]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/btrfs/disk-io.c
a970da7263b3958b865ebe391888e795abae31a3
[thirdparty/kernel/linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "bio.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "rcu-string.h"
33 #include "dev-replace.h"
34 #include "raid56.h"
35 #include "sysfs.h"
36 #include "qgroup.h"
37 #include "compression.h"
38 #include "tree-checker.h"
39 #include "ref-verify.h"
40 #include "block-group.h"
41 #include "discard.h"
42 #include "space-info.h"
43 #include "zoned.h"
44 #include "subpage.h"
45 #include "fs.h"
46 #include "accessors.h"
47 #include "extent-tree.h"
48 #include "root-tree.h"
49 #include "defrag.h"
50 #include "uuid-tree.h"
51 #include "relocation.h"
52 #include "scrub.h"
53 #include "super.h"
54
55 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
56 BTRFS_HEADER_FLAG_RELOC |\
57 BTRFS_SUPER_FLAG_ERROR |\
58 BTRFS_SUPER_FLAG_SEEDING |\
59 BTRFS_SUPER_FLAG_METADUMP |\
60 BTRFS_SUPER_FLAG_METADUMP_V2)
61
62 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
63 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
64
65 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
66 {
67 if (fs_info->csum_shash)
68 crypto_free_shash(fs_info->csum_shash);
69 }
70
71 /*
72 * Compute the csum of a btree block and store the result to provided buffer.
73 */
74 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
75 {
76 struct btrfs_fs_info *fs_info = buf->fs_info;
77 const int num_pages = num_extent_pages(buf);
78 const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
79 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
80 char *kaddr;
81 int i;
82
83 shash->tfm = fs_info->csum_shash;
84 crypto_shash_init(shash);
85 kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
86 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
87 first_page_part - BTRFS_CSUM_SIZE);
88
89 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
90 kaddr = page_address(buf->pages[i]);
91 crypto_shash_update(shash, kaddr, PAGE_SIZE);
92 }
93 memset(result, 0, BTRFS_CSUM_SIZE);
94 crypto_shash_final(shash, result);
95 }
96
97 /*
98 * we can't consider a given block up to date unless the transid of the
99 * block matches the transid in the parent node's pointer. This is how we
100 * detect blocks that either didn't get written at all or got written
101 * in the wrong place.
102 */
103 int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
104 {
105 if (!extent_buffer_uptodate(eb))
106 return 0;
107
108 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
109 return 1;
110
111 if (atomic)
112 return -EAGAIN;
113
114 if (!extent_buffer_uptodate(eb) ||
115 btrfs_header_generation(eb) != parent_transid) {
116 btrfs_err_rl(eb->fs_info,
117 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
118 eb->start, eb->read_mirror,
119 parent_transid, btrfs_header_generation(eb));
120 clear_extent_buffer_uptodate(eb);
121 return 0;
122 }
123 return 1;
124 }
125
126 static bool btrfs_supported_super_csum(u16 csum_type)
127 {
128 switch (csum_type) {
129 case BTRFS_CSUM_TYPE_CRC32:
130 case BTRFS_CSUM_TYPE_XXHASH:
131 case BTRFS_CSUM_TYPE_SHA256:
132 case BTRFS_CSUM_TYPE_BLAKE2:
133 return true;
134 default:
135 return false;
136 }
137 }
138
139 /*
140 * Return 0 if the superblock checksum type matches the checksum value of that
141 * algorithm. Pass the raw disk superblock data.
142 */
143 int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
144 const struct btrfs_super_block *disk_sb)
145 {
146 char result[BTRFS_CSUM_SIZE];
147 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
148
149 shash->tfm = fs_info->csum_shash;
150
151 /*
152 * The super_block structure does not span the whole
153 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
154 * filled with zeros and is included in the checksum.
155 */
156 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
157 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
158
159 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
160 return 1;
161
162 return 0;
163 }
164
165 static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
166 int mirror_num)
167 {
168 struct btrfs_fs_info *fs_info = eb->fs_info;
169 int i, num_pages = num_extent_pages(eb);
170 int ret = 0;
171
172 if (sb_rdonly(fs_info->sb))
173 return -EROFS;
174
175 for (i = 0; i < num_pages; i++) {
176 struct page *p = eb->pages[i];
177 u64 start = max_t(u64, eb->start, page_offset(p));
178 u64 end = min_t(u64, eb->start + eb->len, page_offset(p) + PAGE_SIZE);
179 u32 len = end - start;
180
181 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
182 start, p, offset_in_page(start), mirror_num);
183 if (ret)
184 break;
185 }
186
187 return ret;
188 }
189
190 /*
191 * helper to read a given tree block, doing retries as required when
192 * the checksums don't match and we have alternate mirrors to try.
193 *
194 * @check: expected tree parentness check, see the comments of the
195 * structure for details.
196 */
197 int btrfs_read_extent_buffer(struct extent_buffer *eb,
198 struct btrfs_tree_parent_check *check)
199 {
200 struct btrfs_fs_info *fs_info = eb->fs_info;
201 int failed = 0;
202 int ret;
203 int num_copies = 0;
204 int mirror_num = 0;
205 int failed_mirror = 0;
206
207 ASSERT(check);
208
209 while (1) {
210 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
211 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
212 if (!ret)
213 break;
214
215 num_copies = btrfs_num_copies(fs_info,
216 eb->start, eb->len);
217 if (num_copies == 1)
218 break;
219
220 if (!failed_mirror) {
221 failed = 1;
222 failed_mirror = eb->read_mirror;
223 }
224
225 mirror_num++;
226 if (mirror_num == failed_mirror)
227 mirror_num++;
228
229 if (mirror_num > num_copies)
230 break;
231 }
232
233 if (failed && !ret && failed_mirror)
234 btrfs_repair_eb_io_failure(eb, failed_mirror);
235
236 return ret;
237 }
238
239 /*
240 * Checksum a dirty tree block before IO.
241 */
242 blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
243 {
244 struct extent_buffer *eb = bbio->private;
245 struct btrfs_fs_info *fs_info = eb->fs_info;
246 u64 found_start = btrfs_header_bytenr(eb);
247 u8 result[BTRFS_CSUM_SIZE];
248 int ret;
249
250 /* Btree blocks are always contiguous on disk. */
251 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
252 return BLK_STS_IOERR;
253 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
254 return BLK_STS_IOERR;
255
256 if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
257 WARN_ON_ONCE(found_start != 0);
258 return BLK_STS_OK;
259 }
260
261 if (WARN_ON_ONCE(found_start != eb->start))
262 return BLK_STS_IOERR;
263 if (WARN_ON(!btrfs_page_test_uptodate(fs_info, eb->pages[0], eb->start,
264 eb->len)))
265 return BLK_STS_IOERR;
266
267 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
268 offsetof(struct btrfs_header, fsid),
269 BTRFS_FSID_SIZE) == 0);
270 csum_tree_block(eb, result);
271
272 if (btrfs_header_level(eb))
273 ret = btrfs_check_node(eb);
274 else
275 ret = btrfs_check_leaf(eb);
276
277 if (ret < 0)
278 goto error;
279
280 /*
281 * Also check the generation, the eb reached here must be newer than
282 * last committed. Or something seriously wrong happened.
283 */
284 if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
285 ret = -EUCLEAN;
286 btrfs_err(fs_info,
287 "block=%llu bad generation, have %llu expect > %llu",
288 eb->start, btrfs_header_generation(eb),
289 fs_info->last_trans_committed);
290 goto error;
291 }
292 write_extent_buffer(eb, result, 0, fs_info->csum_size);
293 return BLK_STS_OK;
294
295 error:
296 btrfs_print_tree(eb, 0);
297 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
298 eb->start);
299 /*
300 * Be noisy if this is an extent buffer from a log tree. We don't abort
301 * a transaction in case there's a bad log tree extent buffer, we just
302 * fallback to a transaction commit. Still we want to know when there is
303 * a bad log tree extent buffer, as that may signal a bug somewhere.
304 */
305 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
306 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
307 return errno_to_blk_status(ret);
308 }
309
310 static bool check_tree_block_fsid(struct extent_buffer *eb)
311 {
312 struct btrfs_fs_info *fs_info = eb->fs_info;
313 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
314 u8 fsid[BTRFS_FSID_SIZE];
315
316 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
317 BTRFS_FSID_SIZE);
318
319 /*
320 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
321 * This is then overwritten by metadata_uuid if it is present in the
322 * device_list_add(). The same true for a seed device as well. So use of
323 * fs_devices::metadata_uuid is appropriate here.
324 */
325 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
326 return false;
327
328 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
329 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
330 return false;
331
332 return true;
333 }
334
335 /* Do basic extent buffer checks at read time */
336 int btrfs_validate_extent_buffer(struct extent_buffer *eb,
337 struct btrfs_tree_parent_check *check)
338 {
339 struct btrfs_fs_info *fs_info = eb->fs_info;
340 u64 found_start;
341 const u32 csum_size = fs_info->csum_size;
342 u8 found_level;
343 u8 result[BTRFS_CSUM_SIZE];
344 const u8 *header_csum;
345 int ret = 0;
346
347 ASSERT(check);
348
349 found_start = btrfs_header_bytenr(eb);
350 if (found_start != eb->start) {
351 btrfs_err_rl(fs_info,
352 "bad tree block start, mirror %u want %llu have %llu",
353 eb->read_mirror, eb->start, found_start);
354 ret = -EIO;
355 goto out;
356 }
357 if (check_tree_block_fsid(eb)) {
358 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
359 eb->start, eb->read_mirror);
360 ret = -EIO;
361 goto out;
362 }
363 found_level = btrfs_header_level(eb);
364 if (found_level >= BTRFS_MAX_LEVEL) {
365 btrfs_err(fs_info,
366 "bad tree block level, mirror %u level %d on logical %llu",
367 eb->read_mirror, btrfs_header_level(eb), eb->start);
368 ret = -EIO;
369 goto out;
370 }
371
372 csum_tree_block(eb, result);
373 header_csum = page_address(eb->pages[0]) +
374 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
375
376 if (memcmp(result, header_csum, csum_size) != 0) {
377 btrfs_warn_rl(fs_info,
378 "checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
379 eb->start, eb->read_mirror,
380 CSUM_FMT_VALUE(csum_size, header_csum),
381 CSUM_FMT_VALUE(csum_size, result),
382 btrfs_header_level(eb));
383 ret = -EUCLEAN;
384 goto out;
385 }
386
387 if (found_level != check->level) {
388 btrfs_err(fs_info,
389 "level verify failed on logical %llu mirror %u wanted %u found %u",
390 eb->start, eb->read_mirror, check->level, found_level);
391 ret = -EIO;
392 goto out;
393 }
394 if (unlikely(check->transid &&
395 btrfs_header_generation(eb) != check->transid)) {
396 btrfs_err_rl(eb->fs_info,
397 "parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
398 eb->start, eb->read_mirror, check->transid,
399 btrfs_header_generation(eb));
400 ret = -EIO;
401 goto out;
402 }
403 if (check->has_first_key) {
404 struct btrfs_key *expect_key = &check->first_key;
405 struct btrfs_key found_key;
406
407 if (found_level)
408 btrfs_node_key_to_cpu(eb, &found_key, 0);
409 else
410 btrfs_item_key_to_cpu(eb, &found_key, 0);
411 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
412 btrfs_err(fs_info,
413 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
414 eb->start, check->transid,
415 expect_key->objectid,
416 expect_key->type, expect_key->offset,
417 found_key.objectid, found_key.type,
418 found_key.offset);
419 ret = -EUCLEAN;
420 goto out;
421 }
422 }
423 if (check->owner_root) {
424 ret = btrfs_check_eb_owner(eb, check->owner_root);
425 if (ret < 0)
426 goto out;
427 }
428
429 /*
430 * If this is a leaf block and it is corrupt, set the corrupt bit so
431 * that we don't try and read the other copies of this block, just
432 * return -EIO.
433 */
434 if (found_level == 0 && btrfs_check_leaf(eb)) {
435 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
436 ret = -EIO;
437 }
438
439 if (found_level > 0 && btrfs_check_node(eb))
440 ret = -EIO;
441
442 if (ret)
443 btrfs_err(fs_info,
444 "read time tree block corruption detected on logical %llu mirror %u",
445 eb->start, eb->read_mirror);
446 out:
447 return ret;
448 }
449
450 #ifdef CONFIG_MIGRATION
451 static int btree_migrate_folio(struct address_space *mapping,
452 struct folio *dst, struct folio *src, enum migrate_mode mode)
453 {
454 /*
455 * we can't safely write a btree page from here,
456 * we haven't done the locking hook
457 */
458 if (folio_test_dirty(src))
459 return -EAGAIN;
460 /*
461 * Buffers may be managed in a filesystem specific way.
462 * We must have no buffers or drop them.
463 */
464 if (folio_get_private(src) &&
465 !filemap_release_folio(src, GFP_KERNEL))
466 return -EAGAIN;
467 return migrate_folio(mapping, dst, src, mode);
468 }
469 #else
470 #define btree_migrate_folio NULL
471 #endif
472
473 static int btree_writepages(struct address_space *mapping,
474 struct writeback_control *wbc)
475 {
476 struct btrfs_fs_info *fs_info;
477 int ret;
478
479 if (wbc->sync_mode == WB_SYNC_NONE) {
480
481 if (wbc->for_kupdate)
482 return 0;
483
484 fs_info = BTRFS_I(mapping->host)->root->fs_info;
485 /* this is a bit racy, but that's ok */
486 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
487 BTRFS_DIRTY_METADATA_THRESH,
488 fs_info->dirty_metadata_batch);
489 if (ret < 0)
490 return 0;
491 }
492 return btree_write_cache_pages(mapping, wbc);
493 }
494
495 static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
496 {
497 if (folio_test_writeback(folio) || folio_test_dirty(folio))
498 return false;
499
500 return try_release_extent_buffer(&folio->page);
501 }
502
503 static void btree_invalidate_folio(struct folio *folio, size_t offset,
504 size_t length)
505 {
506 struct extent_io_tree *tree;
507 tree = &BTRFS_I(folio->mapping->host)->io_tree;
508 extent_invalidate_folio(tree, folio, offset);
509 btree_release_folio(folio, GFP_NOFS);
510 if (folio_get_private(folio)) {
511 btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
512 "folio private not zero on folio %llu",
513 (unsigned long long)folio_pos(folio));
514 folio_detach_private(folio);
515 }
516 }
517
518 #ifdef DEBUG
519 static bool btree_dirty_folio(struct address_space *mapping,
520 struct folio *folio)
521 {
522 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
523 struct btrfs_subpage_info *spi = fs_info->subpage_info;
524 struct btrfs_subpage *subpage;
525 struct extent_buffer *eb;
526 int cur_bit = 0;
527 u64 page_start = folio_pos(folio);
528
529 if (fs_info->sectorsize == PAGE_SIZE) {
530 eb = folio_get_private(folio);
531 BUG_ON(!eb);
532 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
533 BUG_ON(!atomic_read(&eb->refs));
534 btrfs_assert_tree_write_locked(eb);
535 return filemap_dirty_folio(mapping, folio);
536 }
537
538 ASSERT(spi);
539 subpage = folio_get_private(folio);
540
541 for (cur_bit = spi->dirty_offset;
542 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
543 cur_bit++) {
544 unsigned long flags;
545 u64 cur;
546
547 spin_lock_irqsave(&subpage->lock, flags);
548 if (!test_bit(cur_bit, subpage->bitmaps)) {
549 spin_unlock_irqrestore(&subpage->lock, flags);
550 continue;
551 }
552 spin_unlock_irqrestore(&subpage->lock, flags);
553 cur = page_start + cur_bit * fs_info->sectorsize;
554
555 eb = find_extent_buffer(fs_info, cur);
556 ASSERT(eb);
557 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 ASSERT(atomic_read(&eb->refs));
559 btrfs_assert_tree_write_locked(eb);
560 free_extent_buffer(eb);
561
562 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
563 }
564 return filemap_dirty_folio(mapping, folio);
565 }
566 #else
567 #define btree_dirty_folio filemap_dirty_folio
568 #endif
569
570 static const struct address_space_operations btree_aops = {
571 .writepages = btree_writepages,
572 .release_folio = btree_release_folio,
573 .invalidate_folio = btree_invalidate_folio,
574 .migrate_folio = btree_migrate_folio,
575 .dirty_folio = btree_dirty_folio,
576 };
577
578 struct extent_buffer *btrfs_find_create_tree_block(
579 struct btrfs_fs_info *fs_info,
580 u64 bytenr, u64 owner_root,
581 int level)
582 {
583 if (btrfs_is_testing(fs_info))
584 return alloc_test_extent_buffer(fs_info, bytenr);
585 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
586 }
587
588 /*
589 * Read tree block at logical address @bytenr and do variant basic but critical
590 * verification.
591 *
592 * @check: expected tree parentness check, see comments of the
593 * structure for details.
594 */
595 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
596 struct btrfs_tree_parent_check *check)
597 {
598 struct extent_buffer *buf = NULL;
599 int ret;
600
601 ASSERT(check);
602
603 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
604 check->level);
605 if (IS_ERR(buf))
606 return buf;
607
608 ret = btrfs_read_extent_buffer(buf, check);
609 if (ret) {
610 free_extent_buffer_stale(buf);
611 return ERR_PTR(ret);
612 }
613 if (btrfs_check_eb_owner(buf, check->owner_root)) {
614 free_extent_buffer_stale(buf);
615 return ERR_PTR(-EUCLEAN);
616 }
617 return buf;
618
619 }
620
621 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
622 u64 objectid)
623 {
624 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
625
626 memset(&root->root_key, 0, sizeof(root->root_key));
627 memset(&root->root_item, 0, sizeof(root->root_item));
628 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
629 root->fs_info = fs_info;
630 root->root_key.objectid = objectid;
631 root->node = NULL;
632 root->commit_root = NULL;
633 root->state = 0;
634 RB_CLEAR_NODE(&root->rb_node);
635
636 root->last_trans = 0;
637 root->free_objectid = 0;
638 root->nr_delalloc_inodes = 0;
639 root->nr_ordered_extents = 0;
640 root->inode_tree = RB_ROOT;
641 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
642
643 btrfs_init_root_block_rsv(root);
644
645 INIT_LIST_HEAD(&root->dirty_list);
646 INIT_LIST_HEAD(&root->root_list);
647 INIT_LIST_HEAD(&root->delalloc_inodes);
648 INIT_LIST_HEAD(&root->delalloc_root);
649 INIT_LIST_HEAD(&root->ordered_extents);
650 INIT_LIST_HEAD(&root->ordered_root);
651 INIT_LIST_HEAD(&root->reloc_dirty_list);
652 INIT_LIST_HEAD(&root->logged_list[0]);
653 INIT_LIST_HEAD(&root->logged_list[1]);
654 spin_lock_init(&root->inode_lock);
655 spin_lock_init(&root->delalloc_lock);
656 spin_lock_init(&root->ordered_extent_lock);
657 spin_lock_init(&root->accounting_lock);
658 spin_lock_init(&root->log_extents_lock[0]);
659 spin_lock_init(&root->log_extents_lock[1]);
660 spin_lock_init(&root->qgroup_meta_rsv_lock);
661 mutex_init(&root->objectid_mutex);
662 mutex_init(&root->log_mutex);
663 mutex_init(&root->ordered_extent_mutex);
664 mutex_init(&root->delalloc_mutex);
665 init_waitqueue_head(&root->qgroup_flush_wait);
666 init_waitqueue_head(&root->log_writer_wait);
667 init_waitqueue_head(&root->log_commit_wait[0]);
668 init_waitqueue_head(&root->log_commit_wait[1]);
669 INIT_LIST_HEAD(&root->log_ctxs[0]);
670 INIT_LIST_HEAD(&root->log_ctxs[1]);
671 atomic_set(&root->log_commit[0], 0);
672 atomic_set(&root->log_commit[1], 0);
673 atomic_set(&root->log_writers, 0);
674 atomic_set(&root->log_batch, 0);
675 refcount_set(&root->refs, 1);
676 atomic_set(&root->snapshot_force_cow, 0);
677 atomic_set(&root->nr_swapfiles, 0);
678 root->log_transid = 0;
679 root->log_transid_committed = -1;
680 root->last_log_commit = 0;
681 root->anon_dev = 0;
682 if (!dummy) {
683 extent_io_tree_init(fs_info, &root->dirty_log_pages,
684 IO_TREE_ROOT_DIRTY_LOG_PAGES);
685 extent_io_tree_init(fs_info, &root->log_csum_range,
686 IO_TREE_LOG_CSUM_RANGE);
687 }
688
689 spin_lock_init(&root->root_item_lock);
690 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
691 #ifdef CONFIG_BTRFS_DEBUG
692 INIT_LIST_HEAD(&root->leak_list);
693 spin_lock(&fs_info->fs_roots_radix_lock);
694 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
695 spin_unlock(&fs_info->fs_roots_radix_lock);
696 #endif
697 }
698
699 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
700 u64 objectid, gfp_t flags)
701 {
702 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
703 if (root)
704 __setup_root(root, fs_info, objectid);
705 return root;
706 }
707
708 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
709 /* Should only be used by the testing infrastructure */
710 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
711 {
712 struct btrfs_root *root;
713
714 if (!fs_info)
715 return ERR_PTR(-EINVAL);
716
717 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
718 if (!root)
719 return ERR_PTR(-ENOMEM);
720
721 /* We don't use the stripesize in selftest, set it as sectorsize */
722 root->alloc_bytenr = 0;
723
724 return root;
725 }
726 #endif
727
728 static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
729 {
730 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
731 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
732
733 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
734 }
735
736 static int global_root_key_cmp(const void *k, const struct rb_node *node)
737 {
738 const struct btrfs_key *key = k;
739 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
740
741 return btrfs_comp_cpu_keys(key, &root->root_key);
742 }
743
744 int btrfs_global_root_insert(struct btrfs_root *root)
745 {
746 struct btrfs_fs_info *fs_info = root->fs_info;
747 struct rb_node *tmp;
748 int ret = 0;
749
750 write_lock(&fs_info->global_root_lock);
751 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
752 write_unlock(&fs_info->global_root_lock);
753
754 if (tmp) {
755 ret = -EEXIST;
756 btrfs_warn(fs_info, "global root %llu %llu already exists",
757 root->root_key.objectid, root->root_key.offset);
758 }
759 return ret;
760 }
761
762 void btrfs_global_root_delete(struct btrfs_root *root)
763 {
764 struct btrfs_fs_info *fs_info = root->fs_info;
765
766 write_lock(&fs_info->global_root_lock);
767 rb_erase(&root->rb_node, &fs_info->global_root_tree);
768 write_unlock(&fs_info->global_root_lock);
769 }
770
771 struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
772 struct btrfs_key *key)
773 {
774 struct rb_node *node;
775 struct btrfs_root *root = NULL;
776
777 read_lock(&fs_info->global_root_lock);
778 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
779 if (node)
780 root = container_of(node, struct btrfs_root, rb_node);
781 read_unlock(&fs_info->global_root_lock);
782
783 return root;
784 }
785
786 static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
787 {
788 struct btrfs_block_group *block_group;
789 u64 ret;
790
791 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
792 return 0;
793
794 if (bytenr)
795 block_group = btrfs_lookup_block_group(fs_info, bytenr);
796 else
797 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
798 ASSERT(block_group);
799 if (!block_group)
800 return 0;
801 ret = block_group->global_root_id;
802 btrfs_put_block_group(block_group);
803
804 return ret;
805 }
806
807 struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
808 {
809 struct btrfs_key key = {
810 .objectid = BTRFS_CSUM_TREE_OBJECTID,
811 .type = BTRFS_ROOT_ITEM_KEY,
812 .offset = btrfs_global_root_id(fs_info, bytenr),
813 };
814
815 return btrfs_global_root(fs_info, &key);
816 }
817
818 struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
819 {
820 struct btrfs_key key = {
821 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
822 .type = BTRFS_ROOT_ITEM_KEY,
823 .offset = btrfs_global_root_id(fs_info, bytenr),
824 };
825
826 return btrfs_global_root(fs_info, &key);
827 }
828
829 struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
830 {
831 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
832 return fs_info->block_group_root;
833 return btrfs_extent_root(fs_info, 0);
834 }
835
836 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
837 u64 objectid)
838 {
839 struct btrfs_fs_info *fs_info = trans->fs_info;
840 struct extent_buffer *leaf;
841 struct btrfs_root *tree_root = fs_info->tree_root;
842 struct btrfs_root *root;
843 struct btrfs_key key;
844 unsigned int nofs_flag;
845 int ret = 0;
846
847 /*
848 * We're holding a transaction handle, so use a NOFS memory allocation
849 * context to avoid deadlock if reclaim happens.
850 */
851 nofs_flag = memalloc_nofs_save();
852 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
853 memalloc_nofs_restore(nofs_flag);
854 if (!root)
855 return ERR_PTR(-ENOMEM);
856
857 root->root_key.objectid = objectid;
858 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
859 root->root_key.offset = 0;
860
861 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
862 0, BTRFS_NESTING_NORMAL);
863 if (IS_ERR(leaf)) {
864 ret = PTR_ERR(leaf);
865 leaf = NULL;
866 goto fail;
867 }
868
869 root->node = leaf;
870 btrfs_mark_buffer_dirty(trans, leaf);
871
872 root->commit_root = btrfs_root_node(root);
873 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
874
875 btrfs_set_root_flags(&root->root_item, 0);
876 btrfs_set_root_limit(&root->root_item, 0);
877 btrfs_set_root_bytenr(&root->root_item, leaf->start);
878 btrfs_set_root_generation(&root->root_item, trans->transid);
879 btrfs_set_root_level(&root->root_item, 0);
880 btrfs_set_root_refs(&root->root_item, 1);
881 btrfs_set_root_used(&root->root_item, leaf->len);
882 btrfs_set_root_last_snapshot(&root->root_item, 0);
883 btrfs_set_root_dirid(&root->root_item, 0);
884 if (is_fstree(objectid))
885 generate_random_guid(root->root_item.uuid);
886 else
887 export_guid(root->root_item.uuid, &guid_null);
888 btrfs_set_root_drop_level(&root->root_item, 0);
889
890 btrfs_tree_unlock(leaf);
891
892 key.objectid = objectid;
893 key.type = BTRFS_ROOT_ITEM_KEY;
894 key.offset = 0;
895 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
896 if (ret)
897 goto fail;
898
899 return root;
900
901 fail:
902 btrfs_put_root(root);
903
904 return ERR_PTR(ret);
905 }
906
907 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
908 struct btrfs_fs_info *fs_info)
909 {
910 struct btrfs_root *root;
911
912 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
913 if (!root)
914 return ERR_PTR(-ENOMEM);
915
916 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
917 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
918 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
919
920 return root;
921 }
922
923 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root)
925 {
926 struct extent_buffer *leaf;
927
928 /*
929 * DON'T set SHAREABLE bit for log trees.
930 *
931 * Log trees are not exposed to user space thus can't be snapshotted,
932 * and they go away before a real commit is actually done.
933 *
934 * They do store pointers to file data extents, and those reference
935 * counts still get updated (along with back refs to the log tree).
936 */
937
938 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
939 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
940 if (IS_ERR(leaf))
941 return PTR_ERR(leaf);
942
943 root->node = leaf;
944
945 btrfs_mark_buffer_dirty(trans, root->node);
946 btrfs_tree_unlock(root->node);
947
948 return 0;
949 }
950
951 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
952 struct btrfs_fs_info *fs_info)
953 {
954 struct btrfs_root *log_root;
955
956 log_root = alloc_log_tree(trans, fs_info);
957 if (IS_ERR(log_root))
958 return PTR_ERR(log_root);
959
960 if (!btrfs_is_zoned(fs_info)) {
961 int ret = btrfs_alloc_log_tree_node(trans, log_root);
962
963 if (ret) {
964 btrfs_put_root(log_root);
965 return ret;
966 }
967 }
968
969 WARN_ON(fs_info->log_root_tree);
970 fs_info->log_root_tree = log_root;
971 return 0;
972 }
973
974 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
975 struct btrfs_root *root)
976 {
977 struct btrfs_fs_info *fs_info = root->fs_info;
978 struct btrfs_root *log_root;
979 struct btrfs_inode_item *inode_item;
980 int ret;
981
982 log_root = alloc_log_tree(trans, fs_info);
983 if (IS_ERR(log_root))
984 return PTR_ERR(log_root);
985
986 ret = btrfs_alloc_log_tree_node(trans, log_root);
987 if (ret) {
988 btrfs_put_root(log_root);
989 return ret;
990 }
991
992 log_root->last_trans = trans->transid;
993 log_root->root_key.offset = root->root_key.objectid;
994
995 inode_item = &log_root->root_item.inode;
996 btrfs_set_stack_inode_generation(inode_item, 1);
997 btrfs_set_stack_inode_size(inode_item, 3);
998 btrfs_set_stack_inode_nlink(inode_item, 1);
999 btrfs_set_stack_inode_nbytes(inode_item,
1000 fs_info->nodesize);
1001 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1002
1003 btrfs_set_root_node(&log_root->root_item, log_root->node);
1004
1005 WARN_ON(root->log_root);
1006 root->log_root = log_root;
1007 root->log_transid = 0;
1008 root->log_transid_committed = -1;
1009 root->last_log_commit = 0;
1010 return 0;
1011 }
1012
1013 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1014 struct btrfs_path *path,
1015 struct btrfs_key *key)
1016 {
1017 struct btrfs_root *root;
1018 struct btrfs_tree_parent_check check = { 0 };
1019 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1020 u64 generation;
1021 int ret;
1022 int level;
1023
1024 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1025 if (!root)
1026 return ERR_PTR(-ENOMEM);
1027
1028 ret = btrfs_find_root(tree_root, key, path,
1029 &root->root_item, &root->root_key);
1030 if (ret) {
1031 if (ret > 0)
1032 ret = -ENOENT;
1033 goto fail;
1034 }
1035
1036 generation = btrfs_root_generation(&root->root_item);
1037 level = btrfs_root_level(&root->root_item);
1038 check.level = level;
1039 check.transid = generation;
1040 check.owner_root = key->objectid;
1041 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1042 &check);
1043 if (IS_ERR(root->node)) {
1044 ret = PTR_ERR(root->node);
1045 root->node = NULL;
1046 goto fail;
1047 }
1048 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1049 ret = -EIO;
1050 goto fail;
1051 }
1052
1053 /*
1054 * For real fs, and not log/reloc trees, root owner must
1055 * match its root node owner
1056 */
1057 if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1058 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1059 root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1060 root->root_key.objectid != btrfs_header_owner(root->node)) {
1061 btrfs_crit(fs_info,
1062 "root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1063 root->root_key.objectid, root->node->start,
1064 btrfs_header_owner(root->node),
1065 root->root_key.objectid);
1066 ret = -EUCLEAN;
1067 goto fail;
1068 }
1069 root->commit_root = btrfs_root_node(root);
1070 return root;
1071 fail:
1072 btrfs_put_root(root);
1073 return ERR_PTR(ret);
1074 }
1075
1076 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1077 struct btrfs_key *key)
1078 {
1079 struct btrfs_root *root;
1080 struct btrfs_path *path;
1081
1082 path = btrfs_alloc_path();
1083 if (!path)
1084 return ERR_PTR(-ENOMEM);
1085 root = read_tree_root_path(tree_root, path, key);
1086 btrfs_free_path(path);
1087
1088 return root;
1089 }
1090
1091 /*
1092 * Initialize subvolume root in-memory structure
1093 *
1094 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1095 */
1096 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1097 {
1098 int ret;
1099
1100 btrfs_drew_lock_init(&root->snapshot_lock);
1101
1102 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1103 !btrfs_is_data_reloc_root(root) &&
1104 is_fstree(root->root_key.objectid)) {
1105 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1106 btrfs_check_and_init_root_item(&root->root_item);
1107 }
1108
1109 /*
1110 * Don't assign anonymous block device to roots that are not exposed to
1111 * userspace, the id pool is limited to 1M
1112 */
1113 if (is_fstree(root->root_key.objectid) &&
1114 btrfs_root_refs(&root->root_item) > 0) {
1115 if (!anon_dev) {
1116 ret = get_anon_bdev(&root->anon_dev);
1117 if (ret)
1118 goto fail;
1119 } else {
1120 root->anon_dev = anon_dev;
1121 }
1122 }
1123
1124 mutex_lock(&root->objectid_mutex);
1125 ret = btrfs_init_root_free_objectid(root);
1126 if (ret) {
1127 mutex_unlock(&root->objectid_mutex);
1128 goto fail;
1129 }
1130
1131 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1132
1133 mutex_unlock(&root->objectid_mutex);
1134
1135 return 0;
1136 fail:
1137 /* The caller is responsible to call btrfs_free_fs_root */
1138 return ret;
1139 }
1140
1141 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1142 u64 root_id)
1143 {
1144 struct btrfs_root *root;
1145
1146 spin_lock(&fs_info->fs_roots_radix_lock);
1147 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1148 (unsigned long)root_id);
1149 root = btrfs_grab_root(root);
1150 spin_unlock(&fs_info->fs_roots_radix_lock);
1151 return root;
1152 }
1153
1154 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1155 u64 objectid)
1156 {
1157 struct btrfs_key key = {
1158 .objectid = objectid,
1159 .type = BTRFS_ROOT_ITEM_KEY,
1160 .offset = 0,
1161 };
1162
1163 switch (objectid) {
1164 case BTRFS_ROOT_TREE_OBJECTID:
1165 return btrfs_grab_root(fs_info->tree_root);
1166 case BTRFS_EXTENT_TREE_OBJECTID:
1167 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1168 case BTRFS_CHUNK_TREE_OBJECTID:
1169 return btrfs_grab_root(fs_info->chunk_root);
1170 case BTRFS_DEV_TREE_OBJECTID:
1171 return btrfs_grab_root(fs_info->dev_root);
1172 case BTRFS_CSUM_TREE_OBJECTID:
1173 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1174 case BTRFS_QUOTA_TREE_OBJECTID:
1175 return btrfs_grab_root(fs_info->quota_root);
1176 case BTRFS_UUID_TREE_OBJECTID:
1177 return btrfs_grab_root(fs_info->uuid_root);
1178 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1179 return btrfs_grab_root(fs_info->block_group_root);
1180 case BTRFS_FREE_SPACE_TREE_OBJECTID:
1181 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1182 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1183 return btrfs_grab_root(fs_info->stripe_root);
1184 default:
1185 return NULL;
1186 }
1187 }
1188
1189 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1190 struct btrfs_root *root)
1191 {
1192 int ret;
1193
1194 ret = radix_tree_preload(GFP_NOFS);
1195 if (ret)
1196 return ret;
1197
1198 spin_lock(&fs_info->fs_roots_radix_lock);
1199 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1200 (unsigned long)root->root_key.objectid,
1201 root);
1202 if (ret == 0) {
1203 btrfs_grab_root(root);
1204 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1205 }
1206 spin_unlock(&fs_info->fs_roots_radix_lock);
1207 radix_tree_preload_end();
1208
1209 return ret;
1210 }
1211
1212 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1213 {
1214 #ifdef CONFIG_BTRFS_DEBUG
1215 struct btrfs_root *root;
1216
1217 while (!list_empty(&fs_info->allocated_roots)) {
1218 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1219
1220 root = list_first_entry(&fs_info->allocated_roots,
1221 struct btrfs_root, leak_list);
1222 btrfs_err(fs_info, "leaked root %s refcount %d",
1223 btrfs_root_name(&root->root_key, buf),
1224 refcount_read(&root->refs));
1225 while (refcount_read(&root->refs) > 1)
1226 btrfs_put_root(root);
1227 btrfs_put_root(root);
1228 }
1229 #endif
1230 }
1231
1232 static void free_global_roots(struct btrfs_fs_info *fs_info)
1233 {
1234 struct btrfs_root *root;
1235 struct rb_node *node;
1236
1237 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1238 root = rb_entry(node, struct btrfs_root, rb_node);
1239 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1240 btrfs_put_root(root);
1241 }
1242 }
1243
1244 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1245 {
1246 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1247 percpu_counter_destroy(&fs_info->delalloc_bytes);
1248 percpu_counter_destroy(&fs_info->ordered_bytes);
1249 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1250 btrfs_free_csum_hash(fs_info);
1251 btrfs_free_stripe_hash_table(fs_info);
1252 btrfs_free_ref_cache(fs_info);
1253 kfree(fs_info->balance_ctl);
1254 kfree(fs_info->delayed_root);
1255 free_global_roots(fs_info);
1256 btrfs_put_root(fs_info->tree_root);
1257 btrfs_put_root(fs_info->chunk_root);
1258 btrfs_put_root(fs_info->dev_root);
1259 btrfs_put_root(fs_info->quota_root);
1260 btrfs_put_root(fs_info->uuid_root);
1261 btrfs_put_root(fs_info->fs_root);
1262 btrfs_put_root(fs_info->data_reloc_root);
1263 btrfs_put_root(fs_info->block_group_root);
1264 btrfs_put_root(fs_info->stripe_root);
1265 btrfs_check_leaked_roots(fs_info);
1266 btrfs_extent_buffer_leak_debug_check(fs_info);
1267 kfree(fs_info->super_copy);
1268 kfree(fs_info->super_for_commit);
1269 kfree(fs_info->subpage_info);
1270 kvfree(fs_info);
1271 }
1272
1273
1274 /*
1275 * Get an in-memory reference of a root structure.
1276 *
1277 * For essential trees like root/extent tree, we grab it from fs_info directly.
1278 * For subvolume trees, we check the cached filesystem roots first. If not
1279 * found, then read it from disk and add it to cached fs roots.
1280 *
1281 * Caller should release the root by calling btrfs_put_root() after the usage.
1282 *
1283 * NOTE: Reloc and log trees can't be read by this function as they share the
1284 * same root objectid.
1285 *
1286 * @objectid: root id
1287 * @anon_dev: preallocated anonymous block device number for new roots,
1288 * pass 0 for new allocation.
1289 * @check_ref: whether to check root item references, If true, return -ENOENT
1290 * for orphan roots
1291 */
1292 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1293 u64 objectid, dev_t anon_dev,
1294 bool check_ref)
1295 {
1296 struct btrfs_root *root;
1297 struct btrfs_path *path;
1298 struct btrfs_key key;
1299 int ret;
1300
1301 root = btrfs_get_global_root(fs_info, objectid);
1302 if (root)
1303 return root;
1304
1305 /*
1306 * If we're called for non-subvolume trees, and above function didn't
1307 * find one, do not try to read it from disk.
1308 *
1309 * This is namely for free-space-tree and quota tree, which can change
1310 * at runtime and should only be grabbed from fs_info.
1311 */
1312 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1313 return ERR_PTR(-ENOENT);
1314 again:
1315 root = btrfs_lookup_fs_root(fs_info, objectid);
1316 if (root) {
1317 /* Shouldn't get preallocated anon_dev for cached roots */
1318 ASSERT(!anon_dev);
1319 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1320 btrfs_put_root(root);
1321 return ERR_PTR(-ENOENT);
1322 }
1323 return root;
1324 }
1325
1326 key.objectid = objectid;
1327 key.type = BTRFS_ROOT_ITEM_KEY;
1328 key.offset = (u64)-1;
1329 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1330 if (IS_ERR(root))
1331 return root;
1332
1333 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1334 ret = -ENOENT;
1335 goto fail;
1336 }
1337
1338 ret = btrfs_init_fs_root(root, anon_dev);
1339 if (ret)
1340 goto fail;
1341
1342 path = btrfs_alloc_path();
1343 if (!path) {
1344 ret = -ENOMEM;
1345 goto fail;
1346 }
1347 key.objectid = BTRFS_ORPHAN_OBJECTID;
1348 key.type = BTRFS_ORPHAN_ITEM_KEY;
1349 key.offset = objectid;
1350
1351 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1352 btrfs_free_path(path);
1353 if (ret < 0)
1354 goto fail;
1355 if (ret == 0)
1356 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1357
1358 ret = btrfs_insert_fs_root(fs_info, root);
1359 if (ret) {
1360 if (ret == -EEXIST) {
1361 btrfs_put_root(root);
1362 goto again;
1363 }
1364 goto fail;
1365 }
1366 return root;
1367 fail:
1368 /*
1369 * If our caller provided us an anonymous device, then it's his
1370 * responsibility to free it in case we fail. So we have to set our
1371 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1372 * and once again by our caller.
1373 */
1374 if (anon_dev)
1375 root->anon_dev = 0;
1376 btrfs_put_root(root);
1377 return ERR_PTR(ret);
1378 }
1379
1380 /*
1381 * Get in-memory reference of a root structure
1382 *
1383 * @objectid: tree objectid
1384 * @check_ref: if set, verify that the tree exists and the item has at least
1385 * one reference
1386 */
1387 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1388 u64 objectid, bool check_ref)
1389 {
1390 return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1391 }
1392
1393 /*
1394 * Get in-memory reference of a root structure, created as new, optionally pass
1395 * the anonymous block device id
1396 *
1397 * @objectid: tree objectid
1398 * @anon_dev: if zero, allocate a new anonymous block device or use the
1399 * parameter value
1400 */
1401 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1402 u64 objectid, dev_t anon_dev)
1403 {
1404 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1405 }
1406
1407 /*
1408 * Return a root for the given objectid.
1409 *
1410 * @fs_info: the fs_info
1411 * @objectid: the objectid we need to lookup
1412 *
1413 * This is exclusively used for backref walking, and exists specifically because
1414 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1415 * creation time, which means we may have to read the tree_root in order to look
1416 * up a fs root that is not in memory. If the root is not in memory we will
1417 * read the tree root commit root and look up the fs root from there. This is a
1418 * temporary root, it will not be inserted into the radix tree as it doesn't
1419 * have the most uptodate information, it'll simply be discarded once the
1420 * backref code is finished using the root.
1421 */
1422 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1423 struct btrfs_path *path,
1424 u64 objectid)
1425 {
1426 struct btrfs_root *root;
1427 struct btrfs_key key;
1428
1429 ASSERT(path->search_commit_root && path->skip_locking);
1430
1431 /*
1432 * This can return -ENOENT if we ask for a root that doesn't exist, but
1433 * since this is called via the backref walking code we won't be looking
1434 * up a root that doesn't exist, unless there's corruption. So if root
1435 * != NULL just return it.
1436 */
1437 root = btrfs_get_global_root(fs_info, objectid);
1438 if (root)
1439 return root;
1440
1441 root = btrfs_lookup_fs_root(fs_info, objectid);
1442 if (root)
1443 return root;
1444
1445 key.objectid = objectid;
1446 key.type = BTRFS_ROOT_ITEM_KEY;
1447 key.offset = (u64)-1;
1448 root = read_tree_root_path(fs_info->tree_root, path, &key);
1449 btrfs_release_path(path);
1450
1451 return root;
1452 }
1453
1454 static int cleaner_kthread(void *arg)
1455 {
1456 struct btrfs_fs_info *fs_info = arg;
1457 int again;
1458
1459 while (1) {
1460 again = 0;
1461
1462 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1463
1464 /* Make the cleaner go to sleep early. */
1465 if (btrfs_need_cleaner_sleep(fs_info))
1466 goto sleep;
1467
1468 /*
1469 * Do not do anything if we might cause open_ctree() to block
1470 * before we have finished mounting the filesystem.
1471 */
1472 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1473 goto sleep;
1474
1475 if (!mutex_trylock(&fs_info->cleaner_mutex))
1476 goto sleep;
1477
1478 /*
1479 * Avoid the problem that we change the status of the fs
1480 * during the above check and trylock.
1481 */
1482 if (btrfs_need_cleaner_sleep(fs_info)) {
1483 mutex_unlock(&fs_info->cleaner_mutex);
1484 goto sleep;
1485 }
1486
1487 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1488 btrfs_sysfs_feature_update(fs_info);
1489
1490 btrfs_run_delayed_iputs(fs_info);
1491
1492 again = btrfs_clean_one_deleted_snapshot(fs_info);
1493 mutex_unlock(&fs_info->cleaner_mutex);
1494
1495 /*
1496 * The defragger has dealt with the R/O remount and umount,
1497 * needn't do anything special here.
1498 */
1499 btrfs_run_defrag_inodes(fs_info);
1500
1501 /*
1502 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1503 * with relocation (btrfs_relocate_chunk) and relocation
1504 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1505 * after acquiring fs_info->reclaim_bgs_lock. So we
1506 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1507 * unused block groups.
1508 */
1509 btrfs_delete_unused_bgs(fs_info);
1510
1511 /*
1512 * Reclaim block groups in the reclaim_bgs list after we deleted
1513 * all unused block_groups. This possibly gives us some more free
1514 * space.
1515 */
1516 btrfs_reclaim_bgs(fs_info);
1517 sleep:
1518 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1519 if (kthread_should_park())
1520 kthread_parkme();
1521 if (kthread_should_stop())
1522 return 0;
1523 if (!again) {
1524 set_current_state(TASK_INTERRUPTIBLE);
1525 schedule();
1526 __set_current_state(TASK_RUNNING);
1527 }
1528 }
1529 }
1530
1531 static int transaction_kthread(void *arg)
1532 {
1533 struct btrfs_root *root = arg;
1534 struct btrfs_fs_info *fs_info = root->fs_info;
1535 struct btrfs_trans_handle *trans;
1536 struct btrfs_transaction *cur;
1537 u64 transid;
1538 time64_t delta;
1539 unsigned long delay;
1540 bool cannot_commit;
1541
1542 do {
1543 cannot_commit = false;
1544 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1545 mutex_lock(&fs_info->transaction_kthread_mutex);
1546
1547 spin_lock(&fs_info->trans_lock);
1548 cur = fs_info->running_transaction;
1549 if (!cur) {
1550 spin_unlock(&fs_info->trans_lock);
1551 goto sleep;
1552 }
1553
1554 delta = ktime_get_seconds() - cur->start_time;
1555 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1556 cur->state < TRANS_STATE_COMMIT_PREP &&
1557 delta < fs_info->commit_interval) {
1558 spin_unlock(&fs_info->trans_lock);
1559 delay -= msecs_to_jiffies((delta - 1) * 1000);
1560 delay = min(delay,
1561 msecs_to_jiffies(fs_info->commit_interval * 1000));
1562 goto sleep;
1563 }
1564 transid = cur->transid;
1565 spin_unlock(&fs_info->trans_lock);
1566
1567 /* If the file system is aborted, this will always fail. */
1568 trans = btrfs_attach_transaction(root);
1569 if (IS_ERR(trans)) {
1570 if (PTR_ERR(trans) != -ENOENT)
1571 cannot_commit = true;
1572 goto sleep;
1573 }
1574 if (transid == trans->transid) {
1575 btrfs_commit_transaction(trans);
1576 } else {
1577 btrfs_end_transaction(trans);
1578 }
1579 sleep:
1580 wake_up_process(fs_info->cleaner_kthread);
1581 mutex_unlock(&fs_info->transaction_kthread_mutex);
1582
1583 if (BTRFS_FS_ERROR(fs_info))
1584 btrfs_cleanup_transaction(fs_info);
1585 if (!kthread_should_stop() &&
1586 (!btrfs_transaction_blocked(fs_info) ||
1587 cannot_commit))
1588 schedule_timeout_interruptible(delay);
1589 } while (!kthread_should_stop());
1590 return 0;
1591 }
1592
1593 /*
1594 * This will find the highest generation in the array of root backups. The
1595 * index of the highest array is returned, or -EINVAL if we can't find
1596 * anything.
1597 *
1598 * We check to make sure the array is valid by comparing the
1599 * generation of the latest root in the array with the generation
1600 * in the super block. If they don't match we pitch it.
1601 */
1602 static int find_newest_super_backup(struct btrfs_fs_info *info)
1603 {
1604 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1605 u64 cur;
1606 struct btrfs_root_backup *root_backup;
1607 int i;
1608
1609 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1610 root_backup = info->super_copy->super_roots + i;
1611 cur = btrfs_backup_tree_root_gen(root_backup);
1612 if (cur == newest_gen)
1613 return i;
1614 }
1615
1616 return -EINVAL;
1617 }
1618
1619 /*
1620 * copy all the root pointers into the super backup array.
1621 * this will bump the backup pointer by one when it is
1622 * done
1623 */
1624 static void backup_super_roots(struct btrfs_fs_info *info)
1625 {
1626 const int next_backup = info->backup_root_index;
1627 struct btrfs_root_backup *root_backup;
1628
1629 root_backup = info->super_for_commit->super_roots + next_backup;
1630
1631 /*
1632 * make sure all of our padding and empty slots get zero filled
1633 * regardless of which ones we use today
1634 */
1635 memset(root_backup, 0, sizeof(*root_backup));
1636
1637 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1638
1639 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1640 btrfs_set_backup_tree_root_gen(root_backup,
1641 btrfs_header_generation(info->tree_root->node));
1642
1643 btrfs_set_backup_tree_root_level(root_backup,
1644 btrfs_header_level(info->tree_root->node));
1645
1646 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1647 btrfs_set_backup_chunk_root_gen(root_backup,
1648 btrfs_header_generation(info->chunk_root->node));
1649 btrfs_set_backup_chunk_root_level(root_backup,
1650 btrfs_header_level(info->chunk_root->node));
1651
1652 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1653 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1654 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1655
1656 btrfs_set_backup_extent_root(root_backup,
1657 extent_root->node->start);
1658 btrfs_set_backup_extent_root_gen(root_backup,
1659 btrfs_header_generation(extent_root->node));
1660 btrfs_set_backup_extent_root_level(root_backup,
1661 btrfs_header_level(extent_root->node));
1662
1663 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1664 btrfs_set_backup_csum_root_gen(root_backup,
1665 btrfs_header_generation(csum_root->node));
1666 btrfs_set_backup_csum_root_level(root_backup,
1667 btrfs_header_level(csum_root->node));
1668 }
1669
1670 /*
1671 * we might commit during log recovery, which happens before we set
1672 * the fs_root. Make sure it is valid before we fill it in.
1673 */
1674 if (info->fs_root && info->fs_root->node) {
1675 btrfs_set_backup_fs_root(root_backup,
1676 info->fs_root->node->start);
1677 btrfs_set_backup_fs_root_gen(root_backup,
1678 btrfs_header_generation(info->fs_root->node));
1679 btrfs_set_backup_fs_root_level(root_backup,
1680 btrfs_header_level(info->fs_root->node));
1681 }
1682
1683 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1684 btrfs_set_backup_dev_root_gen(root_backup,
1685 btrfs_header_generation(info->dev_root->node));
1686 btrfs_set_backup_dev_root_level(root_backup,
1687 btrfs_header_level(info->dev_root->node));
1688
1689 btrfs_set_backup_total_bytes(root_backup,
1690 btrfs_super_total_bytes(info->super_copy));
1691 btrfs_set_backup_bytes_used(root_backup,
1692 btrfs_super_bytes_used(info->super_copy));
1693 btrfs_set_backup_num_devices(root_backup,
1694 btrfs_super_num_devices(info->super_copy));
1695
1696 /*
1697 * if we don't copy this out to the super_copy, it won't get remembered
1698 * for the next commit
1699 */
1700 memcpy(&info->super_copy->super_roots,
1701 &info->super_for_commit->super_roots,
1702 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1703 }
1704
1705 /*
1706 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1707 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1708 *
1709 * @fs_info: filesystem whose backup roots need to be read
1710 * @priority: priority of backup root required
1711 *
1712 * Returns backup root index on success and -EINVAL otherwise.
1713 */
1714 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1715 {
1716 int backup_index = find_newest_super_backup(fs_info);
1717 struct btrfs_super_block *super = fs_info->super_copy;
1718 struct btrfs_root_backup *root_backup;
1719
1720 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1721 if (priority == 0)
1722 return backup_index;
1723
1724 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1725 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1726 } else {
1727 return -EINVAL;
1728 }
1729
1730 root_backup = super->super_roots + backup_index;
1731
1732 btrfs_set_super_generation(super,
1733 btrfs_backup_tree_root_gen(root_backup));
1734 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1735 btrfs_set_super_root_level(super,
1736 btrfs_backup_tree_root_level(root_backup));
1737 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1738
1739 /*
1740 * Fixme: the total bytes and num_devices need to match or we should
1741 * need a fsck
1742 */
1743 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1744 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1745
1746 return backup_index;
1747 }
1748
1749 /* helper to cleanup workers */
1750 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1751 {
1752 btrfs_destroy_workqueue(fs_info->fixup_workers);
1753 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1754 btrfs_destroy_workqueue(fs_info->workers);
1755 if (fs_info->endio_workers)
1756 destroy_workqueue(fs_info->endio_workers);
1757 if (fs_info->rmw_workers)
1758 destroy_workqueue(fs_info->rmw_workers);
1759 if (fs_info->compressed_write_workers)
1760 destroy_workqueue(fs_info->compressed_write_workers);
1761 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1762 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1763 btrfs_destroy_workqueue(fs_info->delayed_workers);
1764 btrfs_destroy_workqueue(fs_info->caching_workers);
1765 btrfs_destroy_workqueue(fs_info->flush_workers);
1766 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1767 if (fs_info->discard_ctl.discard_workers)
1768 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1769 /*
1770 * Now that all other work queues are destroyed, we can safely destroy
1771 * the queues used for metadata I/O, since tasks from those other work
1772 * queues can do metadata I/O operations.
1773 */
1774 if (fs_info->endio_meta_workers)
1775 destroy_workqueue(fs_info->endio_meta_workers);
1776 }
1777
1778 static void free_root_extent_buffers(struct btrfs_root *root)
1779 {
1780 if (root) {
1781 free_extent_buffer(root->node);
1782 free_extent_buffer(root->commit_root);
1783 root->node = NULL;
1784 root->commit_root = NULL;
1785 }
1786 }
1787
1788 static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1789 {
1790 struct btrfs_root *root, *tmp;
1791
1792 rbtree_postorder_for_each_entry_safe(root, tmp,
1793 &fs_info->global_root_tree,
1794 rb_node)
1795 free_root_extent_buffers(root);
1796 }
1797
1798 /* helper to cleanup tree roots */
1799 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1800 {
1801 free_root_extent_buffers(info->tree_root);
1802
1803 free_global_root_pointers(info);
1804 free_root_extent_buffers(info->dev_root);
1805 free_root_extent_buffers(info->quota_root);
1806 free_root_extent_buffers(info->uuid_root);
1807 free_root_extent_buffers(info->fs_root);
1808 free_root_extent_buffers(info->data_reloc_root);
1809 free_root_extent_buffers(info->block_group_root);
1810 free_root_extent_buffers(info->stripe_root);
1811 if (free_chunk_root)
1812 free_root_extent_buffers(info->chunk_root);
1813 }
1814
1815 void btrfs_put_root(struct btrfs_root *root)
1816 {
1817 if (!root)
1818 return;
1819
1820 if (refcount_dec_and_test(&root->refs)) {
1821 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1822 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1823 if (root->anon_dev)
1824 free_anon_bdev(root->anon_dev);
1825 free_root_extent_buffers(root);
1826 #ifdef CONFIG_BTRFS_DEBUG
1827 spin_lock(&root->fs_info->fs_roots_radix_lock);
1828 list_del_init(&root->leak_list);
1829 spin_unlock(&root->fs_info->fs_roots_radix_lock);
1830 #endif
1831 kfree(root);
1832 }
1833 }
1834
1835 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1836 {
1837 int ret;
1838 struct btrfs_root *gang[8];
1839 int i;
1840
1841 while (!list_empty(&fs_info->dead_roots)) {
1842 gang[0] = list_entry(fs_info->dead_roots.next,
1843 struct btrfs_root, root_list);
1844 list_del(&gang[0]->root_list);
1845
1846 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1847 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1848 btrfs_put_root(gang[0]);
1849 }
1850
1851 while (1) {
1852 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1853 (void **)gang, 0,
1854 ARRAY_SIZE(gang));
1855 if (!ret)
1856 break;
1857 for (i = 0; i < ret; i++)
1858 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1859 }
1860 }
1861
1862 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1863 {
1864 mutex_init(&fs_info->scrub_lock);
1865 atomic_set(&fs_info->scrubs_running, 0);
1866 atomic_set(&fs_info->scrub_pause_req, 0);
1867 atomic_set(&fs_info->scrubs_paused, 0);
1868 atomic_set(&fs_info->scrub_cancel_req, 0);
1869 init_waitqueue_head(&fs_info->scrub_pause_wait);
1870 refcount_set(&fs_info->scrub_workers_refcnt, 0);
1871 }
1872
1873 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1874 {
1875 spin_lock_init(&fs_info->balance_lock);
1876 mutex_init(&fs_info->balance_mutex);
1877 atomic_set(&fs_info->balance_pause_req, 0);
1878 atomic_set(&fs_info->balance_cancel_req, 0);
1879 fs_info->balance_ctl = NULL;
1880 init_waitqueue_head(&fs_info->balance_wait_q);
1881 atomic_set(&fs_info->reloc_cancel_req, 0);
1882 }
1883
1884 static int btrfs_init_btree_inode(struct super_block *sb)
1885 {
1886 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1887 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1888 fs_info->tree_root);
1889 struct inode *inode;
1890
1891 inode = new_inode(sb);
1892 if (!inode)
1893 return -ENOMEM;
1894
1895 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1896 set_nlink(inode, 1);
1897 /*
1898 * we set the i_size on the btree inode to the max possible int.
1899 * the real end of the address space is determined by all of
1900 * the devices in the system
1901 */
1902 inode->i_size = OFFSET_MAX;
1903 inode->i_mapping->a_ops = &btree_aops;
1904 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1905
1906 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1907 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1908 IO_TREE_BTREE_INODE_IO);
1909 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1910
1911 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1912 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1913 BTRFS_I(inode)->location.type = 0;
1914 BTRFS_I(inode)->location.offset = 0;
1915 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1916 __insert_inode_hash(inode, hash);
1917 fs_info->btree_inode = inode;
1918
1919 return 0;
1920 }
1921
1922 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1923 {
1924 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1925 init_rwsem(&fs_info->dev_replace.rwsem);
1926 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
1927 }
1928
1929 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1930 {
1931 spin_lock_init(&fs_info->qgroup_lock);
1932 mutex_init(&fs_info->qgroup_ioctl_lock);
1933 fs_info->qgroup_tree = RB_ROOT;
1934 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1935 fs_info->qgroup_seq = 1;
1936 fs_info->qgroup_ulist = NULL;
1937 fs_info->qgroup_rescan_running = false;
1938 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1939 mutex_init(&fs_info->qgroup_rescan_lock);
1940 }
1941
1942 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
1943 {
1944 u32 max_active = fs_info->thread_pool_size;
1945 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1946 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1947
1948 fs_info->workers =
1949 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
1950
1951 fs_info->delalloc_workers =
1952 btrfs_alloc_workqueue(fs_info, "delalloc",
1953 flags, max_active, 2);
1954
1955 fs_info->flush_workers =
1956 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1957 flags, max_active, 0);
1958
1959 fs_info->caching_workers =
1960 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
1961
1962 fs_info->fixup_workers =
1963 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1964
1965 fs_info->endio_workers =
1966 alloc_workqueue("btrfs-endio", flags, max_active);
1967 fs_info->endio_meta_workers =
1968 alloc_workqueue("btrfs-endio-meta", flags, max_active);
1969 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
1970 fs_info->endio_write_workers =
1971 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
1972 max_active, 2);
1973 fs_info->compressed_write_workers =
1974 alloc_workqueue("btrfs-compressed-write", flags, max_active);
1975 fs_info->endio_freespace_worker =
1976 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
1977 max_active, 0);
1978 fs_info->delayed_workers =
1979 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
1980 max_active, 0);
1981 fs_info->qgroup_rescan_workers =
1982 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
1983 ordered_flags);
1984 fs_info->discard_ctl.discard_workers =
1985 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
1986
1987 if (!(fs_info->workers &&
1988 fs_info->delalloc_workers && fs_info->flush_workers &&
1989 fs_info->endio_workers && fs_info->endio_meta_workers &&
1990 fs_info->compressed_write_workers &&
1991 fs_info->endio_write_workers &&
1992 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
1993 fs_info->caching_workers && fs_info->fixup_workers &&
1994 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
1995 fs_info->discard_ctl.discard_workers)) {
1996 return -ENOMEM;
1997 }
1998
1999 return 0;
2000 }
2001
2002 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2003 {
2004 struct crypto_shash *csum_shash;
2005 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2006
2007 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2008
2009 if (IS_ERR(csum_shash)) {
2010 btrfs_err(fs_info, "error allocating %s hash for checksum",
2011 csum_driver);
2012 return PTR_ERR(csum_shash);
2013 }
2014
2015 fs_info->csum_shash = csum_shash;
2016
2017 /*
2018 * Check if the checksum implementation is a fast accelerated one.
2019 * As-is this is a bit of a hack and should be replaced once the csum
2020 * implementations provide that information themselves.
2021 */
2022 switch (csum_type) {
2023 case BTRFS_CSUM_TYPE_CRC32:
2024 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2025 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2026 break;
2027 case BTRFS_CSUM_TYPE_XXHASH:
2028 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2029 break;
2030 default:
2031 break;
2032 }
2033
2034 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2035 btrfs_super_csum_name(csum_type),
2036 crypto_shash_driver_name(csum_shash));
2037 return 0;
2038 }
2039
2040 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2041 struct btrfs_fs_devices *fs_devices)
2042 {
2043 int ret;
2044 struct btrfs_tree_parent_check check = { 0 };
2045 struct btrfs_root *log_tree_root;
2046 struct btrfs_super_block *disk_super = fs_info->super_copy;
2047 u64 bytenr = btrfs_super_log_root(disk_super);
2048 int level = btrfs_super_log_root_level(disk_super);
2049
2050 if (fs_devices->rw_devices == 0) {
2051 btrfs_warn(fs_info, "log replay required on RO media");
2052 return -EIO;
2053 }
2054
2055 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2056 GFP_KERNEL);
2057 if (!log_tree_root)
2058 return -ENOMEM;
2059
2060 check.level = level;
2061 check.transid = fs_info->generation + 1;
2062 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2063 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2064 if (IS_ERR(log_tree_root->node)) {
2065 btrfs_warn(fs_info, "failed to read log tree");
2066 ret = PTR_ERR(log_tree_root->node);
2067 log_tree_root->node = NULL;
2068 btrfs_put_root(log_tree_root);
2069 return ret;
2070 }
2071 if (!extent_buffer_uptodate(log_tree_root->node)) {
2072 btrfs_err(fs_info, "failed to read log tree");
2073 btrfs_put_root(log_tree_root);
2074 return -EIO;
2075 }
2076
2077 /* returns with log_tree_root freed on success */
2078 ret = btrfs_recover_log_trees(log_tree_root);
2079 if (ret) {
2080 btrfs_handle_fs_error(fs_info, ret,
2081 "Failed to recover log tree");
2082 btrfs_put_root(log_tree_root);
2083 return ret;
2084 }
2085
2086 if (sb_rdonly(fs_info->sb)) {
2087 ret = btrfs_commit_super(fs_info);
2088 if (ret)
2089 return ret;
2090 }
2091
2092 return 0;
2093 }
2094
2095 static int load_global_roots_objectid(struct btrfs_root *tree_root,
2096 struct btrfs_path *path, u64 objectid,
2097 const char *name)
2098 {
2099 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2100 struct btrfs_root *root;
2101 u64 max_global_id = 0;
2102 int ret;
2103 struct btrfs_key key = {
2104 .objectid = objectid,
2105 .type = BTRFS_ROOT_ITEM_KEY,
2106 .offset = 0,
2107 };
2108 bool found = false;
2109
2110 /* If we have IGNOREDATACSUMS skip loading these roots. */
2111 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2112 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2113 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2114 return 0;
2115 }
2116
2117 while (1) {
2118 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2119 if (ret < 0)
2120 break;
2121
2122 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2123 ret = btrfs_next_leaf(tree_root, path);
2124 if (ret) {
2125 if (ret > 0)
2126 ret = 0;
2127 break;
2128 }
2129 }
2130 ret = 0;
2131
2132 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2133 if (key.objectid != objectid)
2134 break;
2135 btrfs_release_path(path);
2136
2137 /*
2138 * Just worry about this for extent tree, it'll be the same for
2139 * everybody.
2140 */
2141 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2142 max_global_id = max(max_global_id, key.offset);
2143
2144 found = true;
2145 root = read_tree_root_path(tree_root, path, &key);
2146 if (IS_ERR(root)) {
2147 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2148 ret = PTR_ERR(root);
2149 break;
2150 }
2151 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2152 ret = btrfs_global_root_insert(root);
2153 if (ret) {
2154 btrfs_put_root(root);
2155 break;
2156 }
2157 key.offset++;
2158 }
2159 btrfs_release_path(path);
2160
2161 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2162 fs_info->nr_global_roots = max_global_id + 1;
2163
2164 if (!found || ret) {
2165 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2166 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2167
2168 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2169 ret = ret ? ret : -ENOENT;
2170 else
2171 ret = 0;
2172 btrfs_err(fs_info, "failed to load root %s", name);
2173 }
2174 return ret;
2175 }
2176
2177 static int load_global_roots(struct btrfs_root *tree_root)
2178 {
2179 struct btrfs_path *path;
2180 int ret = 0;
2181
2182 path = btrfs_alloc_path();
2183 if (!path)
2184 return -ENOMEM;
2185
2186 ret = load_global_roots_objectid(tree_root, path,
2187 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2188 if (ret)
2189 goto out;
2190 ret = load_global_roots_objectid(tree_root, path,
2191 BTRFS_CSUM_TREE_OBJECTID, "csum");
2192 if (ret)
2193 goto out;
2194 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2195 goto out;
2196 ret = load_global_roots_objectid(tree_root, path,
2197 BTRFS_FREE_SPACE_TREE_OBJECTID,
2198 "free space");
2199 out:
2200 btrfs_free_path(path);
2201 return ret;
2202 }
2203
2204 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2205 {
2206 struct btrfs_root *tree_root = fs_info->tree_root;
2207 struct btrfs_root *root;
2208 struct btrfs_key location;
2209 int ret;
2210
2211 BUG_ON(!fs_info->tree_root);
2212
2213 ret = load_global_roots(tree_root);
2214 if (ret)
2215 return ret;
2216
2217 location.type = BTRFS_ROOT_ITEM_KEY;
2218 location.offset = 0;
2219
2220 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2221 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2222 root = btrfs_read_tree_root(tree_root, &location);
2223 if (IS_ERR(root)) {
2224 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2225 ret = PTR_ERR(root);
2226 goto out;
2227 }
2228 } else {
2229 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2230 fs_info->block_group_root = root;
2231 }
2232 }
2233
2234 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2235 root = btrfs_read_tree_root(tree_root, &location);
2236 if (IS_ERR(root)) {
2237 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2238 ret = PTR_ERR(root);
2239 goto out;
2240 }
2241 } else {
2242 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2243 fs_info->dev_root = root;
2244 }
2245 /* Initialize fs_info for all devices in any case */
2246 ret = btrfs_init_devices_late(fs_info);
2247 if (ret)
2248 goto out;
2249
2250 /*
2251 * This tree can share blocks with some other fs tree during relocation
2252 * and we need a proper setup by btrfs_get_fs_root
2253 */
2254 root = btrfs_get_fs_root(tree_root->fs_info,
2255 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2256 if (IS_ERR(root)) {
2257 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2258 ret = PTR_ERR(root);
2259 goto out;
2260 }
2261 } else {
2262 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2263 fs_info->data_reloc_root = root;
2264 }
2265
2266 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2267 root = btrfs_read_tree_root(tree_root, &location);
2268 if (!IS_ERR(root)) {
2269 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2270 fs_info->quota_root = root;
2271 }
2272
2273 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2274 root = btrfs_read_tree_root(tree_root, &location);
2275 if (IS_ERR(root)) {
2276 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2277 ret = PTR_ERR(root);
2278 if (ret != -ENOENT)
2279 goto out;
2280 }
2281 } else {
2282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2283 fs_info->uuid_root = root;
2284 }
2285
2286 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2287 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2288 root = btrfs_read_tree_root(tree_root, &location);
2289 if (IS_ERR(root)) {
2290 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2291 ret = PTR_ERR(root);
2292 goto out;
2293 }
2294 } else {
2295 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2296 fs_info->stripe_root = root;
2297 }
2298 }
2299
2300 return 0;
2301 out:
2302 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2303 location.objectid, ret);
2304 return ret;
2305 }
2306
2307 /*
2308 * Real super block validation
2309 * NOTE: super csum type and incompat features will not be checked here.
2310 *
2311 * @sb: super block to check
2312 * @mirror_num: the super block number to check its bytenr:
2313 * 0 the primary (1st) sb
2314 * 1, 2 2nd and 3rd backup copy
2315 * -1 skip bytenr check
2316 */
2317 int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2318 struct btrfs_super_block *sb, int mirror_num)
2319 {
2320 u64 nodesize = btrfs_super_nodesize(sb);
2321 u64 sectorsize = btrfs_super_sectorsize(sb);
2322 int ret = 0;
2323
2324 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2325 btrfs_err(fs_info, "no valid FS found");
2326 ret = -EINVAL;
2327 }
2328 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2329 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2330 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2331 ret = -EINVAL;
2332 }
2333 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2334 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2335 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2336 ret = -EINVAL;
2337 }
2338 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2339 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2340 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2341 ret = -EINVAL;
2342 }
2343 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2344 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2345 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2346 ret = -EINVAL;
2347 }
2348
2349 /*
2350 * Check sectorsize and nodesize first, other check will need it.
2351 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2352 */
2353 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2354 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2355 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2356 ret = -EINVAL;
2357 }
2358
2359 /*
2360 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2361 *
2362 * We can support 16K sectorsize with 64K page size without problem,
2363 * but such sectorsize/pagesize combination doesn't make much sense.
2364 * 4K will be our future standard, PAGE_SIZE is supported from the very
2365 * beginning.
2366 */
2367 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2368 btrfs_err(fs_info,
2369 "sectorsize %llu not yet supported for page size %lu",
2370 sectorsize, PAGE_SIZE);
2371 ret = -EINVAL;
2372 }
2373
2374 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2375 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2376 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2377 ret = -EINVAL;
2378 }
2379 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2380 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2381 le32_to_cpu(sb->__unused_leafsize), nodesize);
2382 ret = -EINVAL;
2383 }
2384
2385 /* Root alignment check */
2386 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2387 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2388 btrfs_super_root(sb));
2389 ret = -EINVAL;
2390 }
2391 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2392 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2393 btrfs_super_chunk_root(sb));
2394 ret = -EINVAL;
2395 }
2396 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2397 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2398 btrfs_super_log_root(sb));
2399 ret = -EINVAL;
2400 }
2401
2402 if (memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2403 btrfs_err(fs_info,
2404 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2405 sb->fsid, fs_info->fs_devices->fsid);
2406 ret = -EINVAL;
2407 }
2408
2409 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2410 BTRFS_FSID_SIZE) != 0) {
2411 btrfs_err(fs_info,
2412 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2413 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2414 ret = -EINVAL;
2415 }
2416
2417 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2418 BTRFS_FSID_SIZE) != 0) {
2419 btrfs_err(fs_info,
2420 "dev_item UUID does not match metadata fsid: %pU != %pU",
2421 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2422 ret = -EINVAL;
2423 }
2424
2425 /*
2426 * Artificial requirement for block-group-tree to force newer features
2427 * (free-space-tree, no-holes) so the test matrix is smaller.
2428 */
2429 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2430 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2431 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2432 btrfs_err(fs_info,
2433 "block-group-tree feature requires fres-space-tree and no-holes");
2434 ret = -EINVAL;
2435 }
2436
2437 /*
2438 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2439 * done later
2440 */
2441 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2442 btrfs_err(fs_info, "bytes_used is too small %llu",
2443 btrfs_super_bytes_used(sb));
2444 ret = -EINVAL;
2445 }
2446 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2447 btrfs_err(fs_info, "invalid stripesize %u",
2448 btrfs_super_stripesize(sb));
2449 ret = -EINVAL;
2450 }
2451 if (btrfs_super_num_devices(sb) > (1UL << 31))
2452 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2453 btrfs_super_num_devices(sb));
2454 if (btrfs_super_num_devices(sb) == 0) {
2455 btrfs_err(fs_info, "number of devices is 0");
2456 ret = -EINVAL;
2457 }
2458
2459 if (mirror_num >= 0 &&
2460 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2461 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2462 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2463 ret = -EINVAL;
2464 }
2465
2466 /*
2467 * Obvious sys_chunk_array corruptions, it must hold at least one key
2468 * and one chunk
2469 */
2470 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2471 btrfs_err(fs_info, "system chunk array too big %u > %u",
2472 btrfs_super_sys_array_size(sb),
2473 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2474 ret = -EINVAL;
2475 }
2476 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2477 + sizeof(struct btrfs_chunk)) {
2478 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2479 btrfs_super_sys_array_size(sb),
2480 sizeof(struct btrfs_disk_key)
2481 + sizeof(struct btrfs_chunk));
2482 ret = -EINVAL;
2483 }
2484
2485 /*
2486 * The generation is a global counter, we'll trust it more than the others
2487 * but it's still possible that it's the one that's wrong.
2488 */
2489 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2490 btrfs_warn(fs_info,
2491 "suspicious: generation < chunk_root_generation: %llu < %llu",
2492 btrfs_super_generation(sb),
2493 btrfs_super_chunk_root_generation(sb));
2494 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2495 && btrfs_super_cache_generation(sb) != (u64)-1)
2496 btrfs_warn(fs_info,
2497 "suspicious: generation < cache_generation: %llu < %llu",
2498 btrfs_super_generation(sb),
2499 btrfs_super_cache_generation(sb));
2500
2501 return ret;
2502 }
2503
2504 /*
2505 * Validation of super block at mount time.
2506 * Some checks already done early at mount time, like csum type and incompat
2507 * flags will be skipped.
2508 */
2509 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2510 {
2511 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2512 }
2513
2514 /*
2515 * Validation of super block at write time.
2516 * Some checks like bytenr check will be skipped as their values will be
2517 * overwritten soon.
2518 * Extra checks like csum type and incompat flags will be done here.
2519 */
2520 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2521 struct btrfs_super_block *sb)
2522 {
2523 int ret;
2524
2525 ret = btrfs_validate_super(fs_info, sb, -1);
2526 if (ret < 0)
2527 goto out;
2528 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2529 ret = -EUCLEAN;
2530 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2531 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2532 goto out;
2533 }
2534 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2535 ret = -EUCLEAN;
2536 btrfs_err(fs_info,
2537 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2538 btrfs_super_incompat_flags(sb),
2539 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2540 goto out;
2541 }
2542 out:
2543 if (ret < 0)
2544 btrfs_err(fs_info,
2545 "super block corruption detected before writing it to disk");
2546 return ret;
2547 }
2548
2549 static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2550 {
2551 struct btrfs_tree_parent_check check = {
2552 .level = level,
2553 .transid = gen,
2554 .owner_root = root->root_key.objectid
2555 };
2556 int ret = 0;
2557
2558 root->node = read_tree_block(root->fs_info, bytenr, &check);
2559 if (IS_ERR(root->node)) {
2560 ret = PTR_ERR(root->node);
2561 root->node = NULL;
2562 return ret;
2563 }
2564 if (!extent_buffer_uptodate(root->node)) {
2565 free_extent_buffer(root->node);
2566 root->node = NULL;
2567 return -EIO;
2568 }
2569
2570 btrfs_set_root_node(&root->root_item, root->node);
2571 root->commit_root = btrfs_root_node(root);
2572 btrfs_set_root_refs(&root->root_item, 1);
2573 return ret;
2574 }
2575
2576 static int load_important_roots(struct btrfs_fs_info *fs_info)
2577 {
2578 struct btrfs_super_block *sb = fs_info->super_copy;
2579 u64 gen, bytenr;
2580 int level, ret;
2581
2582 bytenr = btrfs_super_root(sb);
2583 gen = btrfs_super_generation(sb);
2584 level = btrfs_super_root_level(sb);
2585 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2586 if (ret) {
2587 btrfs_warn(fs_info, "couldn't read tree root");
2588 return ret;
2589 }
2590 return 0;
2591 }
2592
2593 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2594 {
2595 int backup_index = find_newest_super_backup(fs_info);
2596 struct btrfs_super_block *sb = fs_info->super_copy;
2597 struct btrfs_root *tree_root = fs_info->tree_root;
2598 bool handle_error = false;
2599 int ret = 0;
2600 int i;
2601
2602 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2603 if (handle_error) {
2604 if (!IS_ERR(tree_root->node))
2605 free_extent_buffer(tree_root->node);
2606 tree_root->node = NULL;
2607
2608 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2609 break;
2610
2611 free_root_pointers(fs_info, 0);
2612
2613 /*
2614 * Don't use the log in recovery mode, it won't be
2615 * valid
2616 */
2617 btrfs_set_super_log_root(sb, 0);
2618
2619 /* We can't trust the free space cache either */
2620 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2621
2622 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2623 ret = read_backup_root(fs_info, i);
2624 backup_index = ret;
2625 if (ret < 0)
2626 return ret;
2627 }
2628
2629 ret = load_important_roots(fs_info);
2630 if (ret) {
2631 handle_error = true;
2632 continue;
2633 }
2634
2635 /*
2636 * No need to hold btrfs_root::objectid_mutex since the fs
2637 * hasn't been fully initialised and we are the only user
2638 */
2639 ret = btrfs_init_root_free_objectid(tree_root);
2640 if (ret < 0) {
2641 handle_error = true;
2642 continue;
2643 }
2644
2645 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2646
2647 ret = btrfs_read_roots(fs_info);
2648 if (ret < 0) {
2649 handle_error = true;
2650 continue;
2651 }
2652
2653 /* All successful */
2654 fs_info->generation = btrfs_header_generation(tree_root->node);
2655 fs_info->last_trans_committed = fs_info->generation;
2656 fs_info->last_reloc_trans = 0;
2657
2658 /* Always begin writing backup roots after the one being used */
2659 if (backup_index < 0) {
2660 fs_info->backup_root_index = 0;
2661 } else {
2662 fs_info->backup_root_index = backup_index + 1;
2663 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2664 }
2665 break;
2666 }
2667
2668 return ret;
2669 }
2670
2671 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2672 {
2673 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2674 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2675 INIT_LIST_HEAD(&fs_info->trans_list);
2676 INIT_LIST_HEAD(&fs_info->dead_roots);
2677 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2678 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2679 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2680 spin_lock_init(&fs_info->delalloc_root_lock);
2681 spin_lock_init(&fs_info->trans_lock);
2682 spin_lock_init(&fs_info->fs_roots_radix_lock);
2683 spin_lock_init(&fs_info->delayed_iput_lock);
2684 spin_lock_init(&fs_info->defrag_inodes_lock);
2685 spin_lock_init(&fs_info->super_lock);
2686 spin_lock_init(&fs_info->buffer_lock);
2687 spin_lock_init(&fs_info->unused_bgs_lock);
2688 spin_lock_init(&fs_info->treelog_bg_lock);
2689 spin_lock_init(&fs_info->zone_active_bgs_lock);
2690 spin_lock_init(&fs_info->relocation_bg_lock);
2691 rwlock_init(&fs_info->tree_mod_log_lock);
2692 rwlock_init(&fs_info->global_root_lock);
2693 mutex_init(&fs_info->unused_bg_unpin_mutex);
2694 mutex_init(&fs_info->reclaim_bgs_lock);
2695 mutex_init(&fs_info->reloc_mutex);
2696 mutex_init(&fs_info->delalloc_root_mutex);
2697 mutex_init(&fs_info->zoned_meta_io_lock);
2698 mutex_init(&fs_info->zoned_data_reloc_io_lock);
2699 seqlock_init(&fs_info->profiles_lock);
2700
2701 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2702 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2703 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2704 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2705 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2706 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2707 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2708 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2709 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2710 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2711 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2712 BTRFS_LOCKDEP_TRANS_COMPLETED);
2713
2714 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2715 INIT_LIST_HEAD(&fs_info->space_info);
2716 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2717 INIT_LIST_HEAD(&fs_info->unused_bgs);
2718 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2719 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2720 #ifdef CONFIG_BTRFS_DEBUG
2721 INIT_LIST_HEAD(&fs_info->allocated_roots);
2722 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2723 spin_lock_init(&fs_info->eb_leak_lock);
2724 #endif
2725 extent_map_tree_init(&fs_info->mapping_tree);
2726 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2727 BTRFS_BLOCK_RSV_GLOBAL);
2728 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2729 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2730 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2731 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2732 BTRFS_BLOCK_RSV_DELOPS);
2733 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2734 BTRFS_BLOCK_RSV_DELREFS);
2735
2736 atomic_set(&fs_info->async_delalloc_pages, 0);
2737 atomic_set(&fs_info->defrag_running, 0);
2738 atomic_set(&fs_info->nr_delayed_iputs, 0);
2739 atomic64_set(&fs_info->tree_mod_seq, 0);
2740 fs_info->global_root_tree = RB_ROOT;
2741 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2742 fs_info->metadata_ratio = 0;
2743 fs_info->defrag_inodes = RB_ROOT;
2744 atomic64_set(&fs_info->free_chunk_space, 0);
2745 fs_info->tree_mod_log = RB_ROOT;
2746 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2747 btrfs_init_ref_verify(fs_info);
2748
2749 fs_info->thread_pool_size = min_t(unsigned long,
2750 num_online_cpus() + 2, 8);
2751
2752 INIT_LIST_HEAD(&fs_info->ordered_roots);
2753 spin_lock_init(&fs_info->ordered_root_lock);
2754
2755 btrfs_init_scrub(fs_info);
2756 btrfs_init_balance(fs_info);
2757 btrfs_init_async_reclaim_work(fs_info);
2758
2759 rwlock_init(&fs_info->block_group_cache_lock);
2760 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
2761
2762 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2763 IO_TREE_FS_EXCLUDED_EXTENTS);
2764
2765 mutex_init(&fs_info->ordered_operations_mutex);
2766 mutex_init(&fs_info->tree_log_mutex);
2767 mutex_init(&fs_info->chunk_mutex);
2768 mutex_init(&fs_info->transaction_kthread_mutex);
2769 mutex_init(&fs_info->cleaner_mutex);
2770 mutex_init(&fs_info->ro_block_group_mutex);
2771 init_rwsem(&fs_info->commit_root_sem);
2772 init_rwsem(&fs_info->cleanup_work_sem);
2773 init_rwsem(&fs_info->subvol_sem);
2774 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2775
2776 btrfs_init_dev_replace_locks(fs_info);
2777 btrfs_init_qgroup(fs_info);
2778 btrfs_discard_init(fs_info);
2779
2780 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2781 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2782
2783 init_waitqueue_head(&fs_info->transaction_throttle);
2784 init_waitqueue_head(&fs_info->transaction_wait);
2785 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2786 init_waitqueue_head(&fs_info->async_submit_wait);
2787 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2788
2789 /* Usable values until the real ones are cached from the superblock */
2790 fs_info->nodesize = 4096;
2791 fs_info->sectorsize = 4096;
2792 fs_info->sectorsize_bits = ilog2(4096);
2793 fs_info->stripesize = 4096;
2794
2795 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2796
2797 spin_lock_init(&fs_info->swapfile_pins_lock);
2798 fs_info->swapfile_pins = RB_ROOT;
2799
2800 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2801 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2802 }
2803
2804 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2805 {
2806 int ret;
2807
2808 fs_info->sb = sb;
2809 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2810 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2811
2812 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2813 if (ret)
2814 return ret;
2815
2816 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2817 if (ret)
2818 return ret;
2819
2820 fs_info->dirty_metadata_batch = PAGE_SIZE *
2821 (1 + ilog2(nr_cpu_ids));
2822
2823 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2824 if (ret)
2825 return ret;
2826
2827 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2828 GFP_KERNEL);
2829 if (ret)
2830 return ret;
2831
2832 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2833 GFP_KERNEL);
2834 if (!fs_info->delayed_root)
2835 return -ENOMEM;
2836 btrfs_init_delayed_root(fs_info->delayed_root);
2837
2838 if (sb_rdonly(sb))
2839 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2840
2841 return btrfs_alloc_stripe_hash_table(fs_info);
2842 }
2843
2844 static int btrfs_uuid_rescan_kthread(void *data)
2845 {
2846 struct btrfs_fs_info *fs_info = data;
2847 int ret;
2848
2849 /*
2850 * 1st step is to iterate through the existing UUID tree and
2851 * to delete all entries that contain outdated data.
2852 * 2nd step is to add all missing entries to the UUID tree.
2853 */
2854 ret = btrfs_uuid_tree_iterate(fs_info);
2855 if (ret < 0) {
2856 if (ret != -EINTR)
2857 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2858 ret);
2859 up(&fs_info->uuid_tree_rescan_sem);
2860 return ret;
2861 }
2862 return btrfs_uuid_scan_kthread(data);
2863 }
2864
2865 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2866 {
2867 struct task_struct *task;
2868
2869 down(&fs_info->uuid_tree_rescan_sem);
2870 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2871 if (IS_ERR(task)) {
2872 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2873 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2874 up(&fs_info->uuid_tree_rescan_sem);
2875 return PTR_ERR(task);
2876 }
2877
2878 return 0;
2879 }
2880
2881 static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2882 {
2883 u64 root_objectid = 0;
2884 struct btrfs_root *gang[8];
2885 int i = 0;
2886 int err = 0;
2887 unsigned int ret = 0;
2888
2889 while (1) {
2890 spin_lock(&fs_info->fs_roots_radix_lock);
2891 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2892 (void **)gang, root_objectid,
2893 ARRAY_SIZE(gang));
2894 if (!ret) {
2895 spin_unlock(&fs_info->fs_roots_radix_lock);
2896 break;
2897 }
2898 root_objectid = gang[ret - 1]->root_key.objectid + 1;
2899
2900 for (i = 0; i < ret; i++) {
2901 /* Avoid to grab roots in dead_roots. */
2902 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2903 gang[i] = NULL;
2904 continue;
2905 }
2906 /* Grab all the search result for later use. */
2907 gang[i] = btrfs_grab_root(gang[i]);
2908 }
2909 spin_unlock(&fs_info->fs_roots_radix_lock);
2910
2911 for (i = 0; i < ret; i++) {
2912 if (!gang[i])
2913 continue;
2914 root_objectid = gang[i]->root_key.objectid;
2915 err = btrfs_orphan_cleanup(gang[i]);
2916 if (err)
2917 goto out;
2918 btrfs_put_root(gang[i]);
2919 }
2920 root_objectid++;
2921 }
2922 out:
2923 /* Release the uncleaned roots due to error. */
2924 for (; i < ret; i++) {
2925 if (gang[i])
2926 btrfs_put_root(gang[i]);
2927 }
2928 return err;
2929 }
2930
2931 /*
2932 * Some options only have meaning at mount time and shouldn't persist across
2933 * remounts, or be displayed. Clear these at the end of mount and remount
2934 * code paths.
2935 */
2936 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2937 {
2938 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2939 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2940 }
2941
2942 /*
2943 * Mounting logic specific to read-write file systems. Shared by open_ctree
2944 * and btrfs_remount when remounting from read-only to read-write.
2945 */
2946 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2947 {
2948 int ret;
2949 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2950 bool rebuild_free_space_tree = false;
2951
2952 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2953 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2954 rebuild_free_space_tree = true;
2955 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2956 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2957 btrfs_warn(fs_info, "free space tree is invalid");
2958 rebuild_free_space_tree = true;
2959 }
2960
2961 if (rebuild_free_space_tree) {
2962 btrfs_info(fs_info, "rebuilding free space tree");
2963 ret = btrfs_rebuild_free_space_tree(fs_info);
2964 if (ret) {
2965 btrfs_warn(fs_info,
2966 "failed to rebuild free space tree: %d", ret);
2967 goto out;
2968 }
2969 }
2970
2971 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2972 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
2973 btrfs_info(fs_info, "disabling free space tree");
2974 ret = btrfs_delete_free_space_tree(fs_info);
2975 if (ret) {
2976 btrfs_warn(fs_info,
2977 "failed to disable free space tree: %d", ret);
2978 goto out;
2979 }
2980 }
2981
2982 /*
2983 * btrfs_find_orphan_roots() is responsible for finding all the dead
2984 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
2985 * them into the fs_info->fs_roots_radix tree. This must be done before
2986 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
2987 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
2988 * item before the root's tree is deleted - this means that if we unmount
2989 * or crash before the deletion completes, on the next mount we will not
2990 * delete what remains of the tree because the orphan item does not
2991 * exists anymore, which is what tells us we have a pending deletion.
2992 */
2993 ret = btrfs_find_orphan_roots(fs_info);
2994 if (ret)
2995 goto out;
2996
2997 ret = btrfs_cleanup_fs_roots(fs_info);
2998 if (ret)
2999 goto out;
3000
3001 down_read(&fs_info->cleanup_work_sem);
3002 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3003 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3004 up_read(&fs_info->cleanup_work_sem);
3005 goto out;
3006 }
3007 up_read(&fs_info->cleanup_work_sem);
3008
3009 mutex_lock(&fs_info->cleaner_mutex);
3010 ret = btrfs_recover_relocation(fs_info);
3011 mutex_unlock(&fs_info->cleaner_mutex);
3012 if (ret < 0) {
3013 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3014 goto out;
3015 }
3016
3017 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3018 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3019 btrfs_info(fs_info, "creating free space tree");
3020 ret = btrfs_create_free_space_tree(fs_info);
3021 if (ret) {
3022 btrfs_warn(fs_info,
3023 "failed to create free space tree: %d", ret);
3024 goto out;
3025 }
3026 }
3027
3028 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3029 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3030 if (ret)
3031 goto out;
3032 }
3033
3034 ret = btrfs_resume_balance_async(fs_info);
3035 if (ret)
3036 goto out;
3037
3038 ret = btrfs_resume_dev_replace_async(fs_info);
3039 if (ret) {
3040 btrfs_warn(fs_info, "failed to resume dev_replace");
3041 goto out;
3042 }
3043
3044 btrfs_qgroup_rescan_resume(fs_info);
3045
3046 if (!fs_info->uuid_root) {
3047 btrfs_info(fs_info, "creating UUID tree");
3048 ret = btrfs_create_uuid_tree(fs_info);
3049 if (ret) {
3050 btrfs_warn(fs_info,
3051 "failed to create the UUID tree %d", ret);
3052 goto out;
3053 }
3054 }
3055
3056 out:
3057 return ret;
3058 }
3059
3060 /*
3061 * Do various sanity and dependency checks of different features.
3062 *
3063 * @is_rw_mount: If the mount is read-write.
3064 *
3065 * This is the place for less strict checks (like for subpage or artificial
3066 * feature dependencies).
3067 *
3068 * For strict checks or possible corruption detection, see
3069 * btrfs_validate_super().
3070 *
3071 * This should be called after btrfs_parse_options(), as some mount options
3072 * (space cache related) can modify on-disk format like free space tree and
3073 * screw up certain feature dependencies.
3074 */
3075 int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3076 {
3077 struct btrfs_super_block *disk_super = fs_info->super_copy;
3078 u64 incompat = btrfs_super_incompat_flags(disk_super);
3079 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3080 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3081
3082 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3083 btrfs_err(fs_info,
3084 "cannot mount because of unknown incompat features (0x%llx)",
3085 incompat);
3086 return -EINVAL;
3087 }
3088
3089 /* Runtime limitation for mixed block groups. */
3090 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3091 (fs_info->sectorsize != fs_info->nodesize)) {
3092 btrfs_err(fs_info,
3093 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3094 fs_info->nodesize, fs_info->sectorsize);
3095 return -EINVAL;
3096 }
3097
3098 /* Mixed backref is an always-enabled feature. */
3099 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3100
3101 /* Set compression related flags just in case. */
3102 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3103 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3104 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3105 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3106
3107 /*
3108 * An ancient flag, which should really be marked deprecated.
3109 * Such runtime limitation doesn't really need a incompat flag.
3110 */
3111 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3112 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3113
3114 if (compat_ro_unsupp && is_rw_mount) {
3115 btrfs_err(fs_info,
3116 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3117 compat_ro);
3118 return -EINVAL;
3119 }
3120
3121 /*
3122 * We have unsupported RO compat features, although RO mounted, we
3123 * should not cause any metadata writes, including log replay.
3124 * Or we could screw up whatever the new feature requires.
3125 */
3126 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3127 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3128 btrfs_err(fs_info,
3129 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3130 compat_ro);
3131 return -EINVAL;
3132 }
3133
3134 /*
3135 * Artificial limitations for block group tree, to force
3136 * block-group-tree to rely on no-holes and free-space-tree.
3137 */
3138 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3139 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3140 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3141 btrfs_err(fs_info,
3142 "block-group-tree feature requires no-holes and free-space-tree features");
3143 return -EINVAL;
3144 }
3145
3146 /*
3147 * Subpage runtime limitation on v1 cache.
3148 *
3149 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3150 * we're already defaulting to v2 cache, no need to bother v1 as it's
3151 * going to be deprecated anyway.
3152 */
3153 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3154 btrfs_warn(fs_info,
3155 "v1 space cache is not supported for page size %lu with sectorsize %u",
3156 PAGE_SIZE, fs_info->sectorsize);
3157 return -EINVAL;
3158 }
3159
3160 /* This can be called by remount, we need to protect the super block. */
3161 spin_lock(&fs_info->super_lock);
3162 btrfs_set_super_incompat_flags(disk_super, incompat);
3163 spin_unlock(&fs_info->super_lock);
3164
3165 return 0;
3166 }
3167
3168 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3169 char *options)
3170 {
3171 u32 sectorsize;
3172 u32 nodesize;
3173 u32 stripesize;
3174 u64 generation;
3175 u16 csum_type;
3176 struct btrfs_super_block *disk_super;
3177 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3178 struct btrfs_root *tree_root;
3179 struct btrfs_root *chunk_root;
3180 int ret;
3181 int level;
3182
3183 ret = init_mount_fs_info(fs_info, sb);
3184 if (ret)
3185 goto fail;
3186
3187 /* These need to be init'ed before we start creating inodes and such. */
3188 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3189 GFP_KERNEL);
3190 fs_info->tree_root = tree_root;
3191 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3192 GFP_KERNEL);
3193 fs_info->chunk_root = chunk_root;
3194 if (!tree_root || !chunk_root) {
3195 ret = -ENOMEM;
3196 goto fail;
3197 }
3198
3199 ret = btrfs_init_btree_inode(sb);
3200 if (ret)
3201 goto fail;
3202
3203 invalidate_bdev(fs_devices->latest_dev->bdev);
3204
3205 /*
3206 * Read super block and check the signature bytes only
3207 */
3208 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3209 if (IS_ERR(disk_super)) {
3210 ret = PTR_ERR(disk_super);
3211 goto fail_alloc;
3212 }
3213
3214 /*
3215 * Verify the type first, if that or the checksum value are
3216 * corrupted, we'll find out
3217 */
3218 csum_type = btrfs_super_csum_type(disk_super);
3219 if (!btrfs_supported_super_csum(csum_type)) {
3220 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3221 csum_type);
3222 ret = -EINVAL;
3223 btrfs_release_disk_super(disk_super);
3224 goto fail_alloc;
3225 }
3226
3227 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3228
3229 ret = btrfs_init_csum_hash(fs_info, csum_type);
3230 if (ret) {
3231 btrfs_release_disk_super(disk_super);
3232 goto fail_alloc;
3233 }
3234
3235 /*
3236 * We want to check superblock checksum, the type is stored inside.
3237 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3238 */
3239 if (btrfs_check_super_csum(fs_info, disk_super)) {
3240 btrfs_err(fs_info, "superblock checksum mismatch");
3241 ret = -EINVAL;
3242 btrfs_release_disk_super(disk_super);
3243 goto fail_alloc;
3244 }
3245
3246 /*
3247 * super_copy is zeroed at allocation time and we never touch the
3248 * following bytes up to INFO_SIZE, the checksum is calculated from
3249 * the whole block of INFO_SIZE
3250 */
3251 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3252 btrfs_release_disk_super(disk_super);
3253
3254 disk_super = fs_info->super_copy;
3255
3256 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3257 sizeof(*fs_info->super_for_commit));
3258
3259 ret = btrfs_validate_mount_super(fs_info);
3260 if (ret) {
3261 btrfs_err(fs_info, "superblock contains fatal errors");
3262 ret = -EINVAL;
3263 goto fail_alloc;
3264 }
3265
3266 if (!btrfs_super_root(disk_super)) {
3267 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3268 ret = -EINVAL;
3269 goto fail_alloc;
3270 }
3271
3272 /* check FS state, whether FS is broken. */
3273 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3274 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
3275
3276 /*
3277 * In the long term, we'll store the compression type in the super
3278 * block, and it'll be used for per file compression control.
3279 */
3280 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3281
3282
3283 /* Set up fs_info before parsing mount options */
3284 nodesize = btrfs_super_nodesize(disk_super);
3285 sectorsize = btrfs_super_sectorsize(disk_super);
3286 stripesize = sectorsize;
3287 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3288 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3289
3290 fs_info->nodesize = nodesize;
3291 fs_info->sectorsize = sectorsize;
3292 fs_info->sectorsize_bits = ilog2(sectorsize);
3293 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3294 fs_info->stripesize = stripesize;
3295
3296 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3297 if (ret)
3298 goto fail_alloc;
3299
3300 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3301 if (ret < 0)
3302 goto fail_alloc;
3303
3304 if (sectorsize < PAGE_SIZE) {
3305 struct btrfs_subpage_info *subpage_info;
3306
3307 /*
3308 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3309 * going to be deprecated.
3310 *
3311 * Force to use v2 cache for subpage case.
3312 */
3313 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3314 btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3315 "forcing free space tree for sector size %u with page size %lu",
3316 sectorsize, PAGE_SIZE);
3317
3318 btrfs_warn(fs_info,
3319 "read-write for sector size %u with page size %lu is experimental",
3320 sectorsize, PAGE_SIZE);
3321 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3322 if (!subpage_info) {
3323 ret = -ENOMEM;
3324 goto fail_alloc;
3325 }
3326 btrfs_init_subpage_info(subpage_info, sectorsize);
3327 fs_info->subpage_info = subpage_info;
3328 }
3329
3330 ret = btrfs_init_workqueues(fs_info);
3331 if (ret)
3332 goto fail_sb_buffer;
3333
3334 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3335 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3336
3337 sb->s_blocksize = sectorsize;
3338 sb->s_blocksize_bits = blksize_bits(sectorsize);
3339 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3340
3341 mutex_lock(&fs_info->chunk_mutex);
3342 ret = btrfs_read_sys_array(fs_info);
3343 mutex_unlock(&fs_info->chunk_mutex);
3344 if (ret) {
3345 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3346 goto fail_sb_buffer;
3347 }
3348
3349 generation = btrfs_super_chunk_root_generation(disk_super);
3350 level = btrfs_super_chunk_root_level(disk_super);
3351 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3352 generation, level);
3353 if (ret) {
3354 btrfs_err(fs_info, "failed to read chunk root");
3355 goto fail_tree_roots;
3356 }
3357
3358 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3359 offsetof(struct btrfs_header, chunk_tree_uuid),
3360 BTRFS_UUID_SIZE);
3361
3362 ret = btrfs_read_chunk_tree(fs_info);
3363 if (ret) {
3364 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3365 goto fail_tree_roots;
3366 }
3367
3368 /*
3369 * At this point we know all the devices that make this filesystem,
3370 * including the seed devices but we don't know yet if the replace
3371 * target is required. So free devices that are not part of this
3372 * filesystem but skip the replace target device which is checked
3373 * below in btrfs_init_dev_replace().
3374 */
3375 btrfs_free_extra_devids(fs_devices);
3376 if (!fs_devices->latest_dev->bdev) {
3377 btrfs_err(fs_info, "failed to read devices");
3378 ret = -EIO;
3379 goto fail_tree_roots;
3380 }
3381
3382 ret = init_tree_roots(fs_info);
3383 if (ret)
3384 goto fail_tree_roots;
3385
3386 /*
3387 * Get zone type information of zoned block devices. This will also
3388 * handle emulation of a zoned filesystem if a regular device has the
3389 * zoned incompat feature flag set.
3390 */
3391 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3392 if (ret) {
3393 btrfs_err(fs_info,
3394 "zoned: failed to read device zone info: %d", ret);
3395 goto fail_block_groups;
3396 }
3397
3398 /*
3399 * If we have a uuid root and we're not being told to rescan we need to
3400 * check the generation here so we can set the
3401 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3402 * transaction during a balance or the log replay without updating the
3403 * uuid generation, and then if we crash we would rescan the uuid tree,
3404 * even though it was perfectly fine.
3405 */
3406 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3407 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3408 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3409
3410 ret = btrfs_verify_dev_extents(fs_info);
3411 if (ret) {
3412 btrfs_err(fs_info,
3413 "failed to verify dev extents against chunks: %d",
3414 ret);
3415 goto fail_block_groups;
3416 }
3417 ret = btrfs_recover_balance(fs_info);
3418 if (ret) {
3419 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3420 goto fail_block_groups;
3421 }
3422
3423 ret = btrfs_init_dev_stats(fs_info);
3424 if (ret) {
3425 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3426 goto fail_block_groups;
3427 }
3428
3429 ret = btrfs_init_dev_replace(fs_info);
3430 if (ret) {
3431 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3432 goto fail_block_groups;
3433 }
3434
3435 ret = btrfs_check_zoned_mode(fs_info);
3436 if (ret) {
3437 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3438 ret);
3439 goto fail_block_groups;
3440 }
3441
3442 ret = btrfs_sysfs_add_fsid(fs_devices);
3443 if (ret) {
3444 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3445 ret);
3446 goto fail_block_groups;
3447 }
3448
3449 ret = btrfs_sysfs_add_mounted(fs_info);
3450 if (ret) {
3451 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3452 goto fail_fsdev_sysfs;
3453 }
3454
3455 ret = btrfs_init_space_info(fs_info);
3456 if (ret) {
3457 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3458 goto fail_sysfs;
3459 }
3460
3461 ret = btrfs_read_block_groups(fs_info);
3462 if (ret) {
3463 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3464 goto fail_sysfs;
3465 }
3466
3467 btrfs_free_zone_cache(fs_info);
3468
3469 btrfs_check_active_zone_reservation(fs_info);
3470
3471 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3472 !btrfs_check_rw_degradable(fs_info, NULL)) {
3473 btrfs_warn(fs_info,
3474 "writable mount is not allowed due to too many missing devices");
3475 ret = -EINVAL;
3476 goto fail_sysfs;
3477 }
3478
3479 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3480 "btrfs-cleaner");
3481 if (IS_ERR(fs_info->cleaner_kthread)) {
3482 ret = PTR_ERR(fs_info->cleaner_kthread);
3483 goto fail_sysfs;
3484 }
3485
3486 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3487 tree_root,
3488 "btrfs-transaction");
3489 if (IS_ERR(fs_info->transaction_kthread)) {
3490 ret = PTR_ERR(fs_info->transaction_kthread);
3491 goto fail_cleaner;
3492 }
3493
3494 if (!btrfs_test_opt(fs_info, NOSSD) &&
3495 !fs_info->fs_devices->rotating) {
3496 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3497 }
3498
3499 /*
3500 * For devices supporting discard turn on discard=async automatically,
3501 * unless it's already set or disabled. This could be turned off by
3502 * nodiscard for the same mount.
3503 *
3504 * The zoned mode piggy backs on the discard functionality for
3505 * resetting a zone. There is no reason to delay the zone reset as it is
3506 * fast enough. So, do not enable async discard for zoned mode.
3507 */
3508 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3509 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3510 btrfs_test_opt(fs_info, NODISCARD)) &&
3511 fs_info->fs_devices->discardable &&
3512 !btrfs_is_zoned(fs_info)) {
3513 btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3514 "auto enabling async discard");
3515 }
3516
3517 ret = btrfs_read_qgroup_config(fs_info);
3518 if (ret)
3519 goto fail_trans_kthread;
3520
3521 if (btrfs_build_ref_tree(fs_info))
3522 btrfs_err(fs_info, "couldn't build ref tree");
3523
3524 /* do not make disk changes in broken FS or nologreplay is given */
3525 if (btrfs_super_log_root(disk_super) != 0 &&
3526 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3527 btrfs_info(fs_info, "start tree-log replay");
3528 ret = btrfs_replay_log(fs_info, fs_devices);
3529 if (ret)
3530 goto fail_qgroup;
3531 }
3532
3533 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3534 if (IS_ERR(fs_info->fs_root)) {
3535 ret = PTR_ERR(fs_info->fs_root);
3536 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3537 fs_info->fs_root = NULL;
3538 goto fail_qgroup;
3539 }
3540
3541 if (sb_rdonly(sb))
3542 goto clear_oneshot;
3543
3544 ret = btrfs_start_pre_rw_mount(fs_info);
3545 if (ret) {
3546 close_ctree(fs_info);
3547 return ret;
3548 }
3549 btrfs_discard_resume(fs_info);
3550
3551 if (fs_info->uuid_root &&
3552 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3553 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3554 btrfs_info(fs_info, "checking UUID tree");
3555 ret = btrfs_check_uuid_tree(fs_info);
3556 if (ret) {
3557 btrfs_warn(fs_info,
3558 "failed to check the UUID tree: %d", ret);
3559 close_ctree(fs_info);
3560 return ret;
3561 }
3562 }
3563
3564 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3565
3566 /* Kick the cleaner thread so it'll start deleting snapshots. */
3567 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3568 wake_up_process(fs_info->cleaner_kthread);
3569
3570 clear_oneshot:
3571 btrfs_clear_oneshot_options(fs_info);
3572 return 0;
3573
3574 fail_qgroup:
3575 btrfs_free_qgroup_config(fs_info);
3576 fail_trans_kthread:
3577 kthread_stop(fs_info->transaction_kthread);
3578 btrfs_cleanup_transaction(fs_info);
3579 btrfs_free_fs_roots(fs_info);
3580 fail_cleaner:
3581 kthread_stop(fs_info->cleaner_kthread);
3582
3583 /*
3584 * make sure we're done with the btree inode before we stop our
3585 * kthreads
3586 */
3587 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3588
3589 fail_sysfs:
3590 btrfs_sysfs_remove_mounted(fs_info);
3591
3592 fail_fsdev_sysfs:
3593 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3594
3595 fail_block_groups:
3596 btrfs_put_block_group_cache(fs_info);
3597
3598 fail_tree_roots:
3599 if (fs_info->data_reloc_root)
3600 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3601 free_root_pointers(fs_info, true);
3602 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3603
3604 fail_sb_buffer:
3605 btrfs_stop_all_workers(fs_info);
3606 btrfs_free_block_groups(fs_info);
3607 fail_alloc:
3608 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3609
3610 iput(fs_info->btree_inode);
3611 fail:
3612 btrfs_close_devices(fs_info->fs_devices);
3613 ASSERT(ret < 0);
3614 return ret;
3615 }
3616 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3617
3618 static void btrfs_end_super_write(struct bio *bio)
3619 {
3620 struct btrfs_device *device = bio->bi_private;
3621 struct bio_vec *bvec;
3622 struct bvec_iter_all iter_all;
3623 struct page *page;
3624
3625 bio_for_each_segment_all(bvec, bio, iter_all) {
3626 page = bvec->bv_page;
3627
3628 if (bio->bi_status) {
3629 btrfs_warn_rl_in_rcu(device->fs_info,
3630 "lost page write due to IO error on %s (%d)",
3631 btrfs_dev_name(device),
3632 blk_status_to_errno(bio->bi_status));
3633 ClearPageUptodate(page);
3634 SetPageError(page);
3635 btrfs_dev_stat_inc_and_print(device,
3636 BTRFS_DEV_STAT_WRITE_ERRS);
3637 } else {
3638 SetPageUptodate(page);
3639 }
3640
3641 put_page(page);
3642 unlock_page(page);
3643 }
3644
3645 bio_put(bio);
3646 }
3647
3648 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3649 int copy_num, bool drop_cache)
3650 {
3651 struct btrfs_super_block *super;
3652 struct page *page;
3653 u64 bytenr, bytenr_orig;
3654 struct address_space *mapping = bdev->bd_inode->i_mapping;
3655 int ret;
3656
3657 bytenr_orig = btrfs_sb_offset(copy_num);
3658 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3659 if (ret == -ENOENT)
3660 return ERR_PTR(-EINVAL);
3661 else if (ret)
3662 return ERR_PTR(ret);
3663
3664 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3665 return ERR_PTR(-EINVAL);
3666
3667 if (drop_cache) {
3668 /* This should only be called with the primary sb. */
3669 ASSERT(copy_num == 0);
3670
3671 /*
3672 * Drop the page of the primary superblock, so later read will
3673 * always read from the device.
3674 */
3675 invalidate_inode_pages2_range(mapping,
3676 bytenr >> PAGE_SHIFT,
3677 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3678 }
3679
3680 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3681 if (IS_ERR(page))
3682 return ERR_CAST(page);
3683
3684 super = page_address(page);
3685 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3686 btrfs_release_disk_super(super);
3687 return ERR_PTR(-ENODATA);
3688 }
3689
3690 if (btrfs_super_bytenr(super) != bytenr_orig) {
3691 btrfs_release_disk_super(super);
3692 return ERR_PTR(-EINVAL);
3693 }
3694
3695 return super;
3696 }
3697
3698
3699 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3700 {
3701 struct btrfs_super_block *super, *latest = NULL;
3702 int i;
3703 u64 transid = 0;
3704
3705 /* we would like to check all the supers, but that would make
3706 * a btrfs mount succeed after a mkfs from a different FS.
3707 * So, we need to add a special mount option to scan for
3708 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3709 */
3710 for (i = 0; i < 1; i++) {
3711 super = btrfs_read_dev_one_super(bdev, i, false);
3712 if (IS_ERR(super))
3713 continue;
3714
3715 if (!latest || btrfs_super_generation(super) > transid) {
3716 if (latest)
3717 btrfs_release_disk_super(super);
3718
3719 latest = super;
3720 transid = btrfs_super_generation(super);
3721 }
3722 }
3723
3724 return super;
3725 }
3726
3727 /*
3728 * Write superblock @sb to the @device. Do not wait for completion, all the
3729 * pages we use for writing are locked.
3730 *
3731 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3732 * the expected device size at commit time. Note that max_mirrors must be
3733 * same for write and wait phases.
3734 *
3735 * Return number of errors when page is not found or submission fails.
3736 */
3737 static int write_dev_supers(struct btrfs_device *device,
3738 struct btrfs_super_block *sb, int max_mirrors)
3739 {
3740 struct btrfs_fs_info *fs_info = device->fs_info;
3741 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3742 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3743 int i;
3744 int errors = 0;
3745 int ret;
3746 u64 bytenr, bytenr_orig;
3747
3748 if (max_mirrors == 0)
3749 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3750
3751 shash->tfm = fs_info->csum_shash;
3752
3753 for (i = 0; i < max_mirrors; i++) {
3754 struct page *page;
3755 struct bio *bio;
3756 struct btrfs_super_block *disk_super;
3757
3758 bytenr_orig = btrfs_sb_offset(i);
3759 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3760 if (ret == -ENOENT) {
3761 continue;
3762 } else if (ret < 0) {
3763 btrfs_err(device->fs_info,
3764 "couldn't get super block location for mirror %d",
3765 i);
3766 errors++;
3767 continue;
3768 }
3769 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3770 device->commit_total_bytes)
3771 break;
3772
3773 btrfs_set_super_bytenr(sb, bytenr_orig);
3774
3775 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3776 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3777 sb->csum);
3778
3779 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3780 GFP_NOFS);
3781 if (!page) {
3782 btrfs_err(device->fs_info,
3783 "couldn't get super block page for bytenr %llu",
3784 bytenr);
3785 errors++;
3786 continue;
3787 }
3788
3789 /* Bump the refcount for wait_dev_supers() */
3790 get_page(page);
3791
3792 disk_super = page_address(page);
3793 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3794
3795 /*
3796 * Directly use bios here instead of relying on the page cache
3797 * to do I/O, so we don't lose the ability to do integrity
3798 * checking.
3799 */
3800 bio = bio_alloc(device->bdev, 1,
3801 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3802 GFP_NOFS);
3803 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3804 bio->bi_private = device;
3805 bio->bi_end_io = btrfs_end_super_write;
3806 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3807 offset_in_page(bytenr));
3808
3809 /*
3810 * We FUA only the first super block. The others we allow to
3811 * go down lazy and there's a short window where the on-disk
3812 * copies might still contain the older version.
3813 */
3814 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3815 bio->bi_opf |= REQ_FUA;
3816 submit_bio(bio);
3817
3818 if (btrfs_advance_sb_log(device, i))
3819 errors++;
3820 }
3821 return errors < i ? 0 : -1;
3822 }
3823
3824 /*
3825 * Wait for write completion of superblocks done by write_dev_supers,
3826 * @max_mirrors same for write and wait phases.
3827 *
3828 * Return number of errors when page is not found or not marked up to
3829 * date.
3830 */
3831 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3832 {
3833 int i;
3834 int errors = 0;
3835 bool primary_failed = false;
3836 int ret;
3837 u64 bytenr;
3838
3839 if (max_mirrors == 0)
3840 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3841
3842 for (i = 0; i < max_mirrors; i++) {
3843 struct page *page;
3844
3845 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3846 if (ret == -ENOENT) {
3847 break;
3848 } else if (ret < 0) {
3849 errors++;
3850 if (i == 0)
3851 primary_failed = true;
3852 continue;
3853 }
3854 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3855 device->commit_total_bytes)
3856 break;
3857
3858 page = find_get_page(device->bdev->bd_inode->i_mapping,
3859 bytenr >> PAGE_SHIFT);
3860 if (!page) {
3861 errors++;
3862 if (i == 0)
3863 primary_failed = true;
3864 continue;
3865 }
3866 /* Page is submitted locked and unlocked once the IO completes */
3867 wait_on_page_locked(page);
3868 if (PageError(page)) {
3869 errors++;
3870 if (i == 0)
3871 primary_failed = true;
3872 }
3873
3874 /* Drop our reference */
3875 put_page(page);
3876
3877 /* Drop the reference from the writing run */
3878 put_page(page);
3879 }
3880
3881 /* log error, force error return */
3882 if (primary_failed) {
3883 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3884 device->devid);
3885 return -1;
3886 }
3887
3888 return errors < i ? 0 : -1;
3889 }
3890
3891 /*
3892 * endio for the write_dev_flush, this will wake anyone waiting
3893 * for the barrier when it is done
3894 */
3895 static void btrfs_end_empty_barrier(struct bio *bio)
3896 {
3897 bio_uninit(bio);
3898 complete(bio->bi_private);
3899 }
3900
3901 /*
3902 * Submit a flush request to the device if it supports it. Error handling is
3903 * done in the waiting counterpart.
3904 */
3905 static void write_dev_flush(struct btrfs_device *device)
3906 {
3907 struct bio *bio = &device->flush_bio;
3908
3909 device->last_flush_error = BLK_STS_OK;
3910
3911 bio_init(bio, device->bdev, NULL, 0,
3912 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3913 bio->bi_end_io = btrfs_end_empty_barrier;
3914 init_completion(&device->flush_wait);
3915 bio->bi_private = &device->flush_wait;
3916 submit_bio(bio);
3917 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3918 }
3919
3920 /*
3921 * If the flush bio has been submitted by write_dev_flush, wait for it.
3922 * Return true for any error, and false otherwise.
3923 */
3924 static bool wait_dev_flush(struct btrfs_device *device)
3925 {
3926 struct bio *bio = &device->flush_bio;
3927
3928 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3929 return false;
3930
3931 wait_for_completion_io(&device->flush_wait);
3932
3933 if (bio->bi_status) {
3934 device->last_flush_error = bio->bi_status;
3935 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3936 return true;
3937 }
3938
3939 return false;
3940 }
3941
3942 /*
3943 * send an empty flush down to each device in parallel,
3944 * then wait for them
3945 */
3946 static int barrier_all_devices(struct btrfs_fs_info *info)
3947 {
3948 struct list_head *head;
3949 struct btrfs_device *dev;
3950 int errors_wait = 0;
3951
3952 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3953 /* send down all the barriers */
3954 head = &info->fs_devices->devices;
3955 list_for_each_entry(dev, head, dev_list) {
3956 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3957 continue;
3958 if (!dev->bdev)
3959 continue;
3960 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3961 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3962 continue;
3963
3964 write_dev_flush(dev);
3965 }
3966
3967 /* wait for all the barriers */
3968 list_for_each_entry(dev, head, dev_list) {
3969 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3970 continue;
3971 if (!dev->bdev) {
3972 errors_wait++;
3973 continue;
3974 }
3975 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3976 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3977 continue;
3978
3979 if (wait_dev_flush(dev))
3980 errors_wait++;
3981 }
3982
3983 /*
3984 * Checks last_flush_error of disks in order to determine the device
3985 * state.
3986 */
3987 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3988 return -EIO;
3989
3990 return 0;
3991 }
3992
3993 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3994 {
3995 int raid_type;
3996 int min_tolerated = INT_MAX;
3997
3998 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3999 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4000 min_tolerated = min_t(int, min_tolerated,
4001 btrfs_raid_array[BTRFS_RAID_SINGLE].
4002 tolerated_failures);
4003
4004 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4005 if (raid_type == BTRFS_RAID_SINGLE)
4006 continue;
4007 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4008 continue;
4009 min_tolerated = min_t(int, min_tolerated,
4010 btrfs_raid_array[raid_type].
4011 tolerated_failures);
4012 }
4013
4014 if (min_tolerated == INT_MAX) {
4015 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4016 min_tolerated = 0;
4017 }
4018
4019 return min_tolerated;
4020 }
4021
4022 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4023 {
4024 struct list_head *head;
4025 struct btrfs_device *dev;
4026 struct btrfs_super_block *sb;
4027 struct btrfs_dev_item *dev_item;
4028 int ret;
4029 int do_barriers;
4030 int max_errors;
4031 int total_errors = 0;
4032 u64 flags;
4033
4034 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4035
4036 /*
4037 * max_mirrors == 0 indicates we're from commit_transaction,
4038 * not from fsync where the tree roots in fs_info have not
4039 * been consistent on disk.
4040 */
4041 if (max_mirrors == 0)
4042 backup_super_roots(fs_info);
4043
4044 sb = fs_info->super_for_commit;
4045 dev_item = &sb->dev_item;
4046
4047 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4048 head = &fs_info->fs_devices->devices;
4049 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4050
4051 if (do_barriers) {
4052 ret = barrier_all_devices(fs_info);
4053 if (ret) {
4054 mutex_unlock(
4055 &fs_info->fs_devices->device_list_mutex);
4056 btrfs_handle_fs_error(fs_info, ret,
4057 "errors while submitting device barriers.");
4058 return ret;
4059 }
4060 }
4061
4062 list_for_each_entry(dev, head, dev_list) {
4063 if (!dev->bdev) {
4064 total_errors++;
4065 continue;
4066 }
4067 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4068 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4069 continue;
4070
4071 btrfs_set_stack_device_generation(dev_item, 0);
4072 btrfs_set_stack_device_type(dev_item, dev->type);
4073 btrfs_set_stack_device_id(dev_item, dev->devid);
4074 btrfs_set_stack_device_total_bytes(dev_item,
4075 dev->commit_total_bytes);
4076 btrfs_set_stack_device_bytes_used(dev_item,
4077 dev->commit_bytes_used);
4078 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4079 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4080 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4081 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4082 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4083 BTRFS_FSID_SIZE);
4084
4085 flags = btrfs_super_flags(sb);
4086 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4087
4088 ret = btrfs_validate_write_super(fs_info, sb);
4089 if (ret < 0) {
4090 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4091 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4092 "unexpected superblock corruption detected");
4093 return -EUCLEAN;
4094 }
4095
4096 ret = write_dev_supers(dev, sb, max_mirrors);
4097 if (ret)
4098 total_errors++;
4099 }
4100 if (total_errors > max_errors) {
4101 btrfs_err(fs_info, "%d errors while writing supers",
4102 total_errors);
4103 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4104
4105 /* FUA is masked off if unsupported and can't be the reason */
4106 btrfs_handle_fs_error(fs_info, -EIO,
4107 "%d errors while writing supers",
4108 total_errors);
4109 return -EIO;
4110 }
4111
4112 total_errors = 0;
4113 list_for_each_entry(dev, head, dev_list) {
4114 if (!dev->bdev)
4115 continue;
4116 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4117 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4118 continue;
4119
4120 ret = wait_dev_supers(dev, max_mirrors);
4121 if (ret)
4122 total_errors++;
4123 }
4124 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4125 if (total_errors > max_errors) {
4126 btrfs_handle_fs_error(fs_info, -EIO,
4127 "%d errors while writing supers",
4128 total_errors);
4129 return -EIO;
4130 }
4131 return 0;
4132 }
4133
4134 /* Drop a fs root from the radix tree and free it. */
4135 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4136 struct btrfs_root *root)
4137 {
4138 bool drop_ref = false;
4139
4140 spin_lock(&fs_info->fs_roots_radix_lock);
4141 radix_tree_delete(&fs_info->fs_roots_radix,
4142 (unsigned long)root->root_key.objectid);
4143 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4144 drop_ref = true;
4145 spin_unlock(&fs_info->fs_roots_radix_lock);
4146
4147 if (BTRFS_FS_ERROR(fs_info)) {
4148 ASSERT(root->log_root == NULL);
4149 if (root->reloc_root) {
4150 btrfs_put_root(root->reloc_root);
4151 root->reloc_root = NULL;
4152 }
4153 }
4154
4155 if (drop_ref)
4156 btrfs_put_root(root);
4157 }
4158
4159 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4160 {
4161 struct btrfs_root *root = fs_info->tree_root;
4162 struct btrfs_trans_handle *trans;
4163
4164 mutex_lock(&fs_info->cleaner_mutex);
4165 btrfs_run_delayed_iputs(fs_info);
4166 mutex_unlock(&fs_info->cleaner_mutex);
4167 wake_up_process(fs_info->cleaner_kthread);
4168
4169 /* wait until ongoing cleanup work done */
4170 down_write(&fs_info->cleanup_work_sem);
4171 up_write(&fs_info->cleanup_work_sem);
4172
4173 trans = btrfs_join_transaction(root);
4174 if (IS_ERR(trans))
4175 return PTR_ERR(trans);
4176 return btrfs_commit_transaction(trans);
4177 }
4178
4179 static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4180 {
4181 struct btrfs_transaction *trans;
4182 struct btrfs_transaction *tmp;
4183 bool found = false;
4184
4185 if (list_empty(&fs_info->trans_list))
4186 return;
4187
4188 /*
4189 * This function is only called at the very end of close_ctree(),
4190 * thus no other running transaction, no need to take trans_lock.
4191 */
4192 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4193 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4194 struct extent_state *cached = NULL;
4195 u64 dirty_bytes = 0;
4196 u64 cur = 0;
4197 u64 found_start;
4198 u64 found_end;
4199
4200 found = true;
4201 while (find_first_extent_bit(&trans->dirty_pages, cur,
4202 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4203 dirty_bytes += found_end + 1 - found_start;
4204 cur = found_end + 1;
4205 }
4206 btrfs_warn(fs_info,
4207 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4208 trans->transid, dirty_bytes);
4209 btrfs_cleanup_one_transaction(trans, fs_info);
4210
4211 if (trans == fs_info->running_transaction)
4212 fs_info->running_transaction = NULL;
4213 list_del_init(&trans->list);
4214
4215 btrfs_put_transaction(trans);
4216 trace_btrfs_transaction_commit(fs_info);
4217 }
4218 ASSERT(!found);
4219 }
4220
4221 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4222 {
4223 int ret;
4224
4225 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4226
4227 /*
4228 * If we had UNFINISHED_DROPS we could still be processing them, so
4229 * clear that bit and wake up relocation so it can stop.
4230 * We must do this before stopping the block group reclaim task, because
4231 * at btrfs_relocate_block_group() we wait for this bit, and after the
4232 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4233 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4234 * return 1.
4235 */
4236 btrfs_wake_unfinished_drop(fs_info);
4237
4238 /*
4239 * We may have the reclaim task running and relocating a data block group,
4240 * in which case it may create delayed iputs. So stop it before we park
4241 * the cleaner kthread otherwise we can get new delayed iputs after
4242 * parking the cleaner, and that can make the async reclaim task to hang
4243 * if it's waiting for delayed iputs to complete, since the cleaner is
4244 * parked and can not run delayed iputs - this will make us hang when
4245 * trying to stop the async reclaim task.
4246 */
4247 cancel_work_sync(&fs_info->reclaim_bgs_work);
4248 /*
4249 * We don't want the cleaner to start new transactions, add more delayed
4250 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4251 * because that frees the task_struct, and the transaction kthread might
4252 * still try to wake up the cleaner.
4253 */
4254 kthread_park(fs_info->cleaner_kthread);
4255
4256 /* wait for the qgroup rescan worker to stop */
4257 btrfs_qgroup_wait_for_completion(fs_info, false);
4258
4259 /* wait for the uuid_scan task to finish */
4260 down(&fs_info->uuid_tree_rescan_sem);
4261 /* avoid complains from lockdep et al., set sem back to initial state */
4262 up(&fs_info->uuid_tree_rescan_sem);
4263
4264 /* pause restriper - we want to resume on mount */
4265 btrfs_pause_balance(fs_info);
4266
4267 btrfs_dev_replace_suspend_for_unmount(fs_info);
4268
4269 btrfs_scrub_cancel(fs_info);
4270
4271 /* wait for any defraggers to finish */
4272 wait_event(fs_info->transaction_wait,
4273 (atomic_read(&fs_info->defrag_running) == 0));
4274
4275 /* clear out the rbtree of defraggable inodes */
4276 btrfs_cleanup_defrag_inodes(fs_info);
4277
4278 /*
4279 * After we parked the cleaner kthread, ordered extents may have
4280 * completed and created new delayed iputs. If one of the async reclaim
4281 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4282 * can hang forever trying to stop it, because if a delayed iput is
4283 * added after it ran btrfs_run_delayed_iputs() and before it called
4284 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4285 * no one else to run iputs.
4286 *
4287 * So wait for all ongoing ordered extents to complete and then run
4288 * delayed iputs. This works because once we reach this point no one
4289 * can either create new ordered extents nor create delayed iputs
4290 * through some other means.
4291 *
4292 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4293 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4294 * but the delayed iput for the respective inode is made only when doing
4295 * the final btrfs_put_ordered_extent() (which must happen at
4296 * btrfs_finish_ordered_io() when we are unmounting).
4297 */
4298 btrfs_flush_workqueue(fs_info->endio_write_workers);
4299 /* Ordered extents for free space inodes. */
4300 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4301 btrfs_run_delayed_iputs(fs_info);
4302
4303 cancel_work_sync(&fs_info->async_reclaim_work);
4304 cancel_work_sync(&fs_info->async_data_reclaim_work);
4305 cancel_work_sync(&fs_info->preempt_reclaim_work);
4306
4307 /* Cancel or finish ongoing discard work */
4308 btrfs_discard_cleanup(fs_info);
4309
4310 if (!sb_rdonly(fs_info->sb)) {
4311 /*
4312 * The cleaner kthread is stopped, so do one final pass over
4313 * unused block groups.
4314 */
4315 btrfs_delete_unused_bgs(fs_info);
4316
4317 /*
4318 * There might be existing delayed inode workers still running
4319 * and holding an empty delayed inode item. We must wait for
4320 * them to complete first because they can create a transaction.
4321 * This happens when someone calls btrfs_balance_delayed_items()
4322 * and then a transaction commit runs the same delayed nodes
4323 * before any delayed worker has done something with the nodes.
4324 * We must wait for any worker here and not at transaction
4325 * commit time since that could cause a deadlock.
4326 * This is a very rare case.
4327 */
4328 btrfs_flush_workqueue(fs_info->delayed_workers);
4329
4330 ret = btrfs_commit_super(fs_info);
4331 if (ret)
4332 btrfs_err(fs_info, "commit super ret %d", ret);
4333 }
4334
4335 if (BTRFS_FS_ERROR(fs_info))
4336 btrfs_error_commit_super(fs_info);
4337
4338 kthread_stop(fs_info->transaction_kthread);
4339 kthread_stop(fs_info->cleaner_kthread);
4340
4341 ASSERT(list_empty(&fs_info->delayed_iputs));
4342 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4343
4344 if (btrfs_check_quota_leak(fs_info)) {
4345 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4346 btrfs_err(fs_info, "qgroup reserved space leaked");
4347 }
4348
4349 btrfs_free_qgroup_config(fs_info);
4350 ASSERT(list_empty(&fs_info->delalloc_roots));
4351
4352 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4353 btrfs_info(fs_info, "at unmount delalloc count %lld",
4354 percpu_counter_sum(&fs_info->delalloc_bytes));
4355 }
4356
4357 if (percpu_counter_sum(&fs_info->ordered_bytes))
4358 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4359 percpu_counter_sum(&fs_info->ordered_bytes));
4360
4361 btrfs_sysfs_remove_mounted(fs_info);
4362 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4363
4364 btrfs_put_block_group_cache(fs_info);
4365
4366 /*
4367 * we must make sure there is not any read request to
4368 * submit after we stopping all workers.
4369 */
4370 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4371 btrfs_stop_all_workers(fs_info);
4372
4373 /* We shouldn't have any transaction open at this point */
4374 warn_about_uncommitted_trans(fs_info);
4375
4376 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4377 free_root_pointers(fs_info, true);
4378 btrfs_free_fs_roots(fs_info);
4379
4380 /*
4381 * We must free the block groups after dropping the fs_roots as we could
4382 * have had an IO error and have left over tree log blocks that aren't
4383 * cleaned up until the fs roots are freed. This makes the block group
4384 * accounting appear to be wrong because there's pending reserved bytes,
4385 * so make sure we do the block group cleanup afterwards.
4386 */
4387 btrfs_free_block_groups(fs_info);
4388
4389 iput(fs_info->btree_inode);
4390
4391 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4392 btrfs_close_devices(fs_info->fs_devices);
4393 }
4394
4395 void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4396 struct extent_buffer *buf)
4397 {
4398 struct btrfs_fs_info *fs_info = buf->fs_info;
4399 u64 transid = btrfs_header_generation(buf);
4400
4401 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4402 /*
4403 * This is a fast path so only do this check if we have sanity tests
4404 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4405 * outside of the sanity tests.
4406 */
4407 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4408 return;
4409 #endif
4410 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4411 ASSERT(trans->transid == fs_info->generation);
4412 btrfs_assert_tree_write_locked(buf);
4413 if (unlikely(transid != fs_info->generation)) {
4414 btrfs_abort_transaction(trans, -EUCLEAN);
4415 btrfs_crit(fs_info,
4416 "dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4417 buf->start, transid, fs_info->generation);
4418 }
4419 set_extent_buffer_dirty(buf);
4420 }
4421
4422 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4423 int flush_delayed)
4424 {
4425 /*
4426 * looks as though older kernels can get into trouble with
4427 * this code, they end up stuck in balance_dirty_pages forever
4428 */
4429 int ret;
4430
4431 if (current->flags & PF_MEMALLOC)
4432 return;
4433
4434 if (flush_delayed)
4435 btrfs_balance_delayed_items(fs_info);
4436
4437 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4438 BTRFS_DIRTY_METADATA_THRESH,
4439 fs_info->dirty_metadata_batch);
4440 if (ret > 0) {
4441 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4442 }
4443 }
4444
4445 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4446 {
4447 __btrfs_btree_balance_dirty(fs_info, 1);
4448 }
4449
4450 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4451 {
4452 __btrfs_btree_balance_dirty(fs_info, 0);
4453 }
4454
4455 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4456 {
4457 /* cleanup FS via transaction */
4458 btrfs_cleanup_transaction(fs_info);
4459
4460 mutex_lock(&fs_info->cleaner_mutex);
4461 btrfs_run_delayed_iputs(fs_info);
4462 mutex_unlock(&fs_info->cleaner_mutex);
4463
4464 down_write(&fs_info->cleanup_work_sem);
4465 up_write(&fs_info->cleanup_work_sem);
4466 }
4467
4468 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4469 {
4470 struct btrfs_root *gang[8];
4471 u64 root_objectid = 0;
4472 int ret;
4473
4474 spin_lock(&fs_info->fs_roots_radix_lock);
4475 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4476 (void **)gang, root_objectid,
4477 ARRAY_SIZE(gang))) != 0) {
4478 int i;
4479
4480 for (i = 0; i < ret; i++)
4481 gang[i] = btrfs_grab_root(gang[i]);
4482 spin_unlock(&fs_info->fs_roots_radix_lock);
4483
4484 for (i = 0; i < ret; i++) {
4485 if (!gang[i])
4486 continue;
4487 root_objectid = gang[i]->root_key.objectid;
4488 btrfs_free_log(NULL, gang[i]);
4489 btrfs_put_root(gang[i]);
4490 }
4491 root_objectid++;
4492 spin_lock(&fs_info->fs_roots_radix_lock);
4493 }
4494 spin_unlock(&fs_info->fs_roots_radix_lock);
4495 btrfs_free_log_root_tree(NULL, fs_info);
4496 }
4497
4498 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4499 {
4500 struct btrfs_ordered_extent *ordered;
4501
4502 spin_lock(&root->ordered_extent_lock);
4503 /*
4504 * This will just short circuit the ordered completion stuff which will
4505 * make sure the ordered extent gets properly cleaned up.
4506 */
4507 list_for_each_entry(ordered, &root->ordered_extents,
4508 root_extent_list)
4509 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4510 spin_unlock(&root->ordered_extent_lock);
4511 }
4512
4513 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4514 {
4515 struct btrfs_root *root;
4516 LIST_HEAD(splice);
4517
4518 spin_lock(&fs_info->ordered_root_lock);
4519 list_splice_init(&fs_info->ordered_roots, &splice);
4520 while (!list_empty(&splice)) {
4521 root = list_first_entry(&splice, struct btrfs_root,
4522 ordered_root);
4523 list_move_tail(&root->ordered_root,
4524 &fs_info->ordered_roots);
4525
4526 spin_unlock(&fs_info->ordered_root_lock);
4527 btrfs_destroy_ordered_extents(root);
4528
4529 cond_resched();
4530 spin_lock(&fs_info->ordered_root_lock);
4531 }
4532 spin_unlock(&fs_info->ordered_root_lock);
4533
4534 /*
4535 * We need this here because if we've been flipped read-only we won't
4536 * get sync() from the umount, so we need to make sure any ordered
4537 * extents that haven't had their dirty pages IO start writeout yet
4538 * actually get run and error out properly.
4539 */
4540 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4541 }
4542
4543 static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4544 struct btrfs_fs_info *fs_info)
4545 {
4546 struct rb_node *node;
4547 struct btrfs_delayed_ref_root *delayed_refs;
4548 struct btrfs_delayed_ref_node *ref;
4549
4550 delayed_refs = &trans->delayed_refs;
4551
4552 spin_lock(&delayed_refs->lock);
4553 if (atomic_read(&delayed_refs->num_entries) == 0) {
4554 spin_unlock(&delayed_refs->lock);
4555 btrfs_debug(fs_info, "delayed_refs has NO entry");
4556 return;
4557 }
4558
4559 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4560 struct btrfs_delayed_ref_head *head;
4561 struct rb_node *n;
4562 bool pin_bytes = false;
4563
4564 head = rb_entry(node, struct btrfs_delayed_ref_head,
4565 href_node);
4566 if (btrfs_delayed_ref_lock(delayed_refs, head))
4567 continue;
4568
4569 spin_lock(&head->lock);
4570 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4571 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4572 ref_node);
4573 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4574 RB_CLEAR_NODE(&ref->ref_node);
4575 if (!list_empty(&ref->add_list))
4576 list_del(&ref->add_list);
4577 atomic_dec(&delayed_refs->num_entries);
4578 btrfs_put_delayed_ref(ref);
4579 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4580 }
4581 if (head->must_insert_reserved)
4582 pin_bytes = true;
4583 btrfs_free_delayed_extent_op(head->extent_op);
4584 btrfs_delete_ref_head(delayed_refs, head);
4585 spin_unlock(&head->lock);
4586 spin_unlock(&delayed_refs->lock);
4587 mutex_unlock(&head->mutex);
4588
4589 if (pin_bytes) {
4590 struct btrfs_block_group *cache;
4591
4592 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4593 BUG_ON(!cache);
4594
4595 spin_lock(&cache->space_info->lock);
4596 spin_lock(&cache->lock);
4597 cache->pinned += head->num_bytes;
4598 btrfs_space_info_update_bytes_pinned(fs_info,
4599 cache->space_info, head->num_bytes);
4600 cache->reserved -= head->num_bytes;
4601 cache->space_info->bytes_reserved -= head->num_bytes;
4602 spin_unlock(&cache->lock);
4603 spin_unlock(&cache->space_info->lock);
4604
4605 btrfs_put_block_group(cache);
4606
4607 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4608 head->bytenr + head->num_bytes - 1);
4609 }
4610 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4611 btrfs_put_delayed_ref_head(head);
4612 cond_resched();
4613 spin_lock(&delayed_refs->lock);
4614 }
4615 btrfs_qgroup_destroy_extent_records(trans);
4616
4617 spin_unlock(&delayed_refs->lock);
4618 }
4619
4620 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4621 {
4622 struct btrfs_inode *btrfs_inode;
4623 LIST_HEAD(splice);
4624
4625 spin_lock(&root->delalloc_lock);
4626 list_splice_init(&root->delalloc_inodes, &splice);
4627
4628 while (!list_empty(&splice)) {
4629 struct inode *inode = NULL;
4630 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4631 delalloc_inodes);
4632 __btrfs_del_delalloc_inode(root, btrfs_inode);
4633 spin_unlock(&root->delalloc_lock);
4634
4635 /*
4636 * Make sure we get a live inode and that it'll not disappear
4637 * meanwhile.
4638 */
4639 inode = igrab(&btrfs_inode->vfs_inode);
4640 if (inode) {
4641 unsigned int nofs_flag;
4642
4643 nofs_flag = memalloc_nofs_save();
4644 invalidate_inode_pages2(inode->i_mapping);
4645 memalloc_nofs_restore(nofs_flag);
4646 iput(inode);
4647 }
4648 spin_lock(&root->delalloc_lock);
4649 }
4650 spin_unlock(&root->delalloc_lock);
4651 }
4652
4653 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4654 {
4655 struct btrfs_root *root;
4656 LIST_HEAD(splice);
4657
4658 spin_lock(&fs_info->delalloc_root_lock);
4659 list_splice_init(&fs_info->delalloc_roots, &splice);
4660 while (!list_empty(&splice)) {
4661 root = list_first_entry(&splice, struct btrfs_root,
4662 delalloc_root);
4663 root = btrfs_grab_root(root);
4664 BUG_ON(!root);
4665 spin_unlock(&fs_info->delalloc_root_lock);
4666
4667 btrfs_destroy_delalloc_inodes(root);
4668 btrfs_put_root(root);
4669
4670 spin_lock(&fs_info->delalloc_root_lock);
4671 }
4672 spin_unlock(&fs_info->delalloc_root_lock);
4673 }
4674
4675 static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4676 struct extent_io_tree *dirty_pages,
4677 int mark)
4678 {
4679 struct extent_buffer *eb;
4680 u64 start = 0;
4681 u64 end;
4682
4683 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4684 mark, NULL)) {
4685 clear_extent_bits(dirty_pages, start, end, mark);
4686 while (start <= end) {
4687 eb = find_extent_buffer(fs_info, start);
4688 start += fs_info->nodesize;
4689 if (!eb)
4690 continue;
4691
4692 btrfs_tree_lock(eb);
4693 wait_on_extent_buffer_writeback(eb);
4694 btrfs_clear_buffer_dirty(NULL, eb);
4695 btrfs_tree_unlock(eb);
4696
4697 free_extent_buffer_stale(eb);
4698 }
4699 }
4700 }
4701
4702 static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4703 struct extent_io_tree *unpin)
4704 {
4705 u64 start;
4706 u64 end;
4707
4708 while (1) {
4709 struct extent_state *cached_state = NULL;
4710
4711 /*
4712 * The btrfs_finish_extent_commit() may get the same range as
4713 * ours between find_first_extent_bit and clear_extent_dirty.
4714 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4715 * the same extent range.
4716 */
4717 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4718 if (!find_first_extent_bit(unpin, 0, &start, &end,
4719 EXTENT_DIRTY, &cached_state)) {
4720 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4721 break;
4722 }
4723
4724 clear_extent_dirty(unpin, start, end, &cached_state);
4725 free_extent_state(cached_state);
4726 btrfs_error_unpin_extent_range(fs_info, start, end);
4727 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4728 cond_resched();
4729 }
4730 }
4731
4732 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4733 {
4734 struct inode *inode;
4735
4736 inode = cache->io_ctl.inode;
4737 if (inode) {
4738 unsigned int nofs_flag;
4739
4740 nofs_flag = memalloc_nofs_save();
4741 invalidate_inode_pages2(inode->i_mapping);
4742 memalloc_nofs_restore(nofs_flag);
4743
4744 BTRFS_I(inode)->generation = 0;
4745 cache->io_ctl.inode = NULL;
4746 iput(inode);
4747 }
4748 ASSERT(cache->io_ctl.pages == NULL);
4749 btrfs_put_block_group(cache);
4750 }
4751
4752 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4753 struct btrfs_fs_info *fs_info)
4754 {
4755 struct btrfs_block_group *cache;
4756
4757 spin_lock(&cur_trans->dirty_bgs_lock);
4758 while (!list_empty(&cur_trans->dirty_bgs)) {
4759 cache = list_first_entry(&cur_trans->dirty_bgs,
4760 struct btrfs_block_group,
4761 dirty_list);
4762
4763 if (!list_empty(&cache->io_list)) {
4764 spin_unlock(&cur_trans->dirty_bgs_lock);
4765 list_del_init(&cache->io_list);
4766 btrfs_cleanup_bg_io(cache);
4767 spin_lock(&cur_trans->dirty_bgs_lock);
4768 }
4769
4770 list_del_init(&cache->dirty_list);
4771 spin_lock(&cache->lock);
4772 cache->disk_cache_state = BTRFS_DC_ERROR;
4773 spin_unlock(&cache->lock);
4774
4775 spin_unlock(&cur_trans->dirty_bgs_lock);
4776 btrfs_put_block_group(cache);
4777 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4778 spin_lock(&cur_trans->dirty_bgs_lock);
4779 }
4780 spin_unlock(&cur_trans->dirty_bgs_lock);
4781
4782 /*
4783 * Refer to the definition of io_bgs member for details why it's safe
4784 * to use it without any locking
4785 */
4786 while (!list_empty(&cur_trans->io_bgs)) {
4787 cache = list_first_entry(&cur_trans->io_bgs,
4788 struct btrfs_block_group,
4789 io_list);
4790
4791 list_del_init(&cache->io_list);
4792 spin_lock(&cache->lock);
4793 cache->disk_cache_state = BTRFS_DC_ERROR;
4794 spin_unlock(&cache->lock);
4795 btrfs_cleanup_bg_io(cache);
4796 }
4797 }
4798
4799 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4800 struct btrfs_fs_info *fs_info)
4801 {
4802 struct btrfs_device *dev, *tmp;
4803
4804 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4805 ASSERT(list_empty(&cur_trans->dirty_bgs));
4806 ASSERT(list_empty(&cur_trans->io_bgs));
4807
4808 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4809 post_commit_list) {
4810 list_del_init(&dev->post_commit_list);
4811 }
4812
4813 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4814
4815 cur_trans->state = TRANS_STATE_COMMIT_START;
4816 wake_up(&fs_info->transaction_blocked_wait);
4817
4818 cur_trans->state = TRANS_STATE_UNBLOCKED;
4819 wake_up(&fs_info->transaction_wait);
4820
4821 btrfs_destroy_delayed_inodes(fs_info);
4822
4823 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4824 EXTENT_DIRTY);
4825 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4826
4827 cur_trans->state =TRANS_STATE_COMPLETED;
4828 wake_up(&cur_trans->commit_wait);
4829 }
4830
4831 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4832 {
4833 struct btrfs_transaction *t;
4834
4835 mutex_lock(&fs_info->transaction_kthread_mutex);
4836
4837 spin_lock(&fs_info->trans_lock);
4838 while (!list_empty(&fs_info->trans_list)) {
4839 t = list_first_entry(&fs_info->trans_list,
4840 struct btrfs_transaction, list);
4841 if (t->state >= TRANS_STATE_COMMIT_PREP) {
4842 refcount_inc(&t->use_count);
4843 spin_unlock(&fs_info->trans_lock);
4844 btrfs_wait_for_commit(fs_info, t->transid);
4845 btrfs_put_transaction(t);
4846 spin_lock(&fs_info->trans_lock);
4847 continue;
4848 }
4849 if (t == fs_info->running_transaction) {
4850 t->state = TRANS_STATE_COMMIT_DOING;
4851 spin_unlock(&fs_info->trans_lock);
4852 /*
4853 * We wait for 0 num_writers since we don't hold a trans
4854 * handle open currently for this transaction.
4855 */
4856 wait_event(t->writer_wait,
4857 atomic_read(&t->num_writers) == 0);
4858 } else {
4859 spin_unlock(&fs_info->trans_lock);
4860 }
4861 btrfs_cleanup_one_transaction(t, fs_info);
4862
4863 spin_lock(&fs_info->trans_lock);
4864 if (t == fs_info->running_transaction)
4865 fs_info->running_transaction = NULL;
4866 list_del_init(&t->list);
4867 spin_unlock(&fs_info->trans_lock);
4868
4869 btrfs_put_transaction(t);
4870 trace_btrfs_transaction_commit(fs_info);
4871 spin_lock(&fs_info->trans_lock);
4872 }
4873 spin_unlock(&fs_info->trans_lock);
4874 btrfs_destroy_all_ordered_extents(fs_info);
4875 btrfs_destroy_delayed_inodes(fs_info);
4876 btrfs_assert_delayed_root_empty(fs_info);
4877 btrfs_destroy_all_delalloc_inodes(fs_info);
4878 btrfs_drop_all_logs(fs_info);
4879 mutex_unlock(&fs_info->transaction_kthread_mutex);
4880
4881 return 0;
4882 }
4883
4884 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4885 {
4886 struct btrfs_path *path;
4887 int ret;
4888 struct extent_buffer *l;
4889 struct btrfs_key search_key;
4890 struct btrfs_key found_key;
4891 int slot;
4892
4893 path = btrfs_alloc_path();
4894 if (!path)
4895 return -ENOMEM;
4896
4897 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4898 search_key.type = -1;
4899 search_key.offset = (u64)-1;
4900 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4901 if (ret < 0)
4902 goto error;
4903 BUG_ON(ret == 0); /* Corruption */
4904 if (path->slots[0] > 0) {
4905 slot = path->slots[0] - 1;
4906 l = path->nodes[0];
4907 btrfs_item_key_to_cpu(l, &found_key, slot);
4908 root->free_objectid = max_t(u64, found_key.objectid + 1,
4909 BTRFS_FIRST_FREE_OBJECTID);
4910 } else {
4911 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4912 }
4913 ret = 0;
4914 error:
4915 btrfs_free_path(path);
4916 return ret;
4917 }
4918
4919 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4920 {
4921 int ret;
4922 mutex_lock(&root->objectid_mutex);
4923
4924 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4925 btrfs_warn(root->fs_info,
4926 "the objectid of root %llu reaches its highest value",
4927 root->root_key.objectid);
4928 ret = -ENOSPC;
4929 goto out;
4930 }
4931
4932 *objectid = root->free_objectid++;
4933 ret = 0;
4934 out:
4935 mutex_unlock(&root->objectid_mutex);
4936 return ret;
4937 }