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
456
457 return item;
458 }
459
460 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
461 struct btrfs_delayed_node *delayed_node)
462 {
463 struct rb_node *p;
464 struct btrfs_delayed_item *item = NULL;
465
466 p = rb_first_cached(&delayed_node->del_root);
467 if (p)
468 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
469
470 return item;
471 }
472
473 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
474 struct btrfs_delayed_item *item)
475 {
476 struct rb_node *p;
477 struct btrfs_delayed_item *next = NULL;
478
479 p = rb_next(&item->rb_node);
480 if (p)
481 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
482
483 return next;
484 }
485
486 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
487 struct btrfs_delayed_item *item)
488 {
489 struct btrfs_block_rsv *src_rsv;
490 struct btrfs_block_rsv *dst_rsv;
491 struct btrfs_fs_info *fs_info = trans->fs_info;
492 u64 num_bytes;
493 int ret;
494
495 if (!trans->bytes_reserved)
496 return 0;
497
498 src_rsv = trans->block_rsv;
499 dst_rsv = &fs_info->delayed_block_rsv;
500
501 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
502
503 /*
504 * Here we migrate space rsv from transaction rsv, since have already
505 * reserved space when starting a transaction. So no need to reserve
506 * qgroup space here.
507 */
508 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
509 if (!ret) {
510 trace_btrfs_space_reservation(fs_info, "delayed_item",
511 item->delayed_node->inode_id,
512 num_bytes, 1);
513 /*
514 * For insertions we track reserved metadata space by accounting
515 * for the number of leaves that will be used, based on the delayed
516 * node's index_items_size field.
517 */
518 if (item->type == BTRFS_DELAYED_DELETION_ITEM)
519 item->bytes_reserved = num_bytes;
520 }
521
522 return ret;
523 }
524
525 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
526 struct btrfs_delayed_item *item)
527 {
528 struct btrfs_block_rsv *rsv;
529 struct btrfs_fs_info *fs_info = root->fs_info;
530
531 if (!item->bytes_reserved)
532 return;
533
534 rsv = &fs_info->delayed_block_rsv;
535 /*
536 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
537 * to release/reserve qgroup space.
538 */
539 trace_btrfs_space_reservation(fs_info, "delayed_item",
540 item->delayed_node->inode_id,
541 item->bytes_reserved, 0);
542 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
543 }
544
545 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node,
546 unsigned int num_leaves)
547 {
548 struct btrfs_fs_info *fs_info = node->root->fs_info;
549 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves);
550
551 /* There are no space reservations during log replay, bail out. */
552 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
553 return;
554
555 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id,
556 bytes, 0);
557 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL);
558 }
559
560 static int btrfs_delayed_inode_reserve_metadata(
561 struct btrfs_trans_handle *trans,
562 struct btrfs_root *root,
563 struct btrfs_delayed_node *node)
564 {
565 struct btrfs_fs_info *fs_info = root->fs_info;
566 struct btrfs_block_rsv *src_rsv;
567 struct btrfs_block_rsv *dst_rsv;
568 u64 num_bytes;
569 int ret;
570
571 src_rsv = trans->block_rsv;
572 dst_rsv = &fs_info->delayed_block_rsv;
573
574 num_bytes = btrfs_calc_metadata_size(fs_info, 1);
575
576 /*
577 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
578 * which doesn't reserve space for speed. This is a problem since we
579 * still need to reserve space for this update, so try to reserve the
580 * space.
581 *
582 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
583 * we always reserve enough to update the inode item.
584 */
585 if (!src_rsv || (!trans->bytes_reserved &&
586 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
587 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
588 BTRFS_QGROUP_RSV_META_PREALLOC, true);
589 if (ret < 0)
590 return ret;
591 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
592 BTRFS_RESERVE_NO_FLUSH);
593 /* NO_FLUSH could only fail with -ENOSPC */
594 ASSERT(ret == 0 || ret == -ENOSPC);
595 if (ret)
596 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
597 } else {
598 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
599 }
600
601 if (!ret) {
602 trace_btrfs_space_reservation(fs_info, "delayed_inode",
603 node->inode_id, num_bytes, 1);
604 node->bytes_reserved = num_bytes;
605 }
606
607 return ret;
608 }
609
610 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
611 struct btrfs_delayed_node *node,
612 bool qgroup_free)
613 {
614 struct btrfs_block_rsv *rsv;
615
616 if (!node->bytes_reserved)
617 return;
618
619 rsv = &fs_info->delayed_block_rsv;
620 trace_btrfs_space_reservation(fs_info, "delayed_inode",
621 node->inode_id, node->bytes_reserved, 0);
622 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
623 if (qgroup_free)
624 btrfs_qgroup_free_meta_prealloc(node->root,
625 node->bytes_reserved);
626 else
627 btrfs_qgroup_convert_reserved_meta(node->root,
628 node->bytes_reserved);
629 node->bytes_reserved = 0;
630 }
631
632 /*
633 * Insert a single delayed item or a batch of delayed items, as many as possible
634 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key
635 * in the rbtree, and if there's a gap between two consecutive dir index items,
636 * then it means at some point we had delayed dir indexes to add but they got
637 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them
638 * into the subvolume tree. Dir index keys also have their offsets coming from a
639 * monotonically increasing counter, so we can't get new keys with an offset that
640 * fits within a gap between delayed dir index items.
641 */
642 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
643 struct btrfs_root *root,
644 struct btrfs_path *path,
645 struct btrfs_delayed_item *first_item)
646 {
647 struct btrfs_fs_info *fs_info = root->fs_info;
648 struct btrfs_delayed_node *node = first_item->delayed_node;
649 LIST_HEAD(item_list);
650 struct btrfs_delayed_item *curr;
651 struct btrfs_delayed_item *next;
652 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info);
653 struct btrfs_item_batch batch;
654 struct btrfs_key first_key;
655 const u32 first_data_size = first_item->data_len;
656 int total_size;
657 char *ins_data = NULL;
658 int ret;
659 bool continuous_keys_only = false;
660
661 lockdep_assert_held(&node->mutex);
662
663 /*
664 * During normal operation the delayed index offset is continuously
665 * increasing, so we can batch insert all items as there will not be any
666 * overlapping keys in the tree.
667 *
668 * The exception to this is log replay, where we may have interleaved
669 * offsets in the tree, so our batch needs to be continuous keys only in
670 * order to ensure we do not end up with out of order items in our leaf.
671 */
672 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
673 continuous_keys_only = true;
674
675 /*
676 * For delayed items to insert, we track reserved metadata bytes based
677 * on the number of leaves that we will use.
678 * See btrfs_insert_delayed_dir_index() and
679 * btrfs_delayed_item_reserve_metadata()).
680 */
681 ASSERT(first_item->bytes_reserved == 0);
682
683 list_add_tail(&first_item->tree_list, &item_list);
684 batch.total_data_size = first_data_size;
685 batch.nr = 1;
686 total_size = first_data_size + sizeof(struct btrfs_item);
687 curr = first_item;
688
689 while (true) {
690 int next_size;
691
692 next = __btrfs_next_delayed_item(curr);
693 if (!next)
694 break;
695
696 /*
697 * We cannot allow gaps in the key space if we're doing log
698 * replay.
699 */
700 if (continuous_keys_only && (next->index != curr->index + 1))
701 break;
702
703 ASSERT(next->bytes_reserved == 0);
704
705 next_size = next->data_len + sizeof(struct btrfs_item);
706 if (total_size + next_size > max_size)
707 break;
708
709 list_add_tail(&next->tree_list, &item_list);
710 batch.nr++;
711 total_size += next_size;
712 batch.total_data_size += next->data_len;
713 curr = next;
714 }
715
716 if (batch.nr == 1) {
717 first_key.objectid = node->inode_id;
718 first_key.type = BTRFS_DIR_INDEX_KEY;
719 first_key.offset = first_item->index;
720 batch.keys = &first_key;
721 batch.data_sizes = &first_data_size;
722 } else {
723 struct btrfs_key *ins_keys;
724 u32 *ins_sizes;
725 int i = 0;
726
727 ins_data = kmalloc(batch.nr * sizeof(u32) +
728 batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
729 if (!ins_data) {
730 ret = -ENOMEM;
731 goto out;
732 }
733 ins_sizes = (u32 *)ins_data;
734 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
735 batch.keys = ins_keys;
736 batch.data_sizes = ins_sizes;
737 list_for_each_entry(curr, &item_list, tree_list) {
738 ins_keys[i].objectid = node->inode_id;
739 ins_keys[i].type = BTRFS_DIR_INDEX_KEY;
740 ins_keys[i].offset = curr->index;
741 ins_sizes[i] = curr->data_len;
742 i++;
743 }
744 }
745
746 ret = btrfs_insert_empty_items(trans, root, path, &batch);
747 if (ret)
748 goto out;
749
750 list_for_each_entry(curr, &item_list, tree_list) {
751 char *data_ptr;
752
753 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
754 write_extent_buffer(path->nodes[0], &curr->data,
755 (unsigned long)data_ptr, curr->data_len);
756 path->slots[0]++;
757 }
758
759 /*
760 * Now release our path before releasing the delayed items and their
761 * metadata reservations, so that we don't block other tasks for more
762 * time than needed.
763 */
764 btrfs_release_path(path);
765
766 ASSERT(node->index_item_leaves > 0);
767
768 /*
769 * For normal operations we will batch an entire leaf's worth of delayed
770 * items, so if there are more items to process we can decrement
771 * index_item_leaves by 1 as we inserted 1 leaf's worth of items.
772 *
773 * However for log replay we may not have inserted an entire leaf's
774 * worth of items, we may have not had continuous items, so decrementing
775 * here would mess up the index_item_leaves accounting. For this case
776 * only clean up the accounting when there are no items left.
777 */
778 if (next && !continuous_keys_only) {
779 /*
780 * We inserted one batch of items into a leaf a there are more
781 * items to flush in a future batch, now release one unit of
782 * metadata space from the delayed block reserve, corresponding
783 * the leaf we just flushed to.
784 */
785 btrfs_delayed_item_release_leaves(node, 1);
786 node->index_item_leaves--;
787 } else if (!next) {
788 /*
789 * There are no more items to insert. We can have a number of
790 * reserved leaves > 1 here - this happens when many dir index
791 * items are added and then removed before they are flushed (file
792 * names with a very short life, never span a transaction). So
793 * release all remaining leaves.
794 */
795 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
796 node->index_item_leaves = 0;
797 }
798
799 list_for_each_entry_safe(curr, next, &item_list, tree_list) {
800 list_del(&curr->tree_list);
801 btrfs_release_delayed_item(curr);
802 }
803 out:
804 kfree(ins_data);
805 return ret;
806 }
807
808 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
809 struct btrfs_path *path,
810 struct btrfs_root *root,
811 struct btrfs_delayed_node *node)
812 {
813 int ret = 0;
814
815 while (ret == 0) {
816 struct btrfs_delayed_item *curr;
817
818 mutex_lock(&node->mutex);
819 curr = __btrfs_first_delayed_insertion_item(node);
820 if (!curr) {
821 mutex_unlock(&node->mutex);
822 break;
823 }
824 ret = btrfs_insert_delayed_item(trans, root, path, curr);
825 mutex_unlock(&node->mutex);
826 }
827
828 return ret;
829 }
830
831 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root,
833 struct btrfs_path *path,
834 struct btrfs_delayed_item *item)
835 {
836 const u64 ino = item->delayed_node->inode_id;
837 struct btrfs_fs_info *fs_info = root->fs_info;
838 struct btrfs_delayed_item *curr, *next;
839 struct extent_buffer *leaf = path->nodes[0];
840 LIST_HEAD(batch_list);
841 int nitems, slot, last_slot;
842 int ret;
843 u64 total_reserved_size = item->bytes_reserved;
844
845 ASSERT(leaf != NULL);
846
847 slot = path->slots[0];
848 last_slot = btrfs_header_nritems(leaf) - 1;
849 /*
850 * Our caller always gives us a path pointing to an existing item, so
851 * this can not happen.
852 */
853 ASSERT(slot <= last_slot);
854 if (WARN_ON(slot > last_slot))
855 return -ENOENT;
856
857 nitems = 1;
858 curr = item;
859 list_add_tail(&curr->tree_list, &batch_list);
860
861 /*
862 * Keep checking if the next delayed item matches the next item in the
863 * leaf - if so, we can add it to the batch of items to delete from the
864 * leaf.
865 */
866 while (slot < last_slot) {
867 struct btrfs_key key;
868
869 next = __btrfs_next_delayed_item(curr);
870 if (!next)
871 break;
872
873 slot++;
874 btrfs_item_key_to_cpu(leaf, &key, slot);
875 if (key.objectid != ino ||
876 key.type != BTRFS_DIR_INDEX_KEY ||
877 key.offset != next->index)
878 break;
879 nitems++;
880 curr = next;
881 list_add_tail(&curr->tree_list, &batch_list);
882 total_reserved_size += curr->bytes_reserved;
883 }
884
885 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
886 if (ret)
887 return ret;
888
889 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */
890 if (total_reserved_size > 0) {
891 /*
892 * Check btrfs_delayed_item_reserve_metadata() to see why we
893 * don't need to release/reserve qgroup space.
894 */
895 trace_btrfs_space_reservation(fs_info, "delayed_item", ino,
896 total_reserved_size, 0);
897 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv,
898 total_reserved_size, NULL);
899 }
900
901 list_for_each_entry_safe(curr, next, &batch_list, tree_list) {
902 list_del(&curr->tree_list);
903 btrfs_release_delayed_item(curr);
904 }
905
906 return 0;
907 }
908
909 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
910 struct btrfs_path *path,
911 struct btrfs_root *root,
912 struct btrfs_delayed_node *node)
913 {
914 struct btrfs_key key;
915 int ret = 0;
916
917 key.objectid = node->inode_id;
918 key.type = BTRFS_DIR_INDEX_KEY;
919
920 while (ret == 0) {
921 struct btrfs_delayed_item *item;
922
923 mutex_lock(&node->mutex);
924 item = __btrfs_first_delayed_deletion_item(node);
925 if (!item) {
926 mutex_unlock(&node->mutex);
927 break;
928 }
929
930 key.offset = item->index;
931 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
932 if (ret > 0) {
933 /*
934 * There's no matching item in the leaf. This means we
935 * have already deleted this item in a past run of the
936 * delayed items. We ignore errors when running delayed
937 * items from an async context, through a work queue job
938 * running btrfs_async_run_delayed_root(), and don't
939 * release delayed items that failed to complete. This
940 * is because we will retry later, and at transaction
941 * commit time we always run delayed items and will
942 * then deal with errors if they fail to run again.
943 *
944 * So just release delayed items for which we can't find
945 * an item in the tree, and move to the next item.
946 */
947 btrfs_release_path(path);
948 btrfs_release_delayed_item(item);
949 ret = 0;
950 } else if (ret == 0) {
951 ret = btrfs_batch_delete_items(trans, root, path, item);
952 btrfs_release_path(path);
953 }
954
955 /*
956 * We unlock and relock on each iteration, this is to prevent
957 * blocking other tasks for too long while we are being run from
958 * the async context (work queue job). Those tasks are typically
959 * running system calls like creat/mkdir/rename/unlink/etc which
960 * need to add delayed items to this delayed node.
961 */
962 mutex_unlock(&node->mutex);
963 }
964
965 return ret;
966 }
967
968 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
969 {
970 struct btrfs_delayed_root *delayed_root;
971
972 if (delayed_node &&
973 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
974 BUG_ON(!delayed_node->root);
975 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
976 delayed_node->count--;
977
978 delayed_root = delayed_node->root->fs_info->delayed_root;
979 finish_one_item(delayed_root);
980 }
981 }
982
983 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
984 {
985
986 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
987 struct btrfs_delayed_root *delayed_root;
988
989 ASSERT(delayed_node->root);
990 delayed_node->count--;
991
992 delayed_root = delayed_node->root->fs_info->delayed_root;
993 finish_one_item(delayed_root);
994 }
995 }
996
997 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
998 struct btrfs_root *root,
999 struct btrfs_path *path,
1000 struct btrfs_delayed_node *node)
1001 {
1002 struct btrfs_fs_info *fs_info = root->fs_info;
1003 struct btrfs_key key;
1004 struct btrfs_inode_item *inode_item;
1005 struct extent_buffer *leaf;
1006 int mod;
1007 int ret;
1008
1009 key.objectid = node->inode_id;
1010 key.type = BTRFS_INODE_ITEM_KEY;
1011 key.offset = 0;
1012
1013 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1014 mod = -1;
1015 else
1016 mod = 1;
1017
1018 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1019 if (ret > 0)
1020 ret = -ENOENT;
1021 if (ret < 0)
1022 goto out;
1023
1024 leaf = path->nodes[0];
1025 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1026 struct btrfs_inode_item);
1027 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1028 sizeof(struct btrfs_inode_item));
1029 btrfs_mark_buffer_dirty(leaf);
1030
1031 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1032 goto out;
1033
1034 path->slots[0]++;
1035 if (path->slots[0] >= btrfs_header_nritems(leaf))
1036 goto search;
1037 again:
1038 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1039 if (key.objectid != node->inode_id)
1040 goto out;
1041
1042 if (key.type != BTRFS_INODE_REF_KEY &&
1043 key.type != BTRFS_INODE_EXTREF_KEY)
1044 goto out;
1045
1046 /*
1047 * Delayed iref deletion is for the inode who has only one link,
1048 * so there is only one iref. The case that several irefs are
1049 * in the same item doesn't exist.
1050 */
1051 ret = btrfs_del_item(trans, root, path);
1052 out:
1053 btrfs_release_delayed_iref(node);
1054 btrfs_release_path(path);
1055 err_out:
1056 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1057 btrfs_release_delayed_inode(node);
1058
1059 /*
1060 * If we fail to update the delayed inode we need to abort the
1061 * transaction, because we could leave the inode with the improper
1062 * counts behind.
1063 */
1064 if (ret && ret != -ENOENT)
1065 btrfs_abort_transaction(trans, ret);
1066
1067 return ret;
1068
1069 search:
1070 btrfs_release_path(path);
1071
1072 key.type = BTRFS_INODE_EXTREF_KEY;
1073 key.offset = -1;
1074
1075 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1076 if (ret < 0)
1077 goto err_out;
1078 ASSERT(ret);
1079
1080 ret = 0;
1081 leaf = path->nodes[0];
1082 path->slots[0]--;
1083 goto again;
1084 }
1085
1086 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1087 struct btrfs_root *root,
1088 struct btrfs_path *path,
1089 struct btrfs_delayed_node *node)
1090 {
1091 int ret;
1092
1093 mutex_lock(&node->mutex);
1094 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1095 mutex_unlock(&node->mutex);
1096 return 0;
1097 }
1098
1099 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1100 mutex_unlock(&node->mutex);
1101 return ret;
1102 }
1103
1104 static inline int
1105 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1106 struct btrfs_path *path,
1107 struct btrfs_delayed_node *node)
1108 {
1109 int ret;
1110
1111 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1112 if (ret)
1113 return ret;
1114
1115 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1116 if (ret)
1117 return ret;
1118
1119 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1120 return ret;
1121 }
1122
1123 /*
1124 * Called when committing the transaction.
1125 * Returns 0 on success.
1126 * Returns < 0 on error and returns with an aborted transaction with any
1127 * outstanding delayed items cleaned up.
1128 */
1129 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1130 {
1131 struct btrfs_fs_info *fs_info = trans->fs_info;
1132 struct btrfs_delayed_root *delayed_root;
1133 struct btrfs_delayed_node *curr_node, *prev_node;
1134 struct btrfs_path *path;
1135 struct btrfs_block_rsv *block_rsv;
1136 int ret = 0;
1137 bool count = (nr > 0);
1138
1139 if (TRANS_ABORTED(trans))
1140 return -EIO;
1141
1142 path = btrfs_alloc_path();
1143 if (!path)
1144 return -ENOMEM;
1145
1146 block_rsv = trans->block_rsv;
1147 trans->block_rsv = &fs_info->delayed_block_rsv;
1148
1149 delayed_root = fs_info->delayed_root;
1150
1151 curr_node = btrfs_first_delayed_node(delayed_root);
1152 while (curr_node && (!count || nr--)) {
1153 ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 curr_node);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, ret);
1157 break;
1158 }
1159
1160 prev_node = curr_node;
1161 curr_node = btrfs_next_delayed_node(curr_node);
1162 /*
1163 * See the comment below about releasing path before releasing
1164 * node. If the commit of delayed items was successful the path
1165 * should always be released, but in case of an error, it may
1166 * point to locked extent buffers (a leaf at the very least).
1167 */
1168 ASSERT(path->nodes[0] == NULL);
1169 btrfs_release_delayed_node(prev_node);
1170 }
1171
1172 /*
1173 * Release the path to avoid a potential deadlock and lockdep splat when
1174 * releasing the delayed node, as that requires taking the delayed node's
1175 * mutex. If another task starts running delayed items before we take
1176 * the mutex, it will first lock the mutex and then it may try to lock
1177 * the same btree path (leaf).
1178 */
1179 btrfs_free_path(path);
1180
1181 if (curr_node)
1182 btrfs_release_delayed_node(curr_node);
1183 trans->block_rsv = block_rsv;
1184
1185 return ret;
1186 }
1187
1188 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1189 {
1190 return __btrfs_run_delayed_items(trans, -1);
1191 }
1192
1193 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1194 {
1195 return __btrfs_run_delayed_items(trans, nr);
1196 }
1197
1198 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1199 struct btrfs_inode *inode)
1200 {
1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1202 struct btrfs_path *path;
1203 struct btrfs_block_rsv *block_rsv;
1204 int ret;
1205
1206 if (!delayed_node)
1207 return 0;
1208
1209 mutex_lock(&delayed_node->mutex);
1210 if (!delayed_node->count) {
1211 mutex_unlock(&delayed_node->mutex);
1212 btrfs_release_delayed_node(delayed_node);
1213 return 0;
1214 }
1215 mutex_unlock(&delayed_node->mutex);
1216
1217 path = btrfs_alloc_path();
1218 if (!path) {
1219 btrfs_release_delayed_node(delayed_node);
1220 return -ENOMEM;
1221 }
1222
1223 block_rsv = trans->block_rsv;
1224 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1225
1226 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1227
1228 btrfs_release_delayed_node(delayed_node);
1229 btrfs_free_path(path);
1230 trans->block_rsv = block_rsv;
1231
1232 return ret;
1233 }
1234
1235 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1236 {
1237 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1238 struct btrfs_trans_handle *trans;
1239 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1240 struct btrfs_path *path;
1241 struct btrfs_block_rsv *block_rsv;
1242 int ret;
1243
1244 if (!delayed_node)
1245 return 0;
1246
1247 mutex_lock(&delayed_node->mutex);
1248 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1249 mutex_unlock(&delayed_node->mutex);
1250 btrfs_release_delayed_node(delayed_node);
1251 return 0;
1252 }
1253 mutex_unlock(&delayed_node->mutex);
1254
1255 trans = btrfs_join_transaction(delayed_node->root);
1256 if (IS_ERR(trans)) {
1257 ret = PTR_ERR(trans);
1258 goto out;
1259 }
1260
1261 path = btrfs_alloc_path();
1262 if (!path) {
1263 ret = -ENOMEM;
1264 goto trans_out;
1265 }
1266
1267 block_rsv = trans->block_rsv;
1268 trans->block_rsv = &fs_info->delayed_block_rsv;
1269
1270 mutex_lock(&delayed_node->mutex);
1271 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1272 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1273 path, delayed_node);
1274 else
1275 ret = 0;
1276 mutex_unlock(&delayed_node->mutex);
1277
1278 btrfs_free_path(path);
1279 trans->block_rsv = block_rsv;
1280 trans_out:
1281 btrfs_end_transaction(trans);
1282 btrfs_btree_balance_dirty(fs_info);
1283 out:
1284 btrfs_release_delayed_node(delayed_node);
1285
1286 return ret;
1287 }
1288
1289 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1290 {
1291 struct btrfs_delayed_node *delayed_node;
1292
1293 delayed_node = READ_ONCE(inode->delayed_node);
1294 if (!delayed_node)
1295 return;
1296
1297 inode->delayed_node = NULL;
1298 btrfs_release_delayed_node(delayed_node);
1299 }
1300
1301 struct btrfs_async_delayed_work {
1302 struct btrfs_delayed_root *delayed_root;
1303 int nr;
1304 struct btrfs_work work;
1305 };
1306
1307 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1308 {
1309 struct btrfs_async_delayed_work *async_work;
1310 struct btrfs_delayed_root *delayed_root;
1311 struct btrfs_trans_handle *trans;
1312 struct btrfs_path *path;
1313 struct btrfs_delayed_node *delayed_node = NULL;
1314 struct btrfs_root *root;
1315 struct btrfs_block_rsv *block_rsv;
1316 int total_done = 0;
1317
1318 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1319 delayed_root = async_work->delayed_root;
1320
1321 path = btrfs_alloc_path();
1322 if (!path)
1323 goto out;
1324
1325 do {
1326 if (atomic_read(&delayed_root->items) <
1327 BTRFS_DELAYED_BACKGROUND / 2)
1328 break;
1329
1330 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1331 if (!delayed_node)
1332 break;
1333
1334 root = delayed_node->root;
1335
1336 trans = btrfs_join_transaction(root);
1337 if (IS_ERR(trans)) {
1338 btrfs_release_path(path);
1339 btrfs_release_prepared_delayed_node(delayed_node);
1340 total_done++;
1341 continue;
1342 }
1343
1344 block_rsv = trans->block_rsv;
1345 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1346
1347 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1348
1349 trans->block_rsv = block_rsv;
1350 btrfs_end_transaction(trans);
1351 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1352
1353 btrfs_release_path(path);
1354 btrfs_release_prepared_delayed_node(delayed_node);
1355 total_done++;
1356
1357 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1358 || total_done < async_work->nr);
1359
1360 btrfs_free_path(path);
1361 out:
1362 wake_up(&delayed_root->wait);
1363 kfree(async_work);
1364 }
1365
1366
1367 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1368 struct btrfs_fs_info *fs_info, int nr)
1369 {
1370 struct btrfs_async_delayed_work *async_work;
1371
1372 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1373 if (!async_work)
1374 return -ENOMEM;
1375
1376 async_work->delayed_root = delayed_root;
1377 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1378 NULL);
1379 async_work->nr = nr;
1380
1381 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1382 return 0;
1383 }
1384
1385 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1386 {
1387 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1388 }
1389
1390 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1391 {
1392 int val = atomic_read(&delayed_root->items_seq);
1393
1394 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1395 return 1;
1396
1397 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1398 return 1;
1399
1400 return 0;
1401 }
1402
1403 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1404 {
1405 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1406
1407 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1408 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1409 return;
1410
1411 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1412 int seq;
1413 int ret;
1414
1415 seq = atomic_read(&delayed_root->items_seq);
1416
1417 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1418 if (ret)
1419 return;
1420
1421 wait_event_interruptible(delayed_root->wait,
1422 could_end_wait(delayed_root, seq));
1423 return;
1424 }
1425
1426 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1427 }
1428
1429 /* Will return 0 or -ENOMEM */
1430 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1431 const char *name, int name_len,
1432 struct btrfs_inode *dir,
1433 struct btrfs_disk_key *disk_key, u8 flags,
1434 u64 index)
1435 {
1436 struct btrfs_fs_info *fs_info = trans->fs_info;
1437 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info);
1438 struct btrfs_delayed_node *delayed_node;
1439 struct btrfs_delayed_item *delayed_item;
1440 struct btrfs_dir_item *dir_item;
1441 bool reserve_leaf_space;
1442 u32 data_len;
1443 int ret;
1444
1445 delayed_node = btrfs_get_or_create_delayed_node(dir);
1446 if (IS_ERR(delayed_node))
1447 return PTR_ERR(delayed_node);
1448
1449 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len,
1450 delayed_node,
1451 BTRFS_DELAYED_INSERTION_ITEM);
1452 if (!delayed_item) {
1453 ret = -ENOMEM;
1454 goto release_node;
1455 }
1456
1457 delayed_item->index = index;
1458
1459 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1460 dir_item->location = *disk_key;
1461 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1462 btrfs_set_stack_dir_data_len(dir_item, 0);
1463 btrfs_set_stack_dir_name_len(dir_item, name_len);
1464 btrfs_set_stack_dir_flags(dir_item, flags);
1465 memcpy((char *)(dir_item + 1), name, name_len);
1466
1467 data_len = delayed_item->data_len + sizeof(struct btrfs_item);
1468
1469 mutex_lock(&delayed_node->mutex);
1470
1471 if (delayed_node->index_item_leaves == 0 ||
1472 delayed_node->curr_index_batch_size + data_len > leaf_data_size) {
1473 delayed_node->curr_index_batch_size = data_len;
1474 reserve_leaf_space = true;
1475 } else {
1476 delayed_node->curr_index_batch_size += data_len;
1477 reserve_leaf_space = false;
1478 }
1479
1480 if (reserve_leaf_space) {
1481 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item);
1482 /*
1483 * Space was reserved for a dir index item insertion when we
1484 * started the transaction, so getting a failure here should be
1485 * impossible.
1486 */
1487 if (WARN_ON(ret)) {
1488 mutex_unlock(&delayed_node->mutex);
1489 btrfs_release_delayed_item(delayed_item);
1490 goto release_node;
1491 }
1492
1493 delayed_node->index_item_leaves++;
1494 } else if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
1495 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
1496
1497 /*
1498 * Adding the new dir index item does not require touching another
1499 * leaf, so we can release 1 unit of metadata that was previously
1500 * reserved when starting the transaction. This applies only to
1501 * the case where we had a transaction start and excludes the
1502 * transaction join case (when replaying log trees).
1503 */
1504 trace_btrfs_space_reservation(fs_info, "transaction",
1505 trans->transid, bytes, 0);
1506 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL);
1507 ASSERT(trans->bytes_reserved >= bytes);
1508 trans->bytes_reserved -= bytes;
1509 }
1510
1511 ret = __btrfs_add_delayed_item(delayed_node, delayed_item);
1512 if (unlikely(ret)) {
1513 btrfs_err(trans->fs_info,
1514 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1515 name_len, name, delayed_node->root->root_key.objectid,
1516 delayed_node->inode_id, ret);
1517 BUG();
1518 }
1519 mutex_unlock(&delayed_node->mutex);
1520
1521 release_node:
1522 btrfs_release_delayed_node(delayed_node);
1523 return ret;
1524 }
1525
1526 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1527 struct btrfs_delayed_node *node,
1528 u64 index)
1529 {
1530 struct btrfs_delayed_item *item;
1531
1532 mutex_lock(&node->mutex);
1533 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index);
1534 if (!item) {
1535 mutex_unlock(&node->mutex);
1536 return 1;
1537 }
1538
1539 /*
1540 * For delayed items to insert, we track reserved metadata bytes based
1541 * on the number of leaves that we will use.
1542 * See btrfs_insert_delayed_dir_index() and
1543 * btrfs_delayed_item_reserve_metadata()).
1544 */
1545 ASSERT(item->bytes_reserved == 0);
1546 ASSERT(node->index_item_leaves > 0);
1547
1548 /*
1549 * If there's only one leaf reserved, we can decrement this item from the
1550 * current batch, otherwise we can not because we don't know which leaf
1551 * it belongs to. With the current limit on delayed items, we rarely
1552 * accumulate enough dir index items to fill more than one leaf (even
1553 * when using a leaf size of 4K).
1554 */
1555 if (node->index_item_leaves == 1) {
1556 const u32 data_len = item->data_len + sizeof(struct btrfs_item);
1557
1558 ASSERT(node->curr_index_batch_size >= data_len);
1559 node->curr_index_batch_size -= data_len;
1560 }
1561
1562 btrfs_release_delayed_item(item);
1563
1564 /* If we now have no more dir index items, we can release all leaves. */
1565 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) {
1566 btrfs_delayed_item_release_leaves(node, node->index_item_leaves);
1567 node->index_item_leaves = 0;
1568 }
1569
1570 mutex_unlock(&node->mutex);
1571 return 0;
1572 }
1573
1574 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1575 struct btrfs_inode *dir, u64 index)
1576 {
1577 struct btrfs_delayed_node *node;
1578 struct btrfs_delayed_item *item;
1579 int ret;
1580
1581 node = btrfs_get_or_create_delayed_node(dir);
1582 if (IS_ERR(node))
1583 return PTR_ERR(node);
1584
1585 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index);
1586 if (!ret)
1587 goto end;
1588
1589 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM);
1590 if (!item) {
1591 ret = -ENOMEM;
1592 goto end;
1593 }
1594
1595 item->index = index;
1596
1597 ret = btrfs_delayed_item_reserve_metadata(trans, item);
1598 /*
1599 * we have reserved enough space when we start a new transaction,
1600 * so reserving metadata failure is impossible.
1601 */
1602 if (ret < 0) {
1603 btrfs_err(trans->fs_info,
1604 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1605 btrfs_release_delayed_item(item);
1606 goto end;
1607 }
1608
1609 mutex_lock(&node->mutex);
1610 ret = __btrfs_add_delayed_item(node, item);
1611 if (unlikely(ret)) {
1612 btrfs_err(trans->fs_info,
1613 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1614 index, node->root->root_key.objectid,
1615 node->inode_id, ret);
1616 btrfs_delayed_item_release_metadata(dir->root, item);
1617 btrfs_release_delayed_item(item);
1618 }
1619 mutex_unlock(&node->mutex);
1620 end:
1621 btrfs_release_delayed_node(node);
1622 return ret;
1623 }
1624
1625 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1626 {
1627 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1628
1629 if (!delayed_node)
1630 return -ENOENT;
1631
1632 /*
1633 * Since we have held i_mutex of this directory, it is impossible that
1634 * a new directory index is added into the delayed node and index_cnt
1635 * is updated now. So we needn't lock the delayed node.
1636 */
1637 if (!delayed_node->index_cnt) {
1638 btrfs_release_delayed_node(delayed_node);
1639 return -EINVAL;
1640 }
1641
1642 inode->index_cnt = delayed_node->index_cnt;
1643 btrfs_release_delayed_node(delayed_node);
1644 return 0;
1645 }
1646
1647 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1648 u64 last_index,
1649 struct list_head *ins_list,
1650 struct list_head *del_list)
1651 {
1652 struct btrfs_delayed_node *delayed_node;
1653 struct btrfs_delayed_item *item;
1654
1655 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1656 if (!delayed_node)
1657 return false;
1658
1659 /*
1660 * We can only do one readdir with delayed items at a time because of
1661 * item->readdir_list.
1662 */
1663 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
1664 btrfs_inode_lock(BTRFS_I(inode), 0);
1665
1666 mutex_lock(&delayed_node->mutex);
1667 item = __btrfs_first_delayed_insertion_item(delayed_node);
1668 while (item && item->index <= last_index) {
1669 refcount_inc(&item->refs);
1670 list_add_tail(&item->readdir_list, ins_list);
1671 item = __btrfs_next_delayed_item(item);
1672 }
1673
1674 item = __btrfs_first_delayed_deletion_item(delayed_node);
1675 while (item && item->index <= last_index) {
1676 refcount_inc(&item->refs);
1677 list_add_tail(&item->readdir_list, del_list);
1678 item = __btrfs_next_delayed_item(item);
1679 }
1680 mutex_unlock(&delayed_node->mutex);
1681 /*
1682 * This delayed node is still cached in the btrfs inode, so refs
1683 * must be > 1 now, and we needn't check it is going to be freed
1684 * or not.
1685 *
1686 * Besides that, this function is used to read dir, we do not
1687 * insert/delete delayed items in this period. So we also needn't
1688 * requeue or dequeue this delayed node.
1689 */
1690 refcount_dec(&delayed_node->refs);
1691
1692 return true;
1693 }
1694
1695 void btrfs_readdir_put_delayed_items(struct inode *inode,
1696 struct list_head *ins_list,
1697 struct list_head *del_list)
1698 {
1699 struct btrfs_delayed_item *curr, *next;
1700
1701 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1702 list_del(&curr->readdir_list);
1703 if (refcount_dec_and_test(&curr->refs))
1704 kfree(curr);
1705 }
1706
1707 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1708 list_del(&curr->readdir_list);
1709 if (refcount_dec_and_test(&curr->refs))
1710 kfree(curr);
1711 }
1712
1713 /*
1714 * The VFS is going to do up_read(), so we need to downgrade back to a
1715 * read lock.
1716 */
1717 downgrade_write(&inode->i_rwsem);
1718 }
1719
1720 int btrfs_should_delete_dir_index(struct list_head *del_list,
1721 u64 index)
1722 {
1723 struct btrfs_delayed_item *curr;
1724 int ret = 0;
1725
1726 list_for_each_entry(curr, del_list, readdir_list) {
1727 if (curr->index > index)
1728 break;
1729 if (curr->index == index) {
1730 ret = 1;
1731 break;
1732 }
1733 }
1734 return ret;
1735 }
1736
1737 /*
1738 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1739 *
1740 */
1741 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1742 struct list_head *ins_list)
1743 {
1744 struct btrfs_dir_item *di;
1745 struct btrfs_delayed_item *curr, *next;
1746 struct btrfs_key location;
1747 char *name;
1748 int name_len;
1749 int over = 0;
1750 unsigned char d_type;
1751
1752 /*
1753 * Changing the data of the delayed item is impossible. So
1754 * we needn't lock them. And we have held i_mutex of the
1755 * directory, nobody can delete any directory indexes now.
1756 */
1757 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1758 list_del(&curr->readdir_list);
1759
1760 if (curr->index < ctx->pos) {
1761 if (refcount_dec_and_test(&curr->refs))
1762 kfree(curr);
1763 continue;
1764 }
1765
1766 ctx->pos = curr->index;
1767
1768 di = (struct btrfs_dir_item *)curr->data;
1769 name = (char *)(di + 1);
1770 name_len = btrfs_stack_dir_name_len(di);
1771
1772 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type));
1773 btrfs_disk_key_to_cpu(&location, &di->location);
1774
1775 over = !dir_emit(ctx, name, name_len,
1776 location.objectid, d_type);
1777
1778 if (refcount_dec_and_test(&curr->refs))
1779 kfree(curr);
1780
1781 if (over)
1782 return 1;
1783 ctx->pos++;
1784 }
1785 return 0;
1786 }
1787
1788 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1789 struct btrfs_inode_item *inode_item,
1790 struct inode *inode)
1791 {
1792 u64 flags;
1793
1794 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1795 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1796 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1797 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1798 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1799 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1800 btrfs_set_stack_inode_generation(inode_item,
1801 BTRFS_I(inode)->generation);
1802 btrfs_set_stack_inode_sequence(inode_item,
1803 inode_peek_iversion(inode));
1804 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1805 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1806 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1807 BTRFS_I(inode)->ro_flags);
1808 btrfs_set_stack_inode_flags(inode_item, flags);
1809 btrfs_set_stack_inode_block_group(inode_item, 0);
1810
1811 btrfs_set_stack_timespec_sec(&inode_item->atime,
1812 inode->i_atime.tv_sec);
1813 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1814 inode->i_atime.tv_nsec);
1815
1816 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1817 inode->i_mtime.tv_sec);
1818 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1819 inode->i_mtime.tv_nsec);
1820
1821 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1822 inode->i_ctime.tv_sec);
1823 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1824 inode->i_ctime.tv_nsec);
1825
1826 btrfs_set_stack_timespec_sec(&inode_item->otime,
1827 BTRFS_I(inode)->i_otime.tv_sec);
1828 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1829 BTRFS_I(inode)->i_otime.tv_nsec);
1830 }
1831
1832 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1833 {
1834 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1835 struct btrfs_delayed_node *delayed_node;
1836 struct btrfs_inode_item *inode_item;
1837
1838 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1839 if (!delayed_node)
1840 return -ENOENT;
1841
1842 mutex_lock(&delayed_node->mutex);
1843 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1844 mutex_unlock(&delayed_node->mutex);
1845 btrfs_release_delayed_node(delayed_node);
1846 return -ENOENT;
1847 }
1848
1849 inode_item = &delayed_node->inode_item;
1850
1851 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1852 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1853 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1854 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1855 round_up(i_size_read(inode), fs_info->sectorsize));
1856 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1857 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1858 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1859 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1860 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1861
1862 inode_set_iversion_queried(inode,
1863 btrfs_stack_inode_sequence(inode_item));
1864 inode->i_rdev = 0;
1865 *rdev = btrfs_stack_inode_rdev(inode_item);
1866 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1867 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1868
1869 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1870 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1871
1872 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1873 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1874
1875 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1876 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1877
1878 BTRFS_I(inode)->i_otime.tv_sec =
1879 btrfs_stack_timespec_sec(&inode_item->otime);
1880 BTRFS_I(inode)->i_otime.tv_nsec =
1881 btrfs_stack_timespec_nsec(&inode_item->otime);
1882
1883 inode->i_generation = BTRFS_I(inode)->generation;
1884 BTRFS_I(inode)->index_cnt = (u64)-1;
1885
1886 mutex_unlock(&delayed_node->mutex);
1887 btrfs_release_delayed_node(delayed_node);
1888 return 0;
1889 }
1890
1891 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1892 struct btrfs_root *root,
1893 struct btrfs_inode *inode)
1894 {
1895 struct btrfs_delayed_node *delayed_node;
1896 int ret = 0;
1897
1898 delayed_node = btrfs_get_or_create_delayed_node(inode);
1899 if (IS_ERR(delayed_node))
1900 return PTR_ERR(delayed_node);
1901
1902 mutex_lock(&delayed_node->mutex);
1903 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1904 fill_stack_inode_item(trans, &delayed_node->inode_item,
1905 &inode->vfs_inode);
1906 goto release_node;
1907 }
1908
1909 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1910 if (ret)
1911 goto release_node;
1912
1913 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1914 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1915 delayed_node->count++;
1916 atomic_inc(&root->fs_info->delayed_root->items);
1917 release_node:
1918 mutex_unlock(&delayed_node->mutex);
1919 btrfs_release_delayed_node(delayed_node);
1920 return ret;
1921 }
1922
1923 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1924 {
1925 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1926 struct btrfs_delayed_node *delayed_node;
1927
1928 /*
1929 * we don't do delayed inode updates during log recovery because it
1930 * leads to enospc problems. This means we also can't do
1931 * delayed inode refs
1932 */
1933 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1934 return -EAGAIN;
1935
1936 delayed_node = btrfs_get_or_create_delayed_node(inode);
1937 if (IS_ERR(delayed_node))
1938 return PTR_ERR(delayed_node);
1939
1940 /*
1941 * We don't reserve space for inode ref deletion is because:
1942 * - We ONLY do async inode ref deletion for the inode who has only
1943 * one link(i_nlink == 1), it means there is only one inode ref.
1944 * And in most case, the inode ref and the inode item are in the
1945 * same leaf, and we will deal with them at the same time.
1946 * Since we are sure we will reserve the space for the inode item,
1947 * it is unnecessary to reserve space for inode ref deletion.
1948 * - If the inode ref and the inode item are not in the same leaf,
1949 * We also needn't worry about enospc problem, because we reserve
1950 * much more space for the inode update than it needs.
1951 * - At the worst, we can steal some space from the global reservation.
1952 * It is very rare.
1953 */
1954 mutex_lock(&delayed_node->mutex);
1955 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1956 goto release_node;
1957
1958 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1959 delayed_node->count++;
1960 atomic_inc(&fs_info->delayed_root->items);
1961 release_node:
1962 mutex_unlock(&delayed_node->mutex);
1963 btrfs_release_delayed_node(delayed_node);
1964 return 0;
1965 }
1966
1967 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1968 {
1969 struct btrfs_root *root = delayed_node->root;
1970 struct btrfs_fs_info *fs_info = root->fs_info;
1971 struct btrfs_delayed_item *curr_item, *prev_item;
1972
1973 mutex_lock(&delayed_node->mutex);
1974 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1975 while (curr_item) {
1976 prev_item = curr_item;
1977 curr_item = __btrfs_next_delayed_item(prev_item);
1978 btrfs_release_delayed_item(prev_item);
1979 }
1980
1981 if (delayed_node->index_item_leaves > 0) {
1982 btrfs_delayed_item_release_leaves(delayed_node,
1983 delayed_node->index_item_leaves);
1984 delayed_node->index_item_leaves = 0;
1985 }
1986
1987 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1988 while (curr_item) {
1989 btrfs_delayed_item_release_metadata(root, curr_item);
1990 prev_item = curr_item;
1991 curr_item = __btrfs_next_delayed_item(prev_item);
1992 btrfs_release_delayed_item(prev_item);
1993 }
1994
1995 btrfs_release_delayed_iref(delayed_node);
1996
1997 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1998 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1999 btrfs_release_delayed_inode(delayed_node);
2000 }
2001 mutex_unlock(&delayed_node->mutex);
2002 }
2003
2004 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
2005 {
2006 struct btrfs_delayed_node *delayed_node;
2007
2008 delayed_node = btrfs_get_delayed_node(inode);
2009 if (!delayed_node)
2010 return;
2011
2012 __btrfs_kill_delayed_node(delayed_node);
2013 btrfs_release_delayed_node(delayed_node);
2014 }
2015
2016 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
2017 {
2018 u64 inode_id = 0;
2019 struct btrfs_delayed_node *delayed_nodes[8];
2020 int i, n;
2021
2022 while (1) {
2023 spin_lock(&root->inode_lock);
2024 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
2025 (void **)delayed_nodes, inode_id,
2026 ARRAY_SIZE(delayed_nodes));
2027 if (!n) {
2028 spin_unlock(&root->inode_lock);
2029 break;
2030 }
2031
2032 inode_id = delayed_nodes[n - 1]->inode_id + 1;
2033 for (i = 0; i < n; i++) {
2034 /*
2035 * Don't increase refs in case the node is dead and
2036 * about to be removed from the tree in the loop below
2037 */
2038 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
2039 delayed_nodes[i] = NULL;
2040 }
2041 spin_unlock(&root->inode_lock);
2042
2043 for (i = 0; i < n; i++) {
2044 if (!delayed_nodes[i])
2045 continue;
2046 __btrfs_kill_delayed_node(delayed_nodes[i]);
2047 btrfs_release_delayed_node(delayed_nodes[i]);
2048 }
2049 }
2050 }
2051
2052 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
2053 {
2054 struct btrfs_delayed_node *curr_node, *prev_node;
2055
2056 curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
2057 while (curr_node) {
2058 __btrfs_kill_delayed_node(curr_node);
2059
2060 prev_node = curr_node;
2061 curr_node = btrfs_next_delayed_node(curr_node);
2062 btrfs_release_delayed_node(prev_node);
2063 }
2064 }
2065
2066 void btrfs_log_get_delayed_items(struct btrfs_inode *inode,
2067 struct list_head *ins_list,
2068 struct list_head *del_list)
2069 {
2070 struct btrfs_delayed_node *node;
2071 struct btrfs_delayed_item *item;
2072
2073 node = btrfs_get_delayed_node(inode);
2074 if (!node)
2075 return;
2076
2077 mutex_lock(&node->mutex);
2078 item = __btrfs_first_delayed_insertion_item(node);
2079 while (item) {
2080 /*
2081 * It's possible that the item is already in a log list. This
2082 * can happen in case two tasks are trying to log the same
2083 * directory. For example if we have tasks A and task B:
2084 *
2085 * Task A collected the delayed items into a log list while
2086 * under the inode's log_mutex (at btrfs_log_inode()), but it
2087 * only releases the items after logging the inodes they point
2088 * to (if they are new inodes), which happens after unlocking
2089 * the log mutex;
2090 *
2091 * Task B enters btrfs_log_inode() and acquires the log_mutex
2092 * of the same directory inode, before task B releases the
2093 * delayed items. This can happen for example when logging some
2094 * inode we need to trigger logging of its parent directory, so
2095 * logging two files that have the same parent directory can
2096 * lead to this.
2097 *
2098 * If this happens, just ignore delayed items already in a log
2099 * list. All the tasks logging the directory are under a log
2100 * transaction and whichever finishes first can not sync the log
2101 * before the other completes and leaves the log transaction.
2102 */
2103 if (!item->logged && list_empty(&item->log_list)) {
2104 refcount_inc(&item->refs);
2105 list_add_tail(&item->log_list, ins_list);
2106 }
2107 item = __btrfs_next_delayed_item(item);
2108 }
2109
2110 item = __btrfs_first_delayed_deletion_item(node);
2111 while (item) {
2112 /* It may be non-empty, for the same reason mentioned above. */
2113 if (!item->logged && list_empty(&item->log_list)) {
2114 refcount_inc(&item->refs);
2115 list_add_tail(&item->log_list, del_list);
2116 }
2117 item = __btrfs_next_delayed_item(item);
2118 }
2119 mutex_unlock(&node->mutex);
2120
2121 /*
2122 * We are called during inode logging, which means the inode is in use
2123 * and can not be evicted before we finish logging the inode. So we never
2124 * have the last reference on the delayed inode.
2125 * Also, we don't use btrfs_release_delayed_node() because that would
2126 * requeue the delayed inode (change its order in the list of prepared
2127 * nodes) and we don't want to do such change because we don't create or
2128 * delete delayed items.
2129 */
2130 ASSERT(refcount_read(&node->refs) > 1);
2131 refcount_dec(&node->refs);
2132 }
2133
2134 void btrfs_log_put_delayed_items(struct btrfs_inode *inode,
2135 struct list_head *ins_list,
2136 struct list_head *del_list)
2137 {
2138 struct btrfs_delayed_node *node;
2139 struct btrfs_delayed_item *item;
2140 struct btrfs_delayed_item *next;
2141
2142 node = btrfs_get_delayed_node(inode);
2143 if (!node)
2144 return;
2145
2146 mutex_lock(&node->mutex);
2147
2148 list_for_each_entry_safe(item, next, ins_list, log_list) {
2149 item->logged = true;
2150 list_del_init(&item->log_list);
2151 if (refcount_dec_and_test(&item->refs))
2152 kfree(item);
2153 }
2154
2155 list_for_each_entry_safe(item, next, del_list, log_list) {
2156 item->logged = true;
2157 list_del_init(&item->log_list);
2158 if (refcount_dec_and_test(&item->refs))
2159 kfree(item);
2160 }
2161
2162 mutex_unlock(&node->mutex);
2163
2164 /*
2165 * We are called during inode logging, which means the inode is in use
2166 * and can not be evicted before we finish logging the inode. So we never
2167 * have the last reference on the delayed inode.
2168 * Also, we don't use btrfs_release_delayed_node() because that would
2169 * requeue the delayed inode (change its order in the list of prepared
2170 * nodes) and we don't want to do such change because we don't create or
2171 * delete delayed items.
2172 */
2173 ASSERT(refcount_read(&node->refs) > 1);
2174 refcount_dec(&node->refs);
2175 }