]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/btrfs/extent-tree.c
Merge branch 'linus' into sched/core, to pick up fixes
[thirdparty/kernel/linux.git] / fs / btrfs / extent-tree.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57 enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61 };
62
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
91 int dump_block_groups);
92 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
93 u64 ram_bytes, u64 num_bytes, int delalloc);
94 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
95 u64 num_bytes, int delalloc);
96 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
97 u64 num_bytes);
98 int btrfs_pin_extent(struct btrfs_root *root,
99 u64 bytenr, u64 num_bytes, int reserved);
100 static int __reserve_metadata_bytes(struct btrfs_root *root,
101 struct btrfs_space_info *space_info,
102 u64 orig_bytes,
103 enum btrfs_reserve_flush_enum flush);
104 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
105 struct btrfs_space_info *space_info,
106 u64 num_bytes);
107 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
108 struct btrfs_space_info *space_info,
109 u64 num_bytes);
110
111 static noinline int
112 block_group_cache_done(struct btrfs_block_group_cache *cache)
113 {
114 smp_mb();
115 return cache->cached == BTRFS_CACHE_FINISHED ||
116 cache->cached == BTRFS_CACHE_ERROR;
117 }
118
119 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
120 {
121 return (cache->flags & bits) == bits;
122 }
123
124 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
125 {
126 atomic_inc(&cache->count);
127 }
128
129 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
130 {
131 if (atomic_dec_and_test(&cache->count)) {
132 WARN_ON(cache->pinned > 0);
133 WARN_ON(cache->reserved > 0);
134 kfree(cache->free_space_ctl);
135 kfree(cache);
136 }
137 }
138
139 /*
140 * this adds the block group to the fs_info rb tree for the block group
141 * cache
142 */
143 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
144 struct btrfs_block_group_cache *block_group)
145 {
146 struct rb_node **p;
147 struct rb_node *parent = NULL;
148 struct btrfs_block_group_cache *cache;
149
150 spin_lock(&info->block_group_cache_lock);
151 p = &info->block_group_cache_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 cache = rb_entry(parent, struct btrfs_block_group_cache,
156 cache_node);
157 if (block_group->key.objectid < cache->key.objectid) {
158 p = &(*p)->rb_left;
159 } else if (block_group->key.objectid > cache->key.objectid) {
160 p = &(*p)->rb_right;
161 } else {
162 spin_unlock(&info->block_group_cache_lock);
163 return -EEXIST;
164 }
165 }
166
167 rb_link_node(&block_group->cache_node, parent, p);
168 rb_insert_color(&block_group->cache_node,
169 &info->block_group_cache_tree);
170
171 if (info->first_logical_byte > block_group->key.objectid)
172 info->first_logical_byte = block_group->key.objectid;
173
174 spin_unlock(&info->block_group_cache_lock);
175
176 return 0;
177 }
178
179 /*
180 * This will return the block group at or after bytenr if contains is 0, else
181 * it will return the block group that contains the bytenr
182 */
183 static struct btrfs_block_group_cache *
184 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
185 int contains)
186 {
187 struct btrfs_block_group_cache *cache, *ret = NULL;
188 struct rb_node *n;
189 u64 end, start;
190
191 spin_lock(&info->block_group_cache_lock);
192 n = info->block_group_cache_tree.rb_node;
193
194 while (n) {
195 cache = rb_entry(n, struct btrfs_block_group_cache,
196 cache_node);
197 end = cache->key.objectid + cache->key.offset - 1;
198 start = cache->key.objectid;
199
200 if (bytenr < start) {
201 if (!contains && (!ret || start < ret->key.objectid))
202 ret = cache;
203 n = n->rb_left;
204 } else if (bytenr > start) {
205 if (contains && bytenr <= end) {
206 ret = cache;
207 break;
208 }
209 n = n->rb_right;
210 } else {
211 ret = cache;
212 break;
213 }
214 }
215 if (ret) {
216 btrfs_get_block_group(ret);
217 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
218 info->first_logical_byte = ret->key.objectid;
219 }
220 spin_unlock(&info->block_group_cache_lock);
221
222 return ret;
223 }
224
225 static int add_excluded_extent(struct btrfs_root *root,
226 u64 start, u64 num_bytes)
227 {
228 u64 end = start + num_bytes - 1;
229 set_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE);
231 set_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE);
233 return 0;
234 }
235
236 static void free_excluded_extents(struct btrfs_root *root,
237 struct btrfs_block_group_cache *cache)
238 {
239 u64 start, end;
240
241 start = cache->key.objectid;
242 end = start + cache->key.offset - 1;
243
244 clear_extent_bits(&root->fs_info->freed_extents[0],
245 start, end, EXTENT_UPTODATE);
246 clear_extent_bits(&root->fs_info->freed_extents[1],
247 start, end, EXTENT_UPTODATE);
248 }
249
250 static int exclude_super_stripes(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252 {
253 u64 bytenr;
254 u64 *logical;
255 int stripe_len;
256 int i, nr, ret;
257
258 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
259 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
260 cache->bytes_super += stripe_len;
261 ret = add_excluded_extent(root, cache->key.objectid,
262 stripe_len);
263 if (ret)
264 return ret;
265 }
266
267 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
268 bytenr = btrfs_sb_offset(i);
269 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
270 cache->key.objectid, bytenr,
271 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334 {
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349 }
350 #endif
351
352 /*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
362
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
370
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
390 }
391
392 return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
399 struct btrfs_root *extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
408
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
413 path = btrfs_alloc_path();
414 if (!path)
415 return -ENOMEM;
416
417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
418
419 #ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427 #endif
428 /*
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
433 */
434 path->skip_locking = 1;
435 path->search_commit_root = 1;
436 path->reada = READA_FORWARD;
437
438 key.objectid = last;
439 key.offset = 0;
440 key.type = BTRFS_EXTENT_ITEM_KEY;
441
442 next:
443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
444 if (ret < 0)
445 goto out;
446
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
450 while (1) {
451 if (btrfs_fs_closing(fs_info) > 1) {
452 last = (u64)-1;
453 break;
454 }
455
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
461 break;
462
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info->commit_root_sem)) {
465 if (wakeup)
466 caching_ctl->progress = last;
467 btrfs_release_path(path);
468 up_read(&fs_info->commit_root_sem);
469 mutex_unlock(&caching_ctl->mutex);
470 cond_resched();
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
474 }
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
478 goto out;
479 if (ret)
480 break;
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
484 }
485
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
491 if (wakeup)
492 caching_ctl->progress = last;
493 btrfs_release_path(path);
494 goto next;
495 }
496
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
499 continue;
500 }
501
502 if (key.objectid >= block_group->key.objectid +
503 block_group->key.offset)
504 break;
505
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
513 fs_info->tree_root->nodesize;
514 else
515 last = key.objectid + key.offset;
516
517 if (total_found > CACHING_CTL_WAKE_UP) {
518 total_found = 0;
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
521 }
522 }
523 path->slots[0]++;
524 }
525 ret = 0;
526
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
530 caching_ctl->progress = (u64)-1;
531
532 out:
533 btrfs_free_path(path);
534 return ret;
535 }
536
537 static noinline void caching_thread(struct btrfs_work *work)
538 {
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
542 struct btrfs_root *extent_root;
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
548 extent_root = fs_info->extent_root;
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
557
558 spin_lock(&block_group->lock);
559 block_group->caching_ctl = NULL;
560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 spin_unlock(&block_group->lock);
562
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576 #endif
577
578 caching_ctl->progress = (u64)-1;
579
580 up_read(&fs_info->commit_root_sem);
581 free_excluded_extents(fs_info->extent_root, block_group);
582 mutex_unlock(&caching_ctl->mutex);
583
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
587 btrfs_put_block_group(block_group);
588 }
589
590 static int cache_block_group(struct btrfs_block_group_cache *cache,
591 int load_cache_only)
592 {
593 DEFINE_WAIT(wait);
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
596 int ret = 0;
597
598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
599 if (!caching_ctl)
600 return -ENOMEM;
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
642 return 0;
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
648
649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 mutex_lock(&caching_ctl->mutex);
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
658 caching_ctl->progress = (u64)-1;
659 } else {
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
665 cache->has_caching_ctl = 1;
666 }
667 }
668 spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684 #endif
685 mutex_unlock(&caching_ctl->mutex);
686
687 wake_up(&caching_ctl->wait);
688 if (ret == 1) {
689 put_caching_control(caching_ctl);
690 free_excluded_extents(fs_info->extent_root, cache);
691 return 0;
692 }
693 } else {
694 /*
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
704 cache->has_caching_ctl = 1;
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
708 }
709
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
712 return 0;
713 }
714
715 down_write(&fs_info->commit_root_sem);
716 atomic_inc(&caching_ctl->count);
717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 up_write(&fs_info->commit_root_sem);
719
720 btrfs_get_block_group(cache);
721
722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
723
724 return ret;
725 }
726
727 /*
728 * return the block group that starts at or after bytenr
729 */
730 static struct btrfs_block_group_cache *
731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
732 {
733 struct btrfs_block_group_cache *cache;
734
735 cache = block_group_cache_tree_search(info, bytenr, 0);
736
737 return cache;
738 }
739
740 /*
741 * return the block group that contains the given bytenr
742 */
743 struct btrfs_block_group_cache *btrfs_lookup_block_group(
744 struct btrfs_fs_info *info,
745 u64 bytenr)
746 {
747 struct btrfs_block_group_cache *cache;
748
749 cache = block_group_cache_tree_search(info, bytenr, 1);
750
751 return cache;
752 }
753
754 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
755 u64 flags)
756 {
757 struct list_head *head = &info->space_info;
758 struct btrfs_space_info *found;
759
760 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
761
762 rcu_read_lock();
763 list_for_each_entry_rcu(found, head, list) {
764 if (found->flags & flags) {
765 rcu_read_unlock();
766 return found;
767 }
768 }
769 rcu_read_unlock();
770 return NULL;
771 }
772
773 /*
774 * after adding space to the filesystem, we need to clear the full flags
775 * on all the space infos.
776 */
777 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
778 {
779 struct list_head *head = &info->space_info;
780 struct btrfs_space_info *found;
781
782 rcu_read_lock();
783 list_for_each_entry_rcu(found, head, list)
784 found->full = 0;
785 rcu_read_unlock();
786 }
787
788 /* simple helper to search for an existing data extent at a given offset */
789 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
790 {
791 int ret;
792 struct btrfs_key key;
793 struct btrfs_path *path;
794
795 path = btrfs_alloc_path();
796 if (!path)
797 return -ENOMEM;
798
799 key.objectid = start;
800 key.offset = len;
801 key.type = BTRFS_EXTENT_ITEM_KEY;
802 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
803 0, 0);
804 btrfs_free_path(path);
805 return ret;
806 }
807
808 /*
809 * helper function to lookup reference count and flags of a tree block.
810 *
811 * the head node for delayed ref is used to store the sum of all the
812 * reference count modifications queued up in the rbtree. the head
813 * node may also store the extent flags to set. This way you can check
814 * to see what the reference count and extent flags would be if all of
815 * the delayed refs are not processed.
816 */
817 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root, u64 bytenr,
819 u64 offset, int metadata, u64 *refs, u64 *flags)
820 {
821 struct btrfs_delayed_ref_head *head;
822 struct btrfs_delayed_ref_root *delayed_refs;
823 struct btrfs_path *path;
824 struct btrfs_extent_item *ei;
825 struct extent_buffer *leaf;
826 struct btrfs_key key;
827 u32 item_size;
828 u64 num_refs;
829 u64 extent_flags;
830 int ret;
831
832 /*
833 * If we don't have skinny metadata, don't bother doing anything
834 * different
835 */
836 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
837 offset = root->nodesize;
838 metadata = 0;
839 }
840
841 path = btrfs_alloc_path();
842 if (!path)
843 return -ENOMEM;
844
845 if (!trans) {
846 path->skip_locking = 1;
847 path->search_commit_root = 1;
848 }
849
850 search_again:
851 key.objectid = bytenr;
852 key.offset = offset;
853 if (metadata)
854 key.type = BTRFS_METADATA_ITEM_KEY;
855 else
856 key.type = BTRFS_EXTENT_ITEM_KEY;
857
858 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
859 &key, path, 0, 0);
860 if (ret < 0)
861 goto out_free;
862
863 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
864 if (path->slots[0]) {
865 path->slots[0]--;
866 btrfs_item_key_to_cpu(path->nodes[0], &key,
867 path->slots[0]);
868 if (key.objectid == bytenr &&
869 key.type == BTRFS_EXTENT_ITEM_KEY &&
870 key.offset == root->nodesize)
871 ret = 0;
872 }
873 }
874
875 if (ret == 0) {
876 leaf = path->nodes[0];
877 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
878 if (item_size >= sizeof(*ei)) {
879 ei = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item);
881 num_refs = btrfs_extent_refs(leaf, ei);
882 extent_flags = btrfs_extent_flags(leaf, ei);
883 } else {
884 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
885 struct btrfs_extent_item_v0 *ei0;
886 BUG_ON(item_size != sizeof(*ei0));
887 ei0 = btrfs_item_ptr(leaf, path->slots[0],
888 struct btrfs_extent_item_v0);
889 num_refs = btrfs_extent_refs_v0(leaf, ei0);
890 /* FIXME: this isn't correct for data */
891 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
892 #else
893 BUG();
894 #endif
895 }
896 BUG_ON(num_refs == 0);
897 } else {
898 num_refs = 0;
899 extent_flags = 0;
900 ret = 0;
901 }
902
903 if (!trans)
904 goto out;
905
906 delayed_refs = &trans->transaction->delayed_refs;
907 spin_lock(&delayed_refs->lock);
908 head = btrfs_find_delayed_ref_head(trans, bytenr);
909 if (head) {
910 if (!mutex_trylock(&head->mutex)) {
911 atomic_inc(&head->node.refs);
912 spin_unlock(&delayed_refs->lock);
913
914 btrfs_release_path(path);
915
916 /*
917 * Mutex was contended, block until it's released and try
918 * again
919 */
920 mutex_lock(&head->mutex);
921 mutex_unlock(&head->mutex);
922 btrfs_put_delayed_ref(&head->node);
923 goto search_again;
924 }
925 spin_lock(&head->lock);
926 if (head->extent_op && head->extent_op->update_flags)
927 extent_flags |= head->extent_op->flags_to_set;
928 else
929 BUG_ON(num_refs == 0);
930
931 num_refs += head->node.ref_mod;
932 spin_unlock(&head->lock);
933 mutex_unlock(&head->mutex);
934 }
935 spin_unlock(&delayed_refs->lock);
936 out:
937 WARN_ON(num_refs == 0);
938 if (refs)
939 *refs = num_refs;
940 if (flags)
941 *flags = extent_flags;
942 out_free:
943 btrfs_free_path(path);
944 return ret;
945 }
946
947 /*
948 * Back reference rules. Back refs have three main goals:
949 *
950 * 1) differentiate between all holders of references to an extent so that
951 * when a reference is dropped we can make sure it was a valid reference
952 * before freeing the extent.
953 *
954 * 2) Provide enough information to quickly find the holders of an extent
955 * if we notice a given block is corrupted or bad.
956 *
957 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
958 * maintenance. This is actually the same as #2, but with a slightly
959 * different use case.
960 *
961 * There are two kinds of back refs. The implicit back refs is optimized
962 * for pointers in non-shared tree blocks. For a given pointer in a block,
963 * back refs of this kind provide information about the block's owner tree
964 * and the pointer's key. These information allow us to find the block by
965 * b-tree searching. The full back refs is for pointers in tree blocks not
966 * referenced by their owner trees. The location of tree block is recorded
967 * in the back refs. Actually the full back refs is generic, and can be
968 * used in all cases the implicit back refs is used. The major shortcoming
969 * of the full back refs is its overhead. Every time a tree block gets
970 * COWed, we have to update back refs entry for all pointers in it.
971 *
972 * For a newly allocated tree block, we use implicit back refs for
973 * pointers in it. This means most tree related operations only involve
974 * implicit back refs. For a tree block created in old transaction, the
975 * only way to drop a reference to it is COW it. So we can detect the
976 * event that tree block loses its owner tree's reference and do the
977 * back refs conversion.
978 *
979 * When a tree block is COWed through a tree, there are four cases:
980 *
981 * The reference count of the block is one and the tree is the block's
982 * owner tree. Nothing to do in this case.
983 *
984 * The reference count of the block is one and the tree is not the
985 * block's owner tree. In this case, full back refs is used for pointers
986 * in the block. Remove these full back refs, add implicit back refs for
987 * every pointers in the new block.
988 *
989 * The reference count of the block is greater than one and the tree is
990 * the block's owner tree. In this case, implicit back refs is used for
991 * pointers in the block. Add full back refs for every pointers in the
992 * block, increase lower level extents' reference counts. The original
993 * implicit back refs are entailed to the new block.
994 *
995 * The reference count of the block is greater than one and the tree is
996 * not the block's owner tree. Add implicit back refs for every pointer in
997 * the new block, increase lower level extents' reference count.
998 *
999 * Back Reference Key composing:
1000 *
1001 * The key objectid corresponds to the first byte in the extent,
1002 * The key type is used to differentiate between types of back refs.
1003 * There are different meanings of the key offset for different types
1004 * of back refs.
1005 *
1006 * File extents can be referenced by:
1007 *
1008 * - multiple snapshots, subvolumes, or different generations in one subvol
1009 * - different files inside a single subvolume
1010 * - different offsets inside a file (bookend extents in file.c)
1011 *
1012 * The extent ref structure for the implicit back refs has fields for:
1013 *
1014 * - Objectid of the subvolume root
1015 * - objectid of the file holding the reference
1016 * - original offset in the file
1017 * - how many bookend extents
1018 *
1019 * The key offset for the implicit back refs is hash of the first
1020 * three fields.
1021 *
1022 * The extent ref structure for the full back refs has field for:
1023 *
1024 * - number of pointers in the tree leaf
1025 *
1026 * The key offset for the implicit back refs is the first byte of
1027 * the tree leaf
1028 *
1029 * When a file extent is allocated, The implicit back refs is used.
1030 * the fields are filled in:
1031 *
1032 * (root_key.objectid, inode objectid, offset in file, 1)
1033 *
1034 * When a file extent is removed file truncation, we find the
1035 * corresponding implicit back refs and check the following fields:
1036 *
1037 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1038 *
1039 * Btree extents can be referenced by:
1040 *
1041 * - Different subvolumes
1042 *
1043 * Both the implicit back refs and the full back refs for tree blocks
1044 * only consist of key. The key offset for the implicit back refs is
1045 * objectid of block's owner tree. The key offset for the full back refs
1046 * is the first byte of parent block.
1047 *
1048 * When implicit back refs is used, information about the lowest key and
1049 * level of the tree block are required. These information are stored in
1050 * tree block info structure.
1051 */
1052
1053 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1054 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1055 struct btrfs_root *root,
1056 struct btrfs_path *path,
1057 u64 owner, u32 extra_size)
1058 {
1059 struct btrfs_extent_item *item;
1060 struct btrfs_extent_item_v0 *ei0;
1061 struct btrfs_extent_ref_v0 *ref0;
1062 struct btrfs_tree_block_info *bi;
1063 struct extent_buffer *leaf;
1064 struct btrfs_key key;
1065 struct btrfs_key found_key;
1066 u32 new_size = sizeof(*item);
1067 u64 refs;
1068 int ret;
1069
1070 leaf = path->nodes[0];
1071 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1072
1073 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1074 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_extent_item_v0);
1076 refs = btrfs_extent_refs_v0(leaf, ei0);
1077
1078 if (owner == (u64)-1) {
1079 while (1) {
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 return ret;
1084 BUG_ON(ret > 0); /* Corruption */
1085 leaf = path->nodes[0];
1086 }
1087 btrfs_item_key_to_cpu(leaf, &found_key,
1088 path->slots[0]);
1089 BUG_ON(key.objectid != found_key.objectid);
1090 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1091 path->slots[0]++;
1092 continue;
1093 }
1094 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1095 struct btrfs_extent_ref_v0);
1096 owner = btrfs_ref_objectid_v0(leaf, ref0);
1097 break;
1098 }
1099 }
1100 btrfs_release_path(path);
1101
1102 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1103 new_size += sizeof(*bi);
1104
1105 new_size -= sizeof(*ei0);
1106 ret = btrfs_search_slot(trans, root, &key, path,
1107 new_size + extra_size, 1);
1108 if (ret < 0)
1109 return ret;
1110 BUG_ON(ret); /* Corruption */
1111
1112 btrfs_extend_item(root, path, new_size);
1113
1114 leaf = path->nodes[0];
1115 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1116 btrfs_set_extent_refs(leaf, item, refs);
1117 /* FIXME: get real generation */
1118 btrfs_set_extent_generation(leaf, item, 0);
1119 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1120 btrfs_set_extent_flags(leaf, item,
1121 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1122 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1123 bi = (struct btrfs_tree_block_info *)(item + 1);
1124 /* FIXME: get first key of the block */
1125 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1126 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1127 } else {
1128 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1129 }
1130 btrfs_mark_buffer_dirty(leaf);
1131 return 0;
1132 }
1133 #endif
1134
1135 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1136 {
1137 u32 high_crc = ~(u32)0;
1138 u32 low_crc = ~(u32)0;
1139 __le64 lenum;
1140
1141 lenum = cpu_to_le64(root_objectid);
1142 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1143 lenum = cpu_to_le64(owner);
1144 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1145 lenum = cpu_to_le64(offset);
1146 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1147
1148 return ((u64)high_crc << 31) ^ (u64)low_crc;
1149 }
1150
1151 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref)
1153 {
1154 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1155 btrfs_extent_data_ref_objectid(leaf, ref),
1156 btrfs_extent_data_ref_offset(leaf, ref));
1157 }
1158
1159 static int match_extent_data_ref(struct extent_buffer *leaf,
1160 struct btrfs_extent_data_ref *ref,
1161 u64 root_objectid, u64 owner, u64 offset)
1162 {
1163 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1164 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1165 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1166 return 0;
1167 return 1;
1168 }
1169
1170 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1171 struct btrfs_root *root,
1172 struct btrfs_path *path,
1173 u64 bytenr, u64 parent,
1174 u64 root_objectid,
1175 u64 owner, u64 offset)
1176 {
1177 struct btrfs_key key;
1178 struct btrfs_extent_data_ref *ref;
1179 struct extent_buffer *leaf;
1180 u32 nritems;
1181 int ret;
1182 int recow;
1183 int err = -ENOENT;
1184
1185 key.objectid = bytenr;
1186 if (parent) {
1187 key.type = BTRFS_SHARED_DATA_REF_KEY;
1188 key.offset = parent;
1189 } else {
1190 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1191 key.offset = hash_extent_data_ref(root_objectid,
1192 owner, offset);
1193 }
1194 again:
1195 recow = 0;
1196 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1197 if (ret < 0) {
1198 err = ret;
1199 goto fail;
1200 }
1201
1202 if (parent) {
1203 if (!ret)
1204 return 0;
1205 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1206 key.type = BTRFS_EXTENT_REF_V0_KEY;
1207 btrfs_release_path(path);
1208 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1209 if (ret < 0) {
1210 err = ret;
1211 goto fail;
1212 }
1213 if (!ret)
1214 return 0;
1215 #endif
1216 goto fail;
1217 }
1218
1219 leaf = path->nodes[0];
1220 nritems = btrfs_header_nritems(leaf);
1221 while (1) {
1222 if (path->slots[0] >= nritems) {
1223 ret = btrfs_next_leaf(root, path);
1224 if (ret < 0)
1225 err = ret;
1226 if (ret)
1227 goto fail;
1228
1229 leaf = path->nodes[0];
1230 nritems = btrfs_header_nritems(leaf);
1231 recow = 1;
1232 }
1233
1234 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1235 if (key.objectid != bytenr ||
1236 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1237 goto fail;
1238
1239 ref = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_extent_data_ref);
1241
1242 if (match_extent_data_ref(leaf, ref, root_objectid,
1243 owner, offset)) {
1244 if (recow) {
1245 btrfs_release_path(path);
1246 goto again;
1247 }
1248 err = 0;
1249 break;
1250 }
1251 path->slots[0]++;
1252 }
1253 fail:
1254 return err;
1255 }
1256
1257 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1258 struct btrfs_root *root,
1259 struct btrfs_path *path,
1260 u64 bytenr, u64 parent,
1261 u64 root_objectid, u64 owner,
1262 u64 offset, int refs_to_add)
1263 {
1264 struct btrfs_key key;
1265 struct extent_buffer *leaf;
1266 u32 size;
1267 u32 num_refs;
1268 int ret;
1269
1270 key.objectid = bytenr;
1271 if (parent) {
1272 key.type = BTRFS_SHARED_DATA_REF_KEY;
1273 key.offset = parent;
1274 size = sizeof(struct btrfs_shared_data_ref);
1275 } else {
1276 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1277 key.offset = hash_extent_data_ref(root_objectid,
1278 owner, offset);
1279 size = sizeof(struct btrfs_extent_data_ref);
1280 }
1281
1282 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1283 if (ret && ret != -EEXIST)
1284 goto fail;
1285
1286 leaf = path->nodes[0];
1287 if (parent) {
1288 struct btrfs_shared_data_ref *ref;
1289 ref = btrfs_item_ptr(leaf, path->slots[0],
1290 struct btrfs_shared_data_ref);
1291 if (ret == 0) {
1292 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1293 } else {
1294 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1295 num_refs += refs_to_add;
1296 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1297 }
1298 } else {
1299 struct btrfs_extent_data_ref *ref;
1300 while (ret == -EEXIST) {
1301 ref = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 if (match_extent_data_ref(leaf, ref, root_objectid,
1304 owner, offset))
1305 break;
1306 btrfs_release_path(path);
1307 key.offset++;
1308 ret = btrfs_insert_empty_item(trans, root, path, &key,
1309 size);
1310 if (ret && ret != -EEXIST)
1311 goto fail;
1312
1313 leaf = path->nodes[0];
1314 }
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (ret == 0) {
1318 btrfs_set_extent_data_ref_root(leaf, ref,
1319 root_objectid);
1320 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1321 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1322 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1323 } else {
1324 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1325 num_refs += refs_to_add;
1326 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1327 }
1328 }
1329 btrfs_mark_buffer_dirty(leaf);
1330 ret = 0;
1331 fail:
1332 btrfs_release_path(path);
1333 return ret;
1334 }
1335
1336 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1337 struct btrfs_root *root,
1338 struct btrfs_path *path,
1339 int refs_to_drop, int *last_ref)
1340 {
1341 struct btrfs_key key;
1342 struct btrfs_extent_data_ref *ref1 = NULL;
1343 struct btrfs_shared_data_ref *ref2 = NULL;
1344 struct extent_buffer *leaf;
1345 u32 num_refs = 0;
1346 int ret = 0;
1347
1348 leaf = path->nodes[0];
1349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1350
1351 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1352 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_data_ref);
1354 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1355 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1356 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1357 struct btrfs_shared_data_ref);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1360 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1361 struct btrfs_extent_ref_v0 *ref0;
1362 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1363 struct btrfs_extent_ref_v0);
1364 num_refs = btrfs_ref_count_v0(leaf, ref0);
1365 #endif
1366 } else {
1367 BUG();
1368 }
1369
1370 BUG_ON(num_refs < refs_to_drop);
1371 num_refs -= refs_to_drop;
1372
1373 if (num_refs == 0) {
1374 ret = btrfs_del_item(trans, root, path);
1375 *last_ref = 1;
1376 } else {
1377 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1378 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1379 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1380 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1381 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1382 else {
1383 struct btrfs_extent_ref_v0 *ref0;
1384 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_extent_ref_v0);
1386 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1387 }
1388 #endif
1389 btrfs_mark_buffer_dirty(leaf);
1390 }
1391 return ret;
1392 }
1393
1394 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1395 struct btrfs_extent_inline_ref *iref)
1396 {
1397 struct btrfs_key key;
1398 struct extent_buffer *leaf;
1399 struct btrfs_extent_data_ref *ref1;
1400 struct btrfs_shared_data_ref *ref2;
1401 u32 num_refs = 0;
1402
1403 leaf = path->nodes[0];
1404 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1405 if (iref) {
1406 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1407 BTRFS_EXTENT_DATA_REF_KEY) {
1408 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else {
1411 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1412 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1413 }
1414 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1415 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1416 struct btrfs_extent_data_ref);
1417 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1418 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1419 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1420 struct btrfs_shared_data_ref);
1421 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1422 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1423 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1424 struct btrfs_extent_ref_v0 *ref0;
1425 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1426 struct btrfs_extent_ref_v0);
1427 num_refs = btrfs_ref_count_v0(leaf, ref0);
1428 #endif
1429 } else {
1430 WARN_ON(1);
1431 }
1432 return num_refs;
1433 }
1434
1435 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *root,
1437 struct btrfs_path *path,
1438 u64 bytenr, u64 parent,
1439 u64 root_objectid)
1440 {
1441 struct btrfs_key key;
1442 int ret;
1443
1444 key.objectid = bytenr;
1445 if (parent) {
1446 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1447 key.offset = parent;
1448 } else {
1449 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1450 key.offset = root_objectid;
1451 }
1452
1453 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1454 if (ret > 0)
1455 ret = -ENOENT;
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457 if (ret == -ENOENT && parent) {
1458 btrfs_release_path(path);
1459 key.type = BTRFS_EXTENT_REF_V0_KEY;
1460 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1461 if (ret > 0)
1462 ret = -ENOENT;
1463 }
1464 #endif
1465 return ret;
1466 }
1467
1468 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1469 struct btrfs_root *root,
1470 struct btrfs_path *path,
1471 u64 bytenr, u64 parent,
1472 u64 root_objectid)
1473 {
1474 struct btrfs_key key;
1475 int ret;
1476
1477 key.objectid = bytenr;
1478 if (parent) {
1479 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1480 key.offset = parent;
1481 } else {
1482 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1483 key.offset = root_objectid;
1484 }
1485
1486 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1487 btrfs_release_path(path);
1488 return ret;
1489 }
1490
1491 static inline int extent_ref_type(u64 parent, u64 owner)
1492 {
1493 int type;
1494 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1495 if (parent > 0)
1496 type = BTRFS_SHARED_BLOCK_REF_KEY;
1497 else
1498 type = BTRFS_TREE_BLOCK_REF_KEY;
1499 } else {
1500 if (parent > 0)
1501 type = BTRFS_SHARED_DATA_REF_KEY;
1502 else
1503 type = BTRFS_EXTENT_DATA_REF_KEY;
1504 }
1505 return type;
1506 }
1507
1508 static int find_next_key(struct btrfs_path *path, int level,
1509 struct btrfs_key *key)
1510
1511 {
1512 for (; level < BTRFS_MAX_LEVEL; level++) {
1513 if (!path->nodes[level])
1514 break;
1515 if (path->slots[level] + 1 >=
1516 btrfs_header_nritems(path->nodes[level]))
1517 continue;
1518 if (level == 0)
1519 btrfs_item_key_to_cpu(path->nodes[level], key,
1520 path->slots[level] + 1);
1521 else
1522 btrfs_node_key_to_cpu(path->nodes[level], key,
1523 path->slots[level] + 1);
1524 return 0;
1525 }
1526 return 1;
1527 }
1528
1529 /*
1530 * look for inline back ref. if back ref is found, *ref_ret is set
1531 * to the address of inline back ref, and 0 is returned.
1532 *
1533 * if back ref isn't found, *ref_ret is set to the address where it
1534 * should be inserted, and -ENOENT is returned.
1535 *
1536 * if insert is true and there are too many inline back refs, the path
1537 * points to the extent item, and -EAGAIN is returned.
1538 *
1539 * NOTE: inline back refs are ordered in the same way that back ref
1540 * items in the tree are ordered.
1541 */
1542 static noinline_for_stack
1543 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1544 struct btrfs_root *root,
1545 struct btrfs_path *path,
1546 struct btrfs_extent_inline_ref **ref_ret,
1547 u64 bytenr, u64 num_bytes,
1548 u64 parent, u64 root_objectid,
1549 u64 owner, u64 offset, int insert)
1550 {
1551 struct btrfs_key key;
1552 struct extent_buffer *leaf;
1553 struct btrfs_extent_item *ei;
1554 struct btrfs_extent_inline_ref *iref;
1555 u64 flags;
1556 u64 item_size;
1557 unsigned long ptr;
1558 unsigned long end;
1559 int extra_size;
1560 int type;
1561 int want;
1562 int ret;
1563 int err = 0;
1564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1565 SKINNY_METADATA);
1566
1567 key.objectid = bytenr;
1568 key.type = BTRFS_EXTENT_ITEM_KEY;
1569 key.offset = num_bytes;
1570
1571 want = extent_ref_type(parent, owner);
1572 if (insert) {
1573 extra_size = btrfs_extent_inline_ref_size(want);
1574 path->keep_locks = 1;
1575 } else
1576 extra_size = -1;
1577
1578 /*
1579 * Owner is our parent level, so we can just add one to get the level
1580 * for the block we are interested in.
1581 */
1582 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1583 key.type = BTRFS_METADATA_ITEM_KEY;
1584 key.offset = owner;
1585 }
1586
1587 again:
1588 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1589 if (ret < 0) {
1590 err = ret;
1591 goto out;
1592 }
1593
1594 /*
1595 * We may be a newly converted file system which still has the old fat
1596 * extent entries for metadata, so try and see if we have one of those.
1597 */
1598 if (ret > 0 && skinny_metadata) {
1599 skinny_metadata = false;
1600 if (path->slots[0]) {
1601 path->slots[0]--;
1602 btrfs_item_key_to_cpu(path->nodes[0], &key,
1603 path->slots[0]);
1604 if (key.objectid == bytenr &&
1605 key.type == BTRFS_EXTENT_ITEM_KEY &&
1606 key.offset == num_bytes)
1607 ret = 0;
1608 }
1609 if (ret) {
1610 key.objectid = bytenr;
1611 key.type = BTRFS_EXTENT_ITEM_KEY;
1612 key.offset = num_bytes;
1613 btrfs_release_path(path);
1614 goto again;
1615 }
1616 }
1617
1618 if (ret && !insert) {
1619 err = -ENOENT;
1620 goto out;
1621 } else if (WARN_ON(ret)) {
1622 err = -EIO;
1623 goto out;
1624 }
1625
1626 leaf = path->nodes[0];
1627 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1628 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1629 if (item_size < sizeof(*ei)) {
1630 if (!insert) {
1631 err = -ENOENT;
1632 goto out;
1633 }
1634 ret = convert_extent_item_v0(trans, root, path, owner,
1635 extra_size);
1636 if (ret < 0) {
1637 err = ret;
1638 goto out;
1639 }
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642 }
1643 #endif
1644 BUG_ON(item_size < sizeof(*ei));
1645
1646 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1647 flags = btrfs_extent_flags(leaf, ei);
1648
1649 ptr = (unsigned long)(ei + 1);
1650 end = (unsigned long)ei + item_size;
1651
1652 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1653 ptr += sizeof(struct btrfs_tree_block_info);
1654 BUG_ON(ptr > end);
1655 }
1656
1657 err = -ENOENT;
1658 while (1) {
1659 if (ptr >= end) {
1660 WARN_ON(ptr > end);
1661 break;
1662 }
1663 iref = (struct btrfs_extent_inline_ref *)ptr;
1664 type = btrfs_extent_inline_ref_type(leaf, iref);
1665 if (want < type)
1666 break;
1667 if (want > type) {
1668 ptr += btrfs_extent_inline_ref_size(type);
1669 continue;
1670 }
1671
1672 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1673 struct btrfs_extent_data_ref *dref;
1674 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1675 if (match_extent_data_ref(leaf, dref, root_objectid,
1676 owner, offset)) {
1677 err = 0;
1678 break;
1679 }
1680 if (hash_extent_data_ref_item(leaf, dref) <
1681 hash_extent_data_ref(root_objectid, owner, offset))
1682 break;
1683 } else {
1684 u64 ref_offset;
1685 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1686 if (parent > 0) {
1687 if (parent == ref_offset) {
1688 err = 0;
1689 break;
1690 }
1691 if (ref_offset < parent)
1692 break;
1693 } else {
1694 if (root_objectid == ref_offset) {
1695 err = 0;
1696 break;
1697 }
1698 if (ref_offset < root_objectid)
1699 break;
1700 }
1701 }
1702 ptr += btrfs_extent_inline_ref_size(type);
1703 }
1704 if (err == -ENOENT && insert) {
1705 if (item_size + extra_size >=
1706 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1707 err = -EAGAIN;
1708 goto out;
1709 }
1710 /*
1711 * To add new inline back ref, we have to make sure
1712 * there is no corresponding back ref item.
1713 * For simplicity, we just do not add new inline back
1714 * ref if there is any kind of item for this block
1715 */
1716 if (find_next_key(path, 0, &key) == 0 &&
1717 key.objectid == bytenr &&
1718 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1719 err = -EAGAIN;
1720 goto out;
1721 }
1722 }
1723 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1724 out:
1725 if (insert) {
1726 path->keep_locks = 0;
1727 btrfs_unlock_up_safe(path, 1);
1728 }
1729 return err;
1730 }
1731
1732 /*
1733 * helper to add new inline back ref
1734 */
1735 static noinline_for_stack
1736 void setup_inline_extent_backref(struct btrfs_root *root,
1737 struct btrfs_path *path,
1738 struct btrfs_extent_inline_ref *iref,
1739 u64 parent, u64 root_objectid,
1740 u64 owner, u64 offset, int refs_to_add,
1741 struct btrfs_delayed_extent_op *extent_op)
1742 {
1743 struct extent_buffer *leaf;
1744 struct btrfs_extent_item *ei;
1745 unsigned long ptr;
1746 unsigned long end;
1747 unsigned long item_offset;
1748 u64 refs;
1749 int size;
1750 int type;
1751
1752 leaf = path->nodes[0];
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 item_offset = (unsigned long)iref - (unsigned long)ei;
1755
1756 type = extent_ref_type(parent, owner);
1757 size = btrfs_extent_inline_ref_size(type);
1758
1759 btrfs_extend_item(root, path, size);
1760
1761 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1762 refs = btrfs_extent_refs(leaf, ei);
1763 refs += refs_to_add;
1764 btrfs_set_extent_refs(leaf, ei, refs);
1765 if (extent_op)
1766 __run_delayed_extent_op(extent_op, leaf, ei);
1767
1768 ptr = (unsigned long)ei + item_offset;
1769 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1770 if (ptr < end - size)
1771 memmove_extent_buffer(leaf, ptr + size, ptr,
1772 end - size - ptr);
1773
1774 iref = (struct btrfs_extent_inline_ref *)ptr;
1775 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1776 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1777 struct btrfs_extent_data_ref *dref;
1778 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1779 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1780 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1781 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1782 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1783 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1784 struct btrfs_shared_data_ref *sref;
1785 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1786 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1787 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1788 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1789 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1790 } else {
1791 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1792 }
1793 btrfs_mark_buffer_dirty(leaf);
1794 }
1795
1796 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1797 struct btrfs_root *root,
1798 struct btrfs_path *path,
1799 struct btrfs_extent_inline_ref **ref_ret,
1800 u64 bytenr, u64 num_bytes, u64 parent,
1801 u64 root_objectid, u64 owner, u64 offset)
1802 {
1803 int ret;
1804
1805 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1806 bytenr, num_bytes, parent,
1807 root_objectid, owner, offset, 0);
1808 if (ret != -ENOENT)
1809 return ret;
1810
1811 btrfs_release_path(path);
1812 *ref_ret = NULL;
1813
1814 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1815 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1816 root_objectid);
1817 } else {
1818 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1819 root_objectid, owner, offset);
1820 }
1821 return ret;
1822 }
1823
1824 /*
1825 * helper to update/remove inline back ref
1826 */
1827 static noinline_for_stack
1828 void update_inline_extent_backref(struct btrfs_root *root,
1829 struct btrfs_path *path,
1830 struct btrfs_extent_inline_ref *iref,
1831 int refs_to_mod,
1832 struct btrfs_delayed_extent_op *extent_op,
1833 int *last_ref)
1834 {
1835 struct extent_buffer *leaf;
1836 struct btrfs_extent_item *ei;
1837 struct btrfs_extent_data_ref *dref = NULL;
1838 struct btrfs_shared_data_ref *sref = NULL;
1839 unsigned long ptr;
1840 unsigned long end;
1841 u32 item_size;
1842 int size;
1843 int type;
1844 u64 refs;
1845
1846 leaf = path->nodes[0];
1847 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848 refs = btrfs_extent_refs(leaf, ei);
1849 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1850 refs += refs_to_mod;
1851 btrfs_set_extent_refs(leaf, ei, refs);
1852 if (extent_op)
1853 __run_delayed_extent_op(extent_op, leaf, ei);
1854
1855 type = btrfs_extent_inline_ref_type(leaf, iref);
1856
1857 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1858 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1859 refs = btrfs_extent_data_ref_count(leaf, dref);
1860 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1861 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1862 refs = btrfs_shared_data_ref_count(leaf, sref);
1863 } else {
1864 refs = 1;
1865 BUG_ON(refs_to_mod != -1);
1866 }
1867
1868 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1869 refs += refs_to_mod;
1870
1871 if (refs > 0) {
1872 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1873 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1874 else
1875 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1876 } else {
1877 *last_ref = 1;
1878 size = btrfs_extent_inline_ref_size(type);
1879 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1880 ptr = (unsigned long)iref;
1881 end = (unsigned long)ei + item_size;
1882 if (ptr + size < end)
1883 memmove_extent_buffer(leaf, ptr, ptr + size,
1884 end - ptr - size);
1885 item_size -= size;
1886 btrfs_truncate_item(root, path, item_size, 1);
1887 }
1888 btrfs_mark_buffer_dirty(leaf);
1889 }
1890
1891 static noinline_for_stack
1892 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_path *path,
1895 u64 bytenr, u64 num_bytes, u64 parent,
1896 u64 root_objectid, u64 owner,
1897 u64 offset, int refs_to_add,
1898 struct btrfs_delayed_extent_op *extent_op)
1899 {
1900 struct btrfs_extent_inline_ref *iref;
1901 int ret;
1902
1903 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1904 bytenr, num_bytes, parent,
1905 root_objectid, owner, offset, 1);
1906 if (ret == 0) {
1907 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1908 update_inline_extent_backref(root, path, iref,
1909 refs_to_add, extent_op, NULL);
1910 } else if (ret == -ENOENT) {
1911 setup_inline_extent_backref(root, path, iref, parent,
1912 root_objectid, owner, offset,
1913 refs_to_add, extent_op);
1914 ret = 0;
1915 }
1916 return ret;
1917 }
1918
1919 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1920 struct btrfs_root *root,
1921 struct btrfs_path *path,
1922 u64 bytenr, u64 parent, u64 root_objectid,
1923 u64 owner, u64 offset, int refs_to_add)
1924 {
1925 int ret;
1926 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1927 BUG_ON(refs_to_add != 1);
1928 ret = insert_tree_block_ref(trans, root, path, bytenr,
1929 parent, root_objectid);
1930 } else {
1931 ret = insert_extent_data_ref(trans, root, path, bytenr,
1932 parent, root_objectid,
1933 owner, offset, refs_to_add);
1934 }
1935 return ret;
1936 }
1937
1938 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1939 struct btrfs_root *root,
1940 struct btrfs_path *path,
1941 struct btrfs_extent_inline_ref *iref,
1942 int refs_to_drop, int is_data, int *last_ref)
1943 {
1944 int ret = 0;
1945
1946 BUG_ON(!is_data && refs_to_drop != 1);
1947 if (iref) {
1948 update_inline_extent_backref(root, path, iref,
1949 -refs_to_drop, NULL, last_ref);
1950 } else if (is_data) {
1951 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1952 last_ref);
1953 } else {
1954 *last_ref = 1;
1955 ret = btrfs_del_item(trans, root, path);
1956 }
1957 return ret;
1958 }
1959
1960 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1961 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1962 u64 *discarded_bytes)
1963 {
1964 int j, ret = 0;
1965 u64 bytes_left, end;
1966 u64 aligned_start = ALIGN(start, 1 << 9);
1967
1968 if (WARN_ON(start != aligned_start)) {
1969 len -= aligned_start - start;
1970 len = round_down(len, 1 << 9);
1971 start = aligned_start;
1972 }
1973
1974 *discarded_bytes = 0;
1975
1976 if (!len)
1977 return 0;
1978
1979 end = start + len;
1980 bytes_left = len;
1981
1982 /* Skip any superblocks on this device. */
1983 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1984 u64 sb_start = btrfs_sb_offset(j);
1985 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1986 u64 size = sb_start - start;
1987
1988 if (!in_range(sb_start, start, bytes_left) &&
1989 !in_range(sb_end, start, bytes_left) &&
1990 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1991 continue;
1992
1993 /*
1994 * Superblock spans beginning of range. Adjust start and
1995 * try again.
1996 */
1997 if (sb_start <= start) {
1998 start += sb_end - start;
1999 if (start > end) {
2000 bytes_left = 0;
2001 break;
2002 }
2003 bytes_left = end - start;
2004 continue;
2005 }
2006
2007 if (size) {
2008 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2009 GFP_NOFS, 0);
2010 if (!ret)
2011 *discarded_bytes += size;
2012 else if (ret != -EOPNOTSUPP)
2013 return ret;
2014 }
2015
2016 start = sb_end;
2017 if (start > end) {
2018 bytes_left = 0;
2019 break;
2020 }
2021 bytes_left = end - start;
2022 }
2023
2024 if (bytes_left) {
2025 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2026 GFP_NOFS, 0);
2027 if (!ret)
2028 *discarded_bytes += bytes_left;
2029 }
2030 return ret;
2031 }
2032
2033 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2034 u64 num_bytes, u64 *actual_bytes)
2035 {
2036 int ret;
2037 u64 discarded_bytes = 0;
2038 struct btrfs_bio *bbio = NULL;
2039
2040
2041 /*
2042 * Avoid races with device replace and make sure our bbio has devices
2043 * associated to its stripes that don't go away while we are discarding.
2044 */
2045 btrfs_bio_counter_inc_blocked(root->fs_info);
2046 /* Tell the block device(s) that the sectors can be discarded */
2047 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2048 bytenr, &num_bytes, &bbio, 0);
2049 /* Error condition is -ENOMEM */
2050 if (!ret) {
2051 struct btrfs_bio_stripe *stripe = bbio->stripes;
2052 int i;
2053
2054
2055 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2056 u64 bytes;
2057 if (!stripe->dev->can_discard)
2058 continue;
2059
2060 ret = btrfs_issue_discard(stripe->dev->bdev,
2061 stripe->physical,
2062 stripe->length,
2063 &bytes);
2064 if (!ret)
2065 discarded_bytes += bytes;
2066 else if (ret != -EOPNOTSUPP)
2067 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2068
2069 /*
2070 * Just in case we get back EOPNOTSUPP for some reason,
2071 * just ignore the return value so we don't screw up
2072 * people calling discard_extent.
2073 */
2074 ret = 0;
2075 }
2076 btrfs_put_bbio(bbio);
2077 }
2078 btrfs_bio_counter_dec(root->fs_info);
2079
2080 if (actual_bytes)
2081 *actual_bytes = discarded_bytes;
2082
2083
2084 if (ret == -EOPNOTSUPP)
2085 ret = 0;
2086 return ret;
2087 }
2088
2089 /* Can return -ENOMEM */
2090 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2091 struct btrfs_root *root,
2092 u64 bytenr, u64 num_bytes, u64 parent,
2093 u64 root_objectid, u64 owner, u64 offset)
2094 {
2095 int ret;
2096 struct btrfs_fs_info *fs_info = root->fs_info;
2097
2098 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2099 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2100
2101 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2102 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2103 num_bytes,
2104 parent, root_objectid, (int)owner,
2105 BTRFS_ADD_DELAYED_REF, NULL);
2106 } else {
2107 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2108 num_bytes, parent, root_objectid,
2109 owner, offset, 0,
2110 BTRFS_ADD_DELAYED_REF, NULL);
2111 }
2112 return ret;
2113 }
2114
2115 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *root,
2117 struct btrfs_delayed_ref_node *node,
2118 u64 parent, u64 root_objectid,
2119 u64 owner, u64 offset, int refs_to_add,
2120 struct btrfs_delayed_extent_op *extent_op)
2121 {
2122 struct btrfs_fs_info *fs_info = root->fs_info;
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
2126 struct btrfs_key key;
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
2129 u64 refs;
2130 int ret;
2131
2132 path = btrfs_alloc_path();
2133 if (!path)
2134 return -ENOMEM;
2135
2136 path->reada = READA_FORWARD;
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
2139 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2140 bytenr, num_bytes, parent,
2141 root_objectid, owner, offset,
2142 refs_to_add, extent_op);
2143 if ((ret < 0 && ret != -EAGAIN) || !ret)
2144 goto out;
2145
2146 /*
2147 * Ok we had -EAGAIN which means we didn't have space to insert and
2148 * inline extent ref, so just update the reference count and add a
2149 * normal backref.
2150 */
2151 leaf = path->nodes[0];
2152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2153 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2154 refs = btrfs_extent_refs(leaf, item);
2155 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156 if (extent_op)
2157 __run_delayed_extent_op(extent_op, leaf, item);
2158
2159 btrfs_mark_buffer_dirty(leaf);
2160 btrfs_release_path(path);
2161
2162 path->reada = READA_FORWARD;
2163 path->leave_spinning = 1;
2164 /* now insert the actual backref */
2165 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2166 path, bytenr, parent, root_objectid,
2167 owner, offset, refs_to_add);
2168 if (ret)
2169 btrfs_abort_transaction(trans, ret);
2170 out:
2171 btrfs_free_path(path);
2172 return ret;
2173 }
2174
2175 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2176 struct btrfs_root *root,
2177 struct btrfs_delayed_ref_node *node,
2178 struct btrfs_delayed_extent_op *extent_op,
2179 int insert_reserved)
2180 {
2181 int ret = 0;
2182 struct btrfs_delayed_data_ref *ref;
2183 struct btrfs_key ins;
2184 u64 parent = 0;
2185 u64 ref_root = 0;
2186 u64 flags = 0;
2187
2188 ins.objectid = node->bytenr;
2189 ins.offset = node->num_bytes;
2190 ins.type = BTRFS_EXTENT_ITEM_KEY;
2191
2192 ref = btrfs_delayed_node_to_data_ref(node);
2193 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2194
2195 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2196 parent = ref->parent;
2197 ref_root = ref->root;
2198
2199 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2200 if (extent_op)
2201 flags |= extent_op->flags_to_set;
2202 ret = alloc_reserved_file_extent(trans, root,
2203 parent, ref_root, flags,
2204 ref->objectid, ref->offset,
2205 &ins, node->ref_mod);
2206 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2207 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2208 ref_root, ref->objectid,
2209 ref->offset, node->ref_mod,
2210 extent_op);
2211 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2212 ret = __btrfs_free_extent(trans, root, node, parent,
2213 ref_root, ref->objectid,
2214 ref->offset, node->ref_mod,
2215 extent_op);
2216 } else {
2217 BUG();
2218 }
2219 return ret;
2220 }
2221
2222 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2223 struct extent_buffer *leaf,
2224 struct btrfs_extent_item *ei)
2225 {
2226 u64 flags = btrfs_extent_flags(leaf, ei);
2227 if (extent_op->update_flags) {
2228 flags |= extent_op->flags_to_set;
2229 btrfs_set_extent_flags(leaf, ei, flags);
2230 }
2231
2232 if (extent_op->update_key) {
2233 struct btrfs_tree_block_info *bi;
2234 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2235 bi = (struct btrfs_tree_block_info *)(ei + 1);
2236 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2237 }
2238 }
2239
2240 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2241 struct btrfs_root *root,
2242 struct btrfs_delayed_ref_node *node,
2243 struct btrfs_delayed_extent_op *extent_op)
2244 {
2245 struct btrfs_key key;
2246 struct btrfs_path *path;
2247 struct btrfs_extent_item *ei;
2248 struct extent_buffer *leaf;
2249 u32 item_size;
2250 int ret;
2251 int err = 0;
2252 int metadata = !extent_op->is_data;
2253
2254 if (trans->aborted)
2255 return 0;
2256
2257 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2258 metadata = 0;
2259
2260 path = btrfs_alloc_path();
2261 if (!path)
2262 return -ENOMEM;
2263
2264 key.objectid = node->bytenr;
2265
2266 if (metadata) {
2267 key.type = BTRFS_METADATA_ITEM_KEY;
2268 key.offset = extent_op->level;
2269 } else {
2270 key.type = BTRFS_EXTENT_ITEM_KEY;
2271 key.offset = node->num_bytes;
2272 }
2273
2274 again:
2275 path->reada = READA_FORWARD;
2276 path->leave_spinning = 1;
2277 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2278 path, 0, 1);
2279 if (ret < 0) {
2280 err = ret;
2281 goto out;
2282 }
2283 if (ret > 0) {
2284 if (metadata) {
2285 if (path->slots[0] > 0) {
2286 path->slots[0]--;
2287 btrfs_item_key_to_cpu(path->nodes[0], &key,
2288 path->slots[0]);
2289 if (key.objectid == node->bytenr &&
2290 key.type == BTRFS_EXTENT_ITEM_KEY &&
2291 key.offset == node->num_bytes)
2292 ret = 0;
2293 }
2294 if (ret > 0) {
2295 btrfs_release_path(path);
2296 metadata = 0;
2297
2298 key.objectid = node->bytenr;
2299 key.offset = node->num_bytes;
2300 key.type = BTRFS_EXTENT_ITEM_KEY;
2301 goto again;
2302 }
2303 } else {
2304 err = -EIO;
2305 goto out;
2306 }
2307 }
2308
2309 leaf = path->nodes[0];
2310 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2312 if (item_size < sizeof(*ei)) {
2313 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2314 path, (u64)-1, 0);
2315 if (ret < 0) {
2316 err = ret;
2317 goto out;
2318 }
2319 leaf = path->nodes[0];
2320 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2321 }
2322 #endif
2323 BUG_ON(item_size < sizeof(*ei));
2324 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2325 __run_delayed_extent_op(extent_op, leaf, ei);
2326
2327 btrfs_mark_buffer_dirty(leaf);
2328 out:
2329 btrfs_free_path(path);
2330 return err;
2331 }
2332
2333 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2334 struct btrfs_root *root,
2335 struct btrfs_delayed_ref_node *node,
2336 struct btrfs_delayed_extent_op *extent_op,
2337 int insert_reserved)
2338 {
2339 int ret = 0;
2340 struct btrfs_delayed_tree_ref *ref;
2341 struct btrfs_key ins;
2342 u64 parent = 0;
2343 u64 ref_root = 0;
2344 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2345 SKINNY_METADATA);
2346
2347 ref = btrfs_delayed_node_to_tree_ref(node);
2348 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2349
2350 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2351 parent = ref->parent;
2352 ref_root = ref->root;
2353
2354 ins.objectid = node->bytenr;
2355 if (skinny_metadata) {
2356 ins.offset = ref->level;
2357 ins.type = BTRFS_METADATA_ITEM_KEY;
2358 } else {
2359 ins.offset = node->num_bytes;
2360 ins.type = BTRFS_EXTENT_ITEM_KEY;
2361 }
2362
2363 BUG_ON(node->ref_mod != 1);
2364 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2365 BUG_ON(!extent_op || !extent_op->update_flags);
2366 ret = alloc_reserved_tree_block(trans, root,
2367 parent, ref_root,
2368 extent_op->flags_to_set,
2369 &extent_op->key,
2370 ref->level, &ins);
2371 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2372 ret = __btrfs_inc_extent_ref(trans, root, node,
2373 parent, ref_root,
2374 ref->level, 0, 1,
2375 extent_op);
2376 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2377 ret = __btrfs_free_extent(trans, root, node,
2378 parent, ref_root,
2379 ref->level, 0, 1, extent_op);
2380 } else {
2381 BUG();
2382 }
2383 return ret;
2384 }
2385
2386 /* helper function to actually process a single delayed ref entry */
2387 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct btrfs_delayed_ref_node *node,
2390 struct btrfs_delayed_extent_op *extent_op,
2391 int insert_reserved)
2392 {
2393 int ret = 0;
2394
2395 if (trans->aborted) {
2396 if (insert_reserved)
2397 btrfs_pin_extent(root, node->bytenr,
2398 node->num_bytes, 1);
2399 return 0;
2400 }
2401
2402 if (btrfs_delayed_ref_is_head(node)) {
2403 struct btrfs_delayed_ref_head *head;
2404 /*
2405 * we've hit the end of the chain and we were supposed
2406 * to insert this extent into the tree. But, it got
2407 * deleted before we ever needed to insert it, so all
2408 * we have to do is clean up the accounting
2409 */
2410 BUG_ON(extent_op);
2411 head = btrfs_delayed_node_to_head(node);
2412 trace_run_delayed_ref_head(root->fs_info, node, head,
2413 node->action);
2414
2415 if (insert_reserved) {
2416 btrfs_pin_extent(root, node->bytenr,
2417 node->num_bytes, 1);
2418 if (head->is_data) {
2419 ret = btrfs_del_csums(trans, root,
2420 node->bytenr,
2421 node->num_bytes);
2422 }
2423 }
2424
2425 /* Also free its reserved qgroup space */
2426 btrfs_qgroup_free_delayed_ref(root->fs_info,
2427 head->qgroup_ref_root,
2428 head->qgroup_reserved);
2429 return ret;
2430 }
2431
2432 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2433 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2434 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2435 insert_reserved);
2436 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2437 node->type == BTRFS_SHARED_DATA_REF_KEY)
2438 ret = run_delayed_data_ref(trans, root, node, extent_op,
2439 insert_reserved);
2440 else
2441 BUG();
2442 return ret;
2443 }
2444
2445 static inline struct btrfs_delayed_ref_node *
2446 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2447 {
2448 struct btrfs_delayed_ref_node *ref;
2449
2450 if (list_empty(&head->ref_list))
2451 return NULL;
2452
2453 /*
2454 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2455 * This is to prevent a ref count from going down to zero, which deletes
2456 * the extent item from the extent tree, when there still are references
2457 * to add, which would fail because they would not find the extent item.
2458 */
2459 list_for_each_entry(ref, &head->ref_list, list) {
2460 if (ref->action == BTRFS_ADD_DELAYED_REF)
2461 return ref;
2462 }
2463
2464 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2465 list);
2466 }
2467
2468 /*
2469 * Returns 0 on success or if called with an already aborted transaction.
2470 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2471 */
2472 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2473 struct btrfs_root *root,
2474 unsigned long nr)
2475 {
2476 struct btrfs_delayed_ref_root *delayed_refs;
2477 struct btrfs_delayed_ref_node *ref;
2478 struct btrfs_delayed_ref_head *locked_ref = NULL;
2479 struct btrfs_delayed_extent_op *extent_op;
2480 struct btrfs_fs_info *fs_info = root->fs_info;
2481 ktime_t start = ktime_get();
2482 int ret;
2483 unsigned long count = 0;
2484 unsigned long actual_count = 0;
2485 int must_insert_reserved = 0;
2486
2487 delayed_refs = &trans->transaction->delayed_refs;
2488 while (1) {
2489 if (!locked_ref) {
2490 if (count >= nr)
2491 break;
2492
2493 spin_lock(&delayed_refs->lock);
2494 locked_ref = btrfs_select_ref_head(trans);
2495 if (!locked_ref) {
2496 spin_unlock(&delayed_refs->lock);
2497 break;
2498 }
2499
2500 /* grab the lock that says we are going to process
2501 * all the refs for this head */
2502 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2503 spin_unlock(&delayed_refs->lock);
2504 /*
2505 * we may have dropped the spin lock to get the head
2506 * mutex lock, and that might have given someone else
2507 * time to free the head. If that's true, it has been
2508 * removed from our list and we can move on.
2509 */
2510 if (ret == -EAGAIN) {
2511 locked_ref = NULL;
2512 count++;
2513 continue;
2514 }
2515 }
2516
2517 /*
2518 * We need to try and merge add/drops of the same ref since we
2519 * can run into issues with relocate dropping the implicit ref
2520 * and then it being added back again before the drop can
2521 * finish. If we merged anything we need to re-loop so we can
2522 * get a good ref.
2523 * Or we can get node references of the same type that weren't
2524 * merged when created due to bumps in the tree mod seq, and
2525 * we need to merge them to prevent adding an inline extent
2526 * backref before dropping it (triggering a BUG_ON at
2527 * insert_inline_extent_backref()).
2528 */
2529 spin_lock(&locked_ref->lock);
2530 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2531 locked_ref);
2532
2533 /*
2534 * locked_ref is the head node, so we have to go one
2535 * node back for any delayed ref updates
2536 */
2537 ref = select_delayed_ref(locked_ref);
2538
2539 if (ref && ref->seq &&
2540 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2541 spin_unlock(&locked_ref->lock);
2542 btrfs_delayed_ref_unlock(locked_ref);
2543 spin_lock(&delayed_refs->lock);
2544 locked_ref->processing = 0;
2545 delayed_refs->num_heads_ready++;
2546 spin_unlock(&delayed_refs->lock);
2547 locked_ref = NULL;
2548 cond_resched();
2549 count++;
2550 continue;
2551 }
2552
2553 /*
2554 * record the must insert reserved flag before we
2555 * drop the spin lock.
2556 */
2557 must_insert_reserved = locked_ref->must_insert_reserved;
2558 locked_ref->must_insert_reserved = 0;
2559
2560 extent_op = locked_ref->extent_op;
2561 locked_ref->extent_op = NULL;
2562
2563 if (!ref) {
2564
2565
2566 /* All delayed refs have been processed, Go ahead
2567 * and send the head node to run_one_delayed_ref,
2568 * so that any accounting fixes can happen
2569 */
2570 ref = &locked_ref->node;
2571
2572 if (extent_op && must_insert_reserved) {
2573 btrfs_free_delayed_extent_op(extent_op);
2574 extent_op = NULL;
2575 }
2576
2577 if (extent_op) {
2578 spin_unlock(&locked_ref->lock);
2579 ret = run_delayed_extent_op(trans, root,
2580 ref, extent_op);
2581 btrfs_free_delayed_extent_op(extent_op);
2582
2583 if (ret) {
2584 /*
2585 * Need to reset must_insert_reserved if
2586 * there was an error so the abort stuff
2587 * can cleanup the reserved space
2588 * properly.
2589 */
2590 if (must_insert_reserved)
2591 locked_ref->must_insert_reserved = 1;
2592 locked_ref->processing = 0;
2593 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2594 btrfs_delayed_ref_unlock(locked_ref);
2595 return ret;
2596 }
2597 continue;
2598 }
2599
2600 /*
2601 * Need to drop our head ref lock and re-acquire the
2602 * delayed ref lock and then re-check to make sure
2603 * nobody got added.
2604 */
2605 spin_unlock(&locked_ref->lock);
2606 spin_lock(&delayed_refs->lock);
2607 spin_lock(&locked_ref->lock);
2608 if (!list_empty(&locked_ref->ref_list) ||
2609 locked_ref->extent_op) {
2610 spin_unlock(&locked_ref->lock);
2611 spin_unlock(&delayed_refs->lock);
2612 continue;
2613 }
2614 ref->in_tree = 0;
2615 delayed_refs->num_heads--;
2616 rb_erase(&locked_ref->href_node,
2617 &delayed_refs->href_root);
2618 spin_unlock(&delayed_refs->lock);
2619 } else {
2620 actual_count++;
2621 ref->in_tree = 0;
2622 list_del(&ref->list);
2623 }
2624 atomic_dec(&delayed_refs->num_entries);
2625
2626 if (!btrfs_delayed_ref_is_head(ref)) {
2627 /*
2628 * when we play the delayed ref, also correct the
2629 * ref_mod on head
2630 */
2631 switch (ref->action) {
2632 case BTRFS_ADD_DELAYED_REF:
2633 case BTRFS_ADD_DELAYED_EXTENT:
2634 locked_ref->node.ref_mod -= ref->ref_mod;
2635 break;
2636 case BTRFS_DROP_DELAYED_REF:
2637 locked_ref->node.ref_mod += ref->ref_mod;
2638 break;
2639 default:
2640 WARN_ON(1);
2641 }
2642 }
2643 spin_unlock(&locked_ref->lock);
2644
2645 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2646 must_insert_reserved);
2647
2648 btrfs_free_delayed_extent_op(extent_op);
2649 if (ret) {
2650 locked_ref->processing = 0;
2651 btrfs_delayed_ref_unlock(locked_ref);
2652 btrfs_put_delayed_ref(ref);
2653 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
2654 return ret;
2655 }
2656
2657 /*
2658 * If this node is a head, that means all the refs in this head
2659 * have been dealt with, and we will pick the next head to deal
2660 * with, so we must unlock the head and drop it from the cluster
2661 * list before we release it.
2662 */
2663 if (btrfs_delayed_ref_is_head(ref)) {
2664 if (locked_ref->is_data &&
2665 locked_ref->total_ref_mod < 0) {
2666 spin_lock(&delayed_refs->lock);
2667 delayed_refs->pending_csums -= ref->num_bytes;
2668 spin_unlock(&delayed_refs->lock);
2669 }
2670 btrfs_delayed_ref_unlock(locked_ref);
2671 locked_ref = NULL;
2672 }
2673 btrfs_put_delayed_ref(ref);
2674 count++;
2675 cond_resched();
2676 }
2677
2678 /*
2679 * We don't want to include ref heads since we can have empty ref heads
2680 * and those will drastically skew our runtime down since we just do
2681 * accounting, no actual extent tree updates.
2682 */
2683 if (actual_count > 0) {
2684 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2685 u64 avg;
2686
2687 /*
2688 * We weigh the current average higher than our current runtime
2689 * to avoid large swings in the average.
2690 */
2691 spin_lock(&delayed_refs->lock);
2692 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2693 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2694 spin_unlock(&delayed_refs->lock);
2695 }
2696 return 0;
2697 }
2698
2699 #ifdef SCRAMBLE_DELAYED_REFS
2700 /*
2701 * Normally delayed refs get processed in ascending bytenr order. This
2702 * correlates in most cases to the order added. To expose dependencies on this
2703 * order, we start to process the tree in the middle instead of the beginning
2704 */
2705 static u64 find_middle(struct rb_root *root)
2706 {
2707 struct rb_node *n = root->rb_node;
2708 struct btrfs_delayed_ref_node *entry;
2709 int alt = 1;
2710 u64 middle;
2711 u64 first = 0, last = 0;
2712
2713 n = rb_first(root);
2714 if (n) {
2715 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2716 first = entry->bytenr;
2717 }
2718 n = rb_last(root);
2719 if (n) {
2720 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2721 last = entry->bytenr;
2722 }
2723 n = root->rb_node;
2724
2725 while (n) {
2726 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2727 WARN_ON(!entry->in_tree);
2728
2729 middle = entry->bytenr;
2730
2731 if (alt)
2732 n = n->rb_left;
2733 else
2734 n = n->rb_right;
2735
2736 alt = 1 - alt;
2737 }
2738 return middle;
2739 }
2740 #endif
2741
2742 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2743 {
2744 u64 num_bytes;
2745
2746 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2747 sizeof(struct btrfs_extent_inline_ref));
2748 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2749 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2750
2751 /*
2752 * We don't ever fill up leaves all the way so multiply by 2 just to be
2753 * closer to what we're really going to want to use.
2754 */
2755 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2756 }
2757
2758 /*
2759 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2760 * would require to store the csums for that many bytes.
2761 */
2762 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2763 {
2764 u64 csum_size;
2765 u64 num_csums_per_leaf;
2766 u64 num_csums;
2767
2768 csum_size = BTRFS_MAX_ITEM_SIZE(root);
2769 num_csums_per_leaf = div64_u64(csum_size,
2770 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2771 num_csums = div64_u64(csum_bytes, root->sectorsize);
2772 num_csums += num_csums_per_leaf - 1;
2773 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2774 return num_csums;
2775 }
2776
2777 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2778 struct btrfs_root *root)
2779 {
2780 struct btrfs_block_rsv *global_rsv;
2781 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2782 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2783 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2784 u64 num_bytes, num_dirty_bgs_bytes;
2785 int ret = 0;
2786
2787 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2788 num_heads = heads_to_leaves(root, num_heads);
2789 if (num_heads > 1)
2790 num_bytes += (num_heads - 1) * root->nodesize;
2791 num_bytes <<= 1;
2792 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2793 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2794 num_dirty_bgs);
2795 global_rsv = &root->fs_info->global_block_rsv;
2796
2797 /*
2798 * If we can't allocate any more chunks lets make sure we have _lots_ of
2799 * wiggle room since running delayed refs can create more delayed refs.
2800 */
2801 if (global_rsv->space_info->full) {
2802 num_dirty_bgs_bytes <<= 1;
2803 num_bytes <<= 1;
2804 }
2805
2806 spin_lock(&global_rsv->lock);
2807 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2808 ret = 1;
2809 spin_unlock(&global_rsv->lock);
2810 return ret;
2811 }
2812
2813 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2814 struct btrfs_root *root)
2815 {
2816 struct btrfs_fs_info *fs_info = root->fs_info;
2817 u64 num_entries =
2818 atomic_read(&trans->transaction->delayed_refs.num_entries);
2819 u64 avg_runtime;
2820 u64 val;
2821
2822 smp_mb();
2823 avg_runtime = fs_info->avg_delayed_ref_runtime;
2824 val = num_entries * avg_runtime;
2825 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2826 return 1;
2827 if (val >= NSEC_PER_SEC / 2)
2828 return 2;
2829
2830 return btrfs_check_space_for_delayed_refs(trans, root);
2831 }
2832
2833 struct async_delayed_refs {
2834 struct btrfs_root *root;
2835 u64 transid;
2836 int count;
2837 int error;
2838 int sync;
2839 struct completion wait;
2840 struct btrfs_work work;
2841 };
2842
2843 static void delayed_ref_async_start(struct btrfs_work *work)
2844 {
2845 struct async_delayed_refs *async;
2846 struct btrfs_trans_handle *trans;
2847 int ret;
2848
2849 async = container_of(work, struct async_delayed_refs, work);
2850
2851 /* if the commit is already started, we don't need to wait here */
2852 if (btrfs_transaction_blocked(async->root->fs_info))
2853 goto done;
2854
2855 trans = btrfs_join_transaction(async->root);
2856 if (IS_ERR(trans)) {
2857 async->error = PTR_ERR(trans);
2858 goto done;
2859 }
2860
2861 /*
2862 * trans->sync means that when we call end_transaction, we won't
2863 * wait on delayed refs
2864 */
2865 trans->sync = true;
2866
2867 /* Don't bother flushing if we got into a different transaction */
2868 if (trans->transid > async->transid)
2869 goto end;
2870
2871 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2872 if (ret)
2873 async->error = ret;
2874 end:
2875 ret = btrfs_end_transaction(trans, async->root);
2876 if (ret && !async->error)
2877 async->error = ret;
2878 done:
2879 if (async->sync)
2880 complete(&async->wait);
2881 else
2882 kfree(async);
2883 }
2884
2885 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2886 unsigned long count, u64 transid, int wait)
2887 {
2888 struct async_delayed_refs *async;
2889 int ret;
2890
2891 async = kmalloc(sizeof(*async), GFP_NOFS);
2892 if (!async)
2893 return -ENOMEM;
2894
2895 async->root = root->fs_info->tree_root;
2896 async->count = count;
2897 async->error = 0;
2898 async->transid = transid;
2899 if (wait)
2900 async->sync = 1;
2901 else
2902 async->sync = 0;
2903 init_completion(&async->wait);
2904
2905 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2906 delayed_ref_async_start, NULL, NULL);
2907
2908 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2909
2910 if (wait) {
2911 wait_for_completion(&async->wait);
2912 ret = async->error;
2913 kfree(async);
2914 return ret;
2915 }
2916 return 0;
2917 }
2918
2919 /*
2920 * this starts processing the delayed reference count updates and
2921 * extent insertions we have queued up so far. count can be
2922 * 0, which means to process everything in the tree at the start
2923 * of the run (but not newly added entries), or it can be some target
2924 * number you'd like to process.
2925 *
2926 * Returns 0 on success or if called with an aborted transaction
2927 * Returns <0 on error and aborts the transaction
2928 */
2929 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2930 struct btrfs_root *root, unsigned long count)
2931 {
2932 struct rb_node *node;
2933 struct btrfs_delayed_ref_root *delayed_refs;
2934 struct btrfs_delayed_ref_head *head;
2935 int ret;
2936 int run_all = count == (unsigned long)-1;
2937 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2938
2939 /* We'll clean this up in btrfs_cleanup_transaction */
2940 if (trans->aborted)
2941 return 0;
2942
2943 if (root->fs_info->creating_free_space_tree)
2944 return 0;
2945
2946 if (root == root->fs_info->extent_root)
2947 root = root->fs_info->tree_root;
2948
2949 delayed_refs = &trans->transaction->delayed_refs;
2950 if (count == 0)
2951 count = atomic_read(&delayed_refs->num_entries) * 2;
2952
2953 again:
2954 #ifdef SCRAMBLE_DELAYED_REFS
2955 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2956 #endif
2957 trans->can_flush_pending_bgs = false;
2958 ret = __btrfs_run_delayed_refs(trans, root, count);
2959 if (ret < 0) {
2960 btrfs_abort_transaction(trans, ret);
2961 return ret;
2962 }
2963
2964 if (run_all) {
2965 if (!list_empty(&trans->new_bgs))
2966 btrfs_create_pending_block_groups(trans, root);
2967
2968 spin_lock(&delayed_refs->lock);
2969 node = rb_first(&delayed_refs->href_root);
2970 if (!node) {
2971 spin_unlock(&delayed_refs->lock);
2972 goto out;
2973 }
2974 count = (unsigned long)-1;
2975
2976 while (node) {
2977 head = rb_entry(node, struct btrfs_delayed_ref_head,
2978 href_node);
2979 if (btrfs_delayed_ref_is_head(&head->node)) {
2980 struct btrfs_delayed_ref_node *ref;
2981
2982 ref = &head->node;
2983 atomic_inc(&ref->refs);
2984
2985 spin_unlock(&delayed_refs->lock);
2986 /*
2987 * Mutex was contended, block until it's
2988 * released and try again
2989 */
2990 mutex_lock(&head->mutex);
2991 mutex_unlock(&head->mutex);
2992
2993 btrfs_put_delayed_ref(ref);
2994 cond_resched();
2995 goto again;
2996 } else {
2997 WARN_ON(1);
2998 }
2999 node = rb_next(node);
3000 }
3001 spin_unlock(&delayed_refs->lock);
3002 cond_resched();
3003 goto again;
3004 }
3005 out:
3006 assert_qgroups_uptodate(trans);
3007 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3008 return 0;
3009 }
3010
3011 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3012 struct btrfs_root *root,
3013 u64 bytenr, u64 num_bytes, u64 flags,
3014 int level, int is_data)
3015 {
3016 struct btrfs_delayed_extent_op *extent_op;
3017 int ret;
3018
3019 extent_op = btrfs_alloc_delayed_extent_op();
3020 if (!extent_op)
3021 return -ENOMEM;
3022
3023 extent_op->flags_to_set = flags;
3024 extent_op->update_flags = true;
3025 extent_op->update_key = false;
3026 extent_op->is_data = is_data ? true : false;
3027 extent_op->level = level;
3028
3029 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3030 num_bytes, extent_op);
3031 if (ret)
3032 btrfs_free_delayed_extent_op(extent_op);
3033 return ret;
3034 }
3035
3036 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root,
3038 struct btrfs_path *path,
3039 u64 objectid, u64 offset, u64 bytenr)
3040 {
3041 struct btrfs_delayed_ref_head *head;
3042 struct btrfs_delayed_ref_node *ref;
3043 struct btrfs_delayed_data_ref *data_ref;
3044 struct btrfs_delayed_ref_root *delayed_refs;
3045 int ret = 0;
3046
3047 delayed_refs = &trans->transaction->delayed_refs;
3048 spin_lock(&delayed_refs->lock);
3049 head = btrfs_find_delayed_ref_head(trans, bytenr);
3050 if (!head) {
3051 spin_unlock(&delayed_refs->lock);
3052 return 0;
3053 }
3054
3055 if (!mutex_trylock(&head->mutex)) {
3056 atomic_inc(&head->node.refs);
3057 spin_unlock(&delayed_refs->lock);
3058
3059 btrfs_release_path(path);
3060
3061 /*
3062 * Mutex was contended, block until it's released and let
3063 * caller try again
3064 */
3065 mutex_lock(&head->mutex);
3066 mutex_unlock(&head->mutex);
3067 btrfs_put_delayed_ref(&head->node);
3068 return -EAGAIN;
3069 }
3070 spin_unlock(&delayed_refs->lock);
3071
3072 spin_lock(&head->lock);
3073 list_for_each_entry(ref, &head->ref_list, list) {
3074 /* If it's a shared ref we know a cross reference exists */
3075 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3076 ret = 1;
3077 break;
3078 }
3079
3080 data_ref = btrfs_delayed_node_to_data_ref(ref);
3081
3082 /*
3083 * If our ref doesn't match the one we're currently looking at
3084 * then we have a cross reference.
3085 */
3086 if (data_ref->root != root->root_key.objectid ||
3087 data_ref->objectid != objectid ||
3088 data_ref->offset != offset) {
3089 ret = 1;
3090 break;
3091 }
3092 }
3093 spin_unlock(&head->lock);
3094 mutex_unlock(&head->mutex);
3095 return ret;
3096 }
3097
3098 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3099 struct btrfs_root *root,
3100 struct btrfs_path *path,
3101 u64 objectid, u64 offset, u64 bytenr)
3102 {
3103 struct btrfs_root *extent_root = root->fs_info->extent_root;
3104 struct extent_buffer *leaf;
3105 struct btrfs_extent_data_ref *ref;
3106 struct btrfs_extent_inline_ref *iref;
3107 struct btrfs_extent_item *ei;
3108 struct btrfs_key key;
3109 u32 item_size;
3110 int ret;
3111
3112 key.objectid = bytenr;
3113 key.offset = (u64)-1;
3114 key.type = BTRFS_EXTENT_ITEM_KEY;
3115
3116 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3117 if (ret < 0)
3118 goto out;
3119 BUG_ON(ret == 0); /* Corruption */
3120
3121 ret = -ENOENT;
3122 if (path->slots[0] == 0)
3123 goto out;
3124
3125 path->slots[0]--;
3126 leaf = path->nodes[0];
3127 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3128
3129 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3130 goto out;
3131
3132 ret = 1;
3133 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3134 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3135 if (item_size < sizeof(*ei)) {
3136 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3137 goto out;
3138 }
3139 #endif
3140 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3141
3142 if (item_size != sizeof(*ei) +
3143 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3144 goto out;
3145
3146 if (btrfs_extent_generation(leaf, ei) <=
3147 btrfs_root_last_snapshot(&root->root_item))
3148 goto out;
3149
3150 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3151 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3152 BTRFS_EXTENT_DATA_REF_KEY)
3153 goto out;
3154
3155 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3156 if (btrfs_extent_refs(leaf, ei) !=
3157 btrfs_extent_data_ref_count(leaf, ref) ||
3158 btrfs_extent_data_ref_root(leaf, ref) !=
3159 root->root_key.objectid ||
3160 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3161 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3162 goto out;
3163
3164 ret = 0;
3165 out:
3166 return ret;
3167 }
3168
3169 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3170 struct btrfs_root *root,
3171 u64 objectid, u64 offset, u64 bytenr)
3172 {
3173 struct btrfs_path *path;
3174 int ret;
3175 int ret2;
3176
3177 path = btrfs_alloc_path();
3178 if (!path)
3179 return -ENOENT;
3180
3181 do {
3182 ret = check_committed_ref(trans, root, path, objectid,
3183 offset, bytenr);
3184 if (ret && ret != -ENOENT)
3185 goto out;
3186
3187 ret2 = check_delayed_ref(trans, root, path, objectid,
3188 offset, bytenr);
3189 } while (ret2 == -EAGAIN);
3190
3191 if (ret2 && ret2 != -ENOENT) {
3192 ret = ret2;
3193 goto out;
3194 }
3195
3196 if (ret != -ENOENT || ret2 != -ENOENT)
3197 ret = 0;
3198 out:
3199 btrfs_free_path(path);
3200 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3201 WARN_ON(ret > 0);
3202 return ret;
3203 }
3204
3205 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3206 struct btrfs_root *root,
3207 struct extent_buffer *buf,
3208 int full_backref, int inc)
3209 {
3210 u64 bytenr;
3211 u64 num_bytes;
3212 u64 parent;
3213 u64 ref_root;
3214 u32 nritems;
3215 struct btrfs_key key;
3216 struct btrfs_file_extent_item *fi;
3217 int i;
3218 int level;
3219 int ret = 0;
3220 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3221 u64, u64, u64, u64, u64, u64);
3222
3223
3224 if (btrfs_is_testing(root->fs_info))
3225 return 0;
3226
3227 ref_root = btrfs_header_owner(buf);
3228 nritems = btrfs_header_nritems(buf);
3229 level = btrfs_header_level(buf);
3230
3231 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3232 return 0;
3233
3234 if (inc)
3235 process_func = btrfs_inc_extent_ref;
3236 else
3237 process_func = btrfs_free_extent;
3238
3239 if (full_backref)
3240 parent = buf->start;
3241 else
3242 parent = 0;
3243
3244 for (i = 0; i < nritems; i++) {
3245 if (level == 0) {
3246 btrfs_item_key_to_cpu(buf, &key, i);
3247 if (key.type != BTRFS_EXTENT_DATA_KEY)
3248 continue;
3249 fi = btrfs_item_ptr(buf, i,
3250 struct btrfs_file_extent_item);
3251 if (btrfs_file_extent_type(buf, fi) ==
3252 BTRFS_FILE_EXTENT_INLINE)
3253 continue;
3254 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3255 if (bytenr == 0)
3256 continue;
3257
3258 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3259 key.offset -= btrfs_file_extent_offset(buf, fi);
3260 ret = process_func(trans, root, bytenr, num_bytes,
3261 parent, ref_root, key.objectid,
3262 key.offset);
3263 if (ret)
3264 goto fail;
3265 } else {
3266 bytenr = btrfs_node_blockptr(buf, i);
3267 num_bytes = root->nodesize;
3268 ret = process_func(trans, root, bytenr, num_bytes,
3269 parent, ref_root, level - 1, 0);
3270 if (ret)
3271 goto fail;
3272 }
3273 }
3274 return 0;
3275 fail:
3276 return ret;
3277 }
3278
3279 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3280 struct extent_buffer *buf, int full_backref)
3281 {
3282 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3283 }
3284
3285 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3286 struct extent_buffer *buf, int full_backref)
3287 {
3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3289 }
3290
3291 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3292 struct btrfs_root *root,
3293 struct btrfs_path *path,
3294 struct btrfs_block_group_cache *cache)
3295 {
3296 int ret;
3297 struct btrfs_root *extent_root = root->fs_info->extent_root;
3298 unsigned long bi;
3299 struct extent_buffer *leaf;
3300
3301 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3302 if (ret) {
3303 if (ret > 0)
3304 ret = -ENOENT;
3305 goto fail;
3306 }
3307
3308 leaf = path->nodes[0];
3309 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3310 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3311 btrfs_mark_buffer_dirty(leaf);
3312 fail:
3313 btrfs_release_path(path);
3314 return ret;
3315
3316 }
3317
3318 static struct btrfs_block_group_cache *
3319 next_block_group(struct btrfs_root *root,
3320 struct btrfs_block_group_cache *cache)
3321 {
3322 struct rb_node *node;
3323
3324 spin_lock(&root->fs_info->block_group_cache_lock);
3325
3326 /* If our block group was removed, we need a full search. */
3327 if (RB_EMPTY_NODE(&cache->cache_node)) {
3328 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3329
3330 spin_unlock(&root->fs_info->block_group_cache_lock);
3331 btrfs_put_block_group(cache);
3332 cache = btrfs_lookup_first_block_group(root->fs_info,
3333 next_bytenr);
3334 return cache;
3335 }
3336 node = rb_next(&cache->cache_node);
3337 btrfs_put_block_group(cache);
3338 if (node) {
3339 cache = rb_entry(node, struct btrfs_block_group_cache,
3340 cache_node);
3341 btrfs_get_block_group(cache);
3342 } else
3343 cache = NULL;
3344 spin_unlock(&root->fs_info->block_group_cache_lock);
3345 return cache;
3346 }
3347
3348 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3349 struct btrfs_trans_handle *trans,
3350 struct btrfs_path *path)
3351 {
3352 struct btrfs_root *root = block_group->fs_info->tree_root;
3353 struct inode *inode = NULL;
3354 u64 alloc_hint = 0;
3355 int dcs = BTRFS_DC_ERROR;
3356 u64 num_pages = 0;
3357 int retries = 0;
3358 int ret = 0;
3359
3360 /*
3361 * If this block group is smaller than 100 megs don't bother caching the
3362 * block group.
3363 */
3364 if (block_group->key.offset < (100 * SZ_1M)) {
3365 spin_lock(&block_group->lock);
3366 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3367 spin_unlock(&block_group->lock);
3368 return 0;
3369 }
3370
3371 if (trans->aborted)
3372 return 0;
3373 again:
3374 inode = lookup_free_space_inode(root, block_group, path);
3375 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3376 ret = PTR_ERR(inode);
3377 btrfs_release_path(path);
3378 goto out;
3379 }
3380
3381 if (IS_ERR(inode)) {
3382 BUG_ON(retries);
3383 retries++;
3384
3385 if (block_group->ro)
3386 goto out_free;
3387
3388 ret = create_free_space_inode(root, trans, block_group, path);
3389 if (ret)
3390 goto out_free;
3391 goto again;
3392 }
3393
3394 /* We've already setup this transaction, go ahead and exit */
3395 if (block_group->cache_generation == trans->transid &&
3396 i_size_read(inode)) {
3397 dcs = BTRFS_DC_SETUP;
3398 goto out_put;
3399 }
3400
3401 /*
3402 * We want to set the generation to 0, that way if anything goes wrong
3403 * from here on out we know not to trust this cache when we load up next
3404 * time.
3405 */
3406 BTRFS_I(inode)->generation = 0;
3407 ret = btrfs_update_inode(trans, root, inode);
3408 if (ret) {
3409 /*
3410 * So theoretically we could recover from this, simply set the
3411 * super cache generation to 0 so we know to invalidate the
3412 * cache, but then we'd have to keep track of the block groups
3413 * that fail this way so we know we _have_ to reset this cache
3414 * before the next commit or risk reading stale cache. So to
3415 * limit our exposure to horrible edge cases lets just abort the
3416 * transaction, this only happens in really bad situations
3417 * anyway.
3418 */
3419 btrfs_abort_transaction(trans, ret);
3420 goto out_put;
3421 }
3422 WARN_ON(ret);
3423
3424 if (i_size_read(inode) > 0) {
3425 ret = btrfs_check_trunc_cache_free_space(root,
3426 &root->fs_info->global_block_rsv);
3427 if (ret)
3428 goto out_put;
3429
3430 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3431 if (ret)
3432 goto out_put;
3433 }
3434
3435 spin_lock(&block_group->lock);
3436 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3437 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3438 /*
3439 * don't bother trying to write stuff out _if_
3440 * a) we're not cached,
3441 * b) we're with nospace_cache mount option.
3442 */
3443 dcs = BTRFS_DC_WRITTEN;
3444 spin_unlock(&block_group->lock);
3445 goto out_put;
3446 }
3447 spin_unlock(&block_group->lock);
3448
3449 /*
3450 * We hit an ENOSPC when setting up the cache in this transaction, just
3451 * skip doing the setup, we've already cleared the cache so we're safe.
3452 */
3453 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3454 ret = -ENOSPC;
3455 goto out_put;
3456 }
3457
3458 /*
3459 * Try to preallocate enough space based on how big the block group is.
3460 * Keep in mind this has to include any pinned space which could end up
3461 * taking up quite a bit since it's not folded into the other space
3462 * cache.
3463 */
3464 num_pages = div_u64(block_group->key.offset, SZ_256M);
3465 if (!num_pages)
3466 num_pages = 1;
3467
3468 num_pages *= 16;
3469 num_pages *= PAGE_SIZE;
3470
3471 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3472 if (ret)
3473 goto out_put;
3474
3475 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3476 num_pages, num_pages,
3477 &alloc_hint);
3478 /*
3479 * Our cache requires contiguous chunks so that we don't modify a bunch
3480 * of metadata or split extents when writing the cache out, which means
3481 * we can enospc if we are heavily fragmented in addition to just normal
3482 * out of space conditions. So if we hit this just skip setting up any
3483 * other block groups for this transaction, maybe we'll unpin enough
3484 * space the next time around.
3485 */
3486 if (!ret)
3487 dcs = BTRFS_DC_SETUP;
3488 else if (ret == -ENOSPC)
3489 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3490
3491 out_put:
3492 iput(inode);
3493 out_free:
3494 btrfs_release_path(path);
3495 out:
3496 spin_lock(&block_group->lock);
3497 if (!ret && dcs == BTRFS_DC_SETUP)
3498 block_group->cache_generation = trans->transid;
3499 block_group->disk_cache_state = dcs;
3500 spin_unlock(&block_group->lock);
3501
3502 return ret;
3503 }
3504
3505 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3506 struct btrfs_root *root)
3507 {
3508 struct btrfs_block_group_cache *cache, *tmp;
3509 struct btrfs_transaction *cur_trans = trans->transaction;
3510 struct btrfs_path *path;
3511
3512 if (list_empty(&cur_trans->dirty_bgs) ||
3513 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3514 return 0;
3515
3516 path = btrfs_alloc_path();
3517 if (!path)
3518 return -ENOMEM;
3519
3520 /* Could add new block groups, use _safe just in case */
3521 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3522 dirty_list) {
3523 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3524 cache_save_setup(cache, trans, path);
3525 }
3526
3527 btrfs_free_path(path);
3528 return 0;
3529 }
3530
3531 /*
3532 * transaction commit does final block group cache writeback during a
3533 * critical section where nothing is allowed to change the FS. This is
3534 * required in order for the cache to actually match the block group,
3535 * but can introduce a lot of latency into the commit.
3536 *
3537 * So, btrfs_start_dirty_block_groups is here to kick off block group
3538 * cache IO. There's a chance we'll have to redo some of it if the
3539 * block group changes again during the commit, but it greatly reduces
3540 * the commit latency by getting rid of the easy block groups while
3541 * we're still allowing others to join the commit.
3542 */
3543 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3544 struct btrfs_root *root)
3545 {
3546 struct btrfs_block_group_cache *cache;
3547 struct btrfs_transaction *cur_trans = trans->transaction;
3548 int ret = 0;
3549 int should_put;
3550 struct btrfs_path *path = NULL;
3551 LIST_HEAD(dirty);
3552 struct list_head *io = &cur_trans->io_bgs;
3553 int num_started = 0;
3554 int loops = 0;
3555
3556 spin_lock(&cur_trans->dirty_bgs_lock);
3557 if (list_empty(&cur_trans->dirty_bgs)) {
3558 spin_unlock(&cur_trans->dirty_bgs_lock);
3559 return 0;
3560 }
3561 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3562 spin_unlock(&cur_trans->dirty_bgs_lock);
3563
3564 again:
3565 /*
3566 * make sure all the block groups on our dirty list actually
3567 * exist
3568 */
3569 btrfs_create_pending_block_groups(trans, root);
3570
3571 if (!path) {
3572 path = btrfs_alloc_path();
3573 if (!path)
3574 return -ENOMEM;
3575 }
3576
3577 /*
3578 * cache_write_mutex is here only to save us from balance or automatic
3579 * removal of empty block groups deleting this block group while we are
3580 * writing out the cache
3581 */
3582 mutex_lock(&trans->transaction->cache_write_mutex);
3583 while (!list_empty(&dirty)) {
3584 cache = list_first_entry(&dirty,
3585 struct btrfs_block_group_cache,
3586 dirty_list);
3587 /*
3588 * this can happen if something re-dirties a block
3589 * group that is already under IO. Just wait for it to
3590 * finish and then do it all again
3591 */
3592 if (!list_empty(&cache->io_list)) {
3593 list_del_init(&cache->io_list);
3594 btrfs_wait_cache_io(root, trans, cache,
3595 &cache->io_ctl, path,
3596 cache->key.objectid);
3597 btrfs_put_block_group(cache);
3598 }
3599
3600
3601 /*
3602 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3603 * if it should update the cache_state. Don't delete
3604 * until after we wait.
3605 *
3606 * Since we're not running in the commit critical section
3607 * we need the dirty_bgs_lock to protect from update_block_group
3608 */
3609 spin_lock(&cur_trans->dirty_bgs_lock);
3610 list_del_init(&cache->dirty_list);
3611 spin_unlock(&cur_trans->dirty_bgs_lock);
3612
3613 should_put = 1;
3614
3615 cache_save_setup(cache, trans, path);
3616
3617 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3618 cache->io_ctl.inode = NULL;
3619 ret = btrfs_write_out_cache(root, trans, cache, path);
3620 if (ret == 0 && cache->io_ctl.inode) {
3621 num_started++;
3622 should_put = 0;
3623
3624 /*
3625 * the cache_write_mutex is protecting
3626 * the io_list
3627 */
3628 list_add_tail(&cache->io_list, io);
3629 } else {
3630 /*
3631 * if we failed to write the cache, the
3632 * generation will be bad and life goes on
3633 */
3634 ret = 0;
3635 }
3636 }
3637 if (!ret) {
3638 ret = write_one_cache_group(trans, root, path, cache);
3639 /*
3640 * Our block group might still be attached to the list
3641 * of new block groups in the transaction handle of some
3642 * other task (struct btrfs_trans_handle->new_bgs). This
3643 * means its block group item isn't yet in the extent
3644 * tree. If this happens ignore the error, as we will
3645 * try again later in the critical section of the
3646 * transaction commit.
3647 */
3648 if (ret == -ENOENT) {
3649 ret = 0;
3650 spin_lock(&cur_trans->dirty_bgs_lock);
3651 if (list_empty(&cache->dirty_list)) {
3652 list_add_tail(&cache->dirty_list,
3653 &cur_trans->dirty_bgs);
3654 btrfs_get_block_group(cache);
3655 }
3656 spin_unlock(&cur_trans->dirty_bgs_lock);
3657 } else if (ret) {
3658 btrfs_abort_transaction(trans, ret);
3659 }
3660 }
3661
3662 /* if its not on the io list, we need to put the block group */
3663 if (should_put)
3664 btrfs_put_block_group(cache);
3665
3666 if (ret)
3667 break;
3668
3669 /*
3670 * Avoid blocking other tasks for too long. It might even save
3671 * us from writing caches for block groups that are going to be
3672 * removed.
3673 */
3674 mutex_unlock(&trans->transaction->cache_write_mutex);
3675 mutex_lock(&trans->transaction->cache_write_mutex);
3676 }
3677 mutex_unlock(&trans->transaction->cache_write_mutex);
3678
3679 /*
3680 * go through delayed refs for all the stuff we've just kicked off
3681 * and then loop back (just once)
3682 */
3683 ret = btrfs_run_delayed_refs(trans, root, 0);
3684 if (!ret && loops == 0) {
3685 loops++;
3686 spin_lock(&cur_trans->dirty_bgs_lock);
3687 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3688 /*
3689 * dirty_bgs_lock protects us from concurrent block group
3690 * deletes too (not just cache_write_mutex).
3691 */
3692 if (!list_empty(&dirty)) {
3693 spin_unlock(&cur_trans->dirty_bgs_lock);
3694 goto again;
3695 }
3696 spin_unlock(&cur_trans->dirty_bgs_lock);
3697 }
3698
3699 btrfs_free_path(path);
3700 return ret;
3701 }
3702
3703 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3704 struct btrfs_root *root)
3705 {
3706 struct btrfs_block_group_cache *cache;
3707 struct btrfs_transaction *cur_trans = trans->transaction;
3708 int ret = 0;
3709 int should_put;
3710 struct btrfs_path *path;
3711 struct list_head *io = &cur_trans->io_bgs;
3712 int num_started = 0;
3713
3714 path = btrfs_alloc_path();
3715 if (!path)
3716 return -ENOMEM;
3717
3718 /*
3719 * Even though we are in the critical section of the transaction commit,
3720 * we can still have concurrent tasks adding elements to this
3721 * transaction's list of dirty block groups. These tasks correspond to
3722 * endio free space workers started when writeback finishes for a
3723 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3724 * allocate new block groups as a result of COWing nodes of the root
3725 * tree when updating the free space inode. The writeback for the space
3726 * caches is triggered by an earlier call to
3727 * btrfs_start_dirty_block_groups() and iterations of the following
3728 * loop.
3729 * Also we want to do the cache_save_setup first and then run the
3730 * delayed refs to make sure we have the best chance at doing this all
3731 * in one shot.
3732 */
3733 spin_lock(&cur_trans->dirty_bgs_lock);
3734 while (!list_empty(&cur_trans->dirty_bgs)) {
3735 cache = list_first_entry(&cur_trans->dirty_bgs,
3736 struct btrfs_block_group_cache,
3737 dirty_list);
3738
3739 /*
3740 * this can happen if cache_save_setup re-dirties a block
3741 * group that is already under IO. Just wait for it to
3742 * finish and then do it all again
3743 */
3744 if (!list_empty(&cache->io_list)) {
3745 spin_unlock(&cur_trans->dirty_bgs_lock);
3746 list_del_init(&cache->io_list);
3747 btrfs_wait_cache_io(root, trans, cache,
3748 &cache->io_ctl, path,
3749 cache->key.objectid);
3750 btrfs_put_block_group(cache);
3751 spin_lock(&cur_trans->dirty_bgs_lock);
3752 }
3753
3754 /*
3755 * don't remove from the dirty list until after we've waited
3756 * on any pending IO
3757 */
3758 list_del_init(&cache->dirty_list);
3759 spin_unlock(&cur_trans->dirty_bgs_lock);
3760 should_put = 1;
3761
3762 cache_save_setup(cache, trans, path);
3763
3764 if (!ret)
3765 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3766
3767 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3768 cache->io_ctl.inode = NULL;
3769 ret = btrfs_write_out_cache(root, trans, cache, path);
3770 if (ret == 0 && cache->io_ctl.inode) {
3771 num_started++;
3772 should_put = 0;
3773 list_add_tail(&cache->io_list, io);
3774 } else {
3775 /*
3776 * if we failed to write the cache, the
3777 * generation will be bad and life goes on
3778 */
3779 ret = 0;
3780 }
3781 }
3782 if (!ret) {
3783 ret = write_one_cache_group(trans, root, path, cache);
3784 /*
3785 * One of the free space endio workers might have
3786 * created a new block group while updating a free space
3787 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3788 * and hasn't released its transaction handle yet, in
3789 * which case the new block group is still attached to
3790 * its transaction handle and its creation has not
3791 * finished yet (no block group item in the extent tree
3792 * yet, etc). If this is the case, wait for all free
3793 * space endio workers to finish and retry. This is a
3794 * a very rare case so no need for a more efficient and
3795 * complex approach.
3796 */
3797 if (ret == -ENOENT) {
3798 wait_event(cur_trans->writer_wait,
3799 atomic_read(&cur_trans->num_writers) == 1);
3800 ret = write_one_cache_group(trans, root, path,
3801 cache);
3802 }
3803 if (ret)
3804 btrfs_abort_transaction(trans, ret);
3805 }
3806
3807 /* if its not on the io list, we need to put the block group */
3808 if (should_put)
3809 btrfs_put_block_group(cache);
3810 spin_lock(&cur_trans->dirty_bgs_lock);
3811 }
3812 spin_unlock(&cur_trans->dirty_bgs_lock);
3813
3814 while (!list_empty(io)) {
3815 cache = list_first_entry(io, struct btrfs_block_group_cache,
3816 io_list);
3817 list_del_init(&cache->io_list);
3818 btrfs_wait_cache_io(root, trans, cache,
3819 &cache->io_ctl, path, cache->key.objectid);
3820 btrfs_put_block_group(cache);
3821 }
3822
3823 btrfs_free_path(path);
3824 return ret;
3825 }
3826
3827 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3828 {
3829 struct btrfs_block_group_cache *block_group;
3830 int readonly = 0;
3831
3832 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3833 if (!block_group || block_group->ro)
3834 readonly = 1;
3835 if (block_group)
3836 btrfs_put_block_group(block_group);
3837 return readonly;
3838 }
3839
3840 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3841 {
3842 struct btrfs_block_group_cache *bg;
3843 bool ret = true;
3844
3845 bg = btrfs_lookup_block_group(fs_info, bytenr);
3846 if (!bg)
3847 return false;
3848
3849 spin_lock(&bg->lock);
3850 if (bg->ro)
3851 ret = false;
3852 else
3853 atomic_inc(&bg->nocow_writers);
3854 spin_unlock(&bg->lock);
3855
3856 /* no put on block group, done by btrfs_dec_nocow_writers */
3857 if (!ret)
3858 btrfs_put_block_group(bg);
3859
3860 return ret;
3861
3862 }
3863
3864 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3865 {
3866 struct btrfs_block_group_cache *bg;
3867
3868 bg = btrfs_lookup_block_group(fs_info, bytenr);
3869 ASSERT(bg);
3870 if (atomic_dec_and_test(&bg->nocow_writers))
3871 wake_up_atomic_t(&bg->nocow_writers);
3872 /*
3873 * Once for our lookup and once for the lookup done by a previous call
3874 * to btrfs_inc_nocow_writers()
3875 */
3876 btrfs_put_block_group(bg);
3877 btrfs_put_block_group(bg);
3878 }
3879
3880 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3881 {
3882 schedule();
3883 return 0;
3884 }
3885
3886 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3887 {
3888 wait_on_atomic_t(&bg->nocow_writers,
3889 btrfs_wait_nocow_writers_atomic_t,
3890 TASK_UNINTERRUPTIBLE);
3891 }
3892
3893 static const char *alloc_name(u64 flags)
3894 {
3895 switch (flags) {
3896 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3897 return "mixed";
3898 case BTRFS_BLOCK_GROUP_METADATA:
3899 return "metadata";
3900 case BTRFS_BLOCK_GROUP_DATA:
3901 return "data";
3902 case BTRFS_BLOCK_GROUP_SYSTEM:
3903 return "system";
3904 default:
3905 WARN_ON(1);
3906 return "invalid-combination";
3907 };
3908 }
3909
3910 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3911 u64 total_bytes, u64 bytes_used,
3912 u64 bytes_readonly,
3913 struct btrfs_space_info **space_info)
3914 {
3915 struct btrfs_space_info *found;
3916 int i;
3917 int factor;
3918 int ret;
3919
3920 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3921 BTRFS_BLOCK_GROUP_RAID10))
3922 factor = 2;
3923 else
3924 factor = 1;
3925
3926 found = __find_space_info(info, flags);
3927 if (found) {
3928 spin_lock(&found->lock);
3929 found->total_bytes += total_bytes;
3930 found->disk_total += total_bytes * factor;
3931 found->bytes_used += bytes_used;
3932 found->disk_used += bytes_used * factor;
3933 found->bytes_readonly += bytes_readonly;
3934 if (total_bytes > 0)
3935 found->full = 0;
3936 space_info_add_new_bytes(info, found, total_bytes -
3937 bytes_used - bytes_readonly);
3938 spin_unlock(&found->lock);
3939 *space_info = found;
3940 return 0;
3941 }
3942 found = kzalloc(sizeof(*found), GFP_NOFS);
3943 if (!found)
3944 return -ENOMEM;
3945
3946 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3947 if (ret) {
3948 kfree(found);
3949 return ret;
3950 }
3951
3952 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3953 INIT_LIST_HEAD(&found->block_groups[i]);
3954 init_rwsem(&found->groups_sem);
3955 spin_lock_init(&found->lock);
3956 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3957 found->total_bytes = total_bytes;
3958 found->disk_total = total_bytes * factor;
3959 found->bytes_used = bytes_used;
3960 found->disk_used = bytes_used * factor;
3961 found->bytes_pinned = 0;
3962 found->bytes_reserved = 0;
3963 found->bytes_readonly = bytes_readonly;
3964 found->bytes_may_use = 0;
3965 found->full = 0;
3966 found->max_extent_size = 0;
3967 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3968 found->chunk_alloc = 0;
3969 found->flush = 0;
3970 init_waitqueue_head(&found->wait);
3971 INIT_LIST_HEAD(&found->ro_bgs);
3972 INIT_LIST_HEAD(&found->tickets);
3973 INIT_LIST_HEAD(&found->priority_tickets);
3974
3975 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3976 info->space_info_kobj, "%s",
3977 alloc_name(found->flags));
3978 if (ret) {
3979 kfree(found);
3980 return ret;
3981 }
3982
3983 *space_info = found;
3984 list_add_rcu(&found->list, &info->space_info);
3985 if (flags & BTRFS_BLOCK_GROUP_DATA)
3986 info->data_sinfo = found;
3987
3988 return ret;
3989 }
3990
3991 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3992 {
3993 u64 extra_flags = chunk_to_extended(flags) &
3994 BTRFS_EXTENDED_PROFILE_MASK;
3995
3996 write_seqlock(&fs_info->profiles_lock);
3997 if (flags & BTRFS_BLOCK_GROUP_DATA)
3998 fs_info->avail_data_alloc_bits |= extra_flags;
3999 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4000 fs_info->avail_metadata_alloc_bits |= extra_flags;
4001 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4002 fs_info->avail_system_alloc_bits |= extra_flags;
4003 write_sequnlock(&fs_info->profiles_lock);
4004 }
4005
4006 /*
4007 * returns target flags in extended format or 0 if restripe for this
4008 * chunk_type is not in progress
4009 *
4010 * should be called with either volume_mutex or balance_lock held
4011 */
4012 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4013 {
4014 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4015 u64 target = 0;
4016
4017 if (!bctl)
4018 return 0;
4019
4020 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4021 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4022 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4023 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4024 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4025 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4026 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4027 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4028 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4029 }
4030
4031 return target;
4032 }
4033
4034 /*
4035 * @flags: available profiles in extended format (see ctree.h)
4036 *
4037 * Returns reduced profile in chunk format. If profile changing is in
4038 * progress (either running or paused) picks the target profile (if it's
4039 * already available), otherwise falls back to plain reducing.
4040 */
4041 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4042 {
4043 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4044 u64 target;
4045 u64 raid_type;
4046 u64 allowed = 0;
4047
4048 /*
4049 * see if restripe for this chunk_type is in progress, if so
4050 * try to reduce to the target profile
4051 */
4052 spin_lock(&root->fs_info->balance_lock);
4053 target = get_restripe_target(root->fs_info, flags);
4054 if (target) {
4055 /* pick target profile only if it's already available */
4056 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4057 spin_unlock(&root->fs_info->balance_lock);
4058 return extended_to_chunk(target);
4059 }
4060 }
4061 spin_unlock(&root->fs_info->balance_lock);
4062
4063 /* First, mask out the RAID levels which aren't possible */
4064 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4065 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4066 allowed |= btrfs_raid_group[raid_type];
4067 }
4068 allowed &= flags;
4069
4070 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4071 allowed = BTRFS_BLOCK_GROUP_RAID6;
4072 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4073 allowed = BTRFS_BLOCK_GROUP_RAID5;
4074 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4075 allowed = BTRFS_BLOCK_GROUP_RAID10;
4076 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4077 allowed = BTRFS_BLOCK_GROUP_RAID1;
4078 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4079 allowed = BTRFS_BLOCK_GROUP_RAID0;
4080
4081 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4082
4083 return extended_to_chunk(flags | allowed);
4084 }
4085
4086 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4087 {
4088 unsigned seq;
4089 u64 flags;
4090
4091 do {
4092 flags = orig_flags;
4093 seq = read_seqbegin(&root->fs_info->profiles_lock);
4094
4095 if (flags & BTRFS_BLOCK_GROUP_DATA)
4096 flags |= root->fs_info->avail_data_alloc_bits;
4097 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4098 flags |= root->fs_info->avail_system_alloc_bits;
4099 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4100 flags |= root->fs_info->avail_metadata_alloc_bits;
4101 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4102
4103 return btrfs_reduce_alloc_profile(root, flags);
4104 }
4105
4106 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4107 {
4108 u64 flags;
4109 u64 ret;
4110
4111 if (data)
4112 flags = BTRFS_BLOCK_GROUP_DATA;
4113 else if (root == root->fs_info->chunk_root)
4114 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4115 else
4116 flags = BTRFS_BLOCK_GROUP_METADATA;
4117
4118 ret = get_alloc_profile(root, flags);
4119 return ret;
4120 }
4121
4122 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4123 {
4124 struct btrfs_space_info *data_sinfo;
4125 struct btrfs_root *root = BTRFS_I(inode)->root;
4126 struct btrfs_fs_info *fs_info = root->fs_info;
4127 u64 used;
4128 int ret = 0;
4129 int need_commit = 2;
4130 int have_pinned_space;
4131
4132 /* make sure bytes are sectorsize aligned */
4133 bytes = ALIGN(bytes, root->sectorsize);
4134
4135 if (btrfs_is_free_space_inode(inode)) {
4136 need_commit = 0;
4137 ASSERT(current->journal_info);
4138 }
4139
4140 data_sinfo = fs_info->data_sinfo;
4141 if (!data_sinfo)
4142 goto alloc;
4143
4144 again:
4145 /* make sure we have enough space to handle the data first */
4146 spin_lock(&data_sinfo->lock);
4147 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4148 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4149 data_sinfo->bytes_may_use;
4150
4151 if (used + bytes > data_sinfo->total_bytes) {
4152 struct btrfs_trans_handle *trans;
4153
4154 /*
4155 * if we don't have enough free bytes in this space then we need
4156 * to alloc a new chunk.
4157 */
4158 if (!data_sinfo->full) {
4159 u64 alloc_target;
4160
4161 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4162 spin_unlock(&data_sinfo->lock);
4163 alloc:
4164 alloc_target = btrfs_get_alloc_profile(root, 1);
4165 /*
4166 * It is ugly that we don't call nolock join
4167 * transaction for the free space inode case here.
4168 * But it is safe because we only do the data space
4169 * reservation for the free space cache in the
4170 * transaction context, the common join transaction
4171 * just increase the counter of the current transaction
4172 * handler, doesn't try to acquire the trans_lock of
4173 * the fs.
4174 */
4175 trans = btrfs_join_transaction(root);
4176 if (IS_ERR(trans))
4177 return PTR_ERR(trans);
4178
4179 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4180 alloc_target,
4181 CHUNK_ALLOC_NO_FORCE);
4182 btrfs_end_transaction(trans, root);
4183 if (ret < 0) {
4184 if (ret != -ENOSPC)
4185 return ret;
4186 else {
4187 have_pinned_space = 1;
4188 goto commit_trans;
4189 }
4190 }
4191
4192 if (!data_sinfo)
4193 data_sinfo = fs_info->data_sinfo;
4194
4195 goto again;
4196 }
4197
4198 /*
4199 * If we don't have enough pinned space to deal with this
4200 * allocation, and no removed chunk in current transaction,
4201 * don't bother committing the transaction.
4202 */
4203 have_pinned_space = percpu_counter_compare(
4204 &data_sinfo->total_bytes_pinned,
4205 used + bytes - data_sinfo->total_bytes);
4206 spin_unlock(&data_sinfo->lock);
4207
4208 /* commit the current transaction and try again */
4209 commit_trans:
4210 if (need_commit &&
4211 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4212 need_commit--;
4213
4214 if (need_commit > 0) {
4215 btrfs_start_delalloc_roots(fs_info, 0, -1);
4216 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4217 }
4218
4219 trans = btrfs_join_transaction(root);
4220 if (IS_ERR(trans))
4221 return PTR_ERR(trans);
4222 if (have_pinned_space >= 0 ||
4223 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4224 &trans->transaction->flags) ||
4225 need_commit > 0) {
4226 ret = btrfs_commit_transaction(trans, root);
4227 if (ret)
4228 return ret;
4229 /*
4230 * The cleaner kthread might still be doing iput
4231 * operations. Wait for it to finish so that
4232 * more space is released.
4233 */
4234 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4235 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4236 goto again;
4237 } else {
4238 btrfs_end_transaction(trans, root);
4239 }
4240 }
4241
4242 trace_btrfs_space_reservation(root->fs_info,
4243 "space_info:enospc",
4244 data_sinfo->flags, bytes, 1);
4245 return -ENOSPC;
4246 }
4247 data_sinfo->bytes_may_use += bytes;
4248 trace_btrfs_space_reservation(root->fs_info, "space_info",
4249 data_sinfo->flags, bytes, 1);
4250 spin_unlock(&data_sinfo->lock);
4251
4252 return ret;
4253 }
4254
4255 /*
4256 * New check_data_free_space() with ability for precious data reservation
4257 * Will replace old btrfs_check_data_free_space(), but for patch split,
4258 * add a new function first and then replace it.
4259 */
4260 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4261 {
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4263 int ret;
4264
4265 /* align the range */
4266 len = round_up(start + len, root->sectorsize) -
4267 round_down(start, root->sectorsize);
4268 start = round_down(start, root->sectorsize);
4269
4270 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4271 if (ret < 0)
4272 return ret;
4273
4274 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4275 ret = btrfs_qgroup_reserve_data(inode, start, len);
4276 if (ret)
4277 btrfs_free_reserved_data_space_noquota(inode, start, len);
4278 return ret;
4279 }
4280
4281 /*
4282 * Called if we need to clear a data reservation for this inode
4283 * Normally in a error case.
4284 *
4285 * This one will *NOT* use accurate qgroup reserved space API, just for case
4286 * which we can't sleep and is sure it won't affect qgroup reserved space.
4287 * Like clear_bit_hook().
4288 */
4289 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4290 u64 len)
4291 {
4292 struct btrfs_root *root = BTRFS_I(inode)->root;
4293 struct btrfs_space_info *data_sinfo;
4294
4295 /* Make sure the range is aligned to sectorsize */
4296 len = round_up(start + len, root->sectorsize) -
4297 round_down(start, root->sectorsize);
4298 start = round_down(start, root->sectorsize);
4299
4300 data_sinfo = root->fs_info->data_sinfo;
4301 spin_lock(&data_sinfo->lock);
4302 if (WARN_ON(data_sinfo->bytes_may_use < len))
4303 data_sinfo->bytes_may_use = 0;
4304 else
4305 data_sinfo->bytes_may_use -= len;
4306 trace_btrfs_space_reservation(root->fs_info, "space_info",
4307 data_sinfo->flags, len, 0);
4308 spin_unlock(&data_sinfo->lock);
4309 }
4310
4311 /*
4312 * Called if we need to clear a data reservation for this inode
4313 * Normally in a error case.
4314 *
4315 * This one will handle the per-inode data rsv map for accurate reserved
4316 * space framework.
4317 */
4318 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4319 {
4320 btrfs_free_reserved_data_space_noquota(inode, start, len);
4321 btrfs_qgroup_free_data(inode, start, len);
4322 }
4323
4324 static void force_metadata_allocation(struct btrfs_fs_info *info)
4325 {
4326 struct list_head *head = &info->space_info;
4327 struct btrfs_space_info *found;
4328
4329 rcu_read_lock();
4330 list_for_each_entry_rcu(found, head, list) {
4331 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4332 found->force_alloc = CHUNK_ALLOC_FORCE;
4333 }
4334 rcu_read_unlock();
4335 }
4336
4337 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4338 {
4339 return (global->size << 1);
4340 }
4341
4342 static int should_alloc_chunk(struct btrfs_root *root,
4343 struct btrfs_space_info *sinfo, int force)
4344 {
4345 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4346 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4347 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4348 u64 thresh;
4349
4350 if (force == CHUNK_ALLOC_FORCE)
4351 return 1;
4352
4353 /*
4354 * We need to take into account the global rsv because for all intents
4355 * and purposes it's used space. Don't worry about locking the
4356 * global_rsv, it doesn't change except when the transaction commits.
4357 */
4358 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4359 num_allocated += calc_global_rsv_need_space(global_rsv);
4360
4361 /*
4362 * in limited mode, we want to have some free space up to
4363 * about 1% of the FS size.
4364 */
4365 if (force == CHUNK_ALLOC_LIMITED) {
4366 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4367 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4368
4369 if (num_bytes - num_allocated < thresh)
4370 return 1;
4371 }
4372
4373 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4374 return 0;
4375 return 1;
4376 }
4377
4378 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4379 {
4380 u64 num_dev;
4381
4382 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4383 BTRFS_BLOCK_GROUP_RAID0 |
4384 BTRFS_BLOCK_GROUP_RAID5 |
4385 BTRFS_BLOCK_GROUP_RAID6))
4386 num_dev = root->fs_info->fs_devices->rw_devices;
4387 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4388 num_dev = 2;
4389 else
4390 num_dev = 1; /* DUP or single */
4391
4392 return num_dev;
4393 }
4394
4395 /*
4396 * If @is_allocation is true, reserve space in the system space info necessary
4397 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4398 * removing a chunk.
4399 */
4400 void check_system_chunk(struct btrfs_trans_handle *trans,
4401 struct btrfs_root *root,
4402 u64 type)
4403 {
4404 struct btrfs_space_info *info;
4405 u64 left;
4406 u64 thresh;
4407 int ret = 0;
4408 u64 num_devs;
4409
4410 /*
4411 * Needed because we can end up allocating a system chunk and for an
4412 * atomic and race free space reservation in the chunk block reserve.
4413 */
4414 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4415
4416 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4417 spin_lock(&info->lock);
4418 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4419 info->bytes_reserved - info->bytes_readonly -
4420 info->bytes_may_use;
4421 spin_unlock(&info->lock);
4422
4423 num_devs = get_profile_num_devs(root, type);
4424
4425 /* num_devs device items to update and 1 chunk item to add or remove */
4426 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4427 btrfs_calc_trans_metadata_size(root, 1);
4428
4429 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4430 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4431 left, thresh, type);
4432 dump_space_info(info, 0, 0);
4433 }
4434
4435 if (left < thresh) {
4436 u64 flags;
4437
4438 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4439 /*
4440 * Ignore failure to create system chunk. We might end up not
4441 * needing it, as we might not need to COW all nodes/leafs from
4442 * the paths we visit in the chunk tree (they were already COWed
4443 * or created in the current transaction for example).
4444 */
4445 ret = btrfs_alloc_chunk(trans, root, flags);
4446 }
4447
4448 if (!ret) {
4449 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4450 &root->fs_info->chunk_block_rsv,
4451 thresh, BTRFS_RESERVE_NO_FLUSH);
4452 if (!ret)
4453 trans->chunk_bytes_reserved += thresh;
4454 }
4455 }
4456
4457 /*
4458 * If force is CHUNK_ALLOC_FORCE:
4459 * - return 1 if it successfully allocates a chunk,
4460 * - return errors including -ENOSPC otherwise.
4461 * If force is NOT CHUNK_ALLOC_FORCE:
4462 * - return 0 if it doesn't need to allocate a new chunk,
4463 * - return 1 if it successfully allocates a chunk,
4464 * - return errors including -ENOSPC otherwise.
4465 */
4466 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4467 struct btrfs_root *extent_root, u64 flags, int force)
4468 {
4469 struct btrfs_space_info *space_info;
4470 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4471 int wait_for_alloc = 0;
4472 int ret = 0;
4473
4474 /* Don't re-enter if we're already allocating a chunk */
4475 if (trans->allocating_chunk)
4476 return -ENOSPC;
4477
4478 space_info = __find_space_info(extent_root->fs_info, flags);
4479 if (!space_info) {
4480 ret = update_space_info(extent_root->fs_info, flags,
4481 0, 0, 0, &space_info);
4482 BUG_ON(ret); /* -ENOMEM */
4483 }
4484 BUG_ON(!space_info); /* Logic error */
4485
4486 again:
4487 spin_lock(&space_info->lock);
4488 if (force < space_info->force_alloc)
4489 force = space_info->force_alloc;
4490 if (space_info->full) {
4491 if (should_alloc_chunk(extent_root, space_info, force))
4492 ret = -ENOSPC;
4493 else
4494 ret = 0;
4495 spin_unlock(&space_info->lock);
4496 return ret;
4497 }
4498
4499 if (!should_alloc_chunk(extent_root, space_info, force)) {
4500 spin_unlock(&space_info->lock);
4501 return 0;
4502 } else if (space_info->chunk_alloc) {
4503 wait_for_alloc = 1;
4504 } else {
4505 space_info->chunk_alloc = 1;
4506 }
4507
4508 spin_unlock(&space_info->lock);
4509
4510 mutex_lock(&fs_info->chunk_mutex);
4511
4512 /*
4513 * The chunk_mutex is held throughout the entirety of a chunk
4514 * allocation, so once we've acquired the chunk_mutex we know that the
4515 * other guy is done and we need to recheck and see if we should
4516 * allocate.
4517 */
4518 if (wait_for_alloc) {
4519 mutex_unlock(&fs_info->chunk_mutex);
4520 wait_for_alloc = 0;
4521 goto again;
4522 }
4523
4524 trans->allocating_chunk = true;
4525
4526 /*
4527 * If we have mixed data/metadata chunks we want to make sure we keep
4528 * allocating mixed chunks instead of individual chunks.
4529 */
4530 if (btrfs_mixed_space_info(space_info))
4531 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4532
4533 /*
4534 * if we're doing a data chunk, go ahead and make sure that
4535 * we keep a reasonable number of metadata chunks allocated in the
4536 * FS as well.
4537 */
4538 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4539 fs_info->data_chunk_allocations++;
4540 if (!(fs_info->data_chunk_allocations %
4541 fs_info->metadata_ratio))
4542 force_metadata_allocation(fs_info);
4543 }
4544
4545 /*
4546 * Check if we have enough space in SYSTEM chunk because we may need
4547 * to update devices.
4548 */
4549 check_system_chunk(trans, extent_root, flags);
4550
4551 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4552 trans->allocating_chunk = false;
4553
4554 spin_lock(&space_info->lock);
4555 if (ret < 0 && ret != -ENOSPC)
4556 goto out;
4557 if (ret)
4558 space_info->full = 1;
4559 else
4560 ret = 1;
4561
4562 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4563 out:
4564 space_info->chunk_alloc = 0;
4565 spin_unlock(&space_info->lock);
4566 mutex_unlock(&fs_info->chunk_mutex);
4567 /*
4568 * When we allocate a new chunk we reserve space in the chunk block
4569 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4570 * add new nodes/leafs to it if we end up needing to do it when
4571 * inserting the chunk item and updating device items as part of the
4572 * second phase of chunk allocation, performed by
4573 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4574 * large number of new block groups to create in our transaction
4575 * handle's new_bgs list to avoid exhausting the chunk block reserve
4576 * in extreme cases - like having a single transaction create many new
4577 * block groups when starting to write out the free space caches of all
4578 * the block groups that were made dirty during the lifetime of the
4579 * transaction.
4580 */
4581 if (trans->can_flush_pending_bgs &&
4582 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4583 btrfs_create_pending_block_groups(trans, extent_root);
4584 btrfs_trans_release_chunk_metadata(trans);
4585 }
4586 return ret;
4587 }
4588
4589 static int can_overcommit(struct btrfs_root *root,
4590 struct btrfs_space_info *space_info, u64 bytes,
4591 enum btrfs_reserve_flush_enum flush)
4592 {
4593 struct btrfs_block_rsv *global_rsv;
4594 u64 profile;
4595 u64 space_size;
4596 u64 avail;
4597 u64 used;
4598
4599 /* Don't overcommit when in mixed mode. */
4600 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4601 return 0;
4602
4603 BUG_ON(root->fs_info == NULL);
4604 global_rsv = &root->fs_info->global_block_rsv;
4605 profile = btrfs_get_alloc_profile(root, 0);
4606 used = space_info->bytes_used + space_info->bytes_reserved +
4607 space_info->bytes_pinned + space_info->bytes_readonly;
4608
4609 /*
4610 * We only want to allow over committing if we have lots of actual space
4611 * free, but if we don't have enough space to handle the global reserve
4612 * space then we could end up having a real enospc problem when trying
4613 * to allocate a chunk or some other such important allocation.
4614 */
4615 spin_lock(&global_rsv->lock);
4616 space_size = calc_global_rsv_need_space(global_rsv);
4617 spin_unlock(&global_rsv->lock);
4618 if (used + space_size >= space_info->total_bytes)
4619 return 0;
4620
4621 used += space_info->bytes_may_use;
4622
4623 spin_lock(&root->fs_info->free_chunk_lock);
4624 avail = root->fs_info->free_chunk_space;
4625 spin_unlock(&root->fs_info->free_chunk_lock);
4626
4627 /*
4628 * If we have dup, raid1 or raid10 then only half of the free
4629 * space is actually useable. For raid56, the space info used
4630 * doesn't include the parity drive, so we don't have to
4631 * change the math
4632 */
4633 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4634 BTRFS_BLOCK_GROUP_RAID1 |
4635 BTRFS_BLOCK_GROUP_RAID10))
4636 avail >>= 1;
4637
4638 /*
4639 * If we aren't flushing all things, let us overcommit up to
4640 * 1/2th of the space. If we can flush, don't let us overcommit
4641 * too much, let it overcommit up to 1/8 of the space.
4642 */
4643 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4644 avail >>= 3;
4645 else
4646 avail >>= 1;
4647
4648 if (used + bytes < space_info->total_bytes + avail)
4649 return 1;
4650 return 0;
4651 }
4652
4653 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4654 unsigned long nr_pages, int nr_items)
4655 {
4656 struct super_block *sb = root->fs_info->sb;
4657
4658 if (down_read_trylock(&sb->s_umount)) {
4659 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4660 up_read(&sb->s_umount);
4661 } else {
4662 /*
4663 * We needn't worry the filesystem going from r/w to r/o though
4664 * we don't acquire ->s_umount mutex, because the filesystem
4665 * should guarantee the delalloc inodes list be empty after
4666 * the filesystem is readonly(all dirty pages are written to
4667 * the disk).
4668 */
4669 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4670 if (!current->journal_info)
4671 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4672 0, (u64)-1);
4673 }
4674 }
4675
4676 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4677 {
4678 u64 bytes;
4679 int nr;
4680
4681 bytes = btrfs_calc_trans_metadata_size(root, 1);
4682 nr = (int)div64_u64(to_reclaim, bytes);
4683 if (!nr)
4684 nr = 1;
4685 return nr;
4686 }
4687
4688 #define EXTENT_SIZE_PER_ITEM SZ_256K
4689
4690 /*
4691 * shrink metadata reservation for delalloc
4692 */
4693 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4694 bool wait_ordered)
4695 {
4696 struct btrfs_block_rsv *block_rsv;
4697 struct btrfs_space_info *space_info;
4698 struct btrfs_trans_handle *trans;
4699 u64 delalloc_bytes;
4700 u64 max_reclaim;
4701 long time_left;
4702 unsigned long nr_pages;
4703 int loops;
4704 int items;
4705 enum btrfs_reserve_flush_enum flush;
4706
4707 /* Calc the number of the pages we need flush for space reservation */
4708 items = calc_reclaim_items_nr(root, to_reclaim);
4709 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4710
4711 trans = (struct btrfs_trans_handle *)current->journal_info;
4712 block_rsv = &root->fs_info->delalloc_block_rsv;
4713 space_info = block_rsv->space_info;
4714
4715 delalloc_bytes = percpu_counter_sum_positive(
4716 &root->fs_info->delalloc_bytes);
4717 if (delalloc_bytes == 0) {
4718 if (trans)
4719 return;
4720 if (wait_ordered)
4721 btrfs_wait_ordered_roots(root->fs_info, items,
4722 0, (u64)-1);
4723 return;
4724 }
4725
4726 loops = 0;
4727 while (delalloc_bytes && loops < 3) {
4728 max_reclaim = min(delalloc_bytes, to_reclaim);
4729 nr_pages = max_reclaim >> PAGE_SHIFT;
4730 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4731 /*
4732 * We need to wait for the async pages to actually start before
4733 * we do anything.
4734 */
4735 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4736 if (!max_reclaim)
4737 goto skip_async;
4738
4739 if (max_reclaim <= nr_pages)
4740 max_reclaim = 0;
4741 else
4742 max_reclaim -= nr_pages;
4743
4744 wait_event(root->fs_info->async_submit_wait,
4745 atomic_read(&root->fs_info->async_delalloc_pages) <=
4746 (int)max_reclaim);
4747 skip_async:
4748 if (!trans)
4749 flush = BTRFS_RESERVE_FLUSH_ALL;
4750 else
4751 flush = BTRFS_RESERVE_NO_FLUSH;
4752 spin_lock(&space_info->lock);
4753 if (can_overcommit(root, space_info, orig, flush)) {
4754 spin_unlock(&space_info->lock);
4755 break;
4756 }
4757 if (list_empty(&space_info->tickets) &&
4758 list_empty(&space_info->priority_tickets)) {
4759 spin_unlock(&space_info->lock);
4760 break;
4761 }
4762 spin_unlock(&space_info->lock);
4763
4764 loops++;
4765 if (wait_ordered && !trans) {
4766 btrfs_wait_ordered_roots(root->fs_info, items,
4767 0, (u64)-1);
4768 } else {
4769 time_left = schedule_timeout_killable(1);
4770 if (time_left)
4771 break;
4772 }
4773 delalloc_bytes = percpu_counter_sum_positive(
4774 &root->fs_info->delalloc_bytes);
4775 }
4776 }
4777
4778 /**
4779 * maybe_commit_transaction - possibly commit the transaction if its ok to
4780 * @root - the root we're allocating for
4781 * @bytes - the number of bytes we want to reserve
4782 * @force - force the commit
4783 *
4784 * This will check to make sure that committing the transaction will actually
4785 * get us somewhere and then commit the transaction if it does. Otherwise it
4786 * will return -ENOSPC.
4787 */
4788 static int may_commit_transaction(struct btrfs_root *root,
4789 struct btrfs_space_info *space_info,
4790 u64 bytes, int force)
4791 {
4792 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4793 struct btrfs_trans_handle *trans;
4794
4795 trans = (struct btrfs_trans_handle *)current->journal_info;
4796 if (trans)
4797 return -EAGAIN;
4798
4799 if (force)
4800 goto commit;
4801
4802 /* See if there is enough pinned space to make this reservation */
4803 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4804 bytes) >= 0)
4805 goto commit;
4806
4807 /*
4808 * See if there is some space in the delayed insertion reservation for
4809 * this reservation.
4810 */
4811 if (space_info != delayed_rsv->space_info)
4812 return -ENOSPC;
4813
4814 spin_lock(&delayed_rsv->lock);
4815 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4816 bytes - delayed_rsv->size) >= 0) {
4817 spin_unlock(&delayed_rsv->lock);
4818 return -ENOSPC;
4819 }
4820 spin_unlock(&delayed_rsv->lock);
4821
4822 commit:
4823 trans = btrfs_join_transaction(root);
4824 if (IS_ERR(trans))
4825 return -ENOSPC;
4826
4827 return btrfs_commit_transaction(trans, root);
4828 }
4829
4830 struct reserve_ticket {
4831 u64 bytes;
4832 int error;
4833 struct list_head list;
4834 wait_queue_head_t wait;
4835 };
4836
4837 static int flush_space(struct btrfs_root *root,
4838 struct btrfs_space_info *space_info, u64 num_bytes,
4839 u64 orig_bytes, int state)
4840 {
4841 struct btrfs_trans_handle *trans;
4842 int nr;
4843 int ret = 0;
4844
4845 switch (state) {
4846 case FLUSH_DELAYED_ITEMS_NR:
4847 case FLUSH_DELAYED_ITEMS:
4848 if (state == FLUSH_DELAYED_ITEMS_NR)
4849 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4850 else
4851 nr = -1;
4852
4853 trans = btrfs_join_transaction(root);
4854 if (IS_ERR(trans)) {
4855 ret = PTR_ERR(trans);
4856 break;
4857 }
4858 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4859 btrfs_end_transaction(trans, root);
4860 break;
4861 case FLUSH_DELALLOC:
4862 case FLUSH_DELALLOC_WAIT:
4863 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4864 state == FLUSH_DELALLOC_WAIT);
4865 break;
4866 case ALLOC_CHUNK:
4867 trans = btrfs_join_transaction(root);
4868 if (IS_ERR(trans)) {
4869 ret = PTR_ERR(trans);
4870 break;
4871 }
4872 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4873 btrfs_get_alloc_profile(root, 0),
4874 CHUNK_ALLOC_NO_FORCE);
4875 btrfs_end_transaction(trans, root);
4876 if (ret > 0 || ret == -ENOSPC)
4877 ret = 0;
4878 break;
4879 case COMMIT_TRANS:
4880 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4881 break;
4882 default:
4883 ret = -ENOSPC;
4884 break;
4885 }
4886
4887 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4888 orig_bytes, state, ret);
4889 return ret;
4890 }
4891
4892 static inline u64
4893 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4894 struct btrfs_space_info *space_info)
4895 {
4896 struct reserve_ticket *ticket;
4897 u64 used;
4898 u64 expected;
4899 u64 to_reclaim = 0;
4900
4901 list_for_each_entry(ticket, &space_info->tickets, list)
4902 to_reclaim += ticket->bytes;
4903 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4904 to_reclaim += ticket->bytes;
4905 if (to_reclaim)
4906 return to_reclaim;
4907
4908 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4909 if (can_overcommit(root, space_info, to_reclaim,
4910 BTRFS_RESERVE_FLUSH_ALL))
4911 return 0;
4912
4913 used = space_info->bytes_used + space_info->bytes_reserved +
4914 space_info->bytes_pinned + space_info->bytes_readonly +
4915 space_info->bytes_may_use;
4916 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4917 expected = div_factor_fine(space_info->total_bytes, 95);
4918 else
4919 expected = div_factor_fine(space_info->total_bytes, 90);
4920
4921 if (used > expected)
4922 to_reclaim = used - expected;
4923 else
4924 to_reclaim = 0;
4925 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4926 space_info->bytes_reserved);
4927 return to_reclaim;
4928 }
4929
4930 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4931 struct btrfs_root *root, u64 used)
4932 {
4933 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4934
4935 /* If we're just plain full then async reclaim just slows us down. */
4936 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4937 return 0;
4938
4939 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4940 return 0;
4941
4942 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4943 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4944 &root->fs_info->fs_state));
4945 }
4946
4947 static void wake_all_tickets(struct list_head *head)
4948 {
4949 struct reserve_ticket *ticket;
4950
4951 while (!list_empty(head)) {
4952 ticket = list_first_entry(head, struct reserve_ticket, list);
4953 list_del_init(&ticket->list);
4954 ticket->error = -ENOSPC;
4955 wake_up(&ticket->wait);
4956 }
4957 }
4958
4959 /*
4960 * This is for normal flushers, we can wait all goddamned day if we want to. We
4961 * will loop and continuously try to flush as long as we are making progress.
4962 * We count progress as clearing off tickets each time we have to loop.
4963 */
4964 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4965 {
4966 struct btrfs_fs_info *fs_info;
4967 struct btrfs_space_info *space_info;
4968 u64 to_reclaim;
4969 int flush_state;
4970 int commit_cycles = 0;
4971 u64 last_tickets_id;
4972
4973 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4974 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4975
4976 spin_lock(&space_info->lock);
4977 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4978 space_info);
4979 if (!to_reclaim) {
4980 space_info->flush = 0;
4981 spin_unlock(&space_info->lock);
4982 return;
4983 }
4984 last_tickets_id = space_info->tickets_id;
4985 spin_unlock(&space_info->lock);
4986
4987 flush_state = FLUSH_DELAYED_ITEMS_NR;
4988 do {
4989 struct reserve_ticket *ticket;
4990 int ret;
4991
4992 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4993 to_reclaim, flush_state);
4994 spin_lock(&space_info->lock);
4995 if (list_empty(&space_info->tickets)) {
4996 space_info->flush = 0;
4997 spin_unlock(&space_info->lock);
4998 return;
4999 }
5000 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5001 space_info);
5002 ticket = list_first_entry(&space_info->tickets,
5003 struct reserve_ticket, list);
5004 if (last_tickets_id == space_info->tickets_id) {
5005 flush_state++;
5006 } else {
5007 last_tickets_id = space_info->tickets_id;
5008 flush_state = FLUSH_DELAYED_ITEMS_NR;
5009 if (commit_cycles)
5010 commit_cycles--;
5011 }
5012
5013 if (flush_state > COMMIT_TRANS) {
5014 commit_cycles++;
5015 if (commit_cycles > 2) {
5016 wake_all_tickets(&space_info->tickets);
5017 space_info->flush = 0;
5018 } else {
5019 flush_state = FLUSH_DELAYED_ITEMS_NR;
5020 }
5021 }
5022 spin_unlock(&space_info->lock);
5023 } while (flush_state <= COMMIT_TRANS);
5024 }
5025
5026 void btrfs_init_async_reclaim_work(struct work_struct *work)
5027 {
5028 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5029 }
5030
5031 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5032 struct btrfs_space_info *space_info,
5033 struct reserve_ticket *ticket)
5034 {
5035 u64 to_reclaim;
5036 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5037
5038 spin_lock(&space_info->lock);
5039 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5040 space_info);
5041 if (!to_reclaim) {
5042 spin_unlock(&space_info->lock);
5043 return;
5044 }
5045 spin_unlock(&space_info->lock);
5046
5047 do {
5048 flush_space(fs_info->fs_root, space_info, to_reclaim,
5049 to_reclaim, flush_state);
5050 flush_state++;
5051 spin_lock(&space_info->lock);
5052 if (ticket->bytes == 0) {
5053 spin_unlock(&space_info->lock);
5054 return;
5055 }
5056 spin_unlock(&space_info->lock);
5057
5058 /*
5059 * Priority flushers can't wait on delalloc without
5060 * deadlocking.
5061 */
5062 if (flush_state == FLUSH_DELALLOC ||
5063 flush_state == FLUSH_DELALLOC_WAIT)
5064 flush_state = ALLOC_CHUNK;
5065 } while (flush_state < COMMIT_TRANS);
5066 }
5067
5068 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5069 struct btrfs_space_info *space_info,
5070 struct reserve_ticket *ticket, u64 orig_bytes)
5071
5072 {
5073 DEFINE_WAIT(wait);
5074 int ret = 0;
5075
5076 spin_lock(&space_info->lock);
5077 while (ticket->bytes > 0 && ticket->error == 0) {
5078 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5079 if (ret) {
5080 ret = -EINTR;
5081 break;
5082 }
5083 spin_unlock(&space_info->lock);
5084
5085 schedule();
5086
5087 finish_wait(&ticket->wait, &wait);
5088 spin_lock(&space_info->lock);
5089 }
5090 if (!ret)
5091 ret = ticket->error;
5092 if (!list_empty(&ticket->list))
5093 list_del_init(&ticket->list);
5094 if (ticket->bytes && ticket->bytes < orig_bytes) {
5095 u64 num_bytes = orig_bytes - ticket->bytes;
5096 space_info->bytes_may_use -= num_bytes;
5097 trace_btrfs_space_reservation(fs_info, "space_info",
5098 space_info->flags, num_bytes, 0);
5099 }
5100 spin_unlock(&space_info->lock);
5101
5102 return ret;
5103 }
5104
5105 /**
5106 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5107 * @root - the root we're allocating for
5108 * @space_info - the space info we want to allocate from
5109 * @orig_bytes - the number of bytes we want
5110 * @flush - whether or not we can flush to make our reservation
5111 *
5112 * This will reserve orig_bytes number of bytes from the space info associated
5113 * with the block_rsv. If there is not enough space it will make an attempt to
5114 * flush out space to make room. It will do this by flushing delalloc if
5115 * possible or committing the transaction. If flush is 0 then no attempts to
5116 * regain reservations will be made and this will fail if there is not enough
5117 * space already.
5118 */
5119 static int __reserve_metadata_bytes(struct btrfs_root *root,
5120 struct btrfs_space_info *space_info,
5121 u64 orig_bytes,
5122 enum btrfs_reserve_flush_enum flush)
5123 {
5124 struct reserve_ticket ticket;
5125 u64 used;
5126 int ret = 0;
5127
5128 ASSERT(orig_bytes);
5129 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5130
5131 spin_lock(&space_info->lock);
5132 ret = -ENOSPC;
5133 used = space_info->bytes_used + space_info->bytes_reserved +
5134 space_info->bytes_pinned + space_info->bytes_readonly +
5135 space_info->bytes_may_use;
5136
5137 /*
5138 * If we have enough space then hooray, make our reservation and carry
5139 * on. If not see if we can overcommit, and if we can, hooray carry on.
5140 * If not things get more complicated.
5141 */
5142 if (used + orig_bytes <= space_info->total_bytes) {
5143 space_info->bytes_may_use += orig_bytes;
5144 trace_btrfs_space_reservation(root->fs_info, "space_info",
5145 space_info->flags, orig_bytes,
5146 1);
5147 ret = 0;
5148 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5149 space_info->bytes_may_use += orig_bytes;
5150 trace_btrfs_space_reservation(root->fs_info, "space_info",
5151 space_info->flags, orig_bytes,
5152 1);
5153 ret = 0;
5154 }
5155
5156 /*
5157 * If we couldn't make a reservation then setup our reservation ticket
5158 * and kick the async worker if it's not already running.
5159 *
5160 * If we are a priority flusher then we just need to add our ticket to
5161 * the list and we will do our own flushing further down.
5162 */
5163 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5164 ticket.bytes = orig_bytes;
5165 ticket.error = 0;
5166 init_waitqueue_head(&ticket.wait);
5167 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5168 list_add_tail(&ticket.list, &space_info->tickets);
5169 if (!space_info->flush) {
5170 space_info->flush = 1;
5171 trace_btrfs_trigger_flush(root->fs_info,
5172 space_info->flags,
5173 orig_bytes, flush,
5174 "enospc");
5175 queue_work(system_unbound_wq,
5176 &root->fs_info->async_reclaim_work);
5177 }
5178 } else {
5179 list_add_tail(&ticket.list,
5180 &space_info->priority_tickets);
5181 }
5182 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5183 used += orig_bytes;
5184 /*
5185 * We will do the space reservation dance during log replay,
5186 * which means we won't have fs_info->fs_root set, so don't do
5187 * the async reclaim as we will panic.
5188 */
5189 if (!root->fs_info->log_root_recovering &&
5190 need_do_async_reclaim(space_info, root, used) &&
5191 !work_busy(&root->fs_info->async_reclaim_work)) {
5192 trace_btrfs_trigger_flush(root->fs_info,
5193 space_info->flags,
5194 orig_bytes, flush,
5195 "preempt");
5196 queue_work(system_unbound_wq,
5197 &root->fs_info->async_reclaim_work);
5198 }
5199 }
5200 spin_unlock(&space_info->lock);
5201 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5202 return ret;
5203
5204 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5205 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5206 orig_bytes);
5207
5208 ret = 0;
5209 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5210 spin_lock(&space_info->lock);
5211 if (ticket.bytes) {
5212 if (ticket.bytes < orig_bytes) {
5213 u64 num_bytes = orig_bytes - ticket.bytes;
5214 space_info->bytes_may_use -= num_bytes;
5215 trace_btrfs_space_reservation(root->fs_info,
5216 "space_info", space_info->flags,
5217 num_bytes, 0);
5218
5219 }
5220 list_del_init(&ticket.list);
5221 ret = -ENOSPC;
5222 }
5223 spin_unlock(&space_info->lock);
5224 ASSERT(list_empty(&ticket.list));
5225 return ret;
5226 }
5227
5228 /**
5229 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5230 * @root - the root we're allocating for
5231 * @block_rsv - the block_rsv we're allocating for
5232 * @orig_bytes - the number of bytes we want
5233 * @flush - whether or not we can flush to make our reservation
5234 *
5235 * This will reserve orgi_bytes number of bytes from the space info associated
5236 * with the block_rsv. If there is not enough space it will make an attempt to
5237 * flush out space to make room. It will do this by flushing delalloc if
5238 * possible or committing the transaction. If flush is 0 then no attempts to
5239 * regain reservations will be made and this will fail if there is not enough
5240 * space already.
5241 */
5242 static int reserve_metadata_bytes(struct btrfs_root *root,
5243 struct btrfs_block_rsv *block_rsv,
5244 u64 orig_bytes,
5245 enum btrfs_reserve_flush_enum flush)
5246 {
5247 int ret;
5248
5249 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5250 flush);
5251 if (ret == -ENOSPC &&
5252 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5253 struct btrfs_block_rsv *global_rsv =
5254 &root->fs_info->global_block_rsv;
5255
5256 if (block_rsv != global_rsv &&
5257 !block_rsv_use_bytes(global_rsv, orig_bytes))
5258 ret = 0;
5259 }
5260 if (ret == -ENOSPC)
5261 trace_btrfs_space_reservation(root->fs_info,
5262 "space_info:enospc",
5263 block_rsv->space_info->flags,
5264 orig_bytes, 1);
5265 return ret;
5266 }
5267
5268 static struct btrfs_block_rsv *get_block_rsv(
5269 const struct btrfs_trans_handle *trans,
5270 const struct btrfs_root *root)
5271 {
5272 struct btrfs_block_rsv *block_rsv = NULL;
5273
5274 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5275 (root == root->fs_info->csum_root && trans->adding_csums) ||
5276 (root == root->fs_info->uuid_root))
5277 block_rsv = trans->block_rsv;
5278
5279 if (!block_rsv)
5280 block_rsv = root->block_rsv;
5281
5282 if (!block_rsv)
5283 block_rsv = &root->fs_info->empty_block_rsv;
5284
5285 return block_rsv;
5286 }
5287
5288 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5289 u64 num_bytes)
5290 {
5291 int ret = -ENOSPC;
5292 spin_lock(&block_rsv->lock);
5293 if (block_rsv->reserved >= num_bytes) {
5294 block_rsv->reserved -= num_bytes;
5295 if (block_rsv->reserved < block_rsv->size)
5296 block_rsv->full = 0;
5297 ret = 0;
5298 }
5299 spin_unlock(&block_rsv->lock);
5300 return ret;
5301 }
5302
5303 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5304 u64 num_bytes, int update_size)
5305 {
5306 spin_lock(&block_rsv->lock);
5307 block_rsv->reserved += num_bytes;
5308 if (update_size)
5309 block_rsv->size += num_bytes;
5310 else if (block_rsv->reserved >= block_rsv->size)
5311 block_rsv->full = 1;
5312 spin_unlock(&block_rsv->lock);
5313 }
5314
5315 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5316 struct btrfs_block_rsv *dest, u64 num_bytes,
5317 int min_factor)
5318 {
5319 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5320 u64 min_bytes;
5321
5322 if (global_rsv->space_info != dest->space_info)
5323 return -ENOSPC;
5324
5325 spin_lock(&global_rsv->lock);
5326 min_bytes = div_factor(global_rsv->size, min_factor);
5327 if (global_rsv->reserved < min_bytes + num_bytes) {
5328 spin_unlock(&global_rsv->lock);
5329 return -ENOSPC;
5330 }
5331 global_rsv->reserved -= num_bytes;
5332 if (global_rsv->reserved < global_rsv->size)
5333 global_rsv->full = 0;
5334 spin_unlock(&global_rsv->lock);
5335
5336 block_rsv_add_bytes(dest, num_bytes, 1);
5337 return 0;
5338 }
5339
5340 /*
5341 * This is for space we already have accounted in space_info->bytes_may_use, so
5342 * basically when we're returning space from block_rsv's.
5343 */
5344 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5345 struct btrfs_space_info *space_info,
5346 u64 num_bytes)
5347 {
5348 struct reserve_ticket *ticket;
5349 struct list_head *head;
5350 u64 used;
5351 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5352 bool check_overcommit = false;
5353
5354 spin_lock(&space_info->lock);
5355 head = &space_info->priority_tickets;
5356
5357 /*
5358 * If we are over our limit then we need to check and see if we can
5359 * overcommit, and if we can't then we just need to free up our space
5360 * and not satisfy any requests.
5361 */
5362 used = space_info->bytes_used + space_info->bytes_reserved +
5363 space_info->bytes_pinned + space_info->bytes_readonly +
5364 space_info->bytes_may_use;
5365 if (used - num_bytes >= space_info->total_bytes)
5366 check_overcommit = true;
5367 again:
5368 while (!list_empty(head) && num_bytes) {
5369 ticket = list_first_entry(head, struct reserve_ticket,
5370 list);
5371 /*
5372 * We use 0 bytes because this space is already reserved, so
5373 * adding the ticket space would be a double count.
5374 */
5375 if (check_overcommit &&
5376 !can_overcommit(fs_info->extent_root, space_info, 0,
5377 flush))
5378 break;
5379 if (num_bytes >= ticket->bytes) {
5380 list_del_init(&ticket->list);
5381 num_bytes -= ticket->bytes;
5382 ticket->bytes = 0;
5383 space_info->tickets_id++;
5384 wake_up(&ticket->wait);
5385 } else {
5386 ticket->bytes -= num_bytes;
5387 num_bytes = 0;
5388 }
5389 }
5390
5391 if (num_bytes && head == &space_info->priority_tickets) {
5392 head = &space_info->tickets;
5393 flush = BTRFS_RESERVE_FLUSH_ALL;
5394 goto again;
5395 }
5396 space_info->bytes_may_use -= num_bytes;
5397 trace_btrfs_space_reservation(fs_info, "space_info",
5398 space_info->flags, num_bytes, 0);
5399 spin_unlock(&space_info->lock);
5400 }
5401
5402 /*
5403 * This is for newly allocated space that isn't accounted in
5404 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5405 * we use this helper.
5406 */
5407 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5408 struct btrfs_space_info *space_info,
5409 u64 num_bytes)
5410 {
5411 struct reserve_ticket *ticket;
5412 struct list_head *head = &space_info->priority_tickets;
5413
5414 again:
5415 while (!list_empty(head) && num_bytes) {
5416 ticket = list_first_entry(head, struct reserve_ticket,
5417 list);
5418 if (num_bytes >= ticket->bytes) {
5419 trace_btrfs_space_reservation(fs_info, "space_info",
5420 space_info->flags,
5421 ticket->bytes, 1);
5422 list_del_init(&ticket->list);
5423 num_bytes -= ticket->bytes;
5424 space_info->bytes_may_use += ticket->bytes;
5425 ticket->bytes = 0;
5426 space_info->tickets_id++;
5427 wake_up(&ticket->wait);
5428 } else {
5429 trace_btrfs_space_reservation(fs_info, "space_info",
5430 space_info->flags,
5431 num_bytes, 1);
5432 space_info->bytes_may_use += num_bytes;
5433 ticket->bytes -= num_bytes;
5434 num_bytes = 0;
5435 }
5436 }
5437
5438 if (num_bytes && head == &space_info->priority_tickets) {
5439 head = &space_info->tickets;
5440 goto again;
5441 }
5442 }
5443
5444 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5445 struct btrfs_block_rsv *block_rsv,
5446 struct btrfs_block_rsv *dest, u64 num_bytes)
5447 {
5448 struct btrfs_space_info *space_info = block_rsv->space_info;
5449
5450 spin_lock(&block_rsv->lock);
5451 if (num_bytes == (u64)-1)
5452 num_bytes = block_rsv->size;
5453 block_rsv->size -= num_bytes;
5454 if (block_rsv->reserved >= block_rsv->size) {
5455 num_bytes = block_rsv->reserved - block_rsv->size;
5456 block_rsv->reserved = block_rsv->size;
5457 block_rsv->full = 1;
5458 } else {
5459 num_bytes = 0;
5460 }
5461 spin_unlock(&block_rsv->lock);
5462
5463 if (num_bytes > 0) {
5464 if (dest) {
5465 spin_lock(&dest->lock);
5466 if (!dest->full) {
5467 u64 bytes_to_add;
5468
5469 bytes_to_add = dest->size - dest->reserved;
5470 bytes_to_add = min(num_bytes, bytes_to_add);
5471 dest->reserved += bytes_to_add;
5472 if (dest->reserved >= dest->size)
5473 dest->full = 1;
5474 num_bytes -= bytes_to_add;
5475 }
5476 spin_unlock(&dest->lock);
5477 }
5478 if (num_bytes)
5479 space_info_add_old_bytes(fs_info, space_info,
5480 num_bytes);
5481 }
5482 }
5483
5484 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5485 struct btrfs_block_rsv *dst, u64 num_bytes,
5486 int update_size)
5487 {
5488 int ret;
5489
5490 ret = block_rsv_use_bytes(src, num_bytes);
5491 if (ret)
5492 return ret;
5493
5494 block_rsv_add_bytes(dst, num_bytes, update_size);
5495 return 0;
5496 }
5497
5498 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5499 {
5500 memset(rsv, 0, sizeof(*rsv));
5501 spin_lock_init(&rsv->lock);
5502 rsv->type = type;
5503 }
5504
5505 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5506 unsigned short type)
5507 {
5508 struct btrfs_block_rsv *block_rsv;
5509 struct btrfs_fs_info *fs_info = root->fs_info;
5510
5511 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5512 if (!block_rsv)
5513 return NULL;
5514
5515 btrfs_init_block_rsv(block_rsv, type);
5516 block_rsv->space_info = __find_space_info(fs_info,
5517 BTRFS_BLOCK_GROUP_METADATA);
5518 return block_rsv;
5519 }
5520
5521 void btrfs_free_block_rsv(struct btrfs_root *root,
5522 struct btrfs_block_rsv *rsv)
5523 {
5524 if (!rsv)
5525 return;
5526 btrfs_block_rsv_release(root, rsv, (u64)-1);
5527 kfree(rsv);
5528 }
5529
5530 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5531 {
5532 kfree(rsv);
5533 }
5534
5535 int btrfs_block_rsv_add(struct btrfs_root *root,
5536 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5537 enum btrfs_reserve_flush_enum flush)
5538 {
5539 int ret;
5540
5541 if (num_bytes == 0)
5542 return 0;
5543
5544 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5545 if (!ret) {
5546 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5547 return 0;
5548 }
5549
5550 return ret;
5551 }
5552
5553 int btrfs_block_rsv_check(struct btrfs_root *root,
5554 struct btrfs_block_rsv *block_rsv, int min_factor)
5555 {
5556 u64 num_bytes = 0;
5557 int ret = -ENOSPC;
5558
5559 if (!block_rsv)
5560 return 0;
5561
5562 spin_lock(&block_rsv->lock);
5563 num_bytes = div_factor(block_rsv->size, min_factor);
5564 if (block_rsv->reserved >= num_bytes)
5565 ret = 0;
5566 spin_unlock(&block_rsv->lock);
5567
5568 return ret;
5569 }
5570
5571 int btrfs_block_rsv_refill(struct btrfs_root *root,
5572 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5573 enum btrfs_reserve_flush_enum flush)
5574 {
5575 u64 num_bytes = 0;
5576 int ret = -ENOSPC;
5577
5578 if (!block_rsv)
5579 return 0;
5580
5581 spin_lock(&block_rsv->lock);
5582 num_bytes = min_reserved;
5583 if (block_rsv->reserved >= num_bytes)
5584 ret = 0;
5585 else
5586 num_bytes -= block_rsv->reserved;
5587 spin_unlock(&block_rsv->lock);
5588
5589 if (!ret)
5590 return 0;
5591
5592 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5593 if (!ret) {
5594 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5595 return 0;
5596 }
5597
5598 return ret;
5599 }
5600
5601 void btrfs_block_rsv_release(struct btrfs_root *root,
5602 struct btrfs_block_rsv *block_rsv,
5603 u64 num_bytes)
5604 {
5605 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5606 if (global_rsv == block_rsv ||
5607 block_rsv->space_info != global_rsv->space_info)
5608 global_rsv = NULL;
5609 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5610 num_bytes);
5611 }
5612
5613 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5614 {
5615 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5616 struct btrfs_space_info *sinfo = block_rsv->space_info;
5617 u64 num_bytes;
5618
5619 /*
5620 * The global block rsv is based on the size of the extent tree, the
5621 * checksum tree and the root tree. If the fs is empty we want to set
5622 * it to a minimal amount for safety.
5623 */
5624 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5625 btrfs_root_used(&fs_info->csum_root->root_item) +
5626 btrfs_root_used(&fs_info->tree_root->root_item);
5627 num_bytes = max_t(u64, num_bytes, SZ_16M);
5628
5629 spin_lock(&sinfo->lock);
5630 spin_lock(&block_rsv->lock);
5631
5632 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5633
5634 if (block_rsv->reserved < block_rsv->size) {
5635 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5636 sinfo->bytes_reserved + sinfo->bytes_readonly +
5637 sinfo->bytes_may_use;
5638 if (sinfo->total_bytes > num_bytes) {
5639 num_bytes = sinfo->total_bytes - num_bytes;
5640 num_bytes = min(num_bytes,
5641 block_rsv->size - block_rsv->reserved);
5642 block_rsv->reserved += num_bytes;
5643 sinfo->bytes_may_use += num_bytes;
5644 trace_btrfs_space_reservation(fs_info, "space_info",
5645 sinfo->flags, num_bytes,
5646 1);
5647 }
5648 } else if (block_rsv->reserved > block_rsv->size) {
5649 num_bytes = block_rsv->reserved - block_rsv->size;
5650 sinfo->bytes_may_use -= num_bytes;
5651 trace_btrfs_space_reservation(fs_info, "space_info",
5652 sinfo->flags, num_bytes, 0);
5653 block_rsv->reserved = block_rsv->size;
5654 }
5655
5656 if (block_rsv->reserved == block_rsv->size)
5657 block_rsv->full = 1;
5658 else
5659 block_rsv->full = 0;
5660
5661 spin_unlock(&block_rsv->lock);
5662 spin_unlock(&sinfo->lock);
5663 }
5664
5665 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5666 {
5667 struct btrfs_space_info *space_info;
5668
5669 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5670 fs_info->chunk_block_rsv.space_info = space_info;
5671
5672 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5673 fs_info->global_block_rsv.space_info = space_info;
5674 fs_info->delalloc_block_rsv.space_info = space_info;
5675 fs_info->trans_block_rsv.space_info = space_info;
5676 fs_info->empty_block_rsv.space_info = space_info;
5677 fs_info->delayed_block_rsv.space_info = space_info;
5678
5679 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5680 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5681 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5682 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5683 if (fs_info->quota_root)
5684 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5685 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5686
5687 update_global_block_rsv(fs_info);
5688 }
5689
5690 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5691 {
5692 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5693 (u64)-1);
5694 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5695 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5696 WARN_ON(fs_info->trans_block_rsv.size > 0);
5697 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5698 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5699 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5700 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5701 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5702 }
5703
5704 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5705 struct btrfs_root *root)
5706 {
5707 if (!trans->block_rsv)
5708 return;
5709
5710 if (!trans->bytes_reserved)
5711 return;
5712
5713 trace_btrfs_space_reservation(root->fs_info, "transaction",
5714 trans->transid, trans->bytes_reserved, 0);
5715 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5716 trans->bytes_reserved = 0;
5717 }
5718
5719 /*
5720 * To be called after all the new block groups attached to the transaction
5721 * handle have been created (btrfs_create_pending_block_groups()).
5722 */
5723 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5724 {
5725 struct btrfs_fs_info *fs_info = trans->fs_info;
5726
5727 if (!trans->chunk_bytes_reserved)
5728 return;
5729
5730 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5731
5732 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5733 trans->chunk_bytes_reserved);
5734 trans->chunk_bytes_reserved = 0;
5735 }
5736
5737 /* Can only return 0 or -ENOSPC */
5738 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5739 struct inode *inode)
5740 {
5741 struct btrfs_root *root = BTRFS_I(inode)->root;
5742 /*
5743 * We always use trans->block_rsv here as we will have reserved space
5744 * for our orphan when starting the transaction, using get_block_rsv()
5745 * here will sometimes make us choose the wrong block rsv as we could be
5746 * doing a reloc inode for a non refcounted root.
5747 */
5748 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5749 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5750
5751 /*
5752 * We need to hold space in order to delete our orphan item once we've
5753 * added it, so this takes the reservation so we can release it later
5754 * when we are truly done with the orphan item.
5755 */
5756 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5757 trace_btrfs_space_reservation(root->fs_info, "orphan",
5758 btrfs_ino(inode), num_bytes, 1);
5759 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5760 }
5761
5762 void btrfs_orphan_release_metadata(struct inode *inode)
5763 {
5764 struct btrfs_root *root = BTRFS_I(inode)->root;
5765 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5766 trace_btrfs_space_reservation(root->fs_info, "orphan",
5767 btrfs_ino(inode), num_bytes, 0);
5768 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5769 }
5770
5771 /*
5772 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5773 * root: the root of the parent directory
5774 * rsv: block reservation
5775 * items: the number of items that we need do reservation
5776 * qgroup_reserved: used to return the reserved size in qgroup
5777 *
5778 * This function is used to reserve the space for snapshot/subvolume
5779 * creation and deletion. Those operations are different with the
5780 * common file/directory operations, they change two fs/file trees
5781 * and root tree, the number of items that the qgroup reserves is
5782 * different with the free space reservation. So we can not use
5783 * the space reservation mechanism in start_transaction().
5784 */
5785 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5786 struct btrfs_block_rsv *rsv,
5787 int items,
5788 u64 *qgroup_reserved,
5789 bool use_global_rsv)
5790 {
5791 u64 num_bytes;
5792 int ret;
5793 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5794
5795 if (root->fs_info->quota_enabled) {
5796 /* One for parent inode, two for dir entries */
5797 num_bytes = 3 * root->nodesize;
5798 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5799 if (ret)
5800 return ret;
5801 } else {
5802 num_bytes = 0;
5803 }
5804
5805 *qgroup_reserved = num_bytes;
5806
5807 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5808 rsv->space_info = __find_space_info(root->fs_info,
5809 BTRFS_BLOCK_GROUP_METADATA);
5810 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5811 BTRFS_RESERVE_FLUSH_ALL);
5812
5813 if (ret == -ENOSPC && use_global_rsv)
5814 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5815
5816 if (ret && *qgroup_reserved)
5817 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5818
5819 return ret;
5820 }
5821
5822 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5823 struct btrfs_block_rsv *rsv,
5824 u64 qgroup_reserved)
5825 {
5826 btrfs_block_rsv_release(root, rsv, (u64)-1);
5827 }
5828
5829 /**
5830 * drop_outstanding_extent - drop an outstanding extent
5831 * @inode: the inode we're dropping the extent for
5832 * @num_bytes: the number of bytes we're releasing.
5833 *
5834 * This is called when we are freeing up an outstanding extent, either called
5835 * after an error or after an extent is written. This will return the number of
5836 * reserved extents that need to be freed. This must be called with
5837 * BTRFS_I(inode)->lock held.
5838 */
5839 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5840 {
5841 unsigned drop_inode_space = 0;
5842 unsigned dropped_extents = 0;
5843 unsigned num_extents = 0;
5844
5845 num_extents = (unsigned)div64_u64(num_bytes +
5846 BTRFS_MAX_EXTENT_SIZE - 1,
5847 BTRFS_MAX_EXTENT_SIZE);
5848 ASSERT(num_extents);
5849 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5850 BTRFS_I(inode)->outstanding_extents -= num_extents;
5851
5852 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5853 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5854 &BTRFS_I(inode)->runtime_flags))
5855 drop_inode_space = 1;
5856
5857 /*
5858 * If we have more or the same amount of outstanding extents than we have
5859 * reserved then we need to leave the reserved extents count alone.
5860 */
5861 if (BTRFS_I(inode)->outstanding_extents >=
5862 BTRFS_I(inode)->reserved_extents)
5863 return drop_inode_space;
5864
5865 dropped_extents = BTRFS_I(inode)->reserved_extents -
5866 BTRFS_I(inode)->outstanding_extents;
5867 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5868 return dropped_extents + drop_inode_space;
5869 }
5870
5871 /**
5872 * calc_csum_metadata_size - return the amount of metadata space that must be
5873 * reserved/freed for the given bytes.
5874 * @inode: the inode we're manipulating
5875 * @num_bytes: the number of bytes in question
5876 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5877 *
5878 * This adjusts the number of csum_bytes in the inode and then returns the
5879 * correct amount of metadata that must either be reserved or freed. We
5880 * calculate how many checksums we can fit into one leaf and then divide the
5881 * number of bytes that will need to be checksumed by this value to figure out
5882 * how many checksums will be required. If we are adding bytes then the number
5883 * may go up and we will return the number of additional bytes that must be
5884 * reserved. If it is going down we will return the number of bytes that must
5885 * be freed.
5886 *
5887 * This must be called with BTRFS_I(inode)->lock held.
5888 */
5889 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5890 int reserve)
5891 {
5892 struct btrfs_root *root = BTRFS_I(inode)->root;
5893 u64 old_csums, num_csums;
5894
5895 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5896 BTRFS_I(inode)->csum_bytes == 0)
5897 return 0;
5898
5899 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5900 if (reserve)
5901 BTRFS_I(inode)->csum_bytes += num_bytes;
5902 else
5903 BTRFS_I(inode)->csum_bytes -= num_bytes;
5904 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5905
5906 /* No change, no need to reserve more */
5907 if (old_csums == num_csums)
5908 return 0;
5909
5910 if (reserve)
5911 return btrfs_calc_trans_metadata_size(root,
5912 num_csums - old_csums);
5913
5914 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5915 }
5916
5917 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5918 {
5919 struct btrfs_root *root = BTRFS_I(inode)->root;
5920 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5921 u64 to_reserve = 0;
5922 u64 csum_bytes;
5923 unsigned nr_extents = 0;
5924 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5925 int ret = 0;
5926 bool delalloc_lock = true;
5927 u64 to_free = 0;
5928 unsigned dropped;
5929 bool release_extra = false;
5930
5931 /* If we are a free space inode we need to not flush since we will be in
5932 * the middle of a transaction commit. We also don't need the delalloc
5933 * mutex since we won't race with anybody. We need this mostly to make
5934 * lockdep shut its filthy mouth.
5935 *
5936 * If we have a transaction open (can happen if we call truncate_block
5937 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5938 */
5939 if (btrfs_is_free_space_inode(inode)) {
5940 flush = BTRFS_RESERVE_NO_FLUSH;
5941 delalloc_lock = false;
5942 } else if (current->journal_info) {
5943 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5944 }
5945
5946 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5947 btrfs_transaction_in_commit(root->fs_info))
5948 schedule_timeout(1);
5949
5950 if (delalloc_lock)
5951 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5952
5953 num_bytes = ALIGN(num_bytes, root->sectorsize);
5954
5955 spin_lock(&BTRFS_I(inode)->lock);
5956 nr_extents = (unsigned)div64_u64(num_bytes +
5957 BTRFS_MAX_EXTENT_SIZE - 1,
5958 BTRFS_MAX_EXTENT_SIZE);
5959 BTRFS_I(inode)->outstanding_extents += nr_extents;
5960
5961 nr_extents = 0;
5962 if (BTRFS_I(inode)->outstanding_extents >
5963 BTRFS_I(inode)->reserved_extents)
5964 nr_extents += BTRFS_I(inode)->outstanding_extents -
5965 BTRFS_I(inode)->reserved_extents;
5966
5967 /* We always want to reserve a slot for updating the inode. */
5968 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5969 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5970 csum_bytes = BTRFS_I(inode)->csum_bytes;
5971 spin_unlock(&BTRFS_I(inode)->lock);
5972
5973 if (root->fs_info->quota_enabled) {
5974 ret = btrfs_qgroup_reserve_meta(root,
5975 nr_extents * root->nodesize);
5976 if (ret)
5977 goto out_fail;
5978 }
5979
5980 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5981 if (unlikely(ret)) {
5982 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5983 goto out_fail;
5984 }
5985
5986 spin_lock(&BTRFS_I(inode)->lock);
5987 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5988 &BTRFS_I(inode)->runtime_flags)) {
5989 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5990 release_extra = true;
5991 }
5992 BTRFS_I(inode)->reserved_extents += nr_extents;
5993 spin_unlock(&BTRFS_I(inode)->lock);
5994
5995 if (delalloc_lock)
5996 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5997
5998 if (to_reserve)
5999 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6000 btrfs_ino(inode), to_reserve, 1);
6001 if (release_extra)
6002 btrfs_block_rsv_release(root, block_rsv,
6003 btrfs_calc_trans_metadata_size(root,
6004 1));
6005 return 0;
6006
6007 out_fail:
6008 spin_lock(&BTRFS_I(inode)->lock);
6009 dropped = drop_outstanding_extent(inode, num_bytes);
6010 /*
6011 * If the inodes csum_bytes is the same as the original
6012 * csum_bytes then we know we haven't raced with any free()ers
6013 * so we can just reduce our inodes csum bytes and carry on.
6014 */
6015 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6016 calc_csum_metadata_size(inode, num_bytes, 0);
6017 } else {
6018 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6019 u64 bytes;
6020
6021 /*
6022 * This is tricky, but first we need to figure out how much we
6023 * freed from any free-ers that occurred during this
6024 * reservation, so we reset ->csum_bytes to the csum_bytes
6025 * before we dropped our lock, and then call the free for the
6026 * number of bytes that were freed while we were trying our
6027 * reservation.
6028 */
6029 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6030 BTRFS_I(inode)->csum_bytes = csum_bytes;
6031 to_free = calc_csum_metadata_size(inode, bytes, 0);
6032
6033
6034 /*
6035 * Now we need to see how much we would have freed had we not
6036 * been making this reservation and our ->csum_bytes were not
6037 * artificially inflated.
6038 */
6039 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6040 bytes = csum_bytes - orig_csum_bytes;
6041 bytes = calc_csum_metadata_size(inode, bytes, 0);
6042
6043 /*
6044 * Now reset ->csum_bytes to what it should be. If bytes is
6045 * more than to_free then we would have freed more space had we
6046 * not had an artificially high ->csum_bytes, so we need to free
6047 * the remainder. If bytes is the same or less then we don't
6048 * need to do anything, the other free-ers did the correct
6049 * thing.
6050 */
6051 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6052 if (bytes > to_free)
6053 to_free = bytes - to_free;
6054 else
6055 to_free = 0;
6056 }
6057 spin_unlock(&BTRFS_I(inode)->lock);
6058 if (dropped)
6059 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6060
6061 if (to_free) {
6062 btrfs_block_rsv_release(root, block_rsv, to_free);
6063 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6064 btrfs_ino(inode), to_free, 0);
6065 }
6066 if (delalloc_lock)
6067 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6068 return ret;
6069 }
6070
6071 /**
6072 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6073 * @inode: the inode to release the reservation for
6074 * @num_bytes: the number of bytes we're releasing
6075 *
6076 * This will release the metadata reservation for an inode. This can be called
6077 * once we complete IO for a given set of bytes to release their metadata
6078 * reservations.
6079 */
6080 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6081 {
6082 struct btrfs_root *root = BTRFS_I(inode)->root;
6083 u64 to_free = 0;
6084 unsigned dropped;
6085
6086 num_bytes = ALIGN(num_bytes, root->sectorsize);
6087 spin_lock(&BTRFS_I(inode)->lock);
6088 dropped = drop_outstanding_extent(inode, num_bytes);
6089
6090 if (num_bytes)
6091 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6092 spin_unlock(&BTRFS_I(inode)->lock);
6093 if (dropped > 0)
6094 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6095
6096 if (btrfs_is_testing(root->fs_info))
6097 return;
6098
6099 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6100 btrfs_ino(inode), to_free, 0);
6101
6102 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6103 to_free);
6104 }
6105
6106 /**
6107 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6108 * delalloc
6109 * @inode: inode we're writing to
6110 * @start: start range we are writing to
6111 * @len: how long the range we are writing to
6112 *
6113 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6114 *
6115 * This will do the following things
6116 *
6117 * o reserve space in data space info for num bytes
6118 * and reserve precious corresponding qgroup space
6119 * (Done in check_data_free_space)
6120 *
6121 * o reserve space for metadata space, based on the number of outstanding
6122 * extents and how much csums will be needed
6123 * also reserve metadata space in a per root over-reserve method.
6124 * o add to the inodes->delalloc_bytes
6125 * o add it to the fs_info's delalloc inodes list.
6126 * (Above 3 all done in delalloc_reserve_metadata)
6127 *
6128 * Return 0 for success
6129 * Return <0 for error(-ENOSPC or -EQUOT)
6130 */
6131 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6132 {
6133 int ret;
6134
6135 ret = btrfs_check_data_free_space(inode, start, len);
6136 if (ret < 0)
6137 return ret;
6138 ret = btrfs_delalloc_reserve_metadata(inode, len);
6139 if (ret < 0)
6140 btrfs_free_reserved_data_space(inode, start, len);
6141 return ret;
6142 }
6143
6144 /**
6145 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6146 * @inode: inode we're releasing space for
6147 * @start: start position of the space already reserved
6148 * @len: the len of the space already reserved
6149 *
6150 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6151 * called in the case that we don't need the metadata AND data reservations
6152 * anymore. So if there is an error or we insert an inline extent.
6153 *
6154 * This function will release the metadata space that was not used and will
6155 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6156 * list if there are no delalloc bytes left.
6157 * Also it will handle the qgroup reserved space.
6158 */
6159 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6160 {
6161 btrfs_delalloc_release_metadata(inode, len);
6162 btrfs_free_reserved_data_space(inode, start, len);
6163 }
6164
6165 static int update_block_group(struct btrfs_trans_handle *trans,
6166 struct btrfs_root *root, u64 bytenr,
6167 u64 num_bytes, int alloc)
6168 {
6169 struct btrfs_block_group_cache *cache = NULL;
6170 struct btrfs_fs_info *info = root->fs_info;
6171 u64 total = num_bytes;
6172 u64 old_val;
6173 u64 byte_in_group;
6174 int factor;
6175
6176 /* block accounting for super block */
6177 spin_lock(&info->delalloc_root_lock);
6178 old_val = btrfs_super_bytes_used(info->super_copy);
6179 if (alloc)
6180 old_val += num_bytes;
6181 else
6182 old_val -= num_bytes;
6183 btrfs_set_super_bytes_used(info->super_copy, old_val);
6184 spin_unlock(&info->delalloc_root_lock);
6185
6186 while (total) {
6187 cache = btrfs_lookup_block_group(info, bytenr);
6188 if (!cache)
6189 return -ENOENT;
6190 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6191 BTRFS_BLOCK_GROUP_RAID1 |
6192 BTRFS_BLOCK_GROUP_RAID10))
6193 factor = 2;
6194 else
6195 factor = 1;
6196 /*
6197 * If this block group has free space cache written out, we
6198 * need to make sure to load it if we are removing space. This
6199 * is because we need the unpinning stage to actually add the
6200 * space back to the block group, otherwise we will leak space.
6201 */
6202 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6203 cache_block_group(cache, 1);
6204
6205 byte_in_group = bytenr - cache->key.objectid;
6206 WARN_ON(byte_in_group > cache->key.offset);
6207
6208 spin_lock(&cache->space_info->lock);
6209 spin_lock(&cache->lock);
6210
6211 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6212 cache->disk_cache_state < BTRFS_DC_CLEAR)
6213 cache->disk_cache_state = BTRFS_DC_CLEAR;
6214
6215 old_val = btrfs_block_group_used(&cache->item);
6216 num_bytes = min(total, cache->key.offset - byte_in_group);
6217 if (alloc) {
6218 old_val += num_bytes;
6219 btrfs_set_block_group_used(&cache->item, old_val);
6220 cache->reserved -= num_bytes;
6221 cache->space_info->bytes_reserved -= num_bytes;
6222 cache->space_info->bytes_used += num_bytes;
6223 cache->space_info->disk_used += num_bytes * factor;
6224 spin_unlock(&cache->lock);
6225 spin_unlock(&cache->space_info->lock);
6226 } else {
6227 old_val -= num_bytes;
6228 btrfs_set_block_group_used(&cache->item, old_val);
6229 cache->pinned += num_bytes;
6230 cache->space_info->bytes_pinned += num_bytes;
6231 cache->space_info->bytes_used -= num_bytes;
6232 cache->space_info->disk_used -= num_bytes * factor;
6233 spin_unlock(&cache->lock);
6234 spin_unlock(&cache->space_info->lock);
6235
6236 trace_btrfs_space_reservation(root->fs_info, "pinned",
6237 cache->space_info->flags,
6238 num_bytes, 1);
6239 set_extent_dirty(info->pinned_extents,
6240 bytenr, bytenr + num_bytes - 1,
6241 GFP_NOFS | __GFP_NOFAIL);
6242 }
6243
6244 spin_lock(&trans->transaction->dirty_bgs_lock);
6245 if (list_empty(&cache->dirty_list)) {
6246 list_add_tail(&cache->dirty_list,
6247 &trans->transaction->dirty_bgs);
6248 trans->transaction->num_dirty_bgs++;
6249 btrfs_get_block_group(cache);
6250 }
6251 spin_unlock(&trans->transaction->dirty_bgs_lock);
6252
6253 /*
6254 * No longer have used bytes in this block group, queue it for
6255 * deletion. We do this after adding the block group to the
6256 * dirty list to avoid races between cleaner kthread and space
6257 * cache writeout.
6258 */
6259 if (!alloc && old_val == 0) {
6260 spin_lock(&info->unused_bgs_lock);
6261 if (list_empty(&cache->bg_list)) {
6262 btrfs_get_block_group(cache);
6263 list_add_tail(&cache->bg_list,
6264 &info->unused_bgs);
6265 }
6266 spin_unlock(&info->unused_bgs_lock);
6267 }
6268
6269 btrfs_put_block_group(cache);
6270 total -= num_bytes;
6271 bytenr += num_bytes;
6272 }
6273 return 0;
6274 }
6275
6276 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6277 {
6278 struct btrfs_block_group_cache *cache;
6279 u64 bytenr;
6280
6281 spin_lock(&root->fs_info->block_group_cache_lock);
6282 bytenr = root->fs_info->first_logical_byte;
6283 spin_unlock(&root->fs_info->block_group_cache_lock);
6284
6285 if (bytenr < (u64)-1)
6286 return bytenr;
6287
6288 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6289 if (!cache)
6290 return 0;
6291
6292 bytenr = cache->key.objectid;
6293 btrfs_put_block_group(cache);
6294
6295 return bytenr;
6296 }
6297
6298 static int pin_down_extent(struct btrfs_root *root,
6299 struct btrfs_block_group_cache *cache,
6300 u64 bytenr, u64 num_bytes, int reserved)
6301 {
6302 spin_lock(&cache->space_info->lock);
6303 spin_lock(&cache->lock);
6304 cache->pinned += num_bytes;
6305 cache->space_info->bytes_pinned += num_bytes;
6306 if (reserved) {
6307 cache->reserved -= num_bytes;
6308 cache->space_info->bytes_reserved -= num_bytes;
6309 }
6310 spin_unlock(&cache->lock);
6311 spin_unlock(&cache->space_info->lock);
6312
6313 trace_btrfs_space_reservation(root->fs_info, "pinned",
6314 cache->space_info->flags, num_bytes, 1);
6315 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6316 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6317 return 0;
6318 }
6319
6320 /*
6321 * this function must be called within transaction
6322 */
6323 int btrfs_pin_extent(struct btrfs_root *root,
6324 u64 bytenr, u64 num_bytes, int reserved)
6325 {
6326 struct btrfs_block_group_cache *cache;
6327
6328 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6329 BUG_ON(!cache); /* Logic error */
6330
6331 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6332
6333 btrfs_put_block_group(cache);
6334 return 0;
6335 }
6336
6337 /*
6338 * this function must be called within transaction
6339 */
6340 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6341 u64 bytenr, u64 num_bytes)
6342 {
6343 struct btrfs_block_group_cache *cache;
6344 int ret;
6345
6346 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6347 if (!cache)
6348 return -EINVAL;
6349
6350 /*
6351 * pull in the free space cache (if any) so that our pin
6352 * removes the free space from the cache. We have load_only set
6353 * to one because the slow code to read in the free extents does check
6354 * the pinned extents.
6355 */
6356 cache_block_group(cache, 1);
6357
6358 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6359
6360 /* remove us from the free space cache (if we're there at all) */
6361 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6362 btrfs_put_block_group(cache);
6363 return ret;
6364 }
6365
6366 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6367 {
6368 int ret;
6369 struct btrfs_block_group_cache *block_group;
6370 struct btrfs_caching_control *caching_ctl;
6371
6372 block_group = btrfs_lookup_block_group(root->fs_info, start);
6373 if (!block_group)
6374 return -EINVAL;
6375
6376 cache_block_group(block_group, 0);
6377 caching_ctl = get_caching_control(block_group);
6378
6379 if (!caching_ctl) {
6380 /* Logic error */
6381 BUG_ON(!block_group_cache_done(block_group));
6382 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6383 } else {
6384 mutex_lock(&caching_ctl->mutex);
6385
6386 if (start >= caching_ctl->progress) {
6387 ret = add_excluded_extent(root, start, num_bytes);
6388 } else if (start + num_bytes <= caching_ctl->progress) {
6389 ret = btrfs_remove_free_space(block_group,
6390 start, num_bytes);
6391 } else {
6392 num_bytes = caching_ctl->progress - start;
6393 ret = btrfs_remove_free_space(block_group,
6394 start, num_bytes);
6395 if (ret)
6396 goto out_lock;
6397
6398 num_bytes = (start + num_bytes) -
6399 caching_ctl->progress;
6400 start = caching_ctl->progress;
6401 ret = add_excluded_extent(root, start, num_bytes);
6402 }
6403 out_lock:
6404 mutex_unlock(&caching_ctl->mutex);
6405 put_caching_control(caching_ctl);
6406 }
6407 btrfs_put_block_group(block_group);
6408 return ret;
6409 }
6410
6411 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6412 struct extent_buffer *eb)
6413 {
6414 struct btrfs_file_extent_item *item;
6415 struct btrfs_key key;
6416 int found_type;
6417 int i;
6418
6419 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6420 return 0;
6421
6422 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6423 btrfs_item_key_to_cpu(eb, &key, i);
6424 if (key.type != BTRFS_EXTENT_DATA_KEY)
6425 continue;
6426 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6427 found_type = btrfs_file_extent_type(eb, item);
6428 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6429 continue;
6430 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6431 continue;
6432 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6433 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6434 __exclude_logged_extent(log, key.objectid, key.offset);
6435 }
6436
6437 return 0;
6438 }
6439
6440 static void
6441 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6442 {
6443 atomic_inc(&bg->reservations);
6444 }
6445
6446 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6447 const u64 start)
6448 {
6449 struct btrfs_block_group_cache *bg;
6450
6451 bg = btrfs_lookup_block_group(fs_info, start);
6452 ASSERT(bg);
6453 if (atomic_dec_and_test(&bg->reservations))
6454 wake_up_atomic_t(&bg->reservations);
6455 btrfs_put_block_group(bg);
6456 }
6457
6458 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6459 {
6460 schedule();
6461 return 0;
6462 }
6463
6464 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6465 {
6466 struct btrfs_space_info *space_info = bg->space_info;
6467
6468 ASSERT(bg->ro);
6469
6470 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6471 return;
6472
6473 /*
6474 * Our block group is read only but before we set it to read only,
6475 * some task might have had allocated an extent from it already, but it
6476 * has not yet created a respective ordered extent (and added it to a
6477 * root's list of ordered extents).
6478 * Therefore wait for any task currently allocating extents, since the
6479 * block group's reservations counter is incremented while a read lock
6480 * on the groups' semaphore is held and decremented after releasing
6481 * the read access on that semaphore and creating the ordered extent.
6482 */
6483 down_write(&space_info->groups_sem);
6484 up_write(&space_info->groups_sem);
6485
6486 wait_on_atomic_t(&bg->reservations,
6487 btrfs_wait_bg_reservations_atomic_t,
6488 TASK_UNINTERRUPTIBLE);
6489 }
6490
6491 /**
6492 * btrfs_add_reserved_bytes - update the block_group and space info counters
6493 * @cache: The cache we are manipulating
6494 * @ram_bytes: The number of bytes of file content, and will be same to
6495 * @num_bytes except for the compress path.
6496 * @num_bytes: The number of bytes in question
6497 * @delalloc: The blocks are allocated for the delalloc write
6498 *
6499 * This is called by the allocator when it reserves space. Metadata
6500 * reservations should be called with RESERVE_ALLOC so we do the proper
6501 * ENOSPC accounting. For data we handle the reservation through clearing the
6502 * delalloc bits in the io_tree. We have to do this since we could end up
6503 * allocating less disk space for the amount of data we have reserved in the
6504 * case of compression.
6505 *
6506 * If this is a reservation and the block group has become read only we cannot
6507 * make the reservation and return -EAGAIN, otherwise this function always
6508 * succeeds.
6509 */
6510 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6511 u64 ram_bytes, u64 num_bytes, int delalloc)
6512 {
6513 struct btrfs_space_info *space_info = cache->space_info;
6514 int ret = 0;
6515
6516 spin_lock(&space_info->lock);
6517 spin_lock(&cache->lock);
6518 if (cache->ro) {
6519 ret = -EAGAIN;
6520 } else {
6521 cache->reserved += num_bytes;
6522 space_info->bytes_reserved += num_bytes;
6523
6524 trace_btrfs_space_reservation(cache->fs_info,
6525 "space_info", space_info->flags,
6526 ram_bytes, 0);
6527 space_info->bytes_may_use -= ram_bytes;
6528 if (delalloc)
6529 cache->delalloc_bytes += num_bytes;
6530 }
6531 spin_unlock(&cache->lock);
6532 spin_unlock(&space_info->lock);
6533 return ret;
6534 }
6535
6536 /**
6537 * btrfs_free_reserved_bytes - update the block_group and space info counters
6538 * @cache: The cache we are manipulating
6539 * @num_bytes: The number of bytes in question
6540 * @delalloc: The blocks are allocated for the delalloc write
6541 *
6542 * This is called by somebody who is freeing space that was never actually used
6543 * on disk. For example if you reserve some space for a new leaf in transaction
6544 * A and before transaction A commits you free that leaf, you call this with
6545 * reserve set to 0 in order to clear the reservation.
6546 */
6547
6548 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6549 u64 num_bytes, int delalloc)
6550 {
6551 struct btrfs_space_info *space_info = cache->space_info;
6552 int ret = 0;
6553
6554 spin_lock(&space_info->lock);
6555 spin_lock(&cache->lock);
6556 if (cache->ro)
6557 space_info->bytes_readonly += num_bytes;
6558 cache->reserved -= num_bytes;
6559 space_info->bytes_reserved -= num_bytes;
6560
6561 if (delalloc)
6562 cache->delalloc_bytes -= num_bytes;
6563 spin_unlock(&cache->lock);
6564 spin_unlock(&space_info->lock);
6565 return ret;
6566 }
6567 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6568 struct btrfs_root *root)
6569 {
6570 struct btrfs_fs_info *fs_info = root->fs_info;
6571 struct btrfs_caching_control *next;
6572 struct btrfs_caching_control *caching_ctl;
6573 struct btrfs_block_group_cache *cache;
6574
6575 down_write(&fs_info->commit_root_sem);
6576
6577 list_for_each_entry_safe(caching_ctl, next,
6578 &fs_info->caching_block_groups, list) {
6579 cache = caching_ctl->block_group;
6580 if (block_group_cache_done(cache)) {
6581 cache->last_byte_to_unpin = (u64)-1;
6582 list_del_init(&caching_ctl->list);
6583 put_caching_control(caching_ctl);
6584 } else {
6585 cache->last_byte_to_unpin = caching_ctl->progress;
6586 }
6587 }
6588
6589 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6590 fs_info->pinned_extents = &fs_info->freed_extents[1];
6591 else
6592 fs_info->pinned_extents = &fs_info->freed_extents[0];
6593
6594 up_write(&fs_info->commit_root_sem);
6595
6596 update_global_block_rsv(fs_info);
6597 }
6598
6599 /*
6600 * Returns the free cluster for the given space info and sets empty_cluster to
6601 * what it should be based on the mount options.
6602 */
6603 static struct btrfs_free_cluster *
6604 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6605 u64 *empty_cluster)
6606 {
6607 struct btrfs_free_cluster *ret = NULL;
6608 bool ssd = btrfs_test_opt(root->fs_info, SSD);
6609
6610 *empty_cluster = 0;
6611 if (btrfs_mixed_space_info(space_info))
6612 return ret;
6613
6614 if (ssd)
6615 *empty_cluster = SZ_2M;
6616 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6617 ret = &root->fs_info->meta_alloc_cluster;
6618 if (!ssd)
6619 *empty_cluster = SZ_64K;
6620 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6621 ret = &root->fs_info->data_alloc_cluster;
6622 }
6623
6624 return ret;
6625 }
6626
6627 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6628 const bool return_free_space)
6629 {
6630 struct btrfs_fs_info *fs_info = root->fs_info;
6631 struct btrfs_block_group_cache *cache = NULL;
6632 struct btrfs_space_info *space_info;
6633 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6634 struct btrfs_free_cluster *cluster = NULL;
6635 u64 len;
6636 u64 total_unpinned = 0;
6637 u64 empty_cluster = 0;
6638 bool readonly;
6639
6640 while (start <= end) {
6641 readonly = false;
6642 if (!cache ||
6643 start >= cache->key.objectid + cache->key.offset) {
6644 if (cache)
6645 btrfs_put_block_group(cache);
6646 total_unpinned = 0;
6647 cache = btrfs_lookup_block_group(fs_info, start);
6648 BUG_ON(!cache); /* Logic error */
6649
6650 cluster = fetch_cluster_info(root,
6651 cache->space_info,
6652 &empty_cluster);
6653 empty_cluster <<= 1;
6654 }
6655
6656 len = cache->key.objectid + cache->key.offset - start;
6657 len = min(len, end + 1 - start);
6658
6659 if (start < cache->last_byte_to_unpin) {
6660 len = min(len, cache->last_byte_to_unpin - start);
6661 if (return_free_space)
6662 btrfs_add_free_space(cache, start, len);
6663 }
6664
6665 start += len;
6666 total_unpinned += len;
6667 space_info = cache->space_info;
6668
6669 /*
6670 * If this space cluster has been marked as fragmented and we've
6671 * unpinned enough in this block group to potentially allow a
6672 * cluster to be created inside of it go ahead and clear the
6673 * fragmented check.
6674 */
6675 if (cluster && cluster->fragmented &&
6676 total_unpinned > empty_cluster) {
6677 spin_lock(&cluster->lock);
6678 cluster->fragmented = 0;
6679 spin_unlock(&cluster->lock);
6680 }
6681
6682 spin_lock(&space_info->lock);
6683 spin_lock(&cache->lock);
6684 cache->pinned -= len;
6685 space_info->bytes_pinned -= len;
6686
6687 trace_btrfs_space_reservation(fs_info, "pinned",
6688 space_info->flags, len, 0);
6689 space_info->max_extent_size = 0;
6690 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6691 if (cache->ro) {
6692 space_info->bytes_readonly += len;
6693 readonly = true;
6694 }
6695 spin_unlock(&cache->lock);
6696 if (!readonly && return_free_space &&
6697 global_rsv->space_info == space_info) {
6698 u64 to_add = len;
6699 WARN_ON(!return_free_space);
6700 spin_lock(&global_rsv->lock);
6701 if (!global_rsv->full) {
6702 to_add = min(len, global_rsv->size -
6703 global_rsv->reserved);
6704 global_rsv->reserved += to_add;
6705 space_info->bytes_may_use += to_add;
6706 if (global_rsv->reserved >= global_rsv->size)
6707 global_rsv->full = 1;
6708 trace_btrfs_space_reservation(fs_info,
6709 "space_info",
6710 space_info->flags,
6711 to_add, 1);
6712 len -= to_add;
6713 }
6714 spin_unlock(&global_rsv->lock);
6715 /* Add to any tickets we may have */
6716 if (len)
6717 space_info_add_new_bytes(fs_info, space_info,
6718 len);
6719 }
6720 spin_unlock(&space_info->lock);
6721 }
6722
6723 if (cache)
6724 btrfs_put_block_group(cache);
6725 return 0;
6726 }
6727
6728 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6729 struct btrfs_root *root)
6730 {
6731 struct btrfs_fs_info *fs_info = root->fs_info;
6732 struct btrfs_block_group_cache *block_group, *tmp;
6733 struct list_head *deleted_bgs;
6734 struct extent_io_tree *unpin;
6735 u64 start;
6736 u64 end;
6737 int ret;
6738
6739 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6740 unpin = &fs_info->freed_extents[1];
6741 else
6742 unpin = &fs_info->freed_extents[0];
6743
6744 while (!trans->aborted) {
6745 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6746 ret = find_first_extent_bit(unpin, 0, &start, &end,
6747 EXTENT_DIRTY, NULL);
6748 if (ret) {
6749 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6750 break;
6751 }
6752
6753 if (btrfs_test_opt(root->fs_info, DISCARD))
6754 ret = btrfs_discard_extent(root, start,
6755 end + 1 - start, NULL);
6756
6757 clear_extent_dirty(unpin, start, end);
6758 unpin_extent_range(root, start, end, true);
6759 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6760 cond_resched();
6761 }
6762
6763 /*
6764 * Transaction is finished. We don't need the lock anymore. We
6765 * do need to clean up the block groups in case of a transaction
6766 * abort.
6767 */
6768 deleted_bgs = &trans->transaction->deleted_bgs;
6769 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6770 u64 trimmed = 0;
6771
6772 ret = -EROFS;
6773 if (!trans->aborted)
6774 ret = btrfs_discard_extent(root,
6775 block_group->key.objectid,
6776 block_group->key.offset,
6777 &trimmed);
6778
6779 list_del_init(&block_group->bg_list);
6780 btrfs_put_block_group_trimming(block_group);
6781 btrfs_put_block_group(block_group);
6782
6783 if (ret) {
6784 const char *errstr = btrfs_decode_error(ret);
6785 btrfs_warn(fs_info,
6786 "Discard failed while removing blockgroup: errno=%d %s\n",
6787 ret, errstr);
6788 }
6789 }
6790
6791 return 0;
6792 }
6793
6794 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6795 u64 owner, u64 root_objectid)
6796 {
6797 struct btrfs_space_info *space_info;
6798 u64 flags;
6799
6800 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6801 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6802 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6803 else
6804 flags = BTRFS_BLOCK_GROUP_METADATA;
6805 } else {
6806 flags = BTRFS_BLOCK_GROUP_DATA;
6807 }
6808
6809 space_info = __find_space_info(fs_info, flags);
6810 BUG_ON(!space_info); /* Logic bug */
6811 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6812 }
6813
6814
6815 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6816 struct btrfs_root *root,
6817 struct btrfs_delayed_ref_node *node, u64 parent,
6818 u64 root_objectid, u64 owner_objectid,
6819 u64 owner_offset, int refs_to_drop,
6820 struct btrfs_delayed_extent_op *extent_op)
6821 {
6822 struct btrfs_key key;
6823 struct btrfs_path *path;
6824 struct btrfs_fs_info *info = root->fs_info;
6825 struct btrfs_root *extent_root = info->extent_root;
6826 struct extent_buffer *leaf;
6827 struct btrfs_extent_item *ei;
6828 struct btrfs_extent_inline_ref *iref;
6829 int ret;
6830 int is_data;
6831 int extent_slot = 0;
6832 int found_extent = 0;
6833 int num_to_del = 1;
6834 u32 item_size;
6835 u64 refs;
6836 u64 bytenr = node->bytenr;
6837 u64 num_bytes = node->num_bytes;
6838 int last_ref = 0;
6839 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6840 SKINNY_METADATA);
6841
6842 path = btrfs_alloc_path();
6843 if (!path)
6844 return -ENOMEM;
6845
6846 path->reada = READA_FORWARD;
6847 path->leave_spinning = 1;
6848
6849 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6850 BUG_ON(!is_data && refs_to_drop != 1);
6851
6852 if (is_data)
6853 skinny_metadata = 0;
6854
6855 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6856 bytenr, num_bytes, parent,
6857 root_objectid, owner_objectid,
6858 owner_offset);
6859 if (ret == 0) {
6860 extent_slot = path->slots[0];
6861 while (extent_slot >= 0) {
6862 btrfs_item_key_to_cpu(path->nodes[0], &key,
6863 extent_slot);
6864 if (key.objectid != bytenr)
6865 break;
6866 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6867 key.offset == num_bytes) {
6868 found_extent = 1;
6869 break;
6870 }
6871 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6872 key.offset == owner_objectid) {
6873 found_extent = 1;
6874 break;
6875 }
6876 if (path->slots[0] - extent_slot > 5)
6877 break;
6878 extent_slot--;
6879 }
6880 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6881 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6882 if (found_extent && item_size < sizeof(*ei))
6883 found_extent = 0;
6884 #endif
6885 if (!found_extent) {
6886 BUG_ON(iref);
6887 ret = remove_extent_backref(trans, extent_root, path,
6888 NULL, refs_to_drop,
6889 is_data, &last_ref);
6890 if (ret) {
6891 btrfs_abort_transaction(trans, ret);
6892 goto out;
6893 }
6894 btrfs_release_path(path);
6895 path->leave_spinning = 1;
6896
6897 key.objectid = bytenr;
6898 key.type = BTRFS_EXTENT_ITEM_KEY;
6899 key.offset = num_bytes;
6900
6901 if (!is_data && skinny_metadata) {
6902 key.type = BTRFS_METADATA_ITEM_KEY;
6903 key.offset = owner_objectid;
6904 }
6905
6906 ret = btrfs_search_slot(trans, extent_root,
6907 &key, path, -1, 1);
6908 if (ret > 0 && skinny_metadata && path->slots[0]) {
6909 /*
6910 * Couldn't find our skinny metadata item,
6911 * see if we have ye olde extent item.
6912 */
6913 path->slots[0]--;
6914 btrfs_item_key_to_cpu(path->nodes[0], &key,
6915 path->slots[0]);
6916 if (key.objectid == bytenr &&
6917 key.type == BTRFS_EXTENT_ITEM_KEY &&
6918 key.offset == num_bytes)
6919 ret = 0;
6920 }
6921
6922 if (ret > 0 && skinny_metadata) {
6923 skinny_metadata = false;
6924 key.objectid = bytenr;
6925 key.type = BTRFS_EXTENT_ITEM_KEY;
6926 key.offset = num_bytes;
6927 btrfs_release_path(path);
6928 ret = btrfs_search_slot(trans, extent_root,
6929 &key, path, -1, 1);
6930 }
6931
6932 if (ret) {
6933 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6934 ret, bytenr);
6935 if (ret > 0)
6936 btrfs_print_leaf(extent_root,
6937 path->nodes[0]);
6938 }
6939 if (ret < 0) {
6940 btrfs_abort_transaction(trans, ret);
6941 goto out;
6942 }
6943 extent_slot = path->slots[0];
6944 }
6945 } else if (WARN_ON(ret == -ENOENT)) {
6946 btrfs_print_leaf(extent_root, path->nodes[0]);
6947 btrfs_err(info,
6948 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6949 bytenr, parent, root_objectid, owner_objectid,
6950 owner_offset);
6951 btrfs_abort_transaction(trans, ret);
6952 goto out;
6953 } else {
6954 btrfs_abort_transaction(trans, ret);
6955 goto out;
6956 }
6957
6958 leaf = path->nodes[0];
6959 item_size = btrfs_item_size_nr(leaf, extent_slot);
6960 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6961 if (item_size < sizeof(*ei)) {
6962 BUG_ON(found_extent || extent_slot != path->slots[0]);
6963 ret = convert_extent_item_v0(trans, extent_root, path,
6964 owner_objectid, 0);
6965 if (ret < 0) {
6966 btrfs_abort_transaction(trans, ret);
6967 goto out;
6968 }
6969
6970 btrfs_release_path(path);
6971 path->leave_spinning = 1;
6972
6973 key.objectid = bytenr;
6974 key.type = BTRFS_EXTENT_ITEM_KEY;
6975 key.offset = num_bytes;
6976
6977 ret = btrfs_search_slot(trans, extent_root, &key, path,
6978 -1, 1);
6979 if (ret) {
6980 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
6981 ret, bytenr);
6982 btrfs_print_leaf(extent_root, path->nodes[0]);
6983 }
6984 if (ret < 0) {
6985 btrfs_abort_transaction(trans, ret);
6986 goto out;
6987 }
6988
6989 extent_slot = path->slots[0];
6990 leaf = path->nodes[0];
6991 item_size = btrfs_item_size_nr(leaf, extent_slot);
6992 }
6993 #endif
6994 BUG_ON(item_size < sizeof(*ei));
6995 ei = btrfs_item_ptr(leaf, extent_slot,
6996 struct btrfs_extent_item);
6997 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6998 key.type == BTRFS_EXTENT_ITEM_KEY) {
6999 struct btrfs_tree_block_info *bi;
7000 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7001 bi = (struct btrfs_tree_block_info *)(ei + 1);
7002 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7003 }
7004
7005 refs = btrfs_extent_refs(leaf, ei);
7006 if (refs < refs_to_drop) {
7007 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
7008 "for bytenr %Lu", refs_to_drop, refs, bytenr);
7009 ret = -EINVAL;
7010 btrfs_abort_transaction(trans, ret);
7011 goto out;
7012 }
7013 refs -= refs_to_drop;
7014
7015 if (refs > 0) {
7016 if (extent_op)
7017 __run_delayed_extent_op(extent_op, leaf, ei);
7018 /*
7019 * In the case of inline back ref, reference count will
7020 * be updated by remove_extent_backref
7021 */
7022 if (iref) {
7023 BUG_ON(!found_extent);
7024 } else {
7025 btrfs_set_extent_refs(leaf, ei, refs);
7026 btrfs_mark_buffer_dirty(leaf);
7027 }
7028 if (found_extent) {
7029 ret = remove_extent_backref(trans, extent_root, path,
7030 iref, refs_to_drop,
7031 is_data, &last_ref);
7032 if (ret) {
7033 btrfs_abort_transaction(trans, ret);
7034 goto out;
7035 }
7036 }
7037 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7038 root_objectid);
7039 } else {
7040 if (found_extent) {
7041 BUG_ON(is_data && refs_to_drop !=
7042 extent_data_ref_count(path, iref));
7043 if (iref) {
7044 BUG_ON(path->slots[0] != extent_slot);
7045 } else {
7046 BUG_ON(path->slots[0] != extent_slot + 1);
7047 path->slots[0] = extent_slot;
7048 num_to_del = 2;
7049 }
7050 }
7051
7052 last_ref = 1;
7053 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7054 num_to_del);
7055 if (ret) {
7056 btrfs_abort_transaction(trans, ret);
7057 goto out;
7058 }
7059 btrfs_release_path(path);
7060
7061 if (is_data) {
7062 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7063 if (ret) {
7064 btrfs_abort_transaction(trans, ret);
7065 goto out;
7066 }
7067 }
7068
7069 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7070 num_bytes);
7071 if (ret) {
7072 btrfs_abort_transaction(trans, ret);
7073 goto out;
7074 }
7075
7076 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7077 if (ret) {
7078 btrfs_abort_transaction(trans, ret);
7079 goto out;
7080 }
7081 }
7082 btrfs_release_path(path);
7083
7084 out:
7085 btrfs_free_path(path);
7086 return ret;
7087 }
7088
7089 /*
7090 * when we free an block, it is possible (and likely) that we free the last
7091 * delayed ref for that extent as well. This searches the delayed ref tree for
7092 * a given extent, and if there are no other delayed refs to be processed, it
7093 * removes it from the tree.
7094 */
7095 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7096 struct btrfs_root *root, u64 bytenr)
7097 {
7098 struct btrfs_delayed_ref_head *head;
7099 struct btrfs_delayed_ref_root *delayed_refs;
7100 int ret = 0;
7101
7102 delayed_refs = &trans->transaction->delayed_refs;
7103 spin_lock(&delayed_refs->lock);
7104 head = btrfs_find_delayed_ref_head(trans, bytenr);
7105 if (!head)
7106 goto out_delayed_unlock;
7107
7108 spin_lock(&head->lock);
7109 if (!list_empty(&head->ref_list))
7110 goto out;
7111
7112 if (head->extent_op) {
7113 if (!head->must_insert_reserved)
7114 goto out;
7115 btrfs_free_delayed_extent_op(head->extent_op);
7116 head->extent_op = NULL;
7117 }
7118
7119 /*
7120 * waiting for the lock here would deadlock. If someone else has it
7121 * locked they are already in the process of dropping it anyway
7122 */
7123 if (!mutex_trylock(&head->mutex))
7124 goto out;
7125
7126 /*
7127 * at this point we have a head with no other entries. Go
7128 * ahead and process it.
7129 */
7130 head->node.in_tree = 0;
7131 rb_erase(&head->href_node, &delayed_refs->href_root);
7132
7133 atomic_dec(&delayed_refs->num_entries);
7134
7135 /*
7136 * we don't take a ref on the node because we're removing it from the
7137 * tree, so we just steal the ref the tree was holding.
7138 */
7139 delayed_refs->num_heads--;
7140 if (head->processing == 0)
7141 delayed_refs->num_heads_ready--;
7142 head->processing = 0;
7143 spin_unlock(&head->lock);
7144 spin_unlock(&delayed_refs->lock);
7145
7146 BUG_ON(head->extent_op);
7147 if (head->must_insert_reserved)
7148 ret = 1;
7149
7150 mutex_unlock(&head->mutex);
7151 btrfs_put_delayed_ref(&head->node);
7152 return ret;
7153 out:
7154 spin_unlock(&head->lock);
7155
7156 out_delayed_unlock:
7157 spin_unlock(&delayed_refs->lock);
7158 return 0;
7159 }
7160
7161 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7162 struct btrfs_root *root,
7163 struct extent_buffer *buf,
7164 u64 parent, int last_ref)
7165 {
7166 int pin = 1;
7167 int ret;
7168
7169 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7170 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7171 buf->start, buf->len,
7172 parent, root->root_key.objectid,
7173 btrfs_header_level(buf),
7174 BTRFS_DROP_DELAYED_REF, NULL);
7175 BUG_ON(ret); /* -ENOMEM */
7176 }
7177
7178 if (!last_ref)
7179 return;
7180
7181 if (btrfs_header_generation(buf) == trans->transid) {
7182 struct btrfs_block_group_cache *cache;
7183
7184 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7185 ret = check_ref_cleanup(trans, root, buf->start);
7186 if (!ret)
7187 goto out;
7188 }
7189
7190 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7191
7192 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7193 pin_down_extent(root, cache, buf->start, buf->len, 1);
7194 btrfs_put_block_group(cache);
7195 goto out;
7196 }
7197
7198 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7199
7200 btrfs_add_free_space(cache, buf->start, buf->len);
7201 btrfs_free_reserved_bytes(cache, buf->len, 0);
7202 btrfs_put_block_group(cache);
7203 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7204 pin = 0;
7205 }
7206 out:
7207 if (pin)
7208 add_pinned_bytes(root->fs_info, buf->len,
7209 btrfs_header_level(buf),
7210 root->root_key.objectid);
7211
7212 /*
7213 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7214 * anymore.
7215 */
7216 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7217 }
7218
7219 /* Can return -ENOMEM */
7220 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7221 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7222 u64 owner, u64 offset)
7223 {
7224 int ret;
7225 struct btrfs_fs_info *fs_info = root->fs_info;
7226
7227 if (btrfs_is_testing(fs_info))
7228 return 0;
7229
7230 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7231
7232 /*
7233 * tree log blocks never actually go into the extent allocation
7234 * tree, just update pinning info and exit early.
7235 */
7236 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7237 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7238 /* unlocks the pinned mutex */
7239 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7240 ret = 0;
7241 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7242 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7243 num_bytes,
7244 parent, root_objectid, (int)owner,
7245 BTRFS_DROP_DELAYED_REF, NULL);
7246 } else {
7247 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7248 num_bytes,
7249 parent, root_objectid, owner,
7250 offset, 0,
7251 BTRFS_DROP_DELAYED_REF, NULL);
7252 }
7253 return ret;
7254 }
7255
7256 /*
7257 * when we wait for progress in the block group caching, its because
7258 * our allocation attempt failed at least once. So, we must sleep
7259 * and let some progress happen before we try again.
7260 *
7261 * This function will sleep at least once waiting for new free space to
7262 * show up, and then it will check the block group free space numbers
7263 * for our min num_bytes. Another option is to have it go ahead
7264 * and look in the rbtree for a free extent of a given size, but this
7265 * is a good start.
7266 *
7267 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7268 * any of the information in this block group.
7269 */
7270 static noinline void
7271 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7272 u64 num_bytes)
7273 {
7274 struct btrfs_caching_control *caching_ctl;
7275
7276 caching_ctl = get_caching_control(cache);
7277 if (!caching_ctl)
7278 return;
7279
7280 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7281 (cache->free_space_ctl->free_space >= num_bytes));
7282
7283 put_caching_control(caching_ctl);
7284 }
7285
7286 static noinline int
7287 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7288 {
7289 struct btrfs_caching_control *caching_ctl;
7290 int ret = 0;
7291
7292 caching_ctl = get_caching_control(cache);
7293 if (!caching_ctl)
7294 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7295
7296 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7297 if (cache->cached == BTRFS_CACHE_ERROR)
7298 ret = -EIO;
7299 put_caching_control(caching_ctl);
7300 return ret;
7301 }
7302
7303 int __get_raid_index(u64 flags)
7304 {
7305 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7306 return BTRFS_RAID_RAID10;
7307 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7308 return BTRFS_RAID_RAID1;
7309 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7310 return BTRFS_RAID_DUP;
7311 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7312 return BTRFS_RAID_RAID0;
7313 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7314 return BTRFS_RAID_RAID5;
7315 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7316 return BTRFS_RAID_RAID6;
7317
7318 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7319 }
7320
7321 int get_block_group_index(struct btrfs_block_group_cache *cache)
7322 {
7323 return __get_raid_index(cache->flags);
7324 }
7325
7326 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7327 [BTRFS_RAID_RAID10] = "raid10",
7328 [BTRFS_RAID_RAID1] = "raid1",
7329 [BTRFS_RAID_DUP] = "dup",
7330 [BTRFS_RAID_RAID0] = "raid0",
7331 [BTRFS_RAID_SINGLE] = "single",
7332 [BTRFS_RAID_RAID5] = "raid5",
7333 [BTRFS_RAID_RAID6] = "raid6",
7334 };
7335
7336 static const char *get_raid_name(enum btrfs_raid_types type)
7337 {
7338 if (type >= BTRFS_NR_RAID_TYPES)
7339 return NULL;
7340
7341 return btrfs_raid_type_names[type];
7342 }
7343
7344 enum btrfs_loop_type {
7345 LOOP_CACHING_NOWAIT = 0,
7346 LOOP_CACHING_WAIT = 1,
7347 LOOP_ALLOC_CHUNK = 2,
7348 LOOP_NO_EMPTY_SIZE = 3,
7349 };
7350
7351 static inline void
7352 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7353 int delalloc)
7354 {
7355 if (delalloc)
7356 down_read(&cache->data_rwsem);
7357 }
7358
7359 static inline void
7360 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7361 int delalloc)
7362 {
7363 btrfs_get_block_group(cache);
7364 if (delalloc)
7365 down_read(&cache->data_rwsem);
7366 }
7367
7368 static struct btrfs_block_group_cache *
7369 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7370 struct btrfs_free_cluster *cluster,
7371 int delalloc)
7372 {
7373 struct btrfs_block_group_cache *used_bg = NULL;
7374
7375 spin_lock(&cluster->refill_lock);
7376 while (1) {
7377 used_bg = cluster->block_group;
7378 if (!used_bg)
7379 return NULL;
7380
7381 if (used_bg == block_group)
7382 return used_bg;
7383
7384 btrfs_get_block_group(used_bg);
7385
7386 if (!delalloc)
7387 return used_bg;
7388
7389 if (down_read_trylock(&used_bg->data_rwsem))
7390 return used_bg;
7391
7392 spin_unlock(&cluster->refill_lock);
7393
7394 down_read(&used_bg->data_rwsem);
7395
7396 spin_lock(&cluster->refill_lock);
7397 if (used_bg == cluster->block_group)
7398 return used_bg;
7399
7400 up_read(&used_bg->data_rwsem);
7401 btrfs_put_block_group(used_bg);
7402 }
7403 }
7404
7405 static inline void
7406 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7407 int delalloc)
7408 {
7409 if (delalloc)
7410 up_read(&cache->data_rwsem);
7411 btrfs_put_block_group(cache);
7412 }
7413
7414 /*
7415 * walks the btree of allocated extents and find a hole of a given size.
7416 * The key ins is changed to record the hole:
7417 * ins->objectid == start position
7418 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7419 * ins->offset == the size of the hole.
7420 * Any available blocks before search_start are skipped.
7421 *
7422 * If there is no suitable free space, we will record the max size of
7423 * the free space extent currently.
7424 */
7425 static noinline int find_free_extent(struct btrfs_root *orig_root,
7426 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7427 u64 hint_byte, struct btrfs_key *ins,
7428 u64 flags, int delalloc)
7429 {
7430 int ret = 0;
7431 struct btrfs_root *root = orig_root->fs_info->extent_root;
7432 struct btrfs_free_cluster *last_ptr = NULL;
7433 struct btrfs_block_group_cache *block_group = NULL;
7434 u64 search_start = 0;
7435 u64 max_extent_size = 0;
7436 u64 empty_cluster = 0;
7437 struct btrfs_space_info *space_info;
7438 int loop = 0;
7439 int index = __get_raid_index(flags);
7440 bool failed_cluster_refill = false;
7441 bool failed_alloc = false;
7442 bool use_cluster = true;
7443 bool have_caching_bg = false;
7444 bool orig_have_caching_bg = false;
7445 bool full_search = false;
7446
7447 WARN_ON(num_bytes < root->sectorsize);
7448 ins->type = BTRFS_EXTENT_ITEM_KEY;
7449 ins->objectid = 0;
7450 ins->offset = 0;
7451
7452 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7453
7454 space_info = __find_space_info(root->fs_info, flags);
7455 if (!space_info) {
7456 btrfs_err(root->fs_info, "No space info for %llu", flags);
7457 return -ENOSPC;
7458 }
7459
7460 /*
7461 * If our free space is heavily fragmented we may not be able to make
7462 * big contiguous allocations, so instead of doing the expensive search
7463 * for free space, simply return ENOSPC with our max_extent_size so we
7464 * can go ahead and search for a more manageable chunk.
7465 *
7466 * If our max_extent_size is large enough for our allocation simply
7467 * disable clustering since we will likely not be able to find enough
7468 * space to create a cluster and induce latency trying.
7469 */
7470 if (unlikely(space_info->max_extent_size)) {
7471 spin_lock(&space_info->lock);
7472 if (space_info->max_extent_size &&
7473 num_bytes > space_info->max_extent_size) {
7474 ins->offset = space_info->max_extent_size;
7475 spin_unlock(&space_info->lock);
7476 return -ENOSPC;
7477 } else if (space_info->max_extent_size) {
7478 use_cluster = false;
7479 }
7480 spin_unlock(&space_info->lock);
7481 }
7482
7483 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7484 if (last_ptr) {
7485 spin_lock(&last_ptr->lock);
7486 if (last_ptr->block_group)
7487 hint_byte = last_ptr->window_start;
7488 if (last_ptr->fragmented) {
7489 /*
7490 * We still set window_start so we can keep track of the
7491 * last place we found an allocation to try and save
7492 * some time.
7493 */
7494 hint_byte = last_ptr->window_start;
7495 use_cluster = false;
7496 }
7497 spin_unlock(&last_ptr->lock);
7498 }
7499
7500 search_start = max(search_start, first_logical_byte(root, 0));
7501 search_start = max(search_start, hint_byte);
7502 if (search_start == hint_byte) {
7503 block_group = btrfs_lookup_block_group(root->fs_info,
7504 search_start);
7505 /*
7506 * we don't want to use the block group if it doesn't match our
7507 * allocation bits, or if its not cached.
7508 *
7509 * However if we are re-searching with an ideal block group
7510 * picked out then we don't care that the block group is cached.
7511 */
7512 if (block_group && block_group_bits(block_group, flags) &&
7513 block_group->cached != BTRFS_CACHE_NO) {
7514 down_read(&space_info->groups_sem);
7515 if (list_empty(&block_group->list) ||
7516 block_group->ro) {
7517 /*
7518 * someone is removing this block group,
7519 * we can't jump into the have_block_group
7520 * target because our list pointers are not
7521 * valid
7522 */
7523 btrfs_put_block_group(block_group);
7524 up_read(&space_info->groups_sem);
7525 } else {
7526 index = get_block_group_index(block_group);
7527 btrfs_lock_block_group(block_group, delalloc);
7528 goto have_block_group;
7529 }
7530 } else if (block_group) {
7531 btrfs_put_block_group(block_group);
7532 }
7533 }
7534 search:
7535 have_caching_bg = false;
7536 if (index == 0 || index == __get_raid_index(flags))
7537 full_search = true;
7538 down_read(&space_info->groups_sem);
7539 list_for_each_entry(block_group, &space_info->block_groups[index],
7540 list) {
7541 u64 offset;
7542 int cached;
7543
7544 btrfs_grab_block_group(block_group, delalloc);
7545 search_start = block_group->key.objectid;
7546
7547 /*
7548 * this can happen if we end up cycling through all the
7549 * raid types, but we want to make sure we only allocate
7550 * for the proper type.
7551 */
7552 if (!block_group_bits(block_group, flags)) {
7553 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7554 BTRFS_BLOCK_GROUP_RAID1 |
7555 BTRFS_BLOCK_GROUP_RAID5 |
7556 BTRFS_BLOCK_GROUP_RAID6 |
7557 BTRFS_BLOCK_GROUP_RAID10;
7558
7559 /*
7560 * if they asked for extra copies and this block group
7561 * doesn't provide them, bail. This does allow us to
7562 * fill raid0 from raid1.
7563 */
7564 if ((flags & extra) && !(block_group->flags & extra))
7565 goto loop;
7566 }
7567
7568 have_block_group:
7569 cached = block_group_cache_done(block_group);
7570 if (unlikely(!cached)) {
7571 have_caching_bg = true;
7572 ret = cache_block_group(block_group, 0);
7573 BUG_ON(ret < 0);
7574 ret = 0;
7575 }
7576
7577 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7578 goto loop;
7579 if (unlikely(block_group->ro))
7580 goto loop;
7581
7582 /*
7583 * Ok we want to try and use the cluster allocator, so
7584 * lets look there
7585 */
7586 if (last_ptr && use_cluster) {
7587 struct btrfs_block_group_cache *used_block_group;
7588 unsigned long aligned_cluster;
7589 /*
7590 * the refill lock keeps out other
7591 * people trying to start a new cluster
7592 */
7593 used_block_group = btrfs_lock_cluster(block_group,
7594 last_ptr,
7595 delalloc);
7596 if (!used_block_group)
7597 goto refill_cluster;
7598
7599 if (used_block_group != block_group &&
7600 (used_block_group->ro ||
7601 !block_group_bits(used_block_group, flags)))
7602 goto release_cluster;
7603
7604 offset = btrfs_alloc_from_cluster(used_block_group,
7605 last_ptr,
7606 num_bytes,
7607 used_block_group->key.objectid,
7608 &max_extent_size);
7609 if (offset) {
7610 /* we have a block, we're done */
7611 spin_unlock(&last_ptr->refill_lock);
7612 trace_btrfs_reserve_extent_cluster(root,
7613 used_block_group,
7614 search_start, num_bytes);
7615 if (used_block_group != block_group) {
7616 btrfs_release_block_group(block_group,
7617 delalloc);
7618 block_group = used_block_group;
7619 }
7620 goto checks;
7621 }
7622
7623 WARN_ON(last_ptr->block_group != used_block_group);
7624 release_cluster:
7625 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7626 * set up a new clusters, so lets just skip it
7627 * and let the allocator find whatever block
7628 * it can find. If we reach this point, we
7629 * will have tried the cluster allocator
7630 * plenty of times and not have found
7631 * anything, so we are likely way too
7632 * fragmented for the clustering stuff to find
7633 * anything.
7634 *
7635 * However, if the cluster is taken from the
7636 * current block group, release the cluster
7637 * first, so that we stand a better chance of
7638 * succeeding in the unclustered
7639 * allocation. */
7640 if (loop >= LOOP_NO_EMPTY_SIZE &&
7641 used_block_group != block_group) {
7642 spin_unlock(&last_ptr->refill_lock);
7643 btrfs_release_block_group(used_block_group,
7644 delalloc);
7645 goto unclustered_alloc;
7646 }
7647
7648 /*
7649 * this cluster didn't work out, free it and
7650 * start over
7651 */
7652 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7653
7654 if (used_block_group != block_group)
7655 btrfs_release_block_group(used_block_group,
7656 delalloc);
7657 refill_cluster:
7658 if (loop >= LOOP_NO_EMPTY_SIZE) {
7659 spin_unlock(&last_ptr->refill_lock);
7660 goto unclustered_alloc;
7661 }
7662
7663 aligned_cluster = max_t(unsigned long,
7664 empty_cluster + empty_size,
7665 block_group->full_stripe_len);
7666
7667 /* allocate a cluster in this block group */
7668 ret = btrfs_find_space_cluster(root, block_group,
7669 last_ptr, search_start,
7670 num_bytes,
7671 aligned_cluster);
7672 if (ret == 0) {
7673 /*
7674 * now pull our allocation out of this
7675 * cluster
7676 */
7677 offset = btrfs_alloc_from_cluster(block_group,
7678 last_ptr,
7679 num_bytes,
7680 search_start,
7681 &max_extent_size);
7682 if (offset) {
7683 /* we found one, proceed */
7684 spin_unlock(&last_ptr->refill_lock);
7685 trace_btrfs_reserve_extent_cluster(root,
7686 block_group, search_start,
7687 num_bytes);
7688 goto checks;
7689 }
7690 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7691 && !failed_cluster_refill) {
7692 spin_unlock(&last_ptr->refill_lock);
7693
7694 failed_cluster_refill = true;
7695 wait_block_group_cache_progress(block_group,
7696 num_bytes + empty_cluster + empty_size);
7697 goto have_block_group;
7698 }
7699
7700 /*
7701 * at this point we either didn't find a cluster
7702 * or we weren't able to allocate a block from our
7703 * cluster. Free the cluster we've been trying
7704 * to use, and go to the next block group
7705 */
7706 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7707 spin_unlock(&last_ptr->refill_lock);
7708 goto loop;
7709 }
7710
7711 unclustered_alloc:
7712 /*
7713 * We are doing an unclustered alloc, set the fragmented flag so
7714 * we don't bother trying to setup a cluster again until we get
7715 * more space.
7716 */
7717 if (unlikely(last_ptr)) {
7718 spin_lock(&last_ptr->lock);
7719 last_ptr->fragmented = 1;
7720 spin_unlock(&last_ptr->lock);
7721 }
7722 spin_lock(&block_group->free_space_ctl->tree_lock);
7723 if (cached &&
7724 block_group->free_space_ctl->free_space <
7725 num_bytes + empty_cluster + empty_size) {
7726 if (block_group->free_space_ctl->free_space >
7727 max_extent_size)
7728 max_extent_size =
7729 block_group->free_space_ctl->free_space;
7730 spin_unlock(&block_group->free_space_ctl->tree_lock);
7731 goto loop;
7732 }
7733 spin_unlock(&block_group->free_space_ctl->tree_lock);
7734
7735 offset = btrfs_find_space_for_alloc(block_group, search_start,
7736 num_bytes, empty_size,
7737 &max_extent_size);
7738 /*
7739 * If we didn't find a chunk, and we haven't failed on this
7740 * block group before, and this block group is in the middle of
7741 * caching and we are ok with waiting, then go ahead and wait
7742 * for progress to be made, and set failed_alloc to true.
7743 *
7744 * If failed_alloc is true then we've already waited on this
7745 * block group once and should move on to the next block group.
7746 */
7747 if (!offset && !failed_alloc && !cached &&
7748 loop > LOOP_CACHING_NOWAIT) {
7749 wait_block_group_cache_progress(block_group,
7750 num_bytes + empty_size);
7751 failed_alloc = true;
7752 goto have_block_group;
7753 } else if (!offset) {
7754 goto loop;
7755 }
7756 checks:
7757 search_start = ALIGN(offset, root->stripesize);
7758
7759 /* move on to the next group */
7760 if (search_start + num_bytes >
7761 block_group->key.objectid + block_group->key.offset) {
7762 btrfs_add_free_space(block_group, offset, num_bytes);
7763 goto loop;
7764 }
7765
7766 if (offset < search_start)
7767 btrfs_add_free_space(block_group, offset,
7768 search_start - offset);
7769 BUG_ON(offset > search_start);
7770
7771 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7772 num_bytes, delalloc);
7773 if (ret == -EAGAIN) {
7774 btrfs_add_free_space(block_group, offset, num_bytes);
7775 goto loop;
7776 }
7777 btrfs_inc_block_group_reservations(block_group);
7778
7779 /* we are all good, lets return */
7780 ins->objectid = search_start;
7781 ins->offset = num_bytes;
7782
7783 trace_btrfs_reserve_extent(orig_root, block_group,
7784 search_start, num_bytes);
7785 btrfs_release_block_group(block_group, delalloc);
7786 break;
7787 loop:
7788 failed_cluster_refill = false;
7789 failed_alloc = false;
7790 BUG_ON(index != get_block_group_index(block_group));
7791 btrfs_release_block_group(block_group, delalloc);
7792 }
7793 up_read(&space_info->groups_sem);
7794
7795 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7796 && !orig_have_caching_bg)
7797 orig_have_caching_bg = true;
7798
7799 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7800 goto search;
7801
7802 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7803 goto search;
7804
7805 /*
7806 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7807 * caching kthreads as we move along
7808 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7809 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7810 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7811 * again
7812 */
7813 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7814 index = 0;
7815 if (loop == LOOP_CACHING_NOWAIT) {
7816 /*
7817 * We want to skip the LOOP_CACHING_WAIT step if we
7818 * don't have any uncached bgs and we've already done a
7819 * full search through.
7820 */
7821 if (orig_have_caching_bg || !full_search)
7822 loop = LOOP_CACHING_WAIT;
7823 else
7824 loop = LOOP_ALLOC_CHUNK;
7825 } else {
7826 loop++;
7827 }
7828
7829 if (loop == LOOP_ALLOC_CHUNK) {
7830 struct btrfs_trans_handle *trans;
7831 int exist = 0;
7832
7833 trans = current->journal_info;
7834 if (trans)
7835 exist = 1;
7836 else
7837 trans = btrfs_join_transaction(root);
7838
7839 if (IS_ERR(trans)) {
7840 ret = PTR_ERR(trans);
7841 goto out;
7842 }
7843
7844 ret = do_chunk_alloc(trans, root, flags,
7845 CHUNK_ALLOC_FORCE);
7846
7847 /*
7848 * If we can't allocate a new chunk we've already looped
7849 * through at least once, move on to the NO_EMPTY_SIZE
7850 * case.
7851 */
7852 if (ret == -ENOSPC)
7853 loop = LOOP_NO_EMPTY_SIZE;
7854
7855 /*
7856 * Do not bail out on ENOSPC since we
7857 * can do more things.
7858 */
7859 if (ret < 0 && ret != -ENOSPC)
7860 btrfs_abort_transaction(trans, ret);
7861 else
7862 ret = 0;
7863 if (!exist)
7864 btrfs_end_transaction(trans, root);
7865 if (ret)
7866 goto out;
7867 }
7868
7869 if (loop == LOOP_NO_EMPTY_SIZE) {
7870 /*
7871 * Don't loop again if we already have no empty_size and
7872 * no empty_cluster.
7873 */
7874 if (empty_size == 0 &&
7875 empty_cluster == 0) {
7876 ret = -ENOSPC;
7877 goto out;
7878 }
7879 empty_size = 0;
7880 empty_cluster = 0;
7881 }
7882
7883 goto search;
7884 } else if (!ins->objectid) {
7885 ret = -ENOSPC;
7886 } else if (ins->objectid) {
7887 if (!use_cluster && last_ptr) {
7888 spin_lock(&last_ptr->lock);
7889 last_ptr->window_start = ins->objectid;
7890 spin_unlock(&last_ptr->lock);
7891 }
7892 ret = 0;
7893 }
7894 out:
7895 if (ret == -ENOSPC) {
7896 spin_lock(&space_info->lock);
7897 space_info->max_extent_size = max_extent_size;
7898 spin_unlock(&space_info->lock);
7899 ins->offset = max_extent_size;
7900 }
7901 return ret;
7902 }
7903
7904 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7905 int dump_block_groups)
7906 {
7907 struct btrfs_block_group_cache *cache;
7908 int index = 0;
7909
7910 spin_lock(&info->lock);
7911 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
7912 info->flags,
7913 info->total_bytes - info->bytes_used - info->bytes_pinned -
7914 info->bytes_reserved - info->bytes_readonly -
7915 info->bytes_may_use, (info->full) ? "" : "not ");
7916 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7917 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7918 info->total_bytes, info->bytes_used, info->bytes_pinned,
7919 info->bytes_reserved, info->bytes_may_use,
7920 info->bytes_readonly);
7921 spin_unlock(&info->lock);
7922
7923 if (!dump_block_groups)
7924 return;
7925
7926 down_read(&info->groups_sem);
7927 again:
7928 list_for_each_entry(cache, &info->block_groups[index], list) {
7929 spin_lock(&cache->lock);
7930 printk(KERN_INFO "BTRFS: "
7931 "block group %llu has %llu bytes, "
7932 "%llu used %llu pinned %llu reserved %s\n",
7933 cache->key.objectid, cache->key.offset,
7934 btrfs_block_group_used(&cache->item), cache->pinned,
7935 cache->reserved, cache->ro ? "[readonly]" : "");
7936 btrfs_dump_free_space(cache, bytes);
7937 spin_unlock(&cache->lock);
7938 }
7939 if (++index < BTRFS_NR_RAID_TYPES)
7940 goto again;
7941 up_read(&info->groups_sem);
7942 }
7943
7944 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7945 u64 num_bytes, u64 min_alloc_size,
7946 u64 empty_size, u64 hint_byte,
7947 struct btrfs_key *ins, int is_data, int delalloc)
7948 {
7949 bool final_tried = num_bytes == min_alloc_size;
7950 u64 flags;
7951 int ret;
7952
7953 flags = btrfs_get_alloc_profile(root, is_data);
7954 again:
7955 WARN_ON(num_bytes < root->sectorsize);
7956 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7957 hint_byte, ins, flags, delalloc);
7958 if (!ret && !is_data) {
7959 btrfs_dec_block_group_reservations(root->fs_info,
7960 ins->objectid);
7961 } else if (ret == -ENOSPC) {
7962 if (!final_tried && ins->offset) {
7963 num_bytes = min(num_bytes >> 1, ins->offset);
7964 num_bytes = round_down(num_bytes, root->sectorsize);
7965 num_bytes = max(num_bytes, min_alloc_size);
7966 ram_bytes = num_bytes;
7967 if (num_bytes == min_alloc_size)
7968 final_tried = true;
7969 goto again;
7970 } else if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
7971 struct btrfs_space_info *sinfo;
7972
7973 sinfo = __find_space_info(root->fs_info, flags);
7974 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
7975 flags, num_bytes);
7976 if (sinfo)
7977 dump_space_info(sinfo, num_bytes, 1);
7978 }
7979 }
7980
7981 return ret;
7982 }
7983
7984 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7985 u64 start, u64 len,
7986 int pin, int delalloc)
7987 {
7988 struct btrfs_block_group_cache *cache;
7989 int ret = 0;
7990
7991 cache = btrfs_lookup_block_group(root->fs_info, start);
7992 if (!cache) {
7993 btrfs_err(root->fs_info, "Unable to find block group for %llu",
7994 start);
7995 return -ENOSPC;
7996 }
7997
7998 if (pin)
7999 pin_down_extent(root, cache, start, len, 1);
8000 else {
8001 if (btrfs_test_opt(root->fs_info, DISCARD))
8002 ret = btrfs_discard_extent(root, start, len, NULL);
8003 btrfs_add_free_space(cache, start, len);
8004 btrfs_free_reserved_bytes(cache, len, delalloc);
8005 trace_btrfs_reserved_extent_free(root, start, len);
8006 }
8007
8008 btrfs_put_block_group(cache);
8009 return ret;
8010 }
8011
8012 int btrfs_free_reserved_extent(struct btrfs_root *root,
8013 u64 start, u64 len, int delalloc)
8014 {
8015 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8016 }
8017
8018 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8019 u64 start, u64 len)
8020 {
8021 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8022 }
8023
8024 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8025 struct btrfs_root *root,
8026 u64 parent, u64 root_objectid,
8027 u64 flags, u64 owner, u64 offset,
8028 struct btrfs_key *ins, int ref_mod)
8029 {
8030 int ret;
8031 struct btrfs_fs_info *fs_info = root->fs_info;
8032 struct btrfs_extent_item *extent_item;
8033 struct btrfs_extent_inline_ref *iref;
8034 struct btrfs_path *path;
8035 struct extent_buffer *leaf;
8036 int type;
8037 u32 size;
8038
8039 if (parent > 0)
8040 type = BTRFS_SHARED_DATA_REF_KEY;
8041 else
8042 type = BTRFS_EXTENT_DATA_REF_KEY;
8043
8044 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8045
8046 path = btrfs_alloc_path();
8047 if (!path)
8048 return -ENOMEM;
8049
8050 path->leave_spinning = 1;
8051 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8052 ins, size);
8053 if (ret) {
8054 btrfs_free_path(path);
8055 return ret;
8056 }
8057
8058 leaf = path->nodes[0];
8059 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8060 struct btrfs_extent_item);
8061 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8062 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8063 btrfs_set_extent_flags(leaf, extent_item,
8064 flags | BTRFS_EXTENT_FLAG_DATA);
8065
8066 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8067 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8068 if (parent > 0) {
8069 struct btrfs_shared_data_ref *ref;
8070 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8071 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8072 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8073 } else {
8074 struct btrfs_extent_data_ref *ref;
8075 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8076 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8077 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8078 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8079 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8080 }
8081
8082 btrfs_mark_buffer_dirty(path->nodes[0]);
8083 btrfs_free_path(path);
8084
8085 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8086 ins->offset);
8087 if (ret)
8088 return ret;
8089
8090 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8091 if (ret) { /* -ENOENT, logic error */
8092 btrfs_err(fs_info, "update block group failed for %llu %llu",
8093 ins->objectid, ins->offset);
8094 BUG();
8095 }
8096 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8097 return ret;
8098 }
8099
8100 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8101 struct btrfs_root *root,
8102 u64 parent, u64 root_objectid,
8103 u64 flags, struct btrfs_disk_key *key,
8104 int level, struct btrfs_key *ins)
8105 {
8106 int ret;
8107 struct btrfs_fs_info *fs_info = root->fs_info;
8108 struct btrfs_extent_item *extent_item;
8109 struct btrfs_tree_block_info *block_info;
8110 struct btrfs_extent_inline_ref *iref;
8111 struct btrfs_path *path;
8112 struct extent_buffer *leaf;
8113 u32 size = sizeof(*extent_item) + sizeof(*iref);
8114 u64 num_bytes = ins->offset;
8115 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8116 SKINNY_METADATA);
8117
8118 if (!skinny_metadata)
8119 size += sizeof(*block_info);
8120
8121 path = btrfs_alloc_path();
8122 if (!path) {
8123 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8124 root->nodesize);
8125 return -ENOMEM;
8126 }
8127
8128 path->leave_spinning = 1;
8129 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8130 ins, size);
8131 if (ret) {
8132 btrfs_free_path(path);
8133 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8134 root->nodesize);
8135 return ret;
8136 }
8137
8138 leaf = path->nodes[0];
8139 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8140 struct btrfs_extent_item);
8141 btrfs_set_extent_refs(leaf, extent_item, 1);
8142 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8143 btrfs_set_extent_flags(leaf, extent_item,
8144 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8145
8146 if (skinny_metadata) {
8147 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8148 num_bytes = root->nodesize;
8149 } else {
8150 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8151 btrfs_set_tree_block_key(leaf, block_info, key);
8152 btrfs_set_tree_block_level(leaf, block_info, level);
8153 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8154 }
8155
8156 if (parent > 0) {
8157 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8158 btrfs_set_extent_inline_ref_type(leaf, iref,
8159 BTRFS_SHARED_BLOCK_REF_KEY);
8160 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8161 } else {
8162 btrfs_set_extent_inline_ref_type(leaf, iref,
8163 BTRFS_TREE_BLOCK_REF_KEY);
8164 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8165 }
8166
8167 btrfs_mark_buffer_dirty(leaf);
8168 btrfs_free_path(path);
8169
8170 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8171 num_bytes);
8172 if (ret)
8173 return ret;
8174
8175 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8176 1);
8177 if (ret) { /* -ENOENT, logic error */
8178 btrfs_err(fs_info, "update block group failed for %llu %llu",
8179 ins->objectid, ins->offset);
8180 BUG();
8181 }
8182
8183 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8184 return ret;
8185 }
8186
8187 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8188 struct btrfs_root *root,
8189 u64 root_objectid, u64 owner,
8190 u64 offset, u64 ram_bytes,
8191 struct btrfs_key *ins)
8192 {
8193 int ret;
8194
8195 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8196
8197 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8198 ins->offset, 0,
8199 root_objectid, owner, offset,
8200 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8201 NULL);
8202 return ret;
8203 }
8204
8205 /*
8206 * this is used by the tree logging recovery code. It records that
8207 * an extent has been allocated and makes sure to clear the free
8208 * space cache bits as well
8209 */
8210 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8211 struct btrfs_root *root,
8212 u64 root_objectid, u64 owner, u64 offset,
8213 struct btrfs_key *ins)
8214 {
8215 int ret;
8216 struct btrfs_block_group_cache *block_group;
8217 struct btrfs_space_info *space_info;
8218
8219 /*
8220 * Mixed block groups will exclude before processing the log so we only
8221 * need to do the exclude dance if this fs isn't mixed.
8222 */
8223 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8224 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8225 if (ret)
8226 return ret;
8227 }
8228
8229 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8230 if (!block_group)
8231 return -EINVAL;
8232
8233 space_info = block_group->space_info;
8234 spin_lock(&space_info->lock);
8235 spin_lock(&block_group->lock);
8236 space_info->bytes_reserved += ins->offset;
8237 block_group->reserved += ins->offset;
8238 spin_unlock(&block_group->lock);
8239 spin_unlock(&space_info->lock);
8240
8241 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8242 0, owner, offset, ins, 1);
8243 btrfs_put_block_group(block_group);
8244 return ret;
8245 }
8246
8247 static struct extent_buffer *
8248 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8249 u64 bytenr, int level)
8250 {
8251 struct extent_buffer *buf;
8252
8253 buf = btrfs_find_create_tree_block(root, bytenr);
8254 if (IS_ERR(buf))
8255 return buf;
8256
8257 btrfs_set_header_generation(buf, trans->transid);
8258 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8259 btrfs_tree_lock(buf);
8260 clean_tree_block(trans, root->fs_info, buf);
8261 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8262
8263 btrfs_set_lock_blocking(buf);
8264 set_extent_buffer_uptodate(buf);
8265
8266 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8267 buf->log_index = root->log_transid % 2;
8268 /*
8269 * we allow two log transactions at a time, use different
8270 * EXENT bit to differentiate dirty pages.
8271 */
8272 if (buf->log_index == 0)
8273 set_extent_dirty(&root->dirty_log_pages, buf->start,
8274 buf->start + buf->len - 1, GFP_NOFS);
8275 else
8276 set_extent_new(&root->dirty_log_pages, buf->start,
8277 buf->start + buf->len - 1);
8278 } else {
8279 buf->log_index = -1;
8280 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8281 buf->start + buf->len - 1, GFP_NOFS);
8282 }
8283 trans->dirty = true;
8284 /* this returns a buffer locked for blocking */
8285 return buf;
8286 }
8287
8288 static struct btrfs_block_rsv *
8289 use_block_rsv(struct btrfs_trans_handle *trans,
8290 struct btrfs_root *root, u32 blocksize)
8291 {
8292 struct btrfs_block_rsv *block_rsv;
8293 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8294 int ret;
8295 bool global_updated = false;
8296
8297 block_rsv = get_block_rsv(trans, root);
8298
8299 if (unlikely(block_rsv->size == 0))
8300 goto try_reserve;
8301 again:
8302 ret = block_rsv_use_bytes(block_rsv, blocksize);
8303 if (!ret)
8304 return block_rsv;
8305
8306 if (block_rsv->failfast)
8307 return ERR_PTR(ret);
8308
8309 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8310 global_updated = true;
8311 update_global_block_rsv(root->fs_info);
8312 goto again;
8313 }
8314
8315 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8316 static DEFINE_RATELIMIT_STATE(_rs,
8317 DEFAULT_RATELIMIT_INTERVAL * 10,
8318 /*DEFAULT_RATELIMIT_BURST*/ 1);
8319 if (__ratelimit(&_rs))
8320 WARN(1, KERN_DEBUG
8321 "BTRFS: block rsv returned %d\n", ret);
8322 }
8323 try_reserve:
8324 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8325 BTRFS_RESERVE_NO_FLUSH);
8326 if (!ret)
8327 return block_rsv;
8328 /*
8329 * If we couldn't reserve metadata bytes try and use some from
8330 * the global reserve if its space type is the same as the global
8331 * reservation.
8332 */
8333 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8334 block_rsv->space_info == global_rsv->space_info) {
8335 ret = block_rsv_use_bytes(global_rsv, blocksize);
8336 if (!ret)
8337 return global_rsv;
8338 }
8339 return ERR_PTR(ret);
8340 }
8341
8342 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8343 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8344 {
8345 block_rsv_add_bytes(block_rsv, blocksize, 0);
8346 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8347 }
8348
8349 /*
8350 * finds a free extent and does all the dirty work required for allocation
8351 * returns the tree buffer or an ERR_PTR on error.
8352 */
8353 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8354 struct btrfs_root *root,
8355 u64 parent, u64 root_objectid,
8356 struct btrfs_disk_key *key, int level,
8357 u64 hint, u64 empty_size)
8358 {
8359 struct btrfs_key ins;
8360 struct btrfs_block_rsv *block_rsv;
8361 struct extent_buffer *buf;
8362 struct btrfs_delayed_extent_op *extent_op;
8363 u64 flags = 0;
8364 int ret;
8365 u32 blocksize = root->nodesize;
8366 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8367 SKINNY_METADATA);
8368
8369 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8370 if (btrfs_is_testing(root->fs_info)) {
8371 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8372 level);
8373 if (!IS_ERR(buf))
8374 root->alloc_bytenr += blocksize;
8375 return buf;
8376 }
8377 #endif
8378
8379 block_rsv = use_block_rsv(trans, root, blocksize);
8380 if (IS_ERR(block_rsv))
8381 return ERR_CAST(block_rsv);
8382
8383 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8384 empty_size, hint, &ins, 0, 0);
8385 if (ret)
8386 goto out_unuse;
8387
8388 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8389 if (IS_ERR(buf)) {
8390 ret = PTR_ERR(buf);
8391 goto out_free_reserved;
8392 }
8393
8394 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8395 if (parent == 0)
8396 parent = ins.objectid;
8397 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8398 } else
8399 BUG_ON(parent > 0);
8400
8401 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8402 extent_op = btrfs_alloc_delayed_extent_op();
8403 if (!extent_op) {
8404 ret = -ENOMEM;
8405 goto out_free_buf;
8406 }
8407 if (key)
8408 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8409 else
8410 memset(&extent_op->key, 0, sizeof(extent_op->key));
8411 extent_op->flags_to_set = flags;
8412 extent_op->update_key = skinny_metadata ? false : true;
8413 extent_op->update_flags = true;
8414 extent_op->is_data = false;
8415 extent_op->level = level;
8416
8417 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8418 ins.objectid, ins.offset,
8419 parent, root_objectid, level,
8420 BTRFS_ADD_DELAYED_EXTENT,
8421 extent_op);
8422 if (ret)
8423 goto out_free_delayed;
8424 }
8425 return buf;
8426
8427 out_free_delayed:
8428 btrfs_free_delayed_extent_op(extent_op);
8429 out_free_buf:
8430 free_extent_buffer(buf);
8431 out_free_reserved:
8432 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8433 out_unuse:
8434 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8435 return ERR_PTR(ret);
8436 }
8437
8438 struct walk_control {
8439 u64 refs[BTRFS_MAX_LEVEL];
8440 u64 flags[BTRFS_MAX_LEVEL];
8441 struct btrfs_key update_progress;
8442 int stage;
8443 int level;
8444 int shared_level;
8445 int update_ref;
8446 int keep_locks;
8447 int reada_slot;
8448 int reada_count;
8449 int for_reloc;
8450 };
8451
8452 #define DROP_REFERENCE 1
8453 #define UPDATE_BACKREF 2
8454
8455 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8456 struct btrfs_root *root,
8457 struct walk_control *wc,
8458 struct btrfs_path *path)
8459 {
8460 u64 bytenr;
8461 u64 generation;
8462 u64 refs;
8463 u64 flags;
8464 u32 nritems;
8465 u32 blocksize;
8466 struct btrfs_key key;
8467 struct extent_buffer *eb;
8468 int ret;
8469 int slot;
8470 int nread = 0;
8471
8472 if (path->slots[wc->level] < wc->reada_slot) {
8473 wc->reada_count = wc->reada_count * 2 / 3;
8474 wc->reada_count = max(wc->reada_count, 2);
8475 } else {
8476 wc->reada_count = wc->reada_count * 3 / 2;
8477 wc->reada_count = min_t(int, wc->reada_count,
8478 BTRFS_NODEPTRS_PER_BLOCK(root));
8479 }
8480
8481 eb = path->nodes[wc->level];
8482 nritems = btrfs_header_nritems(eb);
8483 blocksize = root->nodesize;
8484
8485 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8486 if (nread >= wc->reada_count)
8487 break;
8488
8489 cond_resched();
8490 bytenr = btrfs_node_blockptr(eb, slot);
8491 generation = btrfs_node_ptr_generation(eb, slot);
8492
8493 if (slot == path->slots[wc->level])
8494 goto reada;
8495
8496 if (wc->stage == UPDATE_BACKREF &&
8497 generation <= root->root_key.offset)
8498 continue;
8499
8500 /* We don't lock the tree block, it's OK to be racy here */
8501 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8502 wc->level - 1, 1, &refs,
8503 &flags);
8504 /* We don't care about errors in readahead. */
8505 if (ret < 0)
8506 continue;
8507 BUG_ON(refs == 0);
8508
8509 if (wc->stage == DROP_REFERENCE) {
8510 if (refs == 1)
8511 goto reada;
8512
8513 if (wc->level == 1 &&
8514 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8515 continue;
8516 if (!wc->update_ref ||
8517 generation <= root->root_key.offset)
8518 continue;
8519 btrfs_node_key_to_cpu(eb, &key, slot);
8520 ret = btrfs_comp_cpu_keys(&key,
8521 &wc->update_progress);
8522 if (ret < 0)
8523 continue;
8524 } else {
8525 if (wc->level == 1 &&
8526 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8527 continue;
8528 }
8529 reada:
8530 readahead_tree_block(root, bytenr);
8531 nread++;
8532 }
8533 wc->reada_slot = slot;
8534 }
8535
8536 static int account_leaf_items(struct btrfs_trans_handle *trans,
8537 struct btrfs_root *root,
8538 struct extent_buffer *eb)
8539 {
8540 int nr = btrfs_header_nritems(eb);
8541 int i, extent_type, ret;
8542 struct btrfs_key key;
8543 struct btrfs_file_extent_item *fi;
8544 u64 bytenr, num_bytes;
8545
8546 /* We can be called directly from walk_up_proc() */
8547 if (!root->fs_info->quota_enabled)
8548 return 0;
8549
8550 for (i = 0; i < nr; i++) {
8551 btrfs_item_key_to_cpu(eb, &key, i);
8552
8553 if (key.type != BTRFS_EXTENT_DATA_KEY)
8554 continue;
8555
8556 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8557 /* filter out non qgroup-accountable extents */
8558 extent_type = btrfs_file_extent_type(eb, fi);
8559
8560 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8561 continue;
8562
8563 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8564 if (!bytenr)
8565 continue;
8566
8567 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8568
8569 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8570 bytenr, num_bytes, GFP_NOFS);
8571 if (ret)
8572 return ret;
8573 }
8574 return 0;
8575 }
8576
8577 /*
8578 * Walk up the tree from the bottom, freeing leaves and any interior
8579 * nodes which have had all slots visited. If a node (leaf or
8580 * interior) is freed, the node above it will have it's slot
8581 * incremented. The root node will never be freed.
8582 *
8583 * At the end of this function, we should have a path which has all
8584 * slots incremented to the next position for a search. If we need to
8585 * read a new node it will be NULL and the node above it will have the
8586 * correct slot selected for a later read.
8587 *
8588 * If we increment the root nodes slot counter past the number of
8589 * elements, 1 is returned to signal completion of the search.
8590 */
8591 static int adjust_slots_upwards(struct btrfs_root *root,
8592 struct btrfs_path *path, int root_level)
8593 {
8594 int level = 0;
8595 int nr, slot;
8596 struct extent_buffer *eb;
8597
8598 if (root_level == 0)
8599 return 1;
8600
8601 while (level <= root_level) {
8602 eb = path->nodes[level];
8603 nr = btrfs_header_nritems(eb);
8604 path->slots[level]++;
8605 slot = path->slots[level];
8606 if (slot >= nr || level == 0) {
8607 /*
8608 * Don't free the root - we will detect this
8609 * condition after our loop and return a
8610 * positive value for caller to stop walking the tree.
8611 */
8612 if (level != root_level) {
8613 btrfs_tree_unlock_rw(eb, path->locks[level]);
8614 path->locks[level] = 0;
8615
8616 free_extent_buffer(eb);
8617 path->nodes[level] = NULL;
8618 path->slots[level] = 0;
8619 }
8620 } else {
8621 /*
8622 * We have a valid slot to walk back down
8623 * from. Stop here so caller can process these
8624 * new nodes.
8625 */
8626 break;
8627 }
8628
8629 level++;
8630 }
8631
8632 eb = path->nodes[root_level];
8633 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8634 return 1;
8635
8636 return 0;
8637 }
8638
8639 /*
8640 * root_eb is the subtree root and is locked before this function is called.
8641 */
8642 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8643 struct btrfs_root *root,
8644 struct extent_buffer *root_eb,
8645 u64 root_gen,
8646 int root_level)
8647 {
8648 int ret = 0;
8649 int level;
8650 struct extent_buffer *eb = root_eb;
8651 struct btrfs_path *path = NULL;
8652
8653 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8654 BUG_ON(root_eb == NULL);
8655
8656 if (!root->fs_info->quota_enabled)
8657 return 0;
8658
8659 if (!extent_buffer_uptodate(root_eb)) {
8660 ret = btrfs_read_buffer(root_eb, root_gen);
8661 if (ret)
8662 goto out;
8663 }
8664
8665 if (root_level == 0) {
8666 ret = account_leaf_items(trans, root, root_eb);
8667 goto out;
8668 }
8669
8670 path = btrfs_alloc_path();
8671 if (!path)
8672 return -ENOMEM;
8673
8674 /*
8675 * Walk down the tree. Missing extent blocks are filled in as
8676 * we go. Metadata is accounted every time we read a new
8677 * extent block.
8678 *
8679 * When we reach a leaf, we account for file extent items in it,
8680 * walk back up the tree (adjusting slot pointers as we go)
8681 * and restart the search process.
8682 */
8683 extent_buffer_get(root_eb); /* For path */
8684 path->nodes[root_level] = root_eb;
8685 path->slots[root_level] = 0;
8686 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8687 walk_down:
8688 level = root_level;
8689 while (level >= 0) {
8690 if (path->nodes[level] == NULL) {
8691 int parent_slot;
8692 u64 child_gen;
8693 u64 child_bytenr;
8694
8695 /* We need to get child blockptr/gen from
8696 * parent before we can read it. */
8697 eb = path->nodes[level + 1];
8698 parent_slot = path->slots[level + 1];
8699 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8700 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8701
8702 eb = read_tree_block(root, child_bytenr, child_gen);
8703 if (IS_ERR(eb)) {
8704 ret = PTR_ERR(eb);
8705 goto out;
8706 } else if (!extent_buffer_uptodate(eb)) {
8707 free_extent_buffer(eb);
8708 ret = -EIO;
8709 goto out;
8710 }
8711
8712 path->nodes[level] = eb;
8713 path->slots[level] = 0;
8714
8715 btrfs_tree_read_lock(eb);
8716 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8717 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8718
8719 ret = btrfs_qgroup_insert_dirty_extent(trans,
8720 root->fs_info, child_bytenr,
8721 root->nodesize, GFP_NOFS);
8722 if (ret)
8723 goto out;
8724 }
8725
8726 if (level == 0) {
8727 ret = account_leaf_items(trans, root, path->nodes[level]);
8728 if (ret)
8729 goto out;
8730
8731 /* Nonzero return here means we completed our search */
8732 ret = adjust_slots_upwards(root, path, root_level);
8733 if (ret)
8734 break;
8735
8736 /* Restart search with new slots */
8737 goto walk_down;
8738 }
8739
8740 level--;
8741 }
8742
8743 ret = 0;
8744 out:
8745 btrfs_free_path(path);
8746
8747 return ret;
8748 }
8749
8750 /*
8751 * helper to process tree block while walking down the tree.
8752 *
8753 * when wc->stage == UPDATE_BACKREF, this function updates
8754 * back refs for pointers in the block.
8755 *
8756 * NOTE: return value 1 means we should stop walking down.
8757 */
8758 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8759 struct btrfs_root *root,
8760 struct btrfs_path *path,
8761 struct walk_control *wc, int lookup_info)
8762 {
8763 int level = wc->level;
8764 struct extent_buffer *eb = path->nodes[level];
8765 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8766 int ret;
8767
8768 if (wc->stage == UPDATE_BACKREF &&
8769 btrfs_header_owner(eb) != root->root_key.objectid)
8770 return 1;
8771
8772 /*
8773 * when reference count of tree block is 1, it won't increase
8774 * again. once full backref flag is set, we never clear it.
8775 */
8776 if (lookup_info &&
8777 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8778 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8779 BUG_ON(!path->locks[level]);
8780 ret = btrfs_lookup_extent_info(trans, root,
8781 eb->start, level, 1,
8782 &wc->refs[level],
8783 &wc->flags[level]);
8784 BUG_ON(ret == -ENOMEM);
8785 if (ret)
8786 return ret;
8787 BUG_ON(wc->refs[level] == 0);
8788 }
8789
8790 if (wc->stage == DROP_REFERENCE) {
8791 if (wc->refs[level] > 1)
8792 return 1;
8793
8794 if (path->locks[level] && !wc->keep_locks) {
8795 btrfs_tree_unlock_rw(eb, path->locks[level]);
8796 path->locks[level] = 0;
8797 }
8798 return 0;
8799 }
8800
8801 /* wc->stage == UPDATE_BACKREF */
8802 if (!(wc->flags[level] & flag)) {
8803 BUG_ON(!path->locks[level]);
8804 ret = btrfs_inc_ref(trans, root, eb, 1);
8805 BUG_ON(ret); /* -ENOMEM */
8806 ret = btrfs_dec_ref(trans, root, eb, 0);
8807 BUG_ON(ret); /* -ENOMEM */
8808 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8809 eb->len, flag,
8810 btrfs_header_level(eb), 0);
8811 BUG_ON(ret); /* -ENOMEM */
8812 wc->flags[level] |= flag;
8813 }
8814
8815 /*
8816 * the block is shared by multiple trees, so it's not good to
8817 * keep the tree lock
8818 */
8819 if (path->locks[level] && level > 0) {
8820 btrfs_tree_unlock_rw(eb, path->locks[level]);
8821 path->locks[level] = 0;
8822 }
8823 return 0;
8824 }
8825
8826 /*
8827 * helper to process tree block pointer.
8828 *
8829 * when wc->stage == DROP_REFERENCE, this function checks
8830 * reference count of the block pointed to. if the block
8831 * is shared and we need update back refs for the subtree
8832 * rooted at the block, this function changes wc->stage to
8833 * UPDATE_BACKREF. if the block is shared and there is no
8834 * need to update back, this function drops the reference
8835 * to the block.
8836 *
8837 * NOTE: return value 1 means we should stop walking down.
8838 */
8839 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8840 struct btrfs_root *root,
8841 struct btrfs_path *path,
8842 struct walk_control *wc, int *lookup_info)
8843 {
8844 u64 bytenr;
8845 u64 generation;
8846 u64 parent;
8847 u32 blocksize;
8848 struct btrfs_key key;
8849 struct extent_buffer *next;
8850 int level = wc->level;
8851 int reada = 0;
8852 int ret = 0;
8853 bool need_account = false;
8854
8855 generation = btrfs_node_ptr_generation(path->nodes[level],
8856 path->slots[level]);
8857 /*
8858 * if the lower level block was created before the snapshot
8859 * was created, we know there is no need to update back refs
8860 * for the subtree
8861 */
8862 if (wc->stage == UPDATE_BACKREF &&
8863 generation <= root->root_key.offset) {
8864 *lookup_info = 1;
8865 return 1;
8866 }
8867
8868 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8869 blocksize = root->nodesize;
8870
8871 next = btrfs_find_tree_block(root->fs_info, bytenr);
8872 if (!next) {
8873 next = btrfs_find_create_tree_block(root, bytenr);
8874 if (IS_ERR(next))
8875 return PTR_ERR(next);
8876
8877 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8878 level - 1);
8879 reada = 1;
8880 }
8881 btrfs_tree_lock(next);
8882 btrfs_set_lock_blocking(next);
8883
8884 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8885 &wc->refs[level - 1],
8886 &wc->flags[level - 1]);
8887 if (ret < 0) {
8888 btrfs_tree_unlock(next);
8889 return ret;
8890 }
8891
8892 if (unlikely(wc->refs[level - 1] == 0)) {
8893 btrfs_err(root->fs_info, "Missing references.");
8894 BUG();
8895 }
8896 *lookup_info = 0;
8897
8898 if (wc->stage == DROP_REFERENCE) {
8899 if (wc->refs[level - 1] > 1) {
8900 need_account = true;
8901 if (level == 1 &&
8902 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8903 goto skip;
8904
8905 if (!wc->update_ref ||
8906 generation <= root->root_key.offset)
8907 goto skip;
8908
8909 btrfs_node_key_to_cpu(path->nodes[level], &key,
8910 path->slots[level]);
8911 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8912 if (ret < 0)
8913 goto skip;
8914
8915 wc->stage = UPDATE_BACKREF;
8916 wc->shared_level = level - 1;
8917 }
8918 } else {
8919 if (level == 1 &&
8920 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8921 goto skip;
8922 }
8923
8924 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8925 btrfs_tree_unlock(next);
8926 free_extent_buffer(next);
8927 next = NULL;
8928 *lookup_info = 1;
8929 }
8930
8931 if (!next) {
8932 if (reada && level == 1)
8933 reada_walk_down(trans, root, wc, path);
8934 next = read_tree_block(root, bytenr, generation);
8935 if (IS_ERR(next)) {
8936 return PTR_ERR(next);
8937 } else if (!extent_buffer_uptodate(next)) {
8938 free_extent_buffer(next);
8939 return -EIO;
8940 }
8941 btrfs_tree_lock(next);
8942 btrfs_set_lock_blocking(next);
8943 }
8944
8945 level--;
8946 BUG_ON(level != btrfs_header_level(next));
8947 path->nodes[level] = next;
8948 path->slots[level] = 0;
8949 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8950 wc->level = level;
8951 if (wc->level == 1)
8952 wc->reada_slot = 0;
8953 return 0;
8954 skip:
8955 wc->refs[level - 1] = 0;
8956 wc->flags[level - 1] = 0;
8957 if (wc->stage == DROP_REFERENCE) {
8958 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8959 parent = path->nodes[level]->start;
8960 } else {
8961 BUG_ON(root->root_key.objectid !=
8962 btrfs_header_owner(path->nodes[level]));
8963 parent = 0;
8964 }
8965
8966 if (need_account) {
8967 ret = account_shared_subtree(trans, root, next,
8968 generation, level - 1);
8969 if (ret) {
8970 btrfs_err_rl(root->fs_info,
8971 "Error "
8972 "%d accounting shared subtree. Quota "
8973 "is out of sync, rescan required.",
8974 ret);
8975 }
8976 }
8977 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8978 root->root_key.objectid, level - 1, 0);
8979 BUG_ON(ret); /* -ENOMEM */
8980 }
8981 btrfs_tree_unlock(next);
8982 free_extent_buffer(next);
8983 *lookup_info = 1;
8984 return 1;
8985 }
8986
8987 /*
8988 * helper to process tree block while walking up the tree.
8989 *
8990 * when wc->stage == DROP_REFERENCE, this function drops
8991 * reference count on the block.
8992 *
8993 * when wc->stage == UPDATE_BACKREF, this function changes
8994 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8995 * to UPDATE_BACKREF previously while processing the block.
8996 *
8997 * NOTE: return value 1 means we should stop walking up.
8998 */
8999 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9000 struct btrfs_root *root,
9001 struct btrfs_path *path,
9002 struct walk_control *wc)
9003 {
9004 int ret;
9005 int level = wc->level;
9006 struct extent_buffer *eb = path->nodes[level];
9007 u64 parent = 0;
9008
9009 if (wc->stage == UPDATE_BACKREF) {
9010 BUG_ON(wc->shared_level < level);
9011 if (level < wc->shared_level)
9012 goto out;
9013
9014 ret = find_next_key(path, level + 1, &wc->update_progress);
9015 if (ret > 0)
9016 wc->update_ref = 0;
9017
9018 wc->stage = DROP_REFERENCE;
9019 wc->shared_level = -1;
9020 path->slots[level] = 0;
9021
9022 /*
9023 * check reference count again if the block isn't locked.
9024 * we should start walking down the tree again if reference
9025 * count is one.
9026 */
9027 if (!path->locks[level]) {
9028 BUG_ON(level == 0);
9029 btrfs_tree_lock(eb);
9030 btrfs_set_lock_blocking(eb);
9031 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9032
9033 ret = btrfs_lookup_extent_info(trans, root,
9034 eb->start, level, 1,
9035 &wc->refs[level],
9036 &wc->flags[level]);
9037 if (ret < 0) {
9038 btrfs_tree_unlock_rw(eb, path->locks[level]);
9039 path->locks[level] = 0;
9040 return ret;
9041 }
9042 BUG_ON(wc->refs[level] == 0);
9043 if (wc->refs[level] == 1) {
9044 btrfs_tree_unlock_rw(eb, path->locks[level]);
9045 path->locks[level] = 0;
9046 return 1;
9047 }
9048 }
9049 }
9050
9051 /* wc->stage == DROP_REFERENCE */
9052 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9053
9054 if (wc->refs[level] == 1) {
9055 if (level == 0) {
9056 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9057 ret = btrfs_dec_ref(trans, root, eb, 1);
9058 else
9059 ret = btrfs_dec_ref(trans, root, eb, 0);
9060 BUG_ON(ret); /* -ENOMEM */
9061 ret = account_leaf_items(trans, root, eb);
9062 if (ret) {
9063 btrfs_err_rl(root->fs_info,
9064 "error "
9065 "%d accounting leaf items. Quota "
9066 "is out of sync, rescan required.",
9067 ret);
9068 }
9069 }
9070 /* make block locked assertion in clean_tree_block happy */
9071 if (!path->locks[level] &&
9072 btrfs_header_generation(eb) == trans->transid) {
9073 btrfs_tree_lock(eb);
9074 btrfs_set_lock_blocking(eb);
9075 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9076 }
9077 clean_tree_block(trans, root->fs_info, eb);
9078 }
9079
9080 if (eb == root->node) {
9081 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9082 parent = eb->start;
9083 else
9084 BUG_ON(root->root_key.objectid !=
9085 btrfs_header_owner(eb));
9086 } else {
9087 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9088 parent = path->nodes[level + 1]->start;
9089 else
9090 BUG_ON(root->root_key.objectid !=
9091 btrfs_header_owner(path->nodes[level + 1]));
9092 }
9093
9094 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9095 out:
9096 wc->refs[level] = 0;
9097 wc->flags[level] = 0;
9098 return 0;
9099 }
9100
9101 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9102 struct btrfs_root *root,
9103 struct btrfs_path *path,
9104 struct walk_control *wc)
9105 {
9106 int level = wc->level;
9107 int lookup_info = 1;
9108 int ret;
9109
9110 while (level >= 0) {
9111 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9112 if (ret > 0)
9113 break;
9114
9115 if (level == 0)
9116 break;
9117
9118 if (path->slots[level] >=
9119 btrfs_header_nritems(path->nodes[level]))
9120 break;
9121
9122 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9123 if (ret > 0) {
9124 path->slots[level]++;
9125 continue;
9126 } else if (ret < 0)
9127 return ret;
9128 level = wc->level;
9129 }
9130 return 0;
9131 }
9132
9133 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9134 struct btrfs_root *root,
9135 struct btrfs_path *path,
9136 struct walk_control *wc, int max_level)
9137 {
9138 int level = wc->level;
9139 int ret;
9140
9141 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9142 while (level < max_level && path->nodes[level]) {
9143 wc->level = level;
9144 if (path->slots[level] + 1 <
9145 btrfs_header_nritems(path->nodes[level])) {
9146 path->slots[level]++;
9147 return 0;
9148 } else {
9149 ret = walk_up_proc(trans, root, path, wc);
9150 if (ret > 0)
9151 return 0;
9152
9153 if (path->locks[level]) {
9154 btrfs_tree_unlock_rw(path->nodes[level],
9155 path->locks[level]);
9156 path->locks[level] = 0;
9157 }
9158 free_extent_buffer(path->nodes[level]);
9159 path->nodes[level] = NULL;
9160 level++;
9161 }
9162 }
9163 return 1;
9164 }
9165
9166 /*
9167 * drop a subvolume tree.
9168 *
9169 * this function traverses the tree freeing any blocks that only
9170 * referenced by the tree.
9171 *
9172 * when a shared tree block is found. this function decreases its
9173 * reference count by one. if update_ref is true, this function
9174 * also make sure backrefs for the shared block and all lower level
9175 * blocks are properly updated.
9176 *
9177 * If called with for_reloc == 0, may exit early with -EAGAIN
9178 */
9179 int btrfs_drop_snapshot(struct btrfs_root *root,
9180 struct btrfs_block_rsv *block_rsv, int update_ref,
9181 int for_reloc)
9182 {
9183 struct btrfs_path *path;
9184 struct btrfs_trans_handle *trans;
9185 struct btrfs_root *tree_root = root->fs_info->tree_root;
9186 struct btrfs_root_item *root_item = &root->root_item;
9187 struct walk_control *wc;
9188 struct btrfs_key key;
9189 int err = 0;
9190 int ret;
9191 int level;
9192 bool root_dropped = false;
9193
9194 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9195
9196 path = btrfs_alloc_path();
9197 if (!path) {
9198 err = -ENOMEM;
9199 goto out;
9200 }
9201
9202 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9203 if (!wc) {
9204 btrfs_free_path(path);
9205 err = -ENOMEM;
9206 goto out;
9207 }
9208
9209 trans = btrfs_start_transaction(tree_root, 0);
9210 if (IS_ERR(trans)) {
9211 err = PTR_ERR(trans);
9212 goto out_free;
9213 }
9214
9215 if (block_rsv)
9216 trans->block_rsv = block_rsv;
9217
9218 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9219 level = btrfs_header_level(root->node);
9220 path->nodes[level] = btrfs_lock_root_node(root);
9221 btrfs_set_lock_blocking(path->nodes[level]);
9222 path->slots[level] = 0;
9223 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9224 memset(&wc->update_progress, 0,
9225 sizeof(wc->update_progress));
9226 } else {
9227 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9228 memcpy(&wc->update_progress, &key,
9229 sizeof(wc->update_progress));
9230
9231 level = root_item->drop_level;
9232 BUG_ON(level == 0);
9233 path->lowest_level = level;
9234 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9235 path->lowest_level = 0;
9236 if (ret < 0) {
9237 err = ret;
9238 goto out_end_trans;
9239 }
9240 WARN_ON(ret > 0);
9241
9242 /*
9243 * unlock our path, this is safe because only this
9244 * function is allowed to delete this snapshot
9245 */
9246 btrfs_unlock_up_safe(path, 0);
9247
9248 level = btrfs_header_level(root->node);
9249 while (1) {
9250 btrfs_tree_lock(path->nodes[level]);
9251 btrfs_set_lock_blocking(path->nodes[level]);
9252 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9253
9254 ret = btrfs_lookup_extent_info(trans, root,
9255 path->nodes[level]->start,
9256 level, 1, &wc->refs[level],
9257 &wc->flags[level]);
9258 if (ret < 0) {
9259 err = ret;
9260 goto out_end_trans;
9261 }
9262 BUG_ON(wc->refs[level] == 0);
9263
9264 if (level == root_item->drop_level)
9265 break;
9266
9267 btrfs_tree_unlock(path->nodes[level]);
9268 path->locks[level] = 0;
9269 WARN_ON(wc->refs[level] != 1);
9270 level--;
9271 }
9272 }
9273
9274 wc->level = level;
9275 wc->shared_level = -1;
9276 wc->stage = DROP_REFERENCE;
9277 wc->update_ref = update_ref;
9278 wc->keep_locks = 0;
9279 wc->for_reloc = for_reloc;
9280 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9281
9282 while (1) {
9283
9284 ret = walk_down_tree(trans, root, path, wc);
9285 if (ret < 0) {
9286 err = ret;
9287 break;
9288 }
9289
9290 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9291 if (ret < 0) {
9292 err = ret;
9293 break;
9294 }
9295
9296 if (ret > 0) {
9297 BUG_ON(wc->stage != DROP_REFERENCE);
9298 break;
9299 }
9300
9301 if (wc->stage == DROP_REFERENCE) {
9302 level = wc->level;
9303 btrfs_node_key(path->nodes[level],
9304 &root_item->drop_progress,
9305 path->slots[level]);
9306 root_item->drop_level = level;
9307 }
9308
9309 BUG_ON(wc->level == 0);
9310 if (btrfs_should_end_transaction(trans, tree_root) ||
9311 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9312 ret = btrfs_update_root(trans, tree_root,
9313 &root->root_key,
9314 root_item);
9315 if (ret) {
9316 btrfs_abort_transaction(trans, ret);
9317 err = ret;
9318 goto out_end_trans;
9319 }
9320
9321 btrfs_end_transaction_throttle(trans, tree_root);
9322 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9323 pr_debug("BTRFS: drop snapshot early exit\n");
9324 err = -EAGAIN;
9325 goto out_free;
9326 }
9327
9328 trans = btrfs_start_transaction(tree_root, 0);
9329 if (IS_ERR(trans)) {
9330 err = PTR_ERR(trans);
9331 goto out_free;
9332 }
9333 if (block_rsv)
9334 trans->block_rsv = block_rsv;
9335 }
9336 }
9337 btrfs_release_path(path);
9338 if (err)
9339 goto out_end_trans;
9340
9341 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9342 if (ret) {
9343 btrfs_abort_transaction(trans, ret);
9344 goto out_end_trans;
9345 }
9346
9347 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9348 ret = btrfs_find_root(tree_root, &root->root_key, path,
9349 NULL, NULL);
9350 if (ret < 0) {
9351 btrfs_abort_transaction(trans, ret);
9352 err = ret;
9353 goto out_end_trans;
9354 } else if (ret > 0) {
9355 /* if we fail to delete the orphan item this time
9356 * around, it'll get picked up the next time.
9357 *
9358 * The most common failure here is just -ENOENT.
9359 */
9360 btrfs_del_orphan_item(trans, tree_root,
9361 root->root_key.objectid);
9362 }
9363 }
9364
9365 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9366 btrfs_add_dropped_root(trans, root);
9367 } else {
9368 free_extent_buffer(root->node);
9369 free_extent_buffer(root->commit_root);
9370 btrfs_put_fs_root(root);
9371 }
9372 root_dropped = true;
9373 out_end_trans:
9374 btrfs_end_transaction_throttle(trans, tree_root);
9375 out_free:
9376 kfree(wc);
9377 btrfs_free_path(path);
9378 out:
9379 /*
9380 * So if we need to stop dropping the snapshot for whatever reason we
9381 * need to make sure to add it back to the dead root list so that we
9382 * keep trying to do the work later. This also cleans up roots if we
9383 * don't have it in the radix (like when we recover after a power fail
9384 * or unmount) so we don't leak memory.
9385 */
9386 if (!for_reloc && root_dropped == false)
9387 btrfs_add_dead_root(root);
9388 if (err && err != -EAGAIN)
9389 btrfs_handle_fs_error(root->fs_info, err, NULL);
9390 return err;
9391 }
9392
9393 /*
9394 * drop subtree rooted at tree block 'node'.
9395 *
9396 * NOTE: this function will unlock and release tree block 'node'
9397 * only used by relocation code
9398 */
9399 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9400 struct btrfs_root *root,
9401 struct extent_buffer *node,
9402 struct extent_buffer *parent)
9403 {
9404 struct btrfs_path *path;
9405 struct walk_control *wc;
9406 int level;
9407 int parent_level;
9408 int ret = 0;
9409 int wret;
9410
9411 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9412
9413 path = btrfs_alloc_path();
9414 if (!path)
9415 return -ENOMEM;
9416
9417 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9418 if (!wc) {
9419 btrfs_free_path(path);
9420 return -ENOMEM;
9421 }
9422
9423 btrfs_assert_tree_locked(parent);
9424 parent_level = btrfs_header_level(parent);
9425 extent_buffer_get(parent);
9426 path->nodes[parent_level] = parent;
9427 path->slots[parent_level] = btrfs_header_nritems(parent);
9428
9429 btrfs_assert_tree_locked(node);
9430 level = btrfs_header_level(node);
9431 path->nodes[level] = node;
9432 path->slots[level] = 0;
9433 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9434
9435 wc->refs[parent_level] = 1;
9436 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9437 wc->level = level;
9438 wc->shared_level = -1;
9439 wc->stage = DROP_REFERENCE;
9440 wc->update_ref = 0;
9441 wc->keep_locks = 1;
9442 wc->for_reloc = 1;
9443 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9444
9445 while (1) {
9446 wret = walk_down_tree(trans, root, path, wc);
9447 if (wret < 0) {
9448 ret = wret;
9449 break;
9450 }
9451
9452 wret = walk_up_tree(trans, root, path, wc, parent_level);
9453 if (wret < 0)
9454 ret = wret;
9455 if (wret != 0)
9456 break;
9457 }
9458
9459 kfree(wc);
9460 btrfs_free_path(path);
9461 return ret;
9462 }
9463
9464 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9465 {
9466 u64 num_devices;
9467 u64 stripped;
9468
9469 /*
9470 * if restripe for this chunk_type is on pick target profile and
9471 * return, otherwise do the usual balance
9472 */
9473 stripped = get_restripe_target(root->fs_info, flags);
9474 if (stripped)
9475 return extended_to_chunk(stripped);
9476
9477 num_devices = root->fs_info->fs_devices->rw_devices;
9478
9479 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9480 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9481 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9482
9483 if (num_devices == 1) {
9484 stripped |= BTRFS_BLOCK_GROUP_DUP;
9485 stripped = flags & ~stripped;
9486
9487 /* turn raid0 into single device chunks */
9488 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9489 return stripped;
9490
9491 /* turn mirroring into duplication */
9492 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9493 BTRFS_BLOCK_GROUP_RAID10))
9494 return stripped | BTRFS_BLOCK_GROUP_DUP;
9495 } else {
9496 /* they already had raid on here, just return */
9497 if (flags & stripped)
9498 return flags;
9499
9500 stripped |= BTRFS_BLOCK_GROUP_DUP;
9501 stripped = flags & ~stripped;
9502
9503 /* switch duplicated blocks with raid1 */
9504 if (flags & BTRFS_BLOCK_GROUP_DUP)
9505 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9506
9507 /* this is drive concat, leave it alone */
9508 }
9509
9510 return flags;
9511 }
9512
9513 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9514 {
9515 struct btrfs_space_info *sinfo = cache->space_info;
9516 u64 num_bytes;
9517 u64 min_allocable_bytes;
9518 int ret = -ENOSPC;
9519
9520 /*
9521 * We need some metadata space and system metadata space for
9522 * allocating chunks in some corner cases until we force to set
9523 * it to be readonly.
9524 */
9525 if ((sinfo->flags &
9526 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9527 !force)
9528 min_allocable_bytes = SZ_1M;
9529 else
9530 min_allocable_bytes = 0;
9531
9532 spin_lock(&sinfo->lock);
9533 spin_lock(&cache->lock);
9534
9535 if (cache->ro) {
9536 cache->ro++;
9537 ret = 0;
9538 goto out;
9539 }
9540
9541 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9542 cache->bytes_super - btrfs_block_group_used(&cache->item);
9543
9544 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9545 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9546 min_allocable_bytes <= sinfo->total_bytes) {
9547 sinfo->bytes_readonly += num_bytes;
9548 cache->ro++;
9549 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9550 ret = 0;
9551 }
9552 out:
9553 spin_unlock(&cache->lock);
9554 spin_unlock(&sinfo->lock);
9555 return ret;
9556 }
9557
9558 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9559 struct btrfs_block_group_cache *cache)
9560
9561 {
9562 struct btrfs_trans_handle *trans;
9563 u64 alloc_flags;
9564 int ret;
9565
9566 again:
9567 trans = btrfs_join_transaction(root);
9568 if (IS_ERR(trans))
9569 return PTR_ERR(trans);
9570
9571 /*
9572 * we're not allowed to set block groups readonly after the dirty
9573 * block groups cache has started writing. If it already started,
9574 * back off and let this transaction commit
9575 */
9576 mutex_lock(&root->fs_info->ro_block_group_mutex);
9577 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9578 u64 transid = trans->transid;
9579
9580 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9581 btrfs_end_transaction(trans, root);
9582
9583 ret = btrfs_wait_for_commit(root, transid);
9584 if (ret)
9585 return ret;
9586 goto again;
9587 }
9588
9589 /*
9590 * if we are changing raid levels, try to allocate a corresponding
9591 * block group with the new raid level.
9592 */
9593 alloc_flags = update_block_group_flags(root, cache->flags);
9594 if (alloc_flags != cache->flags) {
9595 ret = do_chunk_alloc(trans, root, alloc_flags,
9596 CHUNK_ALLOC_FORCE);
9597 /*
9598 * ENOSPC is allowed here, we may have enough space
9599 * already allocated at the new raid level to
9600 * carry on
9601 */
9602 if (ret == -ENOSPC)
9603 ret = 0;
9604 if (ret < 0)
9605 goto out;
9606 }
9607
9608 ret = inc_block_group_ro(cache, 0);
9609 if (!ret)
9610 goto out;
9611 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9612 ret = do_chunk_alloc(trans, root, alloc_flags,
9613 CHUNK_ALLOC_FORCE);
9614 if (ret < 0)
9615 goto out;
9616 ret = inc_block_group_ro(cache, 0);
9617 out:
9618 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9619 alloc_flags = update_block_group_flags(root, cache->flags);
9620 lock_chunks(root->fs_info->chunk_root);
9621 check_system_chunk(trans, root, alloc_flags);
9622 unlock_chunks(root->fs_info->chunk_root);
9623 }
9624 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9625
9626 btrfs_end_transaction(trans, root);
9627 return ret;
9628 }
9629
9630 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9631 struct btrfs_root *root, u64 type)
9632 {
9633 u64 alloc_flags = get_alloc_profile(root, type);
9634 return do_chunk_alloc(trans, root, alloc_flags,
9635 CHUNK_ALLOC_FORCE);
9636 }
9637
9638 /*
9639 * helper to account the unused space of all the readonly block group in the
9640 * space_info. takes mirrors into account.
9641 */
9642 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9643 {
9644 struct btrfs_block_group_cache *block_group;
9645 u64 free_bytes = 0;
9646 int factor;
9647
9648 /* It's df, we don't care if it's racy */
9649 if (list_empty(&sinfo->ro_bgs))
9650 return 0;
9651
9652 spin_lock(&sinfo->lock);
9653 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9654 spin_lock(&block_group->lock);
9655
9656 if (!block_group->ro) {
9657 spin_unlock(&block_group->lock);
9658 continue;
9659 }
9660
9661 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9662 BTRFS_BLOCK_GROUP_RAID10 |
9663 BTRFS_BLOCK_GROUP_DUP))
9664 factor = 2;
9665 else
9666 factor = 1;
9667
9668 free_bytes += (block_group->key.offset -
9669 btrfs_block_group_used(&block_group->item)) *
9670 factor;
9671
9672 spin_unlock(&block_group->lock);
9673 }
9674 spin_unlock(&sinfo->lock);
9675
9676 return free_bytes;
9677 }
9678
9679 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9680 struct btrfs_block_group_cache *cache)
9681 {
9682 struct btrfs_space_info *sinfo = cache->space_info;
9683 u64 num_bytes;
9684
9685 BUG_ON(!cache->ro);
9686
9687 spin_lock(&sinfo->lock);
9688 spin_lock(&cache->lock);
9689 if (!--cache->ro) {
9690 num_bytes = cache->key.offset - cache->reserved -
9691 cache->pinned - cache->bytes_super -
9692 btrfs_block_group_used(&cache->item);
9693 sinfo->bytes_readonly -= num_bytes;
9694 list_del_init(&cache->ro_list);
9695 }
9696 spin_unlock(&cache->lock);
9697 spin_unlock(&sinfo->lock);
9698 }
9699
9700 /*
9701 * checks to see if its even possible to relocate this block group.
9702 *
9703 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9704 * ok to go ahead and try.
9705 */
9706 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9707 {
9708 struct btrfs_block_group_cache *block_group;
9709 struct btrfs_space_info *space_info;
9710 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9711 struct btrfs_device *device;
9712 struct btrfs_trans_handle *trans;
9713 u64 min_free;
9714 u64 dev_min = 1;
9715 u64 dev_nr = 0;
9716 u64 target;
9717 int debug;
9718 int index;
9719 int full = 0;
9720 int ret = 0;
9721
9722 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9723
9724 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9725
9726 /* odd, couldn't find the block group, leave it alone */
9727 if (!block_group) {
9728 if (debug)
9729 btrfs_warn(root->fs_info,
9730 "can't find block group for bytenr %llu",
9731 bytenr);
9732 return -1;
9733 }
9734
9735 min_free = btrfs_block_group_used(&block_group->item);
9736
9737 /* no bytes used, we're good */
9738 if (!min_free)
9739 goto out;
9740
9741 space_info = block_group->space_info;
9742 spin_lock(&space_info->lock);
9743
9744 full = space_info->full;
9745
9746 /*
9747 * if this is the last block group we have in this space, we can't
9748 * relocate it unless we're able to allocate a new chunk below.
9749 *
9750 * Otherwise, we need to make sure we have room in the space to handle
9751 * all of the extents from this block group. If we can, we're good
9752 */
9753 if ((space_info->total_bytes != block_group->key.offset) &&
9754 (space_info->bytes_used + space_info->bytes_reserved +
9755 space_info->bytes_pinned + space_info->bytes_readonly +
9756 min_free < space_info->total_bytes)) {
9757 spin_unlock(&space_info->lock);
9758 goto out;
9759 }
9760 spin_unlock(&space_info->lock);
9761
9762 /*
9763 * ok we don't have enough space, but maybe we have free space on our
9764 * devices to allocate new chunks for relocation, so loop through our
9765 * alloc devices and guess if we have enough space. if this block
9766 * group is going to be restriped, run checks against the target
9767 * profile instead of the current one.
9768 */
9769 ret = -1;
9770
9771 /*
9772 * index:
9773 * 0: raid10
9774 * 1: raid1
9775 * 2: dup
9776 * 3: raid0
9777 * 4: single
9778 */
9779 target = get_restripe_target(root->fs_info, block_group->flags);
9780 if (target) {
9781 index = __get_raid_index(extended_to_chunk(target));
9782 } else {
9783 /*
9784 * this is just a balance, so if we were marked as full
9785 * we know there is no space for a new chunk
9786 */
9787 if (full) {
9788 if (debug)
9789 btrfs_warn(root->fs_info,
9790 "no space to alloc new chunk for block group %llu",
9791 block_group->key.objectid);
9792 goto out;
9793 }
9794
9795 index = get_block_group_index(block_group);
9796 }
9797
9798 if (index == BTRFS_RAID_RAID10) {
9799 dev_min = 4;
9800 /* Divide by 2 */
9801 min_free >>= 1;
9802 } else if (index == BTRFS_RAID_RAID1) {
9803 dev_min = 2;
9804 } else if (index == BTRFS_RAID_DUP) {
9805 /* Multiply by 2 */
9806 min_free <<= 1;
9807 } else if (index == BTRFS_RAID_RAID0) {
9808 dev_min = fs_devices->rw_devices;
9809 min_free = div64_u64(min_free, dev_min);
9810 }
9811
9812 /* We need to do this so that we can look at pending chunks */
9813 trans = btrfs_join_transaction(root);
9814 if (IS_ERR(trans)) {
9815 ret = PTR_ERR(trans);
9816 goto out;
9817 }
9818
9819 mutex_lock(&root->fs_info->chunk_mutex);
9820 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9821 u64 dev_offset;
9822
9823 /*
9824 * check to make sure we can actually find a chunk with enough
9825 * space to fit our block group in.
9826 */
9827 if (device->total_bytes > device->bytes_used + min_free &&
9828 !device->is_tgtdev_for_dev_replace) {
9829 ret = find_free_dev_extent(trans, device, min_free,
9830 &dev_offset, NULL);
9831 if (!ret)
9832 dev_nr++;
9833
9834 if (dev_nr >= dev_min)
9835 break;
9836
9837 ret = -1;
9838 }
9839 }
9840 if (debug && ret == -1)
9841 btrfs_warn(root->fs_info,
9842 "no space to allocate a new chunk for block group %llu",
9843 block_group->key.objectid);
9844 mutex_unlock(&root->fs_info->chunk_mutex);
9845 btrfs_end_transaction(trans, root);
9846 out:
9847 btrfs_put_block_group(block_group);
9848 return ret;
9849 }
9850
9851 static int find_first_block_group(struct btrfs_root *root,
9852 struct btrfs_path *path, struct btrfs_key *key)
9853 {
9854 int ret = 0;
9855 struct btrfs_key found_key;
9856 struct extent_buffer *leaf;
9857 int slot;
9858
9859 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9860 if (ret < 0)
9861 goto out;
9862
9863 while (1) {
9864 slot = path->slots[0];
9865 leaf = path->nodes[0];
9866 if (slot >= btrfs_header_nritems(leaf)) {
9867 ret = btrfs_next_leaf(root, path);
9868 if (ret == 0)
9869 continue;
9870 if (ret < 0)
9871 goto out;
9872 break;
9873 }
9874 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9875
9876 if (found_key.objectid >= key->objectid &&
9877 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9878 struct extent_map_tree *em_tree;
9879 struct extent_map *em;
9880
9881 em_tree = &root->fs_info->mapping_tree.map_tree;
9882 read_lock(&em_tree->lock);
9883 em = lookup_extent_mapping(em_tree, found_key.objectid,
9884 found_key.offset);
9885 read_unlock(&em_tree->lock);
9886 if (!em) {
9887 btrfs_err(root->fs_info,
9888 "logical %llu len %llu found bg but no related chunk",
9889 found_key.objectid, found_key.offset);
9890 ret = -ENOENT;
9891 } else {
9892 ret = 0;
9893 }
9894 free_extent_map(em);
9895 goto out;
9896 }
9897 path->slots[0]++;
9898 }
9899 out:
9900 return ret;
9901 }
9902
9903 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9904 {
9905 struct btrfs_block_group_cache *block_group;
9906 u64 last = 0;
9907
9908 while (1) {
9909 struct inode *inode;
9910
9911 block_group = btrfs_lookup_first_block_group(info, last);
9912 while (block_group) {
9913 spin_lock(&block_group->lock);
9914 if (block_group->iref)
9915 break;
9916 spin_unlock(&block_group->lock);
9917 block_group = next_block_group(info->tree_root,
9918 block_group);
9919 }
9920 if (!block_group) {
9921 if (last == 0)
9922 break;
9923 last = 0;
9924 continue;
9925 }
9926
9927 inode = block_group->inode;
9928 block_group->iref = 0;
9929 block_group->inode = NULL;
9930 spin_unlock(&block_group->lock);
9931 ASSERT(block_group->io_ctl.inode == NULL);
9932 iput(inode);
9933 last = block_group->key.objectid + block_group->key.offset;
9934 btrfs_put_block_group(block_group);
9935 }
9936 }
9937
9938 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9939 {
9940 struct btrfs_block_group_cache *block_group;
9941 struct btrfs_space_info *space_info;
9942 struct btrfs_caching_control *caching_ctl;
9943 struct rb_node *n;
9944
9945 down_write(&info->commit_root_sem);
9946 while (!list_empty(&info->caching_block_groups)) {
9947 caching_ctl = list_entry(info->caching_block_groups.next,
9948 struct btrfs_caching_control, list);
9949 list_del(&caching_ctl->list);
9950 put_caching_control(caching_ctl);
9951 }
9952 up_write(&info->commit_root_sem);
9953
9954 spin_lock(&info->unused_bgs_lock);
9955 while (!list_empty(&info->unused_bgs)) {
9956 block_group = list_first_entry(&info->unused_bgs,
9957 struct btrfs_block_group_cache,
9958 bg_list);
9959 list_del_init(&block_group->bg_list);
9960 btrfs_put_block_group(block_group);
9961 }
9962 spin_unlock(&info->unused_bgs_lock);
9963
9964 spin_lock(&info->block_group_cache_lock);
9965 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9966 block_group = rb_entry(n, struct btrfs_block_group_cache,
9967 cache_node);
9968 rb_erase(&block_group->cache_node,
9969 &info->block_group_cache_tree);
9970 RB_CLEAR_NODE(&block_group->cache_node);
9971 spin_unlock(&info->block_group_cache_lock);
9972
9973 down_write(&block_group->space_info->groups_sem);
9974 list_del(&block_group->list);
9975 up_write(&block_group->space_info->groups_sem);
9976
9977 if (block_group->cached == BTRFS_CACHE_STARTED)
9978 wait_block_group_cache_done(block_group);
9979
9980 /*
9981 * We haven't cached this block group, which means we could
9982 * possibly have excluded extents on this block group.
9983 */
9984 if (block_group->cached == BTRFS_CACHE_NO ||
9985 block_group->cached == BTRFS_CACHE_ERROR)
9986 free_excluded_extents(info->extent_root, block_group);
9987
9988 btrfs_remove_free_space_cache(block_group);
9989 ASSERT(list_empty(&block_group->dirty_list));
9990 ASSERT(list_empty(&block_group->io_list));
9991 ASSERT(list_empty(&block_group->bg_list));
9992 ASSERT(atomic_read(&block_group->count) == 1);
9993 btrfs_put_block_group(block_group);
9994
9995 spin_lock(&info->block_group_cache_lock);
9996 }
9997 spin_unlock(&info->block_group_cache_lock);
9998
9999 /* now that all the block groups are freed, go through and
10000 * free all the space_info structs. This is only called during
10001 * the final stages of unmount, and so we know nobody is
10002 * using them. We call synchronize_rcu() once before we start,
10003 * just to be on the safe side.
10004 */
10005 synchronize_rcu();
10006
10007 release_global_block_rsv(info);
10008
10009 while (!list_empty(&info->space_info)) {
10010 int i;
10011
10012 space_info = list_entry(info->space_info.next,
10013 struct btrfs_space_info,
10014 list);
10015
10016 /*
10017 * Do not hide this behind enospc_debug, this is actually
10018 * important and indicates a real bug if this happens.
10019 */
10020 if (WARN_ON(space_info->bytes_pinned > 0 ||
10021 space_info->bytes_reserved > 0 ||
10022 space_info->bytes_may_use > 0))
10023 dump_space_info(space_info, 0, 0);
10024 list_del(&space_info->list);
10025 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10026 struct kobject *kobj;
10027 kobj = space_info->block_group_kobjs[i];
10028 space_info->block_group_kobjs[i] = NULL;
10029 if (kobj) {
10030 kobject_del(kobj);
10031 kobject_put(kobj);
10032 }
10033 }
10034 kobject_del(&space_info->kobj);
10035 kobject_put(&space_info->kobj);
10036 }
10037 return 0;
10038 }
10039
10040 static void __link_block_group(struct btrfs_space_info *space_info,
10041 struct btrfs_block_group_cache *cache)
10042 {
10043 int index = get_block_group_index(cache);
10044 bool first = false;
10045
10046 down_write(&space_info->groups_sem);
10047 if (list_empty(&space_info->block_groups[index]))
10048 first = true;
10049 list_add_tail(&cache->list, &space_info->block_groups[index]);
10050 up_write(&space_info->groups_sem);
10051
10052 if (first) {
10053 struct raid_kobject *rkobj;
10054 int ret;
10055
10056 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10057 if (!rkobj)
10058 goto out_err;
10059 rkobj->raid_type = index;
10060 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10061 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10062 "%s", get_raid_name(index));
10063 if (ret) {
10064 kobject_put(&rkobj->kobj);
10065 goto out_err;
10066 }
10067 space_info->block_group_kobjs[index] = &rkobj->kobj;
10068 }
10069
10070 return;
10071 out_err:
10072 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
10073 }
10074
10075 static struct btrfs_block_group_cache *
10076 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10077 {
10078 struct btrfs_block_group_cache *cache;
10079
10080 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10081 if (!cache)
10082 return NULL;
10083
10084 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10085 GFP_NOFS);
10086 if (!cache->free_space_ctl) {
10087 kfree(cache);
10088 return NULL;
10089 }
10090
10091 cache->key.objectid = start;
10092 cache->key.offset = size;
10093 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10094
10095 cache->sectorsize = root->sectorsize;
10096 cache->fs_info = root->fs_info;
10097 cache->full_stripe_len = btrfs_full_stripe_len(root,
10098 &root->fs_info->mapping_tree,
10099 start);
10100 set_free_space_tree_thresholds(cache);
10101
10102 atomic_set(&cache->count, 1);
10103 spin_lock_init(&cache->lock);
10104 init_rwsem(&cache->data_rwsem);
10105 INIT_LIST_HEAD(&cache->list);
10106 INIT_LIST_HEAD(&cache->cluster_list);
10107 INIT_LIST_HEAD(&cache->bg_list);
10108 INIT_LIST_HEAD(&cache->ro_list);
10109 INIT_LIST_HEAD(&cache->dirty_list);
10110 INIT_LIST_HEAD(&cache->io_list);
10111 btrfs_init_free_space_ctl(cache);
10112 atomic_set(&cache->trimming, 0);
10113 mutex_init(&cache->free_space_lock);
10114
10115 return cache;
10116 }
10117
10118 int btrfs_read_block_groups(struct btrfs_root *root)
10119 {
10120 struct btrfs_path *path;
10121 int ret;
10122 struct btrfs_block_group_cache *cache;
10123 struct btrfs_fs_info *info = root->fs_info;
10124 struct btrfs_space_info *space_info;
10125 struct btrfs_key key;
10126 struct btrfs_key found_key;
10127 struct extent_buffer *leaf;
10128 int need_clear = 0;
10129 u64 cache_gen;
10130
10131 root = info->extent_root;
10132 key.objectid = 0;
10133 key.offset = 0;
10134 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10135 path = btrfs_alloc_path();
10136 if (!path)
10137 return -ENOMEM;
10138 path->reada = READA_FORWARD;
10139
10140 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10141 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10142 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10143 need_clear = 1;
10144 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10145 need_clear = 1;
10146
10147 while (1) {
10148 ret = find_first_block_group(root, path, &key);
10149 if (ret > 0)
10150 break;
10151 if (ret != 0)
10152 goto error;
10153
10154 leaf = path->nodes[0];
10155 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10156
10157 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10158 found_key.offset);
10159 if (!cache) {
10160 ret = -ENOMEM;
10161 goto error;
10162 }
10163
10164 if (need_clear) {
10165 /*
10166 * When we mount with old space cache, we need to
10167 * set BTRFS_DC_CLEAR and set dirty flag.
10168 *
10169 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10170 * truncate the old free space cache inode and
10171 * setup a new one.
10172 * b) Setting 'dirty flag' makes sure that we flush
10173 * the new space cache info onto disk.
10174 */
10175 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10176 cache->disk_cache_state = BTRFS_DC_CLEAR;
10177 }
10178
10179 read_extent_buffer(leaf, &cache->item,
10180 btrfs_item_ptr_offset(leaf, path->slots[0]),
10181 sizeof(cache->item));
10182 cache->flags = btrfs_block_group_flags(&cache->item);
10183
10184 key.objectid = found_key.objectid + found_key.offset;
10185 btrfs_release_path(path);
10186
10187 /*
10188 * We need to exclude the super stripes now so that the space
10189 * info has super bytes accounted for, otherwise we'll think
10190 * we have more space than we actually do.
10191 */
10192 ret = exclude_super_stripes(root, cache);
10193 if (ret) {
10194 /*
10195 * We may have excluded something, so call this just in
10196 * case.
10197 */
10198 free_excluded_extents(root, cache);
10199 btrfs_put_block_group(cache);
10200 goto error;
10201 }
10202
10203 /*
10204 * check for two cases, either we are full, and therefore
10205 * don't need to bother with the caching work since we won't
10206 * find any space, or we are empty, and we can just add all
10207 * the space in and be done with it. This saves us _alot_ of
10208 * time, particularly in the full case.
10209 */
10210 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10211 cache->last_byte_to_unpin = (u64)-1;
10212 cache->cached = BTRFS_CACHE_FINISHED;
10213 free_excluded_extents(root, cache);
10214 } else if (btrfs_block_group_used(&cache->item) == 0) {
10215 cache->last_byte_to_unpin = (u64)-1;
10216 cache->cached = BTRFS_CACHE_FINISHED;
10217 add_new_free_space(cache, root->fs_info,
10218 found_key.objectid,
10219 found_key.objectid +
10220 found_key.offset);
10221 free_excluded_extents(root, cache);
10222 }
10223
10224 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10225 if (ret) {
10226 btrfs_remove_free_space_cache(cache);
10227 btrfs_put_block_group(cache);
10228 goto error;
10229 }
10230
10231 trace_btrfs_add_block_group(root->fs_info, cache, 0);
10232 ret = update_space_info(info, cache->flags, found_key.offset,
10233 btrfs_block_group_used(&cache->item),
10234 cache->bytes_super, &space_info);
10235 if (ret) {
10236 btrfs_remove_free_space_cache(cache);
10237 spin_lock(&info->block_group_cache_lock);
10238 rb_erase(&cache->cache_node,
10239 &info->block_group_cache_tree);
10240 RB_CLEAR_NODE(&cache->cache_node);
10241 spin_unlock(&info->block_group_cache_lock);
10242 btrfs_put_block_group(cache);
10243 goto error;
10244 }
10245
10246 cache->space_info = space_info;
10247
10248 __link_block_group(space_info, cache);
10249
10250 set_avail_alloc_bits(root->fs_info, cache->flags);
10251 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10252 inc_block_group_ro(cache, 1);
10253 } else if (btrfs_block_group_used(&cache->item) == 0) {
10254 spin_lock(&info->unused_bgs_lock);
10255 /* Should always be true but just in case. */
10256 if (list_empty(&cache->bg_list)) {
10257 btrfs_get_block_group(cache);
10258 list_add_tail(&cache->bg_list,
10259 &info->unused_bgs);
10260 }
10261 spin_unlock(&info->unused_bgs_lock);
10262 }
10263 }
10264
10265 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10266 if (!(get_alloc_profile(root, space_info->flags) &
10267 (BTRFS_BLOCK_GROUP_RAID10 |
10268 BTRFS_BLOCK_GROUP_RAID1 |
10269 BTRFS_BLOCK_GROUP_RAID5 |
10270 BTRFS_BLOCK_GROUP_RAID6 |
10271 BTRFS_BLOCK_GROUP_DUP)))
10272 continue;
10273 /*
10274 * avoid allocating from un-mirrored block group if there are
10275 * mirrored block groups.
10276 */
10277 list_for_each_entry(cache,
10278 &space_info->block_groups[BTRFS_RAID_RAID0],
10279 list)
10280 inc_block_group_ro(cache, 1);
10281 list_for_each_entry(cache,
10282 &space_info->block_groups[BTRFS_RAID_SINGLE],
10283 list)
10284 inc_block_group_ro(cache, 1);
10285 }
10286
10287 init_global_block_rsv(info);
10288 ret = 0;
10289 error:
10290 btrfs_free_path(path);
10291 return ret;
10292 }
10293
10294 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10295 struct btrfs_root *root)
10296 {
10297 struct btrfs_block_group_cache *block_group, *tmp;
10298 struct btrfs_root *extent_root = root->fs_info->extent_root;
10299 struct btrfs_block_group_item item;
10300 struct btrfs_key key;
10301 int ret = 0;
10302 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10303
10304 trans->can_flush_pending_bgs = false;
10305 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10306 if (ret)
10307 goto next;
10308
10309 spin_lock(&block_group->lock);
10310 memcpy(&item, &block_group->item, sizeof(item));
10311 memcpy(&key, &block_group->key, sizeof(key));
10312 spin_unlock(&block_group->lock);
10313
10314 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10315 sizeof(item));
10316 if (ret)
10317 btrfs_abort_transaction(trans, ret);
10318 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10319 key.objectid, key.offset);
10320 if (ret)
10321 btrfs_abort_transaction(trans, ret);
10322 add_block_group_free_space(trans, root->fs_info, block_group);
10323 /* already aborted the transaction if it failed. */
10324 next:
10325 list_del_init(&block_group->bg_list);
10326 }
10327 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10328 }
10329
10330 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10331 struct btrfs_root *root, u64 bytes_used,
10332 u64 type, u64 chunk_objectid, u64 chunk_offset,
10333 u64 size)
10334 {
10335 int ret;
10336 struct btrfs_root *extent_root;
10337 struct btrfs_block_group_cache *cache;
10338 extent_root = root->fs_info->extent_root;
10339
10340 btrfs_set_log_full_commit(root->fs_info, trans);
10341
10342 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10343 if (!cache)
10344 return -ENOMEM;
10345
10346 btrfs_set_block_group_used(&cache->item, bytes_used);
10347 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10348 btrfs_set_block_group_flags(&cache->item, type);
10349
10350 cache->flags = type;
10351 cache->last_byte_to_unpin = (u64)-1;
10352 cache->cached = BTRFS_CACHE_FINISHED;
10353 cache->needs_free_space = 1;
10354 ret = exclude_super_stripes(root, cache);
10355 if (ret) {
10356 /*
10357 * We may have excluded something, so call this just in
10358 * case.
10359 */
10360 free_excluded_extents(root, cache);
10361 btrfs_put_block_group(cache);
10362 return ret;
10363 }
10364
10365 add_new_free_space(cache, root->fs_info, chunk_offset,
10366 chunk_offset + size);
10367
10368 free_excluded_extents(root, cache);
10369
10370 #ifdef CONFIG_BTRFS_DEBUG
10371 if (btrfs_should_fragment_free_space(root, cache)) {
10372 u64 new_bytes_used = size - bytes_used;
10373
10374 bytes_used += new_bytes_used >> 1;
10375 fragment_free_space(root, cache);
10376 }
10377 #endif
10378 /*
10379 * Call to ensure the corresponding space_info object is created and
10380 * assigned to our block group, but don't update its counters just yet.
10381 * We want our bg to be added to the rbtree with its ->space_info set.
10382 */
10383 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10384 &cache->space_info);
10385 if (ret) {
10386 btrfs_remove_free_space_cache(cache);
10387 btrfs_put_block_group(cache);
10388 return ret;
10389 }
10390
10391 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10392 if (ret) {
10393 btrfs_remove_free_space_cache(cache);
10394 btrfs_put_block_group(cache);
10395 return ret;
10396 }
10397
10398 /*
10399 * Now that our block group has its ->space_info set and is inserted in
10400 * the rbtree, update the space info's counters.
10401 */
10402 trace_btrfs_add_block_group(root->fs_info, cache, 1);
10403 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10404 cache->bytes_super, &cache->space_info);
10405 if (ret) {
10406 btrfs_remove_free_space_cache(cache);
10407 spin_lock(&root->fs_info->block_group_cache_lock);
10408 rb_erase(&cache->cache_node,
10409 &root->fs_info->block_group_cache_tree);
10410 RB_CLEAR_NODE(&cache->cache_node);
10411 spin_unlock(&root->fs_info->block_group_cache_lock);
10412 btrfs_put_block_group(cache);
10413 return ret;
10414 }
10415 update_global_block_rsv(root->fs_info);
10416
10417 __link_block_group(cache->space_info, cache);
10418
10419 list_add_tail(&cache->bg_list, &trans->new_bgs);
10420
10421 set_avail_alloc_bits(extent_root->fs_info, type);
10422 return 0;
10423 }
10424
10425 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10426 {
10427 u64 extra_flags = chunk_to_extended(flags) &
10428 BTRFS_EXTENDED_PROFILE_MASK;
10429
10430 write_seqlock(&fs_info->profiles_lock);
10431 if (flags & BTRFS_BLOCK_GROUP_DATA)
10432 fs_info->avail_data_alloc_bits &= ~extra_flags;
10433 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10434 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10435 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10436 fs_info->avail_system_alloc_bits &= ~extra_flags;
10437 write_sequnlock(&fs_info->profiles_lock);
10438 }
10439
10440 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10441 struct btrfs_root *root, u64 group_start,
10442 struct extent_map *em)
10443 {
10444 struct btrfs_path *path;
10445 struct btrfs_block_group_cache *block_group;
10446 struct btrfs_free_cluster *cluster;
10447 struct btrfs_root *tree_root = root->fs_info->tree_root;
10448 struct btrfs_key key;
10449 struct inode *inode;
10450 struct kobject *kobj = NULL;
10451 int ret;
10452 int index;
10453 int factor;
10454 struct btrfs_caching_control *caching_ctl = NULL;
10455 bool remove_em;
10456
10457 root = root->fs_info->extent_root;
10458
10459 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10460 BUG_ON(!block_group);
10461 BUG_ON(!block_group->ro);
10462
10463 /*
10464 * Free the reserved super bytes from this block group before
10465 * remove it.
10466 */
10467 free_excluded_extents(root, block_group);
10468
10469 memcpy(&key, &block_group->key, sizeof(key));
10470 index = get_block_group_index(block_group);
10471 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10472 BTRFS_BLOCK_GROUP_RAID1 |
10473 BTRFS_BLOCK_GROUP_RAID10))
10474 factor = 2;
10475 else
10476 factor = 1;
10477
10478 /* make sure this block group isn't part of an allocation cluster */
10479 cluster = &root->fs_info->data_alloc_cluster;
10480 spin_lock(&cluster->refill_lock);
10481 btrfs_return_cluster_to_free_space(block_group, cluster);
10482 spin_unlock(&cluster->refill_lock);
10483
10484 /*
10485 * make sure this block group isn't part of a metadata
10486 * allocation cluster
10487 */
10488 cluster = &root->fs_info->meta_alloc_cluster;
10489 spin_lock(&cluster->refill_lock);
10490 btrfs_return_cluster_to_free_space(block_group, cluster);
10491 spin_unlock(&cluster->refill_lock);
10492
10493 path = btrfs_alloc_path();
10494 if (!path) {
10495 ret = -ENOMEM;
10496 goto out;
10497 }
10498
10499 /*
10500 * get the inode first so any iput calls done for the io_list
10501 * aren't the final iput (no unlinks allowed now)
10502 */
10503 inode = lookup_free_space_inode(tree_root, block_group, path);
10504
10505 mutex_lock(&trans->transaction->cache_write_mutex);
10506 /*
10507 * make sure our free spache cache IO is done before remove the
10508 * free space inode
10509 */
10510 spin_lock(&trans->transaction->dirty_bgs_lock);
10511 if (!list_empty(&block_group->io_list)) {
10512 list_del_init(&block_group->io_list);
10513
10514 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10515
10516 spin_unlock(&trans->transaction->dirty_bgs_lock);
10517 btrfs_wait_cache_io(root, trans, block_group,
10518 &block_group->io_ctl, path,
10519 block_group->key.objectid);
10520 btrfs_put_block_group(block_group);
10521 spin_lock(&trans->transaction->dirty_bgs_lock);
10522 }
10523
10524 if (!list_empty(&block_group->dirty_list)) {
10525 list_del_init(&block_group->dirty_list);
10526 btrfs_put_block_group(block_group);
10527 }
10528 spin_unlock(&trans->transaction->dirty_bgs_lock);
10529 mutex_unlock(&trans->transaction->cache_write_mutex);
10530
10531 if (!IS_ERR(inode)) {
10532 ret = btrfs_orphan_add(trans, inode);
10533 if (ret) {
10534 btrfs_add_delayed_iput(inode);
10535 goto out;
10536 }
10537 clear_nlink(inode);
10538 /* One for the block groups ref */
10539 spin_lock(&block_group->lock);
10540 if (block_group->iref) {
10541 block_group->iref = 0;
10542 block_group->inode = NULL;
10543 spin_unlock(&block_group->lock);
10544 iput(inode);
10545 } else {
10546 spin_unlock(&block_group->lock);
10547 }
10548 /* One for our lookup ref */
10549 btrfs_add_delayed_iput(inode);
10550 }
10551
10552 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10553 key.offset = block_group->key.objectid;
10554 key.type = 0;
10555
10556 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10557 if (ret < 0)
10558 goto out;
10559 if (ret > 0)
10560 btrfs_release_path(path);
10561 if (ret == 0) {
10562 ret = btrfs_del_item(trans, tree_root, path);
10563 if (ret)
10564 goto out;
10565 btrfs_release_path(path);
10566 }
10567
10568 spin_lock(&root->fs_info->block_group_cache_lock);
10569 rb_erase(&block_group->cache_node,
10570 &root->fs_info->block_group_cache_tree);
10571 RB_CLEAR_NODE(&block_group->cache_node);
10572
10573 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10574 root->fs_info->first_logical_byte = (u64)-1;
10575 spin_unlock(&root->fs_info->block_group_cache_lock);
10576
10577 down_write(&block_group->space_info->groups_sem);
10578 /*
10579 * we must use list_del_init so people can check to see if they
10580 * are still on the list after taking the semaphore
10581 */
10582 list_del_init(&block_group->list);
10583 if (list_empty(&block_group->space_info->block_groups[index])) {
10584 kobj = block_group->space_info->block_group_kobjs[index];
10585 block_group->space_info->block_group_kobjs[index] = NULL;
10586 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10587 }
10588 up_write(&block_group->space_info->groups_sem);
10589 if (kobj) {
10590 kobject_del(kobj);
10591 kobject_put(kobj);
10592 }
10593
10594 if (block_group->has_caching_ctl)
10595 caching_ctl = get_caching_control(block_group);
10596 if (block_group->cached == BTRFS_CACHE_STARTED)
10597 wait_block_group_cache_done(block_group);
10598 if (block_group->has_caching_ctl) {
10599 down_write(&root->fs_info->commit_root_sem);
10600 if (!caching_ctl) {
10601 struct btrfs_caching_control *ctl;
10602
10603 list_for_each_entry(ctl,
10604 &root->fs_info->caching_block_groups, list)
10605 if (ctl->block_group == block_group) {
10606 caching_ctl = ctl;
10607 atomic_inc(&caching_ctl->count);
10608 break;
10609 }
10610 }
10611 if (caching_ctl)
10612 list_del_init(&caching_ctl->list);
10613 up_write(&root->fs_info->commit_root_sem);
10614 if (caching_ctl) {
10615 /* Once for the caching bgs list and once for us. */
10616 put_caching_control(caching_ctl);
10617 put_caching_control(caching_ctl);
10618 }
10619 }
10620
10621 spin_lock(&trans->transaction->dirty_bgs_lock);
10622 if (!list_empty(&block_group->dirty_list)) {
10623 WARN_ON(1);
10624 }
10625 if (!list_empty(&block_group->io_list)) {
10626 WARN_ON(1);
10627 }
10628 spin_unlock(&trans->transaction->dirty_bgs_lock);
10629 btrfs_remove_free_space_cache(block_group);
10630
10631 spin_lock(&block_group->space_info->lock);
10632 list_del_init(&block_group->ro_list);
10633
10634 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10635 WARN_ON(block_group->space_info->total_bytes
10636 < block_group->key.offset);
10637 WARN_ON(block_group->space_info->bytes_readonly
10638 < block_group->key.offset);
10639 WARN_ON(block_group->space_info->disk_total
10640 < block_group->key.offset * factor);
10641 }
10642 block_group->space_info->total_bytes -= block_group->key.offset;
10643 block_group->space_info->bytes_readonly -= block_group->key.offset;
10644 block_group->space_info->disk_total -= block_group->key.offset * factor;
10645
10646 spin_unlock(&block_group->space_info->lock);
10647
10648 memcpy(&key, &block_group->key, sizeof(key));
10649
10650 lock_chunks(root);
10651 if (!list_empty(&em->list)) {
10652 /* We're in the transaction->pending_chunks list. */
10653 free_extent_map(em);
10654 }
10655 spin_lock(&block_group->lock);
10656 block_group->removed = 1;
10657 /*
10658 * At this point trimming can't start on this block group, because we
10659 * removed the block group from the tree fs_info->block_group_cache_tree
10660 * so no one can't find it anymore and even if someone already got this
10661 * block group before we removed it from the rbtree, they have already
10662 * incremented block_group->trimming - if they didn't, they won't find
10663 * any free space entries because we already removed them all when we
10664 * called btrfs_remove_free_space_cache().
10665 *
10666 * And we must not remove the extent map from the fs_info->mapping_tree
10667 * to prevent the same logical address range and physical device space
10668 * ranges from being reused for a new block group. This is because our
10669 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10670 * completely transactionless, so while it is trimming a range the
10671 * currently running transaction might finish and a new one start,
10672 * allowing for new block groups to be created that can reuse the same
10673 * physical device locations unless we take this special care.
10674 *
10675 * There may also be an implicit trim operation if the file system
10676 * is mounted with -odiscard. The same protections must remain
10677 * in place until the extents have been discarded completely when
10678 * the transaction commit has completed.
10679 */
10680 remove_em = (atomic_read(&block_group->trimming) == 0);
10681 /*
10682 * Make sure a trimmer task always sees the em in the pinned_chunks list
10683 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10684 * before checking block_group->removed).
10685 */
10686 if (!remove_em) {
10687 /*
10688 * Our em might be in trans->transaction->pending_chunks which
10689 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10690 * and so is the fs_info->pinned_chunks list.
10691 *
10692 * So at this point we must be holding the chunk_mutex to avoid
10693 * any races with chunk allocation (more specifically at
10694 * volumes.c:contains_pending_extent()), to ensure it always
10695 * sees the em, either in the pending_chunks list or in the
10696 * pinned_chunks list.
10697 */
10698 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10699 }
10700 spin_unlock(&block_group->lock);
10701
10702 if (remove_em) {
10703 struct extent_map_tree *em_tree;
10704
10705 em_tree = &root->fs_info->mapping_tree.map_tree;
10706 write_lock(&em_tree->lock);
10707 /*
10708 * The em might be in the pending_chunks list, so make sure the
10709 * chunk mutex is locked, since remove_extent_mapping() will
10710 * delete us from that list.
10711 */
10712 remove_extent_mapping(em_tree, em);
10713 write_unlock(&em_tree->lock);
10714 /* once for the tree */
10715 free_extent_map(em);
10716 }
10717
10718 unlock_chunks(root);
10719
10720 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10721 if (ret)
10722 goto out;
10723
10724 btrfs_put_block_group(block_group);
10725 btrfs_put_block_group(block_group);
10726
10727 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10728 if (ret > 0)
10729 ret = -EIO;
10730 if (ret < 0)
10731 goto out;
10732
10733 ret = btrfs_del_item(trans, root, path);
10734 out:
10735 btrfs_free_path(path);
10736 return ret;
10737 }
10738
10739 struct btrfs_trans_handle *
10740 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10741 const u64 chunk_offset)
10742 {
10743 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10744 struct extent_map *em;
10745 struct map_lookup *map;
10746 unsigned int num_items;
10747
10748 read_lock(&em_tree->lock);
10749 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10750 read_unlock(&em_tree->lock);
10751 ASSERT(em && em->start == chunk_offset);
10752
10753 /*
10754 * We need to reserve 3 + N units from the metadata space info in order
10755 * to remove a block group (done at btrfs_remove_chunk() and at
10756 * btrfs_remove_block_group()), which are used for:
10757 *
10758 * 1 unit for adding the free space inode's orphan (located in the tree
10759 * of tree roots).
10760 * 1 unit for deleting the block group item (located in the extent
10761 * tree).
10762 * 1 unit for deleting the free space item (located in tree of tree
10763 * roots).
10764 * N units for deleting N device extent items corresponding to each
10765 * stripe (located in the device tree).
10766 *
10767 * In order to remove a block group we also need to reserve units in the
10768 * system space info in order to update the chunk tree (update one or
10769 * more device items and remove one chunk item), but this is done at
10770 * btrfs_remove_chunk() through a call to check_system_chunk().
10771 */
10772 map = em->map_lookup;
10773 num_items = 3 + map->num_stripes;
10774 free_extent_map(em);
10775
10776 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10777 num_items, 1);
10778 }
10779
10780 /*
10781 * Process the unused_bgs list and remove any that don't have any allocated
10782 * space inside of them.
10783 */
10784 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10785 {
10786 struct btrfs_block_group_cache *block_group;
10787 struct btrfs_space_info *space_info;
10788 struct btrfs_root *root = fs_info->extent_root;
10789 struct btrfs_trans_handle *trans;
10790 int ret = 0;
10791
10792 if (!fs_info->open)
10793 return;
10794
10795 spin_lock(&fs_info->unused_bgs_lock);
10796 while (!list_empty(&fs_info->unused_bgs)) {
10797 u64 start, end;
10798 int trimming;
10799
10800 block_group = list_first_entry(&fs_info->unused_bgs,
10801 struct btrfs_block_group_cache,
10802 bg_list);
10803 list_del_init(&block_group->bg_list);
10804
10805 space_info = block_group->space_info;
10806
10807 if (ret || btrfs_mixed_space_info(space_info)) {
10808 btrfs_put_block_group(block_group);
10809 continue;
10810 }
10811 spin_unlock(&fs_info->unused_bgs_lock);
10812
10813 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10814
10815 /* Don't want to race with allocators so take the groups_sem */
10816 down_write(&space_info->groups_sem);
10817 spin_lock(&block_group->lock);
10818 if (block_group->reserved ||
10819 btrfs_block_group_used(&block_group->item) ||
10820 block_group->ro ||
10821 list_is_singular(&block_group->list)) {
10822 /*
10823 * We want to bail if we made new allocations or have
10824 * outstanding allocations in this block group. We do
10825 * the ro check in case balance is currently acting on
10826 * this block group.
10827 */
10828 spin_unlock(&block_group->lock);
10829 up_write(&space_info->groups_sem);
10830 goto next;
10831 }
10832 spin_unlock(&block_group->lock);
10833
10834 /* We don't want to force the issue, only flip if it's ok. */
10835 ret = inc_block_group_ro(block_group, 0);
10836 up_write(&space_info->groups_sem);
10837 if (ret < 0) {
10838 ret = 0;
10839 goto next;
10840 }
10841
10842 /*
10843 * Want to do this before we do anything else so we can recover
10844 * properly if we fail to join the transaction.
10845 */
10846 trans = btrfs_start_trans_remove_block_group(fs_info,
10847 block_group->key.objectid);
10848 if (IS_ERR(trans)) {
10849 btrfs_dec_block_group_ro(root, block_group);
10850 ret = PTR_ERR(trans);
10851 goto next;
10852 }
10853
10854 /*
10855 * We could have pending pinned extents for this block group,
10856 * just delete them, we don't care about them anymore.
10857 */
10858 start = block_group->key.objectid;
10859 end = start + block_group->key.offset - 1;
10860 /*
10861 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10862 * btrfs_finish_extent_commit(). If we are at transaction N,
10863 * another task might be running finish_extent_commit() for the
10864 * previous transaction N - 1, and have seen a range belonging
10865 * to the block group in freed_extents[] before we were able to
10866 * clear the whole block group range from freed_extents[]. This
10867 * means that task can lookup for the block group after we
10868 * unpinned it from freed_extents[] and removed it, leading to
10869 * a BUG_ON() at btrfs_unpin_extent_range().
10870 */
10871 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10872 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10873 EXTENT_DIRTY);
10874 if (ret) {
10875 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10876 btrfs_dec_block_group_ro(root, block_group);
10877 goto end_trans;
10878 }
10879 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10880 EXTENT_DIRTY);
10881 if (ret) {
10882 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10883 btrfs_dec_block_group_ro(root, block_group);
10884 goto end_trans;
10885 }
10886 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10887
10888 /* Reset pinned so btrfs_put_block_group doesn't complain */
10889 spin_lock(&space_info->lock);
10890 spin_lock(&block_group->lock);
10891
10892 space_info->bytes_pinned -= block_group->pinned;
10893 space_info->bytes_readonly += block_group->pinned;
10894 percpu_counter_add(&space_info->total_bytes_pinned,
10895 -block_group->pinned);
10896 block_group->pinned = 0;
10897
10898 spin_unlock(&block_group->lock);
10899 spin_unlock(&space_info->lock);
10900
10901 /* DISCARD can flip during remount */
10902 trimming = btrfs_test_opt(root->fs_info, DISCARD);
10903
10904 /* Implicit trim during transaction commit. */
10905 if (trimming)
10906 btrfs_get_block_group_trimming(block_group);
10907
10908 /*
10909 * Btrfs_remove_chunk will abort the transaction if things go
10910 * horribly wrong.
10911 */
10912 ret = btrfs_remove_chunk(trans, root,
10913 block_group->key.objectid);
10914
10915 if (ret) {
10916 if (trimming)
10917 btrfs_put_block_group_trimming(block_group);
10918 goto end_trans;
10919 }
10920
10921 /*
10922 * If we're not mounted with -odiscard, we can just forget
10923 * about this block group. Otherwise we'll need to wait
10924 * until transaction commit to do the actual discard.
10925 */
10926 if (trimming) {
10927 spin_lock(&fs_info->unused_bgs_lock);
10928 /*
10929 * A concurrent scrub might have added us to the list
10930 * fs_info->unused_bgs, so use a list_move operation
10931 * to add the block group to the deleted_bgs list.
10932 */
10933 list_move(&block_group->bg_list,
10934 &trans->transaction->deleted_bgs);
10935 spin_unlock(&fs_info->unused_bgs_lock);
10936 btrfs_get_block_group(block_group);
10937 }
10938 end_trans:
10939 btrfs_end_transaction(trans, root);
10940 next:
10941 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10942 btrfs_put_block_group(block_group);
10943 spin_lock(&fs_info->unused_bgs_lock);
10944 }
10945 spin_unlock(&fs_info->unused_bgs_lock);
10946 }
10947
10948 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10949 {
10950 struct btrfs_space_info *space_info;
10951 struct btrfs_super_block *disk_super;
10952 u64 features;
10953 u64 flags;
10954 int mixed = 0;
10955 int ret;
10956
10957 disk_super = fs_info->super_copy;
10958 if (!btrfs_super_root(disk_super))
10959 return -EINVAL;
10960
10961 features = btrfs_super_incompat_flags(disk_super);
10962 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10963 mixed = 1;
10964
10965 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10966 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10967 if (ret)
10968 goto out;
10969
10970 if (mixed) {
10971 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10972 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10973 } else {
10974 flags = BTRFS_BLOCK_GROUP_METADATA;
10975 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10976 if (ret)
10977 goto out;
10978
10979 flags = BTRFS_BLOCK_GROUP_DATA;
10980 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
10981 }
10982 out:
10983 return ret;
10984 }
10985
10986 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10987 {
10988 return unpin_extent_range(root, start, end, false);
10989 }
10990
10991 /*
10992 * It used to be that old block groups would be left around forever.
10993 * Iterating over them would be enough to trim unused space. Since we
10994 * now automatically remove them, we also need to iterate over unallocated
10995 * space.
10996 *
10997 * We don't want a transaction for this since the discard may take a
10998 * substantial amount of time. We don't require that a transaction be
10999 * running, but we do need to take a running transaction into account
11000 * to ensure that we're not discarding chunks that were released in
11001 * the current transaction.
11002 *
11003 * Holding the chunks lock will prevent other threads from allocating
11004 * or releasing chunks, but it won't prevent a running transaction
11005 * from committing and releasing the memory that the pending chunks
11006 * list head uses. For that, we need to take a reference to the
11007 * transaction.
11008 */
11009 static int btrfs_trim_free_extents(struct btrfs_device *device,
11010 u64 minlen, u64 *trimmed)
11011 {
11012 u64 start = 0, len = 0;
11013 int ret;
11014
11015 *trimmed = 0;
11016
11017 /* Not writeable = nothing to do. */
11018 if (!device->writeable)
11019 return 0;
11020
11021 /* No free space = nothing to do. */
11022 if (device->total_bytes <= device->bytes_used)
11023 return 0;
11024
11025 ret = 0;
11026
11027 while (1) {
11028 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11029 struct btrfs_transaction *trans;
11030 u64 bytes;
11031
11032 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11033 if (ret)
11034 return ret;
11035
11036 down_read(&fs_info->commit_root_sem);
11037
11038 spin_lock(&fs_info->trans_lock);
11039 trans = fs_info->running_transaction;
11040 if (trans)
11041 atomic_inc(&trans->use_count);
11042 spin_unlock(&fs_info->trans_lock);
11043
11044 ret = find_free_dev_extent_start(trans, device, minlen, start,
11045 &start, &len);
11046 if (trans)
11047 btrfs_put_transaction(trans);
11048
11049 if (ret) {
11050 up_read(&fs_info->commit_root_sem);
11051 mutex_unlock(&fs_info->chunk_mutex);
11052 if (ret == -ENOSPC)
11053 ret = 0;
11054 break;
11055 }
11056
11057 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11058 up_read(&fs_info->commit_root_sem);
11059 mutex_unlock(&fs_info->chunk_mutex);
11060
11061 if (ret)
11062 break;
11063
11064 start += len;
11065 *trimmed += bytes;
11066
11067 if (fatal_signal_pending(current)) {
11068 ret = -ERESTARTSYS;
11069 break;
11070 }
11071
11072 cond_resched();
11073 }
11074
11075 return ret;
11076 }
11077
11078 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11079 {
11080 struct btrfs_fs_info *fs_info = root->fs_info;
11081 struct btrfs_block_group_cache *cache = NULL;
11082 struct btrfs_device *device;
11083 struct list_head *devices;
11084 u64 group_trimmed;
11085 u64 start;
11086 u64 end;
11087 u64 trimmed = 0;
11088 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11089 int ret = 0;
11090
11091 /*
11092 * try to trim all FS space, our block group may start from non-zero.
11093 */
11094 if (range->len == total_bytes)
11095 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11096 else
11097 cache = btrfs_lookup_block_group(fs_info, range->start);
11098
11099 while (cache) {
11100 if (cache->key.objectid >= (range->start + range->len)) {
11101 btrfs_put_block_group(cache);
11102 break;
11103 }
11104
11105 start = max(range->start, cache->key.objectid);
11106 end = min(range->start + range->len,
11107 cache->key.objectid + cache->key.offset);
11108
11109 if (end - start >= range->minlen) {
11110 if (!block_group_cache_done(cache)) {
11111 ret = cache_block_group(cache, 0);
11112 if (ret) {
11113 btrfs_put_block_group(cache);
11114 break;
11115 }
11116 ret = wait_block_group_cache_done(cache);
11117 if (ret) {
11118 btrfs_put_block_group(cache);
11119 break;
11120 }
11121 }
11122 ret = btrfs_trim_block_group(cache,
11123 &group_trimmed,
11124 start,
11125 end,
11126 range->minlen);
11127
11128 trimmed += group_trimmed;
11129 if (ret) {
11130 btrfs_put_block_group(cache);
11131 break;
11132 }
11133 }
11134
11135 cache = next_block_group(fs_info->tree_root, cache);
11136 }
11137
11138 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11139 devices = &root->fs_info->fs_devices->alloc_list;
11140 list_for_each_entry(device, devices, dev_alloc_list) {
11141 ret = btrfs_trim_free_extents(device, range->minlen,
11142 &group_trimmed);
11143 if (ret)
11144 break;
11145
11146 trimmed += group_trimmed;
11147 }
11148 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11149
11150 range->len = trimmed;
11151 return ret;
11152 }
11153
11154 /*
11155 * btrfs_{start,end}_write_no_snapshoting() are similar to
11156 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11157 * data into the page cache through nocow before the subvolume is snapshoted,
11158 * but flush the data into disk after the snapshot creation, or to prevent
11159 * operations while snapshoting is ongoing and that cause the snapshot to be
11160 * inconsistent (writes followed by expanding truncates for example).
11161 */
11162 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11163 {
11164 percpu_counter_dec(&root->subv_writers->counter);
11165 /*
11166 * Make sure counter is updated before we wake up waiters.
11167 */
11168 smp_mb();
11169 if (waitqueue_active(&root->subv_writers->wait))
11170 wake_up(&root->subv_writers->wait);
11171 }
11172
11173 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11174 {
11175 if (atomic_read(&root->will_be_snapshoted))
11176 return 0;
11177
11178 percpu_counter_inc(&root->subv_writers->counter);
11179 /*
11180 * Make sure counter is updated before we check for snapshot creation.
11181 */
11182 smp_mb();
11183 if (atomic_read(&root->will_be_snapshoted)) {
11184 btrfs_end_write_no_snapshoting(root);
11185 return 0;
11186 }
11187 return 1;
11188 }
11189
11190 static int wait_snapshoting_atomic_t(atomic_t *a)
11191 {
11192 schedule();
11193 return 0;
11194 }
11195
11196 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11197 {
11198 while (true) {
11199 int ret;
11200
11201 ret = btrfs_start_write_no_snapshoting(root);
11202 if (ret)
11203 break;
11204 wait_on_atomic_t(&root->will_be_snapshoted,
11205 wait_snapshoting_atomic_t,
11206 TASK_UNINTERRUPTIBLE);
11207 }
11208 }