]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/extent-tree.c
Merge tag 'for-4.15-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/kernel/stable.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include "hash.h"
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46 /*
47 * control flags for do_chunk_alloc's force field
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
59 */
60 enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
64 };
65
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_fs_info *fs_info,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_fs_info *fs_info,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_fs_info *fs_info,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_fs_info *fs_info, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
92 int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
101
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105 smp_mb();
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112 return (cache->flags & bits) == bits;
113 }
114
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117 atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE);
232 set_extent_bits(&fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE);
234 return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE);
247 clear_extent_bits(&fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE);
249 }
250
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(fs_info, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(fs_info, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 refcount_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 if (refcount_dec_and_test(&ctl->count))
328 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334 struct btrfs_fs_info *fs_info = block_group->fs_info;
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 fs_info->nodesize : fs_info->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349 }
350 #endif
351
352 /*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
362
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
370
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
390 }
391
392 return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
408
409 path = btrfs_alloc_path();
410 if (!path)
411 return -ENOMEM;
412
413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414
415 #ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
421 if (btrfs_should_fragment_free_space(block_group))
422 wakeup = false;
423 #endif
424 /*
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
429 */
430 path->skip_locking = 1;
431 path->search_commit_root = 1;
432 path->reada = READA_FORWARD;
433
434 key.objectid = last;
435 key.offset = 0;
436 key.type = BTRFS_EXTENT_ITEM_KEY;
437
438 next:
439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440 if (ret < 0)
441 goto out;
442
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
446 while (1) {
447 if (btrfs_fs_closing(fs_info) > 1) {
448 last = (u64)-1;
449 break;
450 }
451
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
457 break;
458
459 if (need_resched() ||
460 rwsem_is_contended(&fs_info->commit_root_sem)) {
461 if (wakeup)
462 caching_ctl->progress = last;
463 btrfs_release_path(path);
464 up_read(&fs_info->commit_root_sem);
465 mutex_unlock(&caching_ctl->mutex);
466 cond_resched();
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
470 }
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
474 goto out;
475 if (ret)
476 break;
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
480 }
481
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
487 if (wakeup)
488 caching_ctl->progress = last;
489 btrfs_release_path(path);
490 goto next;
491 }
492
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
495 continue;
496 }
497
498 if (key.objectid >= block_group->key.objectid +
499 block_group->key.offset)
500 break;
501
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
509 fs_info->nodesize;
510 else
511 last = key.objectid + key.offset;
512
513 if (total_found > CACHING_CTL_WAKE_UP) {
514 total_found = 0;
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
517 }
518 }
519 path->slots[0]++;
520 }
521 ret = 0;
522
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
526 caching_ctl->progress = (u64)-1;
527
528 out:
529 btrfs_free_path(path);
530 return ret;
531 }
532
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
538 struct btrfs_root *extent_root;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544 extent_root = fs_info->extent_root;
545
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
548
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
553
554 spin_lock(&block_group->lock);
555 block_group->caching_ctl = NULL;
556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557 spin_unlock(&block_group->lock);
558
559 #ifdef CONFIG_BTRFS_DEBUG
560 if (btrfs_should_fragment_free_space(block_group)) {
561 u64 bytes_used;
562
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
570 fragment_free_space(block_group);
571 }
572 #endif
573
574 caching_ctl->progress = (u64)-1;
575
576 up_read(&fs_info->commit_root_sem);
577 free_excluded_extents(fs_info, block_group);
578 mutex_unlock(&caching_ctl->mutex);
579
580 wake_up(&caching_ctl->wait);
581
582 put_caching_control(caching_ctl);
583 btrfs_put_block_group(block_group);
584 }
585
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587 int load_cache_only)
588 {
589 DEFINE_WAIT(wait);
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
592 int ret = 0;
593
594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595 if (!caching_ctl)
596 return -ENOMEM;
597
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
603 refcount_set(&caching_ctl->count, 1);
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
606
607 spin_lock(&cache->lock);
608 /*
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
619 */
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
622
623 ctl = cache->caching_ctl;
624 refcount_inc(&ctl->count);
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
627
628 schedule();
629
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
633 }
634
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
638 return 0;
639 }
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
644
645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646 mutex_lock(&caching_ctl->mutex);
647 ret = load_free_space_cache(fs_info, cache);
648
649 spin_lock(&cache->lock);
650 if (ret == 1) {
651 cache->caching_ctl = NULL;
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
654 caching_ctl->progress = (u64)-1;
655 } else {
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
661 cache->has_caching_ctl = 1;
662 }
663 }
664 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
667 btrfs_should_fragment_free_space(cache)) {
668 u64 bytes_used;
669
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
677 fragment_free_space(cache);
678 }
679 #endif
680 mutex_unlock(&caching_ctl->mutex);
681
682 wake_up(&caching_ctl->wait);
683 if (ret == 1) {
684 put_caching_control(caching_ctl);
685 free_excluded_extents(fs_info, cache);
686 return 0;
687 }
688 } else {
689 /*
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
692 */
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
699 cache->has_caching_ctl = 1;
700 }
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
703 }
704
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
707 return 0;
708 }
709
710 down_write(&fs_info->commit_root_sem);
711 refcount_inc(&caching_ctl->count);
712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713 up_write(&fs_info->commit_root_sem);
714
715 btrfs_get_block_group(cache);
716
717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718
719 return ret;
720 }
721
722 /*
723 * return the block group that starts at or after bytenr
724 */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728 return block_group_cache_tree_search(info, bytenr, 0);
729 }
730
731 /*
732 * return the block group that contains the given bytenr
733 */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
737 {
738 return block_group_cache_tree_search(info, bytenr, 1);
739 }
740
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
743 {
744 struct list_head *head = &info->space_info;
745 struct btrfs_space_info *found;
746
747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
751 if (found->flags & flags) {
752 rcu_read_unlock();
753 return found;
754 }
755 }
756 rcu_read_unlock();
757 return NULL;
758 }
759
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
762 {
763 struct btrfs_space_info *space_info;
764 u64 flags;
765
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
776 ASSERT(space_info);
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779
780 /*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793 }
794
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798 int ret;
799 struct btrfs_key key;
800 struct btrfs_path *path;
801
802 path = btrfs_alloc_path();
803 if (!path)
804 return -ENOMEM;
805
806 key.objectid = start;
807 key.offset = len;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 btrfs_free_path(path);
811 return ret;
812 }
813
814 /*
815 * helper function to lookup reference count and flags of a tree block.
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 struct btrfs_fs_info *fs_info, u64 bytenr,
825 u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
844 metadata = 0;
845 }
846
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
855
856 search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865 if (ret < 0)
866 goto out_free;
867
868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
875 key.offset == fs_info->nodesize)
876 ret = 0;
877 }
878 }
879
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898 BUG();
899 #endif
900 }
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
906 }
907
908 if (!trans)
909 goto out;
910
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
916 refcount_inc(&head->refs);
917 spin_unlock(&delayed_refs->lock);
918
919 btrfs_release_path(path);
920
921 /*
922 * Mutex was contended, block until it's released and try
923 * again
924 */
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
927 btrfs_put_delayed_ref_head(head);
928 goto search_again;
929 }
930 spin_lock(&head->lock);
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
935
936 num_refs += head->ref_mod;
937 spin_unlock(&head->lock);
938 mutex_unlock(&head->mutex);
939 }
940 spin_unlock(&delayed_refs->lock);
941 out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947 out_free:
948 btrfs_free_path(path);
949 return ret;
950 }
951
952 /*
953 * Back reference rules. Back refs have three main goals:
954 *
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
958 *
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
961 *
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
965 *
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
976 *
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
983 *
984 * When a tree block is COWed through a tree, there are four cases:
985 *
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
988 *
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
993 *
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
1014 * - different files inside a single subvolume
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
1017 * The extent ref structure for the implicit back refs has fields for:
1018 *
1019 * - Objectid of the subvolume root
1020 * - objectid of the file holding the reference
1021 * - original offset in the file
1022 * - how many bookend extents
1023 *
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
1026 *
1027 * The extent ref structure for the full back refs has field for:
1028 *
1029 * - number of pointers in the tree leaf
1030 *
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
1033 *
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
1036 *
1037 * (root_key.objectid, inode objectid, offset in file, 1)
1038 *
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
1041 *
1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1043 *
1044 * Btree extents can be referenced by:
1045 *
1046 * - Different subvolumes
1047 *
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
1052 *
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
1056 */
1057
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060 struct btrfs_fs_info *fs_info,
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
1063 {
1064 struct btrfs_root *root = fs_info->extent_root;
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
1070 struct btrfs_key key;
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1075
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
1090 BUG_ON(ret > 0); /* Corruption */
1091 leaf = path->nodes[0];
1092 }
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1099 }
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1104 }
1105 }
1106 btrfs_release_path(path);
1107
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1110
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
1116 BUG_ON(ret); /* Corruption */
1117
1118 btrfs_extend_item(fs_info, path, new_size);
1119
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1138 }
1139 #endif
1140
1141 /*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1149 {
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159 return type;
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173 return type;
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1176 /*
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1180 */
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1184 }
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1188 }
1189 }
1190
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1195
1196 return BTRFS_REF_TYPE_INVALID;
1197 }
1198
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1204
1205 lenum = cpu_to_le64(root_objectid);
1206 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1207 lenum = cpu_to_le64(owner);
1208 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1209 lenum = cpu_to_le64(offset);
1210 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1217 {
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1226 {
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1232 }
1233
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235 struct btrfs_fs_info *fs_info,
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1240 {
1241 struct btrfs_root *root = fs_info->extent_root;
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
1244 struct extent_buffer *leaf;
1245 u32 nritems;
1246 int ret;
1247 int recow;
1248 int err = -ENOENT;
1249
1250 key.objectid = bytenr;
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1258 }
1259 again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1265 }
1266
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272 btrfs_release_path(path);
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1277 }
1278 if (!ret)
1279 return 0;
1280 #endif
1281 goto fail;
1282 }
1283
1284 leaf = path->nodes[0];
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1297 }
1298
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1303
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
1310 btrfs_release_path(path);
1311 goto again;
1312 }
1313 err = 0;
1314 break;
1315 }
1316 path->slots[0]++;
1317 }
1318 fail:
1319 return err;
1320 }
1321
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info,
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
1328 {
1329 struct btrfs_root *root = fs_info->extent_root;
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
1332 u32 size;
1333 u32 num_refs;
1334 int ret;
1335
1336 key.objectid = bytenr;
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1346 }
1347
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1351
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
1355 ref = btrfs_item_ptr(leaf, path->slots[0],
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363 }
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
1372 btrfs_release_path(path);
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
1378
1379 leaf = path->nodes[0];
1380 }
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393 }
1394 }
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397 fail:
1398 btrfs_release_path(path);
1399 return ret;
1400 }
1401
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403 struct btrfs_fs_info *fs_info,
1404 struct btrfs_path *path,
1405 int refs_to_drop, int *last_ref)
1406 {
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
1410 struct extent_buffer *leaf;
1411 u32 num_refs = 0;
1412 int ret = 0;
1413
1414 leaf = path->nodes[0];
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432 } else {
1433 BUG();
1434 }
1435
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
1438
1439 if (num_refs == 0) {
1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441 *last_ref = 1;
1442 } else {
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 }
1454 #endif
1455 btrfs_mark_buffer_dirty(leaf);
1456 }
1457 return ret;
1458 }
1459
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461 struct btrfs_extent_inline_ref *iref)
1462 {
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
1468 int type;
1469
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
1473 /*
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1476 */
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 }
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501 } else {
1502 WARN_ON(1);
1503 }
1504 return num_refs;
1505 }
1506
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508 struct btrfs_fs_info *fs_info,
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1512 {
1513 struct btrfs_root *root = fs_info->extent_root;
1514 struct btrfs_key key;
1515 int ret;
1516
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1524 }
1525
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
1531 btrfs_release_path(path);
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1536 }
1537 #endif
1538 return ret;
1539 }
1540
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542 struct btrfs_fs_info *fs_info,
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
1546 {
1547 struct btrfs_key key;
1548 int ret;
1549
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1557 }
1558
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
1561 btrfs_release_path(path);
1562 return ret;
1563 }
1564
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1578 }
1579 return type;
1580 }
1581
1582 static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
1584
1585 {
1586 for (; level < BTRFS_MAX_LEVEL; level++) {
1587 if (!path->nodes[level])
1588 break;
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1599 }
1600 return 1;
1601 }
1602
1603 /*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1615 */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618 struct btrfs_fs_info *fs_info,
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1624 {
1625 struct btrfs_root *root = fs_info->extent_root;
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640 int needed;
1641
1642 key.objectid = bytenr;
1643 key.type = BTRFS_EXTENT_ITEM_KEY;
1644 key.offset = num_bytes;
1645
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
1649 path->keep_locks = 1;
1650 } else
1651 extra_size = -1;
1652
1653 /*
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1656 */
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1660 }
1661
1662 again:
1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664 if (ret < 0) {
1665 err = ret;
1666 goto out;
1667 }
1668
1669 /*
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1672 */
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1683 }
1684 if (ret) {
1685 key.objectid = bytenr;
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1690 }
1691 }
1692
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
1696 } else if (WARN_ON(ret)) {
1697 err = -EIO;
1698 goto out;
1699 }
1700
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1708 }
1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1714 }
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 }
1718 #endif
1719 BUG_ON(item_size < sizeof(*ei));
1720
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1723
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1726
1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
1730 }
1731
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1736
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1742 }
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1755 }
1756
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1764 }
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1775 }
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1782 }
1783 if (ref_offset < root_objectid)
1784 break;
1785 }
1786 }
1787 ptr += btrfs_extent_inline_ref_size(type);
1788 }
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1794 }
1795 /*
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1800 */
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804 err = -EAGAIN;
1805 goto out;
1806 }
1807 }
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810 if (insert) {
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1813 }
1814 return err;
1815 }
1816
1817 /*
1818 * helper to add new inline back ref
1819 */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
1827 {
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
1836
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1843
1844 btrfs_extend_item(fs_info, path, size);
1845
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1858
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882 struct btrfs_fs_info *fs_info,
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1887 {
1888 int ret;
1889
1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
1894 return ret;
1895
1896 btrfs_release_path(path);
1897 *ref_ret = NULL;
1898
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
1902 } else {
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
1906 }
1907 return ret;
1908 }
1909
1910 /*
1911 * helper to update/remove inline back ref
1912 */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
1920 {
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
1930 u64 refs;
1931
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941 /*
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1944 */
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
1957 }
1958
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1961
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
1968 *last_ref = 1;
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
1977 btrfs_truncate_item(fs_info, path, item_size, 1);
1978 }
1979 btrfs_mark_buffer_dirty(leaf);
1980 }
1981
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984 struct btrfs_fs_info *fs_info,
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1990 {
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1993
1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999 update_inline_extent_backref(fs_info, path, iref,
2000 refs_to_add, extent_op, NULL);
2001 } else if (ret == -ENOENT) {
2002 setup_inline_extent_backref(fs_info, path, iref, parent,
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
2006 }
2007 return ret;
2008 }
2009
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011 struct btrfs_fs_info *fs_info,
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2015 {
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020 parent, root_objectid);
2021 } else {
2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2025 }
2026 return ret;
2027 }
2028
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030 struct btrfs_fs_info *fs_info,
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
2033 int refs_to_drop, int is_data, int *last_ref)
2034 {
2035 int ret = 0;
2036
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
2039 update_inline_extent_backref(fs_info, path, iref,
2040 -refs_to_drop, NULL, last_ref);
2041 } else if (is_data) {
2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043 last_ref);
2044 } else {
2045 *last_ref = 1;
2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047 }
2048 return ret;
2049 }
2050
2051 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
2054 {
2055 int j, ret = 0;
2056 u64 bytes_left, end;
2057 u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2063 }
2064
2065 *discarded_bytes = 0;
2066
2067 if (!len)
2068 return 0;
2069
2070 end = start + len;
2071 bytes_left = len;
2072
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2078
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2083
2084 /*
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2087 */
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2093 }
2094 bytes_left = end - start;
2095 continue;
2096 }
2097
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2105 }
2106
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2111 }
2112 bytes_left = end - start;
2113 }
2114
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117 GFP_NOFS, 0);
2118 if (!ret)
2119 *discarded_bytes += bytes_left;
2120 }
2121 return ret;
2122 }
2123
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125 u64 num_bytes, u64 *actual_bytes)
2126 {
2127 int ret;
2128 u64 discarded_bytes = 0;
2129 struct btrfs_bio *bbio = NULL;
2130
2131
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2135 */
2136 btrfs_bio_counter_inc_blocked(fs_info);
2137 /* Tell the block device(s) that the sectors can be discarded */
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
2140 /* Error condition is -ENOMEM */
2141 if (!ret) {
2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143 int i;
2144
2145
2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147 u64 bytes;
2148 if (!stripe->dev->can_discard)
2149 continue;
2150
2151 ret = btrfs_issue_discard(stripe->dev->bdev,
2152 stripe->physical,
2153 stripe->length,
2154 &bytes);
2155 if (!ret)
2156 discarded_bytes += bytes;
2157 else if (ret != -EOPNOTSUPP)
2158 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2159
2160 /*
2161 * Just in case we get back EOPNOTSUPP for some reason,
2162 * just ignore the return value so we don't screw up
2163 * people calling discard_extent.
2164 */
2165 ret = 0;
2166 }
2167 btrfs_put_bbio(bbio);
2168 }
2169 btrfs_bio_counter_dec(fs_info);
2170
2171 if (actual_bytes)
2172 *actual_bytes = discarded_bytes;
2173
2174
2175 if (ret == -EOPNOTSUPP)
2176 ret = 0;
2177 return ret;
2178 }
2179
2180 /* Can return -ENOMEM */
2181 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2182 struct btrfs_root *root,
2183 u64 bytenr, u64 num_bytes, u64 parent,
2184 u64 root_objectid, u64 owner, u64 offset)
2185 {
2186 struct btrfs_fs_info *fs_info = root->fs_info;
2187 int old_ref_mod, new_ref_mod;
2188 int ret;
2189
2190 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2191 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2192
2193 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2194 owner, offset, BTRFS_ADD_DELAYED_REF);
2195
2196 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2197 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2198 num_bytes, parent,
2199 root_objectid, (int)owner,
2200 BTRFS_ADD_DELAYED_REF, NULL,
2201 &old_ref_mod, &new_ref_mod);
2202 } else {
2203 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2204 num_bytes, parent,
2205 root_objectid, owner, offset,
2206 0, BTRFS_ADD_DELAYED_REF,
2207 &old_ref_mod, &new_ref_mod);
2208 }
2209
2210 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2211 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2212
2213 return ret;
2214 }
2215
2216 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2217 struct btrfs_fs_info *fs_info,
2218 struct btrfs_delayed_ref_node *node,
2219 u64 parent, u64 root_objectid,
2220 u64 owner, u64 offset, int refs_to_add,
2221 struct btrfs_delayed_extent_op *extent_op)
2222 {
2223 struct btrfs_path *path;
2224 struct extent_buffer *leaf;
2225 struct btrfs_extent_item *item;
2226 struct btrfs_key key;
2227 u64 bytenr = node->bytenr;
2228 u64 num_bytes = node->num_bytes;
2229 u64 refs;
2230 int ret;
2231
2232 path = btrfs_alloc_path();
2233 if (!path)
2234 return -ENOMEM;
2235
2236 path->reada = READA_FORWARD;
2237 path->leave_spinning = 1;
2238 /* this will setup the path even if it fails to insert the back ref */
2239 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2240 num_bytes, parent, root_objectid,
2241 owner, offset,
2242 refs_to_add, extent_op);
2243 if ((ret < 0 && ret != -EAGAIN) || !ret)
2244 goto out;
2245
2246 /*
2247 * Ok we had -EAGAIN which means we didn't have space to insert and
2248 * inline extent ref, so just update the reference count and add a
2249 * normal backref.
2250 */
2251 leaf = path->nodes[0];
2252 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2253 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2254 refs = btrfs_extent_refs(leaf, item);
2255 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2256 if (extent_op)
2257 __run_delayed_extent_op(extent_op, leaf, item);
2258
2259 btrfs_mark_buffer_dirty(leaf);
2260 btrfs_release_path(path);
2261
2262 path->reada = READA_FORWARD;
2263 path->leave_spinning = 1;
2264 /* now insert the actual backref */
2265 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2266 root_objectid, owner, offset, refs_to_add);
2267 if (ret)
2268 btrfs_abort_transaction(trans, ret);
2269 out:
2270 btrfs_free_path(path);
2271 return ret;
2272 }
2273
2274 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_fs_info *fs_info,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
2279 {
2280 int ret = 0;
2281 struct btrfs_delayed_data_ref *ref;
2282 struct btrfs_key ins;
2283 u64 parent = 0;
2284 u64 ref_root = 0;
2285 u64 flags = 0;
2286
2287 ins.objectid = node->bytenr;
2288 ins.offset = node->num_bytes;
2289 ins.type = BTRFS_EXTENT_ITEM_KEY;
2290
2291 ref = btrfs_delayed_node_to_data_ref(node);
2292 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2293
2294 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2295 parent = ref->parent;
2296 ref_root = ref->root;
2297
2298 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2299 if (extent_op)
2300 flags |= extent_op->flags_to_set;
2301 ret = alloc_reserved_file_extent(trans, fs_info,
2302 parent, ref_root, flags,
2303 ref->objectid, ref->offset,
2304 &ins, node->ref_mod);
2305 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2306 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2307 ref_root, ref->objectid,
2308 ref->offset, node->ref_mod,
2309 extent_op);
2310 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2311 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2312 ref_root, ref->objectid,
2313 ref->offset, node->ref_mod,
2314 extent_op);
2315 } else {
2316 BUG();
2317 }
2318 return ret;
2319 }
2320
2321 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2322 struct extent_buffer *leaf,
2323 struct btrfs_extent_item *ei)
2324 {
2325 u64 flags = btrfs_extent_flags(leaf, ei);
2326 if (extent_op->update_flags) {
2327 flags |= extent_op->flags_to_set;
2328 btrfs_set_extent_flags(leaf, ei, flags);
2329 }
2330
2331 if (extent_op->update_key) {
2332 struct btrfs_tree_block_info *bi;
2333 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2334 bi = (struct btrfs_tree_block_info *)(ei + 1);
2335 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2336 }
2337 }
2338
2339 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2340 struct btrfs_fs_info *fs_info,
2341 struct btrfs_delayed_ref_head *head,
2342 struct btrfs_delayed_extent_op *extent_op)
2343 {
2344 struct btrfs_key key;
2345 struct btrfs_path *path;
2346 struct btrfs_extent_item *ei;
2347 struct extent_buffer *leaf;
2348 u32 item_size;
2349 int ret;
2350 int err = 0;
2351 int metadata = !extent_op->is_data;
2352
2353 if (trans->aborted)
2354 return 0;
2355
2356 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2357 metadata = 0;
2358
2359 path = btrfs_alloc_path();
2360 if (!path)
2361 return -ENOMEM;
2362
2363 key.objectid = head->bytenr;
2364
2365 if (metadata) {
2366 key.type = BTRFS_METADATA_ITEM_KEY;
2367 key.offset = extent_op->level;
2368 } else {
2369 key.type = BTRFS_EXTENT_ITEM_KEY;
2370 key.offset = head->num_bytes;
2371 }
2372
2373 again:
2374 path->reada = READA_FORWARD;
2375 path->leave_spinning = 1;
2376 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2377 if (ret < 0) {
2378 err = ret;
2379 goto out;
2380 }
2381 if (ret > 0) {
2382 if (metadata) {
2383 if (path->slots[0] > 0) {
2384 path->slots[0]--;
2385 btrfs_item_key_to_cpu(path->nodes[0], &key,
2386 path->slots[0]);
2387 if (key.objectid == head->bytenr &&
2388 key.type == BTRFS_EXTENT_ITEM_KEY &&
2389 key.offset == head->num_bytes)
2390 ret = 0;
2391 }
2392 if (ret > 0) {
2393 btrfs_release_path(path);
2394 metadata = 0;
2395
2396 key.objectid = head->bytenr;
2397 key.offset = head->num_bytes;
2398 key.type = BTRFS_EXTENT_ITEM_KEY;
2399 goto again;
2400 }
2401 } else {
2402 err = -EIO;
2403 goto out;
2404 }
2405 }
2406
2407 leaf = path->nodes[0];
2408 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2409 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2410 if (item_size < sizeof(*ei)) {
2411 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2412 if (ret < 0) {
2413 err = ret;
2414 goto out;
2415 }
2416 leaf = path->nodes[0];
2417 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2418 }
2419 #endif
2420 BUG_ON(item_size < sizeof(*ei));
2421 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2422 __run_delayed_extent_op(extent_op, leaf, ei);
2423
2424 btrfs_mark_buffer_dirty(leaf);
2425 out:
2426 btrfs_free_path(path);
2427 return err;
2428 }
2429
2430 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2431 struct btrfs_fs_info *fs_info,
2432 struct btrfs_delayed_ref_node *node,
2433 struct btrfs_delayed_extent_op *extent_op,
2434 int insert_reserved)
2435 {
2436 int ret = 0;
2437 struct btrfs_delayed_tree_ref *ref;
2438 struct btrfs_key ins;
2439 u64 parent = 0;
2440 u64 ref_root = 0;
2441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2442
2443 ref = btrfs_delayed_node_to_tree_ref(node);
2444 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2445
2446 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 parent = ref->parent;
2448 ref_root = ref->root;
2449
2450 ins.objectid = node->bytenr;
2451 if (skinny_metadata) {
2452 ins.offset = ref->level;
2453 ins.type = BTRFS_METADATA_ITEM_KEY;
2454 } else {
2455 ins.offset = node->num_bytes;
2456 ins.type = BTRFS_EXTENT_ITEM_KEY;
2457 }
2458
2459 if (node->ref_mod != 1) {
2460 btrfs_err(fs_info,
2461 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2462 node->bytenr, node->ref_mod, node->action, ref_root,
2463 parent);
2464 return -EIO;
2465 }
2466 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2467 BUG_ON(!extent_op || !extent_op->update_flags);
2468 ret = alloc_reserved_tree_block(trans, fs_info,
2469 parent, ref_root,
2470 extent_op->flags_to_set,
2471 &extent_op->key,
2472 ref->level, &ins);
2473 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2474 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2475 parent, ref_root,
2476 ref->level, 0, 1,
2477 extent_op);
2478 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2479 ret = __btrfs_free_extent(trans, fs_info, node,
2480 parent, ref_root,
2481 ref->level, 0, 1, extent_op);
2482 } else {
2483 BUG();
2484 }
2485 return ret;
2486 }
2487
2488 /* helper function to actually process a single delayed ref entry */
2489 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2490 struct btrfs_fs_info *fs_info,
2491 struct btrfs_delayed_ref_node *node,
2492 struct btrfs_delayed_extent_op *extent_op,
2493 int insert_reserved)
2494 {
2495 int ret = 0;
2496
2497 if (trans->aborted) {
2498 if (insert_reserved)
2499 btrfs_pin_extent(fs_info, node->bytenr,
2500 node->num_bytes, 1);
2501 return 0;
2502 }
2503
2504 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2505 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2506 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2507 insert_reserved);
2508 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2509 node->type == BTRFS_SHARED_DATA_REF_KEY)
2510 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2511 insert_reserved);
2512 else
2513 BUG();
2514 return ret;
2515 }
2516
2517 static inline struct btrfs_delayed_ref_node *
2518 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2519 {
2520 struct btrfs_delayed_ref_node *ref;
2521
2522 if (RB_EMPTY_ROOT(&head->ref_tree))
2523 return NULL;
2524
2525 /*
2526 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2527 * This is to prevent a ref count from going down to zero, which deletes
2528 * the extent item from the extent tree, when there still are references
2529 * to add, which would fail because they would not find the extent item.
2530 */
2531 if (!list_empty(&head->ref_add_list))
2532 return list_first_entry(&head->ref_add_list,
2533 struct btrfs_delayed_ref_node, add_list);
2534
2535 ref = rb_entry(rb_first(&head->ref_tree),
2536 struct btrfs_delayed_ref_node, ref_node);
2537 ASSERT(list_empty(&ref->add_list));
2538 return ref;
2539 }
2540
2541 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2542 struct btrfs_delayed_ref_head *head)
2543 {
2544 spin_lock(&delayed_refs->lock);
2545 head->processing = 0;
2546 delayed_refs->num_heads_ready++;
2547 spin_unlock(&delayed_refs->lock);
2548 btrfs_delayed_ref_unlock(head);
2549 }
2550
2551 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2552 struct btrfs_fs_info *fs_info,
2553 struct btrfs_delayed_ref_head *head)
2554 {
2555 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2556 int ret;
2557
2558 if (!extent_op)
2559 return 0;
2560 head->extent_op = NULL;
2561 if (head->must_insert_reserved) {
2562 btrfs_free_delayed_extent_op(extent_op);
2563 return 0;
2564 }
2565 spin_unlock(&head->lock);
2566 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2567 btrfs_free_delayed_extent_op(extent_op);
2568 return ret ? ret : 1;
2569 }
2570
2571 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2572 struct btrfs_fs_info *fs_info,
2573 struct btrfs_delayed_ref_head *head)
2574 {
2575 struct btrfs_delayed_ref_root *delayed_refs;
2576 int ret;
2577
2578 delayed_refs = &trans->transaction->delayed_refs;
2579
2580 ret = cleanup_extent_op(trans, fs_info, head);
2581 if (ret < 0) {
2582 unselect_delayed_ref_head(delayed_refs, head);
2583 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2584 return ret;
2585 } else if (ret) {
2586 return ret;
2587 }
2588
2589 /*
2590 * Need to drop our head ref lock and re-acquire the delayed ref lock
2591 * and then re-check to make sure nobody got added.
2592 */
2593 spin_unlock(&head->lock);
2594 spin_lock(&delayed_refs->lock);
2595 spin_lock(&head->lock);
2596 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2597 spin_unlock(&head->lock);
2598 spin_unlock(&delayed_refs->lock);
2599 return 1;
2600 }
2601 delayed_refs->num_heads--;
2602 rb_erase(&head->href_node, &delayed_refs->href_root);
2603 RB_CLEAR_NODE(&head->href_node);
2604 spin_unlock(&delayed_refs->lock);
2605 spin_unlock(&head->lock);
2606 atomic_dec(&delayed_refs->num_entries);
2607
2608 trace_run_delayed_ref_head(fs_info, head, 0);
2609
2610 if (head->total_ref_mod < 0) {
2611 struct btrfs_block_group_cache *cache;
2612
2613 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2614 ASSERT(cache);
2615 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2616 -head->num_bytes);
2617 btrfs_put_block_group(cache);
2618
2619 if (head->is_data) {
2620 spin_lock(&delayed_refs->lock);
2621 delayed_refs->pending_csums -= head->num_bytes;
2622 spin_unlock(&delayed_refs->lock);
2623 }
2624 }
2625
2626 if (head->must_insert_reserved) {
2627 btrfs_pin_extent(fs_info, head->bytenr,
2628 head->num_bytes, 1);
2629 if (head->is_data) {
2630 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2631 head->num_bytes);
2632 }
2633 }
2634
2635 /* Also free its reserved qgroup space */
2636 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2637 head->qgroup_reserved);
2638 btrfs_delayed_ref_unlock(head);
2639 btrfs_put_delayed_ref_head(head);
2640 return 0;
2641 }
2642
2643 /*
2644 * Returns 0 on success or if called with an already aborted transaction.
2645 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2646 */
2647 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2648 struct btrfs_fs_info *fs_info,
2649 unsigned long nr)
2650 {
2651 struct btrfs_delayed_ref_root *delayed_refs;
2652 struct btrfs_delayed_ref_node *ref;
2653 struct btrfs_delayed_ref_head *locked_ref = NULL;
2654 struct btrfs_delayed_extent_op *extent_op;
2655 ktime_t start = ktime_get();
2656 int ret;
2657 unsigned long count = 0;
2658 unsigned long actual_count = 0;
2659 int must_insert_reserved = 0;
2660
2661 delayed_refs = &trans->transaction->delayed_refs;
2662 while (1) {
2663 if (!locked_ref) {
2664 if (count >= nr)
2665 break;
2666
2667 spin_lock(&delayed_refs->lock);
2668 locked_ref = btrfs_select_ref_head(trans);
2669 if (!locked_ref) {
2670 spin_unlock(&delayed_refs->lock);
2671 break;
2672 }
2673
2674 /* grab the lock that says we are going to process
2675 * all the refs for this head */
2676 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2677 spin_unlock(&delayed_refs->lock);
2678 /*
2679 * we may have dropped the spin lock to get the head
2680 * mutex lock, and that might have given someone else
2681 * time to free the head. If that's true, it has been
2682 * removed from our list and we can move on.
2683 */
2684 if (ret == -EAGAIN) {
2685 locked_ref = NULL;
2686 count++;
2687 continue;
2688 }
2689 }
2690
2691 /*
2692 * We need to try and merge add/drops of the same ref since we
2693 * can run into issues with relocate dropping the implicit ref
2694 * and then it being added back again before the drop can
2695 * finish. If we merged anything we need to re-loop so we can
2696 * get a good ref.
2697 * Or we can get node references of the same type that weren't
2698 * merged when created due to bumps in the tree mod seq, and
2699 * we need to merge them to prevent adding an inline extent
2700 * backref before dropping it (triggering a BUG_ON at
2701 * insert_inline_extent_backref()).
2702 */
2703 spin_lock(&locked_ref->lock);
2704 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2705 locked_ref);
2706
2707 /*
2708 * locked_ref is the head node, so we have to go one
2709 * node back for any delayed ref updates
2710 */
2711 ref = select_delayed_ref(locked_ref);
2712
2713 if (ref && ref->seq &&
2714 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2715 spin_unlock(&locked_ref->lock);
2716 unselect_delayed_ref_head(delayed_refs, locked_ref);
2717 locked_ref = NULL;
2718 cond_resched();
2719 count++;
2720 continue;
2721 }
2722
2723 /*
2724 * We're done processing refs in this ref_head, clean everything
2725 * up and move on to the next ref_head.
2726 */
2727 if (!ref) {
2728 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2729 if (ret > 0 ) {
2730 /* We dropped our lock, we need to loop. */
2731 ret = 0;
2732 continue;
2733 } else if (ret) {
2734 return ret;
2735 }
2736 locked_ref = NULL;
2737 count++;
2738 continue;
2739 }
2740
2741 actual_count++;
2742 ref->in_tree = 0;
2743 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2744 RB_CLEAR_NODE(&ref->ref_node);
2745 if (!list_empty(&ref->add_list))
2746 list_del(&ref->add_list);
2747 /*
2748 * When we play the delayed ref, also correct the ref_mod on
2749 * head
2750 */
2751 switch (ref->action) {
2752 case BTRFS_ADD_DELAYED_REF:
2753 case BTRFS_ADD_DELAYED_EXTENT:
2754 locked_ref->ref_mod -= ref->ref_mod;
2755 break;
2756 case BTRFS_DROP_DELAYED_REF:
2757 locked_ref->ref_mod += ref->ref_mod;
2758 break;
2759 default:
2760 WARN_ON(1);
2761 }
2762 atomic_dec(&delayed_refs->num_entries);
2763
2764 /*
2765 * Record the must-insert_reserved flag before we drop the spin
2766 * lock.
2767 */
2768 must_insert_reserved = locked_ref->must_insert_reserved;
2769 locked_ref->must_insert_reserved = 0;
2770
2771 extent_op = locked_ref->extent_op;
2772 locked_ref->extent_op = NULL;
2773 spin_unlock(&locked_ref->lock);
2774
2775 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2776 must_insert_reserved);
2777
2778 btrfs_free_delayed_extent_op(extent_op);
2779 if (ret) {
2780 unselect_delayed_ref_head(delayed_refs, locked_ref);
2781 btrfs_put_delayed_ref(ref);
2782 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2783 ret);
2784 return ret;
2785 }
2786
2787 btrfs_put_delayed_ref(ref);
2788 count++;
2789 cond_resched();
2790 }
2791
2792 /*
2793 * We don't want to include ref heads since we can have empty ref heads
2794 * and those will drastically skew our runtime down since we just do
2795 * accounting, no actual extent tree updates.
2796 */
2797 if (actual_count > 0) {
2798 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2799 u64 avg;
2800
2801 /*
2802 * We weigh the current average higher than our current runtime
2803 * to avoid large swings in the average.
2804 */
2805 spin_lock(&delayed_refs->lock);
2806 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2807 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2808 spin_unlock(&delayed_refs->lock);
2809 }
2810 return 0;
2811 }
2812
2813 #ifdef SCRAMBLE_DELAYED_REFS
2814 /*
2815 * Normally delayed refs get processed in ascending bytenr order. This
2816 * correlates in most cases to the order added. To expose dependencies on this
2817 * order, we start to process the tree in the middle instead of the beginning
2818 */
2819 static u64 find_middle(struct rb_root *root)
2820 {
2821 struct rb_node *n = root->rb_node;
2822 struct btrfs_delayed_ref_node *entry;
2823 int alt = 1;
2824 u64 middle;
2825 u64 first = 0, last = 0;
2826
2827 n = rb_first(root);
2828 if (n) {
2829 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2830 first = entry->bytenr;
2831 }
2832 n = rb_last(root);
2833 if (n) {
2834 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835 last = entry->bytenr;
2836 }
2837 n = root->rb_node;
2838
2839 while (n) {
2840 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2841 WARN_ON(!entry->in_tree);
2842
2843 middle = entry->bytenr;
2844
2845 if (alt)
2846 n = n->rb_left;
2847 else
2848 n = n->rb_right;
2849
2850 alt = 1 - alt;
2851 }
2852 return middle;
2853 }
2854 #endif
2855
2856 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2857 {
2858 u64 num_bytes;
2859
2860 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2861 sizeof(struct btrfs_extent_inline_ref));
2862 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2863 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2864
2865 /*
2866 * We don't ever fill up leaves all the way so multiply by 2 just to be
2867 * closer to what we're really going to want to use.
2868 */
2869 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2870 }
2871
2872 /*
2873 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2874 * would require to store the csums for that many bytes.
2875 */
2876 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2877 {
2878 u64 csum_size;
2879 u64 num_csums_per_leaf;
2880 u64 num_csums;
2881
2882 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2883 num_csums_per_leaf = div64_u64(csum_size,
2884 (u64)btrfs_super_csum_size(fs_info->super_copy));
2885 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2886 num_csums += num_csums_per_leaf - 1;
2887 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2888 return num_csums;
2889 }
2890
2891 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2892 struct btrfs_fs_info *fs_info)
2893 {
2894 struct btrfs_block_rsv *global_rsv;
2895 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2896 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2897 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2898 u64 num_bytes, num_dirty_bgs_bytes;
2899 int ret = 0;
2900
2901 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2902 num_heads = heads_to_leaves(fs_info, num_heads);
2903 if (num_heads > 1)
2904 num_bytes += (num_heads - 1) * fs_info->nodesize;
2905 num_bytes <<= 1;
2906 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2907 fs_info->nodesize;
2908 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2909 num_dirty_bgs);
2910 global_rsv = &fs_info->global_block_rsv;
2911
2912 /*
2913 * If we can't allocate any more chunks lets make sure we have _lots_ of
2914 * wiggle room since running delayed refs can create more delayed refs.
2915 */
2916 if (global_rsv->space_info->full) {
2917 num_dirty_bgs_bytes <<= 1;
2918 num_bytes <<= 1;
2919 }
2920
2921 spin_lock(&global_rsv->lock);
2922 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2923 ret = 1;
2924 spin_unlock(&global_rsv->lock);
2925 return ret;
2926 }
2927
2928 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2929 struct btrfs_fs_info *fs_info)
2930 {
2931 u64 num_entries =
2932 atomic_read(&trans->transaction->delayed_refs.num_entries);
2933 u64 avg_runtime;
2934 u64 val;
2935
2936 smp_mb();
2937 avg_runtime = fs_info->avg_delayed_ref_runtime;
2938 val = num_entries * avg_runtime;
2939 if (val >= NSEC_PER_SEC)
2940 return 1;
2941 if (val >= NSEC_PER_SEC / 2)
2942 return 2;
2943
2944 return btrfs_check_space_for_delayed_refs(trans, fs_info);
2945 }
2946
2947 struct async_delayed_refs {
2948 struct btrfs_root *root;
2949 u64 transid;
2950 int count;
2951 int error;
2952 int sync;
2953 struct completion wait;
2954 struct btrfs_work work;
2955 };
2956
2957 static inline struct async_delayed_refs *
2958 to_async_delayed_refs(struct btrfs_work *work)
2959 {
2960 return container_of(work, struct async_delayed_refs, work);
2961 }
2962
2963 static void delayed_ref_async_start(struct btrfs_work *work)
2964 {
2965 struct async_delayed_refs *async = to_async_delayed_refs(work);
2966 struct btrfs_trans_handle *trans;
2967 struct btrfs_fs_info *fs_info = async->root->fs_info;
2968 int ret;
2969
2970 /* if the commit is already started, we don't need to wait here */
2971 if (btrfs_transaction_blocked(fs_info))
2972 goto done;
2973
2974 trans = btrfs_join_transaction(async->root);
2975 if (IS_ERR(trans)) {
2976 async->error = PTR_ERR(trans);
2977 goto done;
2978 }
2979
2980 /*
2981 * trans->sync means that when we call end_transaction, we won't
2982 * wait on delayed refs
2983 */
2984 trans->sync = true;
2985
2986 /* Don't bother flushing if we got into a different transaction */
2987 if (trans->transid > async->transid)
2988 goto end;
2989
2990 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2991 if (ret)
2992 async->error = ret;
2993 end:
2994 ret = btrfs_end_transaction(trans);
2995 if (ret && !async->error)
2996 async->error = ret;
2997 done:
2998 if (async->sync)
2999 complete(&async->wait);
3000 else
3001 kfree(async);
3002 }
3003
3004 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3005 unsigned long count, u64 transid, int wait)
3006 {
3007 struct async_delayed_refs *async;
3008 int ret;
3009
3010 async = kmalloc(sizeof(*async), GFP_NOFS);
3011 if (!async)
3012 return -ENOMEM;
3013
3014 async->root = fs_info->tree_root;
3015 async->count = count;
3016 async->error = 0;
3017 async->transid = transid;
3018 if (wait)
3019 async->sync = 1;
3020 else
3021 async->sync = 0;
3022 init_completion(&async->wait);
3023
3024 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3025 delayed_ref_async_start, NULL, NULL);
3026
3027 btrfs_queue_work(fs_info->extent_workers, &async->work);
3028
3029 if (wait) {
3030 wait_for_completion(&async->wait);
3031 ret = async->error;
3032 kfree(async);
3033 return ret;
3034 }
3035 return 0;
3036 }
3037
3038 /*
3039 * this starts processing the delayed reference count updates and
3040 * extent insertions we have queued up so far. count can be
3041 * 0, which means to process everything in the tree at the start
3042 * of the run (but not newly added entries), or it can be some target
3043 * number you'd like to process.
3044 *
3045 * Returns 0 on success or if called with an aborted transaction
3046 * Returns <0 on error and aborts the transaction
3047 */
3048 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3049 struct btrfs_fs_info *fs_info, unsigned long count)
3050 {
3051 struct rb_node *node;
3052 struct btrfs_delayed_ref_root *delayed_refs;
3053 struct btrfs_delayed_ref_head *head;
3054 int ret;
3055 int run_all = count == (unsigned long)-1;
3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3057
3058 /* We'll clean this up in btrfs_cleanup_transaction */
3059 if (trans->aborted)
3060 return 0;
3061
3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3063 return 0;
3064
3065 delayed_refs = &trans->transaction->delayed_refs;
3066 if (count == 0)
3067 count = atomic_read(&delayed_refs->num_entries) * 2;
3068
3069 again:
3070 #ifdef SCRAMBLE_DELAYED_REFS
3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072 #endif
3073 trans->can_flush_pending_bgs = false;
3074 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3075 if (ret < 0) {
3076 btrfs_abort_transaction(trans, ret);
3077 return ret;
3078 }
3079
3080 if (run_all) {
3081 if (!list_empty(&trans->new_bgs))
3082 btrfs_create_pending_block_groups(trans, fs_info);
3083
3084 spin_lock(&delayed_refs->lock);
3085 node = rb_first(&delayed_refs->href_root);
3086 if (!node) {
3087 spin_unlock(&delayed_refs->lock);
3088 goto out;
3089 }
3090 head = rb_entry(node, struct btrfs_delayed_ref_head,
3091 href_node);
3092 refcount_inc(&head->refs);
3093 spin_unlock(&delayed_refs->lock);
3094
3095 /* Mutex was contended, block until it's released and retry. */
3096 mutex_lock(&head->mutex);
3097 mutex_unlock(&head->mutex);
3098
3099 btrfs_put_delayed_ref_head(head);
3100 cond_resched();
3101 goto again;
3102 }
3103 out:
3104 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3105 return 0;
3106 }
3107
3108 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3109 struct btrfs_fs_info *fs_info,
3110 u64 bytenr, u64 num_bytes, u64 flags,
3111 int level, int is_data)
3112 {
3113 struct btrfs_delayed_extent_op *extent_op;
3114 int ret;
3115
3116 extent_op = btrfs_alloc_delayed_extent_op();
3117 if (!extent_op)
3118 return -ENOMEM;
3119
3120 extent_op->flags_to_set = flags;
3121 extent_op->update_flags = true;
3122 extent_op->update_key = false;
3123 extent_op->is_data = is_data ? true : false;
3124 extent_op->level = level;
3125
3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3127 num_bytes, extent_op);
3128 if (ret)
3129 btrfs_free_delayed_extent_op(extent_op);
3130 return ret;
3131 }
3132
3133 static noinline int check_delayed_ref(struct btrfs_root *root,
3134 struct btrfs_path *path,
3135 u64 objectid, u64 offset, u64 bytenr)
3136 {
3137 struct btrfs_delayed_ref_head *head;
3138 struct btrfs_delayed_ref_node *ref;
3139 struct btrfs_delayed_data_ref *data_ref;
3140 struct btrfs_delayed_ref_root *delayed_refs;
3141 struct btrfs_transaction *cur_trans;
3142 struct rb_node *node;
3143 int ret = 0;
3144
3145 cur_trans = root->fs_info->running_transaction;
3146 if (!cur_trans)
3147 return 0;
3148
3149 delayed_refs = &cur_trans->delayed_refs;
3150 spin_lock(&delayed_refs->lock);
3151 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3152 if (!head) {
3153 spin_unlock(&delayed_refs->lock);
3154 return 0;
3155 }
3156
3157 if (!mutex_trylock(&head->mutex)) {
3158 refcount_inc(&head->refs);
3159 spin_unlock(&delayed_refs->lock);
3160
3161 btrfs_release_path(path);
3162
3163 /*
3164 * Mutex was contended, block until it's released and let
3165 * caller try again
3166 */
3167 mutex_lock(&head->mutex);
3168 mutex_unlock(&head->mutex);
3169 btrfs_put_delayed_ref_head(head);
3170 return -EAGAIN;
3171 }
3172 spin_unlock(&delayed_refs->lock);
3173
3174 spin_lock(&head->lock);
3175 /*
3176 * XXX: We should replace this with a proper search function in the
3177 * future.
3178 */
3179 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3180 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3181 /* If it's a shared ref we know a cross reference exists */
3182 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3183 ret = 1;
3184 break;
3185 }
3186
3187 data_ref = btrfs_delayed_node_to_data_ref(ref);
3188
3189 /*
3190 * If our ref doesn't match the one we're currently looking at
3191 * then we have a cross reference.
3192 */
3193 if (data_ref->root != root->root_key.objectid ||
3194 data_ref->objectid != objectid ||
3195 data_ref->offset != offset) {
3196 ret = 1;
3197 break;
3198 }
3199 }
3200 spin_unlock(&head->lock);
3201 mutex_unlock(&head->mutex);
3202 return ret;
3203 }
3204
3205 static noinline int check_committed_ref(struct btrfs_root *root,
3206 struct btrfs_path *path,
3207 u64 objectid, u64 offset, u64 bytenr)
3208 {
3209 struct btrfs_fs_info *fs_info = root->fs_info;
3210 struct btrfs_root *extent_root = fs_info->extent_root;
3211 struct extent_buffer *leaf;
3212 struct btrfs_extent_data_ref *ref;
3213 struct btrfs_extent_inline_ref *iref;
3214 struct btrfs_extent_item *ei;
3215 struct btrfs_key key;
3216 u32 item_size;
3217 int type;
3218 int ret;
3219
3220 key.objectid = bytenr;
3221 key.offset = (u64)-1;
3222 key.type = BTRFS_EXTENT_ITEM_KEY;
3223
3224 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3225 if (ret < 0)
3226 goto out;
3227 BUG_ON(ret == 0); /* Corruption */
3228
3229 ret = -ENOENT;
3230 if (path->slots[0] == 0)
3231 goto out;
3232
3233 path->slots[0]--;
3234 leaf = path->nodes[0];
3235 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3236
3237 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3238 goto out;
3239
3240 ret = 1;
3241 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3242 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3243 if (item_size < sizeof(*ei)) {
3244 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3245 goto out;
3246 }
3247 #endif
3248 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3249
3250 if (item_size != sizeof(*ei) +
3251 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3252 goto out;
3253
3254 if (btrfs_extent_generation(leaf, ei) <=
3255 btrfs_root_last_snapshot(&root->root_item))
3256 goto out;
3257
3258 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3259
3260 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3261 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3262 goto out;
3263
3264 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3265 if (btrfs_extent_refs(leaf, ei) !=
3266 btrfs_extent_data_ref_count(leaf, ref) ||
3267 btrfs_extent_data_ref_root(leaf, ref) !=
3268 root->root_key.objectid ||
3269 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3270 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3271 goto out;
3272
3273 ret = 0;
3274 out:
3275 return ret;
3276 }
3277
3278 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3279 u64 bytenr)
3280 {
3281 struct btrfs_path *path;
3282 int ret;
3283 int ret2;
3284
3285 path = btrfs_alloc_path();
3286 if (!path)
3287 return -ENOENT;
3288
3289 do {
3290 ret = check_committed_ref(root, path, objectid,
3291 offset, bytenr);
3292 if (ret && ret != -ENOENT)
3293 goto out;
3294
3295 ret2 = check_delayed_ref(root, path, objectid,
3296 offset, bytenr);
3297 } while (ret2 == -EAGAIN);
3298
3299 if (ret2 && ret2 != -ENOENT) {
3300 ret = ret2;
3301 goto out;
3302 }
3303
3304 if (ret != -ENOENT || ret2 != -ENOENT)
3305 ret = 0;
3306 out:
3307 btrfs_free_path(path);
3308 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3309 WARN_ON(ret > 0);
3310 return ret;
3311 }
3312
3313 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3314 struct btrfs_root *root,
3315 struct extent_buffer *buf,
3316 int full_backref, int inc)
3317 {
3318 struct btrfs_fs_info *fs_info = root->fs_info;
3319 u64 bytenr;
3320 u64 num_bytes;
3321 u64 parent;
3322 u64 ref_root;
3323 u32 nritems;
3324 struct btrfs_key key;
3325 struct btrfs_file_extent_item *fi;
3326 int i;
3327 int level;
3328 int ret = 0;
3329 int (*process_func)(struct btrfs_trans_handle *,
3330 struct btrfs_root *,
3331 u64, u64, u64, u64, u64, u64);
3332
3333
3334 if (btrfs_is_testing(fs_info))
3335 return 0;
3336
3337 ref_root = btrfs_header_owner(buf);
3338 nritems = btrfs_header_nritems(buf);
3339 level = btrfs_header_level(buf);
3340
3341 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3342 return 0;
3343
3344 if (inc)
3345 process_func = btrfs_inc_extent_ref;
3346 else
3347 process_func = btrfs_free_extent;
3348
3349 if (full_backref)
3350 parent = buf->start;
3351 else
3352 parent = 0;
3353
3354 for (i = 0; i < nritems; i++) {
3355 if (level == 0) {
3356 btrfs_item_key_to_cpu(buf, &key, i);
3357 if (key.type != BTRFS_EXTENT_DATA_KEY)
3358 continue;
3359 fi = btrfs_item_ptr(buf, i,
3360 struct btrfs_file_extent_item);
3361 if (btrfs_file_extent_type(buf, fi) ==
3362 BTRFS_FILE_EXTENT_INLINE)
3363 continue;
3364 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3365 if (bytenr == 0)
3366 continue;
3367
3368 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3369 key.offset -= btrfs_file_extent_offset(buf, fi);
3370 ret = process_func(trans, root, bytenr, num_bytes,
3371 parent, ref_root, key.objectid,
3372 key.offset);
3373 if (ret)
3374 goto fail;
3375 } else {
3376 bytenr = btrfs_node_blockptr(buf, i);
3377 num_bytes = fs_info->nodesize;
3378 ret = process_func(trans, root, bytenr, num_bytes,
3379 parent, ref_root, level - 1, 0);
3380 if (ret)
3381 goto fail;
3382 }
3383 }
3384 return 0;
3385 fail:
3386 return ret;
3387 }
3388
3389 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3390 struct extent_buffer *buf, int full_backref)
3391 {
3392 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3393 }
3394
3395 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3396 struct extent_buffer *buf, int full_backref)
3397 {
3398 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3399 }
3400
3401 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3402 struct btrfs_fs_info *fs_info,
3403 struct btrfs_path *path,
3404 struct btrfs_block_group_cache *cache)
3405 {
3406 int ret;
3407 struct btrfs_root *extent_root = fs_info->extent_root;
3408 unsigned long bi;
3409 struct extent_buffer *leaf;
3410
3411 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3412 if (ret) {
3413 if (ret > 0)
3414 ret = -ENOENT;
3415 goto fail;
3416 }
3417
3418 leaf = path->nodes[0];
3419 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3420 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3421 btrfs_mark_buffer_dirty(leaf);
3422 fail:
3423 btrfs_release_path(path);
3424 return ret;
3425
3426 }
3427
3428 static struct btrfs_block_group_cache *
3429 next_block_group(struct btrfs_fs_info *fs_info,
3430 struct btrfs_block_group_cache *cache)
3431 {
3432 struct rb_node *node;
3433
3434 spin_lock(&fs_info->block_group_cache_lock);
3435
3436 /* If our block group was removed, we need a full search. */
3437 if (RB_EMPTY_NODE(&cache->cache_node)) {
3438 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3439
3440 spin_unlock(&fs_info->block_group_cache_lock);
3441 btrfs_put_block_group(cache);
3442 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3443 }
3444 node = rb_next(&cache->cache_node);
3445 btrfs_put_block_group(cache);
3446 if (node) {
3447 cache = rb_entry(node, struct btrfs_block_group_cache,
3448 cache_node);
3449 btrfs_get_block_group(cache);
3450 } else
3451 cache = NULL;
3452 spin_unlock(&fs_info->block_group_cache_lock);
3453 return cache;
3454 }
3455
3456 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3457 struct btrfs_trans_handle *trans,
3458 struct btrfs_path *path)
3459 {
3460 struct btrfs_fs_info *fs_info = block_group->fs_info;
3461 struct btrfs_root *root = fs_info->tree_root;
3462 struct inode *inode = NULL;
3463 struct extent_changeset *data_reserved = NULL;
3464 u64 alloc_hint = 0;
3465 int dcs = BTRFS_DC_ERROR;
3466 u64 num_pages = 0;
3467 int retries = 0;
3468 int ret = 0;
3469
3470 /*
3471 * If this block group is smaller than 100 megs don't bother caching the
3472 * block group.
3473 */
3474 if (block_group->key.offset < (100 * SZ_1M)) {
3475 spin_lock(&block_group->lock);
3476 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3477 spin_unlock(&block_group->lock);
3478 return 0;
3479 }
3480
3481 if (trans->aborted)
3482 return 0;
3483 again:
3484 inode = lookup_free_space_inode(fs_info, block_group, path);
3485 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3486 ret = PTR_ERR(inode);
3487 btrfs_release_path(path);
3488 goto out;
3489 }
3490
3491 if (IS_ERR(inode)) {
3492 BUG_ON(retries);
3493 retries++;
3494
3495 if (block_group->ro)
3496 goto out_free;
3497
3498 ret = create_free_space_inode(fs_info, trans, block_group,
3499 path);
3500 if (ret)
3501 goto out_free;
3502 goto again;
3503 }
3504
3505 /*
3506 * We want to set the generation to 0, that way if anything goes wrong
3507 * from here on out we know not to trust this cache when we load up next
3508 * time.
3509 */
3510 BTRFS_I(inode)->generation = 0;
3511 ret = btrfs_update_inode(trans, root, inode);
3512 if (ret) {
3513 /*
3514 * So theoretically we could recover from this, simply set the
3515 * super cache generation to 0 so we know to invalidate the
3516 * cache, but then we'd have to keep track of the block groups
3517 * that fail this way so we know we _have_ to reset this cache
3518 * before the next commit or risk reading stale cache. So to
3519 * limit our exposure to horrible edge cases lets just abort the
3520 * transaction, this only happens in really bad situations
3521 * anyway.
3522 */
3523 btrfs_abort_transaction(trans, ret);
3524 goto out_put;
3525 }
3526 WARN_ON(ret);
3527
3528 /* We've already setup this transaction, go ahead and exit */
3529 if (block_group->cache_generation == trans->transid &&
3530 i_size_read(inode)) {
3531 dcs = BTRFS_DC_SETUP;
3532 goto out_put;
3533 }
3534
3535 if (i_size_read(inode) > 0) {
3536 ret = btrfs_check_trunc_cache_free_space(fs_info,
3537 &fs_info->global_block_rsv);
3538 if (ret)
3539 goto out_put;
3540
3541 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3542 if (ret)
3543 goto out_put;
3544 }
3545
3546 spin_lock(&block_group->lock);
3547 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3548 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3549 /*
3550 * don't bother trying to write stuff out _if_
3551 * a) we're not cached,
3552 * b) we're with nospace_cache mount option,
3553 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3554 */
3555 dcs = BTRFS_DC_WRITTEN;
3556 spin_unlock(&block_group->lock);
3557 goto out_put;
3558 }
3559 spin_unlock(&block_group->lock);
3560
3561 /*
3562 * We hit an ENOSPC when setting up the cache in this transaction, just
3563 * skip doing the setup, we've already cleared the cache so we're safe.
3564 */
3565 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3566 ret = -ENOSPC;
3567 goto out_put;
3568 }
3569
3570 /*
3571 * Try to preallocate enough space based on how big the block group is.
3572 * Keep in mind this has to include any pinned space which could end up
3573 * taking up quite a bit since it's not folded into the other space
3574 * cache.
3575 */
3576 num_pages = div_u64(block_group->key.offset, SZ_256M);
3577 if (!num_pages)
3578 num_pages = 1;
3579
3580 num_pages *= 16;
3581 num_pages *= PAGE_SIZE;
3582
3583 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3584 if (ret)
3585 goto out_put;
3586
3587 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3588 num_pages, num_pages,
3589 &alloc_hint);
3590 /*
3591 * Our cache requires contiguous chunks so that we don't modify a bunch
3592 * of metadata or split extents when writing the cache out, which means
3593 * we can enospc if we are heavily fragmented in addition to just normal
3594 * out of space conditions. So if we hit this just skip setting up any
3595 * other block groups for this transaction, maybe we'll unpin enough
3596 * space the next time around.
3597 */
3598 if (!ret)
3599 dcs = BTRFS_DC_SETUP;
3600 else if (ret == -ENOSPC)
3601 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3602
3603 out_put:
3604 iput(inode);
3605 out_free:
3606 btrfs_release_path(path);
3607 out:
3608 spin_lock(&block_group->lock);
3609 if (!ret && dcs == BTRFS_DC_SETUP)
3610 block_group->cache_generation = trans->transid;
3611 block_group->disk_cache_state = dcs;
3612 spin_unlock(&block_group->lock);
3613
3614 extent_changeset_free(data_reserved);
3615 return ret;
3616 }
3617
3618 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3619 struct btrfs_fs_info *fs_info)
3620 {
3621 struct btrfs_block_group_cache *cache, *tmp;
3622 struct btrfs_transaction *cur_trans = trans->transaction;
3623 struct btrfs_path *path;
3624
3625 if (list_empty(&cur_trans->dirty_bgs) ||
3626 !btrfs_test_opt(fs_info, SPACE_CACHE))
3627 return 0;
3628
3629 path = btrfs_alloc_path();
3630 if (!path)
3631 return -ENOMEM;
3632
3633 /* Could add new block groups, use _safe just in case */
3634 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3635 dirty_list) {
3636 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3637 cache_save_setup(cache, trans, path);
3638 }
3639
3640 btrfs_free_path(path);
3641 return 0;
3642 }
3643
3644 /*
3645 * transaction commit does final block group cache writeback during a
3646 * critical section where nothing is allowed to change the FS. This is
3647 * required in order for the cache to actually match the block group,
3648 * but can introduce a lot of latency into the commit.
3649 *
3650 * So, btrfs_start_dirty_block_groups is here to kick off block group
3651 * cache IO. There's a chance we'll have to redo some of it if the
3652 * block group changes again during the commit, but it greatly reduces
3653 * the commit latency by getting rid of the easy block groups while
3654 * we're still allowing others to join the commit.
3655 */
3656 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3657 struct btrfs_fs_info *fs_info)
3658 {
3659 struct btrfs_block_group_cache *cache;
3660 struct btrfs_transaction *cur_trans = trans->transaction;
3661 int ret = 0;
3662 int should_put;
3663 struct btrfs_path *path = NULL;
3664 LIST_HEAD(dirty);
3665 struct list_head *io = &cur_trans->io_bgs;
3666 int num_started = 0;
3667 int loops = 0;
3668
3669 spin_lock(&cur_trans->dirty_bgs_lock);
3670 if (list_empty(&cur_trans->dirty_bgs)) {
3671 spin_unlock(&cur_trans->dirty_bgs_lock);
3672 return 0;
3673 }
3674 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3675 spin_unlock(&cur_trans->dirty_bgs_lock);
3676
3677 again:
3678 /*
3679 * make sure all the block groups on our dirty list actually
3680 * exist
3681 */
3682 btrfs_create_pending_block_groups(trans, fs_info);
3683
3684 if (!path) {
3685 path = btrfs_alloc_path();
3686 if (!path)
3687 return -ENOMEM;
3688 }
3689
3690 /*
3691 * cache_write_mutex is here only to save us from balance or automatic
3692 * removal of empty block groups deleting this block group while we are
3693 * writing out the cache
3694 */
3695 mutex_lock(&trans->transaction->cache_write_mutex);
3696 while (!list_empty(&dirty)) {
3697 cache = list_first_entry(&dirty,
3698 struct btrfs_block_group_cache,
3699 dirty_list);
3700 /*
3701 * this can happen if something re-dirties a block
3702 * group that is already under IO. Just wait for it to
3703 * finish and then do it all again
3704 */
3705 if (!list_empty(&cache->io_list)) {
3706 list_del_init(&cache->io_list);
3707 btrfs_wait_cache_io(trans, cache, path);
3708 btrfs_put_block_group(cache);
3709 }
3710
3711
3712 /*
3713 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3714 * if it should update the cache_state. Don't delete
3715 * until after we wait.
3716 *
3717 * Since we're not running in the commit critical section
3718 * we need the dirty_bgs_lock to protect from update_block_group
3719 */
3720 spin_lock(&cur_trans->dirty_bgs_lock);
3721 list_del_init(&cache->dirty_list);
3722 spin_unlock(&cur_trans->dirty_bgs_lock);
3723
3724 should_put = 1;
3725
3726 cache_save_setup(cache, trans, path);
3727
3728 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3729 cache->io_ctl.inode = NULL;
3730 ret = btrfs_write_out_cache(fs_info, trans,
3731 cache, path);
3732 if (ret == 0 && cache->io_ctl.inode) {
3733 num_started++;
3734 should_put = 0;
3735
3736 /*
3737 * the cache_write_mutex is protecting
3738 * the io_list
3739 */
3740 list_add_tail(&cache->io_list, io);
3741 } else {
3742 /*
3743 * if we failed to write the cache, the
3744 * generation will be bad and life goes on
3745 */
3746 ret = 0;
3747 }
3748 }
3749 if (!ret) {
3750 ret = write_one_cache_group(trans, fs_info,
3751 path, cache);
3752 /*
3753 * Our block group might still be attached to the list
3754 * of new block groups in the transaction handle of some
3755 * other task (struct btrfs_trans_handle->new_bgs). This
3756 * means its block group item isn't yet in the extent
3757 * tree. If this happens ignore the error, as we will
3758 * try again later in the critical section of the
3759 * transaction commit.
3760 */
3761 if (ret == -ENOENT) {
3762 ret = 0;
3763 spin_lock(&cur_trans->dirty_bgs_lock);
3764 if (list_empty(&cache->dirty_list)) {
3765 list_add_tail(&cache->dirty_list,
3766 &cur_trans->dirty_bgs);
3767 btrfs_get_block_group(cache);
3768 }
3769 spin_unlock(&cur_trans->dirty_bgs_lock);
3770 } else if (ret) {
3771 btrfs_abort_transaction(trans, ret);
3772 }
3773 }
3774
3775 /* if its not on the io list, we need to put the block group */
3776 if (should_put)
3777 btrfs_put_block_group(cache);
3778
3779 if (ret)
3780 break;
3781
3782 /*
3783 * Avoid blocking other tasks for too long. It might even save
3784 * us from writing caches for block groups that are going to be
3785 * removed.
3786 */
3787 mutex_unlock(&trans->transaction->cache_write_mutex);
3788 mutex_lock(&trans->transaction->cache_write_mutex);
3789 }
3790 mutex_unlock(&trans->transaction->cache_write_mutex);
3791
3792 /*
3793 * go through delayed refs for all the stuff we've just kicked off
3794 * and then loop back (just once)
3795 */
3796 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3797 if (!ret && loops == 0) {
3798 loops++;
3799 spin_lock(&cur_trans->dirty_bgs_lock);
3800 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3801 /*
3802 * dirty_bgs_lock protects us from concurrent block group
3803 * deletes too (not just cache_write_mutex).
3804 */
3805 if (!list_empty(&dirty)) {
3806 spin_unlock(&cur_trans->dirty_bgs_lock);
3807 goto again;
3808 }
3809 spin_unlock(&cur_trans->dirty_bgs_lock);
3810 } else if (ret < 0) {
3811 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3812 }
3813
3814 btrfs_free_path(path);
3815 return ret;
3816 }
3817
3818 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3819 struct btrfs_fs_info *fs_info)
3820 {
3821 struct btrfs_block_group_cache *cache;
3822 struct btrfs_transaction *cur_trans = trans->transaction;
3823 int ret = 0;
3824 int should_put;
3825 struct btrfs_path *path;
3826 struct list_head *io = &cur_trans->io_bgs;
3827 int num_started = 0;
3828
3829 path = btrfs_alloc_path();
3830 if (!path)
3831 return -ENOMEM;
3832
3833 /*
3834 * Even though we are in the critical section of the transaction commit,
3835 * we can still have concurrent tasks adding elements to this
3836 * transaction's list of dirty block groups. These tasks correspond to
3837 * endio free space workers started when writeback finishes for a
3838 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3839 * allocate new block groups as a result of COWing nodes of the root
3840 * tree when updating the free space inode. The writeback for the space
3841 * caches is triggered by an earlier call to
3842 * btrfs_start_dirty_block_groups() and iterations of the following
3843 * loop.
3844 * Also we want to do the cache_save_setup first and then run the
3845 * delayed refs to make sure we have the best chance at doing this all
3846 * in one shot.
3847 */
3848 spin_lock(&cur_trans->dirty_bgs_lock);
3849 while (!list_empty(&cur_trans->dirty_bgs)) {
3850 cache = list_first_entry(&cur_trans->dirty_bgs,
3851 struct btrfs_block_group_cache,
3852 dirty_list);
3853
3854 /*
3855 * this can happen if cache_save_setup re-dirties a block
3856 * group that is already under IO. Just wait for it to
3857 * finish and then do it all again
3858 */
3859 if (!list_empty(&cache->io_list)) {
3860 spin_unlock(&cur_trans->dirty_bgs_lock);
3861 list_del_init(&cache->io_list);
3862 btrfs_wait_cache_io(trans, cache, path);
3863 btrfs_put_block_group(cache);
3864 spin_lock(&cur_trans->dirty_bgs_lock);
3865 }
3866
3867 /*
3868 * don't remove from the dirty list until after we've waited
3869 * on any pending IO
3870 */
3871 list_del_init(&cache->dirty_list);
3872 spin_unlock(&cur_trans->dirty_bgs_lock);
3873 should_put = 1;
3874
3875 cache_save_setup(cache, trans, path);
3876
3877 if (!ret)
3878 ret = btrfs_run_delayed_refs(trans, fs_info,
3879 (unsigned long) -1);
3880
3881 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3882 cache->io_ctl.inode = NULL;
3883 ret = btrfs_write_out_cache(fs_info, trans,
3884 cache, path);
3885 if (ret == 0 && cache->io_ctl.inode) {
3886 num_started++;
3887 should_put = 0;
3888 list_add_tail(&cache->io_list, io);
3889 } else {
3890 /*
3891 * if we failed to write the cache, the
3892 * generation will be bad and life goes on
3893 */
3894 ret = 0;
3895 }
3896 }
3897 if (!ret) {
3898 ret = write_one_cache_group(trans, fs_info,
3899 path, cache);
3900 /*
3901 * One of the free space endio workers might have
3902 * created a new block group while updating a free space
3903 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3904 * and hasn't released its transaction handle yet, in
3905 * which case the new block group is still attached to
3906 * its transaction handle and its creation has not
3907 * finished yet (no block group item in the extent tree
3908 * yet, etc). If this is the case, wait for all free
3909 * space endio workers to finish and retry. This is a
3910 * a very rare case so no need for a more efficient and
3911 * complex approach.
3912 */
3913 if (ret == -ENOENT) {
3914 wait_event(cur_trans->writer_wait,
3915 atomic_read(&cur_trans->num_writers) == 1);
3916 ret = write_one_cache_group(trans, fs_info,
3917 path, cache);
3918 }
3919 if (ret)
3920 btrfs_abort_transaction(trans, ret);
3921 }
3922
3923 /* if its not on the io list, we need to put the block group */
3924 if (should_put)
3925 btrfs_put_block_group(cache);
3926 spin_lock(&cur_trans->dirty_bgs_lock);
3927 }
3928 spin_unlock(&cur_trans->dirty_bgs_lock);
3929
3930 while (!list_empty(io)) {
3931 cache = list_first_entry(io, struct btrfs_block_group_cache,
3932 io_list);
3933 list_del_init(&cache->io_list);
3934 btrfs_wait_cache_io(trans, cache, path);
3935 btrfs_put_block_group(cache);
3936 }
3937
3938 btrfs_free_path(path);
3939 return ret;
3940 }
3941
3942 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3943 {
3944 struct btrfs_block_group_cache *block_group;
3945 int readonly = 0;
3946
3947 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3948 if (!block_group || block_group->ro)
3949 readonly = 1;
3950 if (block_group)
3951 btrfs_put_block_group(block_group);
3952 return readonly;
3953 }
3954
3955 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3956 {
3957 struct btrfs_block_group_cache *bg;
3958 bool ret = true;
3959
3960 bg = btrfs_lookup_block_group(fs_info, bytenr);
3961 if (!bg)
3962 return false;
3963
3964 spin_lock(&bg->lock);
3965 if (bg->ro)
3966 ret = false;
3967 else
3968 atomic_inc(&bg->nocow_writers);
3969 spin_unlock(&bg->lock);
3970
3971 /* no put on block group, done by btrfs_dec_nocow_writers */
3972 if (!ret)
3973 btrfs_put_block_group(bg);
3974
3975 return ret;
3976
3977 }
3978
3979 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3980 {
3981 struct btrfs_block_group_cache *bg;
3982
3983 bg = btrfs_lookup_block_group(fs_info, bytenr);
3984 ASSERT(bg);
3985 if (atomic_dec_and_test(&bg->nocow_writers))
3986 wake_up_atomic_t(&bg->nocow_writers);
3987 /*
3988 * Once for our lookup and once for the lookup done by a previous call
3989 * to btrfs_inc_nocow_writers()
3990 */
3991 btrfs_put_block_group(bg);
3992 btrfs_put_block_group(bg);
3993 }
3994
3995 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3996 {
3997 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
3998 TASK_UNINTERRUPTIBLE);
3999 }
4000
4001 static const char *alloc_name(u64 flags)
4002 {
4003 switch (flags) {
4004 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4005 return "mixed";
4006 case BTRFS_BLOCK_GROUP_METADATA:
4007 return "metadata";
4008 case BTRFS_BLOCK_GROUP_DATA:
4009 return "data";
4010 case BTRFS_BLOCK_GROUP_SYSTEM:
4011 return "system";
4012 default:
4013 WARN_ON(1);
4014 return "invalid-combination";
4015 };
4016 }
4017
4018 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4019 struct btrfs_space_info **new)
4020 {
4021
4022 struct btrfs_space_info *space_info;
4023 int i;
4024 int ret;
4025
4026 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4027 if (!space_info)
4028 return -ENOMEM;
4029
4030 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4031 GFP_KERNEL);
4032 if (ret) {
4033 kfree(space_info);
4034 return ret;
4035 }
4036
4037 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4038 INIT_LIST_HEAD(&space_info->block_groups[i]);
4039 init_rwsem(&space_info->groups_sem);
4040 spin_lock_init(&space_info->lock);
4041 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4042 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4043 init_waitqueue_head(&space_info->wait);
4044 INIT_LIST_HEAD(&space_info->ro_bgs);
4045 INIT_LIST_HEAD(&space_info->tickets);
4046 INIT_LIST_HEAD(&space_info->priority_tickets);
4047
4048 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4049 info->space_info_kobj, "%s",
4050 alloc_name(space_info->flags));
4051 if (ret) {
4052 percpu_counter_destroy(&space_info->total_bytes_pinned);
4053 kfree(space_info);
4054 return ret;
4055 }
4056
4057 *new = space_info;
4058 list_add_rcu(&space_info->list, &info->space_info);
4059 if (flags & BTRFS_BLOCK_GROUP_DATA)
4060 info->data_sinfo = space_info;
4061
4062 return ret;
4063 }
4064
4065 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4066 u64 total_bytes, u64 bytes_used,
4067 u64 bytes_readonly,
4068 struct btrfs_space_info **space_info)
4069 {
4070 struct btrfs_space_info *found;
4071 int factor;
4072
4073 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4074 BTRFS_BLOCK_GROUP_RAID10))
4075 factor = 2;
4076 else
4077 factor = 1;
4078
4079 found = __find_space_info(info, flags);
4080 ASSERT(found);
4081 spin_lock(&found->lock);
4082 found->total_bytes += total_bytes;
4083 found->disk_total += total_bytes * factor;
4084 found->bytes_used += bytes_used;
4085 found->disk_used += bytes_used * factor;
4086 found->bytes_readonly += bytes_readonly;
4087 if (total_bytes > 0)
4088 found->full = 0;
4089 space_info_add_new_bytes(info, found, total_bytes -
4090 bytes_used - bytes_readonly);
4091 spin_unlock(&found->lock);
4092 *space_info = found;
4093 }
4094
4095 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4096 {
4097 u64 extra_flags = chunk_to_extended(flags) &
4098 BTRFS_EXTENDED_PROFILE_MASK;
4099
4100 write_seqlock(&fs_info->profiles_lock);
4101 if (flags & BTRFS_BLOCK_GROUP_DATA)
4102 fs_info->avail_data_alloc_bits |= extra_flags;
4103 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4104 fs_info->avail_metadata_alloc_bits |= extra_flags;
4105 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4106 fs_info->avail_system_alloc_bits |= extra_flags;
4107 write_sequnlock(&fs_info->profiles_lock);
4108 }
4109
4110 /*
4111 * returns target flags in extended format or 0 if restripe for this
4112 * chunk_type is not in progress
4113 *
4114 * should be called with either volume_mutex or balance_lock held
4115 */
4116 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4117 {
4118 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4119 u64 target = 0;
4120
4121 if (!bctl)
4122 return 0;
4123
4124 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4125 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4126 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4127 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4128 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4129 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4130 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4131 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4132 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4133 }
4134
4135 return target;
4136 }
4137
4138 /*
4139 * @flags: available profiles in extended format (see ctree.h)
4140 *
4141 * Returns reduced profile in chunk format. If profile changing is in
4142 * progress (either running or paused) picks the target profile (if it's
4143 * already available), otherwise falls back to plain reducing.
4144 */
4145 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4146 {
4147 u64 num_devices = fs_info->fs_devices->rw_devices;
4148 u64 target;
4149 u64 raid_type;
4150 u64 allowed = 0;
4151
4152 /*
4153 * see if restripe for this chunk_type is in progress, if so
4154 * try to reduce to the target profile
4155 */
4156 spin_lock(&fs_info->balance_lock);
4157 target = get_restripe_target(fs_info, flags);
4158 if (target) {
4159 /* pick target profile only if it's already available */
4160 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4161 spin_unlock(&fs_info->balance_lock);
4162 return extended_to_chunk(target);
4163 }
4164 }
4165 spin_unlock(&fs_info->balance_lock);
4166
4167 /* First, mask out the RAID levels which aren't possible */
4168 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4169 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4170 allowed |= btrfs_raid_group[raid_type];
4171 }
4172 allowed &= flags;
4173
4174 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4175 allowed = BTRFS_BLOCK_GROUP_RAID6;
4176 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4177 allowed = BTRFS_BLOCK_GROUP_RAID5;
4178 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4179 allowed = BTRFS_BLOCK_GROUP_RAID10;
4180 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4181 allowed = BTRFS_BLOCK_GROUP_RAID1;
4182 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4183 allowed = BTRFS_BLOCK_GROUP_RAID0;
4184
4185 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4186
4187 return extended_to_chunk(flags | allowed);
4188 }
4189
4190 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4191 {
4192 unsigned seq;
4193 u64 flags;
4194
4195 do {
4196 flags = orig_flags;
4197 seq = read_seqbegin(&fs_info->profiles_lock);
4198
4199 if (flags & BTRFS_BLOCK_GROUP_DATA)
4200 flags |= fs_info->avail_data_alloc_bits;
4201 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4202 flags |= fs_info->avail_system_alloc_bits;
4203 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4204 flags |= fs_info->avail_metadata_alloc_bits;
4205 } while (read_seqretry(&fs_info->profiles_lock, seq));
4206
4207 return btrfs_reduce_alloc_profile(fs_info, flags);
4208 }
4209
4210 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4211 {
4212 struct btrfs_fs_info *fs_info = root->fs_info;
4213 u64 flags;
4214 u64 ret;
4215
4216 if (data)
4217 flags = BTRFS_BLOCK_GROUP_DATA;
4218 else if (root == fs_info->chunk_root)
4219 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4220 else
4221 flags = BTRFS_BLOCK_GROUP_METADATA;
4222
4223 ret = get_alloc_profile(fs_info, flags);
4224 return ret;
4225 }
4226
4227 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4228 {
4229 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4230 }
4231
4232 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4233 {
4234 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4235 }
4236
4237 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4238 {
4239 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4240 }
4241
4242 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4243 bool may_use_included)
4244 {
4245 ASSERT(s_info);
4246 return s_info->bytes_used + s_info->bytes_reserved +
4247 s_info->bytes_pinned + s_info->bytes_readonly +
4248 (may_use_included ? s_info->bytes_may_use : 0);
4249 }
4250
4251 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4252 {
4253 struct btrfs_root *root = inode->root;
4254 struct btrfs_fs_info *fs_info = root->fs_info;
4255 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4256 u64 used;
4257 int ret = 0;
4258 int need_commit = 2;
4259 int have_pinned_space;
4260
4261 /* make sure bytes are sectorsize aligned */
4262 bytes = ALIGN(bytes, fs_info->sectorsize);
4263
4264 if (btrfs_is_free_space_inode(inode)) {
4265 need_commit = 0;
4266 ASSERT(current->journal_info);
4267 }
4268
4269 again:
4270 /* make sure we have enough space to handle the data first */
4271 spin_lock(&data_sinfo->lock);
4272 used = btrfs_space_info_used(data_sinfo, true);
4273
4274 if (used + bytes > data_sinfo->total_bytes) {
4275 struct btrfs_trans_handle *trans;
4276
4277 /*
4278 * if we don't have enough free bytes in this space then we need
4279 * to alloc a new chunk.
4280 */
4281 if (!data_sinfo->full) {
4282 u64 alloc_target;
4283
4284 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4285 spin_unlock(&data_sinfo->lock);
4286
4287 alloc_target = btrfs_data_alloc_profile(fs_info);
4288 /*
4289 * It is ugly that we don't call nolock join
4290 * transaction for the free space inode case here.
4291 * But it is safe because we only do the data space
4292 * reservation for the free space cache in the
4293 * transaction context, the common join transaction
4294 * just increase the counter of the current transaction
4295 * handler, doesn't try to acquire the trans_lock of
4296 * the fs.
4297 */
4298 trans = btrfs_join_transaction(root);
4299 if (IS_ERR(trans))
4300 return PTR_ERR(trans);
4301
4302 ret = do_chunk_alloc(trans, fs_info, alloc_target,
4303 CHUNK_ALLOC_NO_FORCE);
4304 btrfs_end_transaction(trans);
4305 if (ret < 0) {
4306 if (ret != -ENOSPC)
4307 return ret;
4308 else {
4309 have_pinned_space = 1;
4310 goto commit_trans;
4311 }
4312 }
4313
4314 goto again;
4315 }
4316
4317 /*
4318 * If we don't have enough pinned space to deal with this
4319 * allocation, and no removed chunk in current transaction,
4320 * don't bother committing the transaction.
4321 */
4322 have_pinned_space = percpu_counter_compare(
4323 &data_sinfo->total_bytes_pinned,
4324 used + bytes - data_sinfo->total_bytes);
4325 spin_unlock(&data_sinfo->lock);
4326
4327 /* commit the current transaction and try again */
4328 commit_trans:
4329 if (need_commit &&
4330 !atomic_read(&fs_info->open_ioctl_trans)) {
4331 need_commit--;
4332
4333 if (need_commit > 0) {
4334 btrfs_start_delalloc_roots(fs_info, 0, -1);
4335 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4336 (u64)-1);
4337 }
4338
4339 trans = btrfs_join_transaction(root);
4340 if (IS_ERR(trans))
4341 return PTR_ERR(trans);
4342 if (have_pinned_space >= 0 ||
4343 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4344 &trans->transaction->flags) ||
4345 need_commit > 0) {
4346 ret = btrfs_commit_transaction(trans);
4347 if (ret)
4348 return ret;
4349 /*
4350 * The cleaner kthread might still be doing iput
4351 * operations. Wait for it to finish so that
4352 * more space is released.
4353 */
4354 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4355 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4356 goto again;
4357 } else {
4358 btrfs_end_transaction(trans);
4359 }
4360 }
4361
4362 trace_btrfs_space_reservation(fs_info,
4363 "space_info:enospc",
4364 data_sinfo->flags, bytes, 1);
4365 return -ENOSPC;
4366 }
4367 data_sinfo->bytes_may_use += bytes;
4368 trace_btrfs_space_reservation(fs_info, "space_info",
4369 data_sinfo->flags, bytes, 1);
4370 spin_unlock(&data_sinfo->lock);
4371
4372 return ret;
4373 }
4374
4375 int btrfs_check_data_free_space(struct inode *inode,
4376 struct extent_changeset **reserved, u64 start, u64 len)
4377 {
4378 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4379 int ret;
4380
4381 /* align the range */
4382 len = round_up(start + len, fs_info->sectorsize) -
4383 round_down(start, fs_info->sectorsize);
4384 start = round_down(start, fs_info->sectorsize);
4385
4386 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4387 if (ret < 0)
4388 return ret;
4389
4390 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4391 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4392 if (ret < 0)
4393 btrfs_free_reserved_data_space_noquota(inode, start, len);
4394 else
4395 ret = 0;
4396 return ret;
4397 }
4398
4399 /*
4400 * Called if we need to clear a data reservation for this inode
4401 * Normally in a error case.
4402 *
4403 * This one will *NOT* use accurate qgroup reserved space API, just for case
4404 * which we can't sleep and is sure it won't affect qgroup reserved space.
4405 * Like clear_bit_hook().
4406 */
4407 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4408 u64 len)
4409 {
4410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4411 struct btrfs_space_info *data_sinfo;
4412
4413 /* Make sure the range is aligned to sectorsize */
4414 len = round_up(start + len, fs_info->sectorsize) -
4415 round_down(start, fs_info->sectorsize);
4416 start = round_down(start, fs_info->sectorsize);
4417
4418 data_sinfo = fs_info->data_sinfo;
4419 spin_lock(&data_sinfo->lock);
4420 if (WARN_ON(data_sinfo->bytes_may_use < len))
4421 data_sinfo->bytes_may_use = 0;
4422 else
4423 data_sinfo->bytes_may_use -= len;
4424 trace_btrfs_space_reservation(fs_info, "space_info",
4425 data_sinfo->flags, len, 0);
4426 spin_unlock(&data_sinfo->lock);
4427 }
4428
4429 /*
4430 * Called if we need to clear a data reservation for this inode
4431 * Normally in a error case.
4432 *
4433 * This one will handle the per-inode data rsv map for accurate reserved
4434 * space framework.
4435 */
4436 void btrfs_free_reserved_data_space(struct inode *inode,
4437 struct extent_changeset *reserved, u64 start, u64 len)
4438 {
4439 struct btrfs_root *root = BTRFS_I(inode)->root;
4440
4441 /* Make sure the range is aligned to sectorsize */
4442 len = round_up(start + len, root->fs_info->sectorsize) -
4443 round_down(start, root->fs_info->sectorsize);
4444 start = round_down(start, root->fs_info->sectorsize);
4445
4446 btrfs_free_reserved_data_space_noquota(inode, start, len);
4447 btrfs_qgroup_free_data(inode, reserved, start, len);
4448 }
4449
4450 static void force_metadata_allocation(struct btrfs_fs_info *info)
4451 {
4452 struct list_head *head = &info->space_info;
4453 struct btrfs_space_info *found;
4454
4455 rcu_read_lock();
4456 list_for_each_entry_rcu(found, head, list) {
4457 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4458 found->force_alloc = CHUNK_ALLOC_FORCE;
4459 }
4460 rcu_read_unlock();
4461 }
4462
4463 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4464 {
4465 return (global->size << 1);
4466 }
4467
4468 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4469 struct btrfs_space_info *sinfo, int force)
4470 {
4471 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4472 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4473 u64 thresh;
4474
4475 if (force == CHUNK_ALLOC_FORCE)
4476 return 1;
4477
4478 /*
4479 * We need to take into account the global rsv because for all intents
4480 * and purposes it's used space. Don't worry about locking the
4481 * global_rsv, it doesn't change except when the transaction commits.
4482 */
4483 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4484 bytes_used += calc_global_rsv_need_space(global_rsv);
4485
4486 /*
4487 * in limited mode, we want to have some free space up to
4488 * about 1% of the FS size.
4489 */
4490 if (force == CHUNK_ALLOC_LIMITED) {
4491 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4492 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4493
4494 if (sinfo->total_bytes - bytes_used < thresh)
4495 return 1;
4496 }
4497
4498 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4499 return 0;
4500 return 1;
4501 }
4502
4503 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4504 {
4505 u64 num_dev;
4506
4507 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4508 BTRFS_BLOCK_GROUP_RAID0 |
4509 BTRFS_BLOCK_GROUP_RAID5 |
4510 BTRFS_BLOCK_GROUP_RAID6))
4511 num_dev = fs_info->fs_devices->rw_devices;
4512 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4513 num_dev = 2;
4514 else
4515 num_dev = 1; /* DUP or single */
4516
4517 return num_dev;
4518 }
4519
4520 /*
4521 * If @is_allocation is true, reserve space in the system space info necessary
4522 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4523 * removing a chunk.
4524 */
4525 void check_system_chunk(struct btrfs_trans_handle *trans,
4526 struct btrfs_fs_info *fs_info, u64 type)
4527 {
4528 struct btrfs_space_info *info;
4529 u64 left;
4530 u64 thresh;
4531 int ret = 0;
4532 u64 num_devs;
4533
4534 /*
4535 * Needed because we can end up allocating a system chunk and for an
4536 * atomic and race free space reservation in the chunk block reserve.
4537 */
4538 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4539
4540 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4541 spin_lock(&info->lock);
4542 left = info->total_bytes - btrfs_space_info_used(info, true);
4543 spin_unlock(&info->lock);
4544
4545 num_devs = get_profile_num_devs(fs_info, type);
4546
4547 /* num_devs device items to update and 1 chunk item to add or remove */
4548 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4549 btrfs_calc_trans_metadata_size(fs_info, 1);
4550
4551 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4552 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4553 left, thresh, type);
4554 dump_space_info(fs_info, info, 0, 0);
4555 }
4556
4557 if (left < thresh) {
4558 u64 flags = btrfs_system_alloc_profile(fs_info);
4559
4560 /*
4561 * Ignore failure to create system chunk. We might end up not
4562 * needing it, as we might not need to COW all nodes/leafs from
4563 * the paths we visit in the chunk tree (they were already COWed
4564 * or created in the current transaction for example).
4565 */
4566 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4567 }
4568
4569 if (!ret) {
4570 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4571 &fs_info->chunk_block_rsv,
4572 thresh, BTRFS_RESERVE_NO_FLUSH);
4573 if (!ret)
4574 trans->chunk_bytes_reserved += thresh;
4575 }
4576 }
4577
4578 /*
4579 * If force is CHUNK_ALLOC_FORCE:
4580 * - return 1 if it successfully allocates a chunk,
4581 * - return errors including -ENOSPC otherwise.
4582 * If force is NOT CHUNK_ALLOC_FORCE:
4583 * - return 0 if it doesn't need to allocate a new chunk,
4584 * - return 1 if it successfully allocates a chunk,
4585 * - return errors including -ENOSPC otherwise.
4586 */
4587 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4588 struct btrfs_fs_info *fs_info, u64 flags, int force)
4589 {
4590 struct btrfs_space_info *space_info;
4591 int wait_for_alloc = 0;
4592 int ret = 0;
4593
4594 /* Don't re-enter if we're already allocating a chunk */
4595 if (trans->allocating_chunk)
4596 return -ENOSPC;
4597
4598 space_info = __find_space_info(fs_info, flags);
4599 if (!space_info) {
4600 ret = create_space_info(fs_info, flags, &space_info);
4601 if (ret)
4602 return ret;
4603 }
4604
4605 again:
4606 spin_lock(&space_info->lock);
4607 if (force < space_info->force_alloc)
4608 force = space_info->force_alloc;
4609 if (space_info->full) {
4610 if (should_alloc_chunk(fs_info, space_info, force))
4611 ret = -ENOSPC;
4612 else
4613 ret = 0;
4614 spin_unlock(&space_info->lock);
4615 return ret;
4616 }
4617
4618 if (!should_alloc_chunk(fs_info, space_info, force)) {
4619 spin_unlock(&space_info->lock);
4620 return 0;
4621 } else if (space_info->chunk_alloc) {
4622 wait_for_alloc = 1;
4623 } else {
4624 space_info->chunk_alloc = 1;
4625 }
4626
4627 spin_unlock(&space_info->lock);
4628
4629 mutex_lock(&fs_info->chunk_mutex);
4630
4631 /*
4632 * The chunk_mutex is held throughout the entirety of a chunk
4633 * allocation, so once we've acquired the chunk_mutex we know that the
4634 * other guy is done and we need to recheck and see if we should
4635 * allocate.
4636 */
4637 if (wait_for_alloc) {
4638 mutex_unlock(&fs_info->chunk_mutex);
4639 wait_for_alloc = 0;
4640 goto again;
4641 }
4642
4643 trans->allocating_chunk = true;
4644
4645 /*
4646 * If we have mixed data/metadata chunks we want to make sure we keep
4647 * allocating mixed chunks instead of individual chunks.
4648 */
4649 if (btrfs_mixed_space_info(space_info))
4650 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4651
4652 /*
4653 * if we're doing a data chunk, go ahead and make sure that
4654 * we keep a reasonable number of metadata chunks allocated in the
4655 * FS as well.
4656 */
4657 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4658 fs_info->data_chunk_allocations++;
4659 if (!(fs_info->data_chunk_allocations %
4660 fs_info->metadata_ratio))
4661 force_metadata_allocation(fs_info);
4662 }
4663
4664 /*
4665 * Check if we have enough space in SYSTEM chunk because we may need
4666 * to update devices.
4667 */
4668 check_system_chunk(trans, fs_info, flags);
4669
4670 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4671 trans->allocating_chunk = false;
4672
4673 spin_lock(&space_info->lock);
4674 if (ret < 0 && ret != -ENOSPC)
4675 goto out;
4676 if (ret)
4677 space_info->full = 1;
4678 else
4679 ret = 1;
4680
4681 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4682 out:
4683 space_info->chunk_alloc = 0;
4684 spin_unlock(&space_info->lock);
4685 mutex_unlock(&fs_info->chunk_mutex);
4686 /*
4687 * When we allocate a new chunk we reserve space in the chunk block
4688 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4689 * add new nodes/leafs to it if we end up needing to do it when
4690 * inserting the chunk item and updating device items as part of the
4691 * second phase of chunk allocation, performed by
4692 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4693 * large number of new block groups to create in our transaction
4694 * handle's new_bgs list to avoid exhausting the chunk block reserve
4695 * in extreme cases - like having a single transaction create many new
4696 * block groups when starting to write out the free space caches of all
4697 * the block groups that were made dirty during the lifetime of the
4698 * transaction.
4699 */
4700 if (trans->can_flush_pending_bgs &&
4701 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4702 btrfs_create_pending_block_groups(trans, fs_info);
4703 btrfs_trans_release_chunk_metadata(trans);
4704 }
4705 return ret;
4706 }
4707
4708 static int can_overcommit(struct btrfs_fs_info *fs_info,
4709 struct btrfs_space_info *space_info, u64 bytes,
4710 enum btrfs_reserve_flush_enum flush,
4711 bool system_chunk)
4712 {
4713 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4714 u64 profile;
4715 u64 space_size;
4716 u64 avail;
4717 u64 used;
4718
4719 /* Don't overcommit when in mixed mode. */
4720 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4721 return 0;
4722
4723 if (system_chunk)
4724 profile = btrfs_system_alloc_profile(fs_info);
4725 else
4726 profile = btrfs_metadata_alloc_profile(fs_info);
4727
4728 used = btrfs_space_info_used(space_info, false);
4729
4730 /*
4731 * We only want to allow over committing if we have lots of actual space
4732 * free, but if we don't have enough space to handle the global reserve
4733 * space then we could end up having a real enospc problem when trying
4734 * to allocate a chunk or some other such important allocation.
4735 */
4736 spin_lock(&global_rsv->lock);
4737 space_size = calc_global_rsv_need_space(global_rsv);
4738 spin_unlock(&global_rsv->lock);
4739 if (used + space_size >= space_info->total_bytes)
4740 return 0;
4741
4742 used += space_info->bytes_may_use;
4743
4744 avail = atomic64_read(&fs_info->free_chunk_space);
4745
4746 /*
4747 * If we have dup, raid1 or raid10 then only half of the free
4748 * space is actually useable. For raid56, the space info used
4749 * doesn't include the parity drive, so we don't have to
4750 * change the math
4751 */
4752 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4753 BTRFS_BLOCK_GROUP_RAID1 |
4754 BTRFS_BLOCK_GROUP_RAID10))
4755 avail >>= 1;
4756
4757 /*
4758 * If we aren't flushing all things, let us overcommit up to
4759 * 1/2th of the space. If we can flush, don't let us overcommit
4760 * too much, let it overcommit up to 1/8 of the space.
4761 */
4762 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4763 avail >>= 3;
4764 else
4765 avail >>= 1;
4766
4767 if (used + bytes < space_info->total_bytes + avail)
4768 return 1;
4769 return 0;
4770 }
4771
4772 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4773 unsigned long nr_pages, int nr_items)
4774 {
4775 struct super_block *sb = fs_info->sb;
4776
4777 if (down_read_trylock(&sb->s_umount)) {
4778 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4779 up_read(&sb->s_umount);
4780 } else {
4781 /*
4782 * We needn't worry the filesystem going from r/w to r/o though
4783 * we don't acquire ->s_umount mutex, because the filesystem
4784 * should guarantee the delalloc inodes list be empty after
4785 * the filesystem is readonly(all dirty pages are written to
4786 * the disk).
4787 */
4788 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4789 if (!current->journal_info)
4790 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4791 }
4792 }
4793
4794 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4795 u64 to_reclaim)
4796 {
4797 u64 bytes;
4798 u64 nr;
4799
4800 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4801 nr = div64_u64(to_reclaim, bytes);
4802 if (!nr)
4803 nr = 1;
4804 return nr;
4805 }
4806
4807 #define EXTENT_SIZE_PER_ITEM SZ_256K
4808
4809 /*
4810 * shrink metadata reservation for delalloc
4811 */
4812 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4813 u64 orig, bool wait_ordered)
4814 {
4815 struct btrfs_space_info *space_info;
4816 struct btrfs_trans_handle *trans;
4817 u64 delalloc_bytes;
4818 u64 max_reclaim;
4819 u64 items;
4820 long time_left;
4821 unsigned long nr_pages;
4822 int loops;
4823 enum btrfs_reserve_flush_enum flush;
4824
4825 /* Calc the number of the pages we need flush for space reservation */
4826 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4827 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4828
4829 trans = (struct btrfs_trans_handle *)current->journal_info;
4830 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4831
4832 delalloc_bytes = percpu_counter_sum_positive(
4833 &fs_info->delalloc_bytes);
4834 if (delalloc_bytes == 0) {
4835 if (trans)
4836 return;
4837 if (wait_ordered)
4838 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4839 return;
4840 }
4841
4842 loops = 0;
4843 while (delalloc_bytes && loops < 3) {
4844 max_reclaim = min(delalloc_bytes, to_reclaim);
4845 nr_pages = max_reclaim >> PAGE_SHIFT;
4846 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4847 /*
4848 * We need to wait for the async pages to actually start before
4849 * we do anything.
4850 */
4851 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4852 if (!max_reclaim)
4853 goto skip_async;
4854
4855 if (max_reclaim <= nr_pages)
4856 max_reclaim = 0;
4857 else
4858 max_reclaim -= nr_pages;
4859
4860 wait_event(fs_info->async_submit_wait,
4861 atomic_read(&fs_info->async_delalloc_pages) <=
4862 (int)max_reclaim);
4863 skip_async:
4864 if (!trans)
4865 flush = BTRFS_RESERVE_FLUSH_ALL;
4866 else
4867 flush = BTRFS_RESERVE_NO_FLUSH;
4868 spin_lock(&space_info->lock);
4869 if (list_empty(&space_info->tickets) &&
4870 list_empty(&space_info->priority_tickets)) {
4871 spin_unlock(&space_info->lock);
4872 break;
4873 }
4874 spin_unlock(&space_info->lock);
4875
4876 loops++;
4877 if (wait_ordered && !trans) {
4878 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4879 } else {
4880 time_left = schedule_timeout_killable(1);
4881 if (time_left)
4882 break;
4883 }
4884 delalloc_bytes = percpu_counter_sum_positive(
4885 &fs_info->delalloc_bytes);
4886 }
4887 }
4888
4889 struct reserve_ticket {
4890 u64 bytes;
4891 int error;
4892 struct list_head list;
4893 wait_queue_head_t wait;
4894 };
4895
4896 /**
4897 * maybe_commit_transaction - possibly commit the transaction if its ok to
4898 * @root - the root we're allocating for
4899 * @bytes - the number of bytes we want to reserve
4900 * @force - force the commit
4901 *
4902 * This will check to make sure that committing the transaction will actually
4903 * get us somewhere and then commit the transaction if it does. Otherwise it
4904 * will return -ENOSPC.
4905 */
4906 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4907 struct btrfs_space_info *space_info)
4908 {
4909 struct reserve_ticket *ticket = NULL;
4910 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4911 struct btrfs_trans_handle *trans;
4912 u64 bytes;
4913
4914 trans = (struct btrfs_trans_handle *)current->journal_info;
4915 if (trans)
4916 return -EAGAIN;
4917
4918 spin_lock(&space_info->lock);
4919 if (!list_empty(&space_info->priority_tickets))
4920 ticket = list_first_entry(&space_info->priority_tickets,
4921 struct reserve_ticket, list);
4922 else if (!list_empty(&space_info->tickets))
4923 ticket = list_first_entry(&space_info->tickets,
4924 struct reserve_ticket, list);
4925 bytes = (ticket) ? ticket->bytes : 0;
4926 spin_unlock(&space_info->lock);
4927
4928 if (!bytes)
4929 return 0;
4930
4931 /* See if there is enough pinned space to make this reservation */
4932 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4933 bytes) >= 0)
4934 goto commit;
4935
4936 /*
4937 * See if there is some space in the delayed insertion reservation for
4938 * this reservation.
4939 */
4940 if (space_info != delayed_rsv->space_info)
4941 return -ENOSPC;
4942
4943 spin_lock(&delayed_rsv->lock);
4944 if (delayed_rsv->size > bytes)
4945 bytes = 0;
4946 else
4947 bytes -= delayed_rsv->size;
4948 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4949 bytes) < 0) {
4950 spin_unlock(&delayed_rsv->lock);
4951 return -ENOSPC;
4952 }
4953 spin_unlock(&delayed_rsv->lock);
4954
4955 commit:
4956 trans = btrfs_join_transaction(fs_info->extent_root);
4957 if (IS_ERR(trans))
4958 return -ENOSPC;
4959
4960 return btrfs_commit_transaction(trans);
4961 }
4962
4963 /*
4964 * Try to flush some data based on policy set by @state. This is only advisory
4965 * and may fail for various reasons. The caller is supposed to examine the
4966 * state of @space_info to detect the outcome.
4967 */
4968 static void flush_space(struct btrfs_fs_info *fs_info,
4969 struct btrfs_space_info *space_info, u64 num_bytes,
4970 int state)
4971 {
4972 struct btrfs_root *root = fs_info->extent_root;
4973 struct btrfs_trans_handle *trans;
4974 int nr;
4975 int ret = 0;
4976
4977 switch (state) {
4978 case FLUSH_DELAYED_ITEMS_NR:
4979 case FLUSH_DELAYED_ITEMS:
4980 if (state == FLUSH_DELAYED_ITEMS_NR)
4981 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4982 else
4983 nr = -1;
4984
4985 trans = btrfs_join_transaction(root);
4986 if (IS_ERR(trans)) {
4987 ret = PTR_ERR(trans);
4988 break;
4989 }
4990 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
4991 btrfs_end_transaction(trans);
4992 break;
4993 case FLUSH_DELALLOC:
4994 case FLUSH_DELALLOC_WAIT:
4995 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4996 state == FLUSH_DELALLOC_WAIT);
4997 break;
4998 case ALLOC_CHUNK:
4999 trans = btrfs_join_transaction(root);
5000 if (IS_ERR(trans)) {
5001 ret = PTR_ERR(trans);
5002 break;
5003 }
5004 ret = do_chunk_alloc(trans, fs_info,
5005 btrfs_metadata_alloc_profile(fs_info),
5006 CHUNK_ALLOC_NO_FORCE);
5007 btrfs_end_transaction(trans);
5008 if (ret > 0 || ret == -ENOSPC)
5009 ret = 0;
5010 break;
5011 case COMMIT_TRANS:
5012 ret = may_commit_transaction(fs_info, space_info);
5013 break;
5014 default:
5015 ret = -ENOSPC;
5016 break;
5017 }
5018
5019 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5020 ret);
5021 return;
5022 }
5023
5024 static inline u64
5025 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5026 struct btrfs_space_info *space_info,
5027 bool system_chunk)
5028 {
5029 struct reserve_ticket *ticket;
5030 u64 used;
5031 u64 expected;
5032 u64 to_reclaim = 0;
5033
5034 list_for_each_entry(ticket, &space_info->tickets, list)
5035 to_reclaim += ticket->bytes;
5036 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5037 to_reclaim += ticket->bytes;
5038 if (to_reclaim)
5039 return to_reclaim;
5040
5041 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5042 if (can_overcommit(fs_info, space_info, to_reclaim,
5043 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5044 return 0;
5045
5046 used = btrfs_space_info_used(space_info, true);
5047
5048 if (can_overcommit(fs_info, space_info, SZ_1M,
5049 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5050 expected = div_factor_fine(space_info->total_bytes, 95);
5051 else
5052 expected = div_factor_fine(space_info->total_bytes, 90);
5053
5054 if (used > expected)
5055 to_reclaim = used - expected;
5056 else
5057 to_reclaim = 0;
5058 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5059 space_info->bytes_reserved);
5060 return to_reclaim;
5061 }
5062
5063 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5064 struct btrfs_space_info *space_info,
5065 u64 used, bool system_chunk)
5066 {
5067 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5068
5069 /* If we're just plain full then async reclaim just slows us down. */
5070 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5071 return 0;
5072
5073 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5074 system_chunk))
5075 return 0;
5076
5077 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5078 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5079 }
5080
5081 static void wake_all_tickets(struct list_head *head)
5082 {
5083 struct reserve_ticket *ticket;
5084
5085 while (!list_empty(head)) {
5086 ticket = list_first_entry(head, struct reserve_ticket, list);
5087 list_del_init(&ticket->list);
5088 ticket->error = -ENOSPC;
5089 wake_up(&ticket->wait);
5090 }
5091 }
5092
5093 /*
5094 * This is for normal flushers, we can wait all goddamned day if we want to. We
5095 * will loop and continuously try to flush as long as we are making progress.
5096 * We count progress as clearing off tickets each time we have to loop.
5097 */
5098 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5099 {
5100 struct btrfs_fs_info *fs_info;
5101 struct btrfs_space_info *space_info;
5102 u64 to_reclaim;
5103 int flush_state;
5104 int commit_cycles = 0;
5105 u64 last_tickets_id;
5106
5107 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5108 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5109
5110 spin_lock(&space_info->lock);
5111 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5112 false);
5113 if (!to_reclaim) {
5114 space_info->flush = 0;
5115 spin_unlock(&space_info->lock);
5116 return;
5117 }
5118 last_tickets_id = space_info->tickets_id;
5119 spin_unlock(&space_info->lock);
5120
5121 flush_state = FLUSH_DELAYED_ITEMS_NR;
5122 do {
5123 flush_space(fs_info, space_info, to_reclaim, flush_state);
5124 spin_lock(&space_info->lock);
5125 if (list_empty(&space_info->tickets)) {
5126 space_info->flush = 0;
5127 spin_unlock(&space_info->lock);
5128 return;
5129 }
5130 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5131 space_info,
5132 false);
5133 if (last_tickets_id == space_info->tickets_id) {
5134 flush_state++;
5135 } else {
5136 last_tickets_id = space_info->tickets_id;
5137 flush_state = FLUSH_DELAYED_ITEMS_NR;
5138 if (commit_cycles)
5139 commit_cycles--;
5140 }
5141
5142 if (flush_state > COMMIT_TRANS) {
5143 commit_cycles++;
5144 if (commit_cycles > 2) {
5145 wake_all_tickets(&space_info->tickets);
5146 space_info->flush = 0;
5147 } else {
5148 flush_state = FLUSH_DELAYED_ITEMS_NR;
5149 }
5150 }
5151 spin_unlock(&space_info->lock);
5152 } while (flush_state <= COMMIT_TRANS);
5153 }
5154
5155 void btrfs_init_async_reclaim_work(struct work_struct *work)
5156 {
5157 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5158 }
5159
5160 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5161 struct btrfs_space_info *space_info,
5162 struct reserve_ticket *ticket)
5163 {
5164 u64 to_reclaim;
5165 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5166
5167 spin_lock(&space_info->lock);
5168 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5169 false);
5170 if (!to_reclaim) {
5171 spin_unlock(&space_info->lock);
5172 return;
5173 }
5174 spin_unlock(&space_info->lock);
5175
5176 do {
5177 flush_space(fs_info, space_info, to_reclaim, flush_state);
5178 flush_state++;
5179 spin_lock(&space_info->lock);
5180 if (ticket->bytes == 0) {
5181 spin_unlock(&space_info->lock);
5182 return;
5183 }
5184 spin_unlock(&space_info->lock);
5185
5186 /*
5187 * Priority flushers can't wait on delalloc without
5188 * deadlocking.
5189 */
5190 if (flush_state == FLUSH_DELALLOC ||
5191 flush_state == FLUSH_DELALLOC_WAIT)
5192 flush_state = ALLOC_CHUNK;
5193 } while (flush_state < COMMIT_TRANS);
5194 }
5195
5196 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5197 struct btrfs_space_info *space_info,
5198 struct reserve_ticket *ticket, u64 orig_bytes)
5199
5200 {
5201 DEFINE_WAIT(wait);
5202 int ret = 0;
5203
5204 spin_lock(&space_info->lock);
5205 while (ticket->bytes > 0 && ticket->error == 0) {
5206 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5207 if (ret) {
5208 ret = -EINTR;
5209 break;
5210 }
5211 spin_unlock(&space_info->lock);
5212
5213 schedule();
5214
5215 finish_wait(&ticket->wait, &wait);
5216 spin_lock(&space_info->lock);
5217 }
5218 if (!ret)
5219 ret = ticket->error;
5220 if (!list_empty(&ticket->list))
5221 list_del_init(&ticket->list);
5222 if (ticket->bytes && ticket->bytes < orig_bytes) {
5223 u64 num_bytes = orig_bytes - ticket->bytes;
5224 space_info->bytes_may_use -= num_bytes;
5225 trace_btrfs_space_reservation(fs_info, "space_info",
5226 space_info->flags, num_bytes, 0);
5227 }
5228 spin_unlock(&space_info->lock);
5229
5230 return ret;
5231 }
5232
5233 /**
5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235 * @root - the root we're allocating for
5236 * @space_info - the space info we want to allocate from
5237 * @orig_bytes - the number of bytes we want
5238 * @flush - whether or not we can flush to make our reservation
5239 *
5240 * This will reserve orig_bytes number of bytes from the space info associated
5241 * with the block_rsv. If there is not enough space it will make an attempt to
5242 * flush out space to make room. It will do this by flushing delalloc if
5243 * possible or committing the transaction. If flush is 0 then no attempts to
5244 * regain reservations will be made and this will fail if there is not enough
5245 * space already.
5246 */
5247 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5248 struct btrfs_space_info *space_info,
5249 u64 orig_bytes,
5250 enum btrfs_reserve_flush_enum flush,
5251 bool system_chunk)
5252 {
5253 struct reserve_ticket ticket;
5254 u64 used;
5255 int ret = 0;
5256
5257 ASSERT(orig_bytes);
5258 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5259
5260 spin_lock(&space_info->lock);
5261 ret = -ENOSPC;
5262 used = btrfs_space_info_used(space_info, true);
5263
5264 /*
5265 * If we have enough space then hooray, make our reservation and carry
5266 * on. If not see if we can overcommit, and if we can, hooray carry on.
5267 * If not things get more complicated.
5268 */
5269 if (used + orig_bytes <= space_info->total_bytes) {
5270 space_info->bytes_may_use += orig_bytes;
5271 trace_btrfs_space_reservation(fs_info, "space_info",
5272 space_info->flags, orig_bytes, 1);
5273 ret = 0;
5274 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5275 system_chunk)) {
5276 space_info->bytes_may_use += orig_bytes;
5277 trace_btrfs_space_reservation(fs_info, "space_info",
5278 space_info->flags, orig_bytes, 1);
5279 ret = 0;
5280 }
5281
5282 /*
5283 * If we couldn't make a reservation then setup our reservation ticket
5284 * and kick the async worker if it's not already running.
5285 *
5286 * If we are a priority flusher then we just need to add our ticket to
5287 * the list and we will do our own flushing further down.
5288 */
5289 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5290 ticket.bytes = orig_bytes;
5291 ticket.error = 0;
5292 init_waitqueue_head(&ticket.wait);
5293 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5294 list_add_tail(&ticket.list, &space_info->tickets);
5295 if (!space_info->flush) {
5296 space_info->flush = 1;
5297 trace_btrfs_trigger_flush(fs_info,
5298 space_info->flags,
5299 orig_bytes, flush,
5300 "enospc");
5301 queue_work(system_unbound_wq,
5302 &fs_info->async_reclaim_work);
5303 }
5304 } else {
5305 list_add_tail(&ticket.list,
5306 &space_info->priority_tickets);
5307 }
5308 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5309 used += orig_bytes;
5310 /*
5311 * We will do the space reservation dance during log replay,
5312 * which means we won't have fs_info->fs_root set, so don't do
5313 * the async reclaim as we will panic.
5314 */
5315 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5316 need_do_async_reclaim(fs_info, space_info,
5317 used, system_chunk) &&
5318 !work_busy(&fs_info->async_reclaim_work)) {
5319 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5320 orig_bytes, flush, "preempt");
5321 queue_work(system_unbound_wq,
5322 &fs_info->async_reclaim_work);
5323 }
5324 }
5325 spin_unlock(&space_info->lock);
5326 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5327 return ret;
5328
5329 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5330 return wait_reserve_ticket(fs_info, space_info, &ticket,
5331 orig_bytes);
5332
5333 ret = 0;
5334 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5335 spin_lock(&space_info->lock);
5336 if (ticket.bytes) {
5337 if (ticket.bytes < orig_bytes) {
5338 u64 num_bytes = orig_bytes - ticket.bytes;
5339 space_info->bytes_may_use -= num_bytes;
5340 trace_btrfs_space_reservation(fs_info, "space_info",
5341 space_info->flags,
5342 num_bytes, 0);
5343
5344 }
5345 list_del_init(&ticket.list);
5346 ret = -ENOSPC;
5347 }
5348 spin_unlock(&space_info->lock);
5349 ASSERT(list_empty(&ticket.list));
5350 return ret;
5351 }
5352
5353 /**
5354 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5355 * @root - the root we're allocating for
5356 * @block_rsv - the block_rsv we're allocating for
5357 * @orig_bytes - the number of bytes we want
5358 * @flush - whether or not we can flush to make our reservation
5359 *
5360 * This will reserve orgi_bytes number of bytes from the space info associated
5361 * with the block_rsv. If there is not enough space it will make an attempt to
5362 * flush out space to make room. It will do this by flushing delalloc if
5363 * possible or committing the transaction. If flush is 0 then no attempts to
5364 * regain reservations will be made and this will fail if there is not enough
5365 * space already.
5366 */
5367 static int reserve_metadata_bytes(struct btrfs_root *root,
5368 struct btrfs_block_rsv *block_rsv,
5369 u64 orig_bytes,
5370 enum btrfs_reserve_flush_enum flush)
5371 {
5372 struct btrfs_fs_info *fs_info = root->fs_info;
5373 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5374 int ret;
5375 bool system_chunk = (root == fs_info->chunk_root);
5376
5377 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5378 orig_bytes, flush, system_chunk);
5379 if (ret == -ENOSPC &&
5380 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5381 if (block_rsv != global_rsv &&
5382 !block_rsv_use_bytes(global_rsv, orig_bytes))
5383 ret = 0;
5384 }
5385 if (ret == -ENOSPC)
5386 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5387 block_rsv->space_info->flags,
5388 orig_bytes, 1);
5389 return ret;
5390 }
5391
5392 static struct btrfs_block_rsv *get_block_rsv(
5393 const struct btrfs_trans_handle *trans,
5394 const struct btrfs_root *root)
5395 {
5396 struct btrfs_fs_info *fs_info = root->fs_info;
5397 struct btrfs_block_rsv *block_rsv = NULL;
5398
5399 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5400 (root == fs_info->csum_root && trans->adding_csums) ||
5401 (root == fs_info->uuid_root))
5402 block_rsv = trans->block_rsv;
5403
5404 if (!block_rsv)
5405 block_rsv = root->block_rsv;
5406
5407 if (!block_rsv)
5408 block_rsv = &fs_info->empty_block_rsv;
5409
5410 return block_rsv;
5411 }
5412
5413 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5414 u64 num_bytes)
5415 {
5416 int ret = -ENOSPC;
5417 spin_lock(&block_rsv->lock);
5418 if (block_rsv->reserved >= num_bytes) {
5419 block_rsv->reserved -= num_bytes;
5420 if (block_rsv->reserved < block_rsv->size)
5421 block_rsv->full = 0;
5422 ret = 0;
5423 }
5424 spin_unlock(&block_rsv->lock);
5425 return ret;
5426 }
5427
5428 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5429 u64 num_bytes, int update_size)
5430 {
5431 spin_lock(&block_rsv->lock);
5432 block_rsv->reserved += num_bytes;
5433 if (update_size)
5434 block_rsv->size += num_bytes;
5435 else if (block_rsv->reserved >= block_rsv->size)
5436 block_rsv->full = 1;
5437 spin_unlock(&block_rsv->lock);
5438 }
5439
5440 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5441 struct btrfs_block_rsv *dest, u64 num_bytes,
5442 int min_factor)
5443 {
5444 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5445 u64 min_bytes;
5446
5447 if (global_rsv->space_info != dest->space_info)
5448 return -ENOSPC;
5449
5450 spin_lock(&global_rsv->lock);
5451 min_bytes = div_factor(global_rsv->size, min_factor);
5452 if (global_rsv->reserved < min_bytes + num_bytes) {
5453 spin_unlock(&global_rsv->lock);
5454 return -ENOSPC;
5455 }
5456 global_rsv->reserved -= num_bytes;
5457 if (global_rsv->reserved < global_rsv->size)
5458 global_rsv->full = 0;
5459 spin_unlock(&global_rsv->lock);
5460
5461 block_rsv_add_bytes(dest, num_bytes, 1);
5462 return 0;
5463 }
5464
5465 /*
5466 * This is for space we already have accounted in space_info->bytes_may_use, so
5467 * basically when we're returning space from block_rsv's.
5468 */
5469 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5470 struct btrfs_space_info *space_info,
5471 u64 num_bytes)
5472 {
5473 struct reserve_ticket *ticket;
5474 struct list_head *head;
5475 u64 used;
5476 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5477 bool check_overcommit = false;
5478
5479 spin_lock(&space_info->lock);
5480 head = &space_info->priority_tickets;
5481
5482 /*
5483 * If we are over our limit then we need to check and see if we can
5484 * overcommit, and if we can't then we just need to free up our space
5485 * and not satisfy any requests.
5486 */
5487 used = btrfs_space_info_used(space_info, true);
5488 if (used - num_bytes >= space_info->total_bytes)
5489 check_overcommit = true;
5490 again:
5491 while (!list_empty(head) && num_bytes) {
5492 ticket = list_first_entry(head, struct reserve_ticket,
5493 list);
5494 /*
5495 * We use 0 bytes because this space is already reserved, so
5496 * adding the ticket space would be a double count.
5497 */
5498 if (check_overcommit &&
5499 !can_overcommit(fs_info, space_info, 0, flush, false))
5500 break;
5501 if (num_bytes >= ticket->bytes) {
5502 list_del_init(&ticket->list);
5503 num_bytes -= ticket->bytes;
5504 ticket->bytes = 0;
5505 space_info->tickets_id++;
5506 wake_up(&ticket->wait);
5507 } else {
5508 ticket->bytes -= num_bytes;
5509 num_bytes = 0;
5510 }
5511 }
5512
5513 if (num_bytes && head == &space_info->priority_tickets) {
5514 head = &space_info->tickets;
5515 flush = BTRFS_RESERVE_FLUSH_ALL;
5516 goto again;
5517 }
5518 space_info->bytes_may_use -= num_bytes;
5519 trace_btrfs_space_reservation(fs_info, "space_info",
5520 space_info->flags, num_bytes, 0);
5521 spin_unlock(&space_info->lock);
5522 }
5523
5524 /*
5525 * This is for newly allocated space that isn't accounted in
5526 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5527 * we use this helper.
5528 */
5529 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5530 struct btrfs_space_info *space_info,
5531 u64 num_bytes)
5532 {
5533 struct reserve_ticket *ticket;
5534 struct list_head *head = &space_info->priority_tickets;
5535
5536 again:
5537 while (!list_empty(head) && num_bytes) {
5538 ticket = list_first_entry(head, struct reserve_ticket,
5539 list);
5540 if (num_bytes >= ticket->bytes) {
5541 trace_btrfs_space_reservation(fs_info, "space_info",
5542 space_info->flags,
5543 ticket->bytes, 1);
5544 list_del_init(&ticket->list);
5545 num_bytes -= ticket->bytes;
5546 space_info->bytes_may_use += ticket->bytes;
5547 ticket->bytes = 0;
5548 space_info->tickets_id++;
5549 wake_up(&ticket->wait);
5550 } else {
5551 trace_btrfs_space_reservation(fs_info, "space_info",
5552 space_info->flags,
5553 num_bytes, 1);
5554 space_info->bytes_may_use += num_bytes;
5555 ticket->bytes -= num_bytes;
5556 num_bytes = 0;
5557 }
5558 }
5559
5560 if (num_bytes && head == &space_info->priority_tickets) {
5561 head = &space_info->tickets;
5562 goto again;
5563 }
5564 }
5565
5566 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5567 struct btrfs_block_rsv *block_rsv,
5568 struct btrfs_block_rsv *dest, u64 num_bytes)
5569 {
5570 struct btrfs_space_info *space_info = block_rsv->space_info;
5571 u64 ret;
5572
5573 spin_lock(&block_rsv->lock);
5574 if (num_bytes == (u64)-1)
5575 num_bytes = block_rsv->size;
5576 block_rsv->size -= num_bytes;
5577 if (block_rsv->reserved >= block_rsv->size) {
5578 num_bytes = block_rsv->reserved - block_rsv->size;
5579 block_rsv->reserved = block_rsv->size;
5580 block_rsv->full = 1;
5581 } else {
5582 num_bytes = 0;
5583 }
5584 spin_unlock(&block_rsv->lock);
5585
5586 ret = num_bytes;
5587 if (num_bytes > 0) {
5588 if (dest) {
5589 spin_lock(&dest->lock);
5590 if (!dest->full) {
5591 u64 bytes_to_add;
5592
5593 bytes_to_add = dest->size - dest->reserved;
5594 bytes_to_add = min(num_bytes, bytes_to_add);
5595 dest->reserved += bytes_to_add;
5596 if (dest->reserved >= dest->size)
5597 dest->full = 1;
5598 num_bytes -= bytes_to_add;
5599 }
5600 spin_unlock(&dest->lock);
5601 }
5602 if (num_bytes)
5603 space_info_add_old_bytes(fs_info, space_info,
5604 num_bytes);
5605 }
5606 return ret;
5607 }
5608
5609 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5610 struct btrfs_block_rsv *dst, u64 num_bytes,
5611 int update_size)
5612 {
5613 int ret;
5614
5615 ret = block_rsv_use_bytes(src, num_bytes);
5616 if (ret)
5617 return ret;
5618
5619 block_rsv_add_bytes(dst, num_bytes, update_size);
5620 return 0;
5621 }
5622
5623 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5624 {
5625 memset(rsv, 0, sizeof(*rsv));
5626 spin_lock_init(&rsv->lock);
5627 rsv->type = type;
5628 }
5629
5630 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5631 struct btrfs_block_rsv *rsv,
5632 unsigned short type)
5633 {
5634 btrfs_init_block_rsv(rsv, type);
5635 rsv->space_info = __find_space_info(fs_info,
5636 BTRFS_BLOCK_GROUP_METADATA);
5637 }
5638
5639 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5640 unsigned short type)
5641 {
5642 struct btrfs_block_rsv *block_rsv;
5643
5644 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5645 if (!block_rsv)
5646 return NULL;
5647
5648 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5649 return block_rsv;
5650 }
5651
5652 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5653 struct btrfs_block_rsv *rsv)
5654 {
5655 if (!rsv)
5656 return;
5657 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5658 kfree(rsv);
5659 }
5660
5661 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5662 {
5663 kfree(rsv);
5664 }
5665
5666 int btrfs_block_rsv_add(struct btrfs_root *root,
5667 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5668 enum btrfs_reserve_flush_enum flush)
5669 {
5670 int ret;
5671
5672 if (num_bytes == 0)
5673 return 0;
5674
5675 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5676 if (!ret) {
5677 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5678 return 0;
5679 }
5680
5681 return ret;
5682 }
5683
5684 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5685 {
5686 u64 num_bytes = 0;
5687 int ret = -ENOSPC;
5688
5689 if (!block_rsv)
5690 return 0;
5691
5692 spin_lock(&block_rsv->lock);
5693 num_bytes = div_factor(block_rsv->size, min_factor);
5694 if (block_rsv->reserved >= num_bytes)
5695 ret = 0;
5696 spin_unlock(&block_rsv->lock);
5697
5698 return ret;
5699 }
5700
5701 int btrfs_block_rsv_refill(struct btrfs_root *root,
5702 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5703 enum btrfs_reserve_flush_enum flush)
5704 {
5705 u64 num_bytes = 0;
5706 int ret = -ENOSPC;
5707
5708 if (!block_rsv)
5709 return 0;
5710
5711 spin_lock(&block_rsv->lock);
5712 num_bytes = min_reserved;
5713 if (block_rsv->reserved >= num_bytes)
5714 ret = 0;
5715 else
5716 num_bytes -= block_rsv->reserved;
5717 spin_unlock(&block_rsv->lock);
5718
5719 if (!ret)
5720 return 0;
5721
5722 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5723 if (!ret) {
5724 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5725 return 0;
5726 }
5727
5728 return ret;
5729 }
5730
5731 /**
5732 * btrfs_inode_rsv_refill - refill the inode block rsv.
5733 * @inode - the inode we are refilling.
5734 * @flush - the flusing restriction.
5735 *
5736 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5737 * block_rsv->size as the minimum size. We'll either refill the missing amount
5738 * or return if we already have enough space. This will also handle the resreve
5739 * tracepoint for the reserved amount.
5740 */
5741 int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5742 enum btrfs_reserve_flush_enum flush)
5743 {
5744 struct btrfs_root *root = inode->root;
5745 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5746 u64 num_bytes = 0;
5747 int ret = -ENOSPC;
5748
5749 spin_lock(&block_rsv->lock);
5750 if (block_rsv->reserved < block_rsv->size)
5751 num_bytes = block_rsv->size - block_rsv->reserved;
5752 spin_unlock(&block_rsv->lock);
5753
5754 if (num_bytes == 0)
5755 return 0;
5756
5757 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5758 if (!ret) {
5759 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5760 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5761 btrfs_ino(inode), num_bytes, 1);
5762 }
5763 return ret;
5764 }
5765
5766 /**
5767 * btrfs_inode_rsv_release - release any excessive reservation.
5768 * @inode - the inode we need to release from.
5769 *
5770 * This is the same as btrfs_block_rsv_release, except that it handles the
5771 * tracepoint for the reservation.
5772 */
5773 void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5774 {
5775 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5776 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5777 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5778 u64 released = 0;
5779
5780 /*
5781 * Since we statically set the block_rsv->size we just want to say we
5782 * are releasing 0 bytes, and then we'll just get the reservation over
5783 * the size free'd.
5784 */
5785 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5786 if (released > 0)
5787 trace_btrfs_space_reservation(fs_info, "delalloc",
5788 btrfs_ino(inode), released, 0);
5789 }
5790
5791 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5792 struct btrfs_block_rsv *block_rsv,
5793 u64 num_bytes)
5794 {
5795 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5796
5797 if (global_rsv == block_rsv ||
5798 block_rsv->space_info != global_rsv->space_info)
5799 global_rsv = NULL;
5800 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5801 }
5802
5803 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5804 {
5805 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5806 struct btrfs_space_info *sinfo = block_rsv->space_info;
5807 u64 num_bytes;
5808
5809 /*
5810 * The global block rsv is based on the size of the extent tree, the
5811 * checksum tree and the root tree. If the fs is empty we want to set
5812 * it to a minimal amount for safety.
5813 */
5814 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5815 btrfs_root_used(&fs_info->csum_root->root_item) +
5816 btrfs_root_used(&fs_info->tree_root->root_item);
5817 num_bytes = max_t(u64, num_bytes, SZ_16M);
5818
5819 spin_lock(&sinfo->lock);
5820 spin_lock(&block_rsv->lock);
5821
5822 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5823
5824 if (block_rsv->reserved < block_rsv->size) {
5825 num_bytes = btrfs_space_info_used(sinfo, true);
5826 if (sinfo->total_bytes > num_bytes) {
5827 num_bytes = sinfo->total_bytes - num_bytes;
5828 num_bytes = min(num_bytes,
5829 block_rsv->size - block_rsv->reserved);
5830 block_rsv->reserved += num_bytes;
5831 sinfo->bytes_may_use += num_bytes;
5832 trace_btrfs_space_reservation(fs_info, "space_info",
5833 sinfo->flags, num_bytes,
5834 1);
5835 }
5836 } else if (block_rsv->reserved > block_rsv->size) {
5837 num_bytes = block_rsv->reserved - block_rsv->size;
5838 sinfo->bytes_may_use -= num_bytes;
5839 trace_btrfs_space_reservation(fs_info, "space_info",
5840 sinfo->flags, num_bytes, 0);
5841 block_rsv->reserved = block_rsv->size;
5842 }
5843
5844 if (block_rsv->reserved == block_rsv->size)
5845 block_rsv->full = 1;
5846 else
5847 block_rsv->full = 0;
5848
5849 spin_unlock(&block_rsv->lock);
5850 spin_unlock(&sinfo->lock);
5851 }
5852
5853 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5854 {
5855 struct btrfs_space_info *space_info;
5856
5857 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5858 fs_info->chunk_block_rsv.space_info = space_info;
5859
5860 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5861 fs_info->global_block_rsv.space_info = space_info;
5862 fs_info->trans_block_rsv.space_info = space_info;
5863 fs_info->empty_block_rsv.space_info = space_info;
5864 fs_info->delayed_block_rsv.space_info = space_info;
5865
5866 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5867 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5868 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5869 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5870 if (fs_info->quota_root)
5871 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5872 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5873
5874 update_global_block_rsv(fs_info);
5875 }
5876
5877 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5878 {
5879 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5880 (u64)-1);
5881 WARN_ON(fs_info->trans_block_rsv.size > 0);
5882 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5883 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5884 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5885 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5886 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5887 }
5888
5889 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5890 struct btrfs_fs_info *fs_info)
5891 {
5892 if (!trans->block_rsv) {
5893 ASSERT(!trans->bytes_reserved);
5894 return;
5895 }
5896
5897 if (!trans->bytes_reserved)
5898 return;
5899
5900 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
5901 trace_btrfs_space_reservation(fs_info, "transaction",
5902 trans->transid, trans->bytes_reserved, 0);
5903 btrfs_block_rsv_release(fs_info, trans->block_rsv,
5904 trans->bytes_reserved);
5905 trans->bytes_reserved = 0;
5906 }
5907
5908 /*
5909 * To be called after all the new block groups attached to the transaction
5910 * handle have been created (btrfs_create_pending_block_groups()).
5911 */
5912 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5913 {
5914 struct btrfs_fs_info *fs_info = trans->fs_info;
5915
5916 if (!trans->chunk_bytes_reserved)
5917 return;
5918
5919 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5920
5921 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5922 trans->chunk_bytes_reserved);
5923 trans->chunk_bytes_reserved = 0;
5924 }
5925
5926 /* Can only return 0 or -ENOSPC */
5927 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5928 struct btrfs_inode *inode)
5929 {
5930 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5931 struct btrfs_root *root = inode->root;
5932 /*
5933 * We always use trans->block_rsv here as we will have reserved space
5934 * for our orphan when starting the transaction, using get_block_rsv()
5935 * here will sometimes make us choose the wrong block rsv as we could be
5936 * doing a reloc inode for a non refcounted root.
5937 */
5938 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5939 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5940
5941 /*
5942 * We need to hold space in order to delete our orphan item once we've
5943 * added it, so this takes the reservation so we can release it later
5944 * when we are truly done with the orphan item.
5945 */
5946 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5947
5948 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5949 num_bytes, 1);
5950 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5951 }
5952
5953 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5954 {
5955 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5956 struct btrfs_root *root = inode->root;
5957 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5958
5959 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5960 num_bytes, 0);
5961 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5962 }
5963
5964 /*
5965 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5966 * root: the root of the parent directory
5967 * rsv: block reservation
5968 * items: the number of items that we need do reservation
5969 * qgroup_reserved: used to return the reserved size in qgroup
5970 *
5971 * This function is used to reserve the space for snapshot/subvolume
5972 * creation and deletion. Those operations are different with the
5973 * common file/directory operations, they change two fs/file trees
5974 * and root tree, the number of items that the qgroup reserves is
5975 * different with the free space reservation. So we can not use
5976 * the space reservation mechanism in start_transaction().
5977 */
5978 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5979 struct btrfs_block_rsv *rsv,
5980 int items,
5981 u64 *qgroup_reserved,
5982 bool use_global_rsv)
5983 {
5984 u64 num_bytes;
5985 int ret;
5986 struct btrfs_fs_info *fs_info = root->fs_info;
5987 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5988
5989 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5990 /* One for parent inode, two for dir entries */
5991 num_bytes = 3 * fs_info->nodesize;
5992 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5993 if (ret)
5994 return ret;
5995 } else {
5996 num_bytes = 0;
5997 }
5998
5999 *qgroup_reserved = num_bytes;
6000
6001 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6002 rsv->space_info = __find_space_info(fs_info,
6003 BTRFS_BLOCK_GROUP_METADATA);
6004 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6005 BTRFS_RESERVE_FLUSH_ALL);
6006
6007 if (ret == -ENOSPC && use_global_rsv)
6008 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6009
6010 if (ret && *qgroup_reserved)
6011 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6012
6013 return ret;
6014 }
6015
6016 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6017 struct btrfs_block_rsv *rsv)
6018 {
6019 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6020 }
6021
6022 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6023 struct btrfs_inode *inode)
6024 {
6025 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6026 u64 reserve_size = 0;
6027 u64 csum_leaves;
6028 unsigned outstanding_extents;
6029
6030 lockdep_assert_held(&inode->lock);
6031 outstanding_extents = inode->outstanding_extents;
6032 if (outstanding_extents)
6033 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6034 outstanding_extents + 1);
6035 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6036 inode->csum_bytes);
6037 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6038 csum_leaves);
6039
6040 spin_lock(&block_rsv->lock);
6041 block_rsv->size = reserve_size;
6042 spin_unlock(&block_rsv->lock);
6043 }
6044
6045 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6046 {
6047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6048 struct btrfs_root *root = inode->root;
6049 unsigned nr_extents;
6050 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6051 int ret = 0;
6052 bool delalloc_lock = true;
6053
6054 /* If we are a free space inode we need to not flush since we will be in
6055 * the middle of a transaction commit. We also don't need the delalloc
6056 * mutex since we won't race with anybody. We need this mostly to make
6057 * lockdep shut its filthy mouth.
6058 *
6059 * If we have a transaction open (can happen if we call truncate_block
6060 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6061 */
6062 if (btrfs_is_free_space_inode(inode)) {
6063 flush = BTRFS_RESERVE_NO_FLUSH;
6064 delalloc_lock = false;
6065 } else if (current->journal_info) {
6066 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6067 }
6068
6069 if (flush != BTRFS_RESERVE_NO_FLUSH &&
6070 btrfs_transaction_in_commit(fs_info))
6071 schedule_timeout(1);
6072
6073 if (delalloc_lock)
6074 mutex_lock(&inode->delalloc_mutex);
6075
6076 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6077
6078 /* Add our new extents and calculate the new rsv size. */
6079 spin_lock(&inode->lock);
6080 nr_extents = count_max_extents(num_bytes);
6081 btrfs_mod_outstanding_extents(inode, nr_extents);
6082 inode->csum_bytes += num_bytes;
6083 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6084 spin_unlock(&inode->lock);
6085
6086 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6087 ret = btrfs_qgroup_reserve_meta(root,
6088 nr_extents * fs_info->nodesize, true);
6089 if (ret)
6090 goto out_fail;
6091 }
6092
6093 ret = btrfs_inode_rsv_refill(inode, flush);
6094 if (unlikely(ret)) {
6095 btrfs_qgroup_free_meta(root,
6096 nr_extents * fs_info->nodesize);
6097 goto out_fail;
6098 }
6099
6100 if (delalloc_lock)
6101 mutex_unlock(&inode->delalloc_mutex);
6102 return 0;
6103
6104 out_fail:
6105 spin_lock(&inode->lock);
6106 nr_extents = count_max_extents(num_bytes);
6107 btrfs_mod_outstanding_extents(inode, -nr_extents);
6108 inode->csum_bytes -= num_bytes;
6109 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6110 spin_unlock(&inode->lock);
6111
6112 btrfs_inode_rsv_release(inode);
6113 if (delalloc_lock)
6114 mutex_unlock(&inode->delalloc_mutex);
6115 return ret;
6116 }
6117
6118 /**
6119 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6120 * @inode: the inode to release the reservation for.
6121 * @num_bytes: the number of bytes we are releasing.
6122 *
6123 * This will release the metadata reservation for an inode. This can be called
6124 * once we complete IO for a given set of bytes to release their metadata
6125 * reservations, or on error for the same reason.
6126 */
6127 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6128 {
6129 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6130
6131 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6132 spin_lock(&inode->lock);
6133 inode->csum_bytes -= num_bytes;
6134 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6135 spin_unlock(&inode->lock);
6136
6137 if (btrfs_is_testing(fs_info))
6138 return;
6139
6140 btrfs_inode_rsv_release(inode);
6141 }
6142
6143 /**
6144 * btrfs_delalloc_release_extents - release our outstanding_extents
6145 * @inode: the inode to balance the reservation for.
6146 * @num_bytes: the number of bytes we originally reserved with
6147 *
6148 * When we reserve space we increase outstanding_extents for the extents we may
6149 * add. Once we've set the range as delalloc or created our ordered extents we
6150 * have outstanding_extents to track the real usage, so we use this to free our
6151 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6152 * with btrfs_delalloc_reserve_metadata.
6153 */
6154 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6155 {
6156 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6157 unsigned num_extents;
6158
6159 spin_lock(&inode->lock);
6160 num_extents = count_max_extents(num_bytes);
6161 btrfs_mod_outstanding_extents(inode, -num_extents);
6162 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6163 spin_unlock(&inode->lock);
6164
6165 if (btrfs_is_testing(fs_info))
6166 return;
6167
6168 btrfs_inode_rsv_release(inode);
6169 }
6170
6171 /**
6172 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6173 * delalloc
6174 * @inode: inode we're writing to
6175 * @start: start range we are writing to
6176 * @len: how long the range we are writing to
6177 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6178 * current reservation.
6179 *
6180 * This will do the following things
6181 *
6182 * o reserve space in data space info for num bytes
6183 * and reserve precious corresponding qgroup space
6184 * (Done in check_data_free_space)
6185 *
6186 * o reserve space for metadata space, based on the number of outstanding
6187 * extents and how much csums will be needed
6188 * also reserve metadata space in a per root over-reserve method.
6189 * o add to the inodes->delalloc_bytes
6190 * o add it to the fs_info's delalloc inodes list.
6191 * (Above 3 all done in delalloc_reserve_metadata)
6192 *
6193 * Return 0 for success
6194 * Return <0 for error(-ENOSPC or -EQUOT)
6195 */
6196 int btrfs_delalloc_reserve_space(struct inode *inode,
6197 struct extent_changeset **reserved, u64 start, u64 len)
6198 {
6199 int ret;
6200
6201 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6202 if (ret < 0)
6203 return ret;
6204 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6205 if (ret < 0)
6206 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6207 return ret;
6208 }
6209
6210 /**
6211 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6212 * @inode: inode we're releasing space for
6213 * @start: start position of the space already reserved
6214 * @len: the len of the space already reserved
6215 * @release_bytes: the len of the space we consumed or didn't use
6216 *
6217 * This function will release the metadata space that was not used and will
6218 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6219 * list if there are no delalloc bytes left.
6220 * Also it will handle the qgroup reserved space.
6221 */
6222 void btrfs_delalloc_release_space(struct inode *inode,
6223 struct extent_changeset *reserved,
6224 u64 start, u64 len)
6225 {
6226 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6227 btrfs_free_reserved_data_space(inode, reserved, start, len);
6228 }
6229
6230 static int update_block_group(struct btrfs_trans_handle *trans,
6231 struct btrfs_fs_info *info, u64 bytenr,
6232 u64 num_bytes, int alloc)
6233 {
6234 struct btrfs_block_group_cache *cache = NULL;
6235 u64 total = num_bytes;
6236 u64 old_val;
6237 u64 byte_in_group;
6238 int factor;
6239
6240 /* block accounting for super block */
6241 spin_lock(&info->delalloc_root_lock);
6242 old_val = btrfs_super_bytes_used(info->super_copy);
6243 if (alloc)
6244 old_val += num_bytes;
6245 else
6246 old_val -= num_bytes;
6247 btrfs_set_super_bytes_used(info->super_copy, old_val);
6248 spin_unlock(&info->delalloc_root_lock);
6249
6250 while (total) {
6251 cache = btrfs_lookup_block_group(info, bytenr);
6252 if (!cache)
6253 return -ENOENT;
6254 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6255 BTRFS_BLOCK_GROUP_RAID1 |
6256 BTRFS_BLOCK_GROUP_RAID10))
6257 factor = 2;
6258 else
6259 factor = 1;
6260 /*
6261 * If this block group has free space cache written out, we
6262 * need to make sure to load it if we are removing space. This
6263 * is because we need the unpinning stage to actually add the
6264 * space back to the block group, otherwise we will leak space.
6265 */
6266 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6267 cache_block_group(cache, 1);
6268
6269 byte_in_group = bytenr - cache->key.objectid;
6270 WARN_ON(byte_in_group > cache->key.offset);
6271
6272 spin_lock(&cache->space_info->lock);
6273 spin_lock(&cache->lock);
6274
6275 if (btrfs_test_opt(info, SPACE_CACHE) &&
6276 cache->disk_cache_state < BTRFS_DC_CLEAR)
6277 cache->disk_cache_state = BTRFS_DC_CLEAR;
6278
6279 old_val = btrfs_block_group_used(&cache->item);
6280 num_bytes = min(total, cache->key.offset - byte_in_group);
6281 if (alloc) {
6282 old_val += num_bytes;
6283 btrfs_set_block_group_used(&cache->item, old_val);
6284 cache->reserved -= num_bytes;
6285 cache->space_info->bytes_reserved -= num_bytes;
6286 cache->space_info->bytes_used += num_bytes;
6287 cache->space_info->disk_used += num_bytes * factor;
6288 spin_unlock(&cache->lock);
6289 spin_unlock(&cache->space_info->lock);
6290 } else {
6291 old_val -= num_bytes;
6292 btrfs_set_block_group_used(&cache->item, old_val);
6293 cache->pinned += num_bytes;
6294 cache->space_info->bytes_pinned += num_bytes;
6295 cache->space_info->bytes_used -= num_bytes;
6296 cache->space_info->disk_used -= num_bytes * factor;
6297 spin_unlock(&cache->lock);
6298 spin_unlock(&cache->space_info->lock);
6299
6300 trace_btrfs_space_reservation(info, "pinned",
6301 cache->space_info->flags,
6302 num_bytes, 1);
6303 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6304 num_bytes);
6305 set_extent_dirty(info->pinned_extents,
6306 bytenr, bytenr + num_bytes - 1,
6307 GFP_NOFS | __GFP_NOFAIL);
6308 }
6309
6310 spin_lock(&trans->transaction->dirty_bgs_lock);
6311 if (list_empty(&cache->dirty_list)) {
6312 list_add_tail(&cache->dirty_list,
6313 &trans->transaction->dirty_bgs);
6314 trans->transaction->num_dirty_bgs++;
6315 btrfs_get_block_group(cache);
6316 }
6317 spin_unlock(&trans->transaction->dirty_bgs_lock);
6318
6319 /*
6320 * No longer have used bytes in this block group, queue it for
6321 * deletion. We do this after adding the block group to the
6322 * dirty list to avoid races between cleaner kthread and space
6323 * cache writeout.
6324 */
6325 if (!alloc && old_val == 0) {
6326 spin_lock(&info->unused_bgs_lock);
6327 if (list_empty(&cache->bg_list)) {
6328 btrfs_get_block_group(cache);
6329 list_add_tail(&cache->bg_list,
6330 &info->unused_bgs);
6331 }
6332 spin_unlock(&info->unused_bgs_lock);
6333 }
6334
6335 btrfs_put_block_group(cache);
6336 total -= num_bytes;
6337 bytenr += num_bytes;
6338 }
6339 return 0;
6340 }
6341
6342 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6343 {
6344 struct btrfs_block_group_cache *cache;
6345 u64 bytenr;
6346
6347 spin_lock(&fs_info->block_group_cache_lock);
6348 bytenr = fs_info->first_logical_byte;
6349 spin_unlock(&fs_info->block_group_cache_lock);
6350
6351 if (bytenr < (u64)-1)
6352 return bytenr;
6353
6354 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6355 if (!cache)
6356 return 0;
6357
6358 bytenr = cache->key.objectid;
6359 btrfs_put_block_group(cache);
6360
6361 return bytenr;
6362 }
6363
6364 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6365 struct btrfs_block_group_cache *cache,
6366 u64 bytenr, u64 num_bytes, int reserved)
6367 {
6368 spin_lock(&cache->space_info->lock);
6369 spin_lock(&cache->lock);
6370 cache->pinned += num_bytes;
6371 cache->space_info->bytes_pinned += num_bytes;
6372 if (reserved) {
6373 cache->reserved -= num_bytes;
6374 cache->space_info->bytes_reserved -= num_bytes;
6375 }
6376 spin_unlock(&cache->lock);
6377 spin_unlock(&cache->space_info->lock);
6378
6379 trace_btrfs_space_reservation(fs_info, "pinned",
6380 cache->space_info->flags, num_bytes, 1);
6381 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6382 set_extent_dirty(fs_info->pinned_extents, bytenr,
6383 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6384 return 0;
6385 }
6386
6387 /*
6388 * this function must be called within transaction
6389 */
6390 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6391 u64 bytenr, u64 num_bytes, int reserved)
6392 {
6393 struct btrfs_block_group_cache *cache;
6394
6395 cache = btrfs_lookup_block_group(fs_info, bytenr);
6396 BUG_ON(!cache); /* Logic error */
6397
6398 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6399
6400 btrfs_put_block_group(cache);
6401 return 0;
6402 }
6403
6404 /*
6405 * this function must be called within transaction
6406 */
6407 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6408 u64 bytenr, u64 num_bytes)
6409 {
6410 struct btrfs_block_group_cache *cache;
6411 int ret;
6412
6413 cache = btrfs_lookup_block_group(fs_info, bytenr);
6414 if (!cache)
6415 return -EINVAL;
6416
6417 /*
6418 * pull in the free space cache (if any) so that our pin
6419 * removes the free space from the cache. We have load_only set
6420 * to one because the slow code to read in the free extents does check
6421 * the pinned extents.
6422 */
6423 cache_block_group(cache, 1);
6424
6425 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6426
6427 /* remove us from the free space cache (if we're there at all) */
6428 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6429 btrfs_put_block_group(cache);
6430 return ret;
6431 }
6432
6433 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6434 u64 start, u64 num_bytes)
6435 {
6436 int ret;
6437 struct btrfs_block_group_cache *block_group;
6438 struct btrfs_caching_control *caching_ctl;
6439
6440 block_group = btrfs_lookup_block_group(fs_info, start);
6441 if (!block_group)
6442 return -EINVAL;
6443
6444 cache_block_group(block_group, 0);
6445 caching_ctl = get_caching_control(block_group);
6446
6447 if (!caching_ctl) {
6448 /* Logic error */
6449 BUG_ON(!block_group_cache_done(block_group));
6450 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6451 } else {
6452 mutex_lock(&caching_ctl->mutex);
6453
6454 if (start >= caching_ctl->progress) {
6455 ret = add_excluded_extent(fs_info, start, num_bytes);
6456 } else if (start + num_bytes <= caching_ctl->progress) {
6457 ret = btrfs_remove_free_space(block_group,
6458 start, num_bytes);
6459 } else {
6460 num_bytes = caching_ctl->progress - start;
6461 ret = btrfs_remove_free_space(block_group,
6462 start, num_bytes);
6463 if (ret)
6464 goto out_lock;
6465
6466 num_bytes = (start + num_bytes) -
6467 caching_ctl->progress;
6468 start = caching_ctl->progress;
6469 ret = add_excluded_extent(fs_info, start, num_bytes);
6470 }
6471 out_lock:
6472 mutex_unlock(&caching_ctl->mutex);
6473 put_caching_control(caching_ctl);
6474 }
6475 btrfs_put_block_group(block_group);
6476 return ret;
6477 }
6478
6479 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6480 struct extent_buffer *eb)
6481 {
6482 struct btrfs_file_extent_item *item;
6483 struct btrfs_key key;
6484 int found_type;
6485 int i;
6486
6487 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6488 return 0;
6489
6490 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6491 btrfs_item_key_to_cpu(eb, &key, i);
6492 if (key.type != BTRFS_EXTENT_DATA_KEY)
6493 continue;
6494 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6495 found_type = btrfs_file_extent_type(eb, item);
6496 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6497 continue;
6498 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6499 continue;
6500 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6501 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6502 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6503 }
6504
6505 return 0;
6506 }
6507
6508 static void
6509 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6510 {
6511 atomic_inc(&bg->reservations);
6512 }
6513
6514 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6515 const u64 start)
6516 {
6517 struct btrfs_block_group_cache *bg;
6518
6519 bg = btrfs_lookup_block_group(fs_info, start);
6520 ASSERT(bg);
6521 if (atomic_dec_and_test(&bg->reservations))
6522 wake_up_atomic_t(&bg->reservations);
6523 btrfs_put_block_group(bg);
6524 }
6525
6526 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6527 {
6528 struct btrfs_space_info *space_info = bg->space_info;
6529
6530 ASSERT(bg->ro);
6531
6532 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6533 return;
6534
6535 /*
6536 * Our block group is read only but before we set it to read only,
6537 * some task might have had allocated an extent from it already, but it
6538 * has not yet created a respective ordered extent (and added it to a
6539 * root's list of ordered extents).
6540 * Therefore wait for any task currently allocating extents, since the
6541 * block group's reservations counter is incremented while a read lock
6542 * on the groups' semaphore is held and decremented after releasing
6543 * the read access on that semaphore and creating the ordered extent.
6544 */
6545 down_write(&space_info->groups_sem);
6546 up_write(&space_info->groups_sem);
6547
6548 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6549 TASK_UNINTERRUPTIBLE);
6550 }
6551
6552 /**
6553 * btrfs_add_reserved_bytes - update the block_group and space info counters
6554 * @cache: The cache we are manipulating
6555 * @ram_bytes: The number of bytes of file content, and will be same to
6556 * @num_bytes except for the compress path.
6557 * @num_bytes: The number of bytes in question
6558 * @delalloc: The blocks are allocated for the delalloc write
6559 *
6560 * This is called by the allocator when it reserves space. If this is a
6561 * reservation and the block group has become read only we cannot make the
6562 * reservation and return -EAGAIN, otherwise this function always succeeds.
6563 */
6564 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6565 u64 ram_bytes, u64 num_bytes, int delalloc)
6566 {
6567 struct btrfs_space_info *space_info = cache->space_info;
6568 int ret = 0;
6569
6570 spin_lock(&space_info->lock);
6571 spin_lock(&cache->lock);
6572 if (cache->ro) {
6573 ret = -EAGAIN;
6574 } else {
6575 cache->reserved += num_bytes;
6576 space_info->bytes_reserved += num_bytes;
6577
6578 trace_btrfs_space_reservation(cache->fs_info,
6579 "space_info", space_info->flags,
6580 ram_bytes, 0);
6581 space_info->bytes_may_use -= ram_bytes;
6582 if (delalloc)
6583 cache->delalloc_bytes += num_bytes;
6584 }
6585 spin_unlock(&cache->lock);
6586 spin_unlock(&space_info->lock);
6587 return ret;
6588 }
6589
6590 /**
6591 * btrfs_free_reserved_bytes - update the block_group and space info counters
6592 * @cache: The cache we are manipulating
6593 * @num_bytes: The number of bytes in question
6594 * @delalloc: The blocks are allocated for the delalloc write
6595 *
6596 * This is called by somebody who is freeing space that was never actually used
6597 * on disk. For example if you reserve some space for a new leaf in transaction
6598 * A and before transaction A commits you free that leaf, you call this with
6599 * reserve set to 0 in order to clear the reservation.
6600 */
6601
6602 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6603 u64 num_bytes, int delalloc)
6604 {
6605 struct btrfs_space_info *space_info = cache->space_info;
6606 int ret = 0;
6607
6608 spin_lock(&space_info->lock);
6609 spin_lock(&cache->lock);
6610 if (cache->ro)
6611 space_info->bytes_readonly += num_bytes;
6612 cache->reserved -= num_bytes;
6613 space_info->bytes_reserved -= num_bytes;
6614
6615 if (delalloc)
6616 cache->delalloc_bytes -= num_bytes;
6617 spin_unlock(&cache->lock);
6618 spin_unlock(&space_info->lock);
6619 return ret;
6620 }
6621 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6622 {
6623 struct btrfs_caching_control *next;
6624 struct btrfs_caching_control *caching_ctl;
6625 struct btrfs_block_group_cache *cache;
6626
6627 down_write(&fs_info->commit_root_sem);
6628
6629 list_for_each_entry_safe(caching_ctl, next,
6630 &fs_info->caching_block_groups, list) {
6631 cache = caching_ctl->block_group;
6632 if (block_group_cache_done(cache)) {
6633 cache->last_byte_to_unpin = (u64)-1;
6634 list_del_init(&caching_ctl->list);
6635 put_caching_control(caching_ctl);
6636 } else {
6637 cache->last_byte_to_unpin = caching_ctl->progress;
6638 }
6639 }
6640
6641 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6642 fs_info->pinned_extents = &fs_info->freed_extents[1];
6643 else
6644 fs_info->pinned_extents = &fs_info->freed_extents[0];
6645
6646 up_write(&fs_info->commit_root_sem);
6647
6648 update_global_block_rsv(fs_info);
6649 }
6650
6651 /*
6652 * Returns the free cluster for the given space info and sets empty_cluster to
6653 * what it should be based on the mount options.
6654 */
6655 static struct btrfs_free_cluster *
6656 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6657 struct btrfs_space_info *space_info, u64 *empty_cluster)
6658 {
6659 struct btrfs_free_cluster *ret = NULL;
6660
6661 *empty_cluster = 0;
6662 if (btrfs_mixed_space_info(space_info))
6663 return ret;
6664
6665 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6666 ret = &fs_info->meta_alloc_cluster;
6667 if (btrfs_test_opt(fs_info, SSD))
6668 *empty_cluster = SZ_2M;
6669 else
6670 *empty_cluster = SZ_64K;
6671 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6672 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6673 *empty_cluster = SZ_2M;
6674 ret = &fs_info->data_alloc_cluster;
6675 }
6676
6677 return ret;
6678 }
6679
6680 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6681 u64 start, u64 end,
6682 const bool return_free_space)
6683 {
6684 struct btrfs_block_group_cache *cache = NULL;
6685 struct btrfs_space_info *space_info;
6686 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6687 struct btrfs_free_cluster *cluster = NULL;
6688 u64 len;
6689 u64 total_unpinned = 0;
6690 u64 empty_cluster = 0;
6691 bool readonly;
6692
6693 while (start <= end) {
6694 readonly = false;
6695 if (!cache ||
6696 start >= cache->key.objectid + cache->key.offset) {
6697 if (cache)
6698 btrfs_put_block_group(cache);
6699 total_unpinned = 0;
6700 cache = btrfs_lookup_block_group(fs_info, start);
6701 BUG_ON(!cache); /* Logic error */
6702
6703 cluster = fetch_cluster_info(fs_info,
6704 cache->space_info,
6705 &empty_cluster);
6706 empty_cluster <<= 1;
6707 }
6708
6709 len = cache->key.objectid + cache->key.offset - start;
6710 len = min(len, end + 1 - start);
6711
6712 if (start < cache->last_byte_to_unpin) {
6713 len = min(len, cache->last_byte_to_unpin - start);
6714 if (return_free_space)
6715 btrfs_add_free_space(cache, start, len);
6716 }
6717
6718 start += len;
6719 total_unpinned += len;
6720 space_info = cache->space_info;
6721
6722 /*
6723 * If this space cluster has been marked as fragmented and we've
6724 * unpinned enough in this block group to potentially allow a
6725 * cluster to be created inside of it go ahead and clear the
6726 * fragmented check.
6727 */
6728 if (cluster && cluster->fragmented &&
6729 total_unpinned > empty_cluster) {
6730 spin_lock(&cluster->lock);
6731 cluster->fragmented = 0;
6732 spin_unlock(&cluster->lock);
6733 }
6734
6735 spin_lock(&space_info->lock);
6736 spin_lock(&cache->lock);
6737 cache->pinned -= len;
6738 space_info->bytes_pinned -= len;
6739
6740 trace_btrfs_space_reservation(fs_info, "pinned",
6741 space_info->flags, len, 0);
6742 space_info->max_extent_size = 0;
6743 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6744 if (cache->ro) {
6745 space_info->bytes_readonly += len;
6746 readonly = true;
6747 }
6748 spin_unlock(&cache->lock);
6749 if (!readonly && return_free_space &&
6750 global_rsv->space_info == space_info) {
6751 u64 to_add = len;
6752
6753 spin_lock(&global_rsv->lock);
6754 if (!global_rsv->full) {
6755 to_add = min(len, global_rsv->size -
6756 global_rsv->reserved);
6757 global_rsv->reserved += to_add;
6758 space_info->bytes_may_use += to_add;
6759 if (global_rsv->reserved >= global_rsv->size)
6760 global_rsv->full = 1;
6761 trace_btrfs_space_reservation(fs_info,
6762 "space_info",
6763 space_info->flags,
6764 to_add, 1);
6765 len -= to_add;
6766 }
6767 spin_unlock(&global_rsv->lock);
6768 /* Add to any tickets we may have */
6769 if (len)
6770 space_info_add_new_bytes(fs_info, space_info,
6771 len);
6772 }
6773 spin_unlock(&space_info->lock);
6774 }
6775
6776 if (cache)
6777 btrfs_put_block_group(cache);
6778 return 0;
6779 }
6780
6781 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6782 struct btrfs_fs_info *fs_info)
6783 {
6784 struct btrfs_block_group_cache *block_group, *tmp;
6785 struct list_head *deleted_bgs;
6786 struct extent_io_tree *unpin;
6787 u64 start;
6788 u64 end;
6789 int ret;
6790
6791 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6792 unpin = &fs_info->freed_extents[1];
6793 else
6794 unpin = &fs_info->freed_extents[0];
6795
6796 while (!trans->aborted) {
6797 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6798 ret = find_first_extent_bit(unpin, 0, &start, &end,
6799 EXTENT_DIRTY, NULL);
6800 if (ret) {
6801 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6802 break;
6803 }
6804
6805 if (btrfs_test_opt(fs_info, DISCARD))
6806 ret = btrfs_discard_extent(fs_info, start,
6807 end + 1 - start, NULL);
6808
6809 clear_extent_dirty(unpin, start, end);
6810 unpin_extent_range(fs_info, start, end, true);
6811 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6812 cond_resched();
6813 }
6814
6815 /*
6816 * Transaction is finished. We don't need the lock anymore. We
6817 * do need to clean up the block groups in case of a transaction
6818 * abort.
6819 */
6820 deleted_bgs = &trans->transaction->deleted_bgs;
6821 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6822 u64 trimmed = 0;
6823
6824 ret = -EROFS;
6825 if (!trans->aborted)
6826 ret = btrfs_discard_extent(fs_info,
6827 block_group->key.objectid,
6828 block_group->key.offset,
6829 &trimmed);
6830
6831 list_del_init(&block_group->bg_list);
6832 btrfs_put_block_group_trimming(block_group);
6833 btrfs_put_block_group(block_group);
6834
6835 if (ret) {
6836 const char *errstr = btrfs_decode_error(ret);
6837 btrfs_warn(fs_info,
6838 "discard failed while removing blockgroup: errno=%d %s",
6839 ret, errstr);
6840 }
6841 }
6842
6843 return 0;
6844 }
6845
6846 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6847 struct btrfs_fs_info *info,
6848 struct btrfs_delayed_ref_node *node, u64 parent,
6849 u64 root_objectid, u64 owner_objectid,
6850 u64 owner_offset, int refs_to_drop,
6851 struct btrfs_delayed_extent_op *extent_op)
6852 {
6853 struct btrfs_key key;
6854 struct btrfs_path *path;
6855 struct btrfs_root *extent_root = info->extent_root;
6856 struct extent_buffer *leaf;
6857 struct btrfs_extent_item *ei;
6858 struct btrfs_extent_inline_ref *iref;
6859 int ret;
6860 int is_data;
6861 int extent_slot = 0;
6862 int found_extent = 0;
6863 int num_to_del = 1;
6864 u32 item_size;
6865 u64 refs;
6866 u64 bytenr = node->bytenr;
6867 u64 num_bytes = node->num_bytes;
6868 int last_ref = 0;
6869 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6870
6871 path = btrfs_alloc_path();
6872 if (!path)
6873 return -ENOMEM;
6874
6875 path->reada = READA_FORWARD;
6876 path->leave_spinning = 1;
6877
6878 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6879 BUG_ON(!is_data && refs_to_drop != 1);
6880
6881 if (is_data)
6882 skinny_metadata = false;
6883
6884 ret = lookup_extent_backref(trans, info, path, &iref,
6885 bytenr, num_bytes, parent,
6886 root_objectid, owner_objectid,
6887 owner_offset);
6888 if (ret == 0) {
6889 extent_slot = path->slots[0];
6890 while (extent_slot >= 0) {
6891 btrfs_item_key_to_cpu(path->nodes[0], &key,
6892 extent_slot);
6893 if (key.objectid != bytenr)
6894 break;
6895 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6896 key.offset == num_bytes) {
6897 found_extent = 1;
6898 break;
6899 }
6900 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6901 key.offset == owner_objectid) {
6902 found_extent = 1;
6903 break;
6904 }
6905 if (path->slots[0] - extent_slot > 5)
6906 break;
6907 extent_slot--;
6908 }
6909 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6910 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6911 if (found_extent && item_size < sizeof(*ei))
6912 found_extent = 0;
6913 #endif
6914 if (!found_extent) {
6915 BUG_ON(iref);
6916 ret = remove_extent_backref(trans, info, path, NULL,
6917 refs_to_drop,
6918 is_data, &last_ref);
6919 if (ret) {
6920 btrfs_abort_transaction(trans, ret);
6921 goto out;
6922 }
6923 btrfs_release_path(path);
6924 path->leave_spinning = 1;
6925
6926 key.objectid = bytenr;
6927 key.type = BTRFS_EXTENT_ITEM_KEY;
6928 key.offset = num_bytes;
6929
6930 if (!is_data && skinny_metadata) {
6931 key.type = BTRFS_METADATA_ITEM_KEY;
6932 key.offset = owner_objectid;
6933 }
6934
6935 ret = btrfs_search_slot(trans, extent_root,
6936 &key, path, -1, 1);
6937 if (ret > 0 && skinny_metadata && path->slots[0]) {
6938 /*
6939 * Couldn't find our skinny metadata item,
6940 * see if we have ye olde extent item.
6941 */
6942 path->slots[0]--;
6943 btrfs_item_key_to_cpu(path->nodes[0], &key,
6944 path->slots[0]);
6945 if (key.objectid == bytenr &&
6946 key.type == BTRFS_EXTENT_ITEM_KEY &&
6947 key.offset == num_bytes)
6948 ret = 0;
6949 }
6950
6951 if (ret > 0 && skinny_metadata) {
6952 skinny_metadata = false;
6953 key.objectid = bytenr;
6954 key.type = BTRFS_EXTENT_ITEM_KEY;
6955 key.offset = num_bytes;
6956 btrfs_release_path(path);
6957 ret = btrfs_search_slot(trans, extent_root,
6958 &key, path, -1, 1);
6959 }
6960
6961 if (ret) {
6962 btrfs_err(info,
6963 "umm, got %d back from search, was looking for %llu",
6964 ret, bytenr);
6965 if (ret > 0)
6966 btrfs_print_leaf(path->nodes[0]);
6967 }
6968 if (ret < 0) {
6969 btrfs_abort_transaction(trans, ret);
6970 goto out;
6971 }
6972 extent_slot = path->slots[0];
6973 }
6974 } else if (WARN_ON(ret == -ENOENT)) {
6975 btrfs_print_leaf(path->nodes[0]);
6976 btrfs_err(info,
6977 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6978 bytenr, parent, root_objectid, owner_objectid,
6979 owner_offset);
6980 btrfs_abort_transaction(trans, ret);
6981 goto out;
6982 } else {
6983 btrfs_abort_transaction(trans, ret);
6984 goto out;
6985 }
6986
6987 leaf = path->nodes[0];
6988 item_size = btrfs_item_size_nr(leaf, extent_slot);
6989 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6990 if (item_size < sizeof(*ei)) {
6991 BUG_ON(found_extent || extent_slot != path->slots[0]);
6992 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6993 0);
6994 if (ret < 0) {
6995 btrfs_abort_transaction(trans, ret);
6996 goto out;
6997 }
6998
6999 btrfs_release_path(path);
7000 path->leave_spinning = 1;
7001
7002 key.objectid = bytenr;
7003 key.type = BTRFS_EXTENT_ITEM_KEY;
7004 key.offset = num_bytes;
7005
7006 ret = btrfs_search_slot(trans, extent_root, &key, path,
7007 -1, 1);
7008 if (ret) {
7009 btrfs_err(info,
7010 "umm, got %d back from search, was looking for %llu",
7011 ret, bytenr);
7012 btrfs_print_leaf(path->nodes[0]);
7013 }
7014 if (ret < 0) {
7015 btrfs_abort_transaction(trans, ret);
7016 goto out;
7017 }
7018
7019 extent_slot = path->slots[0];
7020 leaf = path->nodes[0];
7021 item_size = btrfs_item_size_nr(leaf, extent_slot);
7022 }
7023 #endif
7024 BUG_ON(item_size < sizeof(*ei));
7025 ei = btrfs_item_ptr(leaf, extent_slot,
7026 struct btrfs_extent_item);
7027 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7028 key.type == BTRFS_EXTENT_ITEM_KEY) {
7029 struct btrfs_tree_block_info *bi;
7030 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7031 bi = (struct btrfs_tree_block_info *)(ei + 1);
7032 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7033 }
7034
7035 refs = btrfs_extent_refs(leaf, ei);
7036 if (refs < refs_to_drop) {
7037 btrfs_err(info,
7038 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7039 refs_to_drop, refs, bytenr);
7040 ret = -EINVAL;
7041 btrfs_abort_transaction(trans, ret);
7042 goto out;
7043 }
7044 refs -= refs_to_drop;
7045
7046 if (refs > 0) {
7047 if (extent_op)
7048 __run_delayed_extent_op(extent_op, leaf, ei);
7049 /*
7050 * In the case of inline back ref, reference count will
7051 * be updated by remove_extent_backref
7052 */
7053 if (iref) {
7054 BUG_ON(!found_extent);
7055 } else {
7056 btrfs_set_extent_refs(leaf, ei, refs);
7057 btrfs_mark_buffer_dirty(leaf);
7058 }
7059 if (found_extent) {
7060 ret = remove_extent_backref(trans, info, path,
7061 iref, refs_to_drop,
7062 is_data, &last_ref);
7063 if (ret) {
7064 btrfs_abort_transaction(trans, ret);
7065 goto out;
7066 }
7067 }
7068 } else {
7069 if (found_extent) {
7070 BUG_ON(is_data && refs_to_drop !=
7071 extent_data_ref_count(path, iref));
7072 if (iref) {
7073 BUG_ON(path->slots[0] != extent_slot);
7074 } else {
7075 BUG_ON(path->slots[0] != extent_slot + 1);
7076 path->slots[0] = extent_slot;
7077 num_to_del = 2;
7078 }
7079 }
7080
7081 last_ref = 1;
7082 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7083 num_to_del);
7084 if (ret) {
7085 btrfs_abort_transaction(trans, ret);
7086 goto out;
7087 }
7088 btrfs_release_path(path);
7089
7090 if (is_data) {
7091 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7092 if (ret) {
7093 btrfs_abort_transaction(trans, ret);
7094 goto out;
7095 }
7096 }
7097
7098 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7099 if (ret) {
7100 btrfs_abort_transaction(trans, ret);
7101 goto out;
7102 }
7103
7104 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7105 if (ret) {
7106 btrfs_abort_transaction(trans, ret);
7107 goto out;
7108 }
7109 }
7110 btrfs_release_path(path);
7111
7112 out:
7113 btrfs_free_path(path);
7114 return ret;
7115 }
7116
7117 /*
7118 * when we free an block, it is possible (and likely) that we free the last
7119 * delayed ref for that extent as well. This searches the delayed ref tree for
7120 * a given extent, and if there are no other delayed refs to be processed, it
7121 * removes it from the tree.
7122 */
7123 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7124 u64 bytenr)
7125 {
7126 struct btrfs_delayed_ref_head *head;
7127 struct btrfs_delayed_ref_root *delayed_refs;
7128 int ret = 0;
7129
7130 delayed_refs = &trans->transaction->delayed_refs;
7131 spin_lock(&delayed_refs->lock);
7132 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7133 if (!head)
7134 goto out_delayed_unlock;
7135
7136 spin_lock(&head->lock);
7137 if (!RB_EMPTY_ROOT(&head->ref_tree))
7138 goto out;
7139
7140 if (head->extent_op) {
7141 if (!head->must_insert_reserved)
7142 goto out;
7143 btrfs_free_delayed_extent_op(head->extent_op);
7144 head->extent_op = NULL;
7145 }
7146
7147 /*
7148 * waiting for the lock here would deadlock. If someone else has it
7149 * locked they are already in the process of dropping it anyway
7150 */
7151 if (!mutex_trylock(&head->mutex))
7152 goto out;
7153
7154 /*
7155 * at this point we have a head with no other entries. Go
7156 * ahead and process it.
7157 */
7158 rb_erase(&head->href_node, &delayed_refs->href_root);
7159 RB_CLEAR_NODE(&head->href_node);
7160 atomic_dec(&delayed_refs->num_entries);
7161
7162 /*
7163 * we don't take a ref on the node because we're removing it from the
7164 * tree, so we just steal the ref the tree was holding.
7165 */
7166 delayed_refs->num_heads--;
7167 if (head->processing == 0)
7168 delayed_refs->num_heads_ready--;
7169 head->processing = 0;
7170 spin_unlock(&head->lock);
7171 spin_unlock(&delayed_refs->lock);
7172
7173 BUG_ON(head->extent_op);
7174 if (head->must_insert_reserved)
7175 ret = 1;
7176
7177 mutex_unlock(&head->mutex);
7178 btrfs_put_delayed_ref_head(head);
7179 return ret;
7180 out:
7181 spin_unlock(&head->lock);
7182
7183 out_delayed_unlock:
7184 spin_unlock(&delayed_refs->lock);
7185 return 0;
7186 }
7187
7188 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7189 struct btrfs_root *root,
7190 struct extent_buffer *buf,
7191 u64 parent, int last_ref)
7192 {
7193 struct btrfs_fs_info *fs_info = root->fs_info;
7194 int pin = 1;
7195 int ret;
7196
7197 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7198 int old_ref_mod, new_ref_mod;
7199
7200 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7201 root->root_key.objectid,
7202 btrfs_header_level(buf), 0,
7203 BTRFS_DROP_DELAYED_REF);
7204 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7205 buf->len, parent,
7206 root->root_key.objectid,
7207 btrfs_header_level(buf),
7208 BTRFS_DROP_DELAYED_REF, NULL,
7209 &old_ref_mod, &new_ref_mod);
7210 BUG_ON(ret); /* -ENOMEM */
7211 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7212 }
7213
7214 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7215 struct btrfs_block_group_cache *cache;
7216
7217 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7218 ret = check_ref_cleanup(trans, buf->start);
7219 if (!ret)
7220 goto out;
7221 }
7222
7223 pin = 0;
7224 cache = btrfs_lookup_block_group(fs_info, buf->start);
7225
7226 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7227 pin_down_extent(fs_info, cache, buf->start,
7228 buf->len, 1);
7229 btrfs_put_block_group(cache);
7230 goto out;
7231 }
7232
7233 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7234
7235 btrfs_add_free_space(cache, buf->start, buf->len);
7236 btrfs_free_reserved_bytes(cache, buf->len, 0);
7237 btrfs_put_block_group(cache);
7238 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7239 }
7240 out:
7241 if (pin)
7242 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7243 root->root_key.objectid);
7244
7245 if (last_ref) {
7246 /*
7247 * Deleting the buffer, clear the corrupt flag since it doesn't
7248 * matter anymore.
7249 */
7250 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7251 }
7252 }
7253
7254 /* Can return -ENOMEM */
7255 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7256 struct btrfs_root *root,
7257 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7258 u64 owner, u64 offset)
7259 {
7260 struct btrfs_fs_info *fs_info = root->fs_info;
7261 int old_ref_mod, new_ref_mod;
7262 int ret;
7263
7264 if (btrfs_is_testing(fs_info))
7265 return 0;
7266
7267 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7268 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7269 root_objectid, owner, offset,
7270 BTRFS_DROP_DELAYED_REF);
7271
7272 /*
7273 * tree log blocks never actually go into the extent allocation
7274 * tree, just update pinning info and exit early.
7275 */
7276 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7277 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7278 /* unlocks the pinned mutex */
7279 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7280 old_ref_mod = new_ref_mod = 0;
7281 ret = 0;
7282 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7283 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7284 num_bytes, parent,
7285 root_objectid, (int)owner,
7286 BTRFS_DROP_DELAYED_REF, NULL,
7287 &old_ref_mod, &new_ref_mod);
7288 } else {
7289 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7290 num_bytes, parent,
7291 root_objectid, owner, offset,
7292 0, BTRFS_DROP_DELAYED_REF,
7293 &old_ref_mod, &new_ref_mod);
7294 }
7295
7296 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7297 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7298
7299 return ret;
7300 }
7301
7302 /*
7303 * when we wait for progress in the block group caching, its because
7304 * our allocation attempt failed at least once. So, we must sleep
7305 * and let some progress happen before we try again.
7306 *
7307 * This function will sleep at least once waiting for new free space to
7308 * show up, and then it will check the block group free space numbers
7309 * for our min num_bytes. Another option is to have it go ahead
7310 * and look in the rbtree for a free extent of a given size, but this
7311 * is a good start.
7312 *
7313 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7314 * any of the information in this block group.
7315 */
7316 static noinline void
7317 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7318 u64 num_bytes)
7319 {
7320 struct btrfs_caching_control *caching_ctl;
7321
7322 caching_ctl = get_caching_control(cache);
7323 if (!caching_ctl)
7324 return;
7325
7326 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7327 (cache->free_space_ctl->free_space >= num_bytes));
7328
7329 put_caching_control(caching_ctl);
7330 }
7331
7332 static noinline int
7333 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7334 {
7335 struct btrfs_caching_control *caching_ctl;
7336 int ret = 0;
7337
7338 caching_ctl = get_caching_control(cache);
7339 if (!caching_ctl)
7340 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7341
7342 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7343 if (cache->cached == BTRFS_CACHE_ERROR)
7344 ret = -EIO;
7345 put_caching_control(caching_ctl);
7346 return ret;
7347 }
7348
7349 int __get_raid_index(u64 flags)
7350 {
7351 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7352 return BTRFS_RAID_RAID10;
7353 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7354 return BTRFS_RAID_RAID1;
7355 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7356 return BTRFS_RAID_DUP;
7357 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7358 return BTRFS_RAID_RAID0;
7359 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7360 return BTRFS_RAID_RAID5;
7361 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7362 return BTRFS_RAID_RAID6;
7363
7364 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7365 }
7366
7367 int get_block_group_index(struct btrfs_block_group_cache *cache)
7368 {
7369 return __get_raid_index(cache->flags);
7370 }
7371
7372 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7373 [BTRFS_RAID_RAID10] = "raid10",
7374 [BTRFS_RAID_RAID1] = "raid1",
7375 [BTRFS_RAID_DUP] = "dup",
7376 [BTRFS_RAID_RAID0] = "raid0",
7377 [BTRFS_RAID_SINGLE] = "single",
7378 [BTRFS_RAID_RAID5] = "raid5",
7379 [BTRFS_RAID_RAID6] = "raid6",
7380 };
7381
7382 static const char *get_raid_name(enum btrfs_raid_types type)
7383 {
7384 if (type >= BTRFS_NR_RAID_TYPES)
7385 return NULL;
7386
7387 return btrfs_raid_type_names[type];
7388 }
7389
7390 enum btrfs_loop_type {
7391 LOOP_CACHING_NOWAIT = 0,
7392 LOOP_CACHING_WAIT = 1,
7393 LOOP_ALLOC_CHUNK = 2,
7394 LOOP_NO_EMPTY_SIZE = 3,
7395 };
7396
7397 static inline void
7398 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7399 int delalloc)
7400 {
7401 if (delalloc)
7402 down_read(&cache->data_rwsem);
7403 }
7404
7405 static inline void
7406 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7407 int delalloc)
7408 {
7409 btrfs_get_block_group(cache);
7410 if (delalloc)
7411 down_read(&cache->data_rwsem);
7412 }
7413
7414 static struct btrfs_block_group_cache *
7415 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7416 struct btrfs_free_cluster *cluster,
7417 int delalloc)
7418 {
7419 struct btrfs_block_group_cache *used_bg = NULL;
7420
7421 spin_lock(&cluster->refill_lock);
7422 while (1) {
7423 used_bg = cluster->block_group;
7424 if (!used_bg)
7425 return NULL;
7426
7427 if (used_bg == block_group)
7428 return used_bg;
7429
7430 btrfs_get_block_group(used_bg);
7431
7432 if (!delalloc)
7433 return used_bg;
7434
7435 if (down_read_trylock(&used_bg->data_rwsem))
7436 return used_bg;
7437
7438 spin_unlock(&cluster->refill_lock);
7439
7440 /* We should only have one-level nested. */
7441 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7442
7443 spin_lock(&cluster->refill_lock);
7444 if (used_bg == cluster->block_group)
7445 return used_bg;
7446
7447 up_read(&used_bg->data_rwsem);
7448 btrfs_put_block_group(used_bg);
7449 }
7450 }
7451
7452 static inline void
7453 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7454 int delalloc)
7455 {
7456 if (delalloc)
7457 up_read(&cache->data_rwsem);
7458 btrfs_put_block_group(cache);
7459 }
7460
7461 /*
7462 * walks the btree of allocated extents and find a hole of a given size.
7463 * The key ins is changed to record the hole:
7464 * ins->objectid == start position
7465 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7466 * ins->offset == the size of the hole.
7467 * Any available blocks before search_start are skipped.
7468 *
7469 * If there is no suitable free space, we will record the max size of
7470 * the free space extent currently.
7471 */
7472 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7473 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7474 u64 hint_byte, struct btrfs_key *ins,
7475 u64 flags, int delalloc)
7476 {
7477 int ret = 0;
7478 struct btrfs_root *root = fs_info->extent_root;
7479 struct btrfs_free_cluster *last_ptr = NULL;
7480 struct btrfs_block_group_cache *block_group = NULL;
7481 u64 search_start = 0;
7482 u64 max_extent_size = 0;
7483 u64 empty_cluster = 0;
7484 struct btrfs_space_info *space_info;
7485 int loop = 0;
7486 int index = __get_raid_index(flags);
7487 bool failed_cluster_refill = false;
7488 bool failed_alloc = false;
7489 bool use_cluster = true;
7490 bool have_caching_bg = false;
7491 bool orig_have_caching_bg = false;
7492 bool full_search = false;
7493
7494 WARN_ON(num_bytes < fs_info->sectorsize);
7495 ins->type = BTRFS_EXTENT_ITEM_KEY;
7496 ins->objectid = 0;
7497 ins->offset = 0;
7498
7499 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7500
7501 space_info = __find_space_info(fs_info, flags);
7502 if (!space_info) {
7503 btrfs_err(fs_info, "No space info for %llu", flags);
7504 return -ENOSPC;
7505 }
7506
7507 /*
7508 * If our free space is heavily fragmented we may not be able to make
7509 * big contiguous allocations, so instead of doing the expensive search
7510 * for free space, simply return ENOSPC with our max_extent_size so we
7511 * can go ahead and search for a more manageable chunk.
7512 *
7513 * If our max_extent_size is large enough for our allocation simply
7514 * disable clustering since we will likely not be able to find enough
7515 * space to create a cluster and induce latency trying.
7516 */
7517 if (unlikely(space_info->max_extent_size)) {
7518 spin_lock(&space_info->lock);
7519 if (space_info->max_extent_size &&
7520 num_bytes > space_info->max_extent_size) {
7521 ins->offset = space_info->max_extent_size;
7522 spin_unlock(&space_info->lock);
7523 return -ENOSPC;
7524 } else if (space_info->max_extent_size) {
7525 use_cluster = false;
7526 }
7527 spin_unlock(&space_info->lock);
7528 }
7529
7530 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7531 if (last_ptr) {
7532 spin_lock(&last_ptr->lock);
7533 if (last_ptr->block_group)
7534 hint_byte = last_ptr->window_start;
7535 if (last_ptr->fragmented) {
7536 /*
7537 * We still set window_start so we can keep track of the
7538 * last place we found an allocation to try and save
7539 * some time.
7540 */
7541 hint_byte = last_ptr->window_start;
7542 use_cluster = false;
7543 }
7544 spin_unlock(&last_ptr->lock);
7545 }
7546
7547 search_start = max(search_start, first_logical_byte(fs_info, 0));
7548 search_start = max(search_start, hint_byte);
7549 if (search_start == hint_byte) {
7550 block_group = btrfs_lookup_block_group(fs_info, search_start);
7551 /*
7552 * we don't want to use the block group if it doesn't match our
7553 * allocation bits, or if its not cached.
7554 *
7555 * However if we are re-searching with an ideal block group
7556 * picked out then we don't care that the block group is cached.
7557 */
7558 if (block_group && block_group_bits(block_group, flags) &&
7559 block_group->cached != BTRFS_CACHE_NO) {
7560 down_read(&space_info->groups_sem);
7561 if (list_empty(&block_group->list) ||
7562 block_group->ro) {
7563 /*
7564 * someone is removing this block group,
7565 * we can't jump into the have_block_group
7566 * target because our list pointers are not
7567 * valid
7568 */
7569 btrfs_put_block_group(block_group);
7570 up_read(&space_info->groups_sem);
7571 } else {
7572 index = get_block_group_index(block_group);
7573 btrfs_lock_block_group(block_group, delalloc);
7574 goto have_block_group;
7575 }
7576 } else if (block_group) {
7577 btrfs_put_block_group(block_group);
7578 }
7579 }
7580 search:
7581 have_caching_bg = false;
7582 if (index == 0 || index == __get_raid_index(flags))
7583 full_search = true;
7584 down_read(&space_info->groups_sem);
7585 list_for_each_entry(block_group, &space_info->block_groups[index],
7586 list) {
7587 u64 offset;
7588 int cached;
7589
7590 /* If the block group is read-only, we can skip it entirely. */
7591 if (unlikely(block_group->ro))
7592 continue;
7593
7594 btrfs_grab_block_group(block_group, delalloc);
7595 search_start = block_group->key.objectid;
7596
7597 /*
7598 * this can happen if we end up cycling through all the
7599 * raid types, but we want to make sure we only allocate
7600 * for the proper type.
7601 */
7602 if (!block_group_bits(block_group, flags)) {
7603 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7604 BTRFS_BLOCK_GROUP_RAID1 |
7605 BTRFS_BLOCK_GROUP_RAID5 |
7606 BTRFS_BLOCK_GROUP_RAID6 |
7607 BTRFS_BLOCK_GROUP_RAID10;
7608
7609 /*
7610 * if they asked for extra copies and this block group
7611 * doesn't provide them, bail. This does allow us to
7612 * fill raid0 from raid1.
7613 */
7614 if ((flags & extra) && !(block_group->flags & extra))
7615 goto loop;
7616 }
7617
7618 have_block_group:
7619 cached = block_group_cache_done(block_group);
7620 if (unlikely(!cached)) {
7621 have_caching_bg = true;
7622 ret = cache_block_group(block_group, 0);
7623 BUG_ON(ret < 0);
7624 ret = 0;
7625 }
7626
7627 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7628 goto loop;
7629
7630 /*
7631 * Ok we want to try and use the cluster allocator, so
7632 * lets look there
7633 */
7634 if (last_ptr && use_cluster) {
7635 struct btrfs_block_group_cache *used_block_group;
7636 unsigned long aligned_cluster;
7637 /*
7638 * the refill lock keeps out other
7639 * people trying to start a new cluster
7640 */
7641 used_block_group = btrfs_lock_cluster(block_group,
7642 last_ptr,
7643 delalloc);
7644 if (!used_block_group)
7645 goto refill_cluster;
7646
7647 if (used_block_group != block_group &&
7648 (used_block_group->ro ||
7649 !block_group_bits(used_block_group, flags)))
7650 goto release_cluster;
7651
7652 offset = btrfs_alloc_from_cluster(used_block_group,
7653 last_ptr,
7654 num_bytes,
7655 used_block_group->key.objectid,
7656 &max_extent_size);
7657 if (offset) {
7658 /* we have a block, we're done */
7659 spin_unlock(&last_ptr->refill_lock);
7660 trace_btrfs_reserve_extent_cluster(fs_info,
7661 used_block_group,
7662 search_start, num_bytes);
7663 if (used_block_group != block_group) {
7664 btrfs_release_block_group(block_group,
7665 delalloc);
7666 block_group = used_block_group;
7667 }
7668 goto checks;
7669 }
7670
7671 WARN_ON(last_ptr->block_group != used_block_group);
7672 release_cluster:
7673 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7674 * set up a new clusters, so lets just skip it
7675 * and let the allocator find whatever block
7676 * it can find. If we reach this point, we
7677 * will have tried the cluster allocator
7678 * plenty of times and not have found
7679 * anything, so we are likely way too
7680 * fragmented for the clustering stuff to find
7681 * anything.
7682 *
7683 * However, if the cluster is taken from the
7684 * current block group, release the cluster
7685 * first, so that we stand a better chance of
7686 * succeeding in the unclustered
7687 * allocation. */
7688 if (loop >= LOOP_NO_EMPTY_SIZE &&
7689 used_block_group != block_group) {
7690 spin_unlock(&last_ptr->refill_lock);
7691 btrfs_release_block_group(used_block_group,
7692 delalloc);
7693 goto unclustered_alloc;
7694 }
7695
7696 /*
7697 * this cluster didn't work out, free it and
7698 * start over
7699 */
7700 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7701
7702 if (used_block_group != block_group)
7703 btrfs_release_block_group(used_block_group,
7704 delalloc);
7705 refill_cluster:
7706 if (loop >= LOOP_NO_EMPTY_SIZE) {
7707 spin_unlock(&last_ptr->refill_lock);
7708 goto unclustered_alloc;
7709 }
7710
7711 aligned_cluster = max_t(unsigned long,
7712 empty_cluster + empty_size,
7713 block_group->full_stripe_len);
7714
7715 /* allocate a cluster in this block group */
7716 ret = btrfs_find_space_cluster(fs_info, block_group,
7717 last_ptr, search_start,
7718 num_bytes,
7719 aligned_cluster);
7720 if (ret == 0) {
7721 /*
7722 * now pull our allocation out of this
7723 * cluster
7724 */
7725 offset = btrfs_alloc_from_cluster(block_group,
7726 last_ptr,
7727 num_bytes,
7728 search_start,
7729 &max_extent_size);
7730 if (offset) {
7731 /* we found one, proceed */
7732 spin_unlock(&last_ptr->refill_lock);
7733 trace_btrfs_reserve_extent_cluster(fs_info,
7734 block_group, search_start,
7735 num_bytes);
7736 goto checks;
7737 }
7738 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7739 && !failed_cluster_refill) {
7740 spin_unlock(&last_ptr->refill_lock);
7741
7742 failed_cluster_refill = true;
7743 wait_block_group_cache_progress(block_group,
7744 num_bytes + empty_cluster + empty_size);
7745 goto have_block_group;
7746 }
7747
7748 /*
7749 * at this point we either didn't find a cluster
7750 * or we weren't able to allocate a block from our
7751 * cluster. Free the cluster we've been trying
7752 * to use, and go to the next block group
7753 */
7754 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7755 spin_unlock(&last_ptr->refill_lock);
7756 goto loop;
7757 }
7758
7759 unclustered_alloc:
7760 /*
7761 * We are doing an unclustered alloc, set the fragmented flag so
7762 * we don't bother trying to setup a cluster again until we get
7763 * more space.
7764 */
7765 if (unlikely(last_ptr)) {
7766 spin_lock(&last_ptr->lock);
7767 last_ptr->fragmented = 1;
7768 spin_unlock(&last_ptr->lock);
7769 }
7770 if (cached) {
7771 struct btrfs_free_space_ctl *ctl =
7772 block_group->free_space_ctl;
7773
7774 spin_lock(&ctl->tree_lock);
7775 if (ctl->free_space <
7776 num_bytes + empty_cluster + empty_size) {
7777 if (ctl->free_space > max_extent_size)
7778 max_extent_size = ctl->free_space;
7779 spin_unlock(&ctl->tree_lock);
7780 goto loop;
7781 }
7782 spin_unlock(&ctl->tree_lock);
7783 }
7784
7785 offset = btrfs_find_space_for_alloc(block_group, search_start,
7786 num_bytes, empty_size,
7787 &max_extent_size);
7788 /*
7789 * If we didn't find a chunk, and we haven't failed on this
7790 * block group before, and this block group is in the middle of
7791 * caching and we are ok with waiting, then go ahead and wait
7792 * for progress to be made, and set failed_alloc to true.
7793 *
7794 * If failed_alloc is true then we've already waited on this
7795 * block group once and should move on to the next block group.
7796 */
7797 if (!offset && !failed_alloc && !cached &&
7798 loop > LOOP_CACHING_NOWAIT) {
7799 wait_block_group_cache_progress(block_group,
7800 num_bytes + empty_size);
7801 failed_alloc = true;
7802 goto have_block_group;
7803 } else if (!offset) {
7804 goto loop;
7805 }
7806 checks:
7807 search_start = ALIGN(offset, fs_info->stripesize);
7808
7809 /* move on to the next group */
7810 if (search_start + num_bytes >
7811 block_group->key.objectid + block_group->key.offset) {
7812 btrfs_add_free_space(block_group, offset, num_bytes);
7813 goto loop;
7814 }
7815
7816 if (offset < search_start)
7817 btrfs_add_free_space(block_group, offset,
7818 search_start - offset);
7819 BUG_ON(offset > search_start);
7820
7821 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7822 num_bytes, delalloc);
7823 if (ret == -EAGAIN) {
7824 btrfs_add_free_space(block_group, offset, num_bytes);
7825 goto loop;
7826 }
7827 btrfs_inc_block_group_reservations(block_group);
7828
7829 /* we are all good, lets return */
7830 ins->objectid = search_start;
7831 ins->offset = num_bytes;
7832
7833 trace_btrfs_reserve_extent(fs_info, block_group,
7834 search_start, num_bytes);
7835 btrfs_release_block_group(block_group, delalloc);
7836 break;
7837 loop:
7838 failed_cluster_refill = false;
7839 failed_alloc = false;
7840 BUG_ON(index != get_block_group_index(block_group));
7841 btrfs_release_block_group(block_group, delalloc);
7842 cond_resched();
7843 }
7844 up_read(&space_info->groups_sem);
7845
7846 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7847 && !orig_have_caching_bg)
7848 orig_have_caching_bg = true;
7849
7850 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7851 goto search;
7852
7853 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7854 goto search;
7855
7856 /*
7857 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7858 * caching kthreads as we move along
7859 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7860 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7861 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7862 * again
7863 */
7864 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7865 index = 0;
7866 if (loop == LOOP_CACHING_NOWAIT) {
7867 /*
7868 * We want to skip the LOOP_CACHING_WAIT step if we
7869 * don't have any uncached bgs and we've already done a
7870 * full search through.
7871 */
7872 if (orig_have_caching_bg || !full_search)
7873 loop = LOOP_CACHING_WAIT;
7874 else
7875 loop = LOOP_ALLOC_CHUNK;
7876 } else {
7877 loop++;
7878 }
7879
7880 if (loop == LOOP_ALLOC_CHUNK) {
7881 struct btrfs_trans_handle *trans;
7882 int exist = 0;
7883
7884 trans = current->journal_info;
7885 if (trans)
7886 exist = 1;
7887 else
7888 trans = btrfs_join_transaction(root);
7889
7890 if (IS_ERR(trans)) {
7891 ret = PTR_ERR(trans);
7892 goto out;
7893 }
7894
7895 ret = do_chunk_alloc(trans, fs_info, flags,
7896 CHUNK_ALLOC_FORCE);
7897
7898 /*
7899 * If we can't allocate a new chunk we've already looped
7900 * through at least once, move on to the NO_EMPTY_SIZE
7901 * case.
7902 */
7903 if (ret == -ENOSPC)
7904 loop = LOOP_NO_EMPTY_SIZE;
7905
7906 /*
7907 * Do not bail out on ENOSPC since we
7908 * can do more things.
7909 */
7910 if (ret < 0 && ret != -ENOSPC)
7911 btrfs_abort_transaction(trans, ret);
7912 else
7913 ret = 0;
7914 if (!exist)
7915 btrfs_end_transaction(trans);
7916 if (ret)
7917 goto out;
7918 }
7919
7920 if (loop == LOOP_NO_EMPTY_SIZE) {
7921 /*
7922 * Don't loop again if we already have no empty_size and
7923 * no empty_cluster.
7924 */
7925 if (empty_size == 0 &&
7926 empty_cluster == 0) {
7927 ret = -ENOSPC;
7928 goto out;
7929 }
7930 empty_size = 0;
7931 empty_cluster = 0;
7932 }
7933
7934 goto search;
7935 } else if (!ins->objectid) {
7936 ret = -ENOSPC;
7937 } else if (ins->objectid) {
7938 if (!use_cluster && last_ptr) {
7939 spin_lock(&last_ptr->lock);
7940 last_ptr->window_start = ins->objectid;
7941 spin_unlock(&last_ptr->lock);
7942 }
7943 ret = 0;
7944 }
7945 out:
7946 if (ret == -ENOSPC) {
7947 spin_lock(&space_info->lock);
7948 space_info->max_extent_size = max_extent_size;
7949 spin_unlock(&space_info->lock);
7950 ins->offset = max_extent_size;
7951 }
7952 return ret;
7953 }
7954
7955 static void dump_space_info(struct btrfs_fs_info *fs_info,
7956 struct btrfs_space_info *info, u64 bytes,
7957 int dump_block_groups)
7958 {
7959 struct btrfs_block_group_cache *cache;
7960 int index = 0;
7961
7962 spin_lock(&info->lock);
7963 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7964 info->flags,
7965 info->total_bytes - btrfs_space_info_used(info, true),
7966 info->full ? "" : "not ");
7967 btrfs_info(fs_info,
7968 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7969 info->total_bytes, info->bytes_used, info->bytes_pinned,
7970 info->bytes_reserved, info->bytes_may_use,
7971 info->bytes_readonly);
7972 spin_unlock(&info->lock);
7973
7974 if (!dump_block_groups)
7975 return;
7976
7977 down_read(&info->groups_sem);
7978 again:
7979 list_for_each_entry(cache, &info->block_groups[index], list) {
7980 spin_lock(&cache->lock);
7981 btrfs_info(fs_info,
7982 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7983 cache->key.objectid, cache->key.offset,
7984 btrfs_block_group_used(&cache->item), cache->pinned,
7985 cache->reserved, cache->ro ? "[readonly]" : "");
7986 btrfs_dump_free_space(cache, bytes);
7987 spin_unlock(&cache->lock);
7988 }
7989 if (++index < BTRFS_NR_RAID_TYPES)
7990 goto again;
7991 up_read(&info->groups_sem);
7992 }
7993
7994 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7995 u64 num_bytes, u64 min_alloc_size,
7996 u64 empty_size, u64 hint_byte,
7997 struct btrfs_key *ins, int is_data, int delalloc)
7998 {
7999 struct btrfs_fs_info *fs_info = root->fs_info;
8000 bool final_tried = num_bytes == min_alloc_size;
8001 u64 flags;
8002 int ret;
8003
8004 flags = get_alloc_profile_by_root(root, is_data);
8005 again:
8006 WARN_ON(num_bytes < fs_info->sectorsize);
8007 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8008 hint_byte, ins, flags, delalloc);
8009 if (!ret && !is_data) {
8010 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8011 } else if (ret == -ENOSPC) {
8012 if (!final_tried && ins->offset) {
8013 num_bytes = min(num_bytes >> 1, ins->offset);
8014 num_bytes = round_down(num_bytes,
8015 fs_info->sectorsize);
8016 num_bytes = max(num_bytes, min_alloc_size);
8017 ram_bytes = num_bytes;
8018 if (num_bytes == min_alloc_size)
8019 final_tried = true;
8020 goto again;
8021 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8022 struct btrfs_space_info *sinfo;
8023
8024 sinfo = __find_space_info(fs_info, flags);
8025 btrfs_err(fs_info,
8026 "allocation failed flags %llu, wanted %llu",
8027 flags, num_bytes);
8028 if (sinfo)
8029 dump_space_info(fs_info, sinfo, num_bytes, 1);
8030 }
8031 }
8032
8033 return ret;
8034 }
8035
8036 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8037 u64 start, u64 len,
8038 int pin, int delalloc)
8039 {
8040 struct btrfs_block_group_cache *cache;
8041 int ret = 0;
8042
8043 cache = btrfs_lookup_block_group(fs_info, start);
8044 if (!cache) {
8045 btrfs_err(fs_info, "Unable to find block group for %llu",
8046 start);
8047 return -ENOSPC;
8048 }
8049
8050 if (pin)
8051 pin_down_extent(fs_info, cache, start, len, 1);
8052 else {
8053 if (btrfs_test_opt(fs_info, DISCARD))
8054 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8055 btrfs_add_free_space(cache, start, len);
8056 btrfs_free_reserved_bytes(cache, len, delalloc);
8057 trace_btrfs_reserved_extent_free(fs_info, start, len);
8058 }
8059
8060 btrfs_put_block_group(cache);
8061 return ret;
8062 }
8063
8064 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8065 u64 start, u64 len, int delalloc)
8066 {
8067 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8068 }
8069
8070 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8071 u64 start, u64 len)
8072 {
8073 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8074 }
8075
8076 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8077 struct btrfs_fs_info *fs_info,
8078 u64 parent, u64 root_objectid,
8079 u64 flags, u64 owner, u64 offset,
8080 struct btrfs_key *ins, int ref_mod)
8081 {
8082 int ret;
8083 struct btrfs_extent_item *extent_item;
8084 struct btrfs_extent_inline_ref *iref;
8085 struct btrfs_path *path;
8086 struct extent_buffer *leaf;
8087 int type;
8088 u32 size;
8089
8090 if (parent > 0)
8091 type = BTRFS_SHARED_DATA_REF_KEY;
8092 else
8093 type = BTRFS_EXTENT_DATA_REF_KEY;
8094
8095 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8096
8097 path = btrfs_alloc_path();
8098 if (!path)
8099 return -ENOMEM;
8100
8101 path->leave_spinning = 1;
8102 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8103 ins, size);
8104 if (ret) {
8105 btrfs_free_path(path);
8106 return ret;
8107 }
8108
8109 leaf = path->nodes[0];
8110 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8111 struct btrfs_extent_item);
8112 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8113 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8114 btrfs_set_extent_flags(leaf, extent_item,
8115 flags | BTRFS_EXTENT_FLAG_DATA);
8116
8117 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8118 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8119 if (parent > 0) {
8120 struct btrfs_shared_data_ref *ref;
8121 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8122 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8123 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8124 } else {
8125 struct btrfs_extent_data_ref *ref;
8126 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8127 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8128 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8129 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8130 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8131 }
8132
8133 btrfs_mark_buffer_dirty(path->nodes[0]);
8134 btrfs_free_path(path);
8135
8136 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8137 ins->offset);
8138 if (ret)
8139 return ret;
8140
8141 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8142 if (ret) { /* -ENOENT, logic error */
8143 btrfs_err(fs_info, "update block group failed for %llu %llu",
8144 ins->objectid, ins->offset);
8145 BUG();
8146 }
8147 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8148 return ret;
8149 }
8150
8151 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8152 struct btrfs_fs_info *fs_info,
8153 u64 parent, u64 root_objectid,
8154 u64 flags, struct btrfs_disk_key *key,
8155 int level, struct btrfs_key *ins)
8156 {
8157 int ret;
8158 struct btrfs_extent_item *extent_item;
8159 struct btrfs_tree_block_info *block_info;
8160 struct btrfs_extent_inline_ref *iref;
8161 struct btrfs_path *path;
8162 struct extent_buffer *leaf;
8163 u32 size = sizeof(*extent_item) + sizeof(*iref);
8164 u64 num_bytes = ins->offset;
8165 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8166
8167 if (!skinny_metadata)
8168 size += sizeof(*block_info);
8169
8170 path = btrfs_alloc_path();
8171 if (!path) {
8172 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8173 fs_info->nodesize);
8174 return -ENOMEM;
8175 }
8176
8177 path->leave_spinning = 1;
8178 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8179 ins, size);
8180 if (ret) {
8181 btrfs_free_path(path);
8182 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8183 fs_info->nodesize);
8184 return ret;
8185 }
8186
8187 leaf = path->nodes[0];
8188 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8189 struct btrfs_extent_item);
8190 btrfs_set_extent_refs(leaf, extent_item, 1);
8191 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8192 btrfs_set_extent_flags(leaf, extent_item,
8193 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8194
8195 if (skinny_metadata) {
8196 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8197 num_bytes = fs_info->nodesize;
8198 } else {
8199 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8200 btrfs_set_tree_block_key(leaf, block_info, key);
8201 btrfs_set_tree_block_level(leaf, block_info, level);
8202 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8203 }
8204
8205 if (parent > 0) {
8206 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8207 btrfs_set_extent_inline_ref_type(leaf, iref,
8208 BTRFS_SHARED_BLOCK_REF_KEY);
8209 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8210 } else {
8211 btrfs_set_extent_inline_ref_type(leaf, iref,
8212 BTRFS_TREE_BLOCK_REF_KEY);
8213 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8214 }
8215
8216 btrfs_mark_buffer_dirty(leaf);
8217 btrfs_free_path(path);
8218
8219 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8220 num_bytes);
8221 if (ret)
8222 return ret;
8223
8224 ret = update_block_group(trans, fs_info, ins->objectid,
8225 fs_info->nodesize, 1);
8226 if (ret) { /* -ENOENT, logic error */
8227 btrfs_err(fs_info, "update block group failed for %llu %llu",
8228 ins->objectid, ins->offset);
8229 BUG();
8230 }
8231
8232 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8233 fs_info->nodesize);
8234 return ret;
8235 }
8236
8237 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8238 struct btrfs_root *root, u64 owner,
8239 u64 offset, u64 ram_bytes,
8240 struct btrfs_key *ins)
8241 {
8242 struct btrfs_fs_info *fs_info = root->fs_info;
8243 int ret;
8244
8245 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8246
8247 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8248 root->root_key.objectid, owner, offset,
8249 BTRFS_ADD_DELAYED_EXTENT);
8250
8251 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8252 ins->offset, 0,
8253 root->root_key.objectid, owner,
8254 offset, ram_bytes,
8255 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8256 return ret;
8257 }
8258
8259 /*
8260 * this is used by the tree logging recovery code. It records that
8261 * an extent has been allocated and makes sure to clear the free
8262 * space cache bits as well
8263 */
8264 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8265 struct btrfs_fs_info *fs_info,
8266 u64 root_objectid, u64 owner, u64 offset,
8267 struct btrfs_key *ins)
8268 {
8269 int ret;
8270 struct btrfs_block_group_cache *block_group;
8271 struct btrfs_space_info *space_info;
8272
8273 /*
8274 * Mixed block groups will exclude before processing the log so we only
8275 * need to do the exclude dance if this fs isn't mixed.
8276 */
8277 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8278 ret = __exclude_logged_extent(fs_info, ins->objectid,
8279 ins->offset);
8280 if (ret)
8281 return ret;
8282 }
8283
8284 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8285 if (!block_group)
8286 return -EINVAL;
8287
8288 space_info = block_group->space_info;
8289 spin_lock(&space_info->lock);
8290 spin_lock(&block_group->lock);
8291 space_info->bytes_reserved += ins->offset;
8292 block_group->reserved += ins->offset;
8293 spin_unlock(&block_group->lock);
8294 spin_unlock(&space_info->lock);
8295
8296 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8297 0, owner, offset, ins, 1);
8298 btrfs_put_block_group(block_group);
8299 return ret;
8300 }
8301
8302 static struct extent_buffer *
8303 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8304 u64 bytenr, int level)
8305 {
8306 struct btrfs_fs_info *fs_info = root->fs_info;
8307 struct extent_buffer *buf;
8308
8309 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8310 if (IS_ERR(buf))
8311 return buf;
8312
8313 btrfs_set_header_generation(buf, trans->transid);
8314 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8315 btrfs_tree_lock(buf);
8316 clean_tree_block(fs_info, buf);
8317 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8318
8319 btrfs_set_lock_blocking(buf);
8320 set_extent_buffer_uptodate(buf);
8321
8322 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8323 buf->log_index = root->log_transid % 2;
8324 /*
8325 * we allow two log transactions at a time, use different
8326 * EXENT bit to differentiate dirty pages.
8327 */
8328 if (buf->log_index == 0)
8329 set_extent_dirty(&root->dirty_log_pages, buf->start,
8330 buf->start + buf->len - 1, GFP_NOFS);
8331 else
8332 set_extent_new(&root->dirty_log_pages, buf->start,
8333 buf->start + buf->len - 1);
8334 } else {
8335 buf->log_index = -1;
8336 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8337 buf->start + buf->len - 1, GFP_NOFS);
8338 }
8339 trans->dirty = true;
8340 /* this returns a buffer locked for blocking */
8341 return buf;
8342 }
8343
8344 static struct btrfs_block_rsv *
8345 use_block_rsv(struct btrfs_trans_handle *trans,
8346 struct btrfs_root *root, u32 blocksize)
8347 {
8348 struct btrfs_fs_info *fs_info = root->fs_info;
8349 struct btrfs_block_rsv *block_rsv;
8350 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8351 int ret;
8352 bool global_updated = false;
8353
8354 block_rsv = get_block_rsv(trans, root);
8355
8356 if (unlikely(block_rsv->size == 0))
8357 goto try_reserve;
8358 again:
8359 ret = block_rsv_use_bytes(block_rsv, blocksize);
8360 if (!ret)
8361 return block_rsv;
8362
8363 if (block_rsv->failfast)
8364 return ERR_PTR(ret);
8365
8366 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8367 global_updated = true;
8368 update_global_block_rsv(fs_info);
8369 goto again;
8370 }
8371
8372 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8373 static DEFINE_RATELIMIT_STATE(_rs,
8374 DEFAULT_RATELIMIT_INTERVAL * 10,
8375 /*DEFAULT_RATELIMIT_BURST*/ 1);
8376 if (__ratelimit(&_rs))
8377 WARN(1, KERN_DEBUG
8378 "BTRFS: block rsv returned %d\n", ret);
8379 }
8380 try_reserve:
8381 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8382 BTRFS_RESERVE_NO_FLUSH);
8383 if (!ret)
8384 return block_rsv;
8385 /*
8386 * If we couldn't reserve metadata bytes try and use some from
8387 * the global reserve if its space type is the same as the global
8388 * reservation.
8389 */
8390 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8391 block_rsv->space_info == global_rsv->space_info) {
8392 ret = block_rsv_use_bytes(global_rsv, blocksize);
8393 if (!ret)
8394 return global_rsv;
8395 }
8396 return ERR_PTR(ret);
8397 }
8398
8399 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8400 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8401 {
8402 block_rsv_add_bytes(block_rsv, blocksize, 0);
8403 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8404 }
8405
8406 /*
8407 * finds a free extent and does all the dirty work required for allocation
8408 * returns the tree buffer or an ERR_PTR on error.
8409 */
8410 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8411 struct btrfs_root *root,
8412 u64 parent, u64 root_objectid,
8413 const struct btrfs_disk_key *key,
8414 int level, u64 hint,
8415 u64 empty_size)
8416 {
8417 struct btrfs_fs_info *fs_info = root->fs_info;
8418 struct btrfs_key ins;
8419 struct btrfs_block_rsv *block_rsv;
8420 struct extent_buffer *buf;
8421 struct btrfs_delayed_extent_op *extent_op;
8422 u64 flags = 0;
8423 int ret;
8424 u32 blocksize = fs_info->nodesize;
8425 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8426
8427 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8428 if (btrfs_is_testing(fs_info)) {
8429 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8430 level);
8431 if (!IS_ERR(buf))
8432 root->alloc_bytenr += blocksize;
8433 return buf;
8434 }
8435 #endif
8436
8437 block_rsv = use_block_rsv(trans, root, blocksize);
8438 if (IS_ERR(block_rsv))
8439 return ERR_CAST(block_rsv);
8440
8441 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8442 empty_size, hint, &ins, 0, 0);
8443 if (ret)
8444 goto out_unuse;
8445
8446 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8447 if (IS_ERR(buf)) {
8448 ret = PTR_ERR(buf);
8449 goto out_free_reserved;
8450 }
8451
8452 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8453 if (parent == 0)
8454 parent = ins.objectid;
8455 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8456 } else
8457 BUG_ON(parent > 0);
8458
8459 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8460 extent_op = btrfs_alloc_delayed_extent_op();
8461 if (!extent_op) {
8462 ret = -ENOMEM;
8463 goto out_free_buf;
8464 }
8465 if (key)
8466 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8467 else
8468 memset(&extent_op->key, 0, sizeof(extent_op->key));
8469 extent_op->flags_to_set = flags;
8470 extent_op->update_key = skinny_metadata ? false : true;
8471 extent_op->update_flags = true;
8472 extent_op->is_data = false;
8473 extent_op->level = level;
8474
8475 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8476 root_objectid, level, 0,
8477 BTRFS_ADD_DELAYED_EXTENT);
8478 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8479 ins.offset, parent,
8480 root_objectid, level,
8481 BTRFS_ADD_DELAYED_EXTENT,
8482 extent_op, NULL, NULL);
8483 if (ret)
8484 goto out_free_delayed;
8485 }
8486 return buf;
8487
8488 out_free_delayed:
8489 btrfs_free_delayed_extent_op(extent_op);
8490 out_free_buf:
8491 free_extent_buffer(buf);
8492 out_free_reserved:
8493 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8494 out_unuse:
8495 unuse_block_rsv(fs_info, block_rsv, blocksize);
8496 return ERR_PTR(ret);
8497 }
8498
8499 struct walk_control {
8500 u64 refs[BTRFS_MAX_LEVEL];
8501 u64 flags[BTRFS_MAX_LEVEL];
8502 struct btrfs_key update_progress;
8503 int stage;
8504 int level;
8505 int shared_level;
8506 int update_ref;
8507 int keep_locks;
8508 int reada_slot;
8509 int reada_count;
8510 int for_reloc;
8511 };
8512
8513 #define DROP_REFERENCE 1
8514 #define UPDATE_BACKREF 2
8515
8516 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8517 struct btrfs_root *root,
8518 struct walk_control *wc,
8519 struct btrfs_path *path)
8520 {
8521 struct btrfs_fs_info *fs_info = root->fs_info;
8522 u64 bytenr;
8523 u64 generation;
8524 u64 refs;
8525 u64 flags;
8526 u32 nritems;
8527 struct btrfs_key key;
8528 struct extent_buffer *eb;
8529 int ret;
8530 int slot;
8531 int nread = 0;
8532
8533 if (path->slots[wc->level] < wc->reada_slot) {
8534 wc->reada_count = wc->reada_count * 2 / 3;
8535 wc->reada_count = max(wc->reada_count, 2);
8536 } else {
8537 wc->reada_count = wc->reada_count * 3 / 2;
8538 wc->reada_count = min_t(int, wc->reada_count,
8539 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8540 }
8541
8542 eb = path->nodes[wc->level];
8543 nritems = btrfs_header_nritems(eb);
8544
8545 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8546 if (nread >= wc->reada_count)
8547 break;
8548
8549 cond_resched();
8550 bytenr = btrfs_node_blockptr(eb, slot);
8551 generation = btrfs_node_ptr_generation(eb, slot);
8552
8553 if (slot == path->slots[wc->level])
8554 goto reada;
8555
8556 if (wc->stage == UPDATE_BACKREF &&
8557 generation <= root->root_key.offset)
8558 continue;
8559
8560 /* We don't lock the tree block, it's OK to be racy here */
8561 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8562 wc->level - 1, 1, &refs,
8563 &flags);
8564 /* We don't care about errors in readahead. */
8565 if (ret < 0)
8566 continue;
8567 BUG_ON(refs == 0);
8568
8569 if (wc->stage == DROP_REFERENCE) {
8570 if (refs == 1)
8571 goto reada;
8572
8573 if (wc->level == 1 &&
8574 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8575 continue;
8576 if (!wc->update_ref ||
8577 generation <= root->root_key.offset)
8578 continue;
8579 btrfs_node_key_to_cpu(eb, &key, slot);
8580 ret = btrfs_comp_cpu_keys(&key,
8581 &wc->update_progress);
8582 if (ret < 0)
8583 continue;
8584 } else {
8585 if (wc->level == 1 &&
8586 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8587 continue;
8588 }
8589 reada:
8590 readahead_tree_block(fs_info, bytenr);
8591 nread++;
8592 }
8593 wc->reada_slot = slot;
8594 }
8595
8596 /*
8597 * helper to process tree block while walking down the tree.
8598 *
8599 * when wc->stage == UPDATE_BACKREF, this function updates
8600 * back refs for pointers in the block.
8601 *
8602 * NOTE: return value 1 means we should stop walking down.
8603 */
8604 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8605 struct btrfs_root *root,
8606 struct btrfs_path *path,
8607 struct walk_control *wc, int lookup_info)
8608 {
8609 struct btrfs_fs_info *fs_info = root->fs_info;
8610 int level = wc->level;
8611 struct extent_buffer *eb = path->nodes[level];
8612 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8613 int ret;
8614
8615 if (wc->stage == UPDATE_BACKREF &&
8616 btrfs_header_owner(eb) != root->root_key.objectid)
8617 return 1;
8618
8619 /*
8620 * when reference count of tree block is 1, it won't increase
8621 * again. once full backref flag is set, we never clear it.
8622 */
8623 if (lookup_info &&
8624 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8625 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8626 BUG_ON(!path->locks[level]);
8627 ret = btrfs_lookup_extent_info(trans, fs_info,
8628 eb->start, level, 1,
8629 &wc->refs[level],
8630 &wc->flags[level]);
8631 BUG_ON(ret == -ENOMEM);
8632 if (ret)
8633 return ret;
8634 BUG_ON(wc->refs[level] == 0);
8635 }
8636
8637 if (wc->stage == DROP_REFERENCE) {
8638 if (wc->refs[level] > 1)
8639 return 1;
8640
8641 if (path->locks[level] && !wc->keep_locks) {
8642 btrfs_tree_unlock_rw(eb, path->locks[level]);
8643 path->locks[level] = 0;
8644 }
8645 return 0;
8646 }
8647
8648 /* wc->stage == UPDATE_BACKREF */
8649 if (!(wc->flags[level] & flag)) {
8650 BUG_ON(!path->locks[level]);
8651 ret = btrfs_inc_ref(trans, root, eb, 1);
8652 BUG_ON(ret); /* -ENOMEM */
8653 ret = btrfs_dec_ref(trans, root, eb, 0);
8654 BUG_ON(ret); /* -ENOMEM */
8655 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8656 eb->len, flag,
8657 btrfs_header_level(eb), 0);
8658 BUG_ON(ret); /* -ENOMEM */
8659 wc->flags[level] |= flag;
8660 }
8661
8662 /*
8663 * the block is shared by multiple trees, so it's not good to
8664 * keep the tree lock
8665 */
8666 if (path->locks[level] && level > 0) {
8667 btrfs_tree_unlock_rw(eb, path->locks[level]);
8668 path->locks[level] = 0;
8669 }
8670 return 0;
8671 }
8672
8673 /*
8674 * helper to process tree block pointer.
8675 *
8676 * when wc->stage == DROP_REFERENCE, this function checks
8677 * reference count of the block pointed to. if the block
8678 * is shared and we need update back refs for the subtree
8679 * rooted at the block, this function changes wc->stage to
8680 * UPDATE_BACKREF. if the block is shared and there is no
8681 * need to update back, this function drops the reference
8682 * to the block.
8683 *
8684 * NOTE: return value 1 means we should stop walking down.
8685 */
8686 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8687 struct btrfs_root *root,
8688 struct btrfs_path *path,
8689 struct walk_control *wc, int *lookup_info)
8690 {
8691 struct btrfs_fs_info *fs_info = root->fs_info;
8692 u64 bytenr;
8693 u64 generation;
8694 u64 parent;
8695 u32 blocksize;
8696 struct btrfs_key key;
8697 struct extent_buffer *next;
8698 int level = wc->level;
8699 int reada = 0;
8700 int ret = 0;
8701 bool need_account = false;
8702
8703 generation = btrfs_node_ptr_generation(path->nodes[level],
8704 path->slots[level]);
8705 /*
8706 * if the lower level block was created before the snapshot
8707 * was created, we know there is no need to update back refs
8708 * for the subtree
8709 */
8710 if (wc->stage == UPDATE_BACKREF &&
8711 generation <= root->root_key.offset) {
8712 *lookup_info = 1;
8713 return 1;
8714 }
8715
8716 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8717 blocksize = fs_info->nodesize;
8718
8719 next = find_extent_buffer(fs_info, bytenr);
8720 if (!next) {
8721 next = btrfs_find_create_tree_block(fs_info, bytenr);
8722 if (IS_ERR(next))
8723 return PTR_ERR(next);
8724
8725 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8726 level - 1);
8727 reada = 1;
8728 }
8729 btrfs_tree_lock(next);
8730 btrfs_set_lock_blocking(next);
8731
8732 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8733 &wc->refs[level - 1],
8734 &wc->flags[level - 1]);
8735 if (ret < 0)
8736 goto out_unlock;
8737
8738 if (unlikely(wc->refs[level - 1] == 0)) {
8739 btrfs_err(fs_info, "Missing references.");
8740 ret = -EIO;
8741 goto out_unlock;
8742 }
8743 *lookup_info = 0;
8744
8745 if (wc->stage == DROP_REFERENCE) {
8746 if (wc->refs[level - 1] > 1) {
8747 need_account = true;
8748 if (level == 1 &&
8749 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8750 goto skip;
8751
8752 if (!wc->update_ref ||
8753 generation <= root->root_key.offset)
8754 goto skip;
8755
8756 btrfs_node_key_to_cpu(path->nodes[level], &key,
8757 path->slots[level]);
8758 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8759 if (ret < 0)
8760 goto skip;
8761
8762 wc->stage = UPDATE_BACKREF;
8763 wc->shared_level = level - 1;
8764 }
8765 } else {
8766 if (level == 1 &&
8767 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8768 goto skip;
8769 }
8770
8771 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8772 btrfs_tree_unlock(next);
8773 free_extent_buffer(next);
8774 next = NULL;
8775 *lookup_info = 1;
8776 }
8777
8778 if (!next) {
8779 if (reada && level == 1)
8780 reada_walk_down(trans, root, wc, path);
8781 next = read_tree_block(fs_info, bytenr, generation);
8782 if (IS_ERR(next)) {
8783 return PTR_ERR(next);
8784 } else if (!extent_buffer_uptodate(next)) {
8785 free_extent_buffer(next);
8786 return -EIO;
8787 }
8788 btrfs_tree_lock(next);
8789 btrfs_set_lock_blocking(next);
8790 }
8791
8792 level--;
8793 ASSERT(level == btrfs_header_level(next));
8794 if (level != btrfs_header_level(next)) {
8795 btrfs_err(root->fs_info, "mismatched level");
8796 ret = -EIO;
8797 goto out_unlock;
8798 }
8799 path->nodes[level] = next;
8800 path->slots[level] = 0;
8801 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8802 wc->level = level;
8803 if (wc->level == 1)
8804 wc->reada_slot = 0;
8805 return 0;
8806 skip:
8807 wc->refs[level - 1] = 0;
8808 wc->flags[level - 1] = 0;
8809 if (wc->stage == DROP_REFERENCE) {
8810 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8811 parent = path->nodes[level]->start;
8812 } else {
8813 ASSERT(root->root_key.objectid ==
8814 btrfs_header_owner(path->nodes[level]));
8815 if (root->root_key.objectid !=
8816 btrfs_header_owner(path->nodes[level])) {
8817 btrfs_err(root->fs_info,
8818 "mismatched block owner");
8819 ret = -EIO;
8820 goto out_unlock;
8821 }
8822 parent = 0;
8823 }
8824
8825 if (need_account) {
8826 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8827 generation, level - 1);
8828 if (ret) {
8829 btrfs_err_rl(fs_info,
8830 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8831 ret);
8832 }
8833 }
8834 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8835 parent, root->root_key.objectid,
8836 level - 1, 0);
8837 if (ret)
8838 goto out_unlock;
8839 }
8840
8841 *lookup_info = 1;
8842 ret = 1;
8843
8844 out_unlock:
8845 btrfs_tree_unlock(next);
8846 free_extent_buffer(next);
8847
8848 return ret;
8849 }
8850
8851 /*
8852 * helper to process tree block while walking up the tree.
8853 *
8854 * when wc->stage == DROP_REFERENCE, this function drops
8855 * reference count on the block.
8856 *
8857 * when wc->stage == UPDATE_BACKREF, this function changes
8858 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8859 * to UPDATE_BACKREF previously while processing the block.
8860 *
8861 * NOTE: return value 1 means we should stop walking up.
8862 */
8863 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8864 struct btrfs_root *root,
8865 struct btrfs_path *path,
8866 struct walk_control *wc)
8867 {
8868 struct btrfs_fs_info *fs_info = root->fs_info;
8869 int ret;
8870 int level = wc->level;
8871 struct extent_buffer *eb = path->nodes[level];
8872 u64 parent = 0;
8873
8874 if (wc->stage == UPDATE_BACKREF) {
8875 BUG_ON(wc->shared_level < level);
8876 if (level < wc->shared_level)
8877 goto out;
8878
8879 ret = find_next_key(path, level + 1, &wc->update_progress);
8880 if (ret > 0)
8881 wc->update_ref = 0;
8882
8883 wc->stage = DROP_REFERENCE;
8884 wc->shared_level = -1;
8885 path->slots[level] = 0;
8886
8887 /*
8888 * check reference count again if the block isn't locked.
8889 * we should start walking down the tree again if reference
8890 * count is one.
8891 */
8892 if (!path->locks[level]) {
8893 BUG_ON(level == 0);
8894 btrfs_tree_lock(eb);
8895 btrfs_set_lock_blocking(eb);
8896 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8897
8898 ret = btrfs_lookup_extent_info(trans, fs_info,
8899 eb->start, level, 1,
8900 &wc->refs[level],
8901 &wc->flags[level]);
8902 if (ret < 0) {
8903 btrfs_tree_unlock_rw(eb, path->locks[level]);
8904 path->locks[level] = 0;
8905 return ret;
8906 }
8907 BUG_ON(wc->refs[level] == 0);
8908 if (wc->refs[level] == 1) {
8909 btrfs_tree_unlock_rw(eb, path->locks[level]);
8910 path->locks[level] = 0;
8911 return 1;
8912 }
8913 }
8914 }
8915
8916 /* wc->stage == DROP_REFERENCE */
8917 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8918
8919 if (wc->refs[level] == 1) {
8920 if (level == 0) {
8921 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8922 ret = btrfs_dec_ref(trans, root, eb, 1);
8923 else
8924 ret = btrfs_dec_ref(trans, root, eb, 0);
8925 BUG_ON(ret); /* -ENOMEM */
8926 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8927 if (ret) {
8928 btrfs_err_rl(fs_info,
8929 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8930 ret);
8931 }
8932 }
8933 /* make block locked assertion in clean_tree_block happy */
8934 if (!path->locks[level] &&
8935 btrfs_header_generation(eb) == trans->transid) {
8936 btrfs_tree_lock(eb);
8937 btrfs_set_lock_blocking(eb);
8938 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8939 }
8940 clean_tree_block(fs_info, eb);
8941 }
8942
8943 if (eb == root->node) {
8944 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8945 parent = eb->start;
8946 else
8947 BUG_ON(root->root_key.objectid !=
8948 btrfs_header_owner(eb));
8949 } else {
8950 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8951 parent = path->nodes[level + 1]->start;
8952 else
8953 BUG_ON(root->root_key.objectid !=
8954 btrfs_header_owner(path->nodes[level + 1]));
8955 }
8956
8957 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8958 out:
8959 wc->refs[level] = 0;
8960 wc->flags[level] = 0;
8961 return 0;
8962 }
8963
8964 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8965 struct btrfs_root *root,
8966 struct btrfs_path *path,
8967 struct walk_control *wc)
8968 {
8969 int level = wc->level;
8970 int lookup_info = 1;
8971 int ret;
8972
8973 while (level >= 0) {
8974 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8975 if (ret > 0)
8976 break;
8977
8978 if (level == 0)
8979 break;
8980
8981 if (path->slots[level] >=
8982 btrfs_header_nritems(path->nodes[level]))
8983 break;
8984
8985 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8986 if (ret > 0) {
8987 path->slots[level]++;
8988 continue;
8989 } else if (ret < 0)
8990 return ret;
8991 level = wc->level;
8992 }
8993 return 0;
8994 }
8995
8996 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8997 struct btrfs_root *root,
8998 struct btrfs_path *path,
8999 struct walk_control *wc, int max_level)
9000 {
9001 int level = wc->level;
9002 int ret;
9003
9004 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9005 while (level < max_level && path->nodes[level]) {
9006 wc->level = level;
9007 if (path->slots[level] + 1 <
9008 btrfs_header_nritems(path->nodes[level])) {
9009 path->slots[level]++;
9010 return 0;
9011 } else {
9012 ret = walk_up_proc(trans, root, path, wc);
9013 if (ret > 0)
9014 return 0;
9015
9016 if (path->locks[level]) {
9017 btrfs_tree_unlock_rw(path->nodes[level],
9018 path->locks[level]);
9019 path->locks[level] = 0;
9020 }
9021 free_extent_buffer(path->nodes[level]);
9022 path->nodes[level] = NULL;
9023 level++;
9024 }
9025 }
9026 return 1;
9027 }
9028
9029 /*
9030 * drop a subvolume tree.
9031 *
9032 * this function traverses the tree freeing any blocks that only
9033 * referenced by the tree.
9034 *
9035 * when a shared tree block is found. this function decreases its
9036 * reference count by one. if update_ref is true, this function
9037 * also make sure backrefs for the shared block and all lower level
9038 * blocks are properly updated.
9039 *
9040 * If called with for_reloc == 0, may exit early with -EAGAIN
9041 */
9042 int btrfs_drop_snapshot(struct btrfs_root *root,
9043 struct btrfs_block_rsv *block_rsv, int update_ref,
9044 int for_reloc)
9045 {
9046 struct btrfs_fs_info *fs_info = root->fs_info;
9047 struct btrfs_path *path;
9048 struct btrfs_trans_handle *trans;
9049 struct btrfs_root *tree_root = fs_info->tree_root;
9050 struct btrfs_root_item *root_item = &root->root_item;
9051 struct walk_control *wc;
9052 struct btrfs_key key;
9053 int err = 0;
9054 int ret;
9055 int level;
9056 bool root_dropped = false;
9057
9058 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9059
9060 path = btrfs_alloc_path();
9061 if (!path) {
9062 err = -ENOMEM;
9063 goto out;
9064 }
9065
9066 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9067 if (!wc) {
9068 btrfs_free_path(path);
9069 err = -ENOMEM;
9070 goto out;
9071 }
9072
9073 trans = btrfs_start_transaction(tree_root, 0);
9074 if (IS_ERR(trans)) {
9075 err = PTR_ERR(trans);
9076 goto out_free;
9077 }
9078
9079 if (block_rsv)
9080 trans->block_rsv = block_rsv;
9081
9082 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9083 level = btrfs_header_level(root->node);
9084 path->nodes[level] = btrfs_lock_root_node(root);
9085 btrfs_set_lock_blocking(path->nodes[level]);
9086 path->slots[level] = 0;
9087 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9088 memset(&wc->update_progress, 0,
9089 sizeof(wc->update_progress));
9090 } else {
9091 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9092 memcpy(&wc->update_progress, &key,
9093 sizeof(wc->update_progress));
9094
9095 level = root_item->drop_level;
9096 BUG_ON(level == 0);
9097 path->lowest_level = level;
9098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9099 path->lowest_level = 0;
9100 if (ret < 0) {
9101 err = ret;
9102 goto out_end_trans;
9103 }
9104 WARN_ON(ret > 0);
9105
9106 /*
9107 * unlock our path, this is safe because only this
9108 * function is allowed to delete this snapshot
9109 */
9110 btrfs_unlock_up_safe(path, 0);
9111
9112 level = btrfs_header_level(root->node);
9113 while (1) {
9114 btrfs_tree_lock(path->nodes[level]);
9115 btrfs_set_lock_blocking(path->nodes[level]);
9116 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9117
9118 ret = btrfs_lookup_extent_info(trans, fs_info,
9119 path->nodes[level]->start,
9120 level, 1, &wc->refs[level],
9121 &wc->flags[level]);
9122 if (ret < 0) {
9123 err = ret;
9124 goto out_end_trans;
9125 }
9126 BUG_ON(wc->refs[level] == 0);
9127
9128 if (level == root_item->drop_level)
9129 break;
9130
9131 btrfs_tree_unlock(path->nodes[level]);
9132 path->locks[level] = 0;
9133 WARN_ON(wc->refs[level] != 1);
9134 level--;
9135 }
9136 }
9137
9138 wc->level = level;
9139 wc->shared_level = -1;
9140 wc->stage = DROP_REFERENCE;
9141 wc->update_ref = update_ref;
9142 wc->keep_locks = 0;
9143 wc->for_reloc = for_reloc;
9144 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9145
9146 while (1) {
9147
9148 ret = walk_down_tree(trans, root, path, wc);
9149 if (ret < 0) {
9150 err = ret;
9151 break;
9152 }
9153
9154 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9155 if (ret < 0) {
9156 err = ret;
9157 break;
9158 }
9159
9160 if (ret > 0) {
9161 BUG_ON(wc->stage != DROP_REFERENCE);
9162 break;
9163 }
9164
9165 if (wc->stage == DROP_REFERENCE) {
9166 level = wc->level;
9167 btrfs_node_key(path->nodes[level],
9168 &root_item->drop_progress,
9169 path->slots[level]);
9170 root_item->drop_level = level;
9171 }
9172
9173 BUG_ON(wc->level == 0);
9174 if (btrfs_should_end_transaction(trans) ||
9175 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9176 ret = btrfs_update_root(trans, tree_root,
9177 &root->root_key,
9178 root_item);
9179 if (ret) {
9180 btrfs_abort_transaction(trans, ret);
9181 err = ret;
9182 goto out_end_trans;
9183 }
9184
9185 btrfs_end_transaction_throttle(trans);
9186 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9187 btrfs_debug(fs_info,
9188 "drop snapshot early exit");
9189 err = -EAGAIN;
9190 goto out_free;
9191 }
9192
9193 trans = btrfs_start_transaction(tree_root, 0);
9194 if (IS_ERR(trans)) {
9195 err = PTR_ERR(trans);
9196 goto out_free;
9197 }
9198 if (block_rsv)
9199 trans->block_rsv = block_rsv;
9200 }
9201 }
9202 btrfs_release_path(path);
9203 if (err)
9204 goto out_end_trans;
9205
9206 ret = btrfs_del_root(trans, fs_info, &root->root_key);
9207 if (ret) {
9208 btrfs_abort_transaction(trans, ret);
9209 err = ret;
9210 goto out_end_trans;
9211 }
9212
9213 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9214 ret = btrfs_find_root(tree_root, &root->root_key, path,
9215 NULL, NULL);
9216 if (ret < 0) {
9217 btrfs_abort_transaction(trans, ret);
9218 err = ret;
9219 goto out_end_trans;
9220 } else if (ret > 0) {
9221 /* if we fail to delete the orphan item this time
9222 * around, it'll get picked up the next time.
9223 *
9224 * The most common failure here is just -ENOENT.
9225 */
9226 btrfs_del_orphan_item(trans, tree_root,
9227 root->root_key.objectid);
9228 }
9229 }
9230
9231 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9232 btrfs_add_dropped_root(trans, root);
9233 } else {
9234 free_extent_buffer(root->node);
9235 free_extent_buffer(root->commit_root);
9236 btrfs_put_fs_root(root);
9237 }
9238 root_dropped = true;
9239 out_end_trans:
9240 btrfs_end_transaction_throttle(trans);
9241 out_free:
9242 kfree(wc);
9243 btrfs_free_path(path);
9244 out:
9245 /*
9246 * So if we need to stop dropping the snapshot for whatever reason we
9247 * need to make sure to add it back to the dead root list so that we
9248 * keep trying to do the work later. This also cleans up roots if we
9249 * don't have it in the radix (like when we recover after a power fail
9250 * or unmount) so we don't leak memory.
9251 */
9252 if (!for_reloc && !root_dropped)
9253 btrfs_add_dead_root(root);
9254 if (err && err != -EAGAIN)
9255 btrfs_handle_fs_error(fs_info, err, NULL);
9256 return err;
9257 }
9258
9259 /*
9260 * drop subtree rooted at tree block 'node'.
9261 *
9262 * NOTE: this function will unlock and release tree block 'node'
9263 * only used by relocation code
9264 */
9265 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9266 struct btrfs_root *root,
9267 struct extent_buffer *node,
9268 struct extent_buffer *parent)
9269 {
9270 struct btrfs_fs_info *fs_info = root->fs_info;
9271 struct btrfs_path *path;
9272 struct walk_control *wc;
9273 int level;
9274 int parent_level;
9275 int ret = 0;
9276 int wret;
9277
9278 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9279
9280 path = btrfs_alloc_path();
9281 if (!path)
9282 return -ENOMEM;
9283
9284 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9285 if (!wc) {
9286 btrfs_free_path(path);
9287 return -ENOMEM;
9288 }
9289
9290 btrfs_assert_tree_locked(parent);
9291 parent_level = btrfs_header_level(parent);
9292 extent_buffer_get(parent);
9293 path->nodes[parent_level] = parent;
9294 path->slots[parent_level] = btrfs_header_nritems(parent);
9295
9296 btrfs_assert_tree_locked(node);
9297 level = btrfs_header_level(node);
9298 path->nodes[level] = node;
9299 path->slots[level] = 0;
9300 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9301
9302 wc->refs[parent_level] = 1;
9303 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9304 wc->level = level;
9305 wc->shared_level = -1;
9306 wc->stage = DROP_REFERENCE;
9307 wc->update_ref = 0;
9308 wc->keep_locks = 1;
9309 wc->for_reloc = 1;
9310 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9311
9312 while (1) {
9313 wret = walk_down_tree(trans, root, path, wc);
9314 if (wret < 0) {
9315 ret = wret;
9316 break;
9317 }
9318
9319 wret = walk_up_tree(trans, root, path, wc, parent_level);
9320 if (wret < 0)
9321 ret = wret;
9322 if (wret != 0)
9323 break;
9324 }
9325
9326 kfree(wc);
9327 btrfs_free_path(path);
9328 return ret;
9329 }
9330
9331 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9332 {
9333 u64 num_devices;
9334 u64 stripped;
9335
9336 /*
9337 * if restripe for this chunk_type is on pick target profile and
9338 * return, otherwise do the usual balance
9339 */
9340 stripped = get_restripe_target(fs_info, flags);
9341 if (stripped)
9342 return extended_to_chunk(stripped);
9343
9344 num_devices = fs_info->fs_devices->rw_devices;
9345
9346 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9347 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9348 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9349
9350 if (num_devices == 1) {
9351 stripped |= BTRFS_BLOCK_GROUP_DUP;
9352 stripped = flags & ~stripped;
9353
9354 /* turn raid0 into single device chunks */
9355 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9356 return stripped;
9357
9358 /* turn mirroring into duplication */
9359 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9360 BTRFS_BLOCK_GROUP_RAID10))
9361 return stripped | BTRFS_BLOCK_GROUP_DUP;
9362 } else {
9363 /* they already had raid on here, just return */
9364 if (flags & stripped)
9365 return flags;
9366
9367 stripped |= BTRFS_BLOCK_GROUP_DUP;
9368 stripped = flags & ~stripped;
9369
9370 /* switch duplicated blocks with raid1 */
9371 if (flags & BTRFS_BLOCK_GROUP_DUP)
9372 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9373
9374 /* this is drive concat, leave it alone */
9375 }
9376
9377 return flags;
9378 }
9379
9380 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9381 {
9382 struct btrfs_space_info *sinfo = cache->space_info;
9383 u64 num_bytes;
9384 u64 min_allocable_bytes;
9385 int ret = -ENOSPC;
9386
9387 /*
9388 * We need some metadata space and system metadata space for
9389 * allocating chunks in some corner cases until we force to set
9390 * it to be readonly.
9391 */
9392 if ((sinfo->flags &
9393 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9394 !force)
9395 min_allocable_bytes = SZ_1M;
9396 else
9397 min_allocable_bytes = 0;
9398
9399 spin_lock(&sinfo->lock);
9400 spin_lock(&cache->lock);
9401
9402 if (cache->ro) {
9403 cache->ro++;
9404 ret = 0;
9405 goto out;
9406 }
9407
9408 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9409 cache->bytes_super - btrfs_block_group_used(&cache->item);
9410
9411 if (btrfs_space_info_used(sinfo, true) + num_bytes +
9412 min_allocable_bytes <= sinfo->total_bytes) {
9413 sinfo->bytes_readonly += num_bytes;
9414 cache->ro++;
9415 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9416 ret = 0;
9417 }
9418 out:
9419 spin_unlock(&cache->lock);
9420 spin_unlock(&sinfo->lock);
9421 return ret;
9422 }
9423
9424 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9425 struct btrfs_block_group_cache *cache)
9426
9427 {
9428 struct btrfs_trans_handle *trans;
9429 u64 alloc_flags;
9430 int ret;
9431
9432 again:
9433 trans = btrfs_join_transaction(fs_info->extent_root);
9434 if (IS_ERR(trans))
9435 return PTR_ERR(trans);
9436
9437 /*
9438 * we're not allowed to set block groups readonly after the dirty
9439 * block groups cache has started writing. If it already started,
9440 * back off and let this transaction commit
9441 */
9442 mutex_lock(&fs_info->ro_block_group_mutex);
9443 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9444 u64 transid = trans->transid;
9445
9446 mutex_unlock(&fs_info->ro_block_group_mutex);
9447 btrfs_end_transaction(trans);
9448
9449 ret = btrfs_wait_for_commit(fs_info, transid);
9450 if (ret)
9451 return ret;
9452 goto again;
9453 }
9454
9455 /*
9456 * if we are changing raid levels, try to allocate a corresponding
9457 * block group with the new raid level.
9458 */
9459 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9460 if (alloc_flags != cache->flags) {
9461 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9462 CHUNK_ALLOC_FORCE);
9463 /*
9464 * ENOSPC is allowed here, we may have enough space
9465 * already allocated at the new raid level to
9466 * carry on
9467 */
9468 if (ret == -ENOSPC)
9469 ret = 0;
9470 if (ret < 0)
9471 goto out;
9472 }
9473
9474 ret = inc_block_group_ro(cache, 0);
9475 if (!ret)
9476 goto out;
9477 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9478 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9479 CHUNK_ALLOC_FORCE);
9480 if (ret < 0)
9481 goto out;
9482 ret = inc_block_group_ro(cache, 0);
9483 out:
9484 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9485 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9486 mutex_lock(&fs_info->chunk_mutex);
9487 check_system_chunk(trans, fs_info, alloc_flags);
9488 mutex_unlock(&fs_info->chunk_mutex);
9489 }
9490 mutex_unlock(&fs_info->ro_block_group_mutex);
9491
9492 btrfs_end_transaction(trans);
9493 return ret;
9494 }
9495
9496 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9497 struct btrfs_fs_info *fs_info, u64 type)
9498 {
9499 u64 alloc_flags = get_alloc_profile(fs_info, type);
9500
9501 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9502 }
9503
9504 /*
9505 * helper to account the unused space of all the readonly block group in the
9506 * space_info. takes mirrors into account.
9507 */
9508 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9509 {
9510 struct btrfs_block_group_cache *block_group;
9511 u64 free_bytes = 0;
9512 int factor;
9513
9514 /* It's df, we don't care if it's racy */
9515 if (list_empty(&sinfo->ro_bgs))
9516 return 0;
9517
9518 spin_lock(&sinfo->lock);
9519 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9520 spin_lock(&block_group->lock);
9521
9522 if (!block_group->ro) {
9523 spin_unlock(&block_group->lock);
9524 continue;
9525 }
9526
9527 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9528 BTRFS_BLOCK_GROUP_RAID10 |
9529 BTRFS_BLOCK_GROUP_DUP))
9530 factor = 2;
9531 else
9532 factor = 1;
9533
9534 free_bytes += (block_group->key.offset -
9535 btrfs_block_group_used(&block_group->item)) *
9536 factor;
9537
9538 spin_unlock(&block_group->lock);
9539 }
9540 spin_unlock(&sinfo->lock);
9541
9542 return free_bytes;
9543 }
9544
9545 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9546 {
9547 struct btrfs_space_info *sinfo = cache->space_info;
9548 u64 num_bytes;
9549
9550 BUG_ON(!cache->ro);
9551
9552 spin_lock(&sinfo->lock);
9553 spin_lock(&cache->lock);
9554 if (!--cache->ro) {
9555 num_bytes = cache->key.offset - cache->reserved -
9556 cache->pinned - cache->bytes_super -
9557 btrfs_block_group_used(&cache->item);
9558 sinfo->bytes_readonly -= num_bytes;
9559 list_del_init(&cache->ro_list);
9560 }
9561 spin_unlock(&cache->lock);
9562 spin_unlock(&sinfo->lock);
9563 }
9564
9565 /*
9566 * checks to see if its even possible to relocate this block group.
9567 *
9568 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9569 * ok to go ahead and try.
9570 */
9571 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9572 {
9573 struct btrfs_root *root = fs_info->extent_root;
9574 struct btrfs_block_group_cache *block_group;
9575 struct btrfs_space_info *space_info;
9576 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9577 struct btrfs_device *device;
9578 struct btrfs_trans_handle *trans;
9579 u64 min_free;
9580 u64 dev_min = 1;
9581 u64 dev_nr = 0;
9582 u64 target;
9583 int debug;
9584 int index;
9585 int full = 0;
9586 int ret = 0;
9587
9588 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9589
9590 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9591
9592 /* odd, couldn't find the block group, leave it alone */
9593 if (!block_group) {
9594 if (debug)
9595 btrfs_warn(fs_info,
9596 "can't find block group for bytenr %llu",
9597 bytenr);
9598 return -1;
9599 }
9600
9601 min_free = btrfs_block_group_used(&block_group->item);
9602
9603 /* no bytes used, we're good */
9604 if (!min_free)
9605 goto out;
9606
9607 space_info = block_group->space_info;
9608 spin_lock(&space_info->lock);
9609
9610 full = space_info->full;
9611
9612 /*
9613 * if this is the last block group we have in this space, we can't
9614 * relocate it unless we're able to allocate a new chunk below.
9615 *
9616 * Otherwise, we need to make sure we have room in the space to handle
9617 * all of the extents from this block group. If we can, we're good
9618 */
9619 if ((space_info->total_bytes != block_group->key.offset) &&
9620 (btrfs_space_info_used(space_info, false) + min_free <
9621 space_info->total_bytes)) {
9622 spin_unlock(&space_info->lock);
9623 goto out;
9624 }
9625 spin_unlock(&space_info->lock);
9626
9627 /*
9628 * ok we don't have enough space, but maybe we have free space on our
9629 * devices to allocate new chunks for relocation, so loop through our
9630 * alloc devices and guess if we have enough space. if this block
9631 * group is going to be restriped, run checks against the target
9632 * profile instead of the current one.
9633 */
9634 ret = -1;
9635
9636 /*
9637 * index:
9638 * 0: raid10
9639 * 1: raid1
9640 * 2: dup
9641 * 3: raid0
9642 * 4: single
9643 */
9644 target = get_restripe_target(fs_info, block_group->flags);
9645 if (target) {
9646 index = __get_raid_index(extended_to_chunk(target));
9647 } else {
9648 /*
9649 * this is just a balance, so if we were marked as full
9650 * we know there is no space for a new chunk
9651 */
9652 if (full) {
9653 if (debug)
9654 btrfs_warn(fs_info,
9655 "no space to alloc new chunk for block group %llu",
9656 block_group->key.objectid);
9657 goto out;
9658 }
9659
9660 index = get_block_group_index(block_group);
9661 }
9662
9663 if (index == BTRFS_RAID_RAID10) {
9664 dev_min = 4;
9665 /* Divide by 2 */
9666 min_free >>= 1;
9667 } else if (index == BTRFS_RAID_RAID1) {
9668 dev_min = 2;
9669 } else if (index == BTRFS_RAID_DUP) {
9670 /* Multiply by 2 */
9671 min_free <<= 1;
9672 } else if (index == BTRFS_RAID_RAID0) {
9673 dev_min = fs_devices->rw_devices;
9674 min_free = div64_u64(min_free, dev_min);
9675 }
9676
9677 /* We need to do this so that we can look at pending chunks */
9678 trans = btrfs_join_transaction(root);
9679 if (IS_ERR(trans)) {
9680 ret = PTR_ERR(trans);
9681 goto out;
9682 }
9683
9684 mutex_lock(&fs_info->chunk_mutex);
9685 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9686 u64 dev_offset;
9687
9688 /*
9689 * check to make sure we can actually find a chunk with enough
9690 * space to fit our block group in.
9691 */
9692 if (device->total_bytes > device->bytes_used + min_free &&
9693 !device->is_tgtdev_for_dev_replace) {
9694 ret = find_free_dev_extent(trans, device, min_free,
9695 &dev_offset, NULL);
9696 if (!ret)
9697 dev_nr++;
9698
9699 if (dev_nr >= dev_min)
9700 break;
9701
9702 ret = -1;
9703 }
9704 }
9705 if (debug && ret == -1)
9706 btrfs_warn(fs_info,
9707 "no space to allocate a new chunk for block group %llu",
9708 block_group->key.objectid);
9709 mutex_unlock(&fs_info->chunk_mutex);
9710 btrfs_end_transaction(trans);
9711 out:
9712 btrfs_put_block_group(block_group);
9713 return ret;
9714 }
9715
9716 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9717 struct btrfs_path *path,
9718 struct btrfs_key *key)
9719 {
9720 struct btrfs_root *root = fs_info->extent_root;
9721 int ret = 0;
9722 struct btrfs_key found_key;
9723 struct extent_buffer *leaf;
9724 int slot;
9725
9726 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9727 if (ret < 0)
9728 goto out;
9729
9730 while (1) {
9731 slot = path->slots[0];
9732 leaf = path->nodes[0];
9733 if (slot >= btrfs_header_nritems(leaf)) {
9734 ret = btrfs_next_leaf(root, path);
9735 if (ret == 0)
9736 continue;
9737 if (ret < 0)
9738 goto out;
9739 break;
9740 }
9741 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9742
9743 if (found_key.objectid >= key->objectid &&
9744 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9745 struct extent_map_tree *em_tree;
9746 struct extent_map *em;
9747
9748 em_tree = &root->fs_info->mapping_tree.map_tree;
9749 read_lock(&em_tree->lock);
9750 em = lookup_extent_mapping(em_tree, found_key.objectid,
9751 found_key.offset);
9752 read_unlock(&em_tree->lock);
9753 if (!em) {
9754 btrfs_err(fs_info,
9755 "logical %llu len %llu found bg but no related chunk",
9756 found_key.objectid, found_key.offset);
9757 ret = -ENOENT;
9758 } else {
9759 ret = 0;
9760 }
9761 free_extent_map(em);
9762 goto out;
9763 }
9764 path->slots[0]++;
9765 }
9766 out:
9767 return ret;
9768 }
9769
9770 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9771 {
9772 struct btrfs_block_group_cache *block_group;
9773 u64 last = 0;
9774
9775 while (1) {
9776 struct inode *inode;
9777
9778 block_group = btrfs_lookup_first_block_group(info, last);
9779 while (block_group) {
9780 spin_lock(&block_group->lock);
9781 if (block_group->iref)
9782 break;
9783 spin_unlock(&block_group->lock);
9784 block_group = next_block_group(info, block_group);
9785 }
9786 if (!block_group) {
9787 if (last == 0)
9788 break;
9789 last = 0;
9790 continue;
9791 }
9792
9793 inode = block_group->inode;
9794 block_group->iref = 0;
9795 block_group->inode = NULL;
9796 spin_unlock(&block_group->lock);
9797 ASSERT(block_group->io_ctl.inode == NULL);
9798 iput(inode);
9799 last = block_group->key.objectid + block_group->key.offset;
9800 btrfs_put_block_group(block_group);
9801 }
9802 }
9803
9804 /*
9805 * Must be called only after stopping all workers, since we could have block
9806 * group caching kthreads running, and therefore they could race with us if we
9807 * freed the block groups before stopping them.
9808 */
9809 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9810 {
9811 struct btrfs_block_group_cache *block_group;
9812 struct btrfs_space_info *space_info;
9813 struct btrfs_caching_control *caching_ctl;
9814 struct rb_node *n;
9815
9816 down_write(&info->commit_root_sem);
9817 while (!list_empty(&info->caching_block_groups)) {
9818 caching_ctl = list_entry(info->caching_block_groups.next,
9819 struct btrfs_caching_control, list);
9820 list_del(&caching_ctl->list);
9821 put_caching_control(caching_ctl);
9822 }
9823 up_write(&info->commit_root_sem);
9824
9825 spin_lock(&info->unused_bgs_lock);
9826 while (!list_empty(&info->unused_bgs)) {
9827 block_group = list_first_entry(&info->unused_bgs,
9828 struct btrfs_block_group_cache,
9829 bg_list);
9830 list_del_init(&block_group->bg_list);
9831 btrfs_put_block_group(block_group);
9832 }
9833 spin_unlock(&info->unused_bgs_lock);
9834
9835 spin_lock(&info->block_group_cache_lock);
9836 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9837 block_group = rb_entry(n, struct btrfs_block_group_cache,
9838 cache_node);
9839 rb_erase(&block_group->cache_node,
9840 &info->block_group_cache_tree);
9841 RB_CLEAR_NODE(&block_group->cache_node);
9842 spin_unlock(&info->block_group_cache_lock);
9843
9844 down_write(&block_group->space_info->groups_sem);
9845 list_del(&block_group->list);
9846 up_write(&block_group->space_info->groups_sem);
9847
9848 /*
9849 * We haven't cached this block group, which means we could
9850 * possibly have excluded extents on this block group.
9851 */
9852 if (block_group->cached == BTRFS_CACHE_NO ||
9853 block_group->cached == BTRFS_CACHE_ERROR)
9854 free_excluded_extents(info, block_group);
9855
9856 btrfs_remove_free_space_cache(block_group);
9857 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9858 ASSERT(list_empty(&block_group->dirty_list));
9859 ASSERT(list_empty(&block_group->io_list));
9860 ASSERT(list_empty(&block_group->bg_list));
9861 ASSERT(atomic_read(&block_group->count) == 1);
9862 btrfs_put_block_group(block_group);
9863
9864 spin_lock(&info->block_group_cache_lock);
9865 }
9866 spin_unlock(&info->block_group_cache_lock);
9867
9868 /* now that all the block groups are freed, go through and
9869 * free all the space_info structs. This is only called during
9870 * the final stages of unmount, and so we know nobody is
9871 * using them. We call synchronize_rcu() once before we start,
9872 * just to be on the safe side.
9873 */
9874 synchronize_rcu();
9875
9876 release_global_block_rsv(info);
9877
9878 while (!list_empty(&info->space_info)) {
9879 int i;
9880
9881 space_info = list_entry(info->space_info.next,
9882 struct btrfs_space_info,
9883 list);
9884
9885 /*
9886 * Do not hide this behind enospc_debug, this is actually
9887 * important and indicates a real bug if this happens.
9888 */
9889 if (WARN_ON(space_info->bytes_pinned > 0 ||
9890 space_info->bytes_reserved > 0 ||
9891 space_info->bytes_may_use > 0))
9892 dump_space_info(info, space_info, 0, 0);
9893 list_del(&space_info->list);
9894 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9895 struct kobject *kobj;
9896 kobj = space_info->block_group_kobjs[i];
9897 space_info->block_group_kobjs[i] = NULL;
9898 if (kobj) {
9899 kobject_del(kobj);
9900 kobject_put(kobj);
9901 }
9902 }
9903 kobject_del(&space_info->kobj);
9904 kobject_put(&space_info->kobj);
9905 }
9906 return 0;
9907 }
9908
9909 static void link_block_group(struct btrfs_block_group_cache *cache)
9910 {
9911 struct btrfs_space_info *space_info = cache->space_info;
9912 int index = get_block_group_index(cache);
9913 bool first = false;
9914
9915 down_write(&space_info->groups_sem);
9916 if (list_empty(&space_info->block_groups[index]))
9917 first = true;
9918 list_add_tail(&cache->list, &space_info->block_groups[index]);
9919 up_write(&space_info->groups_sem);
9920
9921 if (first) {
9922 struct raid_kobject *rkobj;
9923 int ret;
9924
9925 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9926 if (!rkobj)
9927 goto out_err;
9928 rkobj->raid_type = index;
9929 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9930 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9931 "%s", get_raid_name(index));
9932 if (ret) {
9933 kobject_put(&rkobj->kobj);
9934 goto out_err;
9935 }
9936 space_info->block_group_kobjs[index] = &rkobj->kobj;
9937 }
9938
9939 return;
9940 out_err:
9941 btrfs_warn(cache->fs_info,
9942 "failed to add kobject for block cache, ignoring");
9943 }
9944
9945 static struct btrfs_block_group_cache *
9946 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9947 u64 start, u64 size)
9948 {
9949 struct btrfs_block_group_cache *cache;
9950
9951 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9952 if (!cache)
9953 return NULL;
9954
9955 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9956 GFP_NOFS);
9957 if (!cache->free_space_ctl) {
9958 kfree(cache);
9959 return NULL;
9960 }
9961
9962 cache->key.objectid = start;
9963 cache->key.offset = size;
9964 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9965
9966 cache->fs_info = fs_info;
9967 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9968 set_free_space_tree_thresholds(cache);
9969
9970 atomic_set(&cache->count, 1);
9971 spin_lock_init(&cache->lock);
9972 init_rwsem(&cache->data_rwsem);
9973 INIT_LIST_HEAD(&cache->list);
9974 INIT_LIST_HEAD(&cache->cluster_list);
9975 INIT_LIST_HEAD(&cache->bg_list);
9976 INIT_LIST_HEAD(&cache->ro_list);
9977 INIT_LIST_HEAD(&cache->dirty_list);
9978 INIT_LIST_HEAD(&cache->io_list);
9979 btrfs_init_free_space_ctl(cache);
9980 atomic_set(&cache->trimming, 0);
9981 mutex_init(&cache->free_space_lock);
9982 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9983
9984 return cache;
9985 }
9986
9987 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9988 {
9989 struct btrfs_path *path;
9990 int ret;
9991 struct btrfs_block_group_cache *cache;
9992 struct btrfs_space_info *space_info;
9993 struct btrfs_key key;
9994 struct btrfs_key found_key;
9995 struct extent_buffer *leaf;
9996 int need_clear = 0;
9997 u64 cache_gen;
9998 u64 feature;
9999 int mixed;
10000
10001 feature = btrfs_super_incompat_flags(info->super_copy);
10002 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10003
10004 key.objectid = 0;
10005 key.offset = 0;
10006 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10007 path = btrfs_alloc_path();
10008 if (!path)
10009 return -ENOMEM;
10010 path->reada = READA_FORWARD;
10011
10012 cache_gen = btrfs_super_cache_generation(info->super_copy);
10013 if (btrfs_test_opt(info, SPACE_CACHE) &&
10014 btrfs_super_generation(info->super_copy) != cache_gen)
10015 need_clear = 1;
10016 if (btrfs_test_opt(info, CLEAR_CACHE))
10017 need_clear = 1;
10018
10019 while (1) {
10020 ret = find_first_block_group(info, path, &key);
10021 if (ret > 0)
10022 break;
10023 if (ret != 0)
10024 goto error;
10025
10026 leaf = path->nodes[0];
10027 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10028
10029 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10030 found_key.offset);
10031 if (!cache) {
10032 ret = -ENOMEM;
10033 goto error;
10034 }
10035
10036 if (need_clear) {
10037 /*
10038 * When we mount with old space cache, we need to
10039 * set BTRFS_DC_CLEAR and set dirty flag.
10040 *
10041 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10042 * truncate the old free space cache inode and
10043 * setup a new one.
10044 * b) Setting 'dirty flag' makes sure that we flush
10045 * the new space cache info onto disk.
10046 */
10047 if (btrfs_test_opt(info, SPACE_CACHE))
10048 cache->disk_cache_state = BTRFS_DC_CLEAR;
10049 }
10050
10051 read_extent_buffer(leaf, &cache->item,
10052 btrfs_item_ptr_offset(leaf, path->slots[0]),
10053 sizeof(cache->item));
10054 cache->flags = btrfs_block_group_flags(&cache->item);
10055 if (!mixed &&
10056 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10057 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10058 btrfs_err(info,
10059 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10060 cache->key.objectid);
10061 ret = -EINVAL;
10062 goto error;
10063 }
10064
10065 key.objectid = found_key.objectid + found_key.offset;
10066 btrfs_release_path(path);
10067
10068 /*
10069 * We need to exclude the super stripes now so that the space
10070 * info has super bytes accounted for, otherwise we'll think
10071 * we have more space than we actually do.
10072 */
10073 ret = exclude_super_stripes(info, cache);
10074 if (ret) {
10075 /*
10076 * We may have excluded something, so call this just in
10077 * case.
10078 */
10079 free_excluded_extents(info, cache);
10080 btrfs_put_block_group(cache);
10081 goto error;
10082 }
10083
10084 /*
10085 * check for two cases, either we are full, and therefore
10086 * don't need to bother with the caching work since we won't
10087 * find any space, or we are empty, and we can just add all
10088 * the space in and be done with it. This saves us _alot_ of
10089 * time, particularly in the full case.
10090 */
10091 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10092 cache->last_byte_to_unpin = (u64)-1;
10093 cache->cached = BTRFS_CACHE_FINISHED;
10094 free_excluded_extents(info, cache);
10095 } else if (btrfs_block_group_used(&cache->item) == 0) {
10096 cache->last_byte_to_unpin = (u64)-1;
10097 cache->cached = BTRFS_CACHE_FINISHED;
10098 add_new_free_space(cache, info,
10099 found_key.objectid,
10100 found_key.objectid +
10101 found_key.offset);
10102 free_excluded_extents(info, cache);
10103 }
10104
10105 ret = btrfs_add_block_group_cache(info, cache);
10106 if (ret) {
10107 btrfs_remove_free_space_cache(cache);
10108 btrfs_put_block_group(cache);
10109 goto error;
10110 }
10111
10112 trace_btrfs_add_block_group(info, cache, 0);
10113 update_space_info(info, cache->flags, found_key.offset,
10114 btrfs_block_group_used(&cache->item),
10115 cache->bytes_super, &space_info);
10116
10117 cache->space_info = space_info;
10118
10119 link_block_group(cache);
10120
10121 set_avail_alloc_bits(info, cache->flags);
10122 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10123 inc_block_group_ro(cache, 1);
10124 } else if (btrfs_block_group_used(&cache->item) == 0) {
10125 spin_lock(&info->unused_bgs_lock);
10126 /* Should always be true but just in case. */
10127 if (list_empty(&cache->bg_list)) {
10128 btrfs_get_block_group(cache);
10129 list_add_tail(&cache->bg_list,
10130 &info->unused_bgs);
10131 }
10132 spin_unlock(&info->unused_bgs_lock);
10133 }
10134 }
10135
10136 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10137 if (!(get_alloc_profile(info, space_info->flags) &
10138 (BTRFS_BLOCK_GROUP_RAID10 |
10139 BTRFS_BLOCK_GROUP_RAID1 |
10140 BTRFS_BLOCK_GROUP_RAID5 |
10141 BTRFS_BLOCK_GROUP_RAID6 |
10142 BTRFS_BLOCK_GROUP_DUP)))
10143 continue;
10144 /*
10145 * avoid allocating from un-mirrored block group if there are
10146 * mirrored block groups.
10147 */
10148 list_for_each_entry(cache,
10149 &space_info->block_groups[BTRFS_RAID_RAID0],
10150 list)
10151 inc_block_group_ro(cache, 1);
10152 list_for_each_entry(cache,
10153 &space_info->block_groups[BTRFS_RAID_SINGLE],
10154 list)
10155 inc_block_group_ro(cache, 1);
10156 }
10157
10158 init_global_block_rsv(info);
10159 ret = 0;
10160 error:
10161 btrfs_free_path(path);
10162 return ret;
10163 }
10164
10165 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10166 struct btrfs_fs_info *fs_info)
10167 {
10168 struct btrfs_block_group_cache *block_group, *tmp;
10169 struct btrfs_root *extent_root = fs_info->extent_root;
10170 struct btrfs_block_group_item item;
10171 struct btrfs_key key;
10172 int ret = 0;
10173 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10174
10175 trans->can_flush_pending_bgs = false;
10176 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10177 if (ret)
10178 goto next;
10179
10180 spin_lock(&block_group->lock);
10181 memcpy(&item, &block_group->item, sizeof(item));
10182 memcpy(&key, &block_group->key, sizeof(key));
10183 spin_unlock(&block_group->lock);
10184
10185 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10186 sizeof(item));
10187 if (ret)
10188 btrfs_abort_transaction(trans, ret);
10189 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10190 key.offset);
10191 if (ret)
10192 btrfs_abort_transaction(trans, ret);
10193 add_block_group_free_space(trans, fs_info, block_group);
10194 /* already aborted the transaction if it failed. */
10195 next:
10196 list_del_init(&block_group->bg_list);
10197 }
10198 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10199 }
10200
10201 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10202 struct btrfs_fs_info *fs_info, u64 bytes_used,
10203 u64 type, u64 chunk_offset, u64 size)
10204 {
10205 struct btrfs_block_group_cache *cache;
10206 int ret;
10207
10208 btrfs_set_log_full_commit(fs_info, trans);
10209
10210 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10211 if (!cache)
10212 return -ENOMEM;
10213
10214 btrfs_set_block_group_used(&cache->item, bytes_used);
10215 btrfs_set_block_group_chunk_objectid(&cache->item,
10216 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10217 btrfs_set_block_group_flags(&cache->item, type);
10218
10219 cache->flags = type;
10220 cache->last_byte_to_unpin = (u64)-1;
10221 cache->cached = BTRFS_CACHE_FINISHED;
10222 cache->needs_free_space = 1;
10223 ret = exclude_super_stripes(fs_info, cache);
10224 if (ret) {
10225 /*
10226 * We may have excluded something, so call this just in
10227 * case.
10228 */
10229 free_excluded_extents(fs_info, cache);
10230 btrfs_put_block_group(cache);
10231 return ret;
10232 }
10233
10234 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10235
10236 free_excluded_extents(fs_info, cache);
10237
10238 #ifdef CONFIG_BTRFS_DEBUG
10239 if (btrfs_should_fragment_free_space(cache)) {
10240 u64 new_bytes_used = size - bytes_used;
10241
10242 bytes_used += new_bytes_used >> 1;
10243 fragment_free_space(cache);
10244 }
10245 #endif
10246 /*
10247 * Ensure the corresponding space_info object is created and
10248 * assigned to our block group. We want our bg to be added to the rbtree
10249 * with its ->space_info set.
10250 */
10251 cache->space_info = __find_space_info(fs_info, cache->flags);
10252 if (!cache->space_info) {
10253 ret = create_space_info(fs_info, cache->flags,
10254 &cache->space_info);
10255 if (ret) {
10256 btrfs_remove_free_space_cache(cache);
10257 btrfs_put_block_group(cache);
10258 return ret;
10259 }
10260 }
10261
10262 ret = btrfs_add_block_group_cache(fs_info, cache);
10263 if (ret) {
10264 btrfs_remove_free_space_cache(cache);
10265 btrfs_put_block_group(cache);
10266 return ret;
10267 }
10268
10269 /*
10270 * Now that our block group has its ->space_info set and is inserted in
10271 * the rbtree, update the space info's counters.
10272 */
10273 trace_btrfs_add_block_group(fs_info, cache, 1);
10274 update_space_info(fs_info, cache->flags, size, bytes_used,
10275 cache->bytes_super, &cache->space_info);
10276 update_global_block_rsv(fs_info);
10277
10278 link_block_group(cache);
10279
10280 list_add_tail(&cache->bg_list, &trans->new_bgs);
10281
10282 set_avail_alloc_bits(fs_info, type);
10283 return 0;
10284 }
10285
10286 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10287 {
10288 u64 extra_flags = chunk_to_extended(flags) &
10289 BTRFS_EXTENDED_PROFILE_MASK;
10290
10291 write_seqlock(&fs_info->profiles_lock);
10292 if (flags & BTRFS_BLOCK_GROUP_DATA)
10293 fs_info->avail_data_alloc_bits &= ~extra_flags;
10294 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10295 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10296 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10297 fs_info->avail_system_alloc_bits &= ~extra_flags;
10298 write_sequnlock(&fs_info->profiles_lock);
10299 }
10300
10301 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10302 struct btrfs_fs_info *fs_info, u64 group_start,
10303 struct extent_map *em)
10304 {
10305 struct btrfs_root *root = fs_info->extent_root;
10306 struct btrfs_path *path;
10307 struct btrfs_block_group_cache *block_group;
10308 struct btrfs_free_cluster *cluster;
10309 struct btrfs_root *tree_root = fs_info->tree_root;
10310 struct btrfs_key key;
10311 struct inode *inode;
10312 struct kobject *kobj = NULL;
10313 int ret;
10314 int index;
10315 int factor;
10316 struct btrfs_caching_control *caching_ctl = NULL;
10317 bool remove_em;
10318
10319 block_group = btrfs_lookup_block_group(fs_info, group_start);
10320 BUG_ON(!block_group);
10321 BUG_ON(!block_group->ro);
10322
10323 /*
10324 * Free the reserved super bytes from this block group before
10325 * remove it.
10326 */
10327 free_excluded_extents(fs_info, block_group);
10328 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10329 block_group->key.offset);
10330
10331 memcpy(&key, &block_group->key, sizeof(key));
10332 index = get_block_group_index(block_group);
10333 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10334 BTRFS_BLOCK_GROUP_RAID1 |
10335 BTRFS_BLOCK_GROUP_RAID10))
10336 factor = 2;
10337 else
10338 factor = 1;
10339
10340 /* make sure this block group isn't part of an allocation cluster */
10341 cluster = &fs_info->data_alloc_cluster;
10342 spin_lock(&cluster->refill_lock);
10343 btrfs_return_cluster_to_free_space(block_group, cluster);
10344 spin_unlock(&cluster->refill_lock);
10345
10346 /*
10347 * make sure this block group isn't part of a metadata
10348 * allocation cluster
10349 */
10350 cluster = &fs_info->meta_alloc_cluster;
10351 spin_lock(&cluster->refill_lock);
10352 btrfs_return_cluster_to_free_space(block_group, cluster);
10353 spin_unlock(&cluster->refill_lock);
10354
10355 path = btrfs_alloc_path();
10356 if (!path) {
10357 ret = -ENOMEM;
10358 goto out;
10359 }
10360
10361 /*
10362 * get the inode first so any iput calls done for the io_list
10363 * aren't the final iput (no unlinks allowed now)
10364 */
10365 inode = lookup_free_space_inode(fs_info, block_group, path);
10366
10367 mutex_lock(&trans->transaction->cache_write_mutex);
10368 /*
10369 * make sure our free spache cache IO is done before remove the
10370 * free space inode
10371 */
10372 spin_lock(&trans->transaction->dirty_bgs_lock);
10373 if (!list_empty(&block_group->io_list)) {
10374 list_del_init(&block_group->io_list);
10375
10376 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10377
10378 spin_unlock(&trans->transaction->dirty_bgs_lock);
10379 btrfs_wait_cache_io(trans, block_group, path);
10380 btrfs_put_block_group(block_group);
10381 spin_lock(&trans->transaction->dirty_bgs_lock);
10382 }
10383
10384 if (!list_empty(&block_group->dirty_list)) {
10385 list_del_init(&block_group->dirty_list);
10386 btrfs_put_block_group(block_group);
10387 }
10388 spin_unlock(&trans->transaction->dirty_bgs_lock);
10389 mutex_unlock(&trans->transaction->cache_write_mutex);
10390
10391 if (!IS_ERR(inode)) {
10392 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10393 if (ret) {
10394 btrfs_add_delayed_iput(inode);
10395 goto out;
10396 }
10397 clear_nlink(inode);
10398 /* One for the block groups ref */
10399 spin_lock(&block_group->lock);
10400 if (block_group->iref) {
10401 block_group->iref = 0;
10402 block_group->inode = NULL;
10403 spin_unlock(&block_group->lock);
10404 iput(inode);
10405 } else {
10406 spin_unlock(&block_group->lock);
10407 }
10408 /* One for our lookup ref */
10409 btrfs_add_delayed_iput(inode);
10410 }
10411
10412 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10413 key.offset = block_group->key.objectid;
10414 key.type = 0;
10415
10416 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10417 if (ret < 0)
10418 goto out;
10419 if (ret > 0)
10420 btrfs_release_path(path);
10421 if (ret == 0) {
10422 ret = btrfs_del_item(trans, tree_root, path);
10423 if (ret)
10424 goto out;
10425 btrfs_release_path(path);
10426 }
10427
10428 spin_lock(&fs_info->block_group_cache_lock);
10429 rb_erase(&block_group->cache_node,
10430 &fs_info->block_group_cache_tree);
10431 RB_CLEAR_NODE(&block_group->cache_node);
10432
10433 if (fs_info->first_logical_byte == block_group->key.objectid)
10434 fs_info->first_logical_byte = (u64)-1;
10435 spin_unlock(&fs_info->block_group_cache_lock);
10436
10437 down_write(&block_group->space_info->groups_sem);
10438 /*
10439 * we must use list_del_init so people can check to see if they
10440 * are still on the list after taking the semaphore
10441 */
10442 list_del_init(&block_group->list);
10443 if (list_empty(&block_group->space_info->block_groups[index])) {
10444 kobj = block_group->space_info->block_group_kobjs[index];
10445 block_group->space_info->block_group_kobjs[index] = NULL;
10446 clear_avail_alloc_bits(fs_info, block_group->flags);
10447 }
10448 up_write(&block_group->space_info->groups_sem);
10449 if (kobj) {
10450 kobject_del(kobj);
10451 kobject_put(kobj);
10452 }
10453
10454 if (block_group->has_caching_ctl)
10455 caching_ctl = get_caching_control(block_group);
10456 if (block_group->cached == BTRFS_CACHE_STARTED)
10457 wait_block_group_cache_done(block_group);
10458 if (block_group->has_caching_ctl) {
10459 down_write(&fs_info->commit_root_sem);
10460 if (!caching_ctl) {
10461 struct btrfs_caching_control *ctl;
10462
10463 list_for_each_entry(ctl,
10464 &fs_info->caching_block_groups, list)
10465 if (ctl->block_group == block_group) {
10466 caching_ctl = ctl;
10467 refcount_inc(&caching_ctl->count);
10468 break;
10469 }
10470 }
10471 if (caching_ctl)
10472 list_del_init(&caching_ctl->list);
10473 up_write(&fs_info->commit_root_sem);
10474 if (caching_ctl) {
10475 /* Once for the caching bgs list and once for us. */
10476 put_caching_control(caching_ctl);
10477 put_caching_control(caching_ctl);
10478 }
10479 }
10480
10481 spin_lock(&trans->transaction->dirty_bgs_lock);
10482 if (!list_empty(&block_group->dirty_list)) {
10483 WARN_ON(1);
10484 }
10485 if (!list_empty(&block_group->io_list)) {
10486 WARN_ON(1);
10487 }
10488 spin_unlock(&trans->transaction->dirty_bgs_lock);
10489 btrfs_remove_free_space_cache(block_group);
10490
10491 spin_lock(&block_group->space_info->lock);
10492 list_del_init(&block_group->ro_list);
10493
10494 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10495 WARN_ON(block_group->space_info->total_bytes
10496 < block_group->key.offset);
10497 WARN_ON(block_group->space_info->bytes_readonly
10498 < block_group->key.offset);
10499 WARN_ON(block_group->space_info->disk_total
10500 < block_group->key.offset * factor);
10501 }
10502 block_group->space_info->total_bytes -= block_group->key.offset;
10503 block_group->space_info->bytes_readonly -= block_group->key.offset;
10504 block_group->space_info->disk_total -= block_group->key.offset * factor;
10505
10506 spin_unlock(&block_group->space_info->lock);
10507
10508 memcpy(&key, &block_group->key, sizeof(key));
10509
10510 mutex_lock(&fs_info->chunk_mutex);
10511 if (!list_empty(&em->list)) {
10512 /* We're in the transaction->pending_chunks list. */
10513 free_extent_map(em);
10514 }
10515 spin_lock(&block_group->lock);
10516 block_group->removed = 1;
10517 /*
10518 * At this point trimming can't start on this block group, because we
10519 * removed the block group from the tree fs_info->block_group_cache_tree
10520 * so no one can't find it anymore and even if someone already got this
10521 * block group before we removed it from the rbtree, they have already
10522 * incremented block_group->trimming - if they didn't, they won't find
10523 * any free space entries because we already removed them all when we
10524 * called btrfs_remove_free_space_cache().
10525 *
10526 * And we must not remove the extent map from the fs_info->mapping_tree
10527 * to prevent the same logical address range and physical device space
10528 * ranges from being reused for a new block group. This is because our
10529 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10530 * completely transactionless, so while it is trimming a range the
10531 * currently running transaction might finish and a new one start,
10532 * allowing for new block groups to be created that can reuse the same
10533 * physical device locations unless we take this special care.
10534 *
10535 * There may also be an implicit trim operation if the file system
10536 * is mounted with -odiscard. The same protections must remain
10537 * in place until the extents have been discarded completely when
10538 * the transaction commit has completed.
10539 */
10540 remove_em = (atomic_read(&block_group->trimming) == 0);
10541 /*
10542 * Make sure a trimmer task always sees the em in the pinned_chunks list
10543 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10544 * before checking block_group->removed).
10545 */
10546 if (!remove_em) {
10547 /*
10548 * Our em might be in trans->transaction->pending_chunks which
10549 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10550 * and so is the fs_info->pinned_chunks list.
10551 *
10552 * So at this point we must be holding the chunk_mutex to avoid
10553 * any races with chunk allocation (more specifically at
10554 * volumes.c:contains_pending_extent()), to ensure it always
10555 * sees the em, either in the pending_chunks list or in the
10556 * pinned_chunks list.
10557 */
10558 list_move_tail(&em->list, &fs_info->pinned_chunks);
10559 }
10560 spin_unlock(&block_group->lock);
10561
10562 if (remove_em) {
10563 struct extent_map_tree *em_tree;
10564
10565 em_tree = &fs_info->mapping_tree.map_tree;
10566 write_lock(&em_tree->lock);
10567 /*
10568 * The em might be in the pending_chunks list, so make sure the
10569 * chunk mutex is locked, since remove_extent_mapping() will
10570 * delete us from that list.
10571 */
10572 remove_extent_mapping(em_tree, em);
10573 write_unlock(&em_tree->lock);
10574 /* once for the tree */
10575 free_extent_map(em);
10576 }
10577
10578 mutex_unlock(&fs_info->chunk_mutex);
10579
10580 ret = remove_block_group_free_space(trans, fs_info, block_group);
10581 if (ret)
10582 goto out;
10583
10584 btrfs_put_block_group(block_group);
10585 btrfs_put_block_group(block_group);
10586
10587 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10588 if (ret > 0)
10589 ret = -EIO;
10590 if (ret < 0)
10591 goto out;
10592
10593 ret = btrfs_del_item(trans, root, path);
10594 out:
10595 btrfs_free_path(path);
10596 return ret;
10597 }
10598
10599 struct btrfs_trans_handle *
10600 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10601 const u64 chunk_offset)
10602 {
10603 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10604 struct extent_map *em;
10605 struct map_lookup *map;
10606 unsigned int num_items;
10607
10608 read_lock(&em_tree->lock);
10609 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10610 read_unlock(&em_tree->lock);
10611 ASSERT(em && em->start == chunk_offset);
10612
10613 /*
10614 * We need to reserve 3 + N units from the metadata space info in order
10615 * to remove a block group (done at btrfs_remove_chunk() and at
10616 * btrfs_remove_block_group()), which are used for:
10617 *
10618 * 1 unit for adding the free space inode's orphan (located in the tree
10619 * of tree roots).
10620 * 1 unit for deleting the block group item (located in the extent
10621 * tree).
10622 * 1 unit for deleting the free space item (located in tree of tree
10623 * roots).
10624 * N units for deleting N device extent items corresponding to each
10625 * stripe (located in the device tree).
10626 *
10627 * In order to remove a block group we also need to reserve units in the
10628 * system space info in order to update the chunk tree (update one or
10629 * more device items and remove one chunk item), but this is done at
10630 * btrfs_remove_chunk() through a call to check_system_chunk().
10631 */
10632 map = em->map_lookup;
10633 num_items = 3 + map->num_stripes;
10634 free_extent_map(em);
10635
10636 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10637 num_items, 1);
10638 }
10639
10640 /*
10641 * Process the unused_bgs list and remove any that don't have any allocated
10642 * space inside of them.
10643 */
10644 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10645 {
10646 struct btrfs_block_group_cache *block_group;
10647 struct btrfs_space_info *space_info;
10648 struct btrfs_trans_handle *trans;
10649 int ret = 0;
10650
10651 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10652 return;
10653
10654 spin_lock(&fs_info->unused_bgs_lock);
10655 while (!list_empty(&fs_info->unused_bgs)) {
10656 u64 start, end;
10657 int trimming;
10658
10659 block_group = list_first_entry(&fs_info->unused_bgs,
10660 struct btrfs_block_group_cache,
10661 bg_list);
10662 list_del_init(&block_group->bg_list);
10663
10664 space_info = block_group->space_info;
10665
10666 if (ret || btrfs_mixed_space_info(space_info)) {
10667 btrfs_put_block_group(block_group);
10668 continue;
10669 }
10670 spin_unlock(&fs_info->unused_bgs_lock);
10671
10672 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10673
10674 /* Don't want to race with allocators so take the groups_sem */
10675 down_write(&space_info->groups_sem);
10676 spin_lock(&block_group->lock);
10677 if (block_group->reserved ||
10678 btrfs_block_group_used(&block_group->item) ||
10679 block_group->ro ||
10680 list_is_singular(&block_group->list)) {
10681 /*
10682 * We want to bail if we made new allocations or have
10683 * outstanding allocations in this block group. We do
10684 * the ro check in case balance is currently acting on
10685 * this block group.
10686 */
10687 spin_unlock(&block_group->lock);
10688 up_write(&space_info->groups_sem);
10689 goto next;
10690 }
10691 spin_unlock(&block_group->lock);
10692
10693 /* We don't want to force the issue, only flip if it's ok. */
10694 ret = inc_block_group_ro(block_group, 0);
10695 up_write(&space_info->groups_sem);
10696 if (ret < 0) {
10697 ret = 0;
10698 goto next;
10699 }
10700
10701 /*
10702 * Want to do this before we do anything else so we can recover
10703 * properly if we fail to join the transaction.
10704 */
10705 trans = btrfs_start_trans_remove_block_group(fs_info,
10706 block_group->key.objectid);
10707 if (IS_ERR(trans)) {
10708 btrfs_dec_block_group_ro(block_group);
10709 ret = PTR_ERR(trans);
10710 goto next;
10711 }
10712
10713 /*
10714 * We could have pending pinned extents for this block group,
10715 * just delete them, we don't care about them anymore.
10716 */
10717 start = block_group->key.objectid;
10718 end = start + block_group->key.offset - 1;
10719 /*
10720 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10721 * btrfs_finish_extent_commit(). If we are at transaction N,
10722 * another task might be running finish_extent_commit() for the
10723 * previous transaction N - 1, and have seen a range belonging
10724 * to the block group in freed_extents[] before we were able to
10725 * clear the whole block group range from freed_extents[]. This
10726 * means that task can lookup for the block group after we
10727 * unpinned it from freed_extents[] and removed it, leading to
10728 * a BUG_ON() at btrfs_unpin_extent_range().
10729 */
10730 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10731 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10732 EXTENT_DIRTY);
10733 if (ret) {
10734 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10735 btrfs_dec_block_group_ro(block_group);
10736 goto end_trans;
10737 }
10738 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10739 EXTENT_DIRTY);
10740 if (ret) {
10741 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10742 btrfs_dec_block_group_ro(block_group);
10743 goto end_trans;
10744 }
10745 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10746
10747 /* Reset pinned so btrfs_put_block_group doesn't complain */
10748 spin_lock(&space_info->lock);
10749 spin_lock(&block_group->lock);
10750
10751 space_info->bytes_pinned -= block_group->pinned;
10752 space_info->bytes_readonly += block_group->pinned;
10753 percpu_counter_add(&space_info->total_bytes_pinned,
10754 -block_group->pinned);
10755 block_group->pinned = 0;
10756
10757 spin_unlock(&block_group->lock);
10758 spin_unlock(&space_info->lock);
10759
10760 /* DISCARD can flip during remount */
10761 trimming = btrfs_test_opt(fs_info, DISCARD);
10762
10763 /* Implicit trim during transaction commit. */
10764 if (trimming)
10765 btrfs_get_block_group_trimming(block_group);
10766
10767 /*
10768 * Btrfs_remove_chunk will abort the transaction if things go
10769 * horribly wrong.
10770 */
10771 ret = btrfs_remove_chunk(trans, fs_info,
10772 block_group->key.objectid);
10773
10774 if (ret) {
10775 if (trimming)
10776 btrfs_put_block_group_trimming(block_group);
10777 goto end_trans;
10778 }
10779
10780 /*
10781 * If we're not mounted with -odiscard, we can just forget
10782 * about this block group. Otherwise we'll need to wait
10783 * until transaction commit to do the actual discard.
10784 */
10785 if (trimming) {
10786 spin_lock(&fs_info->unused_bgs_lock);
10787 /*
10788 * A concurrent scrub might have added us to the list
10789 * fs_info->unused_bgs, so use a list_move operation
10790 * to add the block group to the deleted_bgs list.
10791 */
10792 list_move(&block_group->bg_list,
10793 &trans->transaction->deleted_bgs);
10794 spin_unlock(&fs_info->unused_bgs_lock);
10795 btrfs_get_block_group(block_group);
10796 }
10797 end_trans:
10798 btrfs_end_transaction(trans);
10799 next:
10800 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10801 btrfs_put_block_group(block_group);
10802 spin_lock(&fs_info->unused_bgs_lock);
10803 }
10804 spin_unlock(&fs_info->unused_bgs_lock);
10805 }
10806
10807 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10808 {
10809 struct btrfs_space_info *space_info;
10810 struct btrfs_super_block *disk_super;
10811 u64 features;
10812 u64 flags;
10813 int mixed = 0;
10814 int ret;
10815
10816 disk_super = fs_info->super_copy;
10817 if (!btrfs_super_root(disk_super))
10818 return -EINVAL;
10819
10820 features = btrfs_super_incompat_flags(disk_super);
10821 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10822 mixed = 1;
10823
10824 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10825 ret = create_space_info(fs_info, flags, &space_info);
10826 if (ret)
10827 goto out;
10828
10829 if (mixed) {
10830 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10831 ret = create_space_info(fs_info, flags, &space_info);
10832 } else {
10833 flags = BTRFS_BLOCK_GROUP_METADATA;
10834 ret = create_space_info(fs_info, flags, &space_info);
10835 if (ret)
10836 goto out;
10837
10838 flags = BTRFS_BLOCK_GROUP_DATA;
10839 ret = create_space_info(fs_info, flags, &space_info);
10840 }
10841 out:
10842 return ret;
10843 }
10844
10845 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10846 u64 start, u64 end)
10847 {
10848 return unpin_extent_range(fs_info, start, end, false);
10849 }
10850
10851 /*
10852 * It used to be that old block groups would be left around forever.
10853 * Iterating over them would be enough to trim unused space. Since we
10854 * now automatically remove them, we also need to iterate over unallocated
10855 * space.
10856 *
10857 * We don't want a transaction for this since the discard may take a
10858 * substantial amount of time. We don't require that a transaction be
10859 * running, but we do need to take a running transaction into account
10860 * to ensure that we're not discarding chunks that were released in
10861 * the current transaction.
10862 *
10863 * Holding the chunks lock will prevent other threads from allocating
10864 * or releasing chunks, but it won't prevent a running transaction
10865 * from committing and releasing the memory that the pending chunks
10866 * list head uses. For that, we need to take a reference to the
10867 * transaction.
10868 */
10869 static int btrfs_trim_free_extents(struct btrfs_device *device,
10870 u64 minlen, u64 *trimmed)
10871 {
10872 u64 start = 0, len = 0;
10873 int ret;
10874
10875 *trimmed = 0;
10876
10877 /* Not writeable = nothing to do. */
10878 if (!device->writeable)
10879 return 0;
10880
10881 /* No free space = nothing to do. */
10882 if (device->total_bytes <= device->bytes_used)
10883 return 0;
10884
10885 ret = 0;
10886
10887 while (1) {
10888 struct btrfs_fs_info *fs_info = device->fs_info;
10889 struct btrfs_transaction *trans;
10890 u64 bytes;
10891
10892 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10893 if (ret)
10894 return ret;
10895
10896 down_read(&fs_info->commit_root_sem);
10897
10898 spin_lock(&fs_info->trans_lock);
10899 trans = fs_info->running_transaction;
10900 if (trans)
10901 refcount_inc(&trans->use_count);
10902 spin_unlock(&fs_info->trans_lock);
10903
10904 ret = find_free_dev_extent_start(trans, device, minlen, start,
10905 &start, &len);
10906 if (trans)
10907 btrfs_put_transaction(trans);
10908
10909 if (ret) {
10910 up_read(&fs_info->commit_root_sem);
10911 mutex_unlock(&fs_info->chunk_mutex);
10912 if (ret == -ENOSPC)
10913 ret = 0;
10914 break;
10915 }
10916
10917 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10918 up_read(&fs_info->commit_root_sem);
10919 mutex_unlock(&fs_info->chunk_mutex);
10920
10921 if (ret)
10922 break;
10923
10924 start += len;
10925 *trimmed += bytes;
10926
10927 if (fatal_signal_pending(current)) {
10928 ret = -ERESTARTSYS;
10929 break;
10930 }
10931
10932 cond_resched();
10933 }
10934
10935 return ret;
10936 }
10937
10938 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10939 {
10940 struct btrfs_block_group_cache *cache = NULL;
10941 struct btrfs_device *device;
10942 struct list_head *devices;
10943 u64 group_trimmed;
10944 u64 start;
10945 u64 end;
10946 u64 trimmed = 0;
10947 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10948 int ret = 0;
10949
10950 /*
10951 * try to trim all FS space, our block group may start from non-zero.
10952 */
10953 if (range->len == total_bytes)
10954 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10955 else
10956 cache = btrfs_lookup_block_group(fs_info, range->start);
10957
10958 while (cache) {
10959 if (cache->key.objectid >= (range->start + range->len)) {
10960 btrfs_put_block_group(cache);
10961 break;
10962 }
10963
10964 start = max(range->start, cache->key.objectid);
10965 end = min(range->start + range->len,
10966 cache->key.objectid + cache->key.offset);
10967
10968 if (end - start >= range->minlen) {
10969 if (!block_group_cache_done(cache)) {
10970 ret = cache_block_group(cache, 0);
10971 if (ret) {
10972 btrfs_put_block_group(cache);
10973 break;
10974 }
10975 ret = wait_block_group_cache_done(cache);
10976 if (ret) {
10977 btrfs_put_block_group(cache);
10978 break;
10979 }
10980 }
10981 ret = btrfs_trim_block_group(cache,
10982 &group_trimmed,
10983 start,
10984 end,
10985 range->minlen);
10986
10987 trimmed += group_trimmed;
10988 if (ret) {
10989 btrfs_put_block_group(cache);
10990 break;
10991 }
10992 }
10993
10994 cache = next_block_group(fs_info, cache);
10995 }
10996
10997 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10998 devices = &fs_info->fs_devices->alloc_list;
10999 list_for_each_entry(device, devices, dev_alloc_list) {
11000 ret = btrfs_trim_free_extents(device, range->minlen,
11001 &group_trimmed);
11002 if (ret)
11003 break;
11004
11005 trimmed += group_trimmed;
11006 }
11007 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11008
11009 range->len = trimmed;
11010 return ret;
11011 }
11012
11013 /*
11014 * btrfs_{start,end}_write_no_snapshotting() are similar to
11015 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11016 * data into the page cache through nocow before the subvolume is snapshoted,
11017 * but flush the data into disk after the snapshot creation, or to prevent
11018 * operations while snapshotting is ongoing and that cause the snapshot to be
11019 * inconsistent (writes followed by expanding truncates for example).
11020 */
11021 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11022 {
11023 percpu_counter_dec(&root->subv_writers->counter);
11024 /*
11025 * Make sure counter is updated before we wake up waiters.
11026 */
11027 smp_mb();
11028 if (waitqueue_active(&root->subv_writers->wait))
11029 wake_up(&root->subv_writers->wait);
11030 }
11031
11032 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11033 {
11034 if (atomic_read(&root->will_be_snapshotted))
11035 return 0;
11036
11037 percpu_counter_inc(&root->subv_writers->counter);
11038 /*
11039 * Make sure counter is updated before we check for snapshot creation.
11040 */
11041 smp_mb();
11042 if (atomic_read(&root->will_be_snapshotted)) {
11043 btrfs_end_write_no_snapshotting(root);
11044 return 0;
11045 }
11046 return 1;
11047 }
11048
11049 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11050 {
11051 while (true) {
11052 int ret;
11053
11054 ret = btrfs_start_write_no_snapshotting(root);
11055 if (ret)
11056 break;
11057 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11058 TASK_UNINTERRUPTIBLE);
11059 }
11060 }