]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/disk-io.c
Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/linux.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42 #include "block-group.h"
43 #include "discard.h"
44 #include "space-info.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
47 BTRFS_HEADER_FLAG_RELOC |\
48 BTRFS_SUPER_FLAG_ERROR |\
49 BTRFS_SUPER_FLAG_SEEDING |\
50 BTRFS_SUPER_FLAG_METADUMP |\
51 BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static const struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63 struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
69 * is complete. This is used during reads to verify checksums, and it is used
70 * by writes to insert metadata for new file extents after IO is complete.
71 */
72 struct btrfs_end_io_wq {
73 struct bio *bio;
74 bio_end_io_t *end_io;
75 void *private;
76 struct btrfs_fs_info *info;
77 blk_status_t status;
78 enum btrfs_wq_endio_type metadata;
79 struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87 sizeof(struct btrfs_end_io_wq),
88 0,
89 SLAB_MEM_SPREAD,
90 NULL);
91 if (!btrfs_end_io_wq_cache)
92 return -ENOMEM;
93 return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98 kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103 if (fs_info->csum_shash)
104 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108 * async submit bios are used to offload expensive checksumming
109 * onto the worker threads. They checksum file and metadata bios
110 * just before they are sent down the IO stack.
111 */
112 struct async_submit_bio {
113 void *private_data;
114 struct bio *bio;
115 extent_submit_bio_start_t *submit_bio_start;
116 int mirror_num;
117 /*
118 * bio_offset is optional, can be used if the pages in the bio
119 * can't tell us where in the file the bio should go
120 */
121 u64 bio_offset;
122 struct btrfs_work work;
123 blk_status_t status;
124 };
125
126 /*
127 * Lockdep class keys for extent_buffer->lock's in this root. For a given
128 * eb, the lockdep key is determined by the btrfs_root it belongs to and
129 * the level the eb occupies in the tree.
130 *
131 * Different roots are used for different purposes and may nest inside each
132 * other and they require separate keysets. As lockdep keys should be
133 * static, assign keysets according to the purpose of the root as indicated
134 * by btrfs_root->root_key.objectid. This ensures that all special purpose
135 * roots have separate keysets.
136 *
137 * Lock-nesting across peer nodes is always done with the immediate parent
138 * node locked thus preventing deadlock. As lockdep doesn't know this, use
139 * subclass to avoid triggering lockdep warning in such cases.
140 *
141 * The key is set by the readpage_end_io_hook after the buffer has passed
142 * csum validation but before the pages are unlocked. It is also set by
143 * btrfs_init_new_buffer on freshly allocated blocks.
144 *
145 * We also add a check to make sure the highest level of the tree is the
146 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
147 * needs update as well.
148 */
149 #ifdef CONFIG_DEBUG_LOCK_ALLOC
150 # if BTRFS_MAX_LEVEL != 8
151 # error
152 # endif
153
154 static struct btrfs_lockdep_keyset {
155 u64 id; /* root objectid */
156 const char *name_stem; /* lock name stem */
157 char names[BTRFS_MAX_LEVEL + 1][20];
158 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
159 } btrfs_lockdep_keysets[] = {
160 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
161 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
162 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
163 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
164 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
165 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
166 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
167 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
168 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
169 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
170 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
171 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
172 { .id = 0, .name_stem = "tree" },
173 };
174
175 void __init btrfs_init_lockdep(void)
176 {
177 int i, j;
178
179 /* initialize lockdep class names */
180 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
181 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
182
183 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
184 snprintf(ks->names[j], sizeof(ks->names[j]),
185 "btrfs-%s-%02d", ks->name_stem, j);
186 }
187 }
188
189 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
190 int level)
191 {
192 struct btrfs_lockdep_keyset *ks;
193
194 BUG_ON(level >= ARRAY_SIZE(ks->keys));
195
196 /* find the matching keyset, id 0 is the default entry */
197 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
198 if (ks->id == objectid)
199 break;
200
201 lockdep_set_class_and_name(&eb->lock,
202 &ks->keys[level], ks->names[level]);
203 }
204
205 #endif
206
207 /*
208 * extents on the btree inode are pretty simple, there's one extent
209 * that covers the entire device
210 */
211 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
212 struct page *page, size_t pg_offset,
213 u64 start, u64 len)
214 {
215 struct extent_map_tree *em_tree = &inode->extent_tree;
216 struct extent_map *em;
217 int ret;
218
219 read_lock(&em_tree->lock);
220 em = lookup_extent_mapping(em_tree, start, len);
221 if (em) {
222 read_unlock(&em_tree->lock);
223 goto out;
224 }
225 read_unlock(&em_tree->lock);
226
227 em = alloc_extent_map();
228 if (!em) {
229 em = ERR_PTR(-ENOMEM);
230 goto out;
231 }
232 em->start = 0;
233 em->len = (u64)-1;
234 em->block_len = (u64)-1;
235 em->block_start = 0;
236
237 write_lock(&em_tree->lock);
238 ret = add_extent_mapping(em_tree, em, 0);
239 if (ret == -EEXIST) {
240 free_extent_map(em);
241 em = lookup_extent_mapping(em_tree, start, len);
242 if (!em)
243 em = ERR_PTR(-EIO);
244 } else if (ret) {
245 free_extent_map(em);
246 em = ERR_PTR(ret);
247 }
248 write_unlock(&em_tree->lock);
249
250 out:
251 return em;
252 }
253
254 /*
255 * Compute the csum of a btree block and store the result to provided buffer.
256 */
257 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
258 {
259 struct btrfs_fs_info *fs_info = buf->fs_info;
260 const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
261 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
262 char *kaddr;
263 int i;
264
265 shash->tfm = fs_info->csum_shash;
266 crypto_shash_init(shash);
267 kaddr = page_address(buf->pages[0]);
268 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
269 PAGE_SIZE - BTRFS_CSUM_SIZE);
270
271 for (i = 1; i < num_pages; i++) {
272 kaddr = page_address(buf->pages[i]);
273 crypto_shash_update(shash, kaddr, PAGE_SIZE);
274 }
275 memset(result, 0, BTRFS_CSUM_SIZE);
276 crypto_shash_final(shash, result);
277 }
278
279 /*
280 * we can't consider a given block up to date unless the transid of the
281 * block matches the transid in the parent node's pointer. This is how we
282 * detect blocks that either didn't get written at all or got written
283 * in the wrong place.
284 */
285 static int verify_parent_transid(struct extent_io_tree *io_tree,
286 struct extent_buffer *eb, u64 parent_transid,
287 int atomic)
288 {
289 struct extent_state *cached_state = NULL;
290 int ret;
291 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
292
293 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
294 return 0;
295
296 if (atomic)
297 return -EAGAIN;
298
299 if (need_lock) {
300 btrfs_tree_read_lock(eb);
301 btrfs_set_lock_blocking_read(eb);
302 }
303
304 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
305 &cached_state);
306 if (extent_buffer_uptodate(eb) &&
307 btrfs_header_generation(eb) == parent_transid) {
308 ret = 0;
309 goto out;
310 }
311 btrfs_err_rl(eb->fs_info,
312 "parent transid verify failed on %llu wanted %llu found %llu",
313 eb->start,
314 parent_transid, btrfs_header_generation(eb));
315 ret = 1;
316
317 /*
318 * Things reading via commit roots that don't have normal protection,
319 * like send, can have a really old block in cache that may point at a
320 * block that has been freed and re-allocated. So don't clear uptodate
321 * if we find an eb that is under IO (dirty/writeback) because we could
322 * end up reading in the stale data and then writing it back out and
323 * making everybody very sad.
324 */
325 if (!extent_buffer_under_io(eb))
326 clear_extent_buffer_uptodate(eb);
327 out:
328 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
329 &cached_state);
330 if (need_lock)
331 btrfs_tree_read_unlock_blocking(eb);
332 return ret;
333 }
334
335 static bool btrfs_supported_super_csum(u16 csum_type)
336 {
337 switch (csum_type) {
338 case BTRFS_CSUM_TYPE_CRC32:
339 case BTRFS_CSUM_TYPE_XXHASH:
340 case BTRFS_CSUM_TYPE_SHA256:
341 case BTRFS_CSUM_TYPE_BLAKE2:
342 return true;
343 default:
344 return false;
345 }
346 }
347
348 /*
349 * Return 0 if the superblock checksum type matches the checksum value of that
350 * algorithm. Pass the raw disk superblock data.
351 */
352 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
353 char *raw_disk_sb)
354 {
355 struct btrfs_super_block *disk_sb =
356 (struct btrfs_super_block *)raw_disk_sb;
357 char result[BTRFS_CSUM_SIZE];
358 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
359
360 shash->tfm = fs_info->csum_shash;
361
362 /*
363 * The super_block structure does not span the whole
364 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
365 * filled with zeros and is included in the checksum.
366 */
367 crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
368 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
369
370 if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
371 return 1;
372
373 return 0;
374 }
375
376 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
377 struct btrfs_key *first_key, u64 parent_transid)
378 {
379 struct btrfs_fs_info *fs_info = eb->fs_info;
380 int found_level;
381 struct btrfs_key found_key;
382 int ret;
383
384 found_level = btrfs_header_level(eb);
385 if (found_level != level) {
386 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
387 KERN_ERR "BTRFS: tree level check failed\n");
388 btrfs_err(fs_info,
389 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
390 eb->start, level, found_level);
391 return -EIO;
392 }
393
394 if (!first_key)
395 return 0;
396
397 /*
398 * For live tree block (new tree blocks in current transaction),
399 * we need proper lock context to avoid race, which is impossible here.
400 * So we only checks tree blocks which is read from disk, whose
401 * generation <= fs_info->last_trans_committed.
402 */
403 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
404 return 0;
405
406 /* We have @first_key, so this @eb must have at least one item */
407 if (btrfs_header_nritems(eb) == 0) {
408 btrfs_err(fs_info,
409 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
410 eb->start);
411 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
412 return -EUCLEAN;
413 }
414
415 if (found_level)
416 btrfs_node_key_to_cpu(eb, &found_key, 0);
417 else
418 btrfs_item_key_to_cpu(eb, &found_key, 0);
419 ret = btrfs_comp_cpu_keys(first_key, &found_key);
420
421 if (ret) {
422 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
423 KERN_ERR "BTRFS: tree first key check failed\n");
424 btrfs_err(fs_info,
425 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
426 eb->start, parent_transid, first_key->objectid,
427 first_key->type, first_key->offset,
428 found_key.objectid, found_key.type,
429 found_key.offset);
430 }
431 return ret;
432 }
433
434 /*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 *
438 * @parent_transid: expected transid, skip check if 0
439 * @level: expected level, mandatory check
440 * @first_key: expected key of first slot, skip check if NULL
441 */
442 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
443 u64 parent_transid, int level,
444 struct btrfs_key *first_key)
445 {
446 struct btrfs_fs_info *fs_info = eb->fs_info;
447 struct extent_io_tree *io_tree;
448 int failed = 0;
449 int ret;
450 int num_copies = 0;
451 int mirror_num = 0;
452 int failed_mirror = 0;
453
454 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
455 while (1) {
456 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
457 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
458 if (!ret) {
459 if (verify_parent_transid(io_tree, eb,
460 parent_transid, 0))
461 ret = -EIO;
462 else if (btrfs_verify_level_key(eb, level,
463 first_key, parent_transid))
464 ret = -EUCLEAN;
465 else
466 break;
467 }
468
469 num_copies = btrfs_num_copies(fs_info,
470 eb->start, eb->len);
471 if (num_copies == 1)
472 break;
473
474 if (!failed_mirror) {
475 failed = 1;
476 failed_mirror = eb->read_mirror;
477 }
478
479 mirror_num++;
480 if (mirror_num == failed_mirror)
481 mirror_num++;
482
483 if (mirror_num > num_copies)
484 break;
485 }
486
487 if (failed && !ret && failed_mirror)
488 btrfs_repair_eb_io_failure(eb, failed_mirror);
489
490 return ret;
491 }
492
493 /*
494 * checksum a dirty tree block before IO. This has extra checks to make sure
495 * we only fill in the checksum field in the first page of a multi-page block
496 */
497
498 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
499 {
500 u64 start = page_offset(page);
501 u64 found_start;
502 u8 result[BTRFS_CSUM_SIZE];
503 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
504 struct extent_buffer *eb;
505 int ret;
506
507 eb = (struct extent_buffer *)page->private;
508 if (page != eb->pages[0])
509 return 0;
510
511 found_start = btrfs_header_bytenr(eb);
512 /*
513 * Please do not consolidate these warnings into a single if.
514 * It is useful to know what went wrong.
515 */
516 if (WARN_ON(found_start != start))
517 return -EUCLEAN;
518 if (WARN_ON(!PageUptodate(page)))
519 return -EUCLEAN;
520
521 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
522 offsetof(struct btrfs_header, fsid),
523 BTRFS_FSID_SIZE) == 0);
524
525 csum_tree_block(eb, result);
526
527 if (btrfs_header_level(eb))
528 ret = btrfs_check_node(eb);
529 else
530 ret = btrfs_check_leaf_full(eb);
531
532 if (ret < 0) {
533 btrfs_print_tree(eb, 0);
534 btrfs_err(fs_info,
535 "block=%llu write time tree block corruption detected",
536 eb->start);
537 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
538 return ret;
539 }
540 write_extent_buffer(eb, result, 0, csum_size);
541
542 return 0;
543 }
544
545 static int check_tree_block_fsid(struct extent_buffer *eb)
546 {
547 struct btrfs_fs_info *fs_info = eb->fs_info;
548 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
549 u8 fsid[BTRFS_FSID_SIZE];
550 int ret = 1;
551
552 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
553 BTRFS_FSID_SIZE);
554 while (fs_devices) {
555 u8 *metadata_uuid;
556
557 /*
558 * Checking the incompat flag is only valid for the current
559 * fs. For seed devices it's forbidden to have their uuid
560 * changed so reading ->fsid in this case is fine
561 */
562 if (fs_devices == fs_info->fs_devices &&
563 btrfs_fs_incompat(fs_info, METADATA_UUID))
564 metadata_uuid = fs_devices->metadata_uuid;
565 else
566 metadata_uuid = fs_devices->fsid;
567
568 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
569 ret = 0;
570 break;
571 }
572 fs_devices = fs_devices->seed;
573 }
574 return ret;
575 }
576
577 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
578 u64 phy_offset, struct page *page,
579 u64 start, u64 end, int mirror)
580 {
581 u64 found_start;
582 int found_level;
583 struct extent_buffer *eb;
584 struct btrfs_fs_info *fs_info;
585 u16 csum_size;
586 int ret = 0;
587 u8 result[BTRFS_CSUM_SIZE];
588 int reads_done;
589
590 if (!page->private)
591 goto out;
592
593 eb = (struct extent_buffer *)page->private;
594 fs_info = eb->fs_info;
595 csum_size = btrfs_super_csum_size(fs_info->super_copy);
596
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 atomic_inc(&eb->refs);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
605
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
610 }
611
612 found_start = btrfs_header_bytenr(eb);
613 if (found_start != eb->start) {
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
616 ret = -EIO;
617 goto err;
618 }
619 if (check_tree_block_fsid(eb)) {
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
622 ret = -EIO;
623 goto err;
624 }
625 found_level = btrfs_header_level(eb);
626 if (found_level >= BTRFS_MAX_LEVEL) {
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
629 ret = -EIO;
630 goto err;
631 }
632
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
635
636 csum_tree_block(eb, result);
637
638 if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
639 u32 val;
640 u32 found = 0;
641
642 memcpy(&found, result, csum_size);
643
644 read_extent_buffer(eb, &val, 0, csum_size);
645 btrfs_warn_rl(fs_info,
646 "%s checksum verify failed on %llu wanted %x found %x level %d",
647 fs_info->sb->s_id, eb->start,
648 val, found, btrfs_header_level(eb));
649 ret = -EUCLEAN;
650 goto err;
651 }
652
653 /*
654 * If this is a leaf block and it is corrupt, set the corrupt bit so
655 * that we don't try and read the other copies of this block, just
656 * return -EIO.
657 */
658 if (found_level == 0 && btrfs_check_leaf_full(eb)) {
659 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
660 ret = -EIO;
661 }
662
663 if (found_level > 0 && btrfs_check_node(eb))
664 ret = -EIO;
665
666 if (!ret)
667 set_extent_buffer_uptodate(eb);
668 else
669 btrfs_err(fs_info,
670 "block=%llu read time tree block corruption detected",
671 eb->start);
672 err:
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
675 btree_readahead_hook(eb, ret);
676
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
684 clear_extent_buffer_uptodate(eb);
685 }
686 free_extent_buffer(eb);
687 out:
688 return ret;
689 }
690
691 static void end_workqueue_bio(struct bio *bio)
692 {
693 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
694 struct btrfs_fs_info *fs_info;
695 struct btrfs_workqueue *wq;
696
697 fs_info = end_io_wq->info;
698 end_io_wq->status = bio->bi_status;
699
700 if (bio_op(bio) == REQ_OP_WRITE) {
701 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
702 wq = fs_info->endio_meta_write_workers;
703 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
704 wq = fs_info->endio_freespace_worker;
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 wq = fs_info->endio_raid56_workers;
707 else
708 wq = fs_info->endio_write_workers;
709 } else {
710 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
711 wq = fs_info->endio_raid56_workers;
712 else if (end_io_wq->metadata)
713 wq = fs_info->endio_meta_workers;
714 else
715 wq = fs_info->endio_workers;
716 }
717
718 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
719 btrfs_queue_work(wq, &end_io_wq->work);
720 }
721
722 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723 enum btrfs_wq_endio_type metadata)
724 {
725 struct btrfs_end_io_wq *end_io_wq;
726
727 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
728 if (!end_io_wq)
729 return BLK_STS_RESOURCE;
730
731 end_io_wq->private = bio->bi_private;
732 end_io_wq->end_io = bio->bi_end_io;
733 end_io_wq->info = info;
734 end_io_wq->status = 0;
735 end_io_wq->bio = bio;
736 end_io_wq->metadata = metadata;
737
738 bio->bi_private = end_io_wq;
739 bio->bi_end_io = end_workqueue_bio;
740 return 0;
741 }
742
743 static void run_one_async_start(struct btrfs_work *work)
744 {
745 struct async_submit_bio *async;
746 blk_status_t ret;
747
748 async = container_of(work, struct async_submit_bio, work);
749 ret = async->submit_bio_start(async->private_data, async->bio,
750 async->bio_offset);
751 if (ret)
752 async->status = ret;
753 }
754
755 /*
756 * In order to insert checksums into the metadata in large chunks, we wait
757 * until bio submission time. All the pages in the bio are checksummed and
758 * sums are attached onto the ordered extent record.
759 *
760 * At IO completion time the csums attached on the ordered extent record are
761 * inserted into the tree.
762 */
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765 struct async_submit_bio *async;
766 struct inode *inode;
767 blk_status_t ret;
768
769 async = container_of(work, struct async_submit_bio, work);
770 inode = async->private_data;
771
772 /* If an error occurred we just want to clean up the bio and move on */
773 if (async->status) {
774 async->bio->bi_status = async->status;
775 bio_endio(async->bio);
776 return;
777 }
778
779 /*
780 * All of the bios that pass through here are from async helpers.
781 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
782 * This changes nothing when cgroups aren't in use.
783 */
784 async->bio->bi_opf |= REQ_CGROUP_PUNT;
785 ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
786 if (ret) {
787 async->bio->bi_status = ret;
788 bio_endio(async->bio);
789 }
790 }
791
792 static void run_one_async_free(struct btrfs_work *work)
793 {
794 struct async_submit_bio *async;
795
796 async = container_of(work, struct async_submit_bio, work);
797 kfree(async);
798 }
799
800 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
801 int mirror_num, unsigned long bio_flags,
802 u64 bio_offset, void *private_data,
803 extent_submit_bio_start_t *submit_bio_start)
804 {
805 struct async_submit_bio *async;
806
807 async = kmalloc(sizeof(*async), GFP_NOFS);
808 if (!async)
809 return BLK_STS_RESOURCE;
810
811 async->private_data = private_data;
812 async->bio = bio;
813 async->mirror_num = mirror_num;
814 async->submit_bio_start = submit_bio_start;
815
816 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
817 run_one_async_free);
818
819 async->bio_offset = bio_offset;
820
821 async->status = 0;
822
823 if (op_is_sync(bio->bi_opf))
824 btrfs_set_work_high_priority(&async->work);
825
826 btrfs_queue_work(fs_info->workers, &async->work);
827 return 0;
828 }
829
830 static blk_status_t btree_csum_one_bio(struct bio *bio)
831 {
832 struct bio_vec *bvec;
833 struct btrfs_root *root;
834 int ret = 0;
835 struct bvec_iter_all iter_all;
836
837 ASSERT(!bio_flagged(bio, BIO_CLONED));
838 bio_for_each_segment_all(bvec, bio, iter_all) {
839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
840 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
841 if (ret)
842 break;
843 }
844
845 return errno_to_blk_status(ret);
846 }
847
848 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
849 u64 bio_offset)
850 {
851 /*
852 * when we're called for a write, we're already in the async
853 * submission context. Just jump into btrfs_map_bio
854 */
855 return btree_csum_one_bio(bio);
856 }
857
858 static int check_async_write(struct btrfs_fs_info *fs_info,
859 struct btrfs_inode *bi)
860 {
861 if (atomic_read(&bi->sync_writers))
862 return 0;
863 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
864 return 0;
865 return 1;
866 }
867
868 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
869 int mirror_num,
870 unsigned long bio_flags)
871 {
872 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
873 int async = check_async_write(fs_info, BTRFS_I(inode));
874 blk_status_t ret;
875
876 if (bio_op(bio) != REQ_OP_WRITE) {
877 /*
878 * called for a read, do the setup so that checksum validation
879 * can happen in the async kernel threads
880 */
881 ret = btrfs_bio_wq_end_io(fs_info, bio,
882 BTRFS_WQ_ENDIO_METADATA);
883 if (ret)
884 goto out_w_error;
885 ret = btrfs_map_bio(fs_info, bio, mirror_num);
886 } else if (!async) {
887 ret = btree_csum_one_bio(bio);
888 if (ret)
889 goto out_w_error;
890 ret = btrfs_map_bio(fs_info, bio, mirror_num);
891 } else {
892 /*
893 * kthread helpers are used to submit writes so that
894 * checksumming can happen in parallel across all CPUs
895 */
896 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
897 0, inode, btree_submit_bio_start);
898 }
899
900 if (ret)
901 goto out_w_error;
902 return 0;
903
904 out_w_error:
905 bio->bi_status = ret;
906 bio_endio(bio);
907 return ret;
908 }
909
910 #ifdef CONFIG_MIGRATION
911 static int btree_migratepage(struct address_space *mapping,
912 struct page *newpage, struct page *page,
913 enum migrate_mode mode)
914 {
915 /*
916 * we can't safely write a btree page from here,
917 * we haven't done the locking hook
918 */
919 if (PageDirty(page))
920 return -EAGAIN;
921 /*
922 * Buffers may be managed in a filesystem specific way.
923 * We must have no buffers or drop them.
924 */
925 if (page_has_private(page) &&
926 !try_to_release_page(page, GFP_KERNEL))
927 return -EAGAIN;
928 return migrate_page(mapping, newpage, page, mode);
929 }
930 #endif
931
932
933 static int btree_writepages(struct address_space *mapping,
934 struct writeback_control *wbc)
935 {
936 struct btrfs_fs_info *fs_info;
937 int ret;
938
939 if (wbc->sync_mode == WB_SYNC_NONE) {
940
941 if (wbc->for_kupdate)
942 return 0;
943
944 fs_info = BTRFS_I(mapping->host)->root->fs_info;
945 /* this is a bit racy, but that's ok */
946 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
947 BTRFS_DIRTY_METADATA_THRESH,
948 fs_info->dirty_metadata_batch);
949 if (ret < 0)
950 return 0;
951 }
952 return btree_write_cache_pages(mapping, wbc);
953 }
954
955 static int btree_readpage(struct file *file, struct page *page)
956 {
957 return extent_read_full_page(page, btree_get_extent, 0);
958 }
959
960 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
961 {
962 if (PageWriteback(page) || PageDirty(page))
963 return 0;
964
965 return try_release_extent_buffer(page);
966 }
967
968 static void btree_invalidatepage(struct page *page, unsigned int offset,
969 unsigned int length)
970 {
971 struct extent_io_tree *tree;
972 tree = &BTRFS_I(page->mapping->host)->io_tree;
973 extent_invalidatepage(tree, page, offset);
974 btree_releasepage(page, GFP_NOFS);
975 if (PagePrivate(page)) {
976 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page));
979 detach_page_private(page);
980 }
981 }
982
983 static int btree_set_page_dirty(struct page *page)
984 {
985 #ifdef DEBUG
986 struct extent_buffer *eb;
987
988 BUG_ON(!PagePrivate(page));
989 eb = (struct extent_buffer *)page->private;
990 BUG_ON(!eb);
991 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
992 BUG_ON(!atomic_read(&eb->refs));
993 btrfs_assert_tree_locked(eb);
994 #endif
995 return __set_page_dirty_nobuffers(page);
996 }
997
998 static const struct address_space_operations btree_aops = {
999 .readpage = btree_readpage,
1000 .writepages = btree_writepages,
1001 .releasepage = btree_releasepage,
1002 .invalidatepage = btree_invalidatepage,
1003 #ifdef CONFIG_MIGRATION
1004 .migratepage = btree_migratepage,
1005 #endif
1006 .set_page_dirty = btree_set_page_dirty,
1007 };
1008
1009 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1010 {
1011 struct extent_buffer *buf = NULL;
1012 int ret;
1013
1014 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1015 if (IS_ERR(buf))
1016 return;
1017
1018 ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1019 if (ret < 0)
1020 free_extent_buffer_stale(buf);
1021 else
1022 free_extent_buffer(buf);
1023 }
1024
1025 struct extent_buffer *btrfs_find_create_tree_block(
1026 struct btrfs_fs_info *fs_info,
1027 u64 bytenr)
1028 {
1029 if (btrfs_is_testing(fs_info))
1030 return alloc_test_extent_buffer(fs_info, bytenr);
1031 return alloc_extent_buffer(fs_info, bytenr);
1032 }
1033
1034 /*
1035 * Read tree block at logical address @bytenr and do variant basic but critical
1036 * verification.
1037 *
1038 * @parent_transid: expected transid of this tree block, skip check if 0
1039 * @level: expected level, mandatory check
1040 * @first_key: expected key in slot 0, skip check if NULL
1041 */
1042 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1043 u64 parent_transid, int level,
1044 struct btrfs_key *first_key)
1045 {
1046 struct extent_buffer *buf = NULL;
1047 int ret;
1048
1049 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1050 if (IS_ERR(buf))
1051 return buf;
1052
1053 ret = btree_read_extent_buffer_pages(buf, parent_transid,
1054 level, first_key);
1055 if (ret) {
1056 free_extent_buffer_stale(buf);
1057 return ERR_PTR(ret);
1058 }
1059 return buf;
1060
1061 }
1062
1063 void btrfs_clean_tree_block(struct extent_buffer *buf)
1064 {
1065 struct btrfs_fs_info *fs_info = buf->fs_info;
1066 if (btrfs_header_generation(buf) ==
1067 fs_info->running_transaction->transid) {
1068 btrfs_assert_tree_locked(buf);
1069
1070 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1071 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1072 -buf->len,
1073 fs_info->dirty_metadata_batch);
1074 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1075 btrfs_set_lock_blocking_write(buf);
1076 clear_extent_buffer_dirty(buf);
1077 }
1078 }
1079 }
1080
1081 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1082 u64 objectid)
1083 {
1084 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1085 root->fs_info = fs_info;
1086 root->node = NULL;
1087 root->commit_root = NULL;
1088 root->state = 0;
1089 root->orphan_cleanup_state = 0;
1090
1091 root->last_trans = 0;
1092 root->highest_objectid = 0;
1093 root->nr_delalloc_inodes = 0;
1094 root->nr_ordered_extents = 0;
1095 root->inode_tree = RB_ROOT;
1096 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1097 root->block_rsv = NULL;
1098
1099 INIT_LIST_HEAD(&root->dirty_list);
1100 INIT_LIST_HEAD(&root->root_list);
1101 INIT_LIST_HEAD(&root->delalloc_inodes);
1102 INIT_LIST_HEAD(&root->delalloc_root);
1103 INIT_LIST_HEAD(&root->ordered_extents);
1104 INIT_LIST_HEAD(&root->ordered_root);
1105 INIT_LIST_HEAD(&root->reloc_dirty_list);
1106 INIT_LIST_HEAD(&root->logged_list[0]);
1107 INIT_LIST_HEAD(&root->logged_list[1]);
1108 spin_lock_init(&root->inode_lock);
1109 spin_lock_init(&root->delalloc_lock);
1110 spin_lock_init(&root->ordered_extent_lock);
1111 spin_lock_init(&root->accounting_lock);
1112 spin_lock_init(&root->log_extents_lock[0]);
1113 spin_lock_init(&root->log_extents_lock[1]);
1114 spin_lock_init(&root->qgroup_meta_rsv_lock);
1115 mutex_init(&root->objectid_mutex);
1116 mutex_init(&root->log_mutex);
1117 mutex_init(&root->ordered_extent_mutex);
1118 mutex_init(&root->delalloc_mutex);
1119 init_waitqueue_head(&root->log_writer_wait);
1120 init_waitqueue_head(&root->log_commit_wait[0]);
1121 init_waitqueue_head(&root->log_commit_wait[1]);
1122 INIT_LIST_HEAD(&root->log_ctxs[0]);
1123 INIT_LIST_HEAD(&root->log_ctxs[1]);
1124 atomic_set(&root->log_commit[0], 0);
1125 atomic_set(&root->log_commit[1], 0);
1126 atomic_set(&root->log_writers, 0);
1127 atomic_set(&root->log_batch, 0);
1128 refcount_set(&root->refs, 1);
1129 atomic_set(&root->snapshot_force_cow, 0);
1130 atomic_set(&root->nr_swapfiles, 0);
1131 root->log_transid = 0;
1132 root->log_transid_committed = -1;
1133 root->last_log_commit = 0;
1134 if (!dummy) {
1135 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1136 IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1137 extent_io_tree_init(fs_info, &root->log_csum_range,
1138 IO_TREE_LOG_CSUM_RANGE, NULL);
1139 }
1140
1141 memset(&root->root_key, 0, sizeof(root->root_key));
1142 memset(&root->root_item, 0, sizeof(root->root_item));
1143 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1144 if (!dummy)
1145 root->defrag_trans_start = fs_info->generation;
1146 else
1147 root->defrag_trans_start = 0;
1148 root->root_key.objectid = objectid;
1149 root->anon_dev = 0;
1150
1151 spin_lock_init(&root->root_item_lock);
1152 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1153 #ifdef CONFIG_BTRFS_DEBUG
1154 INIT_LIST_HEAD(&root->leak_list);
1155 spin_lock(&fs_info->fs_roots_radix_lock);
1156 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1157 spin_unlock(&fs_info->fs_roots_radix_lock);
1158 #endif
1159 }
1160
1161 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1162 u64 objectid, gfp_t flags)
1163 {
1164 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1165 if (root)
1166 __setup_root(root, fs_info, objectid);
1167 return root;
1168 }
1169
1170 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1171 /* Should only be used by the testing infrastructure */
1172 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1173 {
1174 struct btrfs_root *root;
1175
1176 if (!fs_info)
1177 return ERR_PTR(-EINVAL);
1178
1179 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1180 if (!root)
1181 return ERR_PTR(-ENOMEM);
1182
1183 /* We don't use the stripesize in selftest, set it as sectorsize */
1184 root->alloc_bytenr = 0;
1185
1186 return root;
1187 }
1188 #endif
1189
1190 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1191 u64 objectid)
1192 {
1193 struct btrfs_fs_info *fs_info = trans->fs_info;
1194 struct extent_buffer *leaf;
1195 struct btrfs_root *tree_root = fs_info->tree_root;
1196 struct btrfs_root *root;
1197 struct btrfs_key key;
1198 unsigned int nofs_flag;
1199 int ret = 0;
1200
1201 /*
1202 * We're holding a transaction handle, so use a NOFS memory allocation
1203 * context to avoid deadlock if reclaim happens.
1204 */
1205 nofs_flag = memalloc_nofs_save();
1206 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1207 memalloc_nofs_restore(nofs_flag);
1208 if (!root)
1209 return ERR_PTR(-ENOMEM);
1210
1211 root->root_key.objectid = objectid;
1212 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1213 root->root_key.offset = 0;
1214
1215 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1216 if (IS_ERR(leaf)) {
1217 ret = PTR_ERR(leaf);
1218 leaf = NULL;
1219 goto fail;
1220 }
1221
1222 root->node = leaf;
1223 btrfs_mark_buffer_dirty(leaf);
1224
1225 root->commit_root = btrfs_root_node(root);
1226 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1227
1228 root->root_item.flags = 0;
1229 root->root_item.byte_limit = 0;
1230 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1231 btrfs_set_root_generation(&root->root_item, trans->transid);
1232 btrfs_set_root_level(&root->root_item, 0);
1233 btrfs_set_root_refs(&root->root_item, 1);
1234 btrfs_set_root_used(&root->root_item, leaf->len);
1235 btrfs_set_root_last_snapshot(&root->root_item, 0);
1236 btrfs_set_root_dirid(&root->root_item, 0);
1237 if (is_fstree(objectid))
1238 generate_random_guid(root->root_item.uuid);
1239 else
1240 export_guid(root->root_item.uuid, &guid_null);
1241 root->root_item.drop_level = 0;
1242
1243 key.objectid = objectid;
1244 key.type = BTRFS_ROOT_ITEM_KEY;
1245 key.offset = 0;
1246 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1247 if (ret)
1248 goto fail;
1249
1250 btrfs_tree_unlock(leaf);
1251
1252 return root;
1253
1254 fail:
1255 if (leaf)
1256 btrfs_tree_unlock(leaf);
1257 btrfs_put_root(root);
1258
1259 return ERR_PTR(ret);
1260 }
1261
1262 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1263 struct btrfs_fs_info *fs_info)
1264 {
1265 struct btrfs_root *root;
1266 struct extent_buffer *leaf;
1267
1268 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1269 if (!root)
1270 return ERR_PTR(-ENOMEM);
1271
1272 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1273 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1274 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1275
1276 /*
1277 * DON'T set SHAREABLE bit for log trees.
1278 *
1279 * Log trees are not exposed to user space thus can't be snapshotted,
1280 * and they go away before a real commit is actually done.
1281 *
1282 * They do store pointers to file data extents, and those reference
1283 * counts still get updated (along with back refs to the log tree).
1284 */
1285
1286 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1287 NULL, 0, 0, 0);
1288 if (IS_ERR(leaf)) {
1289 btrfs_put_root(root);
1290 return ERR_CAST(leaf);
1291 }
1292
1293 root->node = leaf;
1294
1295 btrfs_mark_buffer_dirty(root->node);
1296 btrfs_tree_unlock(root->node);
1297 return root;
1298 }
1299
1300 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1301 struct btrfs_fs_info *fs_info)
1302 {
1303 struct btrfs_root *log_root;
1304
1305 log_root = alloc_log_tree(trans, fs_info);
1306 if (IS_ERR(log_root))
1307 return PTR_ERR(log_root);
1308 WARN_ON(fs_info->log_root_tree);
1309 fs_info->log_root_tree = log_root;
1310 return 0;
1311 }
1312
1313 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1314 struct btrfs_root *root)
1315 {
1316 struct btrfs_fs_info *fs_info = root->fs_info;
1317 struct btrfs_root *log_root;
1318 struct btrfs_inode_item *inode_item;
1319
1320 log_root = alloc_log_tree(trans, fs_info);
1321 if (IS_ERR(log_root))
1322 return PTR_ERR(log_root);
1323
1324 log_root->last_trans = trans->transid;
1325 log_root->root_key.offset = root->root_key.objectid;
1326
1327 inode_item = &log_root->root_item.inode;
1328 btrfs_set_stack_inode_generation(inode_item, 1);
1329 btrfs_set_stack_inode_size(inode_item, 3);
1330 btrfs_set_stack_inode_nlink(inode_item, 1);
1331 btrfs_set_stack_inode_nbytes(inode_item,
1332 fs_info->nodesize);
1333 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1334
1335 btrfs_set_root_node(&log_root->root_item, log_root->node);
1336
1337 WARN_ON(root->log_root);
1338 root->log_root = log_root;
1339 root->log_transid = 0;
1340 root->log_transid_committed = -1;
1341 root->last_log_commit = 0;
1342 return 0;
1343 }
1344
1345 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1346 struct btrfs_key *key)
1347 {
1348 struct btrfs_root *root;
1349 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1350 struct btrfs_path *path;
1351 u64 generation;
1352 int ret;
1353 int level;
1354
1355 path = btrfs_alloc_path();
1356 if (!path)
1357 return ERR_PTR(-ENOMEM);
1358
1359 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1360 if (!root) {
1361 ret = -ENOMEM;
1362 goto alloc_fail;
1363 }
1364
1365 ret = btrfs_find_root(tree_root, key, path,
1366 &root->root_item, &root->root_key);
1367 if (ret) {
1368 if (ret > 0)
1369 ret = -ENOENT;
1370 goto find_fail;
1371 }
1372
1373 generation = btrfs_root_generation(&root->root_item);
1374 level = btrfs_root_level(&root->root_item);
1375 root->node = read_tree_block(fs_info,
1376 btrfs_root_bytenr(&root->root_item),
1377 generation, level, NULL);
1378 if (IS_ERR(root->node)) {
1379 ret = PTR_ERR(root->node);
1380 root->node = NULL;
1381 goto find_fail;
1382 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1383 ret = -EIO;
1384 goto find_fail;
1385 }
1386 root->commit_root = btrfs_root_node(root);
1387 out:
1388 btrfs_free_path(path);
1389 return root;
1390
1391 find_fail:
1392 btrfs_put_root(root);
1393 alloc_fail:
1394 root = ERR_PTR(ret);
1395 goto out;
1396 }
1397
1398 static int btrfs_init_fs_root(struct btrfs_root *root)
1399 {
1400 int ret;
1401 unsigned int nofs_flag;
1402
1403 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1404 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1405 GFP_NOFS);
1406 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1407 ret = -ENOMEM;
1408 goto fail;
1409 }
1410
1411 /*
1412 * We might be called under a transaction (e.g. indirect backref
1413 * resolution) which could deadlock if it triggers memory reclaim
1414 */
1415 nofs_flag = memalloc_nofs_save();
1416 ret = btrfs_drew_lock_init(&root->snapshot_lock);
1417 memalloc_nofs_restore(nofs_flag);
1418 if (ret)
1419 goto fail;
1420
1421 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1422 root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1423 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1424 btrfs_check_and_init_root_item(&root->root_item);
1425 }
1426
1427 btrfs_init_free_ino_ctl(root);
1428 spin_lock_init(&root->ino_cache_lock);
1429 init_waitqueue_head(&root->ino_cache_wait);
1430
1431 ret = get_anon_bdev(&root->anon_dev);
1432 if (ret)
1433 goto fail;
1434
1435 mutex_lock(&root->objectid_mutex);
1436 ret = btrfs_find_highest_objectid(root,
1437 &root->highest_objectid);
1438 if (ret) {
1439 mutex_unlock(&root->objectid_mutex);
1440 goto fail;
1441 }
1442
1443 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1444
1445 mutex_unlock(&root->objectid_mutex);
1446
1447 return 0;
1448 fail:
1449 /* The caller is responsible to call btrfs_free_fs_root */
1450 return ret;
1451 }
1452
1453 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1454 u64 root_id)
1455 {
1456 struct btrfs_root *root;
1457
1458 spin_lock(&fs_info->fs_roots_radix_lock);
1459 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1460 (unsigned long)root_id);
1461 if (root)
1462 root = btrfs_grab_root(root);
1463 spin_unlock(&fs_info->fs_roots_radix_lock);
1464 return root;
1465 }
1466
1467 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1468 struct btrfs_root *root)
1469 {
1470 int ret;
1471
1472 ret = radix_tree_preload(GFP_NOFS);
1473 if (ret)
1474 return ret;
1475
1476 spin_lock(&fs_info->fs_roots_radix_lock);
1477 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1478 (unsigned long)root->root_key.objectid,
1479 root);
1480 if (ret == 0) {
1481 btrfs_grab_root(root);
1482 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1483 }
1484 spin_unlock(&fs_info->fs_roots_radix_lock);
1485 radix_tree_preload_end();
1486
1487 return ret;
1488 }
1489
1490 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1491 {
1492 #ifdef CONFIG_BTRFS_DEBUG
1493 struct btrfs_root *root;
1494
1495 while (!list_empty(&fs_info->allocated_roots)) {
1496 root = list_first_entry(&fs_info->allocated_roots,
1497 struct btrfs_root, leak_list);
1498 btrfs_err(fs_info, "leaked root %llu-%llu refcount %d",
1499 root->root_key.objectid, root->root_key.offset,
1500 refcount_read(&root->refs));
1501 while (refcount_read(&root->refs) > 1)
1502 btrfs_put_root(root);
1503 btrfs_put_root(root);
1504 }
1505 #endif
1506 }
1507
1508 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1509 {
1510 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1511 percpu_counter_destroy(&fs_info->delalloc_bytes);
1512 percpu_counter_destroy(&fs_info->dio_bytes);
1513 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1514 btrfs_free_csum_hash(fs_info);
1515 btrfs_free_stripe_hash_table(fs_info);
1516 btrfs_free_ref_cache(fs_info);
1517 kfree(fs_info->balance_ctl);
1518 kfree(fs_info->delayed_root);
1519 btrfs_put_root(fs_info->extent_root);
1520 btrfs_put_root(fs_info->tree_root);
1521 btrfs_put_root(fs_info->chunk_root);
1522 btrfs_put_root(fs_info->dev_root);
1523 btrfs_put_root(fs_info->csum_root);
1524 btrfs_put_root(fs_info->quota_root);
1525 btrfs_put_root(fs_info->uuid_root);
1526 btrfs_put_root(fs_info->free_space_root);
1527 btrfs_put_root(fs_info->fs_root);
1528 btrfs_put_root(fs_info->data_reloc_root);
1529 btrfs_check_leaked_roots(fs_info);
1530 btrfs_extent_buffer_leak_debug_check(fs_info);
1531 kfree(fs_info->super_copy);
1532 kfree(fs_info->super_for_commit);
1533 kvfree(fs_info);
1534 }
1535
1536
1537 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1538 u64 objectid, bool check_ref)
1539 {
1540 struct btrfs_root *root;
1541 struct btrfs_path *path;
1542 struct btrfs_key key;
1543 int ret;
1544
1545 if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1546 return btrfs_grab_root(fs_info->tree_root);
1547 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1548 return btrfs_grab_root(fs_info->extent_root);
1549 if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1550 return btrfs_grab_root(fs_info->chunk_root);
1551 if (objectid == BTRFS_DEV_TREE_OBJECTID)
1552 return btrfs_grab_root(fs_info->dev_root);
1553 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1554 return btrfs_grab_root(fs_info->csum_root);
1555 if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1556 return btrfs_grab_root(fs_info->quota_root) ?
1557 fs_info->quota_root : ERR_PTR(-ENOENT);
1558 if (objectid == BTRFS_UUID_TREE_OBJECTID)
1559 return btrfs_grab_root(fs_info->uuid_root) ?
1560 fs_info->uuid_root : ERR_PTR(-ENOENT);
1561 if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1562 return btrfs_grab_root(fs_info->free_space_root) ?
1563 fs_info->free_space_root : ERR_PTR(-ENOENT);
1564 again:
1565 root = btrfs_lookup_fs_root(fs_info, objectid);
1566 if (root) {
1567 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1568 btrfs_put_root(root);
1569 return ERR_PTR(-ENOENT);
1570 }
1571 return root;
1572 }
1573
1574 key.objectid = objectid;
1575 key.type = BTRFS_ROOT_ITEM_KEY;
1576 key.offset = (u64)-1;
1577 root = btrfs_read_tree_root(fs_info->tree_root, &key);
1578 if (IS_ERR(root))
1579 return root;
1580
1581 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1582 ret = -ENOENT;
1583 goto fail;
1584 }
1585
1586 ret = btrfs_init_fs_root(root);
1587 if (ret)
1588 goto fail;
1589
1590 path = btrfs_alloc_path();
1591 if (!path) {
1592 ret = -ENOMEM;
1593 goto fail;
1594 }
1595 key.objectid = BTRFS_ORPHAN_OBJECTID;
1596 key.type = BTRFS_ORPHAN_ITEM_KEY;
1597 key.offset = objectid;
1598
1599 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1600 btrfs_free_path(path);
1601 if (ret < 0)
1602 goto fail;
1603 if (ret == 0)
1604 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1605
1606 ret = btrfs_insert_fs_root(fs_info, root);
1607 if (ret) {
1608 btrfs_put_root(root);
1609 if (ret == -EEXIST)
1610 goto again;
1611 goto fail;
1612 }
1613 return root;
1614 fail:
1615 btrfs_put_root(root);
1616 return ERR_PTR(ret);
1617 }
1618
1619 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1620 {
1621 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1622 int ret = 0;
1623 struct btrfs_device *device;
1624 struct backing_dev_info *bdi;
1625
1626 rcu_read_lock();
1627 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1628 if (!device->bdev)
1629 continue;
1630 bdi = device->bdev->bd_bdi;
1631 if (bdi_congested(bdi, bdi_bits)) {
1632 ret = 1;
1633 break;
1634 }
1635 }
1636 rcu_read_unlock();
1637 return ret;
1638 }
1639
1640 /*
1641 * called by the kthread helper functions to finally call the bio end_io
1642 * functions. This is where read checksum verification actually happens
1643 */
1644 static void end_workqueue_fn(struct btrfs_work *work)
1645 {
1646 struct bio *bio;
1647 struct btrfs_end_io_wq *end_io_wq;
1648
1649 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1650 bio = end_io_wq->bio;
1651
1652 bio->bi_status = end_io_wq->status;
1653 bio->bi_private = end_io_wq->private;
1654 bio->bi_end_io = end_io_wq->end_io;
1655 bio_endio(bio);
1656 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1657 }
1658
1659 static int cleaner_kthread(void *arg)
1660 {
1661 struct btrfs_root *root = arg;
1662 struct btrfs_fs_info *fs_info = root->fs_info;
1663 int again;
1664
1665 while (1) {
1666 again = 0;
1667
1668 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1669
1670 /* Make the cleaner go to sleep early. */
1671 if (btrfs_need_cleaner_sleep(fs_info))
1672 goto sleep;
1673
1674 /*
1675 * Do not do anything if we might cause open_ctree() to block
1676 * before we have finished mounting the filesystem.
1677 */
1678 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1679 goto sleep;
1680
1681 if (!mutex_trylock(&fs_info->cleaner_mutex))
1682 goto sleep;
1683
1684 /*
1685 * Avoid the problem that we change the status of the fs
1686 * during the above check and trylock.
1687 */
1688 if (btrfs_need_cleaner_sleep(fs_info)) {
1689 mutex_unlock(&fs_info->cleaner_mutex);
1690 goto sleep;
1691 }
1692
1693 btrfs_run_delayed_iputs(fs_info);
1694
1695 again = btrfs_clean_one_deleted_snapshot(root);
1696 mutex_unlock(&fs_info->cleaner_mutex);
1697
1698 /*
1699 * The defragger has dealt with the R/O remount and umount,
1700 * needn't do anything special here.
1701 */
1702 btrfs_run_defrag_inodes(fs_info);
1703
1704 /*
1705 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1706 * with relocation (btrfs_relocate_chunk) and relocation
1707 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1708 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1709 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1710 * unused block groups.
1711 */
1712 btrfs_delete_unused_bgs(fs_info);
1713 sleep:
1714 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1715 if (kthread_should_park())
1716 kthread_parkme();
1717 if (kthread_should_stop())
1718 return 0;
1719 if (!again) {
1720 set_current_state(TASK_INTERRUPTIBLE);
1721 schedule();
1722 __set_current_state(TASK_RUNNING);
1723 }
1724 }
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729 struct btrfs_root *root = arg;
1730 struct btrfs_fs_info *fs_info = root->fs_info;
1731 struct btrfs_trans_handle *trans;
1732 struct btrfs_transaction *cur;
1733 u64 transid;
1734 time64_t now;
1735 unsigned long delay;
1736 bool cannot_commit;
1737
1738 do {
1739 cannot_commit = false;
1740 delay = HZ * fs_info->commit_interval;
1741 mutex_lock(&fs_info->transaction_kthread_mutex);
1742
1743 spin_lock(&fs_info->trans_lock);
1744 cur = fs_info->running_transaction;
1745 if (!cur) {
1746 spin_unlock(&fs_info->trans_lock);
1747 goto sleep;
1748 }
1749
1750 now = ktime_get_seconds();
1751 if (cur->state < TRANS_STATE_COMMIT_START &&
1752 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1753 (now < cur->start_time ||
1754 now - cur->start_time < fs_info->commit_interval)) {
1755 spin_unlock(&fs_info->trans_lock);
1756 delay = HZ * 5;
1757 goto sleep;
1758 }
1759 transid = cur->transid;
1760 spin_unlock(&fs_info->trans_lock);
1761
1762 /* If the file system is aborted, this will always fail. */
1763 trans = btrfs_attach_transaction(root);
1764 if (IS_ERR(trans)) {
1765 if (PTR_ERR(trans) != -ENOENT)
1766 cannot_commit = true;
1767 goto sleep;
1768 }
1769 if (transid == trans->transid) {
1770 btrfs_commit_transaction(trans);
1771 } else {
1772 btrfs_end_transaction(trans);
1773 }
1774 sleep:
1775 wake_up_process(fs_info->cleaner_kthread);
1776 mutex_unlock(&fs_info->transaction_kthread_mutex);
1777
1778 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1779 &fs_info->fs_state)))
1780 btrfs_cleanup_transaction(fs_info);
1781 if (!kthread_should_stop() &&
1782 (!btrfs_transaction_blocked(fs_info) ||
1783 cannot_commit))
1784 schedule_timeout_interruptible(delay);
1785 } while (!kthread_should_stop());
1786 return 0;
1787 }
1788
1789 /*
1790 * This will find the highest generation in the array of root backups. The
1791 * index of the highest array is returned, or -EINVAL if we can't find
1792 * anything.
1793 *
1794 * We check to make sure the array is valid by comparing the
1795 * generation of the latest root in the array with the generation
1796 * in the super block. If they don't match we pitch it.
1797 */
1798 static int find_newest_super_backup(struct btrfs_fs_info *info)
1799 {
1800 const u64 newest_gen = btrfs_super_generation(info->super_copy);
1801 u64 cur;
1802 struct btrfs_root_backup *root_backup;
1803 int i;
1804
1805 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1806 root_backup = info->super_copy->super_roots + i;
1807 cur = btrfs_backup_tree_root_gen(root_backup);
1808 if (cur == newest_gen)
1809 return i;
1810 }
1811
1812 return -EINVAL;
1813 }
1814
1815 /*
1816 * copy all the root pointers into the super backup array.
1817 * this will bump the backup pointer by one when it is
1818 * done
1819 */
1820 static void backup_super_roots(struct btrfs_fs_info *info)
1821 {
1822 const int next_backup = info->backup_root_index;
1823 struct btrfs_root_backup *root_backup;
1824
1825 root_backup = info->super_for_commit->super_roots + next_backup;
1826
1827 /*
1828 * make sure all of our padding and empty slots get zero filled
1829 * regardless of which ones we use today
1830 */
1831 memset(root_backup, 0, sizeof(*root_backup));
1832
1833 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1834
1835 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1836 btrfs_set_backup_tree_root_gen(root_backup,
1837 btrfs_header_generation(info->tree_root->node));
1838
1839 btrfs_set_backup_tree_root_level(root_backup,
1840 btrfs_header_level(info->tree_root->node));
1841
1842 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1843 btrfs_set_backup_chunk_root_gen(root_backup,
1844 btrfs_header_generation(info->chunk_root->node));
1845 btrfs_set_backup_chunk_root_level(root_backup,
1846 btrfs_header_level(info->chunk_root->node));
1847
1848 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1849 btrfs_set_backup_extent_root_gen(root_backup,
1850 btrfs_header_generation(info->extent_root->node));
1851 btrfs_set_backup_extent_root_level(root_backup,
1852 btrfs_header_level(info->extent_root->node));
1853
1854 /*
1855 * we might commit during log recovery, which happens before we set
1856 * the fs_root. Make sure it is valid before we fill it in.
1857 */
1858 if (info->fs_root && info->fs_root->node) {
1859 btrfs_set_backup_fs_root(root_backup,
1860 info->fs_root->node->start);
1861 btrfs_set_backup_fs_root_gen(root_backup,
1862 btrfs_header_generation(info->fs_root->node));
1863 btrfs_set_backup_fs_root_level(root_backup,
1864 btrfs_header_level(info->fs_root->node));
1865 }
1866
1867 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1868 btrfs_set_backup_dev_root_gen(root_backup,
1869 btrfs_header_generation(info->dev_root->node));
1870 btrfs_set_backup_dev_root_level(root_backup,
1871 btrfs_header_level(info->dev_root->node));
1872
1873 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1874 btrfs_set_backup_csum_root_gen(root_backup,
1875 btrfs_header_generation(info->csum_root->node));
1876 btrfs_set_backup_csum_root_level(root_backup,
1877 btrfs_header_level(info->csum_root->node));
1878
1879 btrfs_set_backup_total_bytes(root_backup,
1880 btrfs_super_total_bytes(info->super_copy));
1881 btrfs_set_backup_bytes_used(root_backup,
1882 btrfs_super_bytes_used(info->super_copy));
1883 btrfs_set_backup_num_devices(root_backup,
1884 btrfs_super_num_devices(info->super_copy));
1885
1886 /*
1887 * if we don't copy this out to the super_copy, it won't get remembered
1888 * for the next commit
1889 */
1890 memcpy(&info->super_copy->super_roots,
1891 &info->super_for_commit->super_roots,
1892 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1893 }
1894
1895 /*
1896 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
1897 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1898 *
1899 * fs_info - filesystem whose backup roots need to be read
1900 * priority - priority of backup root required
1901 *
1902 * Returns backup root index on success and -EINVAL otherwise.
1903 */
1904 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1905 {
1906 int backup_index = find_newest_super_backup(fs_info);
1907 struct btrfs_super_block *super = fs_info->super_copy;
1908 struct btrfs_root_backup *root_backup;
1909
1910 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1911 if (priority == 0)
1912 return backup_index;
1913
1914 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1915 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1916 } else {
1917 return -EINVAL;
1918 }
1919
1920 root_backup = super->super_roots + backup_index;
1921
1922 btrfs_set_super_generation(super,
1923 btrfs_backup_tree_root_gen(root_backup));
1924 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925 btrfs_set_super_root_level(super,
1926 btrfs_backup_tree_root_level(root_backup));
1927 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928
1929 /*
1930 * Fixme: the total bytes and num_devices need to match or we should
1931 * need a fsck
1932 */
1933 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935
1936 return backup_index;
1937 }
1938
1939 /* helper to cleanup workers */
1940 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1941 {
1942 btrfs_destroy_workqueue(fs_info->fixup_workers);
1943 btrfs_destroy_workqueue(fs_info->delalloc_workers);
1944 btrfs_destroy_workqueue(fs_info->workers);
1945 btrfs_destroy_workqueue(fs_info->endio_workers);
1946 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
1947 btrfs_destroy_workqueue(fs_info->rmw_workers);
1948 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1949 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
1950 btrfs_destroy_workqueue(fs_info->delayed_workers);
1951 btrfs_destroy_workqueue(fs_info->caching_workers);
1952 btrfs_destroy_workqueue(fs_info->readahead_workers);
1953 btrfs_destroy_workqueue(fs_info->flush_workers);
1954 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1955 if (fs_info->discard_ctl.discard_workers)
1956 destroy_workqueue(fs_info->discard_ctl.discard_workers);
1957 /*
1958 * Now that all other work queues are destroyed, we can safely destroy
1959 * the queues used for metadata I/O, since tasks from those other work
1960 * queues can do metadata I/O operations.
1961 */
1962 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
1963 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
1964 }
1965
1966 static void free_root_extent_buffers(struct btrfs_root *root)
1967 {
1968 if (root) {
1969 free_extent_buffer(root->node);
1970 free_extent_buffer(root->commit_root);
1971 root->node = NULL;
1972 root->commit_root = NULL;
1973 }
1974 }
1975
1976 /* helper to cleanup tree roots */
1977 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1978 {
1979 free_root_extent_buffers(info->tree_root);
1980
1981 free_root_extent_buffers(info->dev_root);
1982 free_root_extent_buffers(info->extent_root);
1983 free_root_extent_buffers(info->csum_root);
1984 free_root_extent_buffers(info->quota_root);
1985 free_root_extent_buffers(info->uuid_root);
1986 free_root_extent_buffers(info->fs_root);
1987 free_root_extent_buffers(info->data_reloc_root);
1988 if (free_chunk_root)
1989 free_root_extent_buffers(info->chunk_root);
1990 free_root_extent_buffers(info->free_space_root);
1991 }
1992
1993 void btrfs_put_root(struct btrfs_root *root)
1994 {
1995 if (!root)
1996 return;
1997
1998 if (refcount_dec_and_test(&root->refs)) {
1999 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2000 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2001 if (root->anon_dev)
2002 free_anon_bdev(root->anon_dev);
2003 btrfs_drew_lock_destroy(&root->snapshot_lock);
2004 free_extent_buffer(root->node);
2005 free_extent_buffer(root->commit_root);
2006 kfree(root->free_ino_ctl);
2007 kfree(root->free_ino_pinned);
2008 #ifdef CONFIG_BTRFS_DEBUG
2009 spin_lock(&root->fs_info->fs_roots_radix_lock);
2010 list_del_init(&root->leak_list);
2011 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2012 #endif
2013 kfree(root);
2014 }
2015 }
2016
2017 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2018 {
2019 int ret;
2020 struct btrfs_root *gang[8];
2021 int i;
2022
2023 while (!list_empty(&fs_info->dead_roots)) {
2024 gang[0] = list_entry(fs_info->dead_roots.next,
2025 struct btrfs_root, root_list);
2026 list_del(&gang[0]->root_list);
2027
2028 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2029 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2030 btrfs_put_root(gang[0]);
2031 }
2032
2033 while (1) {
2034 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2035 (void **)gang, 0,
2036 ARRAY_SIZE(gang));
2037 if (!ret)
2038 break;
2039 for (i = 0; i < ret; i++)
2040 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2041 }
2042 }
2043
2044 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2045 {
2046 mutex_init(&fs_info->scrub_lock);
2047 atomic_set(&fs_info->scrubs_running, 0);
2048 atomic_set(&fs_info->scrub_pause_req, 0);
2049 atomic_set(&fs_info->scrubs_paused, 0);
2050 atomic_set(&fs_info->scrub_cancel_req, 0);
2051 init_waitqueue_head(&fs_info->scrub_pause_wait);
2052 refcount_set(&fs_info->scrub_workers_refcnt, 0);
2053 }
2054
2055 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2056 {
2057 spin_lock_init(&fs_info->balance_lock);
2058 mutex_init(&fs_info->balance_mutex);
2059 atomic_set(&fs_info->balance_pause_req, 0);
2060 atomic_set(&fs_info->balance_cancel_req, 0);
2061 fs_info->balance_ctl = NULL;
2062 init_waitqueue_head(&fs_info->balance_wait_q);
2063 }
2064
2065 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2066 {
2067 struct inode *inode = fs_info->btree_inode;
2068
2069 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2070 set_nlink(inode, 1);
2071 /*
2072 * we set the i_size on the btree inode to the max possible int.
2073 * the real end of the address space is determined by all of
2074 * the devices in the system
2075 */
2076 inode->i_size = OFFSET_MAX;
2077 inode->i_mapping->a_ops = &btree_aops;
2078
2079 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2080 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2081 IO_TREE_INODE_IO, inode);
2082 BTRFS_I(inode)->io_tree.track_uptodate = false;
2083 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2084
2085 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2086
2087 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2088 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2089 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2090 btrfs_insert_inode_hash(inode);
2091 }
2092
2093 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2094 {
2095 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2096 init_rwsem(&fs_info->dev_replace.rwsem);
2097 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2098 }
2099
2100 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2101 {
2102 spin_lock_init(&fs_info->qgroup_lock);
2103 mutex_init(&fs_info->qgroup_ioctl_lock);
2104 fs_info->qgroup_tree = RB_ROOT;
2105 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2106 fs_info->qgroup_seq = 1;
2107 fs_info->qgroup_ulist = NULL;
2108 fs_info->qgroup_rescan_running = false;
2109 mutex_init(&fs_info->qgroup_rescan_lock);
2110 }
2111
2112 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2113 struct btrfs_fs_devices *fs_devices)
2114 {
2115 u32 max_active = fs_info->thread_pool_size;
2116 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2117
2118 fs_info->workers =
2119 btrfs_alloc_workqueue(fs_info, "worker",
2120 flags | WQ_HIGHPRI, max_active, 16);
2121
2122 fs_info->delalloc_workers =
2123 btrfs_alloc_workqueue(fs_info, "delalloc",
2124 flags, max_active, 2);
2125
2126 fs_info->flush_workers =
2127 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2128 flags, max_active, 0);
2129
2130 fs_info->caching_workers =
2131 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2132
2133 fs_info->fixup_workers =
2134 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2135
2136 /*
2137 * endios are largely parallel and should have a very
2138 * low idle thresh
2139 */
2140 fs_info->endio_workers =
2141 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2142 fs_info->endio_meta_workers =
2143 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2144 max_active, 4);
2145 fs_info->endio_meta_write_workers =
2146 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2147 max_active, 2);
2148 fs_info->endio_raid56_workers =
2149 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2150 max_active, 4);
2151 fs_info->rmw_workers =
2152 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2153 fs_info->endio_write_workers =
2154 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2155 max_active, 2);
2156 fs_info->endio_freespace_worker =
2157 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2158 max_active, 0);
2159 fs_info->delayed_workers =
2160 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2161 max_active, 0);
2162 fs_info->readahead_workers =
2163 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2164 max_active, 2);
2165 fs_info->qgroup_rescan_workers =
2166 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2167 fs_info->discard_ctl.discard_workers =
2168 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2169
2170 if (!(fs_info->workers && fs_info->delalloc_workers &&
2171 fs_info->flush_workers &&
2172 fs_info->endio_workers && fs_info->endio_meta_workers &&
2173 fs_info->endio_meta_write_workers &&
2174 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2175 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2176 fs_info->caching_workers && fs_info->readahead_workers &&
2177 fs_info->fixup_workers && fs_info->delayed_workers &&
2178 fs_info->qgroup_rescan_workers &&
2179 fs_info->discard_ctl.discard_workers)) {
2180 return -ENOMEM;
2181 }
2182
2183 return 0;
2184 }
2185
2186 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2187 {
2188 struct crypto_shash *csum_shash;
2189 const char *csum_driver = btrfs_super_csum_driver(csum_type);
2190
2191 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2192
2193 if (IS_ERR(csum_shash)) {
2194 btrfs_err(fs_info, "error allocating %s hash for checksum",
2195 csum_driver);
2196 return PTR_ERR(csum_shash);
2197 }
2198
2199 fs_info->csum_shash = csum_shash;
2200
2201 return 0;
2202 }
2203
2204 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2205 struct btrfs_fs_devices *fs_devices)
2206 {
2207 int ret;
2208 struct btrfs_root *log_tree_root;
2209 struct btrfs_super_block *disk_super = fs_info->super_copy;
2210 u64 bytenr = btrfs_super_log_root(disk_super);
2211 int level = btrfs_super_log_root_level(disk_super);
2212
2213 if (fs_devices->rw_devices == 0) {
2214 btrfs_warn(fs_info, "log replay required on RO media");
2215 return -EIO;
2216 }
2217
2218 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2219 GFP_KERNEL);
2220 if (!log_tree_root)
2221 return -ENOMEM;
2222
2223 log_tree_root->node = read_tree_block(fs_info, bytenr,
2224 fs_info->generation + 1,
2225 level, NULL);
2226 if (IS_ERR(log_tree_root->node)) {
2227 btrfs_warn(fs_info, "failed to read log tree");
2228 ret = PTR_ERR(log_tree_root->node);
2229 log_tree_root->node = NULL;
2230 btrfs_put_root(log_tree_root);
2231 return ret;
2232 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2233 btrfs_err(fs_info, "failed to read log tree");
2234 btrfs_put_root(log_tree_root);
2235 return -EIO;
2236 }
2237 /* returns with log_tree_root freed on success */
2238 ret = btrfs_recover_log_trees(log_tree_root);
2239 if (ret) {
2240 btrfs_handle_fs_error(fs_info, ret,
2241 "Failed to recover log tree");
2242 btrfs_put_root(log_tree_root);
2243 return ret;
2244 }
2245
2246 if (sb_rdonly(fs_info->sb)) {
2247 ret = btrfs_commit_super(fs_info);
2248 if (ret)
2249 return ret;
2250 }
2251
2252 return 0;
2253 }
2254
2255 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2256 {
2257 struct btrfs_root *tree_root = fs_info->tree_root;
2258 struct btrfs_root *root;
2259 struct btrfs_key location;
2260 int ret;
2261
2262 BUG_ON(!fs_info->tree_root);
2263
2264 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2265 location.type = BTRFS_ROOT_ITEM_KEY;
2266 location.offset = 0;
2267
2268 root = btrfs_read_tree_root(tree_root, &location);
2269 if (IS_ERR(root)) {
2270 ret = PTR_ERR(root);
2271 goto out;
2272 }
2273 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2274 fs_info->extent_root = root;
2275
2276 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2277 root = btrfs_read_tree_root(tree_root, &location);
2278 if (IS_ERR(root)) {
2279 ret = PTR_ERR(root);
2280 goto out;
2281 }
2282 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2283 fs_info->dev_root = root;
2284 btrfs_init_devices_late(fs_info);
2285
2286 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2287 root = btrfs_read_tree_root(tree_root, &location);
2288 if (IS_ERR(root)) {
2289 ret = PTR_ERR(root);
2290 goto out;
2291 }
2292 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2293 fs_info->csum_root = root;
2294
2295 /*
2296 * This tree can share blocks with some other fs tree during relocation
2297 * and we need a proper setup by btrfs_get_fs_root
2298 */
2299 root = btrfs_get_fs_root(tree_root->fs_info,
2300 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2301 if (IS_ERR(root)) {
2302 ret = PTR_ERR(root);
2303 goto out;
2304 }
2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2306 fs_info->data_reloc_root = root;
2307
2308 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2309 root = btrfs_read_tree_root(tree_root, &location);
2310 if (!IS_ERR(root)) {
2311 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2312 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2313 fs_info->quota_root = root;
2314 }
2315
2316 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2317 root = btrfs_read_tree_root(tree_root, &location);
2318 if (IS_ERR(root)) {
2319 ret = PTR_ERR(root);
2320 if (ret != -ENOENT)
2321 goto out;
2322 } else {
2323 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2324 fs_info->uuid_root = root;
2325 }
2326
2327 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2328 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2329 root = btrfs_read_tree_root(tree_root, &location);
2330 if (IS_ERR(root)) {
2331 ret = PTR_ERR(root);
2332 goto out;
2333 }
2334 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2335 fs_info->free_space_root = root;
2336 }
2337
2338 return 0;
2339 out:
2340 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2341 location.objectid, ret);
2342 return ret;
2343 }
2344
2345 /*
2346 * Real super block validation
2347 * NOTE: super csum type and incompat features will not be checked here.
2348 *
2349 * @sb: super block to check
2350 * @mirror_num: the super block number to check its bytenr:
2351 * 0 the primary (1st) sb
2352 * 1, 2 2nd and 3rd backup copy
2353 * -1 skip bytenr check
2354 */
2355 static int validate_super(struct btrfs_fs_info *fs_info,
2356 struct btrfs_super_block *sb, int mirror_num)
2357 {
2358 u64 nodesize = btrfs_super_nodesize(sb);
2359 u64 sectorsize = btrfs_super_sectorsize(sb);
2360 int ret = 0;
2361
2362 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2363 btrfs_err(fs_info, "no valid FS found");
2364 ret = -EINVAL;
2365 }
2366 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2367 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2368 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2369 ret = -EINVAL;
2370 }
2371 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2372 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2373 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2374 ret = -EINVAL;
2375 }
2376 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2377 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2378 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2379 ret = -EINVAL;
2380 }
2381 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2382 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2383 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2384 ret = -EINVAL;
2385 }
2386
2387 /*
2388 * Check sectorsize and nodesize first, other check will need it.
2389 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2390 */
2391 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2392 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2393 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2394 ret = -EINVAL;
2395 }
2396 /* Only PAGE SIZE is supported yet */
2397 if (sectorsize != PAGE_SIZE) {
2398 btrfs_err(fs_info,
2399 "sectorsize %llu not supported yet, only support %lu",
2400 sectorsize, PAGE_SIZE);
2401 ret = -EINVAL;
2402 }
2403 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2404 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2405 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2406 ret = -EINVAL;
2407 }
2408 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2409 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2410 le32_to_cpu(sb->__unused_leafsize), nodesize);
2411 ret = -EINVAL;
2412 }
2413
2414 /* Root alignment check */
2415 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2416 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2417 btrfs_super_root(sb));
2418 ret = -EINVAL;
2419 }
2420 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2421 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2422 btrfs_super_chunk_root(sb));
2423 ret = -EINVAL;
2424 }
2425 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2426 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2427 btrfs_super_log_root(sb));
2428 ret = -EINVAL;
2429 }
2430
2431 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2432 BTRFS_FSID_SIZE) != 0) {
2433 btrfs_err(fs_info,
2434 "dev_item UUID does not match metadata fsid: %pU != %pU",
2435 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2436 ret = -EINVAL;
2437 }
2438
2439 /*
2440 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2441 * done later
2442 */
2443 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2444 btrfs_err(fs_info, "bytes_used is too small %llu",
2445 btrfs_super_bytes_used(sb));
2446 ret = -EINVAL;
2447 }
2448 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2449 btrfs_err(fs_info, "invalid stripesize %u",
2450 btrfs_super_stripesize(sb));
2451 ret = -EINVAL;
2452 }
2453 if (btrfs_super_num_devices(sb) > (1UL << 31))
2454 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2455 btrfs_super_num_devices(sb));
2456 if (btrfs_super_num_devices(sb) == 0) {
2457 btrfs_err(fs_info, "number of devices is 0");
2458 ret = -EINVAL;
2459 }
2460
2461 if (mirror_num >= 0 &&
2462 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2463 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2464 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2465 ret = -EINVAL;
2466 }
2467
2468 /*
2469 * Obvious sys_chunk_array corruptions, it must hold at least one key
2470 * and one chunk
2471 */
2472 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2473 btrfs_err(fs_info, "system chunk array too big %u > %u",
2474 btrfs_super_sys_array_size(sb),
2475 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2476 ret = -EINVAL;
2477 }
2478 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2479 + sizeof(struct btrfs_chunk)) {
2480 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2481 btrfs_super_sys_array_size(sb),
2482 sizeof(struct btrfs_disk_key)
2483 + sizeof(struct btrfs_chunk));
2484 ret = -EINVAL;
2485 }
2486
2487 /*
2488 * The generation is a global counter, we'll trust it more than the others
2489 * but it's still possible that it's the one that's wrong.
2490 */
2491 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2492 btrfs_warn(fs_info,
2493 "suspicious: generation < chunk_root_generation: %llu < %llu",
2494 btrfs_super_generation(sb),
2495 btrfs_super_chunk_root_generation(sb));
2496 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2497 && btrfs_super_cache_generation(sb) != (u64)-1)
2498 btrfs_warn(fs_info,
2499 "suspicious: generation < cache_generation: %llu < %llu",
2500 btrfs_super_generation(sb),
2501 btrfs_super_cache_generation(sb));
2502
2503 return ret;
2504 }
2505
2506 /*
2507 * Validation of super block at mount time.
2508 * Some checks already done early at mount time, like csum type and incompat
2509 * flags will be skipped.
2510 */
2511 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2512 {
2513 return validate_super(fs_info, fs_info->super_copy, 0);
2514 }
2515
2516 /*
2517 * Validation of super block at write time.
2518 * Some checks like bytenr check will be skipped as their values will be
2519 * overwritten soon.
2520 * Extra checks like csum type and incompat flags will be done here.
2521 */
2522 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2523 struct btrfs_super_block *sb)
2524 {
2525 int ret;
2526
2527 ret = validate_super(fs_info, sb, -1);
2528 if (ret < 0)
2529 goto out;
2530 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2531 ret = -EUCLEAN;
2532 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2533 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2534 goto out;
2535 }
2536 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2537 ret = -EUCLEAN;
2538 btrfs_err(fs_info,
2539 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2540 btrfs_super_incompat_flags(sb),
2541 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2542 goto out;
2543 }
2544 out:
2545 if (ret < 0)
2546 btrfs_err(fs_info,
2547 "super block corruption detected before writing it to disk");
2548 return ret;
2549 }
2550
2551 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2552 {
2553 int backup_index = find_newest_super_backup(fs_info);
2554 struct btrfs_super_block *sb = fs_info->super_copy;
2555 struct btrfs_root *tree_root = fs_info->tree_root;
2556 bool handle_error = false;
2557 int ret = 0;
2558 int i;
2559
2560 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2561 u64 generation;
2562 int level;
2563
2564 if (handle_error) {
2565 if (!IS_ERR(tree_root->node))
2566 free_extent_buffer(tree_root->node);
2567 tree_root->node = NULL;
2568
2569 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2570 break;
2571
2572 free_root_pointers(fs_info, 0);
2573
2574 /*
2575 * Don't use the log in recovery mode, it won't be
2576 * valid
2577 */
2578 btrfs_set_super_log_root(sb, 0);
2579
2580 /* We can't trust the free space cache either */
2581 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2582
2583 ret = read_backup_root(fs_info, i);
2584 backup_index = ret;
2585 if (ret < 0)
2586 return ret;
2587 }
2588 generation = btrfs_super_generation(sb);
2589 level = btrfs_super_root_level(sb);
2590 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2591 generation, level, NULL);
2592 if (IS_ERR(tree_root->node) ||
2593 !extent_buffer_uptodate(tree_root->node)) {
2594 handle_error = true;
2595
2596 if (IS_ERR(tree_root->node)) {
2597 ret = PTR_ERR(tree_root->node);
2598 tree_root->node = NULL;
2599 } else if (!extent_buffer_uptodate(tree_root->node)) {
2600 ret = -EUCLEAN;
2601 }
2602
2603 btrfs_warn(fs_info, "failed to read tree root");
2604 continue;
2605 }
2606
2607 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2608 tree_root->commit_root = btrfs_root_node(tree_root);
2609 btrfs_set_root_refs(&tree_root->root_item, 1);
2610
2611 /*
2612 * No need to hold btrfs_root::objectid_mutex since the fs
2613 * hasn't been fully initialised and we are the only user
2614 */
2615 ret = btrfs_find_highest_objectid(tree_root,
2616 &tree_root->highest_objectid);
2617 if (ret < 0) {
2618 handle_error = true;
2619 continue;
2620 }
2621
2622 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2623
2624 ret = btrfs_read_roots(fs_info);
2625 if (ret < 0) {
2626 handle_error = true;
2627 continue;
2628 }
2629
2630 /* All successful */
2631 fs_info->generation = generation;
2632 fs_info->last_trans_committed = generation;
2633
2634 /* Always begin writing backup roots after the one being used */
2635 if (backup_index < 0) {
2636 fs_info->backup_root_index = 0;
2637 } else {
2638 fs_info->backup_root_index = backup_index + 1;
2639 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2640 }
2641 break;
2642 }
2643
2644 return ret;
2645 }
2646
2647 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2648 {
2649 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2650 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2651 INIT_LIST_HEAD(&fs_info->trans_list);
2652 INIT_LIST_HEAD(&fs_info->dead_roots);
2653 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2654 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2655 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2656 spin_lock_init(&fs_info->delalloc_root_lock);
2657 spin_lock_init(&fs_info->trans_lock);
2658 spin_lock_init(&fs_info->fs_roots_radix_lock);
2659 spin_lock_init(&fs_info->delayed_iput_lock);
2660 spin_lock_init(&fs_info->defrag_inodes_lock);
2661 spin_lock_init(&fs_info->super_lock);
2662 spin_lock_init(&fs_info->buffer_lock);
2663 spin_lock_init(&fs_info->unused_bgs_lock);
2664 rwlock_init(&fs_info->tree_mod_log_lock);
2665 mutex_init(&fs_info->unused_bg_unpin_mutex);
2666 mutex_init(&fs_info->delete_unused_bgs_mutex);
2667 mutex_init(&fs_info->reloc_mutex);
2668 mutex_init(&fs_info->delalloc_root_mutex);
2669 seqlock_init(&fs_info->profiles_lock);
2670
2671 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2672 INIT_LIST_HEAD(&fs_info->space_info);
2673 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2674 INIT_LIST_HEAD(&fs_info->unused_bgs);
2675 #ifdef CONFIG_BTRFS_DEBUG
2676 INIT_LIST_HEAD(&fs_info->allocated_roots);
2677 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2678 spin_lock_init(&fs_info->eb_leak_lock);
2679 #endif
2680 extent_map_tree_init(&fs_info->mapping_tree);
2681 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2682 BTRFS_BLOCK_RSV_GLOBAL);
2683 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2684 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2685 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2686 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2687 BTRFS_BLOCK_RSV_DELOPS);
2688 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2689 BTRFS_BLOCK_RSV_DELREFS);
2690
2691 atomic_set(&fs_info->async_delalloc_pages, 0);
2692 atomic_set(&fs_info->defrag_running, 0);
2693 atomic_set(&fs_info->reada_works_cnt, 0);
2694 atomic_set(&fs_info->nr_delayed_iputs, 0);
2695 atomic64_set(&fs_info->tree_mod_seq, 0);
2696 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2697 fs_info->metadata_ratio = 0;
2698 fs_info->defrag_inodes = RB_ROOT;
2699 atomic64_set(&fs_info->free_chunk_space, 0);
2700 fs_info->tree_mod_log = RB_ROOT;
2701 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2702 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2703 /* readahead state */
2704 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2705 spin_lock_init(&fs_info->reada_lock);
2706 btrfs_init_ref_verify(fs_info);
2707
2708 fs_info->thread_pool_size = min_t(unsigned long,
2709 num_online_cpus() + 2, 8);
2710
2711 INIT_LIST_HEAD(&fs_info->ordered_roots);
2712 spin_lock_init(&fs_info->ordered_root_lock);
2713
2714 btrfs_init_scrub(fs_info);
2715 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2716 fs_info->check_integrity_print_mask = 0;
2717 #endif
2718 btrfs_init_balance(fs_info);
2719 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2720
2721 spin_lock_init(&fs_info->block_group_cache_lock);
2722 fs_info->block_group_cache_tree = RB_ROOT;
2723 fs_info->first_logical_byte = (u64)-1;
2724
2725 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2726 IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2727 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2728
2729 mutex_init(&fs_info->ordered_operations_mutex);
2730 mutex_init(&fs_info->tree_log_mutex);
2731 mutex_init(&fs_info->chunk_mutex);
2732 mutex_init(&fs_info->transaction_kthread_mutex);
2733 mutex_init(&fs_info->cleaner_mutex);
2734 mutex_init(&fs_info->ro_block_group_mutex);
2735 init_rwsem(&fs_info->commit_root_sem);
2736 init_rwsem(&fs_info->cleanup_work_sem);
2737 init_rwsem(&fs_info->subvol_sem);
2738 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2739
2740 btrfs_init_dev_replace_locks(fs_info);
2741 btrfs_init_qgroup(fs_info);
2742 btrfs_discard_init(fs_info);
2743
2744 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2745 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2746
2747 init_waitqueue_head(&fs_info->transaction_throttle);
2748 init_waitqueue_head(&fs_info->transaction_wait);
2749 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2750 init_waitqueue_head(&fs_info->async_submit_wait);
2751 init_waitqueue_head(&fs_info->delayed_iputs_wait);
2752
2753 /* Usable values until the real ones are cached from the superblock */
2754 fs_info->nodesize = 4096;
2755 fs_info->sectorsize = 4096;
2756 fs_info->stripesize = 4096;
2757
2758 spin_lock_init(&fs_info->swapfile_pins_lock);
2759 fs_info->swapfile_pins = RB_ROOT;
2760
2761 fs_info->send_in_progress = 0;
2762 }
2763
2764 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2765 {
2766 int ret;
2767
2768 fs_info->sb = sb;
2769 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2770 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2771
2772 ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2773 if (ret)
2774 return ret;
2775
2776 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2777 if (ret)
2778 return ret;
2779
2780 fs_info->dirty_metadata_batch = PAGE_SIZE *
2781 (1 + ilog2(nr_cpu_ids));
2782
2783 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2784 if (ret)
2785 return ret;
2786
2787 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2788 GFP_KERNEL);
2789 if (ret)
2790 return ret;
2791
2792 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2793 GFP_KERNEL);
2794 if (!fs_info->delayed_root)
2795 return -ENOMEM;
2796 btrfs_init_delayed_root(fs_info->delayed_root);
2797
2798 return btrfs_alloc_stripe_hash_table(fs_info);
2799 }
2800
2801 static int btrfs_uuid_rescan_kthread(void *data)
2802 {
2803 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2804 int ret;
2805
2806 /*
2807 * 1st step is to iterate through the existing UUID tree and
2808 * to delete all entries that contain outdated data.
2809 * 2nd step is to add all missing entries to the UUID tree.
2810 */
2811 ret = btrfs_uuid_tree_iterate(fs_info);
2812 if (ret < 0) {
2813 if (ret != -EINTR)
2814 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2815 ret);
2816 up(&fs_info->uuid_tree_rescan_sem);
2817 return ret;
2818 }
2819 return btrfs_uuid_scan_kthread(data);
2820 }
2821
2822 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2823 {
2824 struct task_struct *task;
2825
2826 down(&fs_info->uuid_tree_rescan_sem);
2827 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2828 if (IS_ERR(task)) {
2829 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2830 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2831 up(&fs_info->uuid_tree_rescan_sem);
2832 return PTR_ERR(task);
2833 }
2834
2835 return 0;
2836 }
2837
2838 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
2839 char *options)
2840 {
2841 u32 sectorsize;
2842 u32 nodesize;
2843 u32 stripesize;
2844 u64 generation;
2845 u64 features;
2846 u16 csum_type;
2847 struct btrfs_super_block *disk_super;
2848 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2849 struct btrfs_root *tree_root;
2850 struct btrfs_root *chunk_root;
2851 int ret;
2852 int err = -EINVAL;
2853 int clear_free_space_tree = 0;
2854 int level;
2855
2856 ret = init_mount_fs_info(fs_info, sb);
2857 if (ret) {
2858 err = ret;
2859 goto fail;
2860 }
2861
2862 /* These need to be init'ed before we start creating inodes and such. */
2863 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
2864 GFP_KERNEL);
2865 fs_info->tree_root = tree_root;
2866 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
2867 GFP_KERNEL);
2868 fs_info->chunk_root = chunk_root;
2869 if (!tree_root || !chunk_root) {
2870 err = -ENOMEM;
2871 goto fail;
2872 }
2873
2874 fs_info->btree_inode = new_inode(sb);
2875 if (!fs_info->btree_inode) {
2876 err = -ENOMEM;
2877 goto fail;
2878 }
2879 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2880 btrfs_init_btree_inode(fs_info);
2881
2882 invalidate_bdev(fs_devices->latest_bdev);
2883
2884 /*
2885 * Read super block and check the signature bytes only
2886 */
2887 disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
2888 if (IS_ERR(disk_super)) {
2889 err = PTR_ERR(disk_super);
2890 goto fail_alloc;
2891 }
2892
2893 /*
2894 * Verify the type first, if that or the the checksum value are
2895 * corrupted, we'll find out
2896 */
2897 csum_type = btrfs_super_csum_type(disk_super);
2898 if (!btrfs_supported_super_csum(csum_type)) {
2899 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2900 csum_type);
2901 err = -EINVAL;
2902 btrfs_release_disk_super(disk_super);
2903 goto fail_alloc;
2904 }
2905
2906 ret = btrfs_init_csum_hash(fs_info, csum_type);
2907 if (ret) {
2908 err = ret;
2909 btrfs_release_disk_super(disk_super);
2910 goto fail_alloc;
2911 }
2912
2913 /*
2914 * We want to check superblock checksum, the type is stored inside.
2915 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2916 */
2917 if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
2918 btrfs_err(fs_info, "superblock checksum mismatch");
2919 err = -EINVAL;
2920 btrfs_release_disk_super(disk_super);
2921 goto fail_alloc;
2922 }
2923
2924 /*
2925 * super_copy is zeroed at allocation time and we never touch the
2926 * following bytes up to INFO_SIZE, the checksum is calculated from
2927 * the whole block of INFO_SIZE
2928 */
2929 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
2930 btrfs_release_disk_super(disk_super);
2931
2932 disk_super = fs_info->super_copy;
2933
2934 ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2935 BTRFS_FSID_SIZE));
2936
2937 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2938 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2939 fs_info->super_copy->metadata_uuid,
2940 BTRFS_FSID_SIZE));
2941 }
2942
2943 features = btrfs_super_flags(disk_super);
2944 if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2945 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2946 btrfs_set_super_flags(disk_super, features);
2947 btrfs_info(fs_info,
2948 "found metadata UUID change in progress flag, clearing");
2949 }
2950
2951 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2952 sizeof(*fs_info->super_for_commit));
2953
2954 ret = btrfs_validate_mount_super(fs_info);
2955 if (ret) {
2956 btrfs_err(fs_info, "superblock contains fatal errors");
2957 err = -EINVAL;
2958 goto fail_alloc;
2959 }
2960
2961 if (!btrfs_super_root(disk_super))
2962 goto fail_alloc;
2963
2964 /* check FS state, whether FS is broken. */
2965 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2966 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2967
2968 /*
2969 * In the long term, we'll store the compression type in the super
2970 * block, and it'll be used for per file compression control.
2971 */
2972 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2973
2974 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2975 if (ret) {
2976 err = ret;
2977 goto fail_alloc;
2978 }
2979
2980 features = btrfs_super_incompat_flags(disk_super) &
2981 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2982 if (features) {
2983 btrfs_err(fs_info,
2984 "cannot mount because of unsupported optional features (%llx)",
2985 features);
2986 err = -EINVAL;
2987 goto fail_alloc;
2988 }
2989
2990 features = btrfs_super_incompat_flags(disk_super);
2991 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2992 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2993 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2994 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2995 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2996
2997 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2998 btrfs_info(fs_info, "has skinny extents");
2999
3000 /*
3001 * flag our filesystem as having big metadata blocks if
3002 * they are bigger than the page size
3003 */
3004 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3005 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3006 btrfs_info(fs_info,
3007 "flagging fs with big metadata feature");
3008 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3009 }
3010
3011 nodesize = btrfs_super_nodesize(disk_super);
3012 sectorsize = btrfs_super_sectorsize(disk_super);
3013 stripesize = sectorsize;
3014 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3015 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3016
3017 /* Cache block sizes */
3018 fs_info->nodesize = nodesize;
3019 fs_info->sectorsize = sectorsize;
3020 fs_info->stripesize = stripesize;
3021
3022 /*
3023 * mixed block groups end up with duplicate but slightly offset
3024 * extent buffers for the same range. It leads to corruptions
3025 */
3026 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3027 (sectorsize != nodesize)) {
3028 btrfs_err(fs_info,
3029 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3030 nodesize, sectorsize);
3031 goto fail_alloc;
3032 }
3033
3034 /*
3035 * Needn't use the lock because there is no other task which will
3036 * update the flag.
3037 */
3038 btrfs_set_super_incompat_flags(disk_super, features);
3039
3040 features = btrfs_super_compat_ro_flags(disk_super) &
3041 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3042 if (!sb_rdonly(sb) && features) {
3043 btrfs_err(fs_info,
3044 "cannot mount read-write because of unsupported optional features (%llx)",
3045 features);
3046 err = -EINVAL;
3047 goto fail_alloc;
3048 }
3049
3050 ret = btrfs_init_workqueues(fs_info, fs_devices);
3051 if (ret) {
3052 err = ret;
3053 goto fail_sb_buffer;
3054 }
3055
3056 sb->s_bdi->congested_fn = btrfs_congested_fn;
3057 sb->s_bdi->congested_data = fs_info;
3058 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
3059 sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
3060 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3061 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3062
3063 sb->s_blocksize = sectorsize;
3064 sb->s_blocksize_bits = blksize_bits(sectorsize);
3065 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3066
3067 mutex_lock(&fs_info->chunk_mutex);
3068 ret = btrfs_read_sys_array(fs_info);
3069 mutex_unlock(&fs_info->chunk_mutex);
3070 if (ret) {
3071 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3072 goto fail_sb_buffer;
3073 }
3074
3075 generation = btrfs_super_chunk_root_generation(disk_super);
3076 level = btrfs_super_chunk_root_level(disk_super);
3077
3078 chunk_root->node = read_tree_block(fs_info,
3079 btrfs_super_chunk_root(disk_super),
3080 generation, level, NULL);
3081 if (IS_ERR(chunk_root->node) ||
3082 !extent_buffer_uptodate(chunk_root->node)) {
3083 btrfs_err(fs_info, "failed to read chunk root");
3084 if (!IS_ERR(chunk_root->node))
3085 free_extent_buffer(chunk_root->node);
3086 chunk_root->node = NULL;
3087 goto fail_tree_roots;
3088 }
3089 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3090 chunk_root->commit_root = btrfs_root_node(chunk_root);
3091
3092 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3093 offsetof(struct btrfs_header, chunk_tree_uuid),
3094 BTRFS_UUID_SIZE);
3095
3096 ret = btrfs_read_chunk_tree(fs_info);
3097 if (ret) {
3098 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3099 goto fail_tree_roots;
3100 }
3101
3102 /*
3103 * Keep the devid that is marked to be the target device for the
3104 * device replace procedure
3105 */
3106 btrfs_free_extra_devids(fs_devices, 0);
3107
3108 if (!fs_devices->latest_bdev) {
3109 btrfs_err(fs_info, "failed to read devices");
3110 goto fail_tree_roots;
3111 }
3112
3113 ret = init_tree_roots(fs_info);
3114 if (ret)
3115 goto fail_tree_roots;
3116
3117 /*
3118 * If we have a uuid root and we're not being told to rescan we need to
3119 * check the generation here so we can set the
3120 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3121 * transaction during a balance or the log replay without updating the
3122 * uuid generation, and then if we crash we would rescan the uuid tree,
3123 * even though it was perfectly fine.
3124 */
3125 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3126 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3127 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3128
3129 ret = btrfs_verify_dev_extents(fs_info);
3130 if (ret) {
3131 btrfs_err(fs_info,
3132 "failed to verify dev extents against chunks: %d",
3133 ret);
3134 goto fail_block_groups;
3135 }
3136 ret = btrfs_recover_balance(fs_info);
3137 if (ret) {
3138 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3139 goto fail_block_groups;
3140 }
3141
3142 ret = btrfs_init_dev_stats(fs_info);
3143 if (ret) {
3144 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3145 goto fail_block_groups;
3146 }
3147
3148 ret = btrfs_init_dev_replace(fs_info);
3149 if (ret) {
3150 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3151 goto fail_block_groups;
3152 }
3153
3154 btrfs_free_extra_devids(fs_devices, 1);
3155
3156 ret = btrfs_sysfs_add_fsid(fs_devices);
3157 if (ret) {
3158 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3159 ret);
3160 goto fail_block_groups;
3161 }
3162
3163 ret = btrfs_sysfs_add_mounted(fs_info);
3164 if (ret) {
3165 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3166 goto fail_fsdev_sysfs;
3167 }
3168
3169 ret = btrfs_init_space_info(fs_info);
3170 if (ret) {
3171 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3172 goto fail_sysfs;
3173 }
3174
3175 ret = btrfs_read_block_groups(fs_info);
3176 if (ret) {
3177 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3178 goto fail_sysfs;
3179 }
3180
3181 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3182 btrfs_warn(fs_info,
3183 "writable mount is not allowed due to too many missing devices");
3184 goto fail_sysfs;
3185 }
3186
3187 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3188 "btrfs-cleaner");
3189 if (IS_ERR(fs_info->cleaner_kthread))
3190 goto fail_sysfs;
3191
3192 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3193 tree_root,
3194 "btrfs-transaction");
3195 if (IS_ERR(fs_info->transaction_kthread))
3196 goto fail_cleaner;
3197
3198 if (!btrfs_test_opt(fs_info, NOSSD) &&
3199 !fs_info->fs_devices->rotating) {
3200 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3201 }
3202
3203 /*
3204 * Mount does not set all options immediately, we can do it now and do
3205 * not have to wait for transaction commit
3206 */
3207 btrfs_apply_pending_changes(fs_info);
3208
3209 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3210 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3211 ret = btrfsic_mount(fs_info, fs_devices,
3212 btrfs_test_opt(fs_info,
3213 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3214 1 : 0,
3215 fs_info->check_integrity_print_mask);
3216 if (ret)
3217 btrfs_warn(fs_info,
3218 "failed to initialize integrity check module: %d",
3219 ret);
3220 }
3221 #endif
3222 ret = btrfs_read_qgroup_config(fs_info);
3223 if (ret)
3224 goto fail_trans_kthread;
3225
3226 if (btrfs_build_ref_tree(fs_info))
3227 btrfs_err(fs_info, "couldn't build ref tree");
3228
3229 /* do not make disk changes in broken FS or nologreplay is given */
3230 if (btrfs_super_log_root(disk_super) != 0 &&
3231 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3232 btrfs_info(fs_info, "start tree-log replay");
3233 ret = btrfs_replay_log(fs_info, fs_devices);
3234 if (ret) {
3235 err = ret;
3236 goto fail_qgroup;
3237 }
3238 }
3239
3240 ret = btrfs_find_orphan_roots(fs_info);
3241 if (ret)
3242 goto fail_qgroup;
3243
3244 if (!sb_rdonly(sb)) {
3245 ret = btrfs_cleanup_fs_roots(fs_info);
3246 if (ret)
3247 goto fail_qgroup;
3248
3249 mutex_lock(&fs_info->cleaner_mutex);
3250 ret = btrfs_recover_relocation(tree_root);
3251 mutex_unlock(&fs_info->cleaner_mutex);
3252 if (ret < 0) {
3253 btrfs_warn(fs_info, "failed to recover relocation: %d",
3254 ret);
3255 err = -EINVAL;
3256 goto fail_qgroup;
3257 }
3258 }
3259
3260 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3261 if (IS_ERR(fs_info->fs_root)) {
3262 err = PTR_ERR(fs_info->fs_root);
3263 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3264 fs_info->fs_root = NULL;
3265 goto fail_qgroup;
3266 }
3267
3268 if (sb_rdonly(sb))
3269 return 0;
3270
3271 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3272 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3273 clear_free_space_tree = 1;
3274 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3275 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3276 btrfs_warn(fs_info, "free space tree is invalid");
3277 clear_free_space_tree = 1;
3278 }
3279
3280 if (clear_free_space_tree) {
3281 btrfs_info(fs_info, "clearing free space tree");
3282 ret = btrfs_clear_free_space_tree(fs_info);
3283 if (ret) {
3284 btrfs_warn(fs_info,
3285 "failed to clear free space tree: %d", ret);
3286 close_ctree(fs_info);
3287 return ret;
3288 }
3289 }
3290
3291 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3292 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3293 btrfs_info(fs_info, "creating free space tree");
3294 ret = btrfs_create_free_space_tree(fs_info);
3295 if (ret) {
3296 btrfs_warn(fs_info,
3297 "failed to create free space tree: %d", ret);
3298 close_ctree(fs_info);
3299 return ret;
3300 }
3301 }
3302
3303 down_read(&fs_info->cleanup_work_sem);
3304 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3305 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3306 up_read(&fs_info->cleanup_work_sem);
3307 close_ctree(fs_info);
3308 return ret;
3309 }
3310 up_read(&fs_info->cleanup_work_sem);
3311
3312 ret = btrfs_resume_balance_async(fs_info);
3313 if (ret) {
3314 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3315 close_ctree(fs_info);
3316 return ret;
3317 }
3318
3319 ret = btrfs_resume_dev_replace_async(fs_info);
3320 if (ret) {
3321 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3322 close_ctree(fs_info);
3323 return ret;
3324 }
3325
3326 btrfs_qgroup_rescan_resume(fs_info);
3327 btrfs_discard_resume(fs_info);
3328
3329 if (!fs_info->uuid_root) {
3330 btrfs_info(fs_info, "creating UUID tree");
3331 ret = btrfs_create_uuid_tree(fs_info);
3332 if (ret) {
3333 btrfs_warn(fs_info,
3334 "failed to create the UUID tree: %d", ret);
3335 close_ctree(fs_info);
3336 return ret;
3337 }
3338 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3339 fs_info->generation !=
3340 btrfs_super_uuid_tree_generation(disk_super)) {
3341 btrfs_info(fs_info, "checking UUID tree");
3342 ret = btrfs_check_uuid_tree(fs_info);
3343 if (ret) {
3344 btrfs_warn(fs_info,
3345 "failed to check the UUID tree: %d", ret);
3346 close_ctree(fs_info);
3347 return ret;
3348 }
3349 }
3350 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3351
3352 /*
3353 * backuproot only affect mount behavior, and if open_ctree succeeded,
3354 * no need to keep the flag
3355 */
3356 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3357
3358 return 0;
3359
3360 fail_qgroup:
3361 btrfs_free_qgroup_config(fs_info);
3362 fail_trans_kthread:
3363 kthread_stop(fs_info->transaction_kthread);
3364 btrfs_cleanup_transaction(fs_info);
3365 btrfs_free_fs_roots(fs_info);
3366 fail_cleaner:
3367 kthread_stop(fs_info->cleaner_kthread);
3368
3369 /*
3370 * make sure we're done with the btree inode before we stop our
3371 * kthreads
3372 */
3373 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3374
3375 fail_sysfs:
3376 btrfs_sysfs_remove_mounted(fs_info);
3377
3378 fail_fsdev_sysfs:
3379 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3380
3381 fail_block_groups:
3382 btrfs_put_block_group_cache(fs_info);
3383
3384 fail_tree_roots:
3385 free_root_pointers(fs_info, true);
3386 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3387
3388 fail_sb_buffer:
3389 btrfs_stop_all_workers(fs_info);
3390 btrfs_free_block_groups(fs_info);
3391 fail_alloc:
3392 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3393
3394 iput(fs_info->btree_inode);
3395 fail:
3396 btrfs_close_devices(fs_info->fs_devices);
3397 return err;
3398 }
3399 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3400
3401 static void btrfs_end_super_write(struct bio *bio)
3402 {
3403 struct btrfs_device *device = bio->bi_private;
3404 struct bio_vec *bvec;
3405 struct bvec_iter_all iter_all;
3406 struct page *page;
3407
3408 bio_for_each_segment_all(bvec, bio, iter_all) {
3409 page = bvec->bv_page;
3410
3411 if (bio->bi_status) {
3412 btrfs_warn_rl_in_rcu(device->fs_info,
3413 "lost page write due to IO error on %s (%d)",
3414 rcu_str_deref(device->name),
3415 blk_status_to_errno(bio->bi_status));
3416 ClearPageUptodate(page);
3417 SetPageError(page);
3418 btrfs_dev_stat_inc_and_print(device,
3419 BTRFS_DEV_STAT_WRITE_ERRS);
3420 } else {
3421 SetPageUptodate(page);
3422 }
3423
3424 put_page(page);
3425 unlock_page(page);
3426 }
3427
3428 bio_put(bio);
3429 }
3430
3431 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3432 int copy_num)
3433 {
3434 struct btrfs_super_block *super;
3435 struct page *page;
3436 u64 bytenr;
3437 struct address_space *mapping = bdev->bd_inode->i_mapping;
3438
3439 bytenr = btrfs_sb_offset(copy_num);
3440 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3441 return ERR_PTR(-EINVAL);
3442
3443 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3444 if (IS_ERR(page))
3445 return ERR_CAST(page);
3446
3447 super = page_address(page);
3448 if (btrfs_super_bytenr(super) != bytenr ||
3449 btrfs_super_magic(super) != BTRFS_MAGIC) {
3450 btrfs_release_disk_super(super);
3451 return ERR_PTR(-EINVAL);
3452 }
3453
3454 return super;
3455 }
3456
3457
3458 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3459 {
3460 struct btrfs_super_block *super, *latest = NULL;
3461 int i;
3462 u64 transid = 0;
3463
3464 /* we would like to check all the supers, but that would make
3465 * a btrfs mount succeed after a mkfs from a different FS.
3466 * So, we need to add a special mount option to scan for
3467 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3468 */
3469 for (i = 0; i < 1; i++) {
3470 super = btrfs_read_dev_one_super(bdev, i);
3471 if (IS_ERR(super))
3472 continue;
3473
3474 if (!latest || btrfs_super_generation(super) > transid) {
3475 if (latest)
3476 btrfs_release_disk_super(super);
3477
3478 latest = super;
3479 transid = btrfs_super_generation(super);
3480 }
3481 }
3482
3483 return super;
3484 }
3485
3486 /*
3487 * Write superblock @sb to the @device. Do not wait for completion, all the
3488 * pages we use for writing are locked.
3489 *
3490 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3491 * the expected device size at commit time. Note that max_mirrors must be
3492 * same for write and wait phases.
3493 *
3494 * Return number of errors when page is not found or submission fails.
3495 */
3496 static int write_dev_supers(struct btrfs_device *device,
3497 struct btrfs_super_block *sb, int max_mirrors)
3498 {
3499 struct btrfs_fs_info *fs_info = device->fs_info;
3500 struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3501 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3502 int i;
3503 int errors = 0;
3504 u64 bytenr;
3505
3506 if (max_mirrors == 0)
3507 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3508
3509 shash->tfm = fs_info->csum_shash;
3510
3511 for (i = 0; i < max_mirrors; i++) {
3512 struct page *page;
3513 struct bio *bio;
3514 struct btrfs_super_block *disk_super;
3515
3516 bytenr = btrfs_sb_offset(i);
3517 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3518 device->commit_total_bytes)
3519 break;
3520
3521 btrfs_set_super_bytenr(sb, bytenr);
3522
3523 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3524 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3525 sb->csum);
3526
3527 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3528 GFP_NOFS);
3529 if (!page) {
3530 btrfs_err(device->fs_info,
3531 "couldn't get super block page for bytenr %llu",
3532 bytenr);
3533 errors++;
3534 continue;
3535 }
3536
3537 /* Bump the refcount for wait_dev_supers() */
3538 get_page(page);
3539
3540 disk_super = page_address(page);
3541 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3542
3543 /*
3544 * Directly use bios here instead of relying on the page cache
3545 * to do I/O, so we don't lose the ability to do integrity
3546 * checking.
3547 */
3548 bio = bio_alloc(GFP_NOFS, 1);
3549 bio_set_dev(bio, device->bdev);
3550 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3551 bio->bi_private = device;
3552 bio->bi_end_io = btrfs_end_super_write;
3553 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3554 offset_in_page(bytenr));
3555
3556 /*
3557 * We FUA only the first super block. The others we allow to
3558 * go down lazy and there's a short window where the on-disk
3559 * copies might still contain the older version.
3560 */
3561 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3562 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3563 bio->bi_opf |= REQ_FUA;
3564
3565 btrfsic_submit_bio(bio);
3566 }
3567 return errors < i ? 0 : -1;
3568 }
3569
3570 /*
3571 * Wait for write completion of superblocks done by write_dev_supers,
3572 * @max_mirrors same for write and wait phases.
3573 *
3574 * Return number of errors when page is not found or not marked up to
3575 * date.
3576 */
3577 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3578 {
3579 int i;
3580 int errors = 0;
3581 bool primary_failed = false;
3582 u64 bytenr;
3583
3584 if (max_mirrors == 0)
3585 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3586
3587 for (i = 0; i < max_mirrors; i++) {
3588 struct page *page;
3589
3590 bytenr = btrfs_sb_offset(i);
3591 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3592 device->commit_total_bytes)
3593 break;
3594
3595 page = find_get_page(device->bdev->bd_inode->i_mapping,
3596 bytenr >> PAGE_SHIFT);
3597 if (!page) {
3598 errors++;
3599 if (i == 0)
3600 primary_failed = true;
3601 continue;
3602 }
3603 /* Page is submitted locked and unlocked once the IO completes */
3604 wait_on_page_locked(page);
3605 if (PageError(page)) {
3606 errors++;
3607 if (i == 0)
3608 primary_failed = true;
3609 }
3610
3611 /* Drop our reference */
3612 put_page(page);
3613
3614 /* Drop the reference from the writing run */
3615 put_page(page);
3616 }
3617
3618 /* log error, force error return */
3619 if (primary_failed) {
3620 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3621 device->devid);
3622 return -1;
3623 }
3624
3625 return errors < i ? 0 : -1;
3626 }
3627
3628 /*
3629 * endio for the write_dev_flush, this will wake anyone waiting
3630 * for the barrier when it is done
3631 */
3632 static void btrfs_end_empty_barrier(struct bio *bio)
3633 {
3634 complete(bio->bi_private);
3635 }
3636
3637 /*
3638 * Submit a flush request to the device if it supports it. Error handling is
3639 * done in the waiting counterpart.
3640 */
3641 static void write_dev_flush(struct btrfs_device *device)
3642 {
3643 struct request_queue *q = bdev_get_queue(device->bdev);
3644 struct bio *bio = device->flush_bio;
3645
3646 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3647 return;
3648
3649 bio_reset(bio);
3650 bio->bi_end_io = btrfs_end_empty_barrier;
3651 bio_set_dev(bio, device->bdev);
3652 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3653 init_completion(&device->flush_wait);
3654 bio->bi_private = &device->flush_wait;
3655
3656 btrfsic_submit_bio(bio);
3657 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3658 }
3659
3660 /*
3661 * If the flush bio has been submitted by write_dev_flush, wait for it.
3662 */
3663 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3664 {
3665 struct bio *bio = device->flush_bio;
3666
3667 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3668 return BLK_STS_OK;
3669
3670 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3671 wait_for_completion_io(&device->flush_wait);
3672
3673 return bio->bi_status;
3674 }
3675
3676 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3677 {
3678 if (!btrfs_check_rw_degradable(fs_info, NULL))
3679 return -EIO;
3680 return 0;
3681 }
3682
3683 /*
3684 * send an empty flush down to each device in parallel,
3685 * then wait for them
3686 */
3687 static int barrier_all_devices(struct btrfs_fs_info *info)
3688 {
3689 struct list_head *head;
3690 struct btrfs_device *dev;
3691 int errors_wait = 0;
3692 blk_status_t ret;
3693
3694 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3695 /* send down all the barriers */
3696 head = &info->fs_devices->devices;
3697 list_for_each_entry(dev, head, dev_list) {
3698 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3699 continue;
3700 if (!dev->bdev)
3701 continue;
3702 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3703 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3704 continue;
3705
3706 write_dev_flush(dev);
3707 dev->last_flush_error = BLK_STS_OK;
3708 }
3709
3710 /* wait for all the barriers */
3711 list_for_each_entry(dev, head, dev_list) {
3712 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3713 continue;
3714 if (!dev->bdev) {
3715 errors_wait++;
3716 continue;
3717 }
3718 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3719 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3720 continue;
3721
3722 ret = wait_dev_flush(dev);
3723 if (ret) {
3724 dev->last_flush_error = ret;
3725 btrfs_dev_stat_inc_and_print(dev,
3726 BTRFS_DEV_STAT_FLUSH_ERRS);
3727 errors_wait++;
3728 }
3729 }
3730
3731 if (errors_wait) {
3732 /*
3733 * At some point we need the status of all disks
3734 * to arrive at the volume status. So error checking
3735 * is being pushed to a separate loop.
3736 */
3737 return check_barrier_error(info);
3738 }
3739 return 0;
3740 }
3741
3742 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3743 {
3744 int raid_type;
3745 int min_tolerated = INT_MAX;
3746
3747 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3748 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3749 min_tolerated = min_t(int, min_tolerated,
3750 btrfs_raid_array[BTRFS_RAID_SINGLE].
3751 tolerated_failures);
3752
3753 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3754 if (raid_type == BTRFS_RAID_SINGLE)
3755 continue;
3756 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3757 continue;
3758 min_tolerated = min_t(int, min_tolerated,
3759 btrfs_raid_array[raid_type].
3760 tolerated_failures);
3761 }
3762
3763 if (min_tolerated == INT_MAX) {
3764 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3765 min_tolerated = 0;
3766 }
3767
3768 return min_tolerated;
3769 }
3770
3771 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3772 {
3773 struct list_head *head;
3774 struct btrfs_device *dev;
3775 struct btrfs_super_block *sb;
3776 struct btrfs_dev_item *dev_item;
3777 int ret;
3778 int do_barriers;
3779 int max_errors;
3780 int total_errors = 0;
3781 u64 flags;
3782
3783 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3784
3785 /*
3786 * max_mirrors == 0 indicates we're from commit_transaction,
3787 * not from fsync where the tree roots in fs_info have not
3788 * been consistent on disk.
3789 */
3790 if (max_mirrors == 0)
3791 backup_super_roots(fs_info);
3792
3793 sb = fs_info->super_for_commit;
3794 dev_item = &sb->dev_item;
3795
3796 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3797 head = &fs_info->fs_devices->devices;
3798 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3799
3800 if (do_barriers) {
3801 ret = barrier_all_devices(fs_info);
3802 if (ret) {
3803 mutex_unlock(
3804 &fs_info->fs_devices->device_list_mutex);
3805 btrfs_handle_fs_error(fs_info, ret,
3806 "errors while submitting device barriers.");
3807 return ret;
3808 }
3809 }
3810
3811 list_for_each_entry(dev, head, dev_list) {
3812 if (!dev->bdev) {
3813 total_errors++;
3814 continue;
3815 }
3816 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3817 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3818 continue;
3819
3820 btrfs_set_stack_device_generation(dev_item, 0);
3821 btrfs_set_stack_device_type(dev_item, dev->type);
3822 btrfs_set_stack_device_id(dev_item, dev->devid);
3823 btrfs_set_stack_device_total_bytes(dev_item,
3824 dev->commit_total_bytes);
3825 btrfs_set_stack_device_bytes_used(dev_item,
3826 dev->commit_bytes_used);
3827 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3828 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3829 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3830 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3831 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3832 BTRFS_FSID_SIZE);
3833
3834 flags = btrfs_super_flags(sb);
3835 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3836
3837 ret = btrfs_validate_write_super(fs_info, sb);
3838 if (ret < 0) {
3839 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3840 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3841 "unexpected superblock corruption detected");
3842 return -EUCLEAN;
3843 }
3844
3845 ret = write_dev_supers(dev, sb, max_mirrors);
3846 if (ret)
3847 total_errors++;
3848 }
3849 if (total_errors > max_errors) {
3850 btrfs_err(fs_info, "%d errors while writing supers",
3851 total_errors);
3852 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3853
3854 /* FUA is masked off if unsupported and can't be the reason */
3855 btrfs_handle_fs_error(fs_info, -EIO,
3856 "%d errors while writing supers",
3857 total_errors);
3858 return -EIO;
3859 }
3860
3861 total_errors = 0;
3862 list_for_each_entry(dev, head, dev_list) {
3863 if (!dev->bdev)
3864 continue;
3865 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3866 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3867 continue;
3868
3869 ret = wait_dev_supers(dev, max_mirrors);
3870 if (ret)
3871 total_errors++;
3872 }
3873 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3874 if (total_errors > max_errors) {
3875 btrfs_handle_fs_error(fs_info, -EIO,
3876 "%d errors while writing supers",
3877 total_errors);
3878 return -EIO;
3879 }
3880 return 0;
3881 }
3882
3883 /* Drop a fs root from the radix tree and free it. */
3884 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3885 struct btrfs_root *root)
3886 {
3887 bool drop_ref = false;
3888
3889 spin_lock(&fs_info->fs_roots_radix_lock);
3890 radix_tree_delete(&fs_info->fs_roots_radix,
3891 (unsigned long)root->root_key.objectid);
3892 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
3893 drop_ref = true;
3894 spin_unlock(&fs_info->fs_roots_radix_lock);
3895
3896 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3897 ASSERT(root->log_root == NULL);
3898 if (root->reloc_root) {
3899 btrfs_put_root(root->reloc_root);
3900 root->reloc_root = NULL;
3901 }
3902 }
3903
3904 if (root->free_ino_pinned)
3905 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3906 if (root->free_ino_ctl)
3907 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3908 if (root->ino_cache_inode) {
3909 iput(root->ino_cache_inode);
3910 root->ino_cache_inode = NULL;
3911 }
3912 if (drop_ref)
3913 btrfs_put_root(root);
3914 }
3915
3916 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3917 {
3918 u64 root_objectid = 0;
3919 struct btrfs_root *gang[8];
3920 int i = 0;
3921 int err = 0;
3922 unsigned int ret = 0;
3923
3924 while (1) {
3925 spin_lock(&fs_info->fs_roots_radix_lock);
3926 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3927 (void **)gang, root_objectid,
3928 ARRAY_SIZE(gang));
3929 if (!ret) {
3930 spin_unlock(&fs_info->fs_roots_radix_lock);
3931 break;
3932 }
3933 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3934
3935 for (i = 0; i < ret; i++) {
3936 /* Avoid to grab roots in dead_roots */
3937 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3938 gang[i] = NULL;
3939 continue;
3940 }
3941 /* grab all the search result for later use */
3942 gang[i] = btrfs_grab_root(gang[i]);
3943 }
3944 spin_unlock(&fs_info->fs_roots_radix_lock);
3945
3946 for (i = 0; i < ret; i++) {
3947 if (!gang[i])
3948 continue;
3949 root_objectid = gang[i]->root_key.objectid;
3950 err = btrfs_orphan_cleanup(gang[i]);
3951 if (err)
3952 break;
3953 btrfs_put_root(gang[i]);
3954 }
3955 root_objectid++;
3956 }
3957
3958 /* release the uncleaned roots due to error */
3959 for (; i < ret; i++) {
3960 if (gang[i])
3961 btrfs_put_root(gang[i]);
3962 }
3963 return err;
3964 }
3965
3966 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3967 {
3968 struct btrfs_root *root = fs_info->tree_root;
3969 struct btrfs_trans_handle *trans;
3970
3971 mutex_lock(&fs_info->cleaner_mutex);
3972 btrfs_run_delayed_iputs(fs_info);
3973 mutex_unlock(&fs_info->cleaner_mutex);
3974 wake_up_process(fs_info->cleaner_kthread);
3975
3976 /* wait until ongoing cleanup work done */
3977 down_write(&fs_info->cleanup_work_sem);
3978 up_write(&fs_info->cleanup_work_sem);
3979
3980 trans = btrfs_join_transaction(root);
3981 if (IS_ERR(trans))
3982 return PTR_ERR(trans);
3983 return btrfs_commit_transaction(trans);
3984 }
3985
3986 void __cold close_ctree(struct btrfs_fs_info *fs_info)
3987 {
3988 int ret;
3989
3990 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3991 /*
3992 * We don't want the cleaner to start new transactions, add more delayed
3993 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3994 * because that frees the task_struct, and the transaction kthread might
3995 * still try to wake up the cleaner.
3996 */
3997 kthread_park(fs_info->cleaner_kthread);
3998
3999 /* wait for the qgroup rescan worker to stop */
4000 btrfs_qgroup_wait_for_completion(fs_info, false);
4001
4002 /* wait for the uuid_scan task to finish */
4003 down(&fs_info->uuid_tree_rescan_sem);
4004 /* avoid complains from lockdep et al., set sem back to initial state */
4005 up(&fs_info->uuid_tree_rescan_sem);
4006
4007 /* pause restriper - we want to resume on mount */
4008 btrfs_pause_balance(fs_info);
4009
4010 btrfs_dev_replace_suspend_for_unmount(fs_info);
4011
4012 btrfs_scrub_cancel(fs_info);
4013
4014 /* wait for any defraggers to finish */
4015 wait_event(fs_info->transaction_wait,
4016 (atomic_read(&fs_info->defrag_running) == 0));
4017
4018 /* clear out the rbtree of defraggable inodes */
4019 btrfs_cleanup_defrag_inodes(fs_info);
4020
4021 cancel_work_sync(&fs_info->async_reclaim_work);
4022
4023 /* Cancel or finish ongoing discard work */
4024 btrfs_discard_cleanup(fs_info);
4025
4026 if (!sb_rdonly(fs_info->sb)) {
4027 /*
4028 * The cleaner kthread is stopped, so do one final pass over
4029 * unused block groups.
4030 */
4031 btrfs_delete_unused_bgs(fs_info);
4032
4033 /*
4034 * There might be existing delayed inode workers still running
4035 * and holding an empty delayed inode item. We must wait for
4036 * them to complete first because they can create a transaction.
4037 * This happens when someone calls btrfs_balance_delayed_items()
4038 * and then a transaction commit runs the same delayed nodes
4039 * before any delayed worker has done something with the nodes.
4040 * We must wait for any worker here and not at transaction
4041 * commit time since that could cause a deadlock.
4042 * This is a very rare case.
4043 */
4044 btrfs_flush_workqueue(fs_info->delayed_workers);
4045
4046 ret = btrfs_commit_super(fs_info);
4047 if (ret)
4048 btrfs_err(fs_info, "commit super ret %d", ret);
4049 }
4050
4051 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4052 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4053 btrfs_error_commit_super(fs_info);
4054
4055 kthread_stop(fs_info->transaction_kthread);
4056 kthread_stop(fs_info->cleaner_kthread);
4057
4058 ASSERT(list_empty(&fs_info->delayed_iputs));
4059 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4060
4061 btrfs_free_qgroup_config(fs_info);
4062 ASSERT(list_empty(&fs_info->delalloc_roots));
4063
4064 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4065 btrfs_info(fs_info, "at unmount delalloc count %lld",
4066 percpu_counter_sum(&fs_info->delalloc_bytes));
4067 }
4068
4069 if (percpu_counter_sum(&fs_info->dio_bytes))
4070 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4071 percpu_counter_sum(&fs_info->dio_bytes));
4072
4073 btrfs_sysfs_remove_mounted(fs_info);
4074 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4075
4076 btrfs_put_block_group_cache(fs_info);
4077
4078 /*
4079 * we must make sure there is not any read request to
4080 * submit after we stopping all workers.
4081 */
4082 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4083 btrfs_stop_all_workers(fs_info);
4084
4085 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4086 free_root_pointers(fs_info, true);
4087 btrfs_free_fs_roots(fs_info);
4088
4089 /*
4090 * We must free the block groups after dropping the fs_roots as we could
4091 * have had an IO error and have left over tree log blocks that aren't
4092 * cleaned up until the fs roots are freed. This makes the block group
4093 * accounting appear to be wrong because there's pending reserved bytes,
4094 * so make sure we do the block group cleanup afterwards.
4095 */
4096 btrfs_free_block_groups(fs_info);
4097
4098 iput(fs_info->btree_inode);
4099
4100 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4101 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4102 btrfsic_unmount(fs_info->fs_devices);
4103 #endif
4104
4105 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4106 btrfs_close_devices(fs_info->fs_devices);
4107 }
4108
4109 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4110 int atomic)
4111 {
4112 int ret;
4113 struct inode *btree_inode = buf->pages[0]->mapping->host;
4114
4115 ret = extent_buffer_uptodate(buf);
4116 if (!ret)
4117 return ret;
4118
4119 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4120 parent_transid, atomic);
4121 if (ret == -EAGAIN)
4122 return ret;
4123 return !ret;
4124 }
4125
4126 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4127 {
4128 struct btrfs_fs_info *fs_info;
4129 struct btrfs_root *root;
4130 u64 transid = btrfs_header_generation(buf);
4131 int was_dirty;
4132
4133 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4134 /*
4135 * This is a fast path so only do this check if we have sanity tests
4136 * enabled. Normal people shouldn't be using unmapped buffers as dirty
4137 * outside of the sanity tests.
4138 */
4139 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4140 return;
4141 #endif
4142 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4143 fs_info = root->fs_info;
4144 btrfs_assert_tree_locked(buf);
4145 if (transid != fs_info->generation)
4146 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4147 buf->start, transid, fs_info->generation);
4148 was_dirty = set_extent_buffer_dirty(buf);
4149 if (!was_dirty)
4150 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4151 buf->len,
4152 fs_info->dirty_metadata_batch);
4153 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4154 /*
4155 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4156 * but item data not updated.
4157 * So here we should only check item pointers, not item data.
4158 */
4159 if (btrfs_header_level(buf) == 0 &&
4160 btrfs_check_leaf_relaxed(buf)) {
4161 btrfs_print_leaf(buf);
4162 ASSERT(0);
4163 }
4164 #endif
4165 }
4166
4167 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4168 int flush_delayed)
4169 {
4170 /*
4171 * looks as though older kernels can get into trouble with
4172 * this code, they end up stuck in balance_dirty_pages forever
4173 */
4174 int ret;
4175
4176 if (current->flags & PF_MEMALLOC)
4177 return;
4178
4179 if (flush_delayed)
4180 btrfs_balance_delayed_items(fs_info);
4181
4182 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4183 BTRFS_DIRTY_METADATA_THRESH,
4184 fs_info->dirty_metadata_batch);
4185 if (ret > 0) {
4186 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4187 }
4188 }
4189
4190 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4191 {
4192 __btrfs_btree_balance_dirty(fs_info, 1);
4193 }
4194
4195 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4196 {
4197 __btrfs_btree_balance_dirty(fs_info, 0);
4198 }
4199
4200 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4201 struct btrfs_key *first_key)
4202 {
4203 return btree_read_extent_buffer_pages(buf, parent_transid,
4204 level, first_key);
4205 }
4206
4207 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4208 {
4209 /* cleanup FS via transaction */
4210 btrfs_cleanup_transaction(fs_info);
4211
4212 mutex_lock(&fs_info->cleaner_mutex);
4213 btrfs_run_delayed_iputs(fs_info);
4214 mutex_unlock(&fs_info->cleaner_mutex);
4215
4216 down_write(&fs_info->cleanup_work_sem);
4217 up_write(&fs_info->cleanup_work_sem);
4218 }
4219
4220 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4221 {
4222 struct btrfs_root *gang[8];
4223 u64 root_objectid = 0;
4224 int ret;
4225
4226 spin_lock(&fs_info->fs_roots_radix_lock);
4227 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4228 (void **)gang, root_objectid,
4229 ARRAY_SIZE(gang))) != 0) {
4230 int i;
4231
4232 for (i = 0; i < ret; i++)
4233 gang[i] = btrfs_grab_root(gang[i]);
4234 spin_unlock(&fs_info->fs_roots_radix_lock);
4235
4236 for (i = 0; i < ret; i++) {
4237 if (!gang[i])
4238 continue;
4239 root_objectid = gang[i]->root_key.objectid;
4240 btrfs_free_log(NULL, gang[i]);
4241 btrfs_put_root(gang[i]);
4242 }
4243 root_objectid++;
4244 spin_lock(&fs_info->fs_roots_radix_lock);
4245 }
4246 spin_unlock(&fs_info->fs_roots_radix_lock);
4247 btrfs_free_log_root_tree(NULL, fs_info);
4248 }
4249
4250 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4251 {
4252 struct btrfs_ordered_extent *ordered;
4253
4254 spin_lock(&root->ordered_extent_lock);
4255 /*
4256 * This will just short circuit the ordered completion stuff which will
4257 * make sure the ordered extent gets properly cleaned up.
4258 */
4259 list_for_each_entry(ordered, &root->ordered_extents,
4260 root_extent_list)
4261 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4262 spin_unlock(&root->ordered_extent_lock);
4263 }
4264
4265 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4266 {
4267 struct btrfs_root *root;
4268 struct list_head splice;
4269
4270 INIT_LIST_HEAD(&splice);
4271
4272 spin_lock(&fs_info->ordered_root_lock);
4273 list_splice_init(&fs_info->ordered_roots, &splice);
4274 while (!list_empty(&splice)) {
4275 root = list_first_entry(&splice, struct btrfs_root,
4276 ordered_root);
4277 list_move_tail(&root->ordered_root,
4278 &fs_info->ordered_roots);
4279
4280 spin_unlock(&fs_info->ordered_root_lock);
4281 btrfs_destroy_ordered_extents(root);
4282
4283 cond_resched();
4284 spin_lock(&fs_info->ordered_root_lock);
4285 }
4286 spin_unlock(&fs_info->ordered_root_lock);
4287
4288 /*
4289 * We need this here because if we've been flipped read-only we won't
4290 * get sync() from the umount, so we need to make sure any ordered
4291 * extents that haven't had their dirty pages IO start writeout yet
4292 * actually get run and error out properly.
4293 */
4294 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4295 }
4296
4297 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4298 struct btrfs_fs_info *fs_info)
4299 {
4300 struct rb_node *node;
4301 struct btrfs_delayed_ref_root *delayed_refs;
4302 struct btrfs_delayed_ref_node *ref;
4303 int ret = 0;
4304
4305 delayed_refs = &trans->delayed_refs;
4306
4307 spin_lock(&delayed_refs->lock);
4308 if (atomic_read(&delayed_refs->num_entries) == 0) {
4309 spin_unlock(&delayed_refs->lock);
4310 btrfs_debug(fs_info, "delayed_refs has NO entry");
4311 return ret;
4312 }
4313
4314 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4315 struct btrfs_delayed_ref_head *head;
4316 struct rb_node *n;
4317 bool pin_bytes = false;
4318
4319 head = rb_entry(node, struct btrfs_delayed_ref_head,
4320 href_node);
4321 if (btrfs_delayed_ref_lock(delayed_refs, head))
4322 continue;
4323
4324 spin_lock(&head->lock);
4325 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4326 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4327 ref_node);
4328 ref->in_tree = 0;
4329 rb_erase_cached(&ref->ref_node, &head->ref_tree);
4330 RB_CLEAR_NODE(&ref->ref_node);
4331 if (!list_empty(&ref->add_list))
4332 list_del(&ref->add_list);
4333 atomic_dec(&delayed_refs->num_entries);
4334 btrfs_put_delayed_ref(ref);
4335 }
4336 if (head->must_insert_reserved)
4337 pin_bytes = true;
4338 btrfs_free_delayed_extent_op(head->extent_op);
4339 btrfs_delete_ref_head(delayed_refs, head);
4340 spin_unlock(&head->lock);
4341 spin_unlock(&delayed_refs->lock);
4342 mutex_unlock(&head->mutex);
4343
4344 if (pin_bytes) {
4345 struct btrfs_block_group *cache;
4346
4347 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4348 BUG_ON(!cache);
4349
4350 spin_lock(&cache->space_info->lock);
4351 spin_lock(&cache->lock);
4352 cache->pinned += head->num_bytes;
4353 btrfs_space_info_update_bytes_pinned(fs_info,
4354 cache->space_info, head->num_bytes);
4355 cache->reserved -= head->num_bytes;
4356 cache->space_info->bytes_reserved -= head->num_bytes;
4357 spin_unlock(&cache->lock);
4358 spin_unlock(&cache->space_info->lock);
4359 percpu_counter_add_batch(
4360 &cache->space_info->total_bytes_pinned,
4361 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4362
4363 btrfs_put_block_group(cache);
4364
4365 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4366 head->bytenr + head->num_bytes - 1);
4367 }
4368 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4369 btrfs_put_delayed_ref_head(head);
4370 cond_resched();
4371 spin_lock(&delayed_refs->lock);
4372 }
4373 btrfs_qgroup_destroy_extent_records(trans);
4374
4375 spin_unlock(&delayed_refs->lock);
4376
4377 return ret;
4378 }
4379
4380 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4381 {
4382 struct btrfs_inode *btrfs_inode;
4383 struct list_head splice;
4384
4385 INIT_LIST_HEAD(&splice);
4386
4387 spin_lock(&root->delalloc_lock);
4388 list_splice_init(&root->delalloc_inodes, &splice);
4389
4390 while (!list_empty(&splice)) {
4391 struct inode *inode = NULL;
4392 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4393 delalloc_inodes);
4394 __btrfs_del_delalloc_inode(root, btrfs_inode);
4395 spin_unlock(&root->delalloc_lock);
4396
4397 /*
4398 * Make sure we get a live inode and that it'll not disappear
4399 * meanwhile.
4400 */
4401 inode = igrab(&btrfs_inode->vfs_inode);
4402 if (inode) {
4403 invalidate_inode_pages2(inode->i_mapping);
4404 iput(inode);
4405 }
4406 spin_lock(&root->delalloc_lock);
4407 }
4408 spin_unlock(&root->delalloc_lock);
4409 }
4410
4411 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4412 {
4413 struct btrfs_root *root;
4414 struct list_head splice;
4415
4416 INIT_LIST_HEAD(&splice);
4417
4418 spin_lock(&fs_info->delalloc_root_lock);
4419 list_splice_init(&fs_info->delalloc_roots, &splice);
4420 while (!list_empty(&splice)) {
4421 root = list_first_entry(&splice, struct btrfs_root,
4422 delalloc_root);
4423 root = btrfs_grab_root(root);
4424 BUG_ON(!root);
4425 spin_unlock(&fs_info->delalloc_root_lock);
4426
4427 btrfs_destroy_delalloc_inodes(root);
4428 btrfs_put_root(root);
4429
4430 spin_lock(&fs_info->delalloc_root_lock);
4431 }
4432 spin_unlock(&fs_info->delalloc_root_lock);
4433 }
4434
4435 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4436 struct extent_io_tree *dirty_pages,
4437 int mark)
4438 {
4439 int ret;
4440 struct extent_buffer *eb;
4441 u64 start = 0;
4442 u64 end;
4443
4444 while (1) {
4445 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4446 mark, NULL);
4447 if (ret)
4448 break;
4449
4450 clear_extent_bits(dirty_pages, start, end, mark);
4451 while (start <= end) {
4452 eb = find_extent_buffer(fs_info, start);
4453 start += fs_info->nodesize;
4454 if (!eb)
4455 continue;
4456 wait_on_extent_buffer_writeback(eb);
4457
4458 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4459 &eb->bflags))
4460 clear_extent_buffer_dirty(eb);
4461 free_extent_buffer_stale(eb);
4462 }
4463 }
4464
4465 return ret;
4466 }
4467
4468 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4469 struct extent_io_tree *unpin)
4470 {
4471 u64 start;
4472 u64 end;
4473 int ret;
4474
4475 while (1) {
4476 struct extent_state *cached_state = NULL;
4477
4478 /*
4479 * The btrfs_finish_extent_commit() may get the same range as
4480 * ours between find_first_extent_bit and clear_extent_dirty.
4481 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4482 * the same extent range.
4483 */
4484 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4485 ret = find_first_extent_bit(unpin, 0, &start, &end,
4486 EXTENT_DIRTY, &cached_state);
4487 if (ret) {
4488 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4489 break;
4490 }
4491
4492 clear_extent_dirty(unpin, start, end, &cached_state);
4493 free_extent_state(cached_state);
4494 btrfs_error_unpin_extent_range(fs_info, start, end);
4495 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4496 cond_resched();
4497 }
4498
4499 return 0;
4500 }
4501
4502 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4503 {
4504 struct inode *inode;
4505
4506 inode = cache->io_ctl.inode;
4507 if (inode) {
4508 invalidate_inode_pages2(inode->i_mapping);
4509 BTRFS_I(inode)->generation = 0;
4510 cache->io_ctl.inode = NULL;
4511 iput(inode);
4512 }
4513 btrfs_put_block_group(cache);
4514 }
4515
4516 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4517 struct btrfs_fs_info *fs_info)
4518 {
4519 struct btrfs_block_group *cache;
4520
4521 spin_lock(&cur_trans->dirty_bgs_lock);
4522 while (!list_empty(&cur_trans->dirty_bgs)) {
4523 cache = list_first_entry(&cur_trans->dirty_bgs,
4524 struct btrfs_block_group,
4525 dirty_list);
4526
4527 if (!list_empty(&cache->io_list)) {
4528 spin_unlock(&cur_trans->dirty_bgs_lock);
4529 list_del_init(&cache->io_list);
4530 btrfs_cleanup_bg_io(cache);
4531 spin_lock(&cur_trans->dirty_bgs_lock);
4532 }
4533
4534 list_del_init(&cache->dirty_list);
4535 spin_lock(&cache->lock);
4536 cache->disk_cache_state = BTRFS_DC_ERROR;
4537 spin_unlock(&cache->lock);
4538
4539 spin_unlock(&cur_trans->dirty_bgs_lock);
4540 btrfs_put_block_group(cache);
4541 btrfs_delayed_refs_rsv_release(fs_info, 1);
4542 spin_lock(&cur_trans->dirty_bgs_lock);
4543 }
4544 spin_unlock(&cur_trans->dirty_bgs_lock);
4545
4546 /*
4547 * Refer to the definition of io_bgs member for details why it's safe
4548 * to use it without any locking
4549 */
4550 while (!list_empty(&cur_trans->io_bgs)) {
4551 cache = list_first_entry(&cur_trans->io_bgs,
4552 struct btrfs_block_group,
4553 io_list);
4554
4555 list_del_init(&cache->io_list);
4556 spin_lock(&cache->lock);
4557 cache->disk_cache_state = BTRFS_DC_ERROR;
4558 spin_unlock(&cache->lock);
4559 btrfs_cleanup_bg_io(cache);
4560 }
4561 }
4562
4563 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4564 struct btrfs_fs_info *fs_info)
4565 {
4566 struct btrfs_device *dev, *tmp;
4567
4568 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4569 ASSERT(list_empty(&cur_trans->dirty_bgs));
4570 ASSERT(list_empty(&cur_trans->io_bgs));
4571
4572 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4573 post_commit_list) {
4574 list_del_init(&dev->post_commit_list);
4575 }
4576
4577 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4578
4579 cur_trans->state = TRANS_STATE_COMMIT_START;
4580 wake_up(&fs_info->transaction_blocked_wait);
4581
4582 cur_trans->state = TRANS_STATE_UNBLOCKED;
4583 wake_up(&fs_info->transaction_wait);
4584
4585 btrfs_destroy_delayed_inodes(fs_info);
4586
4587 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4588 EXTENT_DIRTY);
4589 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4590
4591 cur_trans->state =TRANS_STATE_COMPLETED;
4592 wake_up(&cur_trans->commit_wait);
4593 }
4594
4595 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4596 {
4597 struct btrfs_transaction *t;
4598
4599 mutex_lock(&fs_info->transaction_kthread_mutex);
4600
4601 spin_lock(&fs_info->trans_lock);
4602 while (!list_empty(&fs_info->trans_list)) {
4603 t = list_first_entry(&fs_info->trans_list,
4604 struct btrfs_transaction, list);
4605 if (t->state >= TRANS_STATE_COMMIT_START) {
4606 refcount_inc(&t->use_count);
4607 spin_unlock(&fs_info->trans_lock);
4608 btrfs_wait_for_commit(fs_info, t->transid);
4609 btrfs_put_transaction(t);
4610 spin_lock(&fs_info->trans_lock);
4611 continue;
4612 }
4613 if (t == fs_info->running_transaction) {
4614 t->state = TRANS_STATE_COMMIT_DOING;
4615 spin_unlock(&fs_info->trans_lock);
4616 /*
4617 * We wait for 0 num_writers since we don't hold a trans
4618 * handle open currently for this transaction.
4619 */
4620 wait_event(t->writer_wait,
4621 atomic_read(&t->num_writers) == 0);
4622 } else {
4623 spin_unlock(&fs_info->trans_lock);
4624 }
4625 btrfs_cleanup_one_transaction(t, fs_info);
4626
4627 spin_lock(&fs_info->trans_lock);
4628 if (t == fs_info->running_transaction)
4629 fs_info->running_transaction = NULL;
4630 list_del_init(&t->list);
4631 spin_unlock(&fs_info->trans_lock);
4632
4633 btrfs_put_transaction(t);
4634 trace_btrfs_transaction_commit(fs_info->tree_root);
4635 spin_lock(&fs_info->trans_lock);
4636 }
4637 spin_unlock(&fs_info->trans_lock);
4638 btrfs_destroy_all_ordered_extents(fs_info);
4639 btrfs_destroy_delayed_inodes(fs_info);
4640 btrfs_assert_delayed_root_empty(fs_info);
4641 btrfs_destroy_all_delalloc_inodes(fs_info);
4642 btrfs_drop_all_logs(fs_info);
4643 mutex_unlock(&fs_info->transaction_kthread_mutex);
4644
4645 return 0;
4646 }
4647
4648 static const struct extent_io_ops btree_extent_io_ops = {
4649 /* mandatory callbacks */
4650 .submit_bio_hook = btree_submit_bio_hook,
4651 .readpage_end_io_hook = btree_readpage_end_io_hook,
4652 };