]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/disk-io.c
riscv: select ARCH_HAS_STRICT_KERNEL_RWX only if MMU
[thirdparty/linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
112 struct async_submit_bio {
113 void *private_data;
114 struct bio *bio;
115 extent_submit_bio_start_t *submit_bio_start;
116 int mirror_num;
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
122 struct btrfs_work work;
123 blk_status_t status;
124 };
125
126 /*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
136 *
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
140 *
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
144 *
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
148 */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 # error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172 { .id = 0, .name_stem = "tree" },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191 {
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
214 {
215 struct extent_map_tree *em_tree = &inode->extent_tree;
216 struct extent_map *em;
217 int ret;
218
219 read_lock(&em_tree->lock);
220 em = lookup_extent_mapping(em_tree, start, len);
221 if (em) {
222 read_unlock(&em_tree->lock);
223 goto out;
224 }
225 read_unlock(&em_tree->lock);
226
227 em = alloc_extent_map();
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
233 em->len = (u64)-1;
234 em->block_len = (u64)-1;
235 em->block_start = 0;
236
237 write_lock(&em_tree->lock);
238 ret = add_extent_mapping(em_tree, em, 0);
239 if (ret == -EEXIST) {
240 free_extent_map(em);
241 em = lookup_extent_mapping(em_tree, start, len);
242 if (!em)
243 em = ERR_PTR(-EIO);
244 } else if (ret) {
245 free_extent_map(em);
246 em = ERR_PTR(ret);
247 }
248 write_unlock(&em_tree->lock);
249
250 out:
251 return em;
252 }
253
254 /*
255 * Compute the csum of a btree block and store the result to provided buffer.
256 */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 struct btrfs_fs_info *fs_info = buf->fs_info;
260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 char *kaddr;
263 int i;
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 }
275 memset(result, 0, BTRFS_CSUM_SIZE);
276 crypto_shash_final(shash, result);
277 }
278
279 /*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
288 {
289 struct extent_state *cached_state = NULL;
290 int ret;
291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
296 if (atomic)
297 return -EAGAIN;
298
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
301 btrfs_set_lock_blocking_read(eb);
302 }
303
304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 &cached_state);
306 if (extent_buffer_uptodate(eb) &&
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
314 parent_transid, btrfs_header_generation(eb));
315 ret = 1;
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
327 out:
328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 &cached_state);
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
332 return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
339 case BTRFS_CSUM_TYPE_XXHASH:
340 case BTRFS_CSUM_TYPE_SHA256:
341 case BTRFS_CSUM_TYPE_BLAKE2:
342 return true;
343 default:
344 return false;
345 }
346 }
347
348 /*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
354 {
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
357 char result[BTRFS_CSUM_SIZE];
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
361 crypto_shash_init(shash);
362
363 /*
364 * The super_block structure does not span the whole
365 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
366 * filled with zeros and is included in the checksum.
367 */
368 crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
369 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
370 crypto_shash_final(shash, result);
371
372 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
373 return 1;
374
375 return 0;
376 }
377
378 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
379 struct btrfs_key *first_key, u64 parent_transid)
380 {
381 struct btrfs_fs_info *fs_info = eb->fs_info;
382 int found_level;
383 struct btrfs_key found_key;
384 int ret;
385
386 found_level = btrfs_header_level(eb);
387 if (found_level != level) {
388 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
389 KERN_ERR "BTRFS: tree level check failed\n");
390 btrfs_err(fs_info,
391 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
392 eb->start, level, found_level);
393 return -EIO;
394 }
395
396 if (!first_key)
397 return 0;
398
399 /*
400 * For live tree block (new tree blocks in current transaction),
401 * we need proper lock context to avoid race, which is impossible here.
402 * So we only checks tree blocks which is read from disk, whose
403 * generation <= fs_info->last_trans_committed.
404 */
405 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
406 return 0;
407
408 /* We have @first_key, so this @eb must have at least one item */
409 if (btrfs_header_nritems(eb) == 0) {
410 btrfs_err(fs_info,
411 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
412 eb->start);
413 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
414 return -EUCLEAN;
415 }
416
417 if (found_level)
418 btrfs_node_key_to_cpu(eb, &found_key, 0);
419 else
420 btrfs_item_key_to_cpu(eb, &found_key, 0);
421 ret = btrfs_comp_cpu_keys(first_key, &found_key);
422
423 if (ret) {
424 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
425 KERN_ERR "BTRFS: tree first key check failed\n");
426 btrfs_err(fs_info,
427 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
428 eb->start, parent_transid, first_key->objectid,
429 first_key->type, first_key->offset,
430 found_key.objectid, found_key.type,
431 found_key.offset);
432 }
433 return ret;
434 }
435
436 /*
437 * helper to read a given tree block, doing retries as required when
438 * the checksums don't match and we have alternate mirrors to try.
439 *
440 * @parent_transid: expected transid, skip check if 0
441 * @level: expected level, mandatory check
442 * @first_key: expected key of first slot, skip check if NULL
443 */
444 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
445 u64 parent_transid, int level,
446 struct btrfs_key *first_key)
447 {
448 struct btrfs_fs_info *fs_info = eb->fs_info;
449 struct extent_io_tree *io_tree;
450 int failed = 0;
451 int ret;
452 int num_copies = 0;
453 int mirror_num = 0;
454 int failed_mirror = 0;
455
456 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457 while (1) {
458 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
459 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
460 if (!ret) {
461 if (verify_parent_transid(io_tree, eb,
462 parent_transid, 0))
463 ret = -EIO;
464 else if (btrfs_verify_level_key(eb, level,
465 first_key, parent_transid))
466 ret = -EUCLEAN;
467 else
468 break;
469 }
470
471 num_copies = btrfs_num_copies(fs_info,
472 eb->start, eb->len);
473 if (num_copies == 1)
474 break;
475
476 if (!failed_mirror) {
477 failed = 1;
478 failed_mirror = eb->read_mirror;
479 }
480
481 mirror_num++;
482 if (mirror_num == failed_mirror)
483 mirror_num++;
484
485 if (mirror_num > num_copies)
486 break;
487 }
488
489 if (failed && !ret && failed_mirror)
490 btrfs_repair_eb_io_failure(eb, failed_mirror);
491
492 return ret;
493 }
494
495 /*
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
498 */
499
500 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
501 {
502 u64 start = page_offset(page);
503 u64 found_start;
504 u8 result[BTRFS_CSUM_SIZE];
505 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
506 struct extent_buffer *eb;
507 int ret;
508
509 eb = (struct extent_buffer *)page->private;
510 if (page != eb->pages[0])
511 return 0;
512
513 found_start = btrfs_header_bytenr(eb);
514 /*
515 * Please do not consolidate these warnings into a single if.
516 * It is useful to know what went wrong.
517 */
518 if (WARN_ON(found_start != start))
519 return -EUCLEAN;
520 if (WARN_ON(!PageUptodate(page)))
521 return -EUCLEAN;
522
523 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
524 offsetof(struct btrfs_header, fsid),
525 BTRFS_FSID_SIZE) == 0);
526
527 csum_tree_block(eb, result);
528
529 if (btrfs_header_level(eb))
530 ret = btrfs_check_node(eb);
531 else
532 ret = btrfs_check_leaf_full(eb);
533
534 if (ret < 0) {
535 btrfs_print_tree(eb, 0);
536 btrfs_err(fs_info,
537 "block=%llu write time tree block corruption detected",
538 eb->start);
539 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
540 return ret;
541 }
542 write_extent_buffer(eb, result, 0, csum_size);
543
544 return 0;
545 }
546
547 static int check_tree_block_fsid(struct extent_buffer *eb)
548 {
549 struct btrfs_fs_info *fs_info = eb->fs_info;
550 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
551 u8 fsid[BTRFS_FSID_SIZE];
552 int ret = 1;
553
554 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
555 BTRFS_FSID_SIZE);
556 while (fs_devices) {
557 u8 *metadata_uuid;
558
559 /*
560 * Checking the incompat flag is only valid for the current
561 * fs. For seed devices it's forbidden to have their uuid
562 * changed so reading ->fsid in this case is fine
563 */
564 if (fs_devices == fs_info->fs_devices &&
565 btrfs_fs_incompat(fs_info, METADATA_UUID))
566 metadata_uuid = fs_devices->metadata_uuid;
567 else
568 metadata_uuid = fs_devices->fsid;
569
570 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
571 ret = 0;
572 break;
573 }
574 fs_devices = fs_devices->seed;
575 }
576 return ret;
577 }
578
579 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
580 u64 phy_offset, struct page *page,
581 u64 start, u64 end, int mirror)
582 {
583 u64 found_start;
584 int found_level;
585 struct extent_buffer *eb;
586 struct btrfs_fs_info *fs_info;
587 u16 csum_size;
588 int ret = 0;
589 u8 result[BTRFS_CSUM_SIZE];
590 int reads_done;
591
592 if (!page->private)
593 goto out;
594
595 eb = (struct extent_buffer *)page->private;
596 fs_info = eb->fs_info;
597 csum_size = btrfs_super_csum_size(fs_info->super_copy);
598
599 /* the pending IO might have been the only thing that kept this buffer
600 * in memory. Make sure we have a ref for all this other checks
601 */
602 atomic_inc(&eb->refs);
603
604 reads_done = atomic_dec_and_test(&eb->io_pages);
605 if (!reads_done)
606 goto err;
607
608 eb->read_mirror = mirror;
609 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
610 ret = -EIO;
611 goto err;
612 }
613
614 found_start = btrfs_header_bytenr(eb);
615 if (found_start != eb->start) {
616 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
617 eb->start, found_start);
618 ret = -EIO;
619 goto err;
620 }
621 if (check_tree_block_fsid(eb)) {
622 btrfs_err_rl(fs_info, "bad fsid on block %llu",
623 eb->start);
624 ret = -EIO;
625 goto err;
626 }
627 found_level = btrfs_header_level(eb);
628 if (found_level >= BTRFS_MAX_LEVEL) {
629 btrfs_err(fs_info, "bad tree block level %d on %llu",
630 (int)btrfs_header_level(eb), eb->start);
631 ret = -EIO;
632 goto err;
633 }
634
635 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
636 eb, found_level);
637
638 csum_tree_block(eb, result);
639
640 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
641 u32 val;
642 u32 found = 0;
643
644 memcpy(&found, result, csum_size);
645
646 read_extent_buffer(eb, &val, 0, csum_size);
647 btrfs_warn_rl(fs_info,
648 "%s checksum verify failed on %llu wanted %x found %x level %d",
649 fs_info->sb->s_id, eb->start,
650 val, found, btrfs_header_level(eb));
651 ret = -EUCLEAN;
652 goto err;
653 }
654
655 /*
656 * If this is a leaf block and it is corrupt, set the corrupt bit so
657 * that we don't try and read the other copies of this block, just
658 * return -EIO.
659 */
660 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
661 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
662 ret = -EIO;
663 }
664
665 if (found_level > 0 && btrfs_check_node(eb))
666 ret = -EIO;
667
668 if (!ret)
669 set_extent_buffer_uptodate(eb);
670 else
671 btrfs_err(fs_info,
672 "block=%llu read time tree block corruption detected",
673 eb->start);
674 err:
675 if (reads_done &&
676 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
677 btree_readahead_hook(eb, ret);
678
679 if (ret) {
680 /*
681 * our io error hook is going to dec the io pages
682 * again, we have to make sure it has something
683 * to decrement
684 */
685 atomic_inc(&eb->io_pages);
686 clear_extent_buffer_uptodate(eb);
687 }
688 free_extent_buffer(eb);
689 out:
690 return ret;
691 }
692
693 static void end_workqueue_bio(struct bio *bio)
694 {
695 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
696 struct btrfs_fs_info *fs_info;
697 struct btrfs_workqueue *wq;
698
699 fs_info = end_io_wq->info;
700 end_io_wq->status = bio->bi_status;
701
702 if (bio_op(bio) == REQ_OP_WRITE) {
703 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
704 wq = fs_info->endio_meta_write_workers;
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
706 wq = fs_info->endio_freespace_worker;
707 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
708 wq = fs_info->endio_raid56_workers;
709 else
710 wq = fs_info->endio_write_workers;
711 } else {
712 if (unlikely(end_io_wq->metadata == BTRFS_WQ_ENDIO_DIO_REPAIR))
713 wq = fs_info->endio_repair_workers;
714 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
715 wq = fs_info->endio_raid56_workers;
716 else if (end_io_wq->metadata)
717 wq = fs_info->endio_meta_workers;
718 else
719 wq = fs_info->endio_workers;
720 }
721
722 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
723 btrfs_queue_work(wq, &end_io_wq->work);
724 }
725
726 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
727 enum btrfs_wq_endio_type metadata)
728 {
729 struct btrfs_end_io_wq *end_io_wq;
730
731 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
732 if (!end_io_wq)
733 return BLK_STS_RESOURCE;
734
735 end_io_wq->private = bio->bi_private;
736 end_io_wq->end_io = bio->bi_end_io;
737 end_io_wq->info = info;
738 end_io_wq->status = 0;
739 end_io_wq->bio = bio;
740 end_io_wq->metadata = metadata;
741
742 bio->bi_private = end_io_wq;
743 bio->bi_end_io = end_workqueue_bio;
744 return 0;
745 }
746
747 static void run_one_async_start(struct btrfs_work *work)
748 {
749 struct async_submit_bio *async;
750 blk_status_t ret;
751
752 async = container_of(work, struct async_submit_bio, work);
753 ret = async->submit_bio_start(async->private_data, async->bio,
754 async->bio_offset);
755 if (ret)
756 async->status = ret;
757 }
758
759 /*
760 * In order to insert checksums into the metadata in large chunks, we wait
761 * until bio submission time. All the pages in the bio are checksummed and
762 * sums are attached onto the ordered extent record.
763 *
764 * At IO completion time the csums attached on the ordered extent record are
765 * inserted into the tree.
766 */
767 static void run_one_async_done(struct btrfs_work *work)
768 {
769 struct async_submit_bio *async;
770 struct inode *inode;
771 blk_status_t ret;
772
773 async = container_of(work, struct async_submit_bio, work);
774 inode = async->private_data;
775
776 /* If an error occurred we just want to clean up the bio and move on */
777 if (async->status) {
778 async->bio->bi_status = async->status;
779 bio_endio(async->bio);
780 return;
781 }
782
783 /*
784 * All of the bios that pass through here are from async helpers.
785 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
786 * This changes nothing when cgroups aren't in use.
787 */
788 async->bio->bi_opf |= REQ_CGROUP_PUNT;
789 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
790 if (ret) {
791 async->bio->bi_status = ret;
792 bio_endio(async->bio);
793 }
794 }
795
796 static void run_one_async_free(struct btrfs_work *work)
797 {
798 struct async_submit_bio *async;
799
800 async = container_of(work, struct async_submit_bio, work);
801 kfree(async);
802 }
803
804 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
805 int mirror_num, unsigned long bio_flags,
806 u64 bio_offset, void *private_data,
807 extent_submit_bio_start_t *submit_bio_start)
808 {
809 struct async_submit_bio *async;
810
811 async = kmalloc(sizeof(*async), GFP_NOFS);
812 if (!async)
813 return BLK_STS_RESOURCE;
814
815 async->private_data = private_data;
816 async->bio = bio;
817 async->mirror_num = mirror_num;
818 async->submit_bio_start = submit_bio_start;
819
820 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
821 run_one_async_free);
822
823 async->bio_offset = bio_offset;
824
825 async->status = 0;
826
827 if (op_is_sync(bio->bi_opf))
828 btrfs_set_work_high_priority(&async->work);
829
830 btrfs_queue_work(fs_info->workers, &async->work);
831 return 0;
832 }
833
834 static blk_status_t btree_csum_one_bio(struct bio *bio)
835 {
836 struct bio_vec *bvec;
837 struct btrfs_root *root;
838 int ret = 0;
839 struct bvec_iter_all iter_all;
840
841 ASSERT(!bio_flagged(bio, BIO_CLONED));
842 bio_for_each_segment_all(bvec, bio, iter_all) {
843 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
844 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
845 if (ret)
846 break;
847 }
848
849 return errno_to_blk_status(ret);
850 }
851
852 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
853 u64 bio_offset)
854 {
855 /*
856 * when we're called for a write, we're already in the async
857 * submission context. Just jump into btrfs_map_bio
858 */
859 return btree_csum_one_bio(bio);
860 }
861
862 static int check_async_write(struct btrfs_fs_info *fs_info,
863 struct btrfs_inode *bi)
864 {
865 if (atomic_read(&bi->sync_writers))
866 return 0;
867 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
868 return 0;
869 return 1;
870 }
871
872 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
873 int mirror_num,
874 unsigned long bio_flags)
875 {
876 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
877 int async = check_async_write(fs_info, BTRFS_I(inode));
878 blk_status_t ret;
879
880 if (bio_op(bio) != REQ_OP_WRITE) {
881 /*
882 * called for a read, do the setup so that checksum validation
883 * can happen in the async kernel threads
884 */
885 ret = btrfs_bio_wq_end_io(fs_info, bio,
886 BTRFS_WQ_ENDIO_METADATA);
887 if (ret)
888 goto out_w_error;
889 ret = btrfs_map_bio(fs_info, bio, mirror_num);
890 } else if (!async) {
891 ret = btree_csum_one_bio(bio);
892 if (ret)
893 goto out_w_error;
894 ret = btrfs_map_bio(fs_info, bio, mirror_num);
895 } else {
896 /*
897 * kthread helpers are used to submit writes so that
898 * checksumming can happen in parallel across all CPUs
899 */
900 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
901 0, inode, btree_submit_bio_start);
902 }
903
904 if (ret)
905 goto out_w_error;
906 return 0;
907
908 out_w_error:
909 bio->bi_status = ret;
910 bio_endio(bio);
911 return ret;
912 }
913
914 #ifdef CONFIG_MIGRATION
915 static int btree_migratepage(struct address_space *mapping,
916 struct page *newpage, struct page *page,
917 enum migrate_mode mode)
918 {
919 /*
920 * we can't safely write a btree page from here,
921 * we haven't done the locking hook
922 */
923 if (PageDirty(page))
924 return -EAGAIN;
925 /*
926 * Buffers may be managed in a filesystem specific way.
927 * We must have no buffers or drop them.
928 */
929 if (page_has_private(page) &&
930 !try_to_release_page(page, GFP_KERNEL))
931 return -EAGAIN;
932 return migrate_page(mapping, newpage, page, mode);
933 }
934 #endif
935
936
937 static int btree_writepages(struct address_space *mapping,
938 struct writeback_control *wbc)
939 {
940 struct btrfs_fs_info *fs_info;
941 int ret;
942
943 if (wbc->sync_mode == WB_SYNC_NONE) {
944
945 if (wbc->for_kupdate)
946 return 0;
947
948 fs_info = BTRFS_I(mapping->host)->root->fs_info;
949 /* this is a bit racy, but that's ok */
950 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
951 BTRFS_DIRTY_METADATA_THRESH,
952 fs_info->dirty_metadata_batch);
953 if (ret < 0)
954 return 0;
955 }
956 return btree_write_cache_pages(mapping, wbc);
957 }
958
959 static int btree_readpage(struct file *file, struct page *page)
960 {
961 return extent_read_full_page(page, btree_get_extent, 0);
962 }
963
964 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
965 {
966 if (PageWriteback(page) || PageDirty(page))
967 return 0;
968
969 return try_release_extent_buffer(page);
970 }
971
972 static void btree_invalidatepage(struct page *page, unsigned int offset,
973 unsigned int length)
974 {
975 struct extent_io_tree *tree;
976 tree = &BTRFS_I(page->mapping->host)->io_tree;
977 extent_invalidatepage(tree, page, offset);
978 btree_releasepage(page, GFP_NOFS);
979 if (PagePrivate(page)) {
980 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
981 "page private not zero on page %llu",
982 (unsigned long long)page_offset(page));
983 ClearPagePrivate(page);
984 set_page_private(page, 0);
985 put_page(page);
986 }
987 }
988
989 static int btree_set_page_dirty(struct page *page)
990 {
991 #ifdef DEBUG
992 struct extent_buffer *eb;
993
994 BUG_ON(!PagePrivate(page));
995 eb = (struct extent_buffer *)page->private;
996 BUG_ON(!eb);
997 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
998 BUG_ON(!atomic_read(&eb->refs));
999 btrfs_assert_tree_locked(eb);
1000 #endif
1001 return __set_page_dirty_nobuffers(page);
1002 }
1003
1004 static const struct address_space_operations btree_aops = {
1005 .readpage = btree_readpage,
1006 .writepages = btree_writepages,
1007 .releasepage = btree_releasepage,
1008 .invalidatepage = btree_invalidatepage,
1009 #ifdef CONFIG_MIGRATION
1010 .migratepage = btree_migratepage,
1011 #endif
1012 .set_page_dirty = btree_set_page_dirty,
1013 };
1014
1015 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1016 {
1017 struct extent_buffer *buf = NULL;
1018 int ret;
1019
1020 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1021 if (IS_ERR(buf))
1022 return;
1023
1024 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1025 if (ret < 0)
1026 free_extent_buffer_stale(buf);
1027 else
1028 free_extent_buffer(buf);
1029 }
1030
1031 struct extent_buffer *btrfs_find_create_tree_block(
1032 struct btrfs_fs_info *fs_info,
1033 u64 bytenr)
1034 {
1035 if (btrfs_is_testing(fs_info))
1036 return alloc_test_extent_buffer(fs_info, bytenr);
1037 return alloc_extent_buffer(fs_info, bytenr);
1038 }
1039
1040 /*
1041 * Read tree block at logical address @bytenr and do variant basic but critical
1042 * verification.
1043 *
1044 * @parent_transid: expected transid of this tree block, skip check if 0
1045 * @level: expected level, mandatory check
1046 * @first_key: expected key in slot 0, skip check if NULL
1047 */
1048 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1049 u64 parent_transid, int level,
1050 struct btrfs_key *first_key)
1051 {
1052 struct extent_buffer *buf = NULL;
1053 int ret;
1054
1055 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1056 if (IS_ERR(buf))
1057 return buf;
1058
1059 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1060 level, first_key);
1061 if (ret) {
1062 free_extent_buffer_stale(buf);
1063 return ERR_PTR(ret);
1064 }
1065 return buf;
1066
1067 }
1068
1069 void btrfs_clean_tree_block(struct extent_buffer *buf)
1070 {
1071 struct btrfs_fs_info *fs_info = buf->fs_info;
1072 if (btrfs_header_generation(buf) ==
1073 fs_info->running_transaction->transid) {
1074 btrfs_assert_tree_locked(buf);
1075
1076 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1077 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1078 -buf->len,
1079 fs_info->dirty_metadata_batch);
1080 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1081 btrfs_set_lock_blocking_write(buf);
1082 clear_extent_buffer_dirty(buf);
1083 }
1084 }
1085 }
1086
1087 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1088 u64 objectid)
1089 {
1090 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1091 root->fs_info = fs_info;
1092 root->node = NULL;
1093 root->commit_root = NULL;
1094 root->state = 0;
1095 root->orphan_cleanup_state = 0;
1096
1097 root->last_trans = 0;
1098 root->highest_objectid = 0;
1099 root->nr_delalloc_inodes = 0;
1100 root->nr_ordered_extents = 0;
1101 root->inode_tree = RB_ROOT;
1102 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1103 root->block_rsv = NULL;
1104
1105 INIT_LIST_HEAD(&root->dirty_list);
1106 INIT_LIST_HEAD(&root->root_list);
1107 INIT_LIST_HEAD(&root->delalloc_inodes);
1108 INIT_LIST_HEAD(&root->delalloc_root);
1109 INIT_LIST_HEAD(&root->ordered_extents);
1110 INIT_LIST_HEAD(&root->ordered_root);
1111 INIT_LIST_HEAD(&root->reloc_dirty_list);
1112 INIT_LIST_HEAD(&root->logged_list[0]);
1113 INIT_LIST_HEAD(&root->logged_list[1]);
1114 spin_lock_init(&root->inode_lock);
1115 spin_lock_init(&root->delalloc_lock);
1116 spin_lock_init(&root->ordered_extent_lock);
1117 spin_lock_init(&root->accounting_lock);
1118 spin_lock_init(&root->log_extents_lock[0]);
1119 spin_lock_init(&root->log_extents_lock[1]);
1120 spin_lock_init(&root->qgroup_meta_rsv_lock);
1121 mutex_init(&root->objectid_mutex);
1122 mutex_init(&root->log_mutex);
1123 mutex_init(&root->ordered_extent_mutex);
1124 mutex_init(&root->delalloc_mutex);
1125 init_waitqueue_head(&root->log_writer_wait);
1126 init_waitqueue_head(&root->log_commit_wait[0]);
1127 init_waitqueue_head(&root->log_commit_wait[1]);
1128 INIT_LIST_HEAD(&root->log_ctxs[0]);
1129 INIT_LIST_HEAD(&root->log_ctxs[1]);
1130 atomic_set(&root->log_commit[0], 0);
1131 atomic_set(&root->log_commit[1], 0);
1132 atomic_set(&root->log_writers, 0);
1133 atomic_set(&root->log_batch, 0);
1134 refcount_set(&root->refs, 1);
1135 atomic_set(&root->snapshot_force_cow, 0);
1136 atomic_set(&root->nr_swapfiles, 0);
1137 root->log_transid = 0;
1138 root->log_transid_committed = -1;
1139 root->last_log_commit = 0;
1140 if (!dummy)
1141 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1142 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1143
1144 memset(&root->root_key, 0, sizeof(root->root_key));
1145 memset(&root->root_item, 0, sizeof(root->root_item));
1146 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1147 if (!dummy)
1148 root->defrag_trans_start = fs_info->generation;
1149 else
1150 root->defrag_trans_start = 0;
1151 root->root_key.objectid = objectid;
1152 root->anon_dev = 0;
1153
1154 spin_lock_init(&root->root_item_lock);
1155 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1156 #ifdef CONFIG_BTRFS_DEBUG
1157 INIT_LIST_HEAD(&root->leak_list);
1158 spin_lock(&fs_info->fs_roots_radix_lock);
1159 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1160 spin_unlock(&fs_info->fs_roots_radix_lock);
1161 #endif
1162 }
1163
1164 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1165 u64 objectid, gfp_t flags)
1166 {
1167 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1168 if (root)
1169 __setup_root(root, fs_info, objectid);
1170 return root;
1171 }
1172
1173 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1174 /* Should only be used by the testing infrastructure */
1175 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1176 {
1177 struct btrfs_root *root;
1178
1179 if (!fs_info)
1180 return ERR_PTR(-EINVAL);
1181
1182 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1183 if (!root)
1184 return ERR_PTR(-ENOMEM);
1185
1186 /* We don't use the stripesize in selftest, set it as sectorsize */
1187 root->alloc_bytenr = 0;
1188
1189 return root;
1190 }
1191 #endif
1192
1193 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1194 u64 objectid)
1195 {
1196 struct btrfs_fs_info *fs_info = trans->fs_info;
1197 struct extent_buffer *leaf;
1198 struct btrfs_root *tree_root = fs_info->tree_root;
1199 struct btrfs_root *root;
1200 struct btrfs_key key;
1201 unsigned int nofs_flag;
1202 int ret = 0;
1203
1204 /*
1205 * We're holding a transaction handle, so use a NOFS memory allocation
1206 * context to avoid deadlock if reclaim happens.
1207 */
1208 nofs_flag = memalloc_nofs_save();
1209 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1210 memalloc_nofs_restore(nofs_flag);
1211 if (!root)
1212 return ERR_PTR(-ENOMEM);
1213
1214 root->root_key.objectid = objectid;
1215 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1216 root->root_key.offset = 0;
1217
1218 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1219 if (IS_ERR(leaf)) {
1220 ret = PTR_ERR(leaf);
1221 leaf = NULL;
1222 goto fail;
1223 }
1224
1225 root->node = leaf;
1226 btrfs_mark_buffer_dirty(leaf);
1227
1228 root->commit_root = btrfs_root_node(root);
1229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1230
1231 root->root_item.flags = 0;
1232 root->root_item.byte_limit = 0;
1233 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1234 btrfs_set_root_generation(&root->root_item, trans->transid);
1235 btrfs_set_root_level(&root->root_item, 0);
1236 btrfs_set_root_refs(&root->root_item, 1);
1237 btrfs_set_root_used(&root->root_item, leaf->len);
1238 btrfs_set_root_last_snapshot(&root->root_item, 0);
1239 btrfs_set_root_dirid(&root->root_item, 0);
1240 if (is_fstree(objectid))
1241 generate_random_guid(root->root_item.uuid);
1242 else
1243 export_guid(root->root_item.uuid, &guid_null);
1244 root->root_item.drop_level = 0;
1245
1246 key.objectid = objectid;
1247 key.type = BTRFS_ROOT_ITEM_KEY;
1248 key.offset = 0;
1249 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1250 if (ret)
1251 goto fail;
1252
1253 btrfs_tree_unlock(leaf);
1254
1255 return root;
1256
1257 fail:
1258 if (leaf)
1259 btrfs_tree_unlock(leaf);
1260 btrfs_put_root(root);
1261
1262 return ERR_PTR(ret);
1263 }
1264
1265 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1266 struct btrfs_fs_info *fs_info)
1267 {
1268 struct btrfs_root *root;
1269 struct extent_buffer *leaf;
1270
1271 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1272 if (!root)
1273 return ERR_PTR(-ENOMEM);
1274
1275 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1276 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1277 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1278
1279 /*
1280 * DON'T set REF_COWS for log trees
1281 *
1282 * log trees do not get reference counted because they go away
1283 * before a real commit is actually done. They do store pointers
1284 * to file data extents, and those reference counts still get
1285 * updated (along with back refs to the log tree).
1286 */
1287
1288 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1289 NULL, 0, 0, 0);
1290 if (IS_ERR(leaf)) {
1291 btrfs_put_root(root);
1292 return ERR_CAST(leaf);
1293 }
1294
1295 root->node = leaf;
1296
1297 btrfs_mark_buffer_dirty(root->node);
1298 btrfs_tree_unlock(root->node);
1299 return root;
1300 }
1301
1302 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1303 struct btrfs_fs_info *fs_info)
1304 {
1305 struct btrfs_root *log_root;
1306
1307 log_root = alloc_log_tree(trans, fs_info);
1308 if (IS_ERR(log_root))
1309 return PTR_ERR(log_root);
1310 WARN_ON(fs_info->log_root_tree);
1311 fs_info->log_root_tree = log_root;
1312 return 0;
1313 }
1314
1315 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1316 struct btrfs_root *root)
1317 {
1318 struct btrfs_fs_info *fs_info = root->fs_info;
1319 struct btrfs_root *log_root;
1320 struct btrfs_inode_item *inode_item;
1321
1322 log_root = alloc_log_tree(trans, fs_info);
1323 if (IS_ERR(log_root))
1324 return PTR_ERR(log_root);
1325
1326 log_root->last_trans = trans->transid;
1327 log_root->root_key.offset = root->root_key.objectid;
1328
1329 inode_item = &log_root->root_item.inode;
1330 btrfs_set_stack_inode_generation(inode_item, 1);
1331 btrfs_set_stack_inode_size(inode_item, 3);
1332 btrfs_set_stack_inode_nlink(inode_item, 1);
1333 btrfs_set_stack_inode_nbytes(inode_item,
1334 fs_info->nodesize);
1335 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1336
1337 btrfs_set_root_node(&log_root->root_item, log_root->node);
1338
1339 WARN_ON(root->log_root);
1340 root->log_root = log_root;
1341 root->log_transid = 0;
1342 root->log_transid_committed = -1;
1343 root->last_log_commit = 0;
1344 return 0;
1345 }
1346
1347 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1348 struct btrfs_key *key)
1349 {
1350 struct btrfs_root *root;
1351 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1352 struct btrfs_path *path;
1353 u64 generation;
1354 int ret;
1355 int level;
1356
1357 path = btrfs_alloc_path();
1358 if (!path)
1359 return ERR_PTR(-ENOMEM);
1360
1361 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1362 if (!root) {
1363 ret = -ENOMEM;
1364 goto alloc_fail;
1365 }
1366
1367 ret = btrfs_find_root(tree_root, key, path,
1368 &root->root_item, &root->root_key);
1369 if (ret) {
1370 if (ret > 0)
1371 ret = -ENOENT;
1372 goto find_fail;
1373 }
1374
1375 generation = btrfs_root_generation(&root->root_item);
1376 level = btrfs_root_level(&root->root_item);
1377 root->node = read_tree_block(fs_info,
1378 btrfs_root_bytenr(&root->root_item),
1379 generation, level, NULL);
1380 if (IS_ERR(root->node)) {
1381 ret = PTR_ERR(root->node);
1382 root->node = NULL;
1383 goto find_fail;
1384 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1385 ret = -EIO;
1386 goto find_fail;
1387 }
1388 root->commit_root = btrfs_root_node(root);
1389 out:
1390 btrfs_free_path(path);
1391 return root;
1392
1393 find_fail:
1394 btrfs_put_root(root);
1395 alloc_fail:
1396 root = ERR_PTR(ret);
1397 goto out;
1398 }
1399
1400 static int btrfs_init_fs_root(struct btrfs_root *root)
1401 {
1402 int ret;
1403 unsigned int nofs_flag;
1404
1405 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1406 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1407 GFP_NOFS);
1408 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1409 ret = -ENOMEM;
1410 goto fail;
1411 }
1412
1413 /*
1414 * We might be called under a transaction (e.g. indirect backref
1415 * resolution) which could deadlock if it triggers memory reclaim
1416 */
1417 nofs_flag = memalloc_nofs_save();
1418 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1419 memalloc_nofs_restore(nofs_flag);
1420 if (ret)
1421 goto fail;
1422
1423 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1424 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1425 btrfs_check_and_init_root_item(&root->root_item);
1426 }
1427
1428 btrfs_init_free_ino_ctl(root);
1429 spin_lock_init(&root->ino_cache_lock);
1430 init_waitqueue_head(&root->ino_cache_wait);
1431
1432 ret = get_anon_bdev(&root->anon_dev);
1433 if (ret)
1434 goto fail;
1435
1436 mutex_lock(&root->objectid_mutex);
1437 ret = btrfs_find_highest_objectid(root,
1438 &root->highest_objectid);
1439 if (ret) {
1440 mutex_unlock(&root->objectid_mutex);
1441 goto fail;
1442 }
1443
1444 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1445
1446 mutex_unlock(&root->objectid_mutex);
1447
1448 return 0;
1449 fail:
1450 /* The caller is responsible to call btrfs_free_fs_root */
1451 return ret;
1452 }
1453
1454 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1455 u64 root_id)
1456 {
1457 struct btrfs_root *root;
1458
1459 spin_lock(&fs_info->fs_roots_radix_lock);
1460 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1461 (unsigned long)root_id);
1462 if (root)
1463 root = btrfs_grab_root(root);
1464 spin_unlock(&fs_info->fs_roots_radix_lock);
1465 return root;
1466 }
1467
1468 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1469 struct btrfs_root *root)
1470 {
1471 int ret;
1472
1473 ret = radix_tree_preload(GFP_NOFS);
1474 if (ret)
1475 return ret;
1476
1477 spin_lock(&fs_info->fs_roots_radix_lock);
1478 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1479 (unsigned long)root->root_key.objectid,
1480 root);
1481 if (ret == 0) {
1482 btrfs_grab_root(root);
1483 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1484 }
1485 spin_unlock(&fs_info->fs_roots_radix_lock);
1486 radix_tree_preload_end();
1487
1488 return ret;
1489 }
1490
1491 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1492 {
1493 #ifdef CONFIG_BTRFS_DEBUG
1494 struct btrfs_root *root;
1495
1496 while (!list_empty(&fs_info->allocated_roots)) {
1497 root = list_first_entry(&fs_info->allocated_roots,
1498 struct btrfs_root, leak_list);
1499 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1500 root->root_key.objectid, root->root_key.offset,
1501 refcount_read(&root->refs));
1502 while (refcount_read(&root->refs) > 1)
1503 btrfs_put_root(root);
1504 btrfs_put_root(root);
1505 }
1506 #endif
1507 }
1508
1509 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1510 {
1511 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1512 percpu_counter_destroy(&fs_info->delalloc_bytes);
1513 percpu_counter_destroy(&fs_info->dio_bytes);
1514 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1515 btrfs_free_csum_hash(fs_info);
1516 btrfs_free_stripe_hash_table(fs_info);
1517 btrfs_free_ref_cache(fs_info);
1518 kfree(fs_info->balance_ctl);
1519 kfree(fs_info->delayed_root);
1520 btrfs_put_root(fs_info->extent_root);
1521 btrfs_put_root(fs_info->tree_root);
1522 btrfs_put_root(fs_info->chunk_root);
1523 btrfs_put_root(fs_info->dev_root);
1524 btrfs_put_root(fs_info->csum_root);
1525 btrfs_put_root(fs_info->quota_root);
1526 btrfs_put_root(fs_info->uuid_root);
1527 btrfs_put_root(fs_info->free_space_root);
1528 btrfs_put_root(fs_info->fs_root);
1529 btrfs_check_leaked_roots(fs_info);
1530 btrfs_extent_buffer_leak_debug_check(fs_info);
1531 kfree(fs_info->super_copy);
1532 kfree(fs_info->super_for_commit);
1533 kvfree(fs_info);
1534 }
1535
1536
1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1538 struct btrfs_key *location,
1539 bool check_ref)
1540 {
1541 struct btrfs_root *root;
1542 struct btrfs_path *path;
1543 struct btrfs_key key;
1544 int ret;
1545
1546 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1547 return btrfs_grab_root(fs_info->tree_root);
1548 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1549 return btrfs_grab_root(fs_info->extent_root);
1550 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1551 return btrfs_grab_root(fs_info->chunk_root);
1552 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1553 return btrfs_grab_root(fs_info->dev_root);
1554 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1555 return btrfs_grab_root(fs_info->csum_root);
1556 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1557 return btrfs_grab_root(fs_info->quota_root) ?
1558 fs_info->quota_root : ERR_PTR(-ENOENT);
1559 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1560 return btrfs_grab_root(fs_info->uuid_root) ?
1561 fs_info->uuid_root : ERR_PTR(-ENOENT);
1562 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1563 return btrfs_grab_root(fs_info->free_space_root) ?
1564 fs_info->free_space_root : ERR_PTR(-ENOENT);
1565 again:
1566 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1567 if (root) {
1568 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1569 btrfs_put_root(root);
1570 return ERR_PTR(-ENOENT);
1571 }
1572 return root;
1573 }
1574
1575 root = btrfs_read_tree_root(fs_info->tree_root, location);
1576 if (IS_ERR(root))
1577 return root;
1578
1579 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1580 ret = -ENOENT;
1581 goto fail;
1582 }
1583
1584 ret = btrfs_init_fs_root(root);
1585 if (ret)
1586 goto fail;
1587
1588 path = btrfs_alloc_path();
1589 if (!path) {
1590 ret = -ENOMEM;
1591 goto fail;
1592 }
1593 key.objectid = BTRFS_ORPHAN_OBJECTID;
1594 key.type = BTRFS_ORPHAN_ITEM_KEY;
1595 key.offset = location->objectid;
1596
1597 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1598 btrfs_free_path(path);
1599 if (ret < 0)
1600 goto fail;
1601 if (ret == 0)
1602 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1603
1604 ret = btrfs_insert_fs_root(fs_info, root);
1605 if (ret) {
1606 btrfs_put_root(root);
1607 if (ret == -EEXIST)
1608 goto again;
1609 goto fail;
1610 }
1611 return root;
1612 fail:
1613 btrfs_put_root(root);
1614 return ERR_PTR(ret);
1615 }
1616
1617 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1618 {
1619 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1620 int ret = 0;
1621 struct btrfs_device *device;
1622 struct backing_dev_info *bdi;
1623
1624 rcu_read_lock();
1625 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1626 if (!device->bdev)
1627 continue;
1628 bdi = device->bdev->bd_bdi;
1629 if (bdi_congested(bdi, bdi_bits)) {
1630 ret = 1;
1631 break;
1632 }
1633 }
1634 rcu_read_unlock();
1635 return ret;
1636 }
1637
1638 /*
1639 * called by the kthread helper functions to finally call the bio end_io
1640 * functions. This is where read checksum verification actually happens
1641 */
1642 static void end_workqueue_fn(struct btrfs_work *work)
1643 {
1644 struct bio *bio;
1645 struct btrfs_end_io_wq *end_io_wq;
1646
1647 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1648 bio = end_io_wq->bio;
1649
1650 bio->bi_status = end_io_wq->status;
1651 bio->bi_private = end_io_wq->private;
1652 bio->bi_end_io = end_io_wq->end_io;
1653 bio_endio(bio);
1654 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1655 }
1656
1657 static int cleaner_kthread(void *arg)
1658 {
1659 struct btrfs_root *root = arg;
1660 struct btrfs_fs_info *fs_info = root->fs_info;
1661 int again;
1662
1663 while (1) {
1664 again = 0;
1665
1666 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1667
1668 /* Make the cleaner go to sleep early. */
1669 if (btrfs_need_cleaner_sleep(fs_info))
1670 goto sleep;
1671
1672 /*
1673 * Do not do anything if we might cause open_ctree() to block
1674 * before we have finished mounting the filesystem.
1675 */
1676 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1677 goto sleep;
1678
1679 if (!mutex_trylock(&fs_info->cleaner_mutex))
1680 goto sleep;
1681
1682 /*
1683 * Avoid the problem that we change the status of the fs
1684 * during the above check and trylock.
1685 */
1686 if (btrfs_need_cleaner_sleep(fs_info)) {
1687 mutex_unlock(&fs_info->cleaner_mutex);
1688 goto sleep;
1689 }
1690
1691 btrfs_run_delayed_iputs(fs_info);
1692
1693 again = btrfs_clean_one_deleted_snapshot(root);
1694 mutex_unlock(&fs_info->cleaner_mutex);
1695
1696 /*
1697 * The defragger has dealt with the R/O remount and umount,
1698 * needn't do anything special here.
1699 */
1700 btrfs_run_defrag_inodes(fs_info);
1701
1702 /*
1703 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1704 * with relocation (btrfs_relocate_chunk) and relocation
1705 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1706 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1707 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1708 * unused block groups.
1709 */
1710 btrfs_delete_unused_bgs(fs_info);
1711 sleep:
1712 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1713 if (kthread_should_park())
1714 kthread_parkme();
1715 if (kthread_should_stop())
1716 return 0;
1717 if (!again) {
1718 set_current_state(TASK_INTERRUPTIBLE);
1719 schedule();
1720 __set_current_state(TASK_RUNNING);
1721 }
1722 }
1723 }
1724
1725 static int transaction_kthread(void *arg)
1726 {
1727 struct btrfs_root *root = arg;
1728 struct btrfs_fs_info *fs_info = root->fs_info;
1729 struct btrfs_trans_handle *trans;
1730 struct btrfs_transaction *cur;
1731 u64 transid;
1732 time64_t now;
1733 unsigned long delay;
1734 bool cannot_commit;
1735
1736 do {
1737 cannot_commit = false;
1738 delay = HZ * fs_info->commit_interval;
1739 mutex_lock(&fs_info->transaction_kthread_mutex);
1740
1741 spin_lock(&fs_info->trans_lock);
1742 cur = fs_info->running_transaction;
1743 if (!cur) {
1744 spin_unlock(&fs_info->trans_lock);
1745 goto sleep;
1746 }
1747
1748 now = ktime_get_seconds();
1749 if (cur->state < TRANS_STATE_COMMIT_START &&
1750 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1751 (now < cur->start_time ||
1752 now - cur->start_time < fs_info->commit_interval)) {
1753 spin_unlock(&fs_info->trans_lock);
1754 delay = HZ * 5;
1755 goto sleep;
1756 }
1757 transid = cur->transid;
1758 spin_unlock(&fs_info->trans_lock);
1759
1760 /* If the file system is aborted, this will always fail. */
1761 trans = btrfs_attach_transaction(root);
1762 if (IS_ERR(trans)) {
1763 if (PTR_ERR(trans) != -ENOENT)
1764 cannot_commit = true;
1765 goto sleep;
1766 }
1767 if (transid == trans->transid) {
1768 btrfs_commit_transaction(trans);
1769 } else {
1770 btrfs_end_transaction(trans);
1771 }
1772 sleep:
1773 wake_up_process(fs_info->cleaner_kthread);
1774 mutex_unlock(&fs_info->transaction_kthread_mutex);
1775
1776 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1777 &fs_info->fs_state)))
1778 btrfs_cleanup_transaction(fs_info);
1779 if (!kthread_should_stop() &&
1780 (!btrfs_transaction_blocked(fs_info) ||
1781 cannot_commit))
1782 schedule_timeout_interruptible(delay);
1783 } while (!kthread_should_stop());
1784 return 0;
1785 }
1786
1787 /*
1788 * This will find the highest generation in the array of root backups. The
1789 * index of the highest array is returned, or -EINVAL if we can't find
1790 * anything.
1791 *
1792 * We check to make sure the array is valid by comparing the
1793 * generation of the latest root in the array with the generation
1794 * in the super block. If they don't match we pitch it.
1795 */
1796 static int find_newest_super_backup(struct btrfs_fs_info *info)
1797 {
1798 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1799 u64 cur;
1800 struct btrfs_root_backup *root_backup;
1801 int i;
1802
1803 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1804 root_backup = info->super_copy->super_roots + i;
1805 cur = btrfs_backup_tree_root_gen(root_backup);
1806 if (cur == newest_gen)
1807 return i;
1808 }
1809
1810 return -EINVAL;
1811 }
1812
1813 /*
1814 * copy all the root pointers into the super backup array.
1815 * this will bump the backup pointer by one when it is
1816 * done
1817 */
1818 static void backup_super_roots(struct btrfs_fs_info *info)
1819 {
1820 const int next_backup = info->backup_root_index;
1821 struct btrfs_root_backup *root_backup;
1822
1823 root_backup = info->super_for_commit->super_roots + next_backup;
1824
1825 /*
1826 * make sure all of our padding and empty slots get zero filled
1827 * regardless of which ones we use today
1828 */
1829 memset(root_backup, 0, sizeof(*root_backup));
1830
1831 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1832
1833 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1834 btrfs_set_backup_tree_root_gen(root_backup,
1835 btrfs_header_generation(info->tree_root->node));
1836
1837 btrfs_set_backup_tree_root_level(root_backup,
1838 btrfs_header_level(info->tree_root->node));
1839
1840 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1841 btrfs_set_backup_chunk_root_gen(root_backup,
1842 btrfs_header_generation(info->chunk_root->node));
1843 btrfs_set_backup_chunk_root_level(root_backup,
1844 btrfs_header_level(info->chunk_root->node));
1845
1846 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1847 btrfs_set_backup_extent_root_gen(root_backup,
1848 btrfs_header_generation(info->extent_root->node));
1849 btrfs_set_backup_extent_root_level(root_backup,
1850 btrfs_header_level(info->extent_root->node));
1851
1852 /*
1853 * we might commit during log recovery, which happens before we set
1854 * the fs_root. Make sure it is valid before we fill it in.
1855 */
1856 if (info->fs_root && info->fs_root->node) {
1857 btrfs_set_backup_fs_root(root_backup,
1858 info->fs_root->node->start);
1859 btrfs_set_backup_fs_root_gen(root_backup,
1860 btrfs_header_generation(info->fs_root->node));
1861 btrfs_set_backup_fs_root_level(root_backup,
1862 btrfs_header_level(info->fs_root->node));
1863 }
1864
1865 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1866 btrfs_set_backup_dev_root_gen(root_backup,
1867 btrfs_header_generation(info->dev_root->node));
1868 btrfs_set_backup_dev_root_level(root_backup,
1869 btrfs_header_level(info->dev_root->node));
1870
1871 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1872 btrfs_set_backup_csum_root_gen(root_backup,
1873 btrfs_header_generation(info->csum_root->node));
1874 btrfs_set_backup_csum_root_level(root_backup,
1875 btrfs_header_level(info->csum_root->node));
1876
1877 btrfs_set_backup_total_bytes(root_backup,
1878 btrfs_super_total_bytes(info->super_copy));
1879 btrfs_set_backup_bytes_used(root_backup,
1880 btrfs_super_bytes_used(info->super_copy));
1881 btrfs_set_backup_num_devices(root_backup,
1882 btrfs_super_num_devices(info->super_copy));
1883
1884 /*
1885 * if we don't copy this out to the super_copy, it won't get remembered
1886 * for the next commit
1887 */
1888 memcpy(&info->super_copy->super_roots,
1889 &info->super_for_commit->super_roots,
1890 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1891 }
1892
1893 /*
1894 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1895 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1896 *
1897 * fs_info - filesystem whose backup roots need to be read
1898 * priority - priority of backup root required
1899 *
1900 * Returns backup root index on success and -EINVAL otherwise.
1901 */
1902 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1903 {
1904 int backup_index = find_newest_super_backup(fs_info);
1905 struct btrfs_super_block *super = fs_info->super_copy;
1906 struct btrfs_root_backup *root_backup;
1907
1908 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1909 if (priority == 0)
1910 return backup_index;
1911
1912 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1913 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1914 } else {
1915 return -EINVAL;
1916 }
1917
1918 root_backup = super->super_roots + backup_index;
1919
1920 btrfs_set_super_generation(super,
1921 btrfs_backup_tree_root_gen(root_backup));
1922 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1923 btrfs_set_super_root_level(super,
1924 btrfs_backup_tree_root_level(root_backup));
1925 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1926
1927 /*
1928 * Fixme: the total bytes and num_devices need to match or we should
1929 * need a fsck
1930 */
1931 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1932 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1933
1934 return backup_index;
1935 }
1936
1937 /* helper to cleanup workers */
1938 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1939 {
1940 btrfs_destroy_workqueue(fs_info->fixup_workers);
1941 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1942 btrfs_destroy_workqueue(fs_info->workers);
1943 btrfs_destroy_workqueue(fs_info->endio_workers);
1944 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1945 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
1946 btrfs_destroy_workqueue(fs_info->rmw_workers);
1947 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1948 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1949 btrfs_destroy_workqueue(fs_info->delayed_workers);
1950 btrfs_destroy_workqueue(fs_info->caching_workers);
1951 btrfs_destroy_workqueue(fs_info->readahead_workers);
1952 btrfs_destroy_workqueue(fs_info->flush_workers);
1953 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1954 if (fs_info->discard_ctl.discard_workers)
1955 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1956 /*
1957 * Now that all other work queues are destroyed, we can safely destroy
1958 * the queues used for metadata I/O, since tasks from those other work
1959 * queues can do metadata I/O operations.
1960 */
1961 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1962 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1963 }
1964
1965 static void free_root_extent_buffers(struct btrfs_root *root)
1966 {
1967 if (root) {
1968 free_extent_buffer(root->node);
1969 free_extent_buffer(root->commit_root);
1970 root->node = NULL;
1971 root->commit_root = NULL;
1972 }
1973 }
1974
1975 /* helper to cleanup tree roots */
1976 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1977 {
1978 free_root_extent_buffers(info->tree_root);
1979
1980 free_root_extent_buffers(info->dev_root);
1981 free_root_extent_buffers(info->extent_root);
1982 free_root_extent_buffers(info->csum_root);
1983 free_root_extent_buffers(info->quota_root);
1984 free_root_extent_buffers(info->uuid_root);
1985 free_root_extent_buffers(info->fs_root);
1986 if (free_chunk_root)
1987 free_root_extent_buffers(info->chunk_root);
1988 free_root_extent_buffers(info->free_space_root);
1989 }
1990
1991 void btrfs_put_root(struct btrfs_root *root)
1992 {
1993 if (!root)
1994 return;
1995
1996 if (refcount_dec_and_test(&root->refs)) {
1997 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1998 if (root->anon_dev)
1999 free_anon_bdev(root->anon_dev);
2000 btrfs_drew_lock_destroy(&root->snapshot_lock);
2001 free_extent_buffer(root->node);
2002 free_extent_buffer(root->commit_root);
2003 kfree(root->free_ino_ctl);
2004 kfree(root->free_ino_pinned);
2005 #ifdef CONFIG_BTRFS_DEBUG
2006 spin_lock(&root->fs_info->fs_roots_radix_lock);
2007 list_del_init(&root->leak_list);
2008 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2009 #endif
2010 kfree(root);
2011 }
2012 }
2013
2014 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2015 {
2016 int ret;
2017 struct btrfs_root *gang[8];
2018 int i;
2019
2020 while (!list_empty(&fs_info->dead_roots)) {
2021 gang[0] = list_entry(fs_info->dead_roots.next,
2022 struct btrfs_root, root_list);
2023 list_del(&gang[0]->root_list);
2024
2025 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2026 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2027 btrfs_put_root(gang[0]);
2028 }
2029
2030 while (1) {
2031 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2032 (void **)gang, 0,
2033 ARRAY_SIZE(gang));
2034 if (!ret)
2035 break;
2036 for (i = 0; i < ret; i++)
2037 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2038 }
2039
2040 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
2041 btrfs_free_log_root_tree(NULL, fs_info);
2042 }
2043
2044 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2045 {
2046 mutex_init(&fs_info->scrub_lock);
2047 atomic_set(&fs_info->scrubs_running, 0);
2048 atomic_set(&fs_info->scrub_pause_req, 0);
2049 atomic_set(&fs_info->scrubs_paused, 0);
2050 atomic_set(&fs_info->scrub_cancel_req, 0);
2051 init_waitqueue_head(&fs_info->scrub_pause_wait);
2052 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2053 }
2054
2055 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2056 {
2057 spin_lock_init(&fs_info->balance_lock);
2058 mutex_init(&fs_info->balance_mutex);
2059 atomic_set(&fs_info->balance_pause_req, 0);
2060 atomic_set(&fs_info->balance_cancel_req, 0);
2061 fs_info->balance_ctl = NULL;
2062 init_waitqueue_head(&fs_info->balance_wait_q);
2063 }
2064
2065 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2066 {
2067 struct inode *inode = fs_info->btree_inode;
2068
2069 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2070 set_nlink(inode, 1);
2071 /*
2072 * we set the i_size on the btree inode to the max possible int.
2073 * the real end of the address space is determined by all of
2074 * the devices in the system
2075 */
2076 inode->i_size = OFFSET_MAX;
2077 inode->i_mapping->a_ops = &btree_aops;
2078
2079 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2080 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2081 IO_TREE_INODE_IO, inode);
2082 BTRFS_I(inode)->io_tree.track_uptodate = false;
2083 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2084
2085 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2086
2087 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2088 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2089 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2090 btrfs_insert_inode_hash(inode);
2091 }
2092
2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2094 {
2095 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2096 init_rwsem(&fs_info->dev_replace.rwsem);
2097 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2098 }
2099
2100 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2101 {
2102 spin_lock_init(&fs_info->qgroup_lock);
2103 mutex_init(&fs_info->qgroup_ioctl_lock);
2104 fs_info->qgroup_tree = RB_ROOT;
2105 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2106 fs_info->qgroup_seq = 1;
2107 fs_info->qgroup_ulist = NULL;
2108 fs_info->qgroup_rescan_running = false;
2109 mutex_init(&fs_info->qgroup_rescan_lock);
2110 }
2111
2112 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2113 struct btrfs_fs_devices *fs_devices)
2114 {
2115 u32 max_active = fs_info->thread_pool_size;
2116 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2117
2118 fs_info->workers =
2119 btrfs_alloc_workqueue(fs_info, "worker",
2120 flags | WQ_HIGHPRI, max_active, 16);
2121
2122 fs_info->delalloc_workers =
2123 btrfs_alloc_workqueue(fs_info, "delalloc",
2124 flags, max_active, 2);
2125
2126 fs_info->flush_workers =
2127 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2128 flags, max_active, 0);
2129
2130 fs_info->caching_workers =
2131 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2132
2133 fs_info->fixup_workers =
2134 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2135
2136 /*
2137 * endios are largely parallel and should have a very
2138 * low idle thresh
2139 */
2140 fs_info->endio_workers =
2141 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2142 fs_info->endio_meta_workers =
2143 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2144 max_active, 4);
2145 fs_info->endio_meta_write_workers =
2146 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2147 max_active, 2);
2148 fs_info->endio_raid56_workers =
2149 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2150 max_active, 4);
2151 fs_info->endio_repair_workers =
2152 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2153 fs_info->rmw_workers =
2154 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2155 fs_info->endio_write_workers =
2156 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2157 max_active, 2);
2158 fs_info->endio_freespace_worker =
2159 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2160 max_active, 0);
2161 fs_info->delayed_workers =
2162 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2163 max_active, 0);
2164 fs_info->readahead_workers =
2165 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2166 max_active, 2);
2167 fs_info->qgroup_rescan_workers =
2168 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2169 fs_info->discard_ctl.discard_workers =
2170 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2171
2172 if (!(fs_info->workers && fs_info->delalloc_workers &&
2173 fs_info->flush_workers &&
2174 fs_info->endio_workers && fs_info->endio_meta_workers &&
2175 fs_info->endio_meta_write_workers &&
2176 fs_info->endio_repair_workers &&
2177 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2178 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2179 fs_info->caching_workers && fs_info->readahead_workers &&
2180 fs_info->fixup_workers && fs_info->delayed_workers &&
2181 fs_info->qgroup_rescan_workers &&
2182 fs_info->discard_ctl.discard_workers)) {
2183 return -ENOMEM;
2184 }
2185
2186 return 0;
2187 }
2188
2189 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2190 {
2191 struct crypto_shash *csum_shash;
2192 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2193
2194 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2195
2196 if (IS_ERR(csum_shash)) {
2197 btrfs_err(fs_info, "error allocating %s hash for checksum",
2198 csum_driver);
2199 return PTR_ERR(csum_shash);
2200 }
2201
2202 fs_info->csum_shash = csum_shash;
2203
2204 return 0;
2205 }
2206
2207 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2208 struct btrfs_fs_devices *fs_devices)
2209 {
2210 int ret;
2211 struct btrfs_root *log_tree_root;
2212 struct btrfs_super_block *disk_super = fs_info->super_copy;
2213 u64 bytenr = btrfs_super_log_root(disk_super);
2214 int level = btrfs_super_log_root_level(disk_super);
2215
2216 if (fs_devices->rw_devices == 0) {
2217 btrfs_warn(fs_info, "log replay required on RO media");
2218 return -EIO;
2219 }
2220
2221 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2222 GFP_KERNEL);
2223 if (!log_tree_root)
2224 return -ENOMEM;
2225
2226 log_tree_root->node = read_tree_block(fs_info, bytenr,
2227 fs_info->generation + 1,
2228 level, NULL);
2229 if (IS_ERR(log_tree_root->node)) {
2230 btrfs_warn(fs_info, "failed to read log tree");
2231 ret = PTR_ERR(log_tree_root->node);
2232 log_tree_root->node = NULL;
2233 btrfs_put_root(log_tree_root);
2234 return ret;
2235 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2236 btrfs_err(fs_info, "failed to read log tree");
2237 btrfs_put_root(log_tree_root);
2238 return -EIO;
2239 }
2240 /* returns with log_tree_root freed on success */
2241 ret = btrfs_recover_log_trees(log_tree_root);
2242 if (ret) {
2243 btrfs_handle_fs_error(fs_info, ret,
2244 "Failed to recover log tree");
2245 btrfs_put_root(log_tree_root);
2246 return ret;
2247 }
2248
2249 if (sb_rdonly(fs_info->sb)) {
2250 ret = btrfs_commit_super(fs_info);
2251 if (ret)
2252 return ret;
2253 }
2254
2255 return 0;
2256 }
2257
2258 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2259 {
2260 struct btrfs_root *tree_root = fs_info->tree_root;
2261 struct btrfs_root *root;
2262 struct btrfs_key location;
2263 int ret;
2264
2265 BUG_ON(!fs_info->tree_root);
2266
2267 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2268 location.type = BTRFS_ROOT_ITEM_KEY;
2269 location.offset = 0;
2270
2271 root = btrfs_read_tree_root(tree_root, &location);
2272 if (IS_ERR(root)) {
2273 ret = PTR_ERR(root);
2274 goto out;
2275 }
2276 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2277 fs_info->extent_root = root;
2278
2279 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2280 root = btrfs_read_tree_root(tree_root, &location);
2281 if (IS_ERR(root)) {
2282 ret = PTR_ERR(root);
2283 goto out;
2284 }
2285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2286 fs_info->dev_root = root;
2287 btrfs_init_devices_late(fs_info);
2288
2289 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2290 root = btrfs_read_tree_root(tree_root, &location);
2291 if (IS_ERR(root)) {
2292 ret = PTR_ERR(root);
2293 goto out;
2294 }
2295 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2296 fs_info->csum_root = root;
2297
2298 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2299 root = btrfs_read_tree_root(tree_root, &location);
2300 if (!IS_ERR(root)) {
2301 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2302 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2303 fs_info->quota_root = root;
2304 }
2305
2306 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2307 root = btrfs_read_tree_root(tree_root, &location);
2308 if (IS_ERR(root)) {
2309 ret = PTR_ERR(root);
2310 if (ret != -ENOENT)
2311 goto out;
2312 } else {
2313 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2314 fs_info->uuid_root = root;
2315 }
2316
2317 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2318 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2319 root = btrfs_read_tree_root(tree_root, &location);
2320 if (IS_ERR(root)) {
2321 ret = PTR_ERR(root);
2322 goto out;
2323 }
2324 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2325 fs_info->free_space_root = root;
2326 }
2327
2328 return 0;
2329 out:
2330 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2331 location.objectid, ret);
2332 return ret;
2333 }
2334
2335 /*
2336 * Real super block validation
2337 * NOTE: super csum type and incompat features will not be checked here.
2338 *
2339 * @sb: super block to check
2340 * @mirror_num: the super block number to check its bytenr:
2341 * 0 the primary (1st) sb
2342 * 1, 2 2nd and 3rd backup copy
2343 * -1 skip bytenr check
2344 */
2345 static int validate_super(struct btrfs_fs_info *fs_info,
2346 struct btrfs_super_block *sb, int mirror_num)
2347 {
2348 u64 nodesize = btrfs_super_nodesize(sb);
2349 u64 sectorsize = btrfs_super_sectorsize(sb);
2350 int ret = 0;
2351
2352 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2353 btrfs_err(fs_info, "no valid FS found");
2354 ret = -EINVAL;
2355 }
2356 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2357 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2358 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2359 ret = -EINVAL;
2360 }
2361 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2362 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2363 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2364 ret = -EINVAL;
2365 }
2366 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2367 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2368 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2369 ret = -EINVAL;
2370 }
2371 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2373 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2374 ret = -EINVAL;
2375 }
2376
2377 /*
2378 * Check sectorsize and nodesize first, other check will need it.
2379 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2380 */
2381 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2382 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2383 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2384 ret = -EINVAL;
2385 }
2386 /* Only PAGE SIZE is supported yet */
2387 if (sectorsize != PAGE_SIZE) {
2388 btrfs_err(fs_info,
2389 "sectorsize %llu not supported yet, only support %lu",
2390 sectorsize, PAGE_SIZE);
2391 ret = -EINVAL;
2392 }
2393 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2394 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2395 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2396 ret = -EINVAL;
2397 }
2398 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2399 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2400 le32_to_cpu(sb->__unused_leafsize), nodesize);
2401 ret = -EINVAL;
2402 }
2403
2404 /* Root alignment check */
2405 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2406 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2407 btrfs_super_root(sb));
2408 ret = -EINVAL;
2409 }
2410 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2411 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2412 btrfs_super_chunk_root(sb));
2413 ret = -EINVAL;
2414 }
2415 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2416 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2417 btrfs_super_log_root(sb));
2418 ret = -EINVAL;
2419 }
2420
2421 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2422 BTRFS_FSID_SIZE) != 0) {
2423 btrfs_err(fs_info,
2424 "dev_item UUID does not match metadata fsid: %pU != %pU",
2425 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2426 ret = -EINVAL;
2427 }
2428
2429 /*
2430 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2431 * done later
2432 */
2433 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2434 btrfs_err(fs_info, "bytes_used is too small %llu",
2435 btrfs_super_bytes_used(sb));
2436 ret = -EINVAL;
2437 }
2438 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2439 btrfs_err(fs_info, "invalid stripesize %u",
2440 btrfs_super_stripesize(sb));
2441 ret = -EINVAL;
2442 }
2443 if (btrfs_super_num_devices(sb) > (1UL << 31))
2444 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2445 btrfs_super_num_devices(sb));
2446 if (btrfs_super_num_devices(sb) == 0) {
2447 btrfs_err(fs_info, "number of devices is 0");
2448 ret = -EINVAL;
2449 }
2450
2451 if (mirror_num >= 0 &&
2452 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2453 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2454 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2455 ret = -EINVAL;
2456 }
2457
2458 /*
2459 * Obvious sys_chunk_array corruptions, it must hold at least one key
2460 * and one chunk
2461 */
2462 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2463 btrfs_err(fs_info, "system chunk array too big %u > %u",
2464 btrfs_super_sys_array_size(sb),
2465 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2466 ret = -EINVAL;
2467 }
2468 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2469 + sizeof(struct btrfs_chunk)) {
2470 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2471 btrfs_super_sys_array_size(sb),
2472 sizeof(struct btrfs_disk_key)
2473 + sizeof(struct btrfs_chunk));
2474 ret = -EINVAL;
2475 }
2476
2477 /*
2478 * The generation is a global counter, we'll trust it more than the others
2479 * but it's still possible that it's the one that's wrong.
2480 */
2481 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2482 btrfs_warn(fs_info,
2483 "suspicious: generation < chunk_root_generation: %llu < %llu",
2484 btrfs_super_generation(sb),
2485 btrfs_super_chunk_root_generation(sb));
2486 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2487 && btrfs_super_cache_generation(sb) != (u64)-1)
2488 btrfs_warn(fs_info,
2489 "suspicious: generation < cache_generation: %llu < %llu",
2490 btrfs_super_generation(sb),
2491 btrfs_super_cache_generation(sb));
2492
2493 return ret;
2494 }
2495
2496 /*
2497 * Validation of super block at mount time.
2498 * Some checks already done early at mount time, like csum type and incompat
2499 * flags will be skipped.
2500 */
2501 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2502 {
2503 return validate_super(fs_info, fs_info->super_copy, 0);
2504 }
2505
2506 /*
2507 * Validation of super block at write time.
2508 * Some checks like bytenr check will be skipped as their values will be
2509 * overwritten soon.
2510 * Extra checks like csum type and incompat flags will be done here.
2511 */
2512 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2513 struct btrfs_super_block *sb)
2514 {
2515 int ret;
2516
2517 ret = validate_super(fs_info, sb, -1);
2518 if (ret < 0)
2519 goto out;
2520 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2521 ret = -EUCLEAN;
2522 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2523 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2524 goto out;
2525 }
2526 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2527 ret = -EUCLEAN;
2528 btrfs_err(fs_info,
2529 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2530 btrfs_super_incompat_flags(sb),
2531 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2532 goto out;
2533 }
2534 out:
2535 if (ret < 0)
2536 btrfs_err(fs_info,
2537 "super block corruption detected before writing it to disk");
2538 return ret;
2539 }
2540
2541 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2542 {
2543 int backup_index = find_newest_super_backup(fs_info);
2544 struct btrfs_super_block *sb = fs_info->super_copy;
2545 struct btrfs_root *tree_root = fs_info->tree_root;
2546 bool handle_error = false;
2547 int ret = 0;
2548 int i;
2549
2550 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2551 u64 generation;
2552 int level;
2553
2554 if (handle_error) {
2555 if (!IS_ERR(tree_root->node))
2556 free_extent_buffer(tree_root->node);
2557 tree_root->node = NULL;
2558
2559 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2560 break;
2561
2562 free_root_pointers(fs_info, 0);
2563
2564 /*
2565 * Don't use the log in recovery mode, it won't be
2566 * valid
2567 */
2568 btrfs_set_super_log_root(sb, 0);
2569
2570 /* We can't trust the free space cache either */
2571 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2572
2573 ret = read_backup_root(fs_info, i);
2574 backup_index = ret;
2575 if (ret < 0)
2576 return ret;
2577 }
2578 generation = btrfs_super_generation(sb);
2579 level = btrfs_super_root_level(sb);
2580 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2581 generation, level, NULL);
2582 if (IS_ERR(tree_root->node) ||
2583 !extent_buffer_uptodate(tree_root->node)) {
2584 handle_error = true;
2585
2586 if (IS_ERR(tree_root->node))
2587 ret = PTR_ERR(tree_root->node);
2588 else if (!extent_buffer_uptodate(tree_root->node))
2589 ret = -EUCLEAN;
2590
2591 btrfs_warn(fs_info, "failed to read tree root");
2592 continue;
2593 }
2594
2595 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2596 tree_root->commit_root = btrfs_root_node(tree_root);
2597 btrfs_set_root_refs(&tree_root->root_item, 1);
2598
2599 /*
2600 * No need to hold btrfs_root::objectid_mutex since the fs
2601 * hasn't been fully initialised and we are the only user
2602 */
2603 ret = btrfs_find_highest_objectid(tree_root,
2604 &tree_root->highest_objectid);
2605 if (ret < 0) {
2606 handle_error = true;
2607 continue;
2608 }
2609
2610 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2611
2612 ret = btrfs_read_roots(fs_info);
2613 if (ret < 0) {
2614 handle_error = true;
2615 continue;
2616 }
2617
2618 /* All successful */
2619 fs_info->generation = generation;
2620 fs_info->last_trans_committed = generation;
2621
2622 /* Always begin writing backup roots after the one being used */
2623 if (backup_index < 0) {
2624 fs_info->backup_root_index = 0;
2625 } else {
2626 fs_info->backup_root_index = backup_index + 1;
2627 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2628 }
2629 break;
2630 }
2631
2632 return ret;
2633 }
2634
2635 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2636 {
2637 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2638 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2639 INIT_LIST_HEAD(&fs_info->trans_list);
2640 INIT_LIST_HEAD(&fs_info->dead_roots);
2641 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2642 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2643 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2644 spin_lock_init(&fs_info->delalloc_root_lock);
2645 spin_lock_init(&fs_info->trans_lock);
2646 spin_lock_init(&fs_info->fs_roots_radix_lock);
2647 spin_lock_init(&fs_info->delayed_iput_lock);
2648 spin_lock_init(&fs_info->defrag_inodes_lock);
2649 spin_lock_init(&fs_info->super_lock);
2650 spin_lock_init(&fs_info->buffer_lock);
2651 spin_lock_init(&fs_info->unused_bgs_lock);
2652 rwlock_init(&fs_info->tree_mod_log_lock);
2653 mutex_init(&fs_info->unused_bg_unpin_mutex);
2654 mutex_init(&fs_info->delete_unused_bgs_mutex);
2655 mutex_init(&fs_info->reloc_mutex);
2656 mutex_init(&fs_info->delalloc_root_mutex);
2657 seqlock_init(&fs_info->profiles_lock);
2658
2659 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2660 INIT_LIST_HEAD(&fs_info->space_info);
2661 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2662 INIT_LIST_HEAD(&fs_info->unused_bgs);
2663 #ifdef CONFIG_BTRFS_DEBUG
2664 INIT_LIST_HEAD(&fs_info->allocated_roots);
2665 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2666 spin_lock_init(&fs_info->eb_leak_lock);
2667 #endif
2668 extent_map_tree_init(&fs_info->mapping_tree);
2669 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2670 BTRFS_BLOCK_RSV_GLOBAL);
2671 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2672 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2673 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2674 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2675 BTRFS_BLOCK_RSV_DELOPS);
2676 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2677 BTRFS_BLOCK_RSV_DELREFS);
2678
2679 atomic_set(&fs_info->async_delalloc_pages, 0);
2680 atomic_set(&fs_info->defrag_running, 0);
2681 atomic_set(&fs_info->reada_works_cnt, 0);
2682 atomic_set(&fs_info->nr_delayed_iputs, 0);
2683 atomic64_set(&fs_info->tree_mod_seq, 0);
2684 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2685 fs_info->metadata_ratio = 0;
2686 fs_info->defrag_inodes = RB_ROOT;
2687 atomic64_set(&fs_info->free_chunk_space, 0);
2688 fs_info->tree_mod_log = RB_ROOT;
2689 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2690 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2691 /* readahead state */
2692 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2693 spin_lock_init(&fs_info->reada_lock);
2694 btrfs_init_ref_verify(fs_info);
2695
2696 fs_info->thread_pool_size = min_t(unsigned long,
2697 num_online_cpus() + 2, 8);
2698
2699 INIT_LIST_HEAD(&fs_info->ordered_roots);
2700 spin_lock_init(&fs_info->ordered_root_lock);
2701
2702 btrfs_init_scrub(fs_info);
2703 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2704 fs_info->check_integrity_print_mask = 0;
2705 #endif
2706 btrfs_init_balance(fs_info);
2707 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2708
2709 spin_lock_init(&fs_info->block_group_cache_lock);
2710 fs_info->block_group_cache_tree = RB_ROOT;
2711 fs_info->first_logical_byte = (u64)-1;
2712
2713 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2714 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2715 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2716
2717 mutex_init(&fs_info->ordered_operations_mutex);
2718 mutex_init(&fs_info->tree_log_mutex);
2719 mutex_init(&fs_info->chunk_mutex);
2720 mutex_init(&fs_info->transaction_kthread_mutex);
2721 mutex_init(&fs_info->cleaner_mutex);
2722 mutex_init(&fs_info->ro_block_group_mutex);
2723 init_rwsem(&fs_info->commit_root_sem);
2724 init_rwsem(&fs_info->cleanup_work_sem);
2725 init_rwsem(&fs_info->subvol_sem);
2726 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2727
2728 btrfs_init_dev_replace_locks(fs_info);
2729 btrfs_init_qgroup(fs_info);
2730 btrfs_discard_init(fs_info);
2731
2732 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2733 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2734
2735 init_waitqueue_head(&fs_info->transaction_throttle);
2736 init_waitqueue_head(&fs_info->transaction_wait);
2737 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2738 init_waitqueue_head(&fs_info->async_submit_wait);
2739 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2740
2741 /* Usable values until the real ones are cached from the superblock */
2742 fs_info->nodesize = 4096;
2743 fs_info->sectorsize = 4096;
2744 fs_info->stripesize = 4096;
2745
2746 spin_lock_init(&fs_info->swapfile_pins_lock);
2747 fs_info->swapfile_pins = RB_ROOT;
2748
2749 fs_info->send_in_progress = 0;
2750 }
2751
2752 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2753 {
2754 int ret;
2755
2756 fs_info->sb = sb;
2757 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2758 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2759
2760 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2761 if (ret)
2762 return ret;
2763
2764 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2765 if (ret)
2766 return ret;
2767
2768 fs_info->dirty_metadata_batch = PAGE_SIZE *
2769 (1 + ilog2(nr_cpu_ids));
2770
2771 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2772 if (ret)
2773 return ret;
2774
2775 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2776 GFP_KERNEL);
2777 if (ret)
2778 return ret;
2779
2780 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2781 GFP_KERNEL);
2782 if (!fs_info->delayed_root)
2783 return -ENOMEM;
2784 btrfs_init_delayed_root(fs_info->delayed_root);
2785
2786 return btrfs_alloc_stripe_hash_table(fs_info);
2787 }
2788
2789 static int btrfs_uuid_rescan_kthread(void *data)
2790 {
2791 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2792 int ret;
2793
2794 /*
2795 * 1st step is to iterate through the existing UUID tree and
2796 * to delete all entries that contain outdated data.
2797 * 2nd step is to add all missing entries to the UUID tree.
2798 */
2799 ret = btrfs_uuid_tree_iterate(fs_info);
2800 if (ret < 0) {
2801 if (ret != -EINTR)
2802 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2803 ret);
2804 up(&fs_info->uuid_tree_rescan_sem);
2805 return ret;
2806 }
2807 return btrfs_uuid_scan_kthread(data);
2808 }
2809
2810 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2811 {
2812 struct task_struct *task;
2813
2814 down(&fs_info->uuid_tree_rescan_sem);
2815 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2816 if (IS_ERR(task)) {
2817 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2818 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2819 up(&fs_info->uuid_tree_rescan_sem);
2820 return PTR_ERR(task);
2821 }
2822
2823 return 0;
2824 }
2825
2826 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2827 char *options)
2828 {
2829 u32 sectorsize;
2830 u32 nodesize;
2831 u32 stripesize;
2832 u64 generation;
2833 u64 features;
2834 u16 csum_type;
2835 struct btrfs_key location;
2836 struct btrfs_super_block *disk_super;
2837 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2838 struct btrfs_root *tree_root;
2839 struct btrfs_root *chunk_root;
2840 int ret;
2841 int err = -EINVAL;
2842 int clear_free_space_tree = 0;
2843 int level;
2844
2845 ret = init_mount_fs_info(fs_info, sb);
2846 if (ret) {
2847 err = ret;
2848 goto fail;
2849 }
2850
2851 /* These need to be init'ed before we start creating inodes and such. */
2852 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2853 GFP_KERNEL);
2854 fs_info->tree_root = tree_root;
2855 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2856 GFP_KERNEL);
2857 fs_info->chunk_root = chunk_root;
2858 if (!tree_root || !chunk_root) {
2859 err = -ENOMEM;
2860 goto fail;
2861 }
2862
2863 fs_info->btree_inode = new_inode(sb);
2864 if (!fs_info->btree_inode) {
2865 err = -ENOMEM;
2866 goto fail;
2867 }
2868 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2869 btrfs_init_btree_inode(fs_info);
2870
2871 invalidate_bdev(fs_devices->latest_bdev);
2872
2873 /*
2874 * Read super block and check the signature bytes only
2875 */
2876 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2877 if (IS_ERR(disk_super)) {
2878 err = PTR_ERR(disk_super);
2879 goto fail_alloc;
2880 }
2881
2882 /*
2883 * Verify the type first, if that or the the checksum value are
2884 * corrupted, we'll find out
2885 */
2886 csum_type = btrfs_super_csum_type(disk_super);
2887 if (!btrfs_supported_super_csum(csum_type)) {
2888 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2889 csum_type);
2890 err = -EINVAL;
2891 btrfs_release_disk_super(disk_super);
2892 goto fail_alloc;
2893 }
2894
2895 ret = btrfs_init_csum_hash(fs_info, csum_type);
2896 if (ret) {
2897 err = ret;
2898 btrfs_release_disk_super(disk_super);
2899 goto fail_alloc;
2900 }
2901
2902 /*
2903 * We want to check superblock checksum, the type is stored inside.
2904 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2905 */
2906 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2907 btrfs_err(fs_info, "superblock checksum mismatch");
2908 err = -EINVAL;
2909 btrfs_release_disk_super(disk_super);
2910 goto fail_alloc;
2911 }
2912
2913 /*
2914 * super_copy is zeroed at allocation time and we never touch the
2915 * following bytes up to INFO_SIZE, the checksum is calculated from
2916 * the whole block of INFO_SIZE
2917 */
2918 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2919 btrfs_release_disk_super(disk_super);
2920
2921 disk_super = fs_info->super_copy;
2922
2923 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2924 BTRFS_FSID_SIZE));
2925
2926 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2927 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2928 fs_info->super_copy->metadata_uuid,
2929 BTRFS_FSID_SIZE));
2930 }
2931
2932 features = btrfs_super_flags(disk_super);
2933 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2934 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2935 btrfs_set_super_flags(disk_super, features);
2936 btrfs_info(fs_info,
2937 "found metadata UUID change in progress flag, clearing");
2938 }
2939
2940 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2941 sizeof(*fs_info->super_for_commit));
2942
2943 ret = btrfs_validate_mount_super(fs_info);
2944 if (ret) {
2945 btrfs_err(fs_info, "superblock contains fatal errors");
2946 err = -EINVAL;
2947 goto fail_alloc;
2948 }
2949
2950 if (!btrfs_super_root(disk_super))
2951 goto fail_alloc;
2952
2953 /* check FS state, whether FS is broken. */
2954 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2955 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2956
2957 /*
2958 * In the long term, we'll store the compression type in the super
2959 * block, and it'll be used for per file compression control.
2960 */
2961 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2962
2963 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2964 if (ret) {
2965 err = ret;
2966 goto fail_alloc;
2967 }
2968
2969 features = btrfs_super_incompat_flags(disk_super) &
2970 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2971 if (features) {
2972 btrfs_err(fs_info,
2973 "cannot mount because of unsupported optional features (%llx)",
2974 features);
2975 err = -EINVAL;
2976 goto fail_alloc;
2977 }
2978
2979 features = btrfs_super_incompat_flags(disk_super);
2980 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2981 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2982 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2983 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2984 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2985
2986 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2987 btrfs_info(fs_info, "has skinny extents");
2988
2989 /*
2990 * flag our filesystem as having big metadata blocks if
2991 * they are bigger than the page size
2992 */
2993 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2994 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2995 btrfs_info(fs_info,
2996 "flagging fs with big metadata feature");
2997 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2998 }
2999
3000 nodesize = btrfs_super_nodesize(disk_super);
3001 sectorsize = btrfs_super_sectorsize(disk_super);
3002 stripesize = sectorsize;
3003 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3004 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3005
3006 /* Cache block sizes */
3007 fs_info->nodesize = nodesize;
3008 fs_info->sectorsize = sectorsize;
3009 fs_info->stripesize = stripesize;
3010
3011 /*
3012 * mixed block groups end up with duplicate but slightly offset
3013 * extent buffers for the same range. It leads to corruptions
3014 */
3015 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3016 (sectorsize != nodesize)) {
3017 btrfs_err(fs_info,
3018 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3019 nodesize, sectorsize);
3020 goto fail_alloc;
3021 }
3022
3023 /*
3024 * Needn't use the lock because there is no other task which will
3025 * update the flag.
3026 */
3027 btrfs_set_super_incompat_flags(disk_super, features);
3028
3029 features = btrfs_super_compat_ro_flags(disk_super) &
3030 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3031 if (!sb_rdonly(sb) && features) {
3032 btrfs_err(fs_info,
3033 "cannot mount read-write because of unsupported optional features (%llx)",
3034 features);
3035 err = -EINVAL;
3036 goto fail_alloc;
3037 }
3038
3039 ret = btrfs_init_workqueues(fs_info, fs_devices);
3040 if (ret) {
3041 err = ret;
3042 goto fail_sb_buffer;
3043 }
3044
3045 sb->s_bdi->congested_fn = btrfs_congested_fn;
3046 sb->s_bdi->congested_data = fs_info;
3047 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3048 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3049 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3050 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3051
3052 sb->s_blocksize = sectorsize;
3053 sb->s_blocksize_bits = blksize_bits(sectorsize);
3054 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3055
3056 mutex_lock(&fs_info->chunk_mutex);
3057 ret = btrfs_read_sys_array(fs_info);
3058 mutex_unlock(&fs_info->chunk_mutex);
3059 if (ret) {
3060 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3061 goto fail_sb_buffer;
3062 }
3063
3064 generation = btrfs_super_chunk_root_generation(disk_super);
3065 level = btrfs_super_chunk_root_level(disk_super);
3066
3067 chunk_root->node = read_tree_block(fs_info,
3068 btrfs_super_chunk_root(disk_super),
3069 generation, level, NULL);
3070 if (IS_ERR(chunk_root->node) ||
3071 !extent_buffer_uptodate(chunk_root->node)) {
3072 btrfs_err(fs_info, "failed to read chunk root");
3073 if (!IS_ERR(chunk_root->node))
3074 free_extent_buffer(chunk_root->node);
3075 chunk_root->node = NULL;
3076 goto fail_tree_roots;
3077 }
3078 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3079 chunk_root->commit_root = btrfs_root_node(chunk_root);
3080
3081 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3082 offsetof(struct btrfs_header, chunk_tree_uuid),
3083 BTRFS_UUID_SIZE);
3084
3085 ret = btrfs_read_chunk_tree(fs_info);
3086 if (ret) {
3087 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3088 goto fail_tree_roots;
3089 }
3090
3091 /*
3092 * Keep the devid that is marked to be the target device for the
3093 * device replace procedure
3094 */
3095 btrfs_free_extra_devids(fs_devices, 0);
3096
3097 if (!fs_devices->latest_bdev) {
3098 btrfs_err(fs_info, "failed to read devices");
3099 goto fail_tree_roots;
3100 }
3101
3102 ret = init_tree_roots(fs_info);
3103 if (ret)
3104 goto fail_tree_roots;
3105
3106 /*
3107 * If we have a uuid root and we're not being told to rescan we need to
3108 * check the generation here so we can set the
3109 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3110 * transaction during a balance or the log replay without updating the
3111 * uuid generation, and then if we crash we would rescan the uuid tree,
3112 * even though it was perfectly fine.
3113 */
3114 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3115 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3116 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3117
3118 ret = btrfs_verify_dev_extents(fs_info);
3119 if (ret) {
3120 btrfs_err(fs_info,
3121 "failed to verify dev extents against chunks: %d",
3122 ret);
3123 goto fail_block_groups;
3124 }
3125 ret = btrfs_recover_balance(fs_info);
3126 if (ret) {
3127 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3128 goto fail_block_groups;
3129 }
3130
3131 ret = btrfs_init_dev_stats(fs_info);
3132 if (ret) {
3133 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3134 goto fail_block_groups;
3135 }
3136
3137 ret = btrfs_init_dev_replace(fs_info);
3138 if (ret) {
3139 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3140 goto fail_block_groups;
3141 }
3142
3143 btrfs_free_extra_devids(fs_devices, 1);
3144
3145 ret = btrfs_sysfs_add_fsid(fs_devices);
3146 if (ret) {
3147 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3148 ret);
3149 goto fail_block_groups;
3150 }
3151
3152 ret = btrfs_sysfs_add_mounted(fs_info);
3153 if (ret) {
3154 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3155 goto fail_fsdev_sysfs;
3156 }
3157
3158 ret = btrfs_init_space_info(fs_info);
3159 if (ret) {
3160 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3161 goto fail_sysfs;
3162 }
3163
3164 ret = btrfs_read_block_groups(fs_info);
3165 if (ret) {
3166 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3167 goto fail_sysfs;
3168 }
3169
3170 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3171 btrfs_warn(fs_info,
3172 "writable mount is not allowed due to too many missing devices");
3173 goto fail_sysfs;
3174 }
3175
3176 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3177 "btrfs-cleaner");
3178 if (IS_ERR(fs_info->cleaner_kthread))
3179 goto fail_sysfs;
3180
3181 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3182 tree_root,
3183 "btrfs-transaction");
3184 if (IS_ERR(fs_info->transaction_kthread))
3185 goto fail_cleaner;
3186
3187 if (!btrfs_test_opt(fs_info, NOSSD) &&
3188 !fs_info->fs_devices->rotating) {
3189 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3190 }
3191
3192 /*
3193 * Mount does not set all options immediately, we can do it now and do
3194 * not have to wait for transaction commit
3195 */
3196 btrfs_apply_pending_changes(fs_info);
3197
3198 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3199 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3200 ret = btrfsic_mount(fs_info, fs_devices,
3201 btrfs_test_opt(fs_info,
3202 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3203 1 : 0,
3204 fs_info->check_integrity_print_mask);
3205 if (ret)
3206 btrfs_warn(fs_info,
3207 "failed to initialize integrity check module: %d",
3208 ret);
3209 }
3210 #endif
3211 ret = btrfs_read_qgroup_config(fs_info);
3212 if (ret)
3213 goto fail_trans_kthread;
3214
3215 if (btrfs_build_ref_tree(fs_info))
3216 btrfs_err(fs_info, "couldn't build ref tree");
3217
3218 /* do not make disk changes in broken FS or nologreplay is given */
3219 if (btrfs_super_log_root(disk_super) != 0 &&
3220 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3221 btrfs_info(fs_info, "start tree-log replay");
3222 ret = btrfs_replay_log(fs_info, fs_devices);
3223 if (ret) {
3224 err = ret;
3225 goto fail_qgroup;
3226 }
3227 }
3228
3229 ret = btrfs_find_orphan_roots(fs_info);
3230 if (ret)
3231 goto fail_qgroup;
3232
3233 if (!sb_rdonly(sb)) {
3234 ret = btrfs_cleanup_fs_roots(fs_info);
3235 if (ret)
3236 goto fail_qgroup;
3237
3238 mutex_lock(&fs_info->cleaner_mutex);
3239 ret = btrfs_recover_relocation(tree_root);
3240 mutex_unlock(&fs_info->cleaner_mutex);
3241 if (ret < 0) {
3242 btrfs_warn(fs_info, "failed to recover relocation: %d",
3243 ret);
3244 err = -EINVAL;
3245 goto fail_qgroup;
3246 }
3247 }
3248
3249 location.objectid = BTRFS_FS_TREE_OBJECTID;
3250 location.type = BTRFS_ROOT_ITEM_KEY;
3251 location.offset = 0;
3252
3253 fs_info->fs_root = btrfs_get_fs_root(fs_info, &location, true);
3254 if (IS_ERR(fs_info->fs_root)) {
3255 err = PTR_ERR(fs_info->fs_root);
3256 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3257 fs_info->fs_root = NULL;
3258 goto fail_qgroup;
3259 }
3260
3261 if (sb_rdonly(sb))
3262 return 0;
3263
3264 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3265 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3266 clear_free_space_tree = 1;
3267 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3268 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3269 btrfs_warn(fs_info, "free space tree is invalid");
3270 clear_free_space_tree = 1;
3271 }
3272
3273 if (clear_free_space_tree) {
3274 btrfs_info(fs_info, "clearing free space tree");
3275 ret = btrfs_clear_free_space_tree(fs_info);
3276 if (ret) {
3277 btrfs_warn(fs_info,
3278 "failed to clear free space tree: %d", ret);
3279 close_ctree(fs_info);
3280 return ret;
3281 }
3282 }
3283
3284 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3285 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3286 btrfs_info(fs_info, "creating free space tree");
3287 ret = btrfs_create_free_space_tree(fs_info);
3288 if (ret) {
3289 btrfs_warn(fs_info,
3290 "failed to create free space tree: %d", ret);
3291 close_ctree(fs_info);
3292 return ret;
3293 }
3294 }
3295
3296 down_read(&fs_info->cleanup_work_sem);
3297 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3298 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3299 up_read(&fs_info->cleanup_work_sem);
3300 close_ctree(fs_info);
3301 return ret;
3302 }
3303 up_read(&fs_info->cleanup_work_sem);
3304
3305 ret = btrfs_resume_balance_async(fs_info);
3306 if (ret) {
3307 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3308 close_ctree(fs_info);
3309 return ret;
3310 }
3311
3312 ret = btrfs_resume_dev_replace_async(fs_info);
3313 if (ret) {
3314 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3315 close_ctree(fs_info);
3316 return ret;
3317 }
3318
3319 btrfs_qgroup_rescan_resume(fs_info);
3320 btrfs_discard_resume(fs_info);
3321
3322 if (!fs_info->uuid_root) {
3323 btrfs_info(fs_info, "creating UUID tree");
3324 ret = btrfs_create_uuid_tree(fs_info);
3325 if (ret) {
3326 btrfs_warn(fs_info,
3327 "failed to create the UUID tree: %d", ret);
3328 close_ctree(fs_info);
3329 return ret;
3330 }
3331 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3332 fs_info->generation !=
3333 btrfs_super_uuid_tree_generation(disk_super)) {
3334 btrfs_info(fs_info, "checking UUID tree");
3335 ret = btrfs_check_uuid_tree(fs_info);
3336 if (ret) {
3337 btrfs_warn(fs_info,
3338 "failed to check the UUID tree: %d", ret);
3339 close_ctree(fs_info);
3340 return ret;
3341 }
3342 }
3343 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3344
3345 /*
3346 * backuproot only affect mount behavior, and if open_ctree succeeded,
3347 * no need to keep the flag
3348 */
3349 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3350
3351 return 0;
3352
3353 fail_qgroup:
3354 btrfs_free_qgroup_config(fs_info);
3355 fail_trans_kthread:
3356 kthread_stop(fs_info->transaction_kthread);
3357 btrfs_cleanup_transaction(fs_info);
3358 btrfs_free_fs_roots(fs_info);
3359 fail_cleaner:
3360 kthread_stop(fs_info->cleaner_kthread);
3361
3362 /*
3363 * make sure we're done with the btree inode before we stop our
3364 * kthreads
3365 */
3366 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3367
3368 fail_sysfs:
3369 btrfs_sysfs_remove_mounted(fs_info);
3370
3371 fail_fsdev_sysfs:
3372 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3373
3374 fail_block_groups:
3375 btrfs_put_block_group_cache(fs_info);
3376
3377 fail_tree_roots:
3378 free_root_pointers(fs_info, true);
3379 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3380
3381 fail_sb_buffer:
3382 btrfs_stop_all_workers(fs_info);
3383 btrfs_free_block_groups(fs_info);
3384 fail_alloc:
3385 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3386
3387 iput(fs_info->btree_inode);
3388 fail:
3389 btrfs_close_devices(fs_info->fs_devices);
3390 return err;
3391 }
3392 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3393
3394 static void btrfs_end_super_write(struct bio *bio)
3395 {
3396 struct btrfs_device *device = bio->bi_private;
3397 struct bio_vec *bvec;
3398 struct bvec_iter_all iter_all;
3399 struct page *page;
3400
3401 bio_for_each_segment_all(bvec, bio, iter_all) {
3402 page = bvec->bv_page;
3403
3404 if (bio->bi_status) {
3405 btrfs_warn_rl_in_rcu(device->fs_info,
3406 "lost page write due to IO error on %s (%d)",
3407 rcu_str_deref(device->name),
3408 blk_status_to_errno(bio->bi_status));
3409 ClearPageUptodate(page);
3410 SetPageError(page);
3411 btrfs_dev_stat_inc_and_print(device,
3412 BTRFS_DEV_STAT_WRITE_ERRS);
3413 } else {
3414 SetPageUptodate(page);
3415 }
3416
3417 put_page(page);
3418 unlock_page(page);
3419 }
3420
3421 bio_put(bio);
3422 }
3423
3424 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3425 int copy_num)
3426 {
3427 struct btrfs_super_block *super;
3428 struct page *page;
3429 u64 bytenr;
3430 struct address_space *mapping = bdev->bd_inode->i_mapping;
3431
3432 bytenr = btrfs_sb_offset(copy_num);
3433 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3434 return ERR_PTR(-EINVAL);
3435
3436 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3437 if (IS_ERR(page))
3438 return ERR_CAST(page);
3439
3440 super = page_address(page);
3441 if (btrfs_super_bytenr(super) != bytenr ||
3442 btrfs_super_magic(super) != BTRFS_MAGIC) {
3443 btrfs_release_disk_super(super);
3444 return ERR_PTR(-EINVAL);
3445 }
3446
3447 return super;
3448 }
3449
3450
3451 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3452 {
3453 struct btrfs_super_block *super, *latest = NULL;
3454 int i;
3455 u64 transid = 0;
3456
3457 /* we would like to check all the supers, but that would make
3458 * a btrfs mount succeed after a mkfs from a different FS.
3459 * So, we need to add a special mount option to scan for
3460 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3461 */
3462 for (i = 0; i < 1; i++) {
3463 super = btrfs_read_dev_one_super(bdev, i);
3464 if (IS_ERR(super))
3465 continue;
3466
3467 if (!latest || btrfs_super_generation(super) > transid) {
3468 if (latest)
3469 btrfs_release_disk_super(super);
3470
3471 latest = super;
3472 transid = btrfs_super_generation(super);
3473 }
3474 }
3475
3476 return super;
3477 }
3478
3479 /*
3480 * Write superblock @sb to the @device. Do not wait for completion, all the
3481 * pages we use for writing are locked.
3482 *
3483 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3484 * the expected device size at commit time. Note that max_mirrors must be
3485 * same for write and wait phases.
3486 *
3487 * Return number of errors when page is not found or submission fails.
3488 */
3489 static int write_dev_supers(struct btrfs_device *device,
3490 struct btrfs_super_block *sb, int max_mirrors)
3491 {
3492 struct btrfs_fs_info *fs_info = device->fs_info;
3493 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3494 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3495 int i;
3496 int errors = 0;
3497 u64 bytenr;
3498
3499 if (max_mirrors == 0)
3500 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3501
3502 shash->tfm = fs_info->csum_shash;
3503
3504 for (i = 0; i < max_mirrors; i++) {
3505 struct page *page;
3506 struct bio *bio;
3507 struct btrfs_super_block *disk_super;
3508
3509 bytenr = btrfs_sb_offset(i);
3510 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3511 device->commit_total_bytes)
3512 break;
3513
3514 btrfs_set_super_bytenr(sb, bytenr);
3515
3516 crypto_shash_init(shash);
3517 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3518 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3519 crypto_shash_final(shash, sb->csum);
3520
3521 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3522 GFP_NOFS);
3523 if (!page) {
3524 btrfs_err(device->fs_info,
3525 "couldn't get super block page for bytenr %llu",
3526 bytenr);
3527 errors++;
3528 continue;
3529 }
3530
3531 /* Bump the refcount for wait_dev_supers() */
3532 get_page(page);
3533
3534 disk_super = page_address(page);
3535 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3536
3537 /*
3538 * Directly use bios here instead of relying on the page cache
3539 * to do I/O, so we don't lose the ability to do integrity
3540 * checking.
3541 */
3542 bio = bio_alloc(GFP_NOFS, 1);
3543 bio_set_dev(bio, device->bdev);
3544 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3545 bio->bi_private = device;
3546 bio->bi_end_io = btrfs_end_super_write;
3547 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3548 offset_in_page(bytenr));
3549
3550 /*
3551 * We FUA only the first super block. The others we allow to
3552 * go down lazy and there's a short window where the on-disk
3553 * copies might still contain the older version.
3554 */
3555 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3556 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3557 bio->bi_opf |= REQ_FUA;
3558
3559 btrfsic_submit_bio(bio);
3560 }
3561 return errors < i ? 0 : -1;
3562 }
3563
3564 /*
3565 * Wait for write completion of superblocks done by write_dev_supers,
3566 * @max_mirrors same for write and wait phases.
3567 *
3568 * Return number of errors when page is not found or not marked up to
3569 * date.
3570 */
3571 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3572 {
3573 int i;
3574 int errors = 0;
3575 bool primary_failed = false;
3576 u64 bytenr;
3577
3578 if (max_mirrors == 0)
3579 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3580
3581 for (i = 0; i < max_mirrors; i++) {
3582 struct page *page;
3583
3584 bytenr = btrfs_sb_offset(i);
3585 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3586 device->commit_total_bytes)
3587 break;
3588
3589 page = find_get_page(device->bdev->bd_inode->i_mapping,
3590 bytenr >> PAGE_SHIFT);
3591 if (!page) {
3592 errors++;
3593 if (i == 0)
3594 primary_failed = true;
3595 continue;
3596 }
3597 /* Page is submitted locked and unlocked once the IO completes */
3598 wait_on_page_locked(page);
3599 if (PageError(page)) {
3600 errors++;
3601 if (i == 0)
3602 primary_failed = true;
3603 }
3604
3605 /* Drop our reference */
3606 put_page(page);
3607
3608 /* Drop the reference from the writing run */
3609 put_page(page);
3610 }
3611
3612 /* log error, force error return */
3613 if (primary_failed) {
3614 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3615 device->devid);
3616 return -1;
3617 }
3618
3619 return errors < i ? 0 : -1;
3620 }
3621
3622 /*
3623 * endio for the write_dev_flush, this will wake anyone waiting
3624 * for the barrier when it is done
3625 */
3626 static void btrfs_end_empty_barrier(struct bio *bio)
3627 {
3628 complete(bio->bi_private);
3629 }
3630
3631 /*
3632 * Submit a flush request to the device if it supports it. Error handling is
3633 * done in the waiting counterpart.
3634 */
3635 static void write_dev_flush(struct btrfs_device *device)
3636 {
3637 struct request_queue *q = bdev_get_queue(device->bdev);
3638 struct bio *bio = device->flush_bio;
3639
3640 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3641 return;
3642
3643 bio_reset(bio);
3644 bio->bi_end_io = btrfs_end_empty_barrier;
3645 bio_set_dev(bio, device->bdev);
3646 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3647 init_completion(&device->flush_wait);
3648 bio->bi_private = &device->flush_wait;
3649
3650 btrfsic_submit_bio(bio);
3651 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3652 }
3653
3654 /*
3655 * If the flush bio has been submitted by write_dev_flush, wait for it.
3656 */
3657 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3658 {
3659 struct bio *bio = device->flush_bio;
3660
3661 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3662 return BLK_STS_OK;
3663
3664 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3665 wait_for_completion_io(&device->flush_wait);
3666
3667 return bio->bi_status;
3668 }
3669
3670 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3671 {
3672 if (!btrfs_check_rw_degradable(fs_info, NULL))
3673 return -EIO;
3674 return 0;
3675 }
3676
3677 /*
3678 * send an empty flush down to each device in parallel,
3679 * then wait for them
3680 */
3681 static int barrier_all_devices(struct btrfs_fs_info *info)
3682 {
3683 struct list_head *head;
3684 struct btrfs_device *dev;
3685 int errors_wait = 0;
3686 blk_status_t ret;
3687
3688 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3689 /* send down all the barriers */
3690 head = &info->fs_devices->devices;
3691 list_for_each_entry(dev, head, dev_list) {
3692 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3693 continue;
3694 if (!dev->bdev)
3695 continue;
3696 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3697 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3698 continue;
3699
3700 write_dev_flush(dev);
3701 dev->last_flush_error = BLK_STS_OK;
3702 }
3703
3704 /* wait for all the barriers */
3705 list_for_each_entry(dev, head, dev_list) {
3706 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3707 continue;
3708 if (!dev->bdev) {
3709 errors_wait++;
3710 continue;
3711 }
3712 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3713 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3714 continue;
3715
3716 ret = wait_dev_flush(dev);
3717 if (ret) {
3718 dev->last_flush_error = ret;
3719 btrfs_dev_stat_inc_and_print(dev,
3720 BTRFS_DEV_STAT_FLUSH_ERRS);
3721 errors_wait++;
3722 }
3723 }
3724
3725 if (errors_wait) {
3726 /*
3727 * At some point we need the status of all disks
3728 * to arrive at the volume status. So error checking
3729 * is being pushed to a separate loop.
3730 */
3731 return check_barrier_error(info);
3732 }
3733 return 0;
3734 }
3735
3736 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3737 {
3738 int raid_type;
3739 int min_tolerated = INT_MAX;
3740
3741 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3742 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3743 min_tolerated = min_t(int, min_tolerated,
3744 btrfs_raid_array[BTRFS_RAID_SINGLE].
3745 tolerated_failures);
3746
3747 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3748 if (raid_type == BTRFS_RAID_SINGLE)
3749 continue;
3750 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3751 continue;
3752 min_tolerated = min_t(int, min_tolerated,
3753 btrfs_raid_array[raid_type].
3754 tolerated_failures);
3755 }
3756
3757 if (min_tolerated == INT_MAX) {
3758 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3759 min_tolerated = 0;
3760 }
3761
3762 return min_tolerated;
3763 }
3764
3765 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3766 {
3767 struct list_head *head;
3768 struct btrfs_device *dev;
3769 struct btrfs_super_block *sb;
3770 struct btrfs_dev_item *dev_item;
3771 int ret;
3772 int do_barriers;
3773 int max_errors;
3774 int total_errors = 0;
3775 u64 flags;
3776
3777 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3778
3779 /*
3780 * max_mirrors == 0 indicates we're from commit_transaction,
3781 * not from fsync where the tree roots in fs_info have not
3782 * been consistent on disk.
3783 */
3784 if (max_mirrors == 0)
3785 backup_super_roots(fs_info);
3786
3787 sb = fs_info->super_for_commit;
3788 dev_item = &sb->dev_item;
3789
3790 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3791 head = &fs_info->fs_devices->devices;
3792 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3793
3794 if (do_barriers) {
3795 ret = barrier_all_devices(fs_info);
3796 if (ret) {
3797 mutex_unlock(
3798 &fs_info->fs_devices->device_list_mutex);
3799 btrfs_handle_fs_error(fs_info, ret,
3800 "errors while submitting device barriers.");
3801 return ret;
3802 }
3803 }
3804
3805 list_for_each_entry(dev, head, dev_list) {
3806 if (!dev->bdev) {
3807 total_errors++;
3808 continue;
3809 }
3810 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3811 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3812 continue;
3813
3814 btrfs_set_stack_device_generation(dev_item, 0);
3815 btrfs_set_stack_device_type(dev_item, dev->type);
3816 btrfs_set_stack_device_id(dev_item, dev->devid);
3817 btrfs_set_stack_device_total_bytes(dev_item,
3818 dev->commit_total_bytes);
3819 btrfs_set_stack_device_bytes_used(dev_item,
3820 dev->commit_bytes_used);
3821 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3822 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3823 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3824 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3825 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3826 BTRFS_FSID_SIZE);
3827
3828 flags = btrfs_super_flags(sb);
3829 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3830
3831 ret = btrfs_validate_write_super(fs_info, sb);
3832 if (ret < 0) {
3833 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3834 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3835 "unexpected superblock corruption detected");
3836 return -EUCLEAN;
3837 }
3838
3839 ret = write_dev_supers(dev, sb, max_mirrors);
3840 if (ret)
3841 total_errors++;
3842 }
3843 if (total_errors > max_errors) {
3844 btrfs_err(fs_info, "%d errors while writing supers",
3845 total_errors);
3846 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3847
3848 /* FUA is masked off if unsupported and can't be the reason */
3849 btrfs_handle_fs_error(fs_info, -EIO,
3850 "%d errors while writing supers",
3851 total_errors);
3852 return -EIO;
3853 }
3854
3855 total_errors = 0;
3856 list_for_each_entry(dev, head, dev_list) {
3857 if (!dev->bdev)
3858 continue;
3859 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3860 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3861 continue;
3862
3863 ret = wait_dev_supers(dev, max_mirrors);
3864 if (ret)
3865 total_errors++;
3866 }
3867 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3868 if (total_errors > max_errors) {
3869 btrfs_handle_fs_error(fs_info, -EIO,
3870 "%d errors while writing supers",
3871 total_errors);
3872 return -EIO;
3873 }
3874 return 0;
3875 }
3876
3877 /* Drop a fs root from the radix tree and free it. */
3878 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3879 struct btrfs_root *root)
3880 {
3881 bool drop_ref = false;
3882
3883 spin_lock(&fs_info->fs_roots_radix_lock);
3884 radix_tree_delete(&fs_info->fs_roots_radix,
3885 (unsigned long)root->root_key.objectid);
3886 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3887 drop_ref = true;
3888 spin_unlock(&fs_info->fs_roots_radix_lock);
3889
3890 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3891 btrfs_free_log(NULL, root);
3892 if (root->reloc_root) {
3893 btrfs_put_root(root->reloc_root);
3894 root->reloc_root = NULL;
3895 }
3896 }
3897
3898 if (root->free_ino_pinned)
3899 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3900 if (root->free_ino_ctl)
3901 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3902 if (root->ino_cache_inode) {
3903 iput(root->ino_cache_inode);
3904 root->ino_cache_inode = NULL;
3905 }
3906 if (drop_ref)
3907 btrfs_put_root(root);
3908 }
3909
3910 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3911 {
3912 u64 root_objectid = 0;
3913 struct btrfs_root *gang[8];
3914 int i = 0;
3915 int err = 0;
3916 unsigned int ret = 0;
3917
3918 while (1) {
3919 spin_lock(&fs_info->fs_roots_radix_lock);
3920 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3921 (void **)gang, root_objectid,
3922 ARRAY_SIZE(gang));
3923 if (!ret) {
3924 spin_unlock(&fs_info->fs_roots_radix_lock);
3925 break;
3926 }
3927 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3928
3929 for (i = 0; i < ret; i++) {
3930 /* Avoid to grab roots in dead_roots */
3931 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3932 gang[i] = NULL;
3933 continue;
3934 }
3935 /* grab all the search result for later use */
3936 gang[i] = btrfs_grab_root(gang[i]);
3937 }
3938 spin_unlock(&fs_info->fs_roots_radix_lock);
3939
3940 for (i = 0; i < ret; i++) {
3941 if (!gang[i])
3942 continue;
3943 root_objectid = gang[i]->root_key.objectid;
3944 err = btrfs_orphan_cleanup(gang[i]);
3945 if (err)
3946 break;
3947 btrfs_put_root(gang[i]);
3948 }
3949 root_objectid++;
3950 }
3951
3952 /* release the uncleaned roots due to error */
3953 for (; i < ret; i++) {
3954 if (gang[i])
3955 btrfs_put_root(gang[i]);
3956 }
3957 return err;
3958 }
3959
3960 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3961 {
3962 struct btrfs_root *root = fs_info->tree_root;
3963 struct btrfs_trans_handle *trans;
3964
3965 mutex_lock(&fs_info->cleaner_mutex);
3966 btrfs_run_delayed_iputs(fs_info);
3967 mutex_unlock(&fs_info->cleaner_mutex);
3968 wake_up_process(fs_info->cleaner_kthread);
3969
3970 /* wait until ongoing cleanup work done */
3971 down_write(&fs_info->cleanup_work_sem);
3972 up_write(&fs_info->cleanup_work_sem);
3973
3974 trans = btrfs_join_transaction(root);
3975 if (IS_ERR(trans))
3976 return PTR_ERR(trans);
3977 return btrfs_commit_transaction(trans);
3978 }
3979
3980 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3981 {
3982 int ret;
3983
3984 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3985 /*
3986 * We don't want the cleaner to start new transactions, add more delayed
3987 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3988 * because that frees the task_struct, and the transaction kthread might
3989 * still try to wake up the cleaner.
3990 */
3991 kthread_park(fs_info->cleaner_kthread);
3992
3993 /* wait for the qgroup rescan worker to stop */
3994 btrfs_qgroup_wait_for_completion(fs_info, false);
3995
3996 /* wait for the uuid_scan task to finish */
3997 down(&fs_info->uuid_tree_rescan_sem);
3998 /* avoid complains from lockdep et al., set sem back to initial state */
3999 up(&fs_info->uuid_tree_rescan_sem);
4000
4001 /* pause restriper - we want to resume on mount */
4002 btrfs_pause_balance(fs_info);
4003
4004 btrfs_dev_replace_suspend_for_unmount(fs_info);
4005
4006 btrfs_scrub_cancel(fs_info);
4007
4008 /* wait for any defraggers to finish */
4009 wait_event(fs_info->transaction_wait,
4010 (atomic_read(&fs_info->defrag_running) == 0));
4011
4012 /* clear out the rbtree of defraggable inodes */
4013 btrfs_cleanup_defrag_inodes(fs_info);
4014
4015 cancel_work_sync(&fs_info->async_reclaim_work);
4016
4017 /* Cancel or finish ongoing discard work */
4018 btrfs_discard_cleanup(fs_info);
4019
4020 if (!sb_rdonly(fs_info->sb)) {
4021 /*
4022 * The cleaner kthread is stopped, so do one final pass over
4023 * unused block groups.
4024 */
4025 btrfs_delete_unused_bgs(fs_info);
4026
4027 /*
4028 * There might be existing delayed inode workers still running
4029 * and holding an empty delayed inode item. We must wait for
4030 * them to complete first because they can create a transaction.
4031 * This happens when someone calls btrfs_balance_delayed_items()
4032 * and then a transaction commit runs the same delayed nodes
4033 * before any delayed worker has done something with the nodes.
4034 * We must wait for any worker here and not at transaction
4035 * commit time since that could cause a deadlock.
4036 * This is a very rare case.
4037 */
4038 btrfs_flush_workqueue(fs_info->delayed_workers);
4039
4040 ret = btrfs_commit_super(fs_info);
4041 if (ret)
4042 btrfs_err(fs_info, "commit super ret %d", ret);
4043 }
4044
4045 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4046 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4047 btrfs_error_commit_super(fs_info);
4048
4049 kthread_stop(fs_info->transaction_kthread);
4050 kthread_stop(fs_info->cleaner_kthread);
4051
4052 ASSERT(list_empty(&fs_info->delayed_iputs));
4053 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4054
4055 btrfs_free_qgroup_config(fs_info);
4056 ASSERT(list_empty(&fs_info->delalloc_roots));
4057
4058 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4059 btrfs_info(fs_info, "at unmount delalloc count %lld",
4060 percpu_counter_sum(&fs_info->delalloc_bytes));
4061 }
4062
4063 if (percpu_counter_sum(&fs_info->dio_bytes))
4064 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4065 percpu_counter_sum(&fs_info->dio_bytes));
4066
4067 btrfs_sysfs_remove_mounted(fs_info);
4068 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4069
4070 btrfs_put_block_group_cache(fs_info);
4071
4072 /*
4073 * we must make sure there is not any read request to
4074 * submit after we stopping all workers.
4075 */
4076 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4077 btrfs_stop_all_workers(fs_info);
4078
4079 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4080 free_root_pointers(fs_info, true);
4081 btrfs_free_fs_roots(fs_info);
4082
4083 /*
4084 * We must free the block groups after dropping the fs_roots as we could
4085 * have had an IO error and have left over tree log blocks that aren't
4086 * cleaned up until the fs roots are freed. This makes the block group
4087 * accounting appear to be wrong because there's pending reserved bytes,
4088 * so make sure we do the block group cleanup afterwards.
4089 */
4090 btrfs_free_block_groups(fs_info);
4091
4092 iput(fs_info->btree_inode);
4093
4094 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4095 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4096 btrfsic_unmount(fs_info->fs_devices);
4097 #endif
4098
4099 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4100 btrfs_close_devices(fs_info->fs_devices);
4101 }
4102
4103 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4104 int atomic)
4105 {
4106 int ret;
4107 struct inode *btree_inode = buf->pages[0]->mapping->host;
4108
4109 ret = extent_buffer_uptodate(buf);
4110 if (!ret)
4111 return ret;
4112
4113 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4114 parent_transid, atomic);
4115 if (ret == -EAGAIN)
4116 return ret;
4117 return !ret;
4118 }
4119
4120 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4121 {
4122 struct btrfs_fs_info *fs_info;
4123 struct btrfs_root *root;
4124 u64 transid = btrfs_header_generation(buf);
4125 int was_dirty;
4126
4127 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4128 /*
4129 * This is a fast path so only do this check if we have sanity tests
4130 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4131 * outside of the sanity tests.
4132 */
4133 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4134 return;
4135 #endif
4136 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4137 fs_info = root->fs_info;
4138 btrfs_assert_tree_locked(buf);
4139 if (transid != fs_info->generation)
4140 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4141 buf->start, transid, fs_info->generation);
4142 was_dirty = set_extent_buffer_dirty(buf);
4143 if (!was_dirty)
4144 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4145 buf->len,
4146 fs_info->dirty_metadata_batch);
4147 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4148 /*
4149 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4150 * but item data not updated.
4151 * So here we should only check item pointers, not item data.
4152 */
4153 if (btrfs_header_level(buf) == 0 &&
4154 btrfs_check_leaf_relaxed(buf)) {
4155 btrfs_print_leaf(buf);
4156 ASSERT(0);
4157 }
4158 #endif
4159 }
4160
4161 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4162 int flush_delayed)
4163 {
4164 /*
4165 * looks as though older kernels can get into trouble with
4166 * this code, they end up stuck in balance_dirty_pages forever
4167 */
4168 int ret;
4169
4170 if (current->flags & PF_MEMALLOC)
4171 return;
4172
4173 if (flush_delayed)
4174 btrfs_balance_delayed_items(fs_info);
4175
4176 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4177 BTRFS_DIRTY_METADATA_THRESH,
4178 fs_info->dirty_metadata_batch);
4179 if (ret > 0) {
4180 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4181 }
4182 }
4183
4184 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4185 {
4186 __btrfs_btree_balance_dirty(fs_info, 1);
4187 }
4188
4189 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4190 {
4191 __btrfs_btree_balance_dirty(fs_info, 0);
4192 }
4193
4194 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4195 struct btrfs_key *first_key)
4196 {
4197 return btree_read_extent_buffer_pages(buf, parent_transid,
4198 level, first_key);
4199 }
4200
4201 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4202 {
4203 /* cleanup FS via transaction */
4204 btrfs_cleanup_transaction(fs_info);
4205
4206 mutex_lock(&fs_info->cleaner_mutex);
4207 btrfs_run_delayed_iputs(fs_info);
4208 mutex_unlock(&fs_info->cleaner_mutex);
4209
4210 down_write(&fs_info->cleanup_work_sem);
4211 up_write(&fs_info->cleanup_work_sem);
4212 }
4213
4214 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4215 {
4216 struct btrfs_ordered_extent *ordered;
4217
4218 spin_lock(&root->ordered_extent_lock);
4219 /*
4220 * This will just short circuit the ordered completion stuff which will
4221 * make sure the ordered extent gets properly cleaned up.
4222 */
4223 list_for_each_entry(ordered, &root->ordered_extents,
4224 root_extent_list)
4225 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4226 spin_unlock(&root->ordered_extent_lock);
4227 }
4228
4229 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4230 {
4231 struct btrfs_root *root;
4232 struct list_head splice;
4233
4234 INIT_LIST_HEAD(&splice);
4235
4236 spin_lock(&fs_info->ordered_root_lock);
4237 list_splice_init(&fs_info->ordered_roots, &splice);
4238 while (!list_empty(&splice)) {
4239 root = list_first_entry(&splice, struct btrfs_root,
4240 ordered_root);
4241 list_move_tail(&root->ordered_root,
4242 &fs_info->ordered_roots);
4243
4244 spin_unlock(&fs_info->ordered_root_lock);
4245 btrfs_destroy_ordered_extents(root);
4246
4247 cond_resched();
4248 spin_lock(&fs_info->ordered_root_lock);
4249 }
4250 spin_unlock(&fs_info->ordered_root_lock);
4251
4252 /*
4253 * We need this here because if we've been flipped read-only we won't
4254 * get sync() from the umount, so we need to make sure any ordered
4255 * extents that haven't had their dirty pages IO start writeout yet
4256 * actually get run and error out properly.
4257 */
4258 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4259 }
4260
4261 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4262 struct btrfs_fs_info *fs_info)
4263 {
4264 struct rb_node *node;
4265 struct btrfs_delayed_ref_root *delayed_refs;
4266 struct btrfs_delayed_ref_node *ref;
4267 int ret = 0;
4268
4269 delayed_refs = &trans->delayed_refs;
4270
4271 spin_lock(&delayed_refs->lock);
4272 if (atomic_read(&delayed_refs->num_entries) == 0) {
4273 spin_unlock(&delayed_refs->lock);
4274 btrfs_debug(fs_info, "delayed_refs has NO entry");
4275 return ret;
4276 }
4277
4278 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4279 struct btrfs_delayed_ref_head *head;
4280 struct rb_node *n;
4281 bool pin_bytes = false;
4282
4283 head = rb_entry(node, struct btrfs_delayed_ref_head,
4284 href_node);
4285 if (btrfs_delayed_ref_lock(delayed_refs, head))
4286 continue;
4287
4288 spin_lock(&head->lock);
4289 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4290 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4291 ref_node);
4292 ref->in_tree = 0;
4293 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4294 RB_CLEAR_NODE(&ref->ref_node);
4295 if (!list_empty(&ref->add_list))
4296 list_del(&ref->add_list);
4297 atomic_dec(&delayed_refs->num_entries);
4298 btrfs_put_delayed_ref(ref);
4299 }
4300 if (head->must_insert_reserved)
4301 pin_bytes = true;
4302 btrfs_free_delayed_extent_op(head->extent_op);
4303 btrfs_delete_ref_head(delayed_refs, head);
4304 spin_unlock(&head->lock);
4305 spin_unlock(&delayed_refs->lock);
4306 mutex_unlock(&head->mutex);
4307
4308 if (pin_bytes) {
4309 struct btrfs_block_group *cache;
4310
4311 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4312 BUG_ON(!cache);
4313
4314 spin_lock(&cache->space_info->lock);
4315 spin_lock(&cache->lock);
4316 cache->pinned += head->num_bytes;
4317 btrfs_space_info_update_bytes_pinned(fs_info,
4318 cache->space_info, head->num_bytes);
4319 cache->reserved -= head->num_bytes;
4320 cache->space_info->bytes_reserved -= head->num_bytes;
4321 spin_unlock(&cache->lock);
4322 spin_unlock(&cache->space_info->lock);
4323 percpu_counter_add_batch(
4324 &cache->space_info->total_bytes_pinned,
4325 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4326
4327 btrfs_put_block_group(cache);
4328
4329 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4330 head->bytenr + head->num_bytes - 1);
4331 }
4332 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4333 btrfs_put_delayed_ref_head(head);
4334 cond_resched();
4335 spin_lock(&delayed_refs->lock);
4336 }
4337 btrfs_qgroup_destroy_extent_records(trans);
4338
4339 spin_unlock(&delayed_refs->lock);
4340
4341 return ret;
4342 }
4343
4344 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4345 {
4346 struct btrfs_inode *btrfs_inode;
4347 struct list_head splice;
4348
4349 INIT_LIST_HEAD(&splice);
4350
4351 spin_lock(&root->delalloc_lock);
4352 list_splice_init(&root->delalloc_inodes, &splice);
4353
4354 while (!list_empty(&splice)) {
4355 struct inode *inode = NULL;
4356 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4357 delalloc_inodes);
4358 __btrfs_del_delalloc_inode(root, btrfs_inode);
4359 spin_unlock(&root->delalloc_lock);
4360
4361 /*
4362 * Make sure we get a live inode and that it'll not disappear
4363 * meanwhile.
4364 */
4365 inode = igrab(&btrfs_inode->vfs_inode);
4366 if (inode) {
4367 invalidate_inode_pages2(inode->i_mapping);
4368 iput(inode);
4369 }
4370 spin_lock(&root->delalloc_lock);
4371 }
4372 spin_unlock(&root->delalloc_lock);
4373 }
4374
4375 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4376 {
4377 struct btrfs_root *root;
4378 struct list_head splice;
4379
4380 INIT_LIST_HEAD(&splice);
4381
4382 spin_lock(&fs_info->delalloc_root_lock);
4383 list_splice_init(&fs_info->delalloc_roots, &splice);
4384 while (!list_empty(&splice)) {
4385 root = list_first_entry(&splice, struct btrfs_root,
4386 delalloc_root);
4387 root = btrfs_grab_root(root);
4388 BUG_ON(!root);
4389 spin_unlock(&fs_info->delalloc_root_lock);
4390
4391 btrfs_destroy_delalloc_inodes(root);
4392 btrfs_put_root(root);
4393
4394 spin_lock(&fs_info->delalloc_root_lock);
4395 }
4396 spin_unlock(&fs_info->delalloc_root_lock);
4397 }
4398
4399 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4400 struct extent_io_tree *dirty_pages,
4401 int mark)
4402 {
4403 int ret;
4404 struct extent_buffer *eb;
4405 u64 start = 0;
4406 u64 end;
4407
4408 while (1) {
4409 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4410 mark, NULL);
4411 if (ret)
4412 break;
4413
4414 clear_extent_bits(dirty_pages, start, end, mark);
4415 while (start <= end) {
4416 eb = find_extent_buffer(fs_info, start);
4417 start += fs_info->nodesize;
4418 if (!eb)
4419 continue;
4420 wait_on_extent_buffer_writeback(eb);
4421
4422 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4423 &eb->bflags))
4424 clear_extent_buffer_dirty(eb);
4425 free_extent_buffer_stale(eb);
4426 }
4427 }
4428
4429 return ret;
4430 }
4431
4432 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4433 struct extent_io_tree *unpin)
4434 {
4435 u64 start;
4436 u64 end;
4437 int ret;
4438
4439 while (1) {
4440 struct extent_state *cached_state = NULL;
4441
4442 /*
4443 * The btrfs_finish_extent_commit() may get the same range as
4444 * ours between find_first_extent_bit and clear_extent_dirty.
4445 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4446 * the same extent range.
4447 */
4448 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4449 ret = find_first_extent_bit(unpin, 0, &start, &end,
4450 EXTENT_DIRTY, &cached_state);
4451 if (ret) {
4452 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4453 break;
4454 }
4455
4456 clear_extent_dirty(unpin, start, end, &cached_state);
4457 free_extent_state(cached_state);
4458 btrfs_error_unpin_extent_range(fs_info, start, end);
4459 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4460 cond_resched();
4461 }
4462
4463 return 0;
4464 }
4465
4466 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4467 {
4468 struct inode *inode;
4469
4470 inode = cache->io_ctl.inode;
4471 if (inode) {
4472 invalidate_inode_pages2(inode->i_mapping);
4473 BTRFS_I(inode)->generation = 0;
4474 cache->io_ctl.inode = NULL;
4475 iput(inode);
4476 }
4477 btrfs_put_block_group(cache);
4478 }
4479
4480 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4481 struct btrfs_fs_info *fs_info)
4482 {
4483 struct btrfs_block_group *cache;
4484
4485 spin_lock(&cur_trans->dirty_bgs_lock);
4486 while (!list_empty(&cur_trans->dirty_bgs)) {
4487 cache = list_first_entry(&cur_trans->dirty_bgs,
4488 struct btrfs_block_group,
4489 dirty_list);
4490
4491 if (!list_empty(&cache->io_list)) {
4492 spin_unlock(&cur_trans->dirty_bgs_lock);
4493 list_del_init(&cache->io_list);
4494 btrfs_cleanup_bg_io(cache);
4495 spin_lock(&cur_trans->dirty_bgs_lock);
4496 }
4497
4498 list_del_init(&cache->dirty_list);
4499 spin_lock(&cache->lock);
4500 cache->disk_cache_state = BTRFS_DC_ERROR;
4501 spin_unlock(&cache->lock);
4502
4503 spin_unlock(&cur_trans->dirty_bgs_lock);
4504 btrfs_put_block_group(cache);
4505 btrfs_delayed_refs_rsv_release(fs_info, 1);
4506 spin_lock(&cur_trans->dirty_bgs_lock);
4507 }
4508 spin_unlock(&cur_trans->dirty_bgs_lock);
4509
4510 /*
4511 * Refer to the definition of io_bgs member for details why it's safe
4512 * to use it without any locking
4513 */
4514 while (!list_empty(&cur_trans->io_bgs)) {
4515 cache = list_first_entry(&cur_trans->io_bgs,
4516 struct btrfs_block_group,
4517 io_list);
4518
4519 list_del_init(&cache->io_list);
4520 spin_lock(&cache->lock);
4521 cache->disk_cache_state = BTRFS_DC_ERROR;
4522 spin_unlock(&cache->lock);
4523 btrfs_cleanup_bg_io(cache);
4524 }
4525 }
4526
4527 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4528 struct btrfs_fs_info *fs_info)
4529 {
4530 struct btrfs_device *dev, *tmp;
4531
4532 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4533 ASSERT(list_empty(&cur_trans->dirty_bgs));
4534 ASSERT(list_empty(&cur_trans->io_bgs));
4535
4536 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4537 post_commit_list) {
4538 list_del_init(&dev->post_commit_list);
4539 }
4540
4541 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4542
4543 cur_trans->state = TRANS_STATE_COMMIT_START;
4544 wake_up(&fs_info->transaction_blocked_wait);
4545
4546 cur_trans->state = TRANS_STATE_UNBLOCKED;
4547 wake_up(&fs_info->transaction_wait);
4548
4549 btrfs_destroy_delayed_inodes(fs_info);
4550
4551 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4552 EXTENT_DIRTY);
4553 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4554
4555 cur_trans->state =TRANS_STATE_COMPLETED;
4556 wake_up(&cur_trans->commit_wait);
4557 }
4558
4559 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4560 {
4561 struct btrfs_transaction *t;
4562
4563 mutex_lock(&fs_info->transaction_kthread_mutex);
4564
4565 spin_lock(&fs_info->trans_lock);
4566 while (!list_empty(&fs_info->trans_list)) {
4567 t = list_first_entry(&fs_info->trans_list,
4568 struct btrfs_transaction, list);
4569 if (t->state >= TRANS_STATE_COMMIT_START) {
4570 refcount_inc(&t->use_count);
4571 spin_unlock(&fs_info->trans_lock);
4572 btrfs_wait_for_commit(fs_info, t->transid);
4573 btrfs_put_transaction(t);
4574 spin_lock(&fs_info->trans_lock);
4575 continue;
4576 }
4577 if (t == fs_info->running_transaction) {
4578 t->state = TRANS_STATE_COMMIT_DOING;
4579 spin_unlock(&fs_info->trans_lock);
4580 /*
4581 * We wait for 0 num_writers since we don't hold a trans
4582 * handle open currently for this transaction.
4583 */
4584 wait_event(t->writer_wait,
4585 atomic_read(&t->num_writers) == 0);
4586 } else {
4587 spin_unlock(&fs_info->trans_lock);
4588 }
4589 btrfs_cleanup_one_transaction(t, fs_info);
4590
4591 spin_lock(&fs_info->trans_lock);
4592 if (t == fs_info->running_transaction)
4593 fs_info->running_transaction = NULL;
4594 list_del_init(&t->list);
4595 spin_unlock(&fs_info->trans_lock);
4596
4597 btrfs_put_transaction(t);
4598 trace_btrfs_transaction_commit(fs_info->tree_root);
4599 spin_lock(&fs_info->trans_lock);
4600 }
4601 spin_unlock(&fs_info->trans_lock);
4602 btrfs_destroy_all_ordered_extents(fs_info);
4603 btrfs_destroy_delayed_inodes(fs_info);
4604 btrfs_assert_delayed_root_empty(fs_info);
4605 btrfs_destroy_all_delalloc_inodes(fs_info);
4606 mutex_unlock(&fs_info->transaction_kthread_mutex);
4607
4608 return 0;
4609 }
4610
4611 static const struct extent_io_ops btree_extent_io_ops = {
4612 /* mandatory callbacks */
4613 .submit_bio_hook = btree_submit_bio_hook,
4614 .readpage_end_io_hook = btree_readpage_end_io_hook,
4615 };