]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/extent-tree.c
spi: Merge up old fix
[thirdparty/linux.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45
46 #undef SCRAMBLE_DELAYED_REFS
47
48
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 struct btrfs_delayed_ref_node *node, u64 parent,
51 u64 root_objectid, u64 owner_objectid,
52 u64 owner_offset, int refs_to_drop,
53 struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 struct extent_buffer *leaf,
56 struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 u64 parent, u64 root_objectid,
59 u64 flags, u64 owner, u64 offset,
60 struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 struct btrfs_delayed_ref_node *node,
63 struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 struct btrfs_key *key);
66
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 return (cache->flags & bits) == bits;
70 }
71
72 /* simple helper to search for an existing data extent at a given offset */
73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 int ret;
77 struct btrfs_key key;
78 struct btrfs_path *path;
79
80 path = btrfs_alloc_path();
81 if (!path)
82 return -ENOMEM;
83
84 key.objectid = start;
85 key.offset = len;
86 key.type = BTRFS_EXTENT_ITEM_KEY;
87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 btrfs_free_path(path);
89 return ret;
90 }
91
92 /*
93 * helper function to lookup reference count and flags of a tree block.
94 *
95 * the head node for delayed ref is used to store the sum of all the
96 * reference count modifications queued up in the rbtree. the head
97 * node may also store the extent flags to set. This way you can check
98 * to see what the reference count and extent flags would be if all of
99 * the delayed refs are not processed.
100 */
101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 struct btrfs_fs_info *fs_info, u64 bytenr,
103 u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 struct btrfs_root *extent_root;
106 struct btrfs_delayed_ref_head *head;
107 struct btrfs_delayed_ref_root *delayed_refs;
108 struct btrfs_path *path;
109 struct btrfs_extent_item *ei;
110 struct extent_buffer *leaf;
111 struct btrfs_key key;
112 u32 item_size;
113 u64 num_refs;
114 u64 extent_flags;
115 int ret;
116
117 /*
118 * If we don't have skinny metadata, don't bother doing anything
119 * different
120 */
121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 offset = fs_info->nodesize;
123 metadata = 0;
124 }
125
126 path = btrfs_alloc_path();
127 if (!path)
128 return -ENOMEM;
129
130 if (!trans) {
131 path->skip_locking = 1;
132 path->search_commit_root = 1;
133 }
134
135 search_again:
136 key.objectid = bytenr;
137 key.offset = offset;
138 if (metadata)
139 key.type = BTRFS_METADATA_ITEM_KEY;
140 else
141 key.type = BTRFS_EXTENT_ITEM_KEY;
142
143 extent_root = btrfs_extent_root(fs_info, bytenr);
144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 if (ret < 0)
146 goto out_free;
147
148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 if (path->slots[0]) {
150 path->slots[0]--;
151 btrfs_item_key_to_cpu(path->nodes[0], &key,
152 path->slots[0]);
153 if (key.objectid == bytenr &&
154 key.type == BTRFS_EXTENT_ITEM_KEY &&
155 key.offset == fs_info->nodesize)
156 ret = 0;
157 }
158 }
159
160 if (ret == 0) {
161 leaf = path->nodes[0];
162 item_size = btrfs_item_size(leaf, path->slots[0]);
163 if (item_size >= sizeof(*ei)) {
164 ei = btrfs_item_ptr(leaf, path->slots[0],
165 struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 extent_flags = btrfs_extent_flags(leaf, ei);
168 } else {
169 ret = -EUCLEAN;
170 btrfs_err(fs_info,
171 "unexpected extent item size, has %u expect >= %zu",
172 item_size, sizeof(*ei));
173 if (trans)
174 btrfs_abort_transaction(trans, ret);
175 else
176 btrfs_handle_fs_error(fs_info, ret, NULL);
177
178 goto out_free;
179 }
180
181 BUG_ON(num_refs == 0);
182 } else {
183 num_refs = 0;
184 extent_flags = 0;
185 ret = 0;
186 }
187
188 if (!trans)
189 goto out;
190
191 delayed_refs = &trans->transaction->delayed_refs;
192 spin_lock(&delayed_refs->lock);
193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 if (head) {
195 if (!mutex_trylock(&head->mutex)) {
196 refcount_inc(&head->refs);
197 spin_unlock(&delayed_refs->lock);
198
199 btrfs_release_path(path);
200
201 /*
202 * Mutex was contended, block until it's released and try
203 * again
204 */
205 mutex_lock(&head->mutex);
206 mutex_unlock(&head->mutex);
207 btrfs_put_delayed_ref_head(head);
208 goto search_again;
209 }
210 spin_lock(&head->lock);
211 if (head->extent_op && head->extent_op->update_flags)
212 extent_flags |= head->extent_op->flags_to_set;
213 else
214 BUG_ON(num_refs == 0);
215
216 num_refs += head->ref_mod;
217 spin_unlock(&head->lock);
218 mutex_unlock(&head->mutex);
219 }
220 spin_unlock(&delayed_refs->lock);
221 out:
222 WARN_ON(num_refs == 0);
223 if (refs)
224 *refs = num_refs;
225 if (flags)
226 *flags = extent_flags;
227 out_free:
228 btrfs_free_path(path);
229 return ret;
230 }
231
232 /*
233 * Back reference rules. Back refs have three main goals:
234 *
235 * 1) differentiate between all holders of references to an extent so that
236 * when a reference is dropped we can make sure it was a valid reference
237 * before freeing the extent.
238 *
239 * 2) Provide enough information to quickly find the holders of an extent
240 * if we notice a given block is corrupted or bad.
241 *
242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243 * maintenance. This is actually the same as #2, but with a slightly
244 * different use case.
245 *
246 * There are two kinds of back refs. The implicit back refs is optimized
247 * for pointers in non-shared tree blocks. For a given pointer in a block,
248 * back refs of this kind provide information about the block's owner tree
249 * and the pointer's key. These information allow us to find the block by
250 * b-tree searching. The full back refs is for pointers in tree blocks not
251 * referenced by their owner trees. The location of tree block is recorded
252 * in the back refs. Actually the full back refs is generic, and can be
253 * used in all cases the implicit back refs is used. The major shortcoming
254 * of the full back refs is its overhead. Every time a tree block gets
255 * COWed, we have to update back refs entry for all pointers in it.
256 *
257 * For a newly allocated tree block, we use implicit back refs for
258 * pointers in it. This means most tree related operations only involve
259 * implicit back refs. For a tree block created in old transaction, the
260 * only way to drop a reference to it is COW it. So we can detect the
261 * event that tree block loses its owner tree's reference and do the
262 * back refs conversion.
263 *
264 * When a tree block is COWed through a tree, there are four cases:
265 *
266 * The reference count of the block is one and the tree is the block's
267 * owner tree. Nothing to do in this case.
268 *
269 * The reference count of the block is one and the tree is not the
270 * block's owner tree. In this case, full back refs is used for pointers
271 * in the block. Remove these full back refs, add implicit back refs for
272 * every pointers in the new block.
273 *
274 * The reference count of the block is greater than one and the tree is
275 * the block's owner tree. In this case, implicit back refs is used for
276 * pointers in the block. Add full back refs for every pointers in the
277 * block, increase lower level extents' reference counts. The original
278 * implicit back refs are entailed to the new block.
279 *
280 * The reference count of the block is greater than one and the tree is
281 * not the block's owner tree. Add implicit back refs for every pointer in
282 * the new block, increase lower level extents' reference count.
283 *
284 * Back Reference Key composing:
285 *
286 * The key objectid corresponds to the first byte in the extent,
287 * The key type is used to differentiate between types of back refs.
288 * There are different meanings of the key offset for different types
289 * of back refs.
290 *
291 * File extents can be referenced by:
292 *
293 * - multiple snapshots, subvolumes, or different generations in one subvol
294 * - different files inside a single subvolume
295 * - different offsets inside a file (bookend extents in file.c)
296 *
297 * The extent ref structure for the implicit back refs has fields for:
298 *
299 * - Objectid of the subvolume root
300 * - objectid of the file holding the reference
301 * - original offset in the file
302 * - how many bookend extents
303 *
304 * The key offset for the implicit back refs is hash of the first
305 * three fields.
306 *
307 * The extent ref structure for the full back refs has field for:
308 *
309 * - number of pointers in the tree leaf
310 *
311 * The key offset for the implicit back refs is the first byte of
312 * the tree leaf
313 *
314 * When a file extent is allocated, The implicit back refs is used.
315 * the fields are filled in:
316 *
317 * (root_key.objectid, inode objectid, offset in file, 1)
318 *
319 * When a file extent is removed file truncation, we find the
320 * corresponding implicit back refs and check the following fields:
321 *
322 * (btrfs_header_owner(leaf), inode objectid, offset in file)
323 *
324 * Btree extents can be referenced by:
325 *
326 * - Different subvolumes
327 *
328 * Both the implicit back refs and the full back refs for tree blocks
329 * only consist of key. The key offset for the implicit back refs is
330 * objectid of block's owner tree. The key offset for the full back refs
331 * is the first byte of parent block.
332 *
333 * When implicit back refs is used, information about the lowest key and
334 * level of the tree block are required. These information are stored in
335 * tree block info structure.
336 */
337
338 /*
339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342 */
343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 struct btrfs_extent_inline_ref *iref,
345 enum btrfs_inline_ref_type is_data)
346 {
347 int type = btrfs_extent_inline_ref_type(eb, iref);
348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349
350 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 type == BTRFS_SHARED_DATA_REF_KEY ||
353 type == BTRFS_EXTENT_DATA_REF_KEY) {
354 if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 return type;
357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 ASSERT(eb->fs_info);
359 /*
360 * Every shared one has parent tree block,
361 * which must be aligned to sector size.
362 */
363 if (offset &&
364 IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 return type;
366 }
367 } else if (is_data == BTRFS_REF_TYPE_DATA) {
368 if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 return type;
370 if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 ASSERT(eb->fs_info);
372 /*
373 * Every shared one has parent tree block,
374 * which must be aligned to sector size.
375 */
376 if (offset &&
377 IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 return type;
379 }
380 } else {
381 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 return type;
383 }
384 }
385
386 WARN_ON(1);
387 btrfs_print_leaf(eb);
388 btrfs_err(eb->fs_info,
389 "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 eb->start, (unsigned long)iref, type);
391
392 return BTRFS_REF_TYPE_INVALID;
393 }
394
395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 u32 high_crc = ~(u32)0;
398 u32 low_crc = ~(u32)0;
399 __le64 lenum;
400
401 lenum = cpu_to_le64(root_objectid);
402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 lenum = cpu_to_le64(owner);
404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 lenum = cpu_to_le64(offset);
406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407
408 return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410
411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 struct btrfs_extent_data_ref *ref)
413 {
414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 btrfs_extent_data_ref_objectid(leaf, ref),
416 btrfs_extent_data_ref_offset(leaf, ref));
417 }
418
419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 struct btrfs_extent_data_ref *ref,
421 u64 root_objectid, u64 owner, u64 offset)
422 {
423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 return 0;
427 return 1;
428 }
429
430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 struct btrfs_path *path,
432 u64 bytenr, u64 parent,
433 u64 root_objectid,
434 u64 owner, u64 offset)
435 {
436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 struct btrfs_key key;
438 struct btrfs_extent_data_ref *ref;
439 struct extent_buffer *leaf;
440 u32 nritems;
441 int ret;
442 int recow;
443 int err = -ENOENT;
444
445 key.objectid = bytenr;
446 if (parent) {
447 key.type = BTRFS_SHARED_DATA_REF_KEY;
448 key.offset = parent;
449 } else {
450 key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 key.offset = hash_extent_data_ref(root_objectid,
452 owner, offset);
453 }
454 again:
455 recow = 0;
456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 if (ret < 0) {
458 err = ret;
459 goto fail;
460 }
461
462 if (parent) {
463 if (!ret)
464 return 0;
465 goto fail;
466 }
467
468 leaf = path->nodes[0];
469 nritems = btrfs_header_nritems(leaf);
470 while (1) {
471 if (path->slots[0] >= nritems) {
472 ret = btrfs_next_leaf(root, path);
473 if (ret < 0)
474 err = ret;
475 if (ret)
476 goto fail;
477
478 leaf = path->nodes[0];
479 nritems = btrfs_header_nritems(leaf);
480 recow = 1;
481 }
482
483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 if (key.objectid != bytenr ||
485 key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 goto fail;
487
488 ref = btrfs_item_ptr(leaf, path->slots[0],
489 struct btrfs_extent_data_ref);
490
491 if (match_extent_data_ref(leaf, ref, root_objectid,
492 owner, offset)) {
493 if (recow) {
494 btrfs_release_path(path);
495 goto again;
496 }
497 err = 0;
498 break;
499 }
500 path->slots[0]++;
501 }
502 fail:
503 return err;
504 }
505
506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 struct btrfs_path *path,
508 u64 bytenr, u64 parent,
509 u64 root_objectid, u64 owner,
510 u64 offset, int refs_to_add)
511 {
512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 struct btrfs_key key;
514 struct extent_buffer *leaf;
515 u32 size;
516 u32 num_refs;
517 int ret;
518
519 key.objectid = bytenr;
520 if (parent) {
521 key.type = BTRFS_SHARED_DATA_REF_KEY;
522 key.offset = parent;
523 size = sizeof(struct btrfs_shared_data_ref);
524 } else {
525 key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 key.offset = hash_extent_data_ref(root_objectid,
527 owner, offset);
528 size = sizeof(struct btrfs_extent_data_ref);
529 }
530
531 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 if (ret && ret != -EEXIST)
533 goto fail;
534
535 leaf = path->nodes[0];
536 if (parent) {
537 struct btrfs_shared_data_ref *ref;
538 ref = btrfs_item_ptr(leaf, path->slots[0],
539 struct btrfs_shared_data_ref);
540 if (ret == 0) {
541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 } else {
543 num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 num_refs += refs_to_add;
545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 }
547 } else {
548 struct btrfs_extent_data_ref *ref;
549 while (ret == -EEXIST) {
550 ref = btrfs_item_ptr(leaf, path->slots[0],
551 struct btrfs_extent_data_ref);
552 if (match_extent_data_ref(leaf, ref, root_objectid,
553 owner, offset))
554 break;
555 btrfs_release_path(path);
556 key.offset++;
557 ret = btrfs_insert_empty_item(trans, root, path, &key,
558 size);
559 if (ret && ret != -EEXIST)
560 goto fail;
561
562 leaf = path->nodes[0];
563 }
564 ref = btrfs_item_ptr(leaf, path->slots[0],
565 struct btrfs_extent_data_ref);
566 if (ret == 0) {
567 btrfs_set_extent_data_ref_root(leaf, ref,
568 root_objectid);
569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 } else {
573 num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 num_refs += refs_to_add;
575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 }
577 }
578 btrfs_mark_buffer_dirty(leaf);
579 ret = 0;
580 fail:
581 btrfs_release_path(path);
582 return ret;
583 }
584
585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 int refs_to_drop)
589 {
590 struct btrfs_key key;
591 struct btrfs_extent_data_ref *ref1 = NULL;
592 struct btrfs_shared_data_ref *ref2 = NULL;
593 struct extent_buffer *leaf;
594 u32 num_refs = 0;
595 int ret = 0;
596
597 leaf = path->nodes[0];
598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599
600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 struct btrfs_extent_data_ref);
603 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 struct btrfs_shared_data_ref);
607 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 } else {
609 btrfs_err(trans->fs_info,
610 "unrecognized backref key (%llu %u %llu)",
611 key.objectid, key.type, key.offset);
612 btrfs_abort_transaction(trans, -EUCLEAN);
613 return -EUCLEAN;
614 }
615
616 BUG_ON(num_refs < refs_to_drop);
617 num_refs -= refs_to_drop;
618
619 if (num_refs == 0) {
620 ret = btrfs_del_item(trans, root, path);
621 } else {
622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 btrfs_mark_buffer_dirty(leaf);
627 }
628 return ret;
629 }
630
631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 struct btrfs_extent_inline_ref *iref)
633 {
634 struct btrfs_key key;
635 struct extent_buffer *leaf;
636 struct btrfs_extent_data_ref *ref1;
637 struct btrfs_shared_data_ref *ref2;
638 u32 num_refs = 0;
639 int type;
640
641 leaf = path->nodes[0];
642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643
644 if (iref) {
645 /*
646 * If type is invalid, we should have bailed out earlier than
647 * this call.
648 */
649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 } else {
655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 }
658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 struct btrfs_extent_data_ref);
661 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 struct btrfs_shared_data_ref);
665 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 } else {
667 WARN_ON(1);
668 }
669 return num_refs;
670 }
671
672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 struct btrfs_path *path,
674 u64 bytenr, u64 parent,
675 u64 root_objectid)
676 {
677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 struct btrfs_key key;
679 int ret;
680
681 key.objectid = bytenr;
682 if (parent) {
683 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 key.offset = parent;
685 } else {
686 key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 key.offset = root_objectid;
688 }
689
690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 if (ret > 0)
692 ret = -ENOENT;
693 return ret;
694 }
695
696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 struct btrfs_path *path,
698 u64 bytenr, u64 parent,
699 u64 root_objectid)
700 {
701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 struct btrfs_key key;
703 int ret;
704
705 key.objectid = bytenr;
706 if (parent) {
707 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 key.offset = parent;
709 } else {
710 key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 key.offset = root_objectid;
712 }
713
714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 btrfs_release_path(path);
716 return ret;
717 }
718
719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 int type;
722 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 if (parent > 0)
724 type = BTRFS_SHARED_BLOCK_REF_KEY;
725 else
726 type = BTRFS_TREE_BLOCK_REF_KEY;
727 } else {
728 if (parent > 0)
729 type = BTRFS_SHARED_DATA_REF_KEY;
730 else
731 type = BTRFS_EXTENT_DATA_REF_KEY;
732 }
733 return type;
734 }
735
736 static int find_next_key(struct btrfs_path *path, int level,
737 struct btrfs_key *key)
738
739 {
740 for (; level < BTRFS_MAX_LEVEL; level++) {
741 if (!path->nodes[level])
742 break;
743 if (path->slots[level] + 1 >=
744 btrfs_header_nritems(path->nodes[level]))
745 continue;
746 if (level == 0)
747 btrfs_item_key_to_cpu(path->nodes[level], key,
748 path->slots[level] + 1);
749 else
750 btrfs_node_key_to_cpu(path->nodes[level], key,
751 path->slots[level] + 1);
752 return 0;
753 }
754 return 1;
755 }
756
757 /*
758 * look for inline back ref. if back ref is found, *ref_ret is set
759 * to the address of inline back ref, and 0 is returned.
760 *
761 * if back ref isn't found, *ref_ret is set to the address where it
762 * should be inserted, and -ENOENT is returned.
763 *
764 * if insert is true and there are too many inline back refs, the path
765 * points to the extent item, and -EAGAIN is returned.
766 *
767 * NOTE: inline back refs are ordered in the same way that back ref
768 * items in the tree are ordered.
769 */
770 static noinline_for_stack
771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 struct btrfs_path *path,
773 struct btrfs_extent_inline_ref **ref_ret,
774 u64 bytenr, u64 num_bytes,
775 u64 parent, u64 root_objectid,
776 u64 owner, u64 offset, int insert)
777 {
778 struct btrfs_fs_info *fs_info = trans->fs_info;
779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 struct btrfs_key key;
781 struct extent_buffer *leaf;
782 struct btrfs_extent_item *ei;
783 struct btrfs_extent_inline_ref *iref;
784 u64 flags;
785 u64 item_size;
786 unsigned long ptr;
787 unsigned long end;
788 int extra_size;
789 int type;
790 int want;
791 int ret;
792 int err = 0;
793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 int needed;
795
796 key.objectid = bytenr;
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 key.offset = num_bytes;
799
800 want = extent_ref_type(parent, owner);
801 if (insert) {
802 extra_size = btrfs_extent_inline_ref_size(want);
803 path->search_for_extension = 1;
804 path->keep_locks = 1;
805 } else
806 extra_size = -1;
807
808 /*
809 * Owner is our level, so we can just add one to get the level for the
810 * block we are interested in.
811 */
812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 key.type = BTRFS_METADATA_ITEM_KEY;
814 key.offset = owner;
815 }
816
817 again:
818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 if (ret < 0) {
820 err = ret;
821 goto out;
822 }
823
824 /*
825 * We may be a newly converted file system which still has the old fat
826 * extent entries for metadata, so try and see if we have one of those.
827 */
828 if (ret > 0 && skinny_metadata) {
829 skinny_metadata = false;
830 if (path->slots[0]) {
831 path->slots[0]--;
832 btrfs_item_key_to_cpu(path->nodes[0], &key,
833 path->slots[0]);
834 if (key.objectid == bytenr &&
835 key.type == BTRFS_EXTENT_ITEM_KEY &&
836 key.offset == num_bytes)
837 ret = 0;
838 }
839 if (ret) {
840 key.objectid = bytenr;
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842 key.offset = num_bytes;
843 btrfs_release_path(path);
844 goto again;
845 }
846 }
847
848 if (ret && !insert) {
849 err = -ENOENT;
850 goto out;
851 } else if (WARN_ON(ret)) {
852 btrfs_print_leaf(path->nodes[0]);
853 btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 bytenr, num_bytes, parent, root_objectid, owner,
856 offset);
857 err = -EIO;
858 goto out;
859 }
860
861 leaf = path->nodes[0];
862 item_size = btrfs_item_size(leaf, path->slots[0]);
863 if (unlikely(item_size < sizeof(*ei))) {
864 err = -EUCLEAN;
865 btrfs_err(fs_info,
866 "unexpected extent item size, has %llu expect >= %zu",
867 item_size, sizeof(*ei));
868 btrfs_abort_transaction(trans, err);
869 goto out;
870 }
871
872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 flags = btrfs_extent_flags(leaf, ei);
874
875 ptr = (unsigned long)(ei + 1);
876 end = (unsigned long)ei + item_size;
877
878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 ptr += sizeof(struct btrfs_tree_block_info);
880 BUG_ON(ptr > end);
881 }
882
883 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 needed = BTRFS_REF_TYPE_DATA;
885 else
886 needed = BTRFS_REF_TYPE_BLOCK;
887
888 err = -ENOENT;
889 while (1) {
890 if (ptr >= end) {
891 if (ptr > end) {
892 err = -EUCLEAN;
893 btrfs_print_leaf(path->nodes[0]);
894 btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 path->slots[0], root_objectid, owner, offset, parent);
897 }
898 break;
899 }
900 iref = (struct btrfs_extent_inline_ref *)ptr;
901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 if (type == BTRFS_REF_TYPE_INVALID) {
903 err = -EUCLEAN;
904 goto out;
905 }
906
907 if (want < type)
908 break;
909 if (want > type) {
910 ptr += btrfs_extent_inline_ref_size(type);
911 continue;
912 }
913
914 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 struct btrfs_extent_data_ref *dref;
916 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 if (match_extent_data_ref(leaf, dref, root_objectid,
918 owner, offset)) {
919 err = 0;
920 break;
921 }
922 if (hash_extent_data_ref_item(leaf, dref) <
923 hash_extent_data_ref(root_objectid, owner, offset))
924 break;
925 } else {
926 u64 ref_offset;
927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 if (parent > 0) {
929 if (parent == ref_offset) {
930 err = 0;
931 break;
932 }
933 if (ref_offset < parent)
934 break;
935 } else {
936 if (root_objectid == ref_offset) {
937 err = 0;
938 break;
939 }
940 if (ref_offset < root_objectid)
941 break;
942 }
943 }
944 ptr += btrfs_extent_inline_ref_size(type);
945 }
946 if (err == -ENOENT && insert) {
947 if (item_size + extra_size >=
948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 err = -EAGAIN;
950 goto out;
951 }
952 /*
953 * To add new inline back ref, we have to make sure
954 * there is no corresponding back ref item.
955 * For simplicity, we just do not add new inline back
956 * ref if there is any kind of item for this block
957 */
958 if (find_next_key(path, 0, &key) == 0 &&
959 key.objectid == bytenr &&
960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 err = -EAGAIN;
962 goto out;
963 }
964 }
965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 if (insert) {
968 path->keep_locks = 0;
969 path->search_for_extension = 0;
970 btrfs_unlock_up_safe(path, 1);
971 }
972 return err;
973 }
974
975 /*
976 * helper to add new inline back ref
977 */
978 static noinline_for_stack
979 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
980 struct btrfs_path *path,
981 struct btrfs_extent_inline_ref *iref,
982 u64 parent, u64 root_objectid,
983 u64 owner, u64 offset, int refs_to_add,
984 struct btrfs_delayed_extent_op *extent_op)
985 {
986 struct extent_buffer *leaf;
987 struct btrfs_extent_item *ei;
988 unsigned long ptr;
989 unsigned long end;
990 unsigned long item_offset;
991 u64 refs;
992 int size;
993 int type;
994
995 leaf = path->nodes[0];
996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 item_offset = (unsigned long)iref - (unsigned long)ei;
998
999 type = extent_ref_type(parent, owner);
1000 size = btrfs_extent_inline_ref_size(type);
1001
1002 btrfs_extend_item(path, size);
1003
1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 refs = btrfs_extent_refs(leaf, ei);
1006 refs += refs_to_add;
1007 btrfs_set_extent_refs(leaf, ei, refs);
1008 if (extent_op)
1009 __run_delayed_extent_op(extent_op, leaf, ei);
1010
1011 ptr = (unsigned long)ei + item_offset;
1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 if (ptr < end - size)
1014 memmove_extent_buffer(leaf, ptr + size, ptr,
1015 end - size - ptr);
1016
1017 iref = (struct btrfs_extent_inline_ref *)ptr;
1018 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 struct btrfs_extent_data_ref *dref;
1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 struct btrfs_shared_data_ref *sref;
1028 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 } else {
1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 }
1036 btrfs_mark_buffer_dirty(leaf);
1037 }
1038
1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 struct btrfs_path *path,
1041 struct btrfs_extent_inline_ref **ref_ret,
1042 u64 bytenr, u64 num_bytes, u64 parent,
1043 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 int ret;
1046
1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 num_bytes, parent, root_objectid,
1049 owner, offset, 0);
1050 if (ret != -ENOENT)
1051 return ret;
1052
1053 btrfs_release_path(path);
1054 *ref_ret = NULL;
1055
1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 root_objectid);
1059 } else {
1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 root_objectid, owner, offset);
1062 }
1063 return ret;
1064 }
1065
1066 /*
1067 * helper to update/remove inline back ref
1068 */
1069 static noinline_for_stack int update_inline_extent_backref(struct btrfs_path *path,
1070 struct btrfs_extent_inline_ref *iref,
1071 int refs_to_mod,
1072 struct btrfs_delayed_extent_op *extent_op)
1073 {
1074 struct extent_buffer *leaf = path->nodes[0];
1075 struct btrfs_fs_info *fs_info = leaf->fs_info;
1076 struct btrfs_extent_item *ei;
1077 struct btrfs_extent_data_ref *dref = NULL;
1078 struct btrfs_shared_data_ref *sref = NULL;
1079 unsigned long ptr;
1080 unsigned long end;
1081 u32 item_size;
1082 int size;
1083 int type;
1084 u64 refs;
1085
1086 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1087 refs = btrfs_extent_refs(leaf, ei);
1088 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1089 struct btrfs_key key;
1090 u32 extent_size;
1091
1092 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093 if (key.type == BTRFS_METADATA_ITEM_KEY)
1094 extent_size = fs_info->nodesize;
1095 else
1096 extent_size = key.offset;
1097 btrfs_print_leaf(leaf);
1098 btrfs_err(fs_info,
1099 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1100 key.objectid, extent_size, refs_to_mod, refs);
1101 return -EUCLEAN;
1102 }
1103 refs += refs_to_mod;
1104 btrfs_set_extent_refs(leaf, ei, refs);
1105 if (extent_op)
1106 __run_delayed_extent_op(extent_op, leaf, ei);
1107
1108 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1109 /*
1110 * Function btrfs_get_extent_inline_ref_type() has already printed
1111 * error messages.
1112 */
1113 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1114 return -EUCLEAN;
1115
1116 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1117 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1118 refs = btrfs_extent_data_ref_count(leaf, dref);
1119 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1120 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1121 refs = btrfs_shared_data_ref_count(leaf, sref);
1122 } else {
1123 refs = 1;
1124 /*
1125 * For tree blocks we can only drop one ref for it, and tree
1126 * blocks should not have refs > 1.
1127 *
1128 * Furthermore if we're inserting a new inline backref, we
1129 * won't reach this path either. That would be
1130 * setup_inline_extent_backref().
1131 */
1132 if (unlikely(refs_to_mod != -1)) {
1133 struct btrfs_key key;
1134
1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136
1137 btrfs_print_leaf(leaf);
1138 btrfs_err(fs_info,
1139 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1140 key.objectid, refs_to_mod);
1141 return -EUCLEAN;
1142 }
1143 }
1144
1145 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1146 struct btrfs_key key;
1147 u32 extent_size;
1148
1149 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1150 if (key.type == BTRFS_METADATA_ITEM_KEY)
1151 extent_size = fs_info->nodesize;
1152 else
1153 extent_size = key.offset;
1154 btrfs_print_leaf(leaf);
1155 btrfs_err(fs_info,
1156 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1157 (unsigned long)iref, key.objectid, extent_size,
1158 refs_to_mod, refs);
1159 return -EUCLEAN;
1160 }
1161 refs += refs_to_mod;
1162
1163 if (refs > 0) {
1164 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1165 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1166 else
1167 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1168 } else {
1169 size = btrfs_extent_inline_ref_size(type);
1170 item_size = btrfs_item_size(leaf, path->slots[0]);
1171 ptr = (unsigned long)iref;
1172 end = (unsigned long)ei + item_size;
1173 if (ptr + size < end)
1174 memmove_extent_buffer(leaf, ptr, ptr + size,
1175 end - ptr - size);
1176 item_size -= size;
1177 btrfs_truncate_item(path, item_size, 1);
1178 }
1179 btrfs_mark_buffer_dirty(leaf);
1180 return 0;
1181 }
1182
1183 static noinline_for_stack
1184 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 num_bytes, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add,
1189 struct btrfs_delayed_extent_op *extent_op)
1190 {
1191 struct btrfs_extent_inline_ref *iref;
1192 int ret;
1193
1194 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1195 num_bytes, parent, root_objectid,
1196 owner, offset, 1);
1197 if (ret == 0) {
1198 /*
1199 * We're adding refs to a tree block we already own, this
1200 * should not happen at all.
1201 */
1202 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1203 btrfs_print_leaf(path->nodes[0]);
1204 btrfs_crit(trans->fs_info,
1205 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1206 bytenr, num_bytes, root_objectid, path->slots[0]);
1207 return -EUCLEAN;
1208 }
1209 ret = update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1210 } else if (ret == -ENOENT) {
1211 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1212 root_objectid, owner, offset,
1213 refs_to_add, extent_op);
1214 ret = 0;
1215 }
1216 return ret;
1217 }
1218
1219 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1220 struct btrfs_root *root,
1221 struct btrfs_path *path,
1222 struct btrfs_extent_inline_ref *iref,
1223 int refs_to_drop, int is_data)
1224 {
1225 int ret = 0;
1226
1227 BUG_ON(!is_data && refs_to_drop != 1);
1228 if (iref)
1229 ret = update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1230 else if (is_data)
1231 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1232 else
1233 ret = btrfs_del_item(trans, root, path);
1234 return ret;
1235 }
1236
1237 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1238 u64 *discarded_bytes)
1239 {
1240 int j, ret = 0;
1241 u64 bytes_left, end;
1242 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1243
1244 if (WARN_ON(start != aligned_start)) {
1245 len -= aligned_start - start;
1246 len = round_down(len, 1 << SECTOR_SHIFT);
1247 start = aligned_start;
1248 }
1249
1250 *discarded_bytes = 0;
1251
1252 if (!len)
1253 return 0;
1254
1255 end = start + len;
1256 bytes_left = len;
1257
1258 /* Skip any superblocks on this device. */
1259 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1260 u64 sb_start = btrfs_sb_offset(j);
1261 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1262 u64 size = sb_start - start;
1263
1264 if (!in_range(sb_start, start, bytes_left) &&
1265 !in_range(sb_end, start, bytes_left) &&
1266 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1267 continue;
1268
1269 /*
1270 * Superblock spans beginning of range. Adjust start and
1271 * try again.
1272 */
1273 if (sb_start <= start) {
1274 start += sb_end - start;
1275 if (start > end) {
1276 bytes_left = 0;
1277 break;
1278 }
1279 bytes_left = end - start;
1280 continue;
1281 }
1282
1283 if (size) {
1284 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1285 size >> SECTOR_SHIFT,
1286 GFP_NOFS);
1287 if (!ret)
1288 *discarded_bytes += size;
1289 else if (ret != -EOPNOTSUPP)
1290 return ret;
1291 }
1292
1293 start = sb_end;
1294 if (start > end) {
1295 bytes_left = 0;
1296 break;
1297 }
1298 bytes_left = end - start;
1299 }
1300
1301 if (bytes_left) {
1302 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1303 bytes_left >> SECTOR_SHIFT,
1304 GFP_NOFS);
1305 if (!ret)
1306 *discarded_bytes += bytes_left;
1307 }
1308 return ret;
1309 }
1310
1311 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1312 {
1313 struct btrfs_device *dev = stripe->dev;
1314 struct btrfs_fs_info *fs_info = dev->fs_info;
1315 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1316 u64 phys = stripe->physical;
1317 u64 len = stripe->length;
1318 u64 discarded = 0;
1319 int ret = 0;
1320
1321 /* Zone reset on a zoned filesystem */
1322 if (btrfs_can_zone_reset(dev, phys, len)) {
1323 u64 src_disc;
1324
1325 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1326 if (ret)
1327 goto out;
1328
1329 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1330 dev != dev_replace->srcdev)
1331 goto out;
1332
1333 src_disc = discarded;
1334
1335 /* Send to replace target as well */
1336 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1337 &discarded);
1338 discarded += src_disc;
1339 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1340 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1341 } else {
1342 ret = 0;
1343 *bytes = 0;
1344 }
1345
1346 out:
1347 *bytes = discarded;
1348 return ret;
1349 }
1350
1351 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1352 u64 num_bytes, u64 *actual_bytes)
1353 {
1354 int ret = 0;
1355 u64 discarded_bytes = 0;
1356 u64 end = bytenr + num_bytes;
1357 u64 cur = bytenr;
1358
1359 /*
1360 * Avoid races with device replace and make sure the devices in the
1361 * stripes don't go away while we are discarding.
1362 */
1363 btrfs_bio_counter_inc_blocked(fs_info);
1364 while (cur < end) {
1365 struct btrfs_discard_stripe *stripes;
1366 unsigned int num_stripes;
1367 int i;
1368
1369 num_bytes = end - cur;
1370 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1371 if (IS_ERR(stripes)) {
1372 ret = PTR_ERR(stripes);
1373 if (ret == -EOPNOTSUPP)
1374 ret = 0;
1375 break;
1376 }
1377
1378 for (i = 0; i < num_stripes; i++) {
1379 struct btrfs_discard_stripe *stripe = stripes + i;
1380 u64 bytes;
1381
1382 if (!stripe->dev->bdev) {
1383 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1384 continue;
1385 }
1386
1387 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1388 &stripe->dev->dev_state))
1389 continue;
1390
1391 ret = do_discard_extent(stripe, &bytes);
1392 if (ret) {
1393 /*
1394 * Keep going if discard is not supported by the
1395 * device.
1396 */
1397 if (ret != -EOPNOTSUPP)
1398 break;
1399 ret = 0;
1400 } else {
1401 discarded_bytes += bytes;
1402 }
1403 }
1404 kfree(stripes);
1405 if (ret)
1406 break;
1407 cur += num_bytes;
1408 }
1409 btrfs_bio_counter_dec(fs_info);
1410 if (actual_bytes)
1411 *actual_bytes = discarded_bytes;
1412 return ret;
1413 }
1414
1415 /* Can return -ENOMEM */
1416 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1417 struct btrfs_ref *generic_ref)
1418 {
1419 struct btrfs_fs_info *fs_info = trans->fs_info;
1420 int ret;
1421
1422 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1423 generic_ref->action);
1424 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1425 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1426
1427 if (generic_ref->type == BTRFS_REF_METADATA)
1428 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1429 else
1430 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1431
1432 btrfs_ref_tree_mod(fs_info, generic_ref);
1433
1434 return ret;
1435 }
1436
1437 /*
1438 * __btrfs_inc_extent_ref - insert backreference for a given extent
1439 *
1440 * The counterpart is in __btrfs_free_extent(), with examples and more details
1441 * how it works.
1442 *
1443 * @trans: Handle of transaction
1444 *
1445 * @node: The delayed ref node used to get the bytenr/length for
1446 * extent whose references are incremented.
1447 *
1448 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1449 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1450 * bytenr of the parent block. Since new extents are always
1451 * created with indirect references, this will only be the case
1452 * when relocating a shared extent. In that case, root_objectid
1453 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1454 * be 0
1455 *
1456 * @root_objectid: The id of the root where this modification has originated,
1457 * this can be either one of the well-known metadata trees or
1458 * the subvolume id which references this extent.
1459 *
1460 * @owner: For data extents it is the inode number of the owning file.
1461 * For metadata extents this parameter holds the level in the
1462 * tree of the extent.
1463 *
1464 * @offset: For metadata extents the offset is ignored and is currently
1465 * always passed as 0. For data extents it is the fileoffset
1466 * this extent belongs to.
1467 *
1468 * @refs_to_add Number of references to add
1469 *
1470 * @extent_op Pointer to a structure, holding information necessary when
1471 * updating a tree block's flags
1472 *
1473 */
1474 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1475 struct btrfs_delayed_ref_node *node,
1476 u64 parent, u64 root_objectid,
1477 u64 owner, u64 offset, int refs_to_add,
1478 struct btrfs_delayed_extent_op *extent_op)
1479 {
1480 struct btrfs_path *path;
1481 struct extent_buffer *leaf;
1482 struct btrfs_extent_item *item;
1483 struct btrfs_key key;
1484 u64 bytenr = node->bytenr;
1485 u64 num_bytes = node->num_bytes;
1486 u64 refs;
1487 int ret;
1488
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1492
1493 /* this will setup the path even if it fails to insert the back ref */
1494 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1495 parent, root_objectid, owner,
1496 offset, refs_to_add, extent_op);
1497 if ((ret < 0 && ret != -EAGAIN) || !ret)
1498 goto out;
1499
1500 /*
1501 * Ok we had -EAGAIN which means we didn't have space to insert and
1502 * inline extent ref, so just update the reference count and add a
1503 * normal backref.
1504 */
1505 leaf = path->nodes[0];
1506 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1507 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1508 refs = btrfs_extent_refs(leaf, item);
1509 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1510 if (extent_op)
1511 __run_delayed_extent_op(extent_op, leaf, item);
1512
1513 btrfs_mark_buffer_dirty(leaf);
1514 btrfs_release_path(path);
1515
1516 /* now insert the actual backref */
1517 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1518 BUG_ON(refs_to_add != 1);
1519 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1520 root_objectid);
1521 } else {
1522 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1523 root_objectid, owner, offset,
1524 refs_to_add);
1525 }
1526 if (ret)
1527 btrfs_abort_transaction(trans, ret);
1528 out:
1529 btrfs_free_path(path);
1530 return ret;
1531 }
1532
1533 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1534 struct btrfs_delayed_ref_node *node,
1535 struct btrfs_delayed_extent_op *extent_op,
1536 bool insert_reserved)
1537 {
1538 int ret = 0;
1539 struct btrfs_delayed_data_ref *ref;
1540 struct btrfs_key ins;
1541 u64 parent = 0;
1542 u64 ref_root = 0;
1543 u64 flags = 0;
1544
1545 ins.objectid = node->bytenr;
1546 ins.offset = node->num_bytes;
1547 ins.type = BTRFS_EXTENT_ITEM_KEY;
1548
1549 ref = btrfs_delayed_node_to_data_ref(node);
1550 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1551
1552 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1553 parent = ref->parent;
1554 ref_root = ref->root;
1555
1556 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1557 if (extent_op)
1558 flags |= extent_op->flags_to_set;
1559 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1560 flags, ref->objectid,
1561 ref->offset, &ins,
1562 node->ref_mod);
1563 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1564 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1565 ref->objectid, ref->offset,
1566 node->ref_mod, extent_op);
1567 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1568 ret = __btrfs_free_extent(trans, node, parent,
1569 ref_root, ref->objectid,
1570 ref->offset, node->ref_mod,
1571 extent_op);
1572 } else {
1573 BUG();
1574 }
1575 return ret;
1576 }
1577
1578 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1579 struct extent_buffer *leaf,
1580 struct btrfs_extent_item *ei)
1581 {
1582 u64 flags = btrfs_extent_flags(leaf, ei);
1583 if (extent_op->update_flags) {
1584 flags |= extent_op->flags_to_set;
1585 btrfs_set_extent_flags(leaf, ei, flags);
1586 }
1587
1588 if (extent_op->update_key) {
1589 struct btrfs_tree_block_info *bi;
1590 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1591 bi = (struct btrfs_tree_block_info *)(ei + 1);
1592 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1593 }
1594 }
1595
1596 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1597 struct btrfs_delayed_ref_head *head,
1598 struct btrfs_delayed_extent_op *extent_op)
1599 {
1600 struct btrfs_fs_info *fs_info = trans->fs_info;
1601 struct btrfs_root *root;
1602 struct btrfs_key key;
1603 struct btrfs_path *path;
1604 struct btrfs_extent_item *ei;
1605 struct extent_buffer *leaf;
1606 u32 item_size;
1607 int ret;
1608 int err = 0;
1609 int metadata = 1;
1610
1611 if (TRANS_ABORTED(trans))
1612 return 0;
1613
1614 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1615 metadata = 0;
1616
1617 path = btrfs_alloc_path();
1618 if (!path)
1619 return -ENOMEM;
1620
1621 key.objectid = head->bytenr;
1622
1623 if (metadata) {
1624 key.type = BTRFS_METADATA_ITEM_KEY;
1625 key.offset = extent_op->level;
1626 } else {
1627 key.type = BTRFS_EXTENT_ITEM_KEY;
1628 key.offset = head->num_bytes;
1629 }
1630
1631 root = btrfs_extent_root(fs_info, key.objectid);
1632 again:
1633 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1634 if (ret < 0) {
1635 err = ret;
1636 goto out;
1637 }
1638 if (ret > 0) {
1639 if (metadata) {
1640 if (path->slots[0] > 0) {
1641 path->slots[0]--;
1642 btrfs_item_key_to_cpu(path->nodes[0], &key,
1643 path->slots[0]);
1644 if (key.objectid == head->bytenr &&
1645 key.type == BTRFS_EXTENT_ITEM_KEY &&
1646 key.offset == head->num_bytes)
1647 ret = 0;
1648 }
1649 if (ret > 0) {
1650 btrfs_release_path(path);
1651 metadata = 0;
1652
1653 key.objectid = head->bytenr;
1654 key.offset = head->num_bytes;
1655 key.type = BTRFS_EXTENT_ITEM_KEY;
1656 goto again;
1657 }
1658 } else {
1659 err = -EIO;
1660 goto out;
1661 }
1662 }
1663
1664 leaf = path->nodes[0];
1665 item_size = btrfs_item_size(leaf, path->slots[0]);
1666
1667 if (unlikely(item_size < sizeof(*ei))) {
1668 err = -EUCLEAN;
1669 btrfs_err(fs_info,
1670 "unexpected extent item size, has %u expect >= %zu",
1671 item_size, sizeof(*ei));
1672 btrfs_abort_transaction(trans, err);
1673 goto out;
1674 }
1675
1676 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1677 __run_delayed_extent_op(extent_op, leaf, ei);
1678
1679 btrfs_mark_buffer_dirty(leaf);
1680 out:
1681 btrfs_free_path(path);
1682 return err;
1683 }
1684
1685 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1686 struct btrfs_delayed_ref_node *node,
1687 struct btrfs_delayed_extent_op *extent_op,
1688 bool insert_reserved)
1689 {
1690 int ret = 0;
1691 struct btrfs_delayed_tree_ref *ref;
1692 u64 parent = 0;
1693 u64 ref_root = 0;
1694
1695 ref = btrfs_delayed_node_to_tree_ref(node);
1696 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1697
1698 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1699 parent = ref->parent;
1700 ref_root = ref->root;
1701
1702 if (node->ref_mod != 1) {
1703 btrfs_err(trans->fs_info,
1704 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1705 node->bytenr, node->ref_mod, node->action, ref_root,
1706 parent);
1707 return -EIO;
1708 }
1709 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1710 BUG_ON(!extent_op || !extent_op->update_flags);
1711 ret = alloc_reserved_tree_block(trans, node, extent_op);
1712 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1713 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1714 ref->level, 0, 1, extent_op);
1715 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1716 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1717 ref->level, 0, 1, extent_op);
1718 } else {
1719 BUG();
1720 }
1721 return ret;
1722 }
1723
1724 /* helper function to actually process a single delayed ref entry */
1725 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1726 struct btrfs_delayed_ref_node *node,
1727 struct btrfs_delayed_extent_op *extent_op,
1728 bool insert_reserved)
1729 {
1730 int ret = 0;
1731
1732 if (TRANS_ABORTED(trans)) {
1733 if (insert_reserved)
1734 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1735 return 0;
1736 }
1737
1738 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1739 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1740 ret = run_delayed_tree_ref(trans, node, extent_op,
1741 insert_reserved);
1742 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1743 node->type == BTRFS_SHARED_DATA_REF_KEY)
1744 ret = run_delayed_data_ref(trans, node, extent_op,
1745 insert_reserved);
1746 else
1747 BUG();
1748 if (ret && insert_reserved)
1749 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1750 if (ret < 0)
1751 btrfs_err(trans->fs_info,
1752 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1753 node->bytenr, node->num_bytes, node->type,
1754 node->action, node->ref_mod, ret);
1755 return ret;
1756 }
1757
1758 static inline struct btrfs_delayed_ref_node *
1759 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1760 {
1761 struct btrfs_delayed_ref_node *ref;
1762
1763 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1764 return NULL;
1765
1766 /*
1767 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1768 * This is to prevent a ref count from going down to zero, which deletes
1769 * the extent item from the extent tree, when there still are references
1770 * to add, which would fail because they would not find the extent item.
1771 */
1772 if (!list_empty(&head->ref_add_list))
1773 return list_first_entry(&head->ref_add_list,
1774 struct btrfs_delayed_ref_node, add_list);
1775
1776 ref = rb_entry(rb_first_cached(&head->ref_tree),
1777 struct btrfs_delayed_ref_node, ref_node);
1778 ASSERT(list_empty(&ref->add_list));
1779 return ref;
1780 }
1781
1782 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1783 struct btrfs_delayed_ref_head *head)
1784 {
1785 spin_lock(&delayed_refs->lock);
1786 head->processing = false;
1787 delayed_refs->num_heads_ready++;
1788 spin_unlock(&delayed_refs->lock);
1789 btrfs_delayed_ref_unlock(head);
1790 }
1791
1792 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1793 struct btrfs_delayed_ref_head *head)
1794 {
1795 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1796
1797 if (!extent_op)
1798 return NULL;
1799
1800 if (head->must_insert_reserved) {
1801 head->extent_op = NULL;
1802 btrfs_free_delayed_extent_op(extent_op);
1803 return NULL;
1804 }
1805 return extent_op;
1806 }
1807
1808 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1809 struct btrfs_delayed_ref_head *head)
1810 {
1811 struct btrfs_delayed_extent_op *extent_op;
1812 int ret;
1813
1814 extent_op = cleanup_extent_op(head);
1815 if (!extent_op)
1816 return 0;
1817 head->extent_op = NULL;
1818 spin_unlock(&head->lock);
1819 ret = run_delayed_extent_op(trans, head, extent_op);
1820 btrfs_free_delayed_extent_op(extent_op);
1821 return ret ? ret : 1;
1822 }
1823
1824 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1825 struct btrfs_delayed_ref_root *delayed_refs,
1826 struct btrfs_delayed_ref_head *head)
1827 {
1828 int nr_items = 1; /* Dropping this ref head update. */
1829
1830 /*
1831 * We had csum deletions accounted for in our delayed refs rsv, we need
1832 * to drop the csum leaves for this update from our delayed_refs_rsv.
1833 */
1834 if (head->total_ref_mod < 0 && head->is_data) {
1835 spin_lock(&delayed_refs->lock);
1836 delayed_refs->pending_csums -= head->num_bytes;
1837 spin_unlock(&delayed_refs->lock);
1838 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1839 }
1840
1841 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1842 }
1843
1844 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1845 struct btrfs_delayed_ref_head *head)
1846 {
1847
1848 struct btrfs_fs_info *fs_info = trans->fs_info;
1849 struct btrfs_delayed_ref_root *delayed_refs;
1850 int ret;
1851
1852 delayed_refs = &trans->transaction->delayed_refs;
1853
1854 ret = run_and_cleanup_extent_op(trans, head);
1855 if (ret < 0) {
1856 unselect_delayed_ref_head(delayed_refs, head);
1857 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1858 return ret;
1859 } else if (ret) {
1860 return ret;
1861 }
1862
1863 /*
1864 * Need to drop our head ref lock and re-acquire the delayed ref lock
1865 * and then re-check to make sure nobody got added.
1866 */
1867 spin_unlock(&head->lock);
1868 spin_lock(&delayed_refs->lock);
1869 spin_lock(&head->lock);
1870 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1871 spin_unlock(&head->lock);
1872 spin_unlock(&delayed_refs->lock);
1873 return 1;
1874 }
1875 btrfs_delete_ref_head(delayed_refs, head);
1876 spin_unlock(&head->lock);
1877 spin_unlock(&delayed_refs->lock);
1878
1879 if (head->must_insert_reserved) {
1880 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1881 if (head->is_data) {
1882 struct btrfs_root *csum_root;
1883
1884 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1885 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1886 head->num_bytes);
1887 }
1888 }
1889
1890 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1891
1892 trace_run_delayed_ref_head(fs_info, head, 0);
1893 btrfs_delayed_ref_unlock(head);
1894 btrfs_put_delayed_ref_head(head);
1895 return ret;
1896 }
1897
1898 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1899 struct btrfs_trans_handle *trans)
1900 {
1901 struct btrfs_delayed_ref_root *delayed_refs =
1902 &trans->transaction->delayed_refs;
1903 struct btrfs_delayed_ref_head *head = NULL;
1904 int ret;
1905
1906 spin_lock(&delayed_refs->lock);
1907 head = btrfs_select_ref_head(delayed_refs);
1908 if (!head) {
1909 spin_unlock(&delayed_refs->lock);
1910 return head;
1911 }
1912
1913 /*
1914 * Grab the lock that says we are going to process all the refs for
1915 * this head
1916 */
1917 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1918 spin_unlock(&delayed_refs->lock);
1919
1920 /*
1921 * We may have dropped the spin lock to get the head mutex lock, and
1922 * that might have given someone else time to free the head. If that's
1923 * true, it has been removed from our list and we can move on.
1924 */
1925 if (ret == -EAGAIN)
1926 head = ERR_PTR(-EAGAIN);
1927
1928 return head;
1929 }
1930
1931 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1932 struct btrfs_delayed_ref_head *locked_ref)
1933 {
1934 struct btrfs_fs_info *fs_info = trans->fs_info;
1935 struct btrfs_delayed_ref_root *delayed_refs;
1936 struct btrfs_delayed_extent_op *extent_op;
1937 struct btrfs_delayed_ref_node *ref;
1938 bool must_insert_reserved;
1939 int ret;
1940
1941 delayed_refs = &trans->transaction->delayed_refs;
1942
1943 lockdep_assert_held(&locked_ref->mutex);
1944 lockdep_assert_held(&locked_ref->lock);
1945
1946 while ((ref = select_delayed_ref(locked_ref))) {
1947 if (ref->seq &&
1948 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1949 spin_unlock(&locked_ref->lock);
1950 unselect_delayed_ref_head(delayed_refs, locked_ref);
1951 return -EAGAIN;
1952 }
1953
1954 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1955 RB_CLEAR_NODE(&ref->ref_node);
1956 if (!list_empty(&ref->add_list))
1957 list_del(&ref->add_list);
1958 /*
1959 * When we play the delayed ref, also correct the ref_mod on
1960 * head
1961 */
1962 switch (ref->action) {
1963 case BTRFS_ADD_DELAYED_REF:
1964 case BTRFS_ADD_DELAYED_EXTENT:
1965 locked_ref->ref_mod -= ref->ref_mod;
1966 break;
1967 case BTRFS_DROP_DELAYED_REF:
1968 locked_ref->ref_mod += ref->ref_mod;
1969 break;
1970 default:
1971 WARN_ON(1);
1972 }
1973 atomic_dec(&delayed_refs->num_entries);
1974
1975 /*
1976 * Record the must_insert_reserved flag before we drop the
1977 * spin lock.
1978 */
1979 must_insert_reserved = locked_ref->must_insert_reserved;
1980 locked_ref->must_insert_reserved = false;
1981
1982 extent_op = locked_ref->extent_op;
1983 locked_ref->extent_op = NULL;
1984 spin_unlock(&locked_ref->lock);
1985
1986 ret = run_one_delayed_ref(trans, ref, extent_op,
1987 must_insert_reserved);
1988
1989 btrfs_free_delayed_extent_op(extent_op);
1990 if (ret) {
1991 unselect_delayed_ref_head(delayed_refs, locked_ref);
1992 btrfs_put_delayed_ref(ref);
1993 return ret;
1994 }
1995
1996 btrfs_put_delayed_ref(ref);
1997 cond_resched();
1998
1999 spin_lock(&locked_ref->lock);
2000 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2001 }
2002
2003 return 0;
2004 }
2005
2006 /*
2007 * Returns 0 on success or if called with an already aborted transaction.
2008 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2009 */
2010 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2011 unsigned long nr)
2012 {
2013 struct btrfs_fs_info *fs_info = trans->fs_info;
2014 struct btrfs_delayed_ref_root *delayed_refs;
2015 struct btrfs_delayed_ref_head *locked_ref = NULL;
2016 int ret;
2017 unsigned long count = 0;
2018
2019 delayed_refs = &trans->transaction->delayed_refs;
2020 do {
2021 if (!locked_ref) {
2022 locked_ref = btrfs_obtain_ref_head(trans);
2023 if (IS_ERR_OR_NULL(locked_ref)) {
2024 if (PTR_ERR(locked_ref) == -EAGAIN) {
2025 continue;
2026 } else {
2027 break;
2028 }
2029 }
2030 count++;
2031 }
2032 /*
2033 * We need to try and merge add/drops of the same ref since we
2034 * can run into issues with relocate dropping the implicit ref
2035 * and then it being added back again before the drop can
2036 * finish. If we merged anything we need to re-loop so we can
2037 * get a good ref.
2038 * Or we can get node references of the same type that weren't
2039 * merged when created due to bumps in the tree mod seq, and
2040 * we need to merge them to prevent adding an inline extent
2041 * backref before dropping it (triggering a BUG_ON at
2042 * insert_inline_extent_backref()).
2043 */
2044 spin_lock(&locked_ref->lock);
2045 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2046
2047 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2048 if (ret < 0 && ret != -EAGAIN) {
2049 /*
2050 * Error, btrfs_run_delayed_refs_for_head already
2051 * unlocked everything so just bail out
2052 */
2053 return ret;
2054 } else if (!ret) {
2055 /*
2056 * Success, perform the usual cleanup of a processed
2057 * head
2058 */
2059 ret = cleanup_ref_head(trans, locked_ref);
2060 if (ret > 0 ) {
2061 /* We dropped our lock, we need to loop. */
2062 ret = 0;
2063 continue;
2064 } else if (ret) {
2065 return ret;
2066 }
2067 }
2068
2069 /*
2070 * Either success case or btrfs_run_delayed_refs_for_head
2071 * returned -EAGAIN, meaning we need to select another head
2072 */
2073
2074 locked_ref = NULL;
2075 cond_resched();
2076 } while ((nr != -1 && count < nr) || locked_ref);
2077
2078 return 0;
2079 }
2080
2081 #ifdef SCRAMBLE_DELAYED_REFS
2082 /*
2083 * Normally delayed refs get processed in ascending bytenr order. This
2084 * correlates in most cases to the order added. To expose dependencies on this
2085 * order, we start to process the tree in the middle instead of the beginning
2086 */
2087 static u64 find_middle(struct rb_root *root)
2088 {
2089 struct rb_node *n = root->rb_node;
2090 struct btrfs_delayed_ref_node *entry;
2091 int alt = 1;
2092 u64 middle;
2093 u64 first = 0, last = 0;
2094
2095 n = rb_first(root);
2096 if (n) {
2097 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2098 first = entry->bytenr;
2099 }
2100 n = rb_last(root);
2101 if (n) {
2102 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2103 last = entry->bytenr;
2104 }
2105 n = root->rb_node;
2106
2107 while (n) {
2108 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2109 WARN_ON(!entry->in_tree);
2110
2111 middle = entry->bytenr;
2112
2113 if (alt)
2114 n = n->rb_left;
2115 else
2116 n = n->rb_right;
2117
2118 alt = 1 - alt;
2119 }
2120 return middle;
2121 }
2122 #endif
2123
2124 /*
2125 * this starts processing the delayed reference count updates and
2126 * extent insertions we have queued up so far. count can be
2127 * 0, which means to process everything in the tree at the start
2128 * of the run (but not newly added entries), or it can be some target
2129 * number you'd like to process.
2130 *
2131 * Returns 0 on success or if called with an aborted transaction
2132 * Returns <0 on error and aborts the transaction
2133 */
2134 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2135 unsigned long count)
2136 {
2137 struct btrfs_fs_info *fs_info = trans->fs_info;
2138 struct rb_node *node;
2139 struct btrfs_delayed_ref_root *delayed_refs;
2140 struct btrfs_delayed_ref_head *head;
2141 int ret;
2142 int run_all = count == (unsigned long)-1;
2143
2144 /* We'll clean this up in btrfs_cleanup_transaction */
2145 if (TRANS_ABORTED(trans))
2146 return 0;
2147
2148 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2149 return 0;
2150
2151 delayed_refs = &trans->transaction->delayed_refs;
2152 if (count == 0)
2153 count = delayed_refs->num_heads_ready;
2154
2155 again:
2156 #ifdef SCRAMBLE_DELAYED_REFS
2157 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2158 #endif
2159 ret = __btrfs_run_delayed_refs(trans, count);
2160 if (ret < 0) {
2161 btrfs_abort_transaction(trans, ret);
2162 return ret;
2163 }
2164
2165 if (run_all) {
2166 btrfs_create_pending_block_groups(trans);
2167
2168 spin_lock(&delayed_refs->lock);
2169 node = rb_first_cached(&delayed_refs->href_root);
2170 if (!node) {
2171 spin_unlock(&delayed_refs->lock);
2172 goto out;
2173 }
2174 head = rb_entry(node, struct btrfs_delayed_ref_head,
2175 href_node);
2176 refcount_inc(&head->refs);
2177 spin_unlock(&delayed_refs->lock);
2178
2179 /* Mutex was contended, block until it's released and retry. */
2180 mutex_lock(&head->mutex);
2181 mutex_unlock(&head->mutex);
2182
2183 btrfs_put_delayed_ref_head(head);
2184 cond_resched();
2185 goto again;
2186 }
2187 out:
2188 return 0;
2189 }
2190
2191 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2192 struct extent_buffer *eb, u64 flags)
2193 {
2194 struct btrfs_delayed_extent_op *extent_op;
2195 int level = btrfs_header_level(eb);
2196 int ret;
2197
2198 extent_op = btrfs_alloc_delayed_extent_op();
2199 if (!extent_op)
2200 return -ENOMEM;
2201
2202 extent_op->flags_to_set = flags;
2203 extent_op->update_flags = true;
2204 extent_op->update_key = false;
2205 extent_op->level = level;
2206
2207 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2208 if (ret)
2209 btrfs_free_delayed_extent_op(extent_op);
2210 return ret;
2211 }
2212
2213 static noinline int check_delayed_ref(struct btrfs_root *root,
2214 struct btrfs_path *path,
2215 u64 objectid, u64 offset, u64 bytenr)
2216 {
2217 struct btrfs_delayed_ref_head *head;
2218 struct btrfs_delayed_ref_node *ref;
2219 struct btrfs_delayed_data_ref *data_ref;
2220 struct btrfs_delayed_ref_root *delayed_refs;
2221 struct btrfs_transaction *cur_trans;
2222 struct rb_node *node;
2223 int ret = 0;
2224
2225 spin_lock(&root->fs_info->trans_lock);
2226 cur_trans = root->fs_info->running_transaction;
2227 if (cur_trans)
2228 refcount_inc(&cur_trans->use_count);
2229 spin_unlock(&root->fs_info->trans_lock);
2230 if (!cur_trans)
2231 return 0;
2232
2233 delayed_refs = &cur_trans->delayed_refs;
2234 spin_lock(&delayed_refs->lock);
2235 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2236 if (!head) {
2237 spin_unlock(&delayed_refs->lock);
2238 btrfs_put_transaction(cur_trans);
2239 return 0;
2240 }
2241
2242 if (!mutex_trylock(&head->mutex)) {
2243 if (path->nowait) {
2244 spin_unlock(&delayed_refs->lock);
2245 btrfs_put_transaction(cur_trans);
2246 return -EAGAIN;
2247 }
2248
2249 refcount_inc(&head->refs);
2250 spin_unlock(&delayed_refs->lock);
2251
2252 btrfs_release_path(path);
2253
2254 /*
2255 * Mutex was contended, block until it's released and let
2256 * caller try again
2257 */
2258 mutex_lock(&head->mutex);
2259 mutex_unlock(&head->mutex);
2260 btrfs_put_delayed_ref_head(head);
2261 btrfs_put_transaction(cur_trans);
2262 return -EAGAIN;
2263 }
2264 spin_unlock(&delayed_refs->lock);
2265
2266 spin_lock(&head->lock);
2267 /*
2268 * XXX: We should replace this with a proper search function in the
2269 * future.
2270 */
2271 for (node = rb_first_cached(&head->ref_tree); node;
2272 node = rb_next(node)) {
2273 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2274 /* If it's a shared ref we know a cross reference exists */
2275 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2276 ret = 1;
2277 break;
2278 }
2279
2280 data_ref = btrfs_delayed_node_to_data_ref(ref);
2281
2282 /*
2283 * If our ref doesn't match the one we're currently looking at
2284 * then we have a cross reference.
2285 */
2286 if (data_ref->root != root->root_key.objectid ||
2287 data_ref->objectid != objectid ||
2288 data_ref->offset != offset) {
2289 ret = 1;
2290 break;
2291 }
2292 }
2293 spin_unlock(&head->lock);
2294 mutex_unlock(&head->mutex);
2295 btrfs_put_transaction(cur_trans);
2296 return ret;
2297 }
2298
2299 static noinline int check_committed_ref(struct btrfs_root *root,
2300 struct btrfs_path *path,
2301 u64 objectid, u64 offset, u64 bytenr,
2302 bool strict)
2303 {
2304 struct btrfs_fs_info *fs_info = root->fs_info;
2305 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2306 struct extent_buffer *leaf;
2307 struct btrfs_extent_data_ref *ref;
2308 struct btrfs_extent_inline_ref *iref;
2309 struct btrfs_extent_item *ei;
2310 struct btrfs_key key;
2311 u32 item_size;
2312 int type;
2313 int ret;
2314
2315 key.objectid = bytenr;
2316 key.offset = (u64)-1;
2317 key.type = BTRFS_EXTENT_ITEM_KEY;
2318
2319 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2320 if (ret < 0)
2321 goto out;
2322 BUG_ON(ret == 0); /* Corruption */
2323
2324 ret = -ENOENT;
2325 if (path->slots[0] == 0)
2326 goto out;
2327
2328 path->slots[0]--;
2329 leaf = path->nodes[0];
2330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2331
2332 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2333 goto out;
2334
2335 ret = 1;
2336 item_size = btrfs_item_size(leaf, path->slots[0]);
2337 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2338
2339 /* If extent item has more than 1 inline ref then it's shared */
2340 if (item_size != sizeof(*ei) +
2341 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2342 goto out;
2343
2344 /*
2345 * If extent created before last snapshot => it's shared unless the
2346 * snapshot has been deleted. Use the heuristic if strict is false.
2347 */
2348 if (!strict &&
2349 (btrfs_extent_generation(leaf, ei) <=
2350 btrfs_root_last_snapshot(&root->root_item)))
2351 goto out;
2352
2353 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2354
2355 /* If this extent has SHARED_DATA_REF then it's shared */
2356 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2357 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2358 goto out;
2359
2360 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2361 if (btrfs_extent_refs(leaf, ei) !=
2362 btrfs_extent_data_ref_count(leaf, ref) ||
2363 btrfs_extent_data_ref_root(leaf, ref) !=
2364 root->root_key.objectid ||
2365 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2366 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2367 goto out;
2368
2369 ret = 0;
2370 out:
2371 return ret;
2372 }
2373
2374 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2375 u64 bytenr, bool strict, struct btrfs_path *path)
2376 {
2377 int ret;
2378
2379 do {
2380 ret = check_committed_ref(root, path, objectid,
2381 offset, bytenr, strict);
2382 if (ret && ret != -ENOENT)
2383 goto out;
2384
2385 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2386 } while (ret == -EAGAIN);
2387
2388 out:
2389 btrfs_release_path(path);
2390 if (btrfs_is_data_reloc_root(root))
2391 WARN_ON(ret > 0);
2392 return ret;
2393 }
2394
2395 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2396 struct btrfs_root *root,
2397 struct extent_buffer *buf,
2398 int full_backref, int inc)
2399 {
2400 struct btrfs_fs_info *fs_info = root->fs_info;
2401 u64 bytenr;
2402 u64 num_bytes;
2403 u64 parent;
2404 u64 ref_root;
2405 u32 nritems;
2406 struct btrfs_key key;
2407 struct btrfs_file_extent_item *fi;
2408 struct btrfs_ref generic_ref = { 0 };
2409 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2410 int i;
2411 int action;
2412 int level;
2413 int ret = 0;
2414
2415 if (btrfs_is_testing(fs_info))
2416 return 0;
2417
2418 ref_root = btrfs_header_owner(buf);
2419 nritems = btrfs_header_nritems(buf);
2420 level = btrfs_header_level(buf);
2421
2422 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2423 return 0;
2424
2425 if (full_backref)
2426 parent = buf->start;
2427 else
2428 parent = 0;
2429 if (inc)
2430 action = BTRFS_ADD_DELAYED_REF;
2431 else
2432 action = BTRFS_DROP_DELAYED_REF;
2433
2434 for (i = 0; i < nritems; i++) {
2435 if (level == 0) {
2436 btrfs_item_key_to_cpu(buf, &key, i);
2437 if (key.type != BTRFS_EXTENT_DATA_KEY)
2438 continue;
2439 fi = btrfs_item_ptr(buf, i,
2440 struct btrfs_file_extent_item);
2441 if (btrfs_file_extent_type(buf, fi) ==
2442 BTRFS_FILE_EXTENT_INLINE)
2443 continue;
2444 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2445 if (bytenr == 0)
2446 continue;
2447
2448 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2449 key.offset -= btrfs_file_extent_offset(buf, fi);
2450 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2451 num_bytes, parent);
2452 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2453 key.offset, root->root_key.objectid,
2454 for_reloc);
2455 if (inc)
2456 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2457 else
2458 ret = btrfs_free_extent(trans, &generic_ref);
2459 if (ret)
2460 goto fail;
2461 } else {
2462 bytenr = btrfs_node_blockptr(buf, i);
2463 num_bytes = fs_info->nodesize;
2464 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2465 num_bytes, parent);
2466 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2467 root->root_key.objectid, for_reloc);
2468 if (inc)
2469 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2470 else
2471 ret = btrfs_free_extent(trans, &generic_ref);
2472 if (ret)
2473 goto fail;
2474 }
2475 }
2476 return 0;
2477 fail:
2478 return ret;
2479 }
2480
2481 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2482 struct extent_buffer *buf, int full_backref)
2483 {
2484 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2485 }
2486
2487 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2488 struct extent_buffer *buf, int full_backref)
2489 {
2490 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2491 }
2492
2493 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2494 {
2495 struct btrfs_fs_info *fs_info = root->fs_info;
2496 u64 flags;
2497 u64 ret;
2498
2499 if (data)
2500 flags = BTRFS_BLOCK_GROUP_DATA;
2501 else if (root == fs_info->chunk_root)
2502 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2503 else
2504 flags = BTRFS_BLOCK_GROUP_METADATA;
2505
2506 ret = btrfs_get_alloc_profile(fs_info, flags);
2507 return ret;
2508 }
2509
2510 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2511 {
2512 struct rb_node *leftmost;
2513 u64 bytenr = 0;
2514
2515 read_lock(&fs_info->block_group_cache_lock);
2516 /* Get the block group with the lowest logical start address. */
2517 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2518 if (leftmost) {
2519 struct btrfs_block_group *bg;
2520
2521 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2522 bytenr = bg->start;
2523 }
2524 read_unlock(&fs_info->block_group_cache_lock);
2525
2526 return bytenr;
2527 }
2528
2529 static int pin_down_extent(struct btrfs_trans_handle *trans,
2530 struct btrfs_block_group *cache,
2531 u64 bytenr, u64 num_bytes, int reserved)
2532 {
2533 struct btrfs_fs_info *fs_info = cache->fs_info;
2534
2535 spin_lock(&cache->space_info->lock);
2536 spin_lock(&cache->lock);
2537 cache->pinned += num_bytes;
2538 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2539 num_bytes);
2540 if (reserved) {
2541 cache->reserved -= num_bytes;
2542 cache->space_info->bytes_reserved -= num_bytes;
2543 }
2544 spin_unlock(&cache->lock);
2545 spin_unlock(&cache->space_info->lock);
2546
2547 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2548 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2549 return 0;
2550 }
2551
2552 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2553 u64 bytenr, u64 num_bytes, int reserved)
2554 {
2555 struct btrfs_block_group *cache;
2556
2557 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2558 BUG_ON(!cache); /* Logic error */
2559
2560 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2561
2562 btrfs_put_block_group(cache);
2563 return 0;
2564 }
2565
2566 /*
2567 * this function must be called within transaction
2568 */
2569 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2570 u64 bytenr, u64 num_bytes)
2571 {
2572 struct btrfs_block_group *cache;
2573 int ret;
2574
2575 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2576 if (!cache)
2577 return -EINVAL;
2578
2579 /*
2580 * Fully cache the free space first so that our pin removes the free space
2581 * from the cache.
2582 */
2583 ret = btrfs_cache_block_group(cache, true);
2584 if (ret)
2585 goto out;
2586
2587 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2588
2589 /* remove us from the free space cache (if we're there at all) */
2590 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2591 out:
2592 btrfs_put_block_group(cache);
2593 return ret;
2594 }
2595
2596 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2597 u64 start, u64 num_bytes)
2598 {
2599 int ret;
2600 struct btrfs_block_group *block_group;
2601
2602 block_group = btrfs_lookup_block_group(fs_info, start);
2603 if (!block_group)
2604 return -EINVAL;
2605
2606 ret = btrfs_cache_block_group(block_group, true);
2607 if (ret)
2608 goto out;
2609
2610 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2611 out:
2612 btrfs_put_block_group(block_group);
2613 return ret;
2614 }
2615
2616 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2617 {
2618 struct btrfs_fs_info *fs_info = eb->fs_info;
2619 struct btrfs_file_extent_item *item;
2620 struct btrfs_key key;
2621 int found_type;
2622 int i;
2623 int ret = 0;
2624
2625 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2626 return 0;
2627
2628 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2629 btrfs_item_key_to_cpu(eb, &key, i);
2630 if (key.type != BTRFS_EXTENT_DATA_KEY)
2631 continue;
2632 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2633 found_type = btrfs_file_extent_type(eb, item);
2634 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2635 continue;
2636 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2637 continue;
2638 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2639 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2640 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2641 if (ret)
2642 break;
2643 }
2644
2645 return ret;
2646 }
2647
2648 static void
2649 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2650 {
2651 atomic_inc(&bg->reservations);
2652 }
2653
2654 /*
2655 * Returns the free cluster for the given space info and sets empty_cluster to
2656 * what it should be based on the mount options.
2657 */
2658 static struct btrfs_free_cluster *
2659 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2660 struct btrfs_space_info *space_info, u64 *empty_cluster)
2661 {
2662 struct btrfs_free_cluster *ret = NULL;
2663
2664 *empty_cluster = 0;
2665 if (btrfs_mixed_space_info(space_info))
2666 return ret;
2667
2668 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2669 ret = &fs_info->meta_alloc_cluster;
2670 if (btrfs_test_opt(fs_info, SSD))
2671 *empty_cluster = SZ_2M;
2672 else
2673 *empty_cluster = SZ_64K;
2674 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2675 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2676 *empty_cluster = SZ_2M;
2677 ret = &fs_info->data_alloc_cluster;
2678 }
2679
2680 return ret;
2681 }
2682
2683 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2684 u64 start, u64 end,
2685 const bool return_free_space)
2686 {
2687 struct btrfs_block_group *cache = NULL;
2688 struct btrfs_space_info *space_info;
2689 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2690 struct btrfs_free_cluster *cluster = NULL;
2691 u64 len;
2692 u64 total_unpinned = 0;
2693 u64 empty_cluster = 0;
2694 bool readonly;
2695
2696 while (start <= end) {
2697 readonly = false;
2698 if (!cache ||
2699 start >= cache->start + cache->length) {
2700 if (cache)
2701 btrfs_put_block_group(cache);
2702 total_unpinned = 0;
2703 cache = btrfs_lookup_block_group(fs_info, start);
2704 BUG_ON(!cache); /* Logic error */
2705
2706 cluster = fetch_cluster_info(fs_info,
2707 cache->space_info,
2708 &empty_cluster);
2709 empty_cluster <<= 1;
2710 }
2711
2712 len = cache->start + cache->length - start;
2713 len = min(len, end + 1 - start);
2714
2715 if (return_free_space)
2716 btrfs_add_free_space(cache, start, len);
2717
2718 start += len;
2719 total_unpinned += len;
2720 space_info = cache->space_info;
2721
2722 /*
2723 * If this space cluster has been marked as fragmented and we've
2724 * unpinned enough in this block group to potentially allow a
2725 * cluster to be created inside of it go ahead and clear the
2726 * fragmented check.
2727 */
2728 if (cluster && cluster->fragmented &&
2729 total_unpinned > empty_cluster) {
2730 spin_lock(&cluster->lock);
2731 cluster->fragmented = 0;
2732 spin_unlock(&cluster->lock);
2733 }
2734
2735 spin_lock(&space_info->lock);
2736 spin_lock(&cache->lock);
2737 cache->pinned -= len;
2738 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2739 space_info->max_extent_size = 0;
2740 if (cache->ro) {
2741 space_info->bytes_readonly += len;
2742 readonly = true;
2743 } else if (btrfs_is_zoned(fs_info)) {
2744 /* Need reset before reusing in a zoned block group */
2745 space_info->bytes_zone_unusable += len;
2746 readonly = true;
2747 }
2748 spin_unlock(&cache->lock);
2749 if (!readonly && return_free_space &&
2750 global_rsv->space_info == space_info) {
2751 spin_lock(&global_rsv->lock);
2752 if (!global_rsv->full) {
2753 u64 to_add = min(len, global_rsv->size -
2754 global_rsv->reserved);
2755
2756 global_rsv->reserved += to_add;
2757 btrfs_space_info_update_bytes_may_use(fs_info,
2758 space_info, to_add);
2759 if (global_rsv->reserved >= global_rsv->size)
2760 global_rsv->full = 1;
2761 len -= to_add;
2762 }
2763 spin_unlock(&global_rsv->lock);
2764 }
2765 /* Add to any tickets we may have */
2766 if (!readonly && return_free_space && len)
2767 btrfs_try_granting_tickets(fs_info, space_info);
2768 spin_unlock(&space_info->lock);
2769 }
2770
2771 if (cache)
2772 btrfs_put_block_group(cache);
2773 return 0;
2774 }
2775
2776 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2777 {
2778 struct btrfs_fs_info *fs_info = trans->fs_info;
2779 struct btrfs_block_group *block_group, *tmp;
2780 struct list_head *deleted_bgs;
2781 struct extent_io_tree *unpin;
2782 u64 start;
2783 u64 end;
2784 int ret;
2785
2786 unpin = &trans->transaction->pinned_extents;
2787
2788 while (!TRANS_ABORTED(trans)) {
2789 struct extent_state *cached_state = NULL;
2790
2791 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2792 if (!find_first_extent_bit(unpin, 0, &start, &end,
2793 EXTENT_DIRTY, &cached_state)) {
2794 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2795 break;
2796 }
2797
2798 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2799 ret = btrfs_discard_extent(fs_info, start,
2800 end + 1 - start, NULL);
2801
2802 clear_extent_dirty(unpin, start, end, &cached_state);
2803 unpin_extent_range(fs_info, start, end, true);
2804 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2805 free_extent_state(cached_state);
2806 cond_resched();
2807 }
2808
2809 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2810 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2811 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2812 }
2813
2814 /*
2815 * Transaction is finished. We don't need the lock anymore. We
2816 * do need to clean up the block groups in case of a transaction
2817 * abort.
2818 */
2819 deleted_bgs = &trans->transaction->deleted_bgs;
2820 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2821 u64 trimmed = 0;
2822
2823 ret = -EROFS;
2824 if (!TRANS_ABORTED(trans))
2825 ret = btrfs_discard_extent(fs_info,
2826 block_group->start,
2827 block_group->length,
2828 &trimmed);
2829
2830 list_del_init(&block_group->bg_list);
2831 btrfs_unfreeze_block_group(block_group);
2832 btrfs_put_block_group(block_group);
2833
2834 if (ret) {
2835 const char *errstr = btrfs_decode_error(ret);
2836 btrfs_warn(fs_info,
2837 "discard failed while removing blockgroup: errno=%d %s",
2838 ret, errstr);
2839 }
2840 }
2841
2842 return 0;
2843 }
2844
2845 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2846 u64 bytenr, u64 num_bytes, bool is_data)
2847 {
2848 int ret;
2849
2850 if (is_data) {
2851 struct btrfs_root *csum_root;
2852
2853 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2854 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2855 if (ret) {
2856 btrfs_abort_transaction(trans, ret);
2857 return ret;
2858 }
2859 }
2860
2861 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2862 if (ret) {
2863 btrfs_abort_transaction(trans, ret);
2864 return ret;
2865 }
2866
2867 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2868 if (ret)
2869 btrfs_abort_transaction(trans, ret);
2870
2871 return ret;
2872 }
2873
2874 #define abort_and_dump(trans, path, fmt, args...) \
2875 ({ \
2876 btrfs_abort_transaction(trans, -EUCLEAN); \
2877 btrfs_print_leaf(path->nodes[0]); \
2878 btrfs_crit(trans->fs_info, fmt, ##args); \
2879 })
2880
2881 /*
2882 * Drop one or more refs of @node.
2883 *
2884 * 1. Locate the extent refs.
2885 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2886 * Locate it, then reduce the refs number or remove the ref line completely.
2887 *
2888 * 2. Update the refs count in EXTENT/METADATA_ITEM
2889 *
2890 * Inline backref case:
2891 *
2892 * in extent tree we have:
2893 *
2894 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2895 * refs 2 gen 6 flags DATA
2896 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2897 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2898 *
2899 * This function gets called with:
2900 *
2901 * node->bytenr = 13631488
2902 * node->num_bytes = 1048576
2903 * root_objectid = FS_TREE
2904 * owner_objectid = 257
2905 * owner_offset = 0
2906 * refs_to_drop = 1
2907 *
2908 * Then we should get some like:
2909 *
2910 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2911 * refs 1 gen 6 flags DATA
2912 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2913 *
2914 * Keyed backref case:
2915 *
2916 * in extent tree we have:
2917 *
2918 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2919 * refs 754 gen 6 flags DATA
2920 * [...]
2921 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2922 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2923 *
2924 * This function get called with:
2925 *
2926 * node->bytenr = 13631488
2927 * node->num_bytes = 1048576
2928 * root_objectid = FS_TREE
2929 * owner_objectid = 866
2930 * owner_offset = 0
2931 * refs_to_drop = 1
2932 *
2933 * Then we should get some like:
2934 *
2935 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2936 * refs 753 gen 6 flags DATA
2937 *
2938 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2939 */
2940 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2941 struct btrfs_delayed_ref_node *node, u64 parent,
2942 u64 root_objectid, u64 owner_objectid,
2943 u64 owner_offset, int refs_to_drop,
2944 struct btrfs_delayed_extent_op *extent_op)
2945 {
2946 struct btrfs_fs_info *info = trans->fs_info;
2947 struct btrfs_key key;
2948 struct btrfs_path *path;
2949 struct btrfs_root *extent_root;
2950 struct extent_buffer *leaf;
2951 struct btrfs_extent_item *ei;
2952 struct btrfs_extent_inline_ref *iref;
2953 int ret;
2954 int is_data;
2955 int extent_slot = 0;
2956 int found_extent = 0;
2957 int num_to_del = 1;
2958 u32 item_size;
2959 u64 refs;
2960 u64 bytenr = node->bytenr;
2961 u64 num_bytes = node->num_bytes;
2962 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2963
2964 extent_root = btrfs_extent_root(info, bytenr);
2965 ASSERT(extent_root);
2966
2967 path = btrfs_alloc_path();
2968 if (!path)
2969 return -ENOMEM;
2970
2971 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2972
2973 if (!is_data && refs_to_drop != 1) {
2974 btrfs_crit(info,
2975 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2976 node->bytenr, refs_to_drop);
2977 ret = -EINVAL;
2978 btrfs_abort_transaction(trans, ret);
2979 goto out;
2980 }
2981
2982 if (is_data)
2983 skinny_metadata = false;
2984
2985 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2986 parent, root_objectid, owner_objectid,
2987 owner_offset);
2988 if (ret == 0) {
2989 /*
2990 * Either the inline backref or the SHARED_DATA_REF/
2991 * SHARED_BLOCK_REF is found
2992 *
2993 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2994 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2995 */
2996 extent_slot = path->slots[0];
2997 while (extent_slot >= 0) {
2998 btrfs_item_key_to_cpu(path->nodes[0], &key,
2999 extent_slot);
3000 if (key.objectid != bytenr)
3001 break;
3002 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3003 key.offset == num_bytes) {
3004 found_extent = 1;
3005 break;
3006 }
3007 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3008 key.offset == owner_objectid) {
3009 found_extent = 1;
3010 break;
3011 }
3012
3013 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3014 if (path->slots[0] - extent_slot > 5)
3015 break;
3016 extent_slot--;
3017 }
3018
3019 if (!found_extent) {
3020 if (iref) {
3021 abort_and_dump(trans, path,
3022 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3023 path->slots[0]);
3024 ret = -EUCLEAN;
3025 goto out;
3026 }
3027 /* Must be SHARED_* item, remove the backref first */
3028 ret = remove_extent_backref(trans, extent_root, path,
3029 NULL, refs_to_drop, is_data);
3030 if (ret) {
3031 btrfs_abort_transaction(trans, ret);
3032 goto out;
3033 }
3034 btrfs_release_path(path);
3035
3036 /* Slow path to locate EXTENT/METADATA_ITEM */
3037 key.objectid = bytenr;
3038 key.type = BTRFS_EXTENT_ITEM_KEY;
3039 key.offset = num_bytes;
3040
3041 if (!is_data && skinny_metadata) {
3042 key.type = BTRFS_METADATA_ITEM_KEY;
3043 key.offset = owner_objectid;
3044 }
3045
3046 ret = btrfs_search_slot(trans, extent_root,
3047 &key, path, -1, 1);
3048 if (ret > 0 && skinny_metadata && path->slots[0]) {
3049 /*
3050 * Couldn't find our skinny metadata item,
3051 * see if we have ye olde extent item.
3052 */
3053 path->slots[0]--;
3054 btrfs_item_key_to_cpu(path->nodes[0], &key,
3055 path->slots[0]);
3056 if (key.objectid == bytenr &&
3057 key.type == BTRFS_EXTENT_ITEM_KEY &&
3058 key.offset == num_bytes)
3059 ret = 0;
3060 }
3061
3062 if (ret > 0 && skinny_metadata) {
3063 skinny_metadata = false;
3064 key.objectid = bytenr;
3065 key.type = BTRFS_EXTENT_ITEM_KEY;
3066 key.offset = num_bytes;
3067 btrfs_release_path(path);
3068 ret = btrfs_search_slot(trans, extent_root,
3069 &key, path, -1, 1);
3070 }
3071
3072 if (ret) {
3073 if (ret > 0)
3074 btrfs_print_leaf(path->nodes[0]);
3075 btrfs_err(info,
3076 "umm, got %d back from search, was looking for %llu, slot %d",
3077 ret, bytenr, path->slots[0]);
3078 }
3079 if (ret < 0) {
3080 btrfs_abort_transaction(trans, ret);
3081 goto out;
3082 }
3083 extent_slot = path->slots[0];
3084 }
3085 } else if (WARN_ON(ret == -ENOENT)) {
3086 abort_and_dump(trans, path,
3087 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3088 bytenr, parent, root_objectid, owner_objectid,
3089 owner_offset, path->slots[0]);
3090 goto out;
3091 } else {
3092 btrfs_abort_transaction(trans, ret);
3093 goto out;
3094 }
3095
3096 leaf = path->nodes[0];
3097 item_size = btrfs_item_size(leaf, extent_slot);
3098 if (unlikely(item_size < sizeof(*ei))) {
3099 ret = -EUCLEAN;
3100 btrfs_err(trans->fs_info,
3101 "unexpected extent item size, has %u expect >= %zu",
3102 item_size, sizeof(*ei));
3103 btrfs_abort_transaction(trans, ret);
3104 goto out;
3105 }
3106 ei = btrfs_item_ptr(leaf, extent_slot,
3107 struct btrfs_extent_item);
3108 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3109 key.type == BTRFS_EXTENT_ITEM_KEY) {
3110 struct btrfs_tree_block_info *bi;
3111
3112 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3113 abort_and_dump(trans, path,
3114 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3115 key.objectid, key.type, key.offset,
3116 path->slots[0], owner_objectid, item_size,
3117 sizeof(*ei) + sizeof(*bi));
3118 ret = -EUCLEAN;
3119 goto out;
3120 }
3121 bi = (struct btrfs_tree_block_info *)(ei + 1);
3122 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3123 }
3124
3125 refs = btrfs_extent_refs(leaf, ei);
3126 if (refs < refs_to_drop) {
3127 abort_and_dump(trans, path,
3128 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3129 refs_to_drop, refs, bytenr, path->slots[0]);
3130 ret = -EUCLEAN;
3131 goto out;
3132 }
3133 refs -= refs_to_drop;
3134
3135 if (refs > 0) {
3136 if (extent_op)
3137 __run_delayed_extent_op(extent_op, leaf, ei);
3138 /*
3139 * In the case of inline back ref, reference count will
3140 * be updated by remove_extent_backref
3141 */
3142 if (iref) {
3143 if (!found_extent) {
3144 abort_and_dump(trans, path,
3145 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3146 path->slots[0]);
3147 ret = -EUCLEAN;
3148 goto out;
3149 }
3150 } else {
3151 btrfs_set_extent_refs(leaf, ei, refs);
3152 btrfs_mark_buffer_dirty(leaf);
3153 }
3154 if (found_extent) {
3155 ret = remove_extent_backref(trans, extent_root, path,
3156 iref, refs_to_drop, is_data);
3157 if (ret) {
3158 btrfs_abort_transaction(trans, ret);
3159 goto out;
3160 }
3161 }
3162 } else {
3163 /* In this branch refs == 1 */
3164 if (found_extent) {
3165 if (is_data && refs_to_drop !=
3166 extent_data_ref_count(path, iref)) {
3167 abort_and_dump(trans, path,
3168 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3169 extent_data_ref_count(path, iref),
3170 refs_to_drop, path->slots[0]);
3171 ret = -EUCLEAN;
3172 goto out;
3173 }
3174 if (iref) {
3175 if (path->slots[0] != extent_slot) {
3176 abort_and_dump(trans, path,
3177 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3178 key.objectid, key.type,
3179 key.offset, path->slots[0]);
3180 ret = -EUCLEAN;
3181 goto out;
3182 }
3183 } else {
3184 /*
3185 * No inline ref, we must be at SHARED_* item,
3186 * And it's single ref, it must be:
3187 * | extent_slot ||extent_slot + 1|
3188 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3189 */
3190 if (path->slots[0] != extent_slot + 1) {
3191 abort_and_dump(trans, path,
3192 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3193 path->slots[0]);
3194 ret = -EUCLEAN;
3195 goto out;
3196 }
3197 path->slots[0] = extent_slot;
3198 num_to_del = 2;
3199 }
3200 }
3201
3202 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3203 num_to_del);
3204 if (ret) {
3205 btrfs_abort_transaction(trans, ret);
3206 goto out;
3207 }
3208 btrfs_release_path(path);
3209
3210 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3211 }
3212 btrfs_release_path(path);
3213
3214 out:
3215 btrfs_free_path(path);
3216 return ret;
3217 }
3218
3219 /*
3220 * when we free an block, it is possible (and likely) that we free the last
3221 * delayed ref for that extent as well. This searches the delayed ref tree for
3222 * a given extent, and if there are no other delayed refs to be processed, it
3223 * removes it from the tree.
3224 */
3225 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3226 u64 bytenr)
3227 {
3228 struct btrfs_delayed_ref_head *head;
3229 struct btrfs_delayed_ref_root *delayed_refs;
3230 int ret = 0;
3231
3232 delayed_refs = &trans->transaction->delayed_refs;
3233 spin_lock(&delayed_refs->lock);
3234 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3235 if (!head)
3236 goto out_delayed_unlock;
3237
3238 spin_lock(&head->lock);
3239 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3240 goto out;
3241
3242 if (cleanup_extent_op(head) != NULL)
3243 goto out;
3244
3245 /*
3246 * waiting for the lock here would deadlock. If someone else has it
3247 * locked they are already in the process of dropping it anyway
3248 */
3249 if (!mutex_trylock(&head->mutex))
3250 goto out;
3251
3252 btrfs_delete_ref_head(delayed_refs, head);
3253 head->processing = false;
3254
3255 spin_unlock(&head->lock);
3256 spin_unlock(&delayed_refs->lock);
3257
3258 BUG_ON(head->extent_op);
3259 if (head->must_insert_reserved)
3260 ret = 1;
3261
3262 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3263 mutex_unlock(&head->mutex);
3264 btrfs_put_delayed_ref_head(head);
3265 return ret;
3266 out:
3267 spin_unlock(&head->lock);
3268
3269 out_delayed_unlock:
3270 spin_unlock(&delayed_refs->lock);
3271 return 0;
3272 }
3273
3274 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3275 u64 root_id,
3276 struct extent_buffer *buf,
3277 u64 parent, int last_ref)
3278 {
3279 struct btrfs_fs_info *fs_info = trans->fs_info;
3280 struct btrfs_ref generic_ref = { 0 };
3281 int ret;
3282
3283 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3284 buf->start, buf->len, parent);
3285 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3286 root_id, 0, false);
3287
3288 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3289 btrfs_ref_tree_mod(fs_info, &generic_ref);
3290 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3291 BUG_ON(ret); /* -ENOMEM */
3292 }
3293
3294 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3295 struct btrfs_block_group *cache;
3296 bool must_pin = false;
3297
3298 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3299 ret = check_ref_cleanup(trans, buf->start);
3300 if (!ret) {
3301 btrfs_redirty_list_add(trans->transaction, buf);
3302 goto out;
3303 }
3304 }
3305
3306 cache = btrfs_lookup_block_group(fs_info, buf->start);
3307
3308 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3309 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3310 btrfs_put_block_group(cache);
3311 goto out;
3312 }
3313
3314 /*
3315 * If there are tree mod log users we may have recorded mod log
3316 * operations for this node. If we re-allocate this node we
3317 * could replay operations on this node that happened when it
3318 * existed in a completely different root. For example if it
3319 * was part of root A, then was reallocated to root B, and we
3320 * are doing a btrfs_old_search_slot(root b), we could replay
3321 * operations that happened when the block was part of root A,
3322 * giving us an inconsistent view of the btree.
3323 *
3324 * We are safe from races here because at this point no other
3325 * node or root points to this extent buffer, so if after this
3326 * check a new tree mod log user joins we will not have an
3327 * existing log of operations on this node that we have to
3328 * contend with.
3329 */
3330 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3331 must_pin = true;
3332
3333 if (must_pin || btrfs_is_zoned(fs_info)) {
3334 btrfs_redirty_list_add(trans->transaction, buf);
3335 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3336 btrfs_put_block_group(cache);
3337 goto out;
3338 }
3339
3340 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3341
3342 btrfs_add_free_space(cache, buf->start, buf->len);
3343 btrfs_free_reserved_bytes(cache, buf->len, 0);
3344 btrfs_put_block_group(cache);
3345 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3346 }
3347 out:
3348 if (last_ref) {
3349 /*
3350 * Deleting the buffer, clear the corrupt flag since it doesn't
3351 * matter anymore.
3352 */
3353 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3354 }
3355 }
3356
3357 /* Can return -ENOMEM */
3358 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3359 {
3360 struct btrfs_fs_info *fs_info = trans->fs_info;
3361 int ret;
3362
3363 if (btrfs_is_testing(fs_info))
3364 return 0;
3365
3366 /*
3367 * tree log blocks never actually go into the extent allocation
3368 * tree, just update pinning info and exit early.
3369 */
3370 if ((ref->type == BTRFS_REF_METADATA &&
3371 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3372 (ref->type == BTRFS_REF_DATA &&
3373 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3374 /* unlocks the pinned mutex */
3375 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3376 ret = 0;
3377 } else if (ref->type == BTRFS_REF_METADATA) {
3378 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3379 } else {
3380 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3381 }
3382
3383 if (!((ref->type == BTRFS_REF_METADATA &&
3384 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3385 (ref->type == BTRFS_REF_DATA &&
3386 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3387 btrfs_ref_tree_mod(fs_info, ref);
3388
3389 return ret;
3390 }
3391
3392 enum btrfs_loop_type {
3393 /*
3394 * Start caching block groups but do not wait for progress or for them
3395 * to be done.
3396 */
3397 LOOP_CACHING_NOWAIT,
3398
3399 /*
3400 * Wait for the block group free_space >= the space we're waiting for if
3401 * the block group isn't cached.
3402 */
3403 LOOP_CACHING_WAIT,
3404
3405 /*
3406 * Allow allocations to happen from block groups that do not yet have a
3407 * size classification.
3408 */
3409 LOOP_UNSET_SIZE_CLASS,
3410
3411 /*
3412 * Allocate a chunk and then retry the allocation.
3413 */
3414 LOOP_ALLOC_CHUNK,
3415
3416 /*
3417 * Ignore the size class restrictions for this allocation.
3418 */
3419 LOOP_WRONG_SIZE_CLASS,
3420
3421 /*
3422 * Ignore the empty size, only try to allocate the number of bytes
3423 * needed for this allocation.
3424 */
3425 LOOP_NO_EMPTY_SIZE,
3426 };
3427
3428 static inline void
3429 btrfs_lock_block_group(struct btrfs_block_group *cache,
3430 int delalloc)
3431 {
3432 if (delalloc)
3433 down_read(&cache->data_rwsem);
3434 }
3435
3436 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3437 int delalloc)
3438 {
3439 btrfs_get_block_group(cache);
3440 if (delalloc)
3441 down_read(&cache->data_rwsem);
3442 }
3443
3444 static struct btrfs_block_group *btrfs_lock_cluster(
3445 struct btrfs_block_group *block_group,
3446 struct btrfs_free_cluster *cluster,
3447 int delalloc)
3448 __acquires(&cluster->refill_lock)
3449 {
3450 struct btrfs_block_group *used_bg = NULL;
3451
3452 spin_lock(&cluster->refill_lock);
3453 while (1) {
3454 used_bg = cluster->block_group;
3455 if (!used_bg)
3456 return NULL;
3457
3458 if (used_bg == block_group)
3459 return used_bg;
3460
3461 btrfs_get_block_group(used_bg);
3462
3463 if (!delalloc)
3464 return used_bg;
3465
3466 if (down_read_trylock(&used_bg->data_rwsem))
3467 return used_bg;
3468
3469 spin_unlock(&cluster->refill_lock);
3470
3471 /* We should only have one-level nested. */
3472 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3473
3474 spin_lock(&cluster->refill_lock);
3475 if (used_bg == cluster->block_group)
3476 return used_bg;
3477
3478 up_read(&used_bg->data_rwsem);
3479 btrfs_put_block_group(used_bg);
3480 }
3481 }
3482
3483 static inline void
3484 btrfs_release_block_group(struct btrfs_block_group *cache,
3485 int delalloc)
3486 {
3487 if (delalloc)
3488 up_read(&cache->data_rwsem);
3489 btrfs_put_block_group(cache);
3490 }
3491
3492 /*
3493 * Helper function for find_free_extent().
3494 *
3495 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3496 * Return >0 to inform caller that we find nothing
3497 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3498 */
3499 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3500 struct find_free_extent_ctl *ffe_ctl,
3501 struct btrfs_block_group **cluster_bg_ret)
3502 {
3503 struct btrfs_block_group *cluster_bg;
3504 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3505 u64 aligned_cluster;
3506 u64 offset;
3507 int ret;
3508
3509 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3510 if (!cluster_bg)
3511 goto refill_cluster;
3512 if (cluster_bg != bg && (cluster_bg->ro ||
3513 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3514 goto release_cluster;
3515
3516 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3517 ffe_ctl->num_bytes, cluster_bg->start,
3518 &ffe_ctl->max_extent_size);
3519 if (offset) {
3520 /* We have a block, we're done */
3521 spin_unlock(&last_ptr->refill_lock);
3522 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3523 *cluster_bg_ret = cluster_bg;
3524 ffe_ctl->found_offset = offset;
3525 return 0;
3526 }
3527 WARN_ON(last_ptr->block_group != cluster_bg);
3528
3529 release_cluster:
3530 /*
3531 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3532 * lets just skip it and let the allocator find whatever block it can
3533 * find. If we reach this point, we will have tried the cluster
3534 * allocator plenty of times and not have found anything, so we are
3535 * likely way too fragmented for the clustering stuff to find anything.
3536 *
3537 * However, if the cluster is taken from the current block group,
3538 * release the cluster first, so that we stand a better chance of
3539 * succeeding in the unclustered allocation.
3540 */
3541 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3542 spin_unlock(&last_ptr->refill_lock);
3543 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3544 return -ENOENT;
3545 }
3546
3547 /* This cluster didn't work out, free it and start over */
3548 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3549
3550 if (cluster_bg != bg)
3551 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3552
3553 refill_cluster:
3554 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3555 spin_unlock(&last_ptr->refill_lock);
3556 return -ENOENT;
3557 }
3558
3559 aligned_cluster = max_t(u64,
3560 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3561 bg->full_stripe_len);
3562 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3563 ffe_ctl->num_bytes, aligned_cluster);
3564 if (ret == 0) {
3565 /* Now pull our allocation out of this cluster */
3566 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3567 ffe_ctl->num_bytes, ffe_ctl->search_start,
3568 &ffe_ctl->max_extent_size);
3569 if (offset) {
3570 /* We found one, proceed */
3571 spin_unlock(&last_ptr->refill_lock);
3572 ffe_ctl->found_offset = offset;
3573 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3574 return 0;
3575 }
3576 }
3577 /*
3578 * At this point we either didn't find a cluster or we weren't able to
3579 * allocate a block from our cluster. Free the cluster we've been
3580 * trying to use, and go to the next block group.
3581 */
3582 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3583 spin_unlock(&last_ptr->refill_lock);
3584 return 1;
3585 }
3586
3587 /*
3588 * Return >0 to inform caller that we find nothing
3589 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3590 */
3591 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3592 struct find_free_extent_ctl *ffe_ctl)
3593 {
3594 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3595 u64 offset;
3596
3597 /*
3598 * We are doing an unclustered allocation, set the fragmented flag so
3599 * we don't bother trying to setup a cluster again until we get more
3600 * space.
3601 */
3602 if (unlikely(last_ptr)) {
3603 spin_lock(&last_ptr->lock);
3604 last_ptr->fragmented = 1;
3605 spin_unlock(&last_ptr->lock);
3606 }
3607 if (ffe_ctl->cached) {
3608 struct btrfs_free_space_ctl *free_space_ctl;
3609
3610 free_space_ctl = bg->free_space_ctl;
3611 spin_lock(&free_space_ctl->tree_lock);
3612 if (free_space_ctl->free_space <
3613 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3614 ffe_ctl->empty_size) {
3615 ffe_ctl->total_free_space = max_t(u64,
3616 ffe_ctl->total_free_space,
3617 free_space_ctl->free_space);
3618 spin_unlock(&free_space_ctl->tree_lock);
3619 return 1;
3620 }
3621 spin_unlock(&free_space_ctl->tree_lock);
3622 }
3623
3624 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3625 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3626 &ffe_ctl->max_extent_size);
3627 if (!offset)
3628 return 1;
3629 ffe_ctl->found_offset = offset;
3630 return 0;
3631 }
3632
3633 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3634 struct find_free_extent_ctl *ffe_ctl,
3635 struct btrfs_block_group **bg_ret)
3636 {
3637 int ret;
3638
3639 /* We want to try and use the cluster allocator, so lets look there */
3640 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3641 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3642 if (ret >= 0)
3643 return ret;
3644 /* ret == -ENOENT case falls through */
3645 }
3646
3647 return find_free_extent_unclustered(block_group, ffe_ctl);
3648 }
3649
3650 /*
3651 * Tree-log block group locking
3652 * ============================
3653 *
3654 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3655 * indicates the starting address of a block group, which is reserved only
3656 * for tree-log metadata.
3657 *
3658 * Lock nesting
3659 * ============
3660 *
3661 * space_info::lock
3662 * block_group::lock
3663 * fs_info::treelog_bg_lock
3664 */
3665
3666 /*
3667 * Simple allocator for sequential-only block group. It only allows sequential
3668 * allocation. No need to play with trees. This function also reserves the
3669 * bytes as in btrfs_add_reserved_bytes.
3670 */
3671 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3672 struct find_free_extent_ctl *ffe_ctl,
3673 struct btrfs_block_group **bg_ret)
3674 {
3675 struct btrfs_fs_info *fs_info = block_group->fs_info;
3676 struct btrfs_space_info *space_info = block_group->space_info;
3677 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3678 u64 start = block_group->start;
3679 u64 num_bytes = ffe_ctl->num_bytes;
3680 u64 avail;
3681 u64 bytenr = block_group->start;
3682 u64 log_bytenr;
3683 u64 data_reloc_bytenr;
3684 int ret = 0;
3685 bool skip = false;
3686
3687 ASSERT(btrfs_is_zoned(block_group->fs_info));
3688
3689 /*
3690 * Do not allow non-tree-log blocks in the dedicated tree-log block
3691 * group, and vice versa.
3692 */
3693 spin_lock(&fs_info->treelog_bg_lock);
3694 log_bytenr = fs_info->treelog_bg;
3695 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3696 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3697 skip = true;
3698 spin_unlock(&fs_info->treelog_bg_lock);
3699 if (skip)
3700 return 1;
3701
3702 /*
3703 * Do not allow non-relocation blocks in the dedicated relocation block
3704 * group, and vice versa.
3705 */
3706 spin_lock(&fs_info->relocation_bg_lock);
3707 data_reloc_bytenr = fs_info->data_reloc_bg;
3708 if (data_reloc_bytenr &&
3709 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3710 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3711 skip = true;
3712 spin_unlock(&fs_info->relocation_bg_lock);
3713 if (skip)
3714 return 1;
3715
3716 /* Check RO and no space case before trying to activate it */
3717 spin_lock(&block_group->lock);
3718 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3719 ret = 1;
3720 /*
3721 * May need to clear fs_info->{treelog,data_reloc}_bg.
3722 * Return the error after taking the locks.
3723 */
3724 }
3725 spin_unlock(&block_group->lock);
3726
3727 /* Metadata block group is activated at write time. */
3728 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3729 !btrfs_zone_activate(block_group)) {
3730 ret = 1;
3731 /*
3732 * May need to clear fs_info->{treelog,data_reloc}_bg.
3733 * Return the error after taking the locks.
3734 */
3735 }
3736
3737 spin_lock(&space_info->lock);
3738 spin_lock(&block_group->lock);
3739 spin_lock(&fs_info->treelog_bg_lock);
3740 spin_lock(&fs_info->relocation_bg_lock);
3741
3742 if (ret)
3743 goto out;
3744
3745 ASSERT(!ffe_ctl->for_treelog ||
3746 block_group->start == fs_info->treelog_bg ||
3747 fs_info->treelog_bg == 0);
3748 ASSERT(!ffe_ctl->for_data_reloc ||
3749 block_group->start == fs_info->data_reloc_bg ||
3750 fs_info->data_reloc_bg == 0);
3751
3752 if (block_group->ro ||
3753 (!ffe_ctl->for_data_reloc &&
3754 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3755 ret = 1;
3756 goto out;
3757 }
3758
3759 /*
3760 * Do not allow currently using block group to be tree-log dedicated
3761 * block group.
3762 */
3763 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3764 (block_group->used || block_group->reserved)) {
3765 ret = 1;
3766 goto out;
3767 }
3768
3769 /*
3770 * Do not allow currently used block group to be the data relocation
3771 * dedicated block group.
3772 */
3773 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3774 (block_group->used || block_group->reserved)) {
3775 ret = 1;
3776 goto out;
3777 }
3778
3779 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3780 avail = block_group->zone_capacity - block_group->alloc_offset;
3781 if (avail < num_bytes) {
3782 if (ffe_ctl->max_extent_size < avail) {
3783 /*
3784 * With sequential allocator, free space is always
3785 * contiguous
3786 */
3787 ffe_ctl->max_extent_size = avail;
3788 ffe_ctl->total_free_space = avail;
3789 }
3790 ret = 1;
3791 goto out;
3792 }
3793
3794 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3795 fs_info->treelog_bg = block_group->start;
3796
3797 if (ffe_ctl->for_data_reloc) {
3798 if (!fs_info->data_reloc_bg)
3799 fs_info->data_reloc_bg = block_group->start;
3800 /*
3801 * Do not allow allocations from this block group, unless it is
3802 * for data relocation. Compared to increasing the ->ro, setting
3803 * the ->zoned_data_reloc_ongoing flag still allows nocow
3804 * writers to come in. See btrfs_inc_nocow_writers().
3805 *
3806 * We need to disable an allocation to avoid an allocation of
3807 * regular (non-relocation data) extent. With mix of relocation
3808 * extents and regular extents, we can dispatch WRITE commands
3809 * (for relocation extents) and ZONE APPEND commands (for
3810 * regular extents) at the same time to the same zone, which
3811 * easily break the write pointer.
3812 *
3813 * Also, this flag avoids this block group to be zone finished.
3814 */
3815 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3816 }
3817
3818 ffe_ctl->found_offset = start + block_group->alloc_offset;
3819 block_group->alloc_offset += num_bytes;
3820 spin_lock(&ctl->tree_lock);
3821 ctl->free_space -= num_bytes;
3822 spin_unlock(&ctl->tree_lock);
3823
3824 /*
3825 * We do not check if found_offset is aligned to stripesize. The
3826 * address is anyway rewritten when using zone append writing.
3827 */
3828
3829 ffe_ctl->search_start = ffe_ctl->found_offset;
3830
3831 out:
3832 if (ret && ffe_ctl->for_treelog)
3833 fs_info->treelog_bg = 0;
3834 if (ret && ffe_ctl->for_data_reloc)
3835 fs_info->data_reloc_bg = 0;
3836 spin_unlock(&fs_info->relocation_bg_lock);
3837 spin_unlock(&fs_info->treelog_bg_lock);
3838 spin_unlock(&block_group->lock);
3839 spin_unlock(&space_info->lock);
3840 return ret;
3841 }
3842
3843 static int do_allocation(struct btrfs_block_group *block_group,
3844 struct find_free_extent_ctl *ffe_ctl,
3845 struct btrfs_block_group **bg_ret)
3846 {
3847 switch (ffe_ctl->policy) {
3848 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3849 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3850 case BTRFS_EXTENT_ALLOC_ZONED:
3851 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3852 default:
3853 BUG();
3854 }
3855 }
3856
3857 static void release_block_group(struct btrfs_block_group *block_group,
3858 struct find_free_extent_ctl *ffe_ctl,
3859 int delalloc)
3860 {
3861 switch (ffe_ctl->policy) {
3862 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3863 ffe_ctl->retry_uncached = false;
3864 break;
3865 case BTRFS_EXTENT_ALLOC_ZONED:
3866 /* Nothing to do */
3867 break;
3868 default:
3869 BUG();
3870 }
3871
3872 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3873 ffe_ctl->index);
3874 btrfs_release_block_group(block_group, delalloc);
3875 }
3876
3877 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3878 struct btrfs_key *ins)
3879 {
3880 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3881
3882 if (!ffe_ctl->use_cluster && last_ptr) {
3883 spin_lock(&last_ptr->lock);
3884 last_ptr->window_start = ins->objectid;
3885 spin_unlock(&last_ptr->lock);
3886 }
3887 }
3888
3889 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3890 struct btrfs_key *ins)
3891 {
3892 switch (ffe_ctl->policy) {
3893 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3894 found_extent_clustered(ffe_ctl, ins);
3895 break;
3896 case BTRFS_EXTENT_ALLOC_ZONED:
3897 /* Nothing to do */
3898 break;
3899 default:
3900 BUG();
3901 }
3902 }
3903
3904 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3905 struct find_free_extent_ctl *ffe_ctl)
3906 {
3907 /* Block group's activeness is not a requirement for METADATA block groups. */
3908 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3909 return 0;
3910
3911 /* If we can activate new zone, just allocate a chunk and use it */
3912 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3913 return 0;
3914
3915 /*
3916 * We already reached the max active zones. Try to finish one block
3917 * group to make a room for a new block group. This is only possible
3918 * for a data block group because btrfs_zone_finish() may need to wait
3919 * for a running transaction which can cause a deadlock for metadata
3920 * allocation.
3921 */
3922 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3923 int ret = btrfs_zone_finish_one_bg(fs_info);
3924
3925 if (ret == 1)
3926 return 0;
3927 else if (ret < 0)
3928 return ret;
3929 }
3930
3931 /*
3932 * If we have enough free space left in an already active block group
3933 * and we can't activate any other zone now, do not allow allocating a
3934 * new chunk and let find_free_extent() retry with a smaller size.
3935 */
3936 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3937 return -ENOSPC;
3938
3939 /*
3940 * Even min_alloc_size is not left in any block groups. Since we cannot
3941 * activate a new block group, allocating it may not help. Let's tell a
3942 * caller to try again and hope it progress something by writing some
3943 * parts of the region. That is only possible for data block groups,
3944 * where a part of the region can be written.
3945 */
3946 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3947 return -EAGAIN;
3948
3949 /*
3950 * We cannot activate a new block group and no enough space left in any
3951 * block groups. So, allocating a new block group may not help. But,
3952 * there is nothing to do anyway, so let's go with it.
3953 */
3954 return 0;
3955 }
3956
3957 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3958 struct find_free_extent_ctl *ffe_ctl)
3959 {
3960 switch (ffe_ctl->policy) {
3961 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3962 return 0;
3963 case BTRFS_EXTENT_ALLOC_ZONED:
3964 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3965 default:
3966 BUG();
3967 }
3968 }
3969
3970 /*
3971 * Return >0 means caller needs to re-search for free extent
3972 * Return 0 means we have the needed free extent.
3973 * Return <0 means we failed to locate any free extent.
3974 */
3975 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3976 struct btrfs_key *ins,
3977 struct find_free_extent_ctl *ffe_ctl,
3978 bool full_search)
3979 {
3980 struct btrfs_root *root = fs_info->chunk_root;
3981 int ret;
3982
3983 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3984 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3985 ffe_ctl->orig_have_caching_bg = true;
3986
3987 if (ins->objectid) {
3988 found_extent(ffe_ctl, ins);
3989 return 0;
3990 }
3991
3992 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3993 return 1;
3994
3995 ffe_ctl->index++;
3996 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3997 return 1;
3998
3999 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4000 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4001 ffe_ctl->index = 0;
4002 /*
4003 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4004 * any uncached bgs and we've already done a full search
4005 * through.
4006 */
4007 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4008 (!ffe_ctl->orig_have_caching_bg && full_search))
4009 ffe_ctl->loop++;
4010 ffe_ctl->loop++;
4011
4012 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4013 struct btrfs_trans_handle *trans;
4014 int exist = 0;
4015
4016 /* Check if allocation policy allows to create a new chunk */
4017 ret = can_allocate_chunk(fs_info, ffe_ctl);
4018 if (ret)
4019 return ret;
4020
4021 trans = current->journal_info;
4022 if (trans)
4023 exist = 1;
4024 else
4025 trans = btrfs_join_transaction(root);
4026
4027 if (IS_ERR(trans)) {
4028 ret = PTR_ERR(trans);
4029 return ret;
4030 }
4031
4032 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4033 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4034
4035 /* Do not bail out on ENOSPC since we can do more. */
4036 if (ret == -ENOSPC) {
4037 ret = 0;
4038 ffe_ctl->loop++;
4039 }
4040 else if (ret < 0)
4041 btrfs_abort_transaction(trans, ret);
4042 else
4043 ret = 0;
4044 if (!exist)
4045 btrfs_end_transaction(trans);
4046 if (ret)
4047 return ret;
4048 }
4049
4050 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4051 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4052 return -ENOSPC;
4053
4054 /*
4055 * Don't loop again if we already have no empty_size and
4056 * no empty_cluster.
4057 */
4058 if (ffe_ctl->empty_size == 0 &&
4059 ffe_ctl->empty_cluster == 0)
4060 return -ENOSPC;
4061 ffe_ctl->empty_size = 0;
4062 ffe_ctl->empty_cluster = 0;
4063 }
4064 return 1;
4065 }
4066 return -ENOSPC;
4067 }
4068
4069 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4070 struct btrfs_block_group *bg)
4071 {
4072 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4073 return true;
4074 if (!btrfs_block_group_should_use_size_class(bg))
4075 return true;
4076 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4077 return true;
4078 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4079 bg->size_class == BTRFS_BG_SZ_NONE)
4080 return true;
4081 return ffe_ctl->size_class == bg->size_class;
4082 }
4083
4084 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4085 struct find_free_extent_ctl *ffe_ctl,
4086 struct btrfs_space_info *space_info,
4087 struct btrfs_key *ins)
4088 {
4089 /*
4090 * If our free space is heavily fragmented we may not be able to make
4091 * big contiguous allocations, so instead of doing the expensive search
4092 * for free space, simply return ENOSPC with our max_extent_size so we
4093 * can go ahead and search for a more manageable chunk.
4094 *
4095 * If our max_extent_size is large enough for our allocation simply
4096 * disable clustering since we will likely not be able to find enough
4097 * space to create a cluster and induce latency trying.
4098 */
4099 if (space_info->max_extent_size) {
4100 spin_lock(&space_info->lock);
4101 if (space_info->max_extent_size &&
4102 ffe_ctl->num_bytes > space_info->max_extent_size) {
4103 ins->offset = space_info->max_extent_size;
4104 spin_unlock(&space_info->lock);
4105 return -ENOSPC;
4106 } else if (space_info->max_extent_size) {
4107 ffe_ctl->use_cluster = false;
4108 }
4109 spin_unlock(&space_info->lock);
4110 }
4111
4112 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4113 &ffe_ctl->empty_cluster);
4114 if (ffe_ctl->last_ptr) {
4115 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4116
4117 spin_lock(&last_ptr->lock);
4118 if (last_ptr->block_group)
4119 ffe_ctl->hint_byte = last_ptr->window_start;
4120 if (last_ptr->fragmented) {
4121 /*
4122 * We still set window_start so we can keep track of the
4123 * last place we found an allocation to try and save
4124 * some time.
4125 */
4126 ffe_ctl->hint_byte = last_ptr->window_start;
4127 ffe_ctl->use_cluster = false;
4128 }
4129 spin_unlock(&last_ptr->lock);
4130 }
4131
4132 return 0;
4133 }
4134
4135 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4136 struct find_free_extent_ctl *ffe_ctl,
4137 struct btrfs_space_info *space_info,
4138 struct btrfs_key *ins)
4139 {
4140 switch (ffe_ctl->policy) {
4141 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4142 return prepare_allocation_clustered(fs_info, ffe_ctl,
4143 space_info, ins);
4144 case BTRFS_EXTENT_ALLOC_ZONED:
4145 if (ffe_ctl->for_treelog) {
4146 spin_lock(&fs_info->treelog_bg_lock);
4147 if (fs_info->treelog_bg)
4148 ffe_ctl->hint_byte = fs_info->treelog_bg;
4149 spin_unlock(&fs_info->treelog_bg_lock);
4150 }
4151 if (ffe_ctl->for_data_reloc) {
4152 spin_lock(&fs_info->relocation_bg_lock);
4153 if (fs_info->data_reloc_bg)
4154 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4155 spin_unlock(&fs_info->relocation_bg_lock);
4156 }
4157 return 0;
4158 default:
4159 BUG();
4160 }
4161 }
4162
4163 /*
4164 * walks the btree of allocated extents and find a hole of a given size.
4165 * The key ins is changed to record the hole:
4166 * ins->objectid == start position
4167 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4168 * ins->offset == the size of the hole.
4169 * Any available blocks before search_start are skipped.
4170 *
4171 * If there is no suitable free space, we will record the max size of
4172 * the free space extent currently.
4173 *
4174 * The overall logic and call chain:
4175 *
4176 * find_free_extent()
4177 * |- Iterate through all block groups
4178 * | |- Get a valid block group
4179 * | |- Try to do clustered allocation in that block group
4180 * | |- Try to do unclustered allocation in that block group
4181 * | |- Check if the result is valid
4182 * | | |- If valid, then exit
4183 * | |- Jump to next block group
4184 * |
4185 * |- Push harder to find free extents
4186 * |- If not found, re-iterate all block groups
4187 */
4188 static noinline int find_free_extent(struct btrfs_root *root,
4189 struct btrfs_key *ins,
4190 struct find_free_extent_ctl *ffe_ctl)
4191 {
4192 struct btrfs_fs_info *fs_info = root->fs_info;
4193 int ret = 0;
4194 int cache_block_group_error = 0;
4195 struct btrfs_block_group *block_group = NULL;
4196 struct btrfs_space_info *space_info;
4197 bool full_search = false;
4198
4199 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4200
4201 ffe_ctl->search_start = 0;
4202 /* For clustered allocation */
4203 ffe_ctl->empty_cluster = 0;
4204 ffe_ctl->last_ptr = NULL;
4205 ffe_ctl->use_cluster = true;
4206 ffe_ctl->have_caching_bg = false;
4207 ffe_ctl->orig_have_caching_bg = false;
4208 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4209 ffe_ctl->loop = 0;
4210 ffe_ctl->retry_uncached = false;
4211 ffe_ctl->cached = 0;
4212 ffe_ctl->max_extent_size = 0;
4213 ffe_ctl->total_free_space = 0;
4214 ffe_ctl->found_offset = 0;
4215 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4216 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4217
4218 if (btrfs_is_zoned(fs_info))
4219 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4220
4221 ins->type = BTRFS_EXTENT_ITEM_KEY;
4222 ins->objectid = 0;
4223 ins->offset = 0;
4224
4225 trace_find_free_extent(root, ffe_ctl);
4226
4227 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4228 if (!space_info) {
4229 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4230 return -ENOSPC;
4231 }
4232
4233 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4234 if (ret < 0)
4235 return ret;
4236
4237 ffe_ctl->search_start = max(ffe_ctl->search_start,
4238 first_logical_byte(fs_info));
4239 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4240 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4241 block_group = btrfs_lookup_block_group(fs_info,
4242 ffe_ctl->search_start);
4243 /*
4244 * we don't want to use the block group if it doesn't match our
4245 * allocation bits, or if its not cached.
4246 *
4247 * However if we are re-searching with an ideal block group
4248 * picked out then we don't care that the block group is cached.
4249 */
4250 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4251 block_group->cached != BTRFS_CACHE_NO) {
4252 down_read(&space_info->groups_sem);
4253 if (list_empty(&block_group->list) ||
4254 block_group->ro) {
4255 /*
4256 * someone is removing this block group,
4257 * we can't jump into the have_block_group
4258 * target because our list pointers are not
4259 * valid
4260 */
4261 btrfs_put_block_group(block_group);
4262 up_read(&space_info->groups_sem);
4263 } else {
4264 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4265 block_group->flags);
4266 btrfs_lock_block_group(block_group,
4267 ffe_ctl->delalloc);
4268 ffe_ctl->hinted = true;
4269 goto have_block_group;
4270 }
4271 } else if (block_group) {
4272 btrfs_put_block_group(block_group);
4273 }
4274 }
4275 search:
4276 trace_find_free_extent_search_loop(root, ffe_ctl);
4277 ffe_ctl->have_caching_bg = false;
4278 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4279 ffe_ctl->index == 0)
4280 full_search = true;
4281 down_read(&space_info->groups_sem);
4282 list_for_each_entry(block_group,
4283 &space_info->block_groups[ffe_ctl->index], list) {
4284 struct btrfs_block_group *bg_ret;
4285
4286 ffe_ctl->hinted = false;
4287 /* If the block group is read-only, we can skip it entirely. */
4288 if (unlikely(block_group->ro)) {
4289 if (ffe_ctl->for_treelog)
4290 btrfs_clear_treelog_bg(block_group);
4291 if (ffe_ctl->for_data_reloc)
4292 btrfs_clear_data_reloc_bg(block_group);
4293 continue;
4294 }
4295
4296 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4297 ffe_ctl->search_start = block_group->start;
4298
4299 /*
4300 * this can happen if we end up cycling through all the
4301 * raid types, but we want to make sure we only allocate
4302 * for the proper type.
4303 */
4304 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4305 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4306 BTRFS_BLOCK_GROUP_RAID1_MASK |
4307 BTRFS_BLOCK_GROUP_RAID56_MASK |
4308 BTRFS_BLOCK_GROUP_RAID10;
4309
4310 /*
4311 * if they asked for extra copies and this block group
4312 * doesn't provide them, bail. This does allow us to
4313 * fill raid0 from raid1.
4314 */
4315 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4316 goto loop;
4317
4318 /*
4319 * This block group has different flags than we want.
4320 * It's possible that we have MIXED_GROUP flag but no
4321 * block group is mixed. Just skip such block group.
4322 */
4323 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4324 continue;
4325 }
4326
4327 have_block_group:
4328 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4329 ffe_ctl->cached = btrfs_block_group_done(block_group);
4330 if (unlikely(!ffe_ctl->cached)) {
4331 ffe_ctl->have_caching_bg = true;
4332 ret = btrfs_cache_block_group(block_group, false);
4333
4334 /*
4335 * If we get ENOMEM here or something else we want to
4336 * try other block groups, because it may not be fatal.
4337 * However if we can't find anything else we need to
4338 * save our return here so that we return the actual
4339 * error that caused problems, not ENOSPC.
4340 */
4341 if (ret < 0) {
4342 if (!cache_block_group_error)
4343 cache_block_group_error = ret;
4344 ret = 0;
4345 goto loop;
4346 }
4347 ret = 0;
4348 }
4349
4350 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4351 if (!cache_block_group_error)
4352 cache_block_group_error = -EIO;
4353 goto loop;
4354 }
4355
4356 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4357 goto loop;
4358
4359 bg_ret = NULL;
4360 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4361 if (ret > 0)
4362 goto loop;
4363
4364 if (bg_ret && bg_ret != block_group) {
4365 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4366 block_group = bg_ret;
4367 }
4368
4369 /* Checks */
4370 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4371 fs_info->stripesize);
4372
4373 /* move on to the next group */
4374 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4375 block_group->start + block_group->length) {
4376 btrfs_add_free_space_unused(block_group,
4377 ffe_ctl->found_offset,
4378 ffe_ctl->num_bytes);
4379 goto loop;
4380 }
4381
4382 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4383 btrfs_add_free_space_unused(block_group,
4384 ffe_ctl->found_offset,
4385 ffe_ctl->search_start - ffe_ctl->found_offset);
4386
4387 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4388 ffe_ctl->num_bytes,
4389 ffe_ctl->delalloc,
4390 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4391 if (ret == -EAGAIN) {
4392 btrfs_add_free_space_unused(block_group,
4393 ffe_ctl->found_offset,
4394 ffe_ctl->num_bytes);
4395 goto loop;
4396 }
4397 btrfs_inc_block_group_reservations(block_group);
4398
4399 /* we are all good, lets return */
4400 ins->objectid = ffe_ctl->search_start;
4401 ins->offset = ffe_ctl->num_bytes;
4402
4403 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4404 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4405 break;
4406 loop:
4407 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4408 !ffe_ctl->retry_uncached) {
4409 ffe_ctl->retry_uncached = true;
4410 btrfs_wait_block_group_cache_progress(block_group,
4411 ffe_ctl->num_bytes +
4412 ffe_ctl->empty_cluster +
4413 ffe_ctl->empty_size);
4414 goto have_block_group;
4415 }
4416 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4417 cond_resched();
4418 }
4419 up_read(&space_info->groups_sem);
4420
4421 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4422 if (ret > 0)
4423 goto search;
4424
4425 if (ret == -ENOSPC && !cache_block_group_error) {
4426 /*
4427 * Use ffe_ctl->total_free_space as fallback if we can't find
4428 * any contiguous hole.
4429 */
4430 if (!ffe_ctl->max_extent_size)
4431 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4432 spin_lock(&space_info->lock);
4433 space_info->max_extent_size = ffe_ctl->max_extent_size;
4434 spin_unlock(&space_info->lock);
4435 ins->offset = ffe_ctl->max_extent_size;
4436 } else if (ret == -ENOSPC) {
4437 ret = cache_block_group_error;
4438 }
4439 return ret;
4440 }
4441
4442 /*
4443 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4444 * hole that is at least as big as @num_bytes.
4445 *
4446 * @root - The root that will contain this extent
4447 *
4448 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4449 * is used for accounting purposes. This value differs
4450 * from @num_bytes only in the case of compressed extents.
4451 *
4452 * @num_bytes - Number of bytes to allocate on-disk.
4453 *
4454 * @min_alloc_size - Indicates the minimum amount of space that the
4455 * allocator should try to satisfy. In some cases
4456 * @num_bytes may be larger than what is required and if
4457 * the filesystem is fragmented then allocation fails.
4458 * However, the presence of @min_alloc_size gives a
4459 * chance to try and satisfy the smaller allocation.
4460 *
4461 * @empty_size - A hint that you plan on doing more COW. This is the
4462 * size in bytes the allocator should try to find free
4463 * next to the block it returns. This is just a hint and
4464 * may be ignored by the allocator.
4465 *
4466 * @hint_byte - Hint to the allocator to start searching above the byte
4467 * address passed. It might be ignored.
4468 *
4469 * @ins - This key is modified to record the found hole. It will
4470 * have the following values:
4471 * ins->objectid == start position
4472 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4473 * ins->offset == the size of the hole.
4474 *
4475 * @is_data - Boolean flag indicating whether an extent is
4476 * allocated for data (true) or metadata (false)
4477 *
4478 * @delalloc - Boolean flag indicating whether this allocation is for
4479 * delalloc or not. If 'true' data_rwsem of block groups
4480 * is going to be acquired.
4481 *
4482 *
4483 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4484 * case -ENOSPC is returned then @ins->offset will contain the size of the
4485 * largest available hole the allocator managed to find.
4486 */
4487 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4488 u64 num_bytes, u64 min_alloc_size,
4489 u64 empty_size, u64 hint_byte,
4490 struct btrfs_key *ins, int is_data, int delalloc)
4491 {
4492 struct btrfs_fs_info *fs_info = root->fs_info;
4493 struct find_free_extent_ctl ffe_ctl = {};
4494 bool final_tried = num_bytes == min_alloc_size;
4495 u64 flags;
4496 int ret;
4497 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4498 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4499
4500 flags = get_alloc_profile_by_root(root, is_data);
4501 again:
4502 WARN_ON(num_bytes < fs_info->sectorsize);
4503
4504 ffe_ctl.ram_bytes = ram_bytes;
4505 ffe_ctl.num_bytes = num_bytes;
4506 ffe_ctl.min_alloc_size = min_alloc_size;
4507 ffe_ctl.empty_size = empty_size;
4508 ffe_ctl.flags = flags;
4509 ffe_ctl.delalloc = delalloc;
4510 ffe_ctl.hint_byte = hint_byte;
4511 ffe_ctl.for_treelog = for_treelog;
4512 ffe_ctl.for_data_reloc = for_data_reloc;
4513
4514 ret = find_free_extent(root, ins, &ffe_ctl);
4515 if (!ret && !is_data) {
4516 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4517 } else if (ret == -ENOSPC) {
4518 if (!final_tried && ins->offset) {
4519 num_bytes = min(num_bytes >> 1, ins->offset);
4520 num_bytes = round_down(num_bytes,
4521 fs_info->sectorsize);
4522 num_bytes = max(num_bytes, min_alloc_size);
4523 ram_bytes = num_bytes;
4524 if (num_bytes == min_alloc_size)
4525 final_tried = true;
4526 goto again;
4527 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4528 struct btrfs_space_info *sinfo;
4529
4530 sinfo = btrfs_find_space_info(fs_info, flags);
4531 btrfs_err(fs_info,
4532 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4533 flags, num_bytes, for_treelog, for_data_reloc);
4534 if (sinfo)
4535 btrfs_dump_space_info(fs_info, sinfo,
4536 num_bytes, 1);
4537 }
4538 }
4539
4540 return ret;
4541 }
4542
4543 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4544 u64 start, u64 len, int delalloc)
4545 {
4546 struct btrfs_block_group *cache;
4547
4548 cache = btrfs_lookup_block_group(fs_info, start);
4549 if (!cache) {
4550 btrfs_err(fs_info, "Unable to find block group for %llu",
4551 start);
4552 return -ENOSPC;
4553 }
4554
4555 btrfs_add_free_space(cache, start, len);
4556 btrfs_free_reserved_bytes(cache, len, delalloc);
4557 trace_btrfs_reserved_extent_free(fs_info, start, len);
4558
4559 btrfs_put_block_group(cache);
4560 return 0;
4561 }
4562
4563 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4564 u64 len)
4565 {
4566 struct btrfs_block_group *cache;
4567 int ret = 0;
4568
4569 cache = btrfs_lookup_block_group(trans->fs_info, start);
4570 if (!cache) {
4571 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4572 start);
4573 return -ENOSPC;
4574 }
4575
4576 ret = pin_down_extent(trans, cache, start, len, 1);
4577 btrfs_put_block_group(cache);
4578 return ret;
4579 }
4580
4581 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4582 u64 num_bytes)
4583 {
4584 struct btrfs_fs_info *fs_info = trans->fs_info;
4585 int ret;
4586
4587 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4588 if (ret)
4589 return ret;
4590
4591 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4592 if (ret) {
4593 ASSERT(!ret);
4594 btrfs_err(fs_info, "update block group failed for %llu %llu",
4595 bytenr, num_bytes);
4596 return ret;
4597 }
4598
4599 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4600 return 0;
4601 }
4602
4603 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4604 u64 parent, u64 root_objectid,
4605 u64 flags, u64 owner, u64 offset,
4606 struct btrfs_key *ins, int ref_mod)
4607 {
4608 struct btrfs_fs_info *fs_info = trans->fs_info;
4609 struct btrfs_root *extent_root;
4610 int ret;
4611 struct btrfs_extent_item *extent_item;
4612 struct btrfs_extent_inline_ref *iref;
4613 struct btrfs_path *path;
4614 struct extent_buffer *leaf;
4615 int type;
4616 u32 size;
4617
4618 if (parent > 0)
4619 type = BTRFS_SHARED_DATA_REF_KEY;
4620 else
4621 type = BTRFS_EXTENT_DATA_REF_KEY;
4622
4623 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4624
4625 path = btrfs_alloc_path();
4626 if (!path)
4627 return -ENOMEM;
4628
4629 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4630 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4631 if (ret) {
4632 btrfs_free_path(path);
4633 return ret;
4634 }
4635
4636 leaf = path->nodes[0];
4637 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4638 struct btrfs_extent_item);
4639 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4640 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4641 btrfs_set_extent_flags(leaf, extent_item,
4642 flags | BTRFS_EXTENT_FLAG_DATA);
4643
4644 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4645 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4646 if (parent > 0) {
4647 struct btrfs_shared_data_ref *ref;
4648 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4649 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4650 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4651 } else {
4652 struct btrfs_extent_data_ref *ref;
4653 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4654 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4655 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4656 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4657 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4658 }
4659
4660 btrfs_mark_buffer_dirty(path->nodes[0]);
4661 btrfs_free_path(path);
4662
4663 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4664 }
4665
4666 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4667 struct btrfs_delayed_ref_node *node,
4668 struct btrfs_delayed_extent_op *extent_op)
4669 {
4670 struct btrfs_fs_info *fs_info = trans->fs_info;
4671 struct btrfs_root *extent_root;
4672 int ret;
4673 struct btrfs_extent_item *extent_item;
4674 struct btrfs_key extent_key;
4675 struct btrfs_tree_block_info *block_info;
4676 struct btrfs_extent_inline_ref *iref;
4677 struct btrfs_path *path;
4678 struct extent_buffer *leaf;
4679 struct btrfs_delayed_tree_ref *ref;
4680 u32 size = sizeof(*extent_item) + sizeof(*iref);
4681 u64 flags = extent_op->flags_to_set;
4682 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4683
4684 ref = btrfs_delayed_node_to_tree_ref(node);
4685
4686 extent_key.objectid = node->bytenr;
4687 if (skinny_metadata) {
4688 extent_key.offset = ref->level;
4689 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4690 } else {
4691 extent_key.offset = node->num_bytes;
4692 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4693 size += sizeof(*block_info);
4694 }
4695
4696 path = btrfs_alloc_path();
4697 if (!path)
4698 return -ENOMEM;
4699
4700 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4701 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4702 size);
4703 if (ret) {
4704 btrfs_free_path(path);
4705 return ret;
4706 }
4707
4708 leaf = path->nodes[0];
4709 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4710 struct btrfs_extent_item);
4711 btrfs_set_extent_refs(leaf, extent_item, 1);
4712 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4713 btrfs_set_extent_flags(leaf, extent_item,
4714 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4715
4716 if (skinny_metadata) {
4717 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4718 } else {
4719 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4720 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4721 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4722 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4723 }
4724
4725 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4726 btrfs_set_extent_inline_ref_type(leaf, iref,
4727 BTRFS_SHARED_BLOCK_REF_KEY);
4728 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4729 } else {
4730 btrfs_set_extent_inline_ref_type(leaf, iref,
4731 BTRFS_TREE_BLOCK_REF_KEY);
4732 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4733 }
4734
4735 btrfs_mark_buffer_dirty(leaf);
4736 btrfs_free_path(path);
4737
4738 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4739 }
4740
4741 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4742 struct btrfs_root *root, u64 owner,
4743 u64 offset, u64 ram_bytes,
4744 struct btrfs_key *ins)
4745 {
4746 struct btrfs_ref generic_ref = { 0 };
4747
4748 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4749
4750 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4751 ins->objectid, ins->offset, 0);
4752 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4753 offset, 0, false);
4754 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4755
4756 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4757 }
4758
4759 /*
4760 * this is used by the tree logging recovery code. It records that
4761 * an extent has been allocated and makes sure to clear the free
4762 * space cache bits as well
4763 */
4764 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4765 u64 root_objectid, u64 owner, u64 offset,
4766 struct btrfs_key *ins)
4767 {
4768 struct btrfs_fs_info *fs_info = trans->fs_info;
4769 int ret;
4770 struct btrfs_block_group *block_group;
4771 struct btrfs_space_info *space_info;
4772
4773 /*
4774 * Mixed block groups will exclude before processing the log so we only
4775 * need to do the exclude dance if this fs isn't mixed.
4776 */
4777 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4778 ret = __exclude_logged_extent(fs_info, ins->objectid,
4779 ins->offset);
4780 if (ret)
4781 return ret;
4782 }
4783
4784 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4785 if (!block_group)
4786 return -EINVAL;
4787
4788 space_info = block_group->space_info;
4789 spin_lock(&space_info->lock);
4790 spin_lock(&block_group->lock);
4791 space_info->bytes_reserved += ins->offset;
4792 block_group->reserved += ins->offset;
4793 spin_unlock(&block_group->lock);
4794 spin_unlock(&space_info->lock);
4795
4796 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4797 offset, ins, 1);
4798 if (ret)
4799 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4800 btrfs_put_block_group(block_group);
4801 return ret;
4802 }
4803
4804 static struct extent_buffer *
4805 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4806 u64 bytenr, int level, u64 owner,
4807 enum btrfs_lock_nesting nest)
4808 {
4809 struct btrfs_fs_info *fs_info = root->fs_info;
4810 struct extent_buffer *buf;
4811 u64 lockdep_owner = owner;
4812
4813 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4814 if (IS_ERR(buf))
4815 return buf;
4816
4817 /*
4818 * Extra safety check in case the extent tree is corrupted and extent
4819 * allocator chooses to use a tree block which is already used and
4820 * locked.
4821 */
4822 if (buf->lock_owner == current->pid) {
4823 btrfs_err_rl(fs_info,
4824 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4825 buf->start, btrfs_header_owner(buf), current->pid);
4826 free_extent_buffer(buf);
4827 return ERR_PTR(-EUCLEAN);
4828 }
4829
4830 /*
4831 * The reloc trees are just snapshots, so we need them to appear to be
4832 * just like any other fs tree WRT lockdep.
4833 *
4834 * The exception however is in replace_path() in relocation, where we
4835 * hold the lock on the original fs root and then search for the reloc
4836 * root. At that point we need to make sure any reloc root buffers are
4837 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4838 * lockdep happy.
4839 */
4840 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4841 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4842 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4843
4844 /* btrfs_clear_buffer_dirty() accesses generation field. */
4845 btrfs_set_header_generation(buf, trans->transid);
4846
4847 /*
4848 * This needs to stay, because we could allocate a freed block from an
4849 * old tree into a new tree, so we need to make sure this new block is
4850 * set to the appropriate level and owner.
4851 */
4852 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4853
4854 __btrfs_tree_lock(buf, nest);
4855 btrfs_clear_buffer_dirty(trans, buf);
4856 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4857 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4858
4859 set_extent_buffer_uptodate(buf);
4860
4861 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4862 btrfs_set_header_level(buf, level);
4863 btrfs_set_header_bytenr(buf, buf->start);
4864 btrfs_set_header_generation(buf, trans->transid);
4865 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4866 btrfs_set_header_owner(buf, owner);
4867 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4868 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4869 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4870 buf->log_index = root->log_transid % 2;
4871 /*
4872 * we allow two log transactions at a time, use different
4873 * EXTENT bit to differentiate dirty pages.
4874 */
4875 if (buf->log_index == 0)
4876 set_extent_bit(&root->dirty_log_pages, buf->start,
4877 buf->start + buf->len - 1,
4878 EXTENT_DIRTY, NULL);
4879 else
4880 set_extent_bit(&root->dirty_log_pages, buf->start,
4881 buf->start + buf->len - 1,
4882 EXTENT_NEW, NULL);
4883 } else {
4884 buf->log_index = -1;
4885 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4886 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4887 }
4888 /* this returns a buffer locked for blocking */
4889 return buf;
4890 }
4891
4892 /*
4893 * finds a free extent and does all the dirty work required for allocation
4894 * returns the tree buffer or an ERR_PTR on error.
4895 */
4896 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4897 struct btrfs_root *root,
4898 u64 parent, u64 root_objectid,
4899 const struct btrfs_disk_key *key,
4900 int level, u64 hint,
4901 u64 empty_size,
4902 enum btrfs_lock_nesting nest)
4903 {
4904 struct btrfs_fs_info *fs_info = root->fs_info;
4905 struct btrfs_key ins;
4906 struct btrfs_block_rsv *block_rsv;
4907 struct extent_buffer *buf;
4908 struct btrfs_delayed_extent_op *extent_op;
4909 struct btrfs_ref generic_ref = { 0 };
4910 u64 flags = 0;
4911 int ret;
4912 u32 blocksize = fs_info->nodesize;
4913 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4914
4915 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4916 if (btrfs_is_testing(fs_info)) {
4917 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4918 level, root_objectid, nest);
4919 if (!IS_ERR(buf))
4920 root->alloc_bytenr += blocksize;
4921 return buf;
4922 }
4923 #endif
4924
4925 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4926 if (IS_ERR(block_rsv))
4927 return ERR_CAST(block_rsv);
4928
4929 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4930 empty_size, hint, &ins, 0, 0);
4931 if (ret)
4932 goto out_unuse;
4933
4934 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4935 root_objectid, nest);
4936 if (IS_ERR(buf)) {
4937 ret = PTR_ERR(buf);
4938 goto out_free_reserved;
4939 }
4940
4941 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4942 if (parent == 0)
4943 parent = ins.objectid;
4944 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4945 } else
4946 BUG_ON(parent > 0);
4947
4948 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4949 extent_op = btrfs_alloc_delayed_extent_op();
4950 if (!extent_op) {
4951 ret = -ENOMEM;
4952 goto out_free_buf;
4953 }
4954 if (key)
4955 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4956 else
4957 memset(&extent_op->key, 0, sizeof(extent_op->key));
4958 extent_op->flags_to_set = flags;
4959 extent_op->update_key = skinny_metadata ? false : true;
4960 extent_op->update_flags = true;
4961 extent_op->level = level;
4962
4963 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4964 ins.objectid, ins.offset, parent);
4965 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4966 root->root_key.objectid, false);
4967 btrfs_ref_tree_mod(fs_info, &generic_ref);
4968 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4969 if (ret)
4970 goto out_free_delayed;
4971 }
4972 return buf;
4973
4974 out_free_delayed:
4975 btrfs_free_delayed_extent_op(extent_op);
4976 out_free_buf:
4977 btrfs_tree_unlock(buf);
4978 free_extent_buffer(buf);
4979 out_free_reserved:
4980 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4981 out_unuse:
4982 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4983 return ERR_PTR(ret);
4984 }
4985
4986 struct walk_control {
4987 u64 refs[BTRFS_MAX_LEVEL];
4988 u64 flags[BTRFS_MAX_LEVEL];
4989 struct btrfs_key update_progress;
4990 struct btrfs_key drop_progress;
4991 int drop_level;
4992 int stage;
4993 int level;
4994 int shared_level;
4995 int update_ref;
4996 int keep_locks;
4997 int reada_slot;
4998 int reada_count;
4999 int restarted;
5000 };
5001
5002 #define DROP_REFERENCE 1
5003 #define UPDATE_BACKREF 2
5004
5005 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5006 struct btrfs_root *root,
5007 struct walk_control *wc,
5008 struct btrfs_path *path)
5009 {
5010 struct btrfs_fs_info *fs_info = root->fs_info;
5011 u64 bytenr;
5012 u64 generation;
5013 u64 refs;
5014 u64 flags;
5015 u32 nritems;
5016 struct btrfs_key key;
5017 struct extent_buffer *eb;
5018 int ret;
5019 int slot;
5020 int nread = 0;
5021
5022 if (path->slots[wc->level] < wc->reada_slot) {
5023 wc->reada_count = wc->reada_count * 2 / 3;
5024 wc->reada_count = max(wc->reada_count, 2);
5025 } else {
5026 wc->reada_count = wc->reada_count * 3 / 2;
5027 wc->reada_count = min_t(int, wc->reada_count,
5028 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5029 }
5030
5031 eb = path->nodes[wc->level];
5032 nritems = btrfs_header_nritems(eb);
5033
5034 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5035 if (nread >= wc->reada_count)
5036 break;
5037
5038 cond_resched();
5039 bytenr = btrfs_node_blockptr(eb, slot);
5040 generation = btrfs_node_ptr_generation(eb, slot);
5041
5042 if (slot == path->slots[wc->level])
5043 goto reada;
5044
5045 if (wc->stage == UPDATE_BACKREF &&
5046 generation <= root->root_key.offset)
5047 continue;
5048
5049 /* We don't lock the tree block, it's OK to be racy here */
5050 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5051 wc->level - 1, 1, &refs,
5052 &flags);
5053 /* We don't care about errors in readahead. */
5054 if (ret < 0)
5055 continue;
5056 BUG_ON(refs == 0);
5057
5058 if (wc->stage == DROP_REFERENCE) {
5059 if (refs == 1)
5060 goto reada;
5061
5062 if (wc->level == 1 &&
5063 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5064 continue;
5065 if (!wc->update_ref ||
5066 generation <= root->root_key.offset)
5067 continue;
5068 btrfs_node_key_to_cpu(eb, &key, slot);
5069 ret = btrfs_comp_cpu_keys(&key,
5070 &wc->update_progress);
5071 if (ret < 0)
5072 continue;
5073 } else {
5074 if (wc->level == 1 &&
5075 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5076 continue;
5077 }
5078 reada:
5079 btrfs_readahead_node_child(eb, slot);
5080 nread++;
5081 }
5082 wc->reada_slot = slot;
5083 }
5084
5085 /*
5086 * helper to process tree block while walking down the tree.
5087 *
5088 * when wc->stage == UPDATE_BACKREF, this function updates
5089 * back refs for pointers in the block.
5090 *
5091 * NOTE: return value 1 means we should stop walking down.
5092 */
5093 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5094 struct btrfs_root *root,
5095 struct btrfs_path *path,
5096 struct walk_control *wc, int lookup_info)
5097 {
5098 struct btrfs_fs_info *fs_info = root->fs_info;
5099 int level = wc->level;
5100 struct extent_buffer *eb = path->nodes[level];
5101 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5102 int ret;
5103
5104 if (wc->stage == UPDATE_BACKREF &&
5105 btrfs_header_owner(eb) != root->root_key.objectid)
5106 return 1;
5107
5108 /*
5109 * when reference count of tree block is 1, it won't increase
5110 * again. once full backref flag is set, we never clear it.
5111 */
5112 if (lookup_info &&
5113 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5114 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5115 BUG_ON(!path->locks[level]);
5116 ret = btrfs_lookup_extent_info(trans, fs_info,
5117 eb->start, level, 1,
5118 &wc->refs[level],
5119 &wc->flags[level]);
5120 BUG_ON(ret == -ENOMEM);
5121 if (ret)
5122 return ret;
5123 BUG_ON(wc->refs[level] == 0);
5124 }
5125
5126 if (wc->stage == DROP_REFERENCE) {
5127 if (wc->refs[level] > 1)
5128 return 1;
5129
5130 if (path->locks[level] && !wc->keep_locks) {
5131 btrfs_tree_unlock_rw(eb, path->locks[level]);
5132 path->locks[level] = 0;
5133 }
5134 return 0;
5135 }
5136
5137 /* wc->stage == UPDATE_BACKREF */
5138 if (!(wc->flags[level] & flag)) {
5139 BUG_ON(!path->locks[level]);
5140 ret = btrfs_inc_ref(trans, root, eb, 1);
5141 BUG_ON(ret); /* -ENOMEM */
5142 ret = btrfs_dec_ref(trans, root, eb, 0);
5143 BUG_ON(ret); /* -ENOMEM */
5144 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5145 BUG_ON(ret); /* -ENOMEM */
5146 wc->flags[level] |= flag;
5147 }
5148
5149 /*
5150 * the block is shared by multiple trees, so it's not good to
5151 * keep the tree lock
5152 */
5153 if (path->locks[level] && level > 0) {
5154 btrfs_tree_unlock_rw(eb, path->locks[level]);
5155 path->locks[level] = 0;
5156 }
5157 return 0;
5158 }
5159
5160 /*
5161 * This is used to verify a ref exists for this root to deal with a bug where we
5162 * would have a drop_progress key that hadn't been updated properly.
5163 */
5164 static int check_ref_exists(struct btrfs_trans_handle *trans,
5165 struct btrfs_root *root, u64 bytenr, u64 parent,
5166 int level)
5167 {
5168 struct btrfs_path *path;
5169 struct btrfs_extent_inline_ref *iref;
5170 int ret;
5171
5172 path = btrfs_alloc_path();
5173 if (!path)
5174 return -ENOMEM;
5175
5176 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5177 root->fs_info->nodesize, parent,
5178 root->root_key.objectid, level, 0);
5179 btrfs_free_path(path);
5180 if (ret == -ENOENT)
5181 return 0;
5182 if (ret < 0)
5183 return ret;
5184 return 1;
5185 }
5186
5187 /*
5188 * helper to process tree block pointer.
5189 *
5190 * when wc->stage == DROP_REFERENCE, this function checks
5191 * reference count of the block pointed to. if the block
5192 * is shared and we need update back refs for the subtree
5193 * rooted at the block, this function changes wc->stage to
5194 * UPDATE_BACKREF. if the block is shared and there is no
5195 * need to update back, this function drops the reference
5196 * to the block.
5197 *
5198 * NOTE: return value 1 means we should stop walking down.
5199 */
5200 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5201 struct btrfs_root *root,
5202 struct btrfs_path *path,
5203 struct walk_control *wc, int *lookup_info)
5204 {
5205 struct btrfs_fs_info *fs_info = root->fs_info;
5206 u64 bytenr;
5207 u64 generation;
5208 u64 parent;
5209 struct btrfs_tree_parent_check check = { 0 };
5210 struct btrfs_key key;
5211 struct btrfs_ref ref = { 0 };
5212 struct extent_buffer *next;
5213 int level = wc->level;
5214 int reada = 0;
5215 int ret = 0;
5216 bool need_account = false;
5217
5218 generation = btrfs_node_ptr_generation(path->nodes[level],
5219 path->slots[level]);
5220 /*
5221 * if the lower level block was created before the snapshot
5222 * was created, we know there is no need to update back refs
5223 * for the subtree
5224 */
5225 if (wc->stage == UPDATE_BACKREF &&
5226 generation <= root->root_key.offset) {
5227 *lookup_info = 1;
5228 return 1;
5229 }
5230
5231 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5232
5233 check.level = level - 1;
5234 check.transid = generation;
5235 check.owner_root = root->root_key.objectid;
5236 check.has_first_key = true;
5237 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5238 path->slots[level]);
5239
5240 next = find_extent_buffer(fs_info, bytenr);
5241 if (!next) {
5242 next = btrfs_find_create_tree_block(fs_info, bytenr,
5243 root->root_key.objectid, level - 1);
5244 if (IS_ERR(next))
5245 return PTR_ERR(next);
5246 reada = 1;
5247 }
5248 btrfs_tree_lock(next);
5249
5250 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5251 &wc->refs[level - 1],
5252 &wc->flags[level - 1]);
5253 if (ret < 0)
5254 goto out_unlock;
5255
5256 if (unlikely(wc->refs[level - 1] == 0)) {
5257 btrfs_err(fs_info, "Missing references.");
5258 ret = -EIO;
5259 goto out_unlock;
5260 }
5261 *lookup_info = 0;
5262
5263 if (wc->stage == DROP_REFERENCE) {
5264 if (wc->refs[level - 1] > 1) {
5265 need_account = true;
5266 if (level == 1 &&
5267 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5268 goto skip;
5269
5270 if (!wc->update_ref ||
5271 generation <= root->root_key.offset)
5272 goto skip;
5273
5274 btrfs_node_key_to_cpu(path->nodes[level], &key,
5275 path->slots[level]);
5276 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5277 if (ret < 0)
5278 goto skip;
5279
5280 wc->stage = UPDATE_BACKREF;
5281 wc->shared_level = level - 1;
5282 }
5283 } else {
5284 if (level == 1 &&
5285 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5286 goto skip;
5287 }
5288
5289 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5290 btrfs_tree_unlock(next);
5291 free_extent_buffer(next);
5292 next = NULL;
5293 *lookup_info = 1;
5294 }
5295
5296 if (!next) {
5297 if (reada && level == 1)
5298 reada_walk_down(trans, root, wc, path);
5299 next = read_tree_block(fs_info, bytenr, &check);
5300 if (IS_ERR(next)) {
5301 return PTR_ERR(next);
5302 } else if (!extent_buffer_uptodate(next)) {
5303 free_extent_buffer(next);
5304 return -EIO;
5305 }
5306 btrfs_tree_lock(next);
5307 }
5308
5309 level--;
5310 ASSERT(level == btrfs_header_level(next));
5311 if (level != btrfs_header_level(next)) {
5312 btrfs_err(root->fs_info, "mismatched level");
5313 ret = -EIO;
5314 goto out_unlock;
5315 }
5316 path->nodes[level] = next;
5317 path->slots[level] = 0;
5318 path->locks[level] = BTRFS_WRITE_LOCK;
5319 wc->level = level;
5320 if (wc->level == 1)
5321 wc->reada_slot = 0;
5322 return 0;
5323 skip:
5324 wc->refs[level - 1] = 0;
5325 wc->flags[level - 1] = 0;
5326 if (wc->stage == DROP_REFERENCE) {
5327 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5328 parent = path->nodes[level]->start;
5329 } else {
5330 ASSERT(root->root_key.objectid ==
5331 btrfs_header_owner(path->nodes[level]));
5332 if (root->root_key.objectid !=
5333 btrfs_header_owner(path->nodes[level])) {
5334 btrfs_err(root->fs_info,
5335 "mismatched block owner");
5336 ret = -EIO;
5337 goto out_unlock;
5338 }
5339 parent = 0;
5340 }
5341
5342 /*
5343 * If we had a drop_progress we need to verify the refs are set
5344 * as expected. If we find our ref then we know that from here
5345 * on out everything should be correct, and we can clear the
5346 * ->restarted flag.
5347 */
5348 if (wc->restarted) {
5349 ret = check_ref_exists(trans, root, bytenr, parent,
5350 level - 1);
5351 if (ret < 0)
5352 goto out_unlock;
5353 if (ret == 0)
5354 goto no_delete;
5355 ret = 0;
5356 wc->restarted = 0;
5357 }
5358
5359 /*
5360 * Reloc tree doesn't contribute to qgroup numbers, and we have
5361 * already accounted them at merge time (replace_path),
5362 * thus we could skip expensive subtree trace here.
5363 */
5364 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5365 need_account) {
5366 ret = btrfs_qgroup_trace_subtree(trans, next,
5367 generation, level - 1);
5368 if (ret) {
5369 btrfs_err_rl(fs_info,
5370 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5371 ret);
5372 }
5373 }
5374
5375 /*
5376 * We need to update the next key in our walk control so we can
5377 * update the drop_progress key accordingly. We don't care if
5378 * find_next_key doesn't find a key because that means we're at
5379 * the end and are going to clean up now.
5380 */
5381 wc->drop_level = level;
5382 find_next_key(path, level, &wc->drop_progress);
5383
5384 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5385 fs_info->nodesize, parent);
5386 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5387 0, false);
5388 ret = btrfs_free_extent(trans, &ref);
5389 if (ret)
5390 goto out_unlock;
5391 }
5392 no_delete:
5393 *lookup_info = 1;
5394 ret = 1;
5395
5396 out_unlock:
5397 btrfs_tree_unlock(next);
5398 free_extent_buffer(next);
5399
5400 return ret;
5401 }
5402
5403 /*
5404 * helper to process tree block while walking up the tree.
5405 *
5406 * when wc->stage == DROP_REFERENCE, this function drops
5407 * reference count on the block.
5408 *
5409 * when wc->stage == UPDATE_BACKREF, this function changes
5410 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5411 * to UPDATE_BACKREF previously while processing the block.
5412 *
5413 * NOTE: return value 1 means we should stop walking up.
5414 */
5415 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5416 struct btrfs_root *root,
5417 struct btrfs_path *path,
5418 struct walk_control *wc)
5419 {
5420 struct btrfs_fs_info *fs_info = root->fs_info;
5421 int ret;
5422 int level = wc->level;
5423 struct extent_buffer *eb = path->nodes[level];
5424 u64 parent = 0;
5425
5426 if (wc->stage == UPDATE_BACKREF) {
5427 BUG_ON(wc->shared_level < level);
5428 if (level < wc->shared_level)
5429 goto out;
5430
5431 ret = find_next_key(path, level + 1, &wc->update_progress);
5432 if (ret > 0)
5433 wc->update_ref = 0;
5434
5435 wc->stage = DROP_REFERENCE;
5436 wc->shared_level = -1;
5437 path->slots[level] = 0;
5438
5439 /*
5440 * check reference count again if the block isn't locked.
5441 * we should start walking down the tree again if reference
5442 * count is one.
5443 */
5444 if (!path->locks[level]) {
5445 BUG_ON(level == 0);
5446 btrfs_tree_lock(eb);
5447 path->locks[level] = BTRFS_WRITE_LOCK;
5448
5449 ret = btrfs_lookup_extent_info(trans, fs_info,
5450 eb->start, level, 1,
5451 &wc->refs[level],
5452 &wc->flags[level]);
5453 if (ret < 0) {
5454 btrfs_tree_unlock_rw(eb, path->locks[level]);
5455 path->locks[level] = 0;
5456 return ret;
5457 }
5458 BUG_ON(wc->refs[level] == 0);
5459 if (wc->refs[level] == 1) {
5460 btrfs_tree_unlock_rw(eb, path->locks[level]);
5461 path->locks[level] = 0;
5462 return 1;
5463 }
5464 }
5465 }
5466
5467 /* wc->stage == DROP_REFERENCE */
5468 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5469
5470 if (wc->refs[level] == 1) {
5471 if (level == 0) {
5472 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5473 ret = btrfs_dec_ref(trans, root, eb, 1);
5474 else
5475 ret = btrfs_dec_ref(trans, root, eb, 0);
5476 BUG_ON(ret); /* -ENOMEM */
5477 if (is_fstree(root->root_key.objectid)) {
5478 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5479 if (ret) {
5480 btrfs_err_rl(fs_info,
5481 "error %d accounting leaf items, quota is out of sync, rescan required",
5482 ret);
5483 }
5484 }
5485 }
5486 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5487 if (!path->locks[level]) {
5488 btrfs_tree_lock(eb);
5489 path->locks[level] = BTRFS_WRITE_LOCK;
5490 }
5491 btrfs_clear_buffer_dirty(trans, eb);
5492 }
5493
5494 if (eb == root->node) {
5495 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5496 parent = eb->start;
5497 else if (root->root_key.objectid != btrfs_header_owner(eb))
5498 goto owner_mismatch;
5499 } else {
5500 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5501 parent = path->nodes[level + 1]->start;
5502 else if (root->root_key.objectid !=
5503 btrfs_header_owner(path->nodes[level + 1]))
5504 goto owner_mismatch;
5505 }
5506
5507 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5508 wc->refs[level] == 1);
5509 out:
5510 wc->refs[level] = 0;
5511 wc->flags[level] = 0;
5512 return 0;
5513
5514 owner_mismatch:
5515 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5516 btrfs_header_owner(eb), root->root_key.objectid);
5517 return -EUCLEAN;
5518 }
5519
5520 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5521 struct btrfs_root *root,
5522 struct btrfs_path *path,
5523 struct walk_control *wc)
5524 {
5525 int level = wc->level;
5526 int lookup_info = 1;
5527 int ret = 0;
5528
5529 while (level >= 0) {
5530 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5531 if (ret)
5532 break;
5533
5534 if (level == 0)
5535 break;
5536
5537 if (path->slots[level] >=
5538 btrfs_header_nritems(path->nodes[level]))
5539 break;
5540
5541 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5542 if (ret > 0) {
5543 path->slots[level]++;
5544 continue;
5545 } else if (ret < 0)
5546 break;
5547 level = wc->level;
5548 }
5549 return (ret == 1) ? 0 : ret;
5550 }
5551
5552 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5553 struct btrfs_root *root,
5554 struct btrfs_path *path,
5555 struct walk_control *wc, int max_level)
5556 {
5557 int level = wc->level;
5558 int ret;
5559
5560 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5561 while (level < max_level && path->nodes[level]) {
5562 wc->level = level;
5563 if (path->slots[level] + 1 <
5564 btrfs_header_nritems(path->nodes[level])) {
5565 path->slots[level]++;
5566 return 0;
5567 } else {
5568 ret = walk_up_proc(trans, root, path, wc);
5569 if (ret > 0)
5570 return 0;
5571 if (ret < 0)
5572 return ret;
5573
5574 if (path->locks[level]) {
5575 btrfs_tree_unlock_rw(path->nodes[level],
5576 path->locks[level]);
5577 path->locks[level] = 0;
5578 }
5579 free_extent_buffer(path->nodes[level]);
5580 path->nodes[level] = NULL;
5581 level++;
5582 }
5583 }
5584 return 1;
5585 }
5586
5587 /*
5588 * drop a subvolume tree.
5589 *
5590 * this function traverses the tree freeing any blocks that only
5591 * referenced by the tree.
5592 *
5593 * when a shared tree block is found. this function decreases its
5594 * reference count by one. if update_ref is true, this function
5595 * also make sure backrefs for the shared block and all lower level
5596 * blocks are properly updated.
5597 *
5598 * If called with for_reloc == 0, may exit early with -EAGAIN
5599 */
5600 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5601 {
5602 const bool is_reloc_root = (root->root_key.objectid ==
5603 BTRFS_TREE_RELOC_OBJECTID);
5604 struct btrfs_fs_info *fs_info = root->fs_info;
5605 struct btrfs_path *path;
5606 struct btrfs_trans_handle *trans;
5607 struct btrfs_root *tree_root = fs_info->tree_root;
5608 struct btrfs_root_item *root_item = &root->root_item;
5609 struct walk_control *wc;
5610 struct btrfs_key key;
5611 int err = 0;
5612 int ret;
5613 int level;
5614 bool root_dropped = false;
5615 bool unfinished_drop = false;
5616
5617 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5618
5619 path = btrfs_alloc_path();
5620 if (!path) {
5621 err = -ENOMEM;
5622 goto out;
5623 }
5624
5625 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5626 if (!wc) {
5627 btrfs_free_path(path);
5628 err = -ENOMEM;
5629 goto out;
5630 }
5631
5632 /*
5633 * Use join to avoid potential EINTR from transaction start. See
5634 * wait_reserve_ticket and the whole reservation callchain.
5635 */
5636 if (for_reloc)
5637 trans = btrfs_join_transaction(tree_root);
5638 else
5639 trans = btrfs_start_transaction(tree_root, 0);
5640 if (IS_ERR(trans)) {
5641 err = PTR_ERR(trans);
5642 goto out_free;
5643 }
5644
5645 err = btrfs_run_delayed_items(trans);
5646 if (err)
5647 goto out_end_trans;
5648
5649 /*
5650 * This will help us catch people modifying the fs tree while we're
5651 * dropping it. It is unsafe to mess with the fs tree while it's being
5652 * dropped as we unlock the root node and parent nodes as we walk down
5653 * the tree, assuming nothing will change. If something does change
5654 * then we'll have stale information and drop references to blocks we've
5655 * already dropped.
5656 */
5657 set_bit(BTRFS_ROOT_DELETING, &root->state);
5658 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5659
5660 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5661 level = btrfs_header_level(root->node);
5662 path->nodes[level] = btrfs_lock_root_node(root);
5663 path->slots[level] = 0;
5664 path->locks[level] = BTRFS_WRITE_LOCK;
5665 memset(&wc->update_progress, 0,
5666 sizeof(wc->update_progress));
5667 } else {
5668 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5669 memcpy(&wc->update_progress, &key,
5670 sizeof(wc->update_progress));
5671
5672 level = btrfs_root_drop_level(root_item);
5673 BUG_ON(level == 0);
5674 path->lowest_level = level;
5675 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5676 path->lowest_level = 0;
5677 if (ret < 0) {
5678 err = ret;
5679 goto out_end_trans;
5680 }
5681 WARN_ON(ret > 0);
5682
5683 /*
5684 * unlock our path, this is safe because only this
5685 * function is allowed to delete this snapshot
5686 */
5687 btrfs_unlock_up_safe(path, 0);
5688
5689 level = btrfs_header_level(root->node);
5690 while (1) {
5691 btrfs_tree_lock(path->nodes[level]);
5692 path->locks[level] = BTRFS_WRITE_LOCK;
5693
5694 ret = btrfs_lookup_extent_info(trans, fs_info,
5695 path->nodes[level]->start,
5696 level, 1, &wc->refs[level],
5697 &wc->flags[level]);
5698 if (ret < 0) {
5699 err = ret;
5700 goto out_end_trans;
5701 }
5702 BUG_ON(wc->refs[level] == 0);
5703
5704 if (level == btrfs_root_drop_level(root_item))
5705 break;
5706
5707 btrfs_tree_unlock(path->nodes[level]);
5708 path->locks[level] = 0;
5709 WARN_ON(wc->refs[level] != 1);
5710 level--;
5711 }
5712 }
5713
5714 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5715 wc->level = level;
5716 wc->shared_level = -1;
5717 wc->stage = DROP_REFERENCE;
5718 wc->update_ref = update_ref;
5719 wc->keep_locks = 0;
5720 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5721
5722 while (1) {
5723
5724 ret = walk_down_tree(trans, root, path, wc);
5725 if (ret < 0) {
5726 btrfs_abort_transaction(trans, ret);
5727 err = ret;
5728 break;
5729 }
5730
5731 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5732 if (ret < 0) {
5733 btrfs_abort_transaction(trans, ret);
5734 err = ret;
5735 break;
5736 }
5737
5738 if (ret > 0) {
5739 BUG_ON(wc->stage != DROP_REFERENCE);
5740 break;
5741 }
5742
5743 if (wc->stage == DROP_REFERENCE) {
5744 wc->drop_level = wc->level;
5745 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5746 &wc->drop_progress,
5747 path->slots[wc->drop_level]);
5748 }
5749 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5750 &wc->drop_progress);
5751 btrfs_set_root_drop_level(root_item, wc->drop_level);
5752
5753 BUG_ON(wc->level == 0);
5754 if (btrfs_should_end_transaction(trans) ||
5755 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5756 ret = btrfs_update_root(trans, tree_root,
5757 &root->root_key,
5758 root_item);
5759 if (ret) {
5760 btrfs_abort_transaction(trans, ret);
5761 err = ret;
5762 goto out_end_trans;
5763 }
5764
5765 if (!is_reloc_root)
5766 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5767
5768 btrfs_end_transaction_throttle(trans);
5769 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5770 btrfs_debug(fs_info,
5771 "drop snapshot early exit");
5772 err = -EAGAIN;
5773 goto out_free;
5774 }
5775
5776 /*
5777 * Use join to avoid potential EINTR from transaction
5778 * start. See wait_reserve_ticket and the whole
5779 * reservation callchain.
5780 */
5781 if (for_reloc)
5782 trans = btrfs_join_transaction(tree_root);
5783 else
5784 trans = btrfs_start_transaction(tree_root, 0);
5785 if (IS_ERR(trans)) {
5786 err = PTR_ERR(trans);
5787 goto out_free;
5788 }
5789 }
5790 }
5791 btrfs_release_path(path);
5792 if (err)
5793 goto out_end_trans;
5794
5795 ret = btrfs_del_root(trans, &root->root_key);
5796 if (ret) {
5797 btrfs_abort_transaction(trans, ret);
5798 err = ret;
5799 goto out_end_trans;
5800 }
5801
5802 if (!is_reloc_root) {
5803 ret = btrfs_find_root(tree_root, &root->root_key, path,
5804 NULL, NULL);
5805 if (ret < 0) {
5806 btrfs_abort_transaction(trans, ret);
5807 err = ret;
5808 goto out_end_trans;
5809 } else if (ret > 0) {
5810 /* if we fail to delete the orphan item this time
5811 * around, it'll get picked up the next time.
5812 *
5813 * The most common failure here is just -ENOENT.
5814 */
5815 btrfs_del_orphan_item(trans, tree_root,
5816 root->root_key.objectid);
5817 }
5818 }
5819
5820 /*
5821 * This subvolume is going to be completely dropped, and won't be
5822 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5823 * commit transaction time. So free it here manually.
5824 */
5825 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5826 btrfs_qgroup_free_meta_all_pertrans(root);
5827
5828 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5829 btrfs_add_dropped_root(trans, root);
5830 else
5831 btrfs_put_root(root);
5832 root_dropped = true;
5833 out_end_trans:
5834 if (!is_reloc_root)
5835 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5836
5837 btrfs_end_transaction_throttle(trans);
5838 out_free:
5839 kfree(wc);
5840 btrfs_free_path(path);
5841 out:
5842 /*
5843 * We were an unfinished drop root, check to see if there are any
5844 * pending, and if not clear and wake up any waiters.
5845 */
5846 if (!err && unfinished_drop)
5847 btrfs_maybe_wake_unfinished_drop(fs_info);
5848
5849 /*
5850 * So if we need to stop dropping the snapshot for whatever reason we
5851 * need to make sure to add it back to the dead root list so that we
5852 * keep trying to do the work later. This also cleans up roots if we
5853 * don't have it in the radix (like when we recover after a power fail
5854 * or unmount) so we don't leak memory.
5855 */
5856 if (!for_reloc && !root_dropped)
5857 btrfs_add_dead_root(root);
5858 return err;
5859 }
5860
5861 /*
5862 * drop subtree rooted at tree block 'node'.
5863 *
5864 * NOTE: this function will unlock and release tree block 'node'
5865 * only used by relocation code
5866 */
5867 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5868 struct btrfs_root *root,
5869 struct extent_buffer *node,
5870 struct extent_buffer *parent)
5871 {
5872 struct btrfs_fs_info *fs_info = root->fs_info;
5873 struct btrfs_path *path;
5874 struct walk_control *wc;
5875 int level;
5876 int parent_level;
5877 int ret = 0;
5878 int wret;
5879
5880 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5881
5882 path = btrfs_alloc_path();
5883 if (!path)
5884 return -ENOMEM;
5885
5886 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5887 if (!wc) {
5888 btrfs_free_path(path);
5889 return -ENOMEM;
5890 }
5891
5892 btrfs_assert_tree_write_locked(parent);
5893 parent_level = btrfs_header_level(parent);
5894 atomic_inc(&parent->refs);
5895 path->nodes[parent_level] = parent;
5896 path->slots[parent_level] = btrfs_header_nritems(parent);
5897
5898 btrfs_assert_tree_write_locked(node);
5899 level = btrfs_header_level(node);
5900 path->nodes[level] = node;
5901 path->slots[level] = 0;
5902 path->locks[level] = BTRFS_WRITE_LOCK;
5903
5904 wc->refs[parent_level] = 1;
5905 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5906 wc->level = level;
5907 wc->shared_level = -1;
5908 wc->stage = DROP_REFERENCE;
5909 wc->update_ref = 0;
5910 wc->keep_locks = 1;
5911 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5912
5913 while (1) {
5914 wret = walk_down_tree(trans, root, path, wc);
5915 if (wret < 0) {
5916 ret = wret;
5917 break;
5918 }
5919
5920 wret = walk_up_tree(trans, root, path, wc, parent_level);
5921 if (wret < 0)
5922 ret = wret;
5923 if (wret != 0)
5924 break;
5925 }
5926
5927 kfree(wc);
5928 btrfs_free_path(path);
5929 return ret;
5930 }
5931
5932 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5933 u64 start, u64 end)
5934 {
5935 return unpin_extent_range(fs_info, start, end, false);
5936 }
5937
5938 /*
5939 * It used to be that old block groups would be left around forever.
5940 * Iterating over them would be enough to trim unused space. Since we
5941 * now automatically remove them, we also need to iterate over unallocated
5942 * space.
5943 *
5944 * We don't want a transaction for this since the discard may take a
5945 * substantial amount of time. We don't require that a transaction be
5946 * running, but we do need to take a running transaction into account
5947 * to ensure that we're not discarding chunks that were released or
5948 * allocated in the current transaction.
5949 *
5950 * Holding the chunks lock will prevent other threads from allocating
5951 * or releasing chunks, but it won't prevent a running transaction
5952 * from committing and releasing the memory that the pending chunks
5953 * list head uses. For that, we need to take a reference to the
5954 * transaction and hold the commit root sem. We only need to hold
5955 * it while performing the free space search since we have already
5956 * held back allocations.
5957 */
5958 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5959 {
5960 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5961 int ret;
5962
5963 *trimmed = 0;
5964
5965 /* Discard not supported = nothing to do. */
5966 if (!bdev_max_discard_sectors(device->bdev))
5967 return 0;
5968
5969 /* Not writable = nothing to do. */
5970 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5971 return 0;
5972
5973 /* No free space = nothing to do. */
5974 if (device->total_bytes <= device->bytes_used)
5975 return 0;
5976
5977 ret = 0;
5978
5979 while (1) {
5980 struct btrfs_fs_info *fs_info = device->fs_info;
5981 u64 bytes;
5982
5983 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5984 if (ret)
5985 break;
5986
5987 find_first_clear_extent_bit(&device->alloc_state, start,
5988 &start, &end,
5989 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5990
5991 /* Check if there are any CHUNK_* bits left */
5992 if (start > device->total_bytes) {
5993 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5994 btrfs_warn_in_rcu(fs_info,
5995 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5996 start, end - start + 1,
5997 btrfs_dev_name(device),
5998 device->total_bytes);
5999 mutex_unlock(&fs_info->chunk_mutex);
6000 ret = 0;
6001 break;
6002 }
6003
6004 /* Ensure we skip the reserved space on each device. */
6005 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6006
6007 /*
6008 * If find_first_clear_extent_bit find a range that spans the
6009 * end of the device it will set end to -1, in this case it's up
6010 * to the caller to trim the value to the size of the device.
6011 */
6012 end = min(end, device->total_bytes - 1);
6013
6014 len = end - start + 1;
6015
6016 /* We didn't find any extents */
6017 if (!len) {
6018 mutex_unlock(&fs_info->chunk_mutex);
6019 ret = 0;
6020 break;
6021 }
6022
6023 ret = btrfs_issue_discard(device->bdev, start, len,
6024 &bytes);
6025 if (!ret)
6026 set_extent_bit(&device->alloc_state, start,
6027 start + bytes - 1, CHUNK_TRIMMED, NULL);
6028 mutex_unlock(&fs_info->chunk_mutex);
6029
6030 if (ret)
6031 break;
6032
6033 start += len;
6034 *trimmed += bytes;
6035
6036 if (fatal_signal_pending(current)) {
6037 ret = -ERESTARTSYS;
6038 break;
6039 }
6040
6041 cond_resched();
6042 }
6043
6044 return ret;
6045 }
6046
6047 /*
6048 * Trim the whole filesystem by:
6049 * 1) trimming the free space in each block group
6050 * 2) trimming the unallocated space on each device
6051 *
6052 * This will also continue trimming even if a block group or device encounters
6053 * an error. The return value will be the last error, or 0 if nothing bad
6054 * happens.
6055 */
6056 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6057 {
6058 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6059 struct btrfs_block_group *cache = NULL;
6060 struct btrfs_device *device;
6061 u64 group_trimmed;
6062 u64 range_end = U64_MAX;
6063 u64 start;
6064 u64 end;
6065 u64 trimmed = 0;
6066 u64 bg_failed = 0;
6067 u64 dev_failed = 0;
6068 int bg_ret = 0;
6069 int dev_ret = 0;
6070 int ret = 0;
6071
6072 if (range->start == U64_MAX)
6073 return -EINVAL;
6074
6075 /*
6076 * Check range overflow if range->len is set.
6077 * The default range->len is U64_MAX.
6078 */
6079 if (range->len != U64_MAX &&
6080 check_add_overflow(range->start, range->len, &range_end))
6081 return -EINVAL;
6082
6083 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6084 for (; cache; cache = btrfs_next_block_group(cache)) {
6085 if (cache->start >= range_end) {
6086 btrfs_put_block_group(cache);
6087 break;
6088 }
6089
6090 start = max(range->start, cache->start);
6091 end = min(range_end, cache->start + cache->length);
6092
6093 if (end - start >= range->minlen) {
6094 if (!btrfs_block_group_done(cache)) {
6095 ret = btrfs_cache_block_group(cache, true);
6096 if (ret) {
6097 bg_failed++;
6098 bg_ret = ret;
6099 continue;
6100 }
6101 }
6102 ret = btrfs_trim_block_group(cache,
6103 &group_trimmed,
6104 start,
6105 end,
6106 range->minlen);
6107
6108 trimmed += group_trimmed;
6109 if (ret) {
6110 bg_failed++;
6111 bg_ret = ret;
6112 continue;
6113 }
6114 }
6115 }
6116
6117 if (bg_failed)
6118 btrfs_warn(fs_info,
6119 "failed to trim %llu block group(s), last error %d",
6120 bg_failed, bg_ret);
6121
6122 mutex_lock(&fs_devices->device_list_mutex);
6123 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6124 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6125 continue;
6126
6127 ret = btrfs_trim_free_extents(device, &group_trimmed);
6128 if (ret) {
6129 dev_failed++;
6130 dev_ret = ret;
6131 break;
6132 }
6133
6134 trimmed += group_trimmed;
6135 }
6136 mutex_unlock(&fs_devices->device_list_mutex);
6137
6138 if (dev_failed)
6139 btrfs_warn(fs_info,
6140 "failed to trim %llu device(s), last error %d",
6141 dev_failed, dev_ret);
6142 range->len = trimmed;
6143 if (bg_ret)
6144 return bg_ret;
6145 return dev_ret;
6146 }