]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/extent-tree.c
Merge tag 'for-6.6/dm-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/devic...
[thirdparty/linux.git] / fs / btrfs / extent-tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
19 #include "ctree.h"
20 #include "extent-tree.h"
21 #include "tree-log.h"
22 #include "disk-io.h"
23 #include "print-tree.h"
24 #include "volumes.h"
25 #include "raid56.h"
26 #include "locking.h"
27 #include "free-space-cache.h"
28 #include "free-space-tree.h"
29 #include "sysfs.h"
30 #include "qgroup.h"
31 #include "ref-verify.h"
32 #include "space-info.h"
33 #include "block-rsv.h"
34 #include "delalloc-space.h"
35 #include "discard.h"
36 #include "rcu-string.h"
37 #include "zoned.h"
38 #include "dev-replace.h"
39 #include "fs.h"
40 #include "accessors.h"
41 #include "root-tree.h"
42 #include "file-item.h"
43 #include "orphan.h"
44 #include "tree-checker.h"
45
46 #undef SCRAMBLE_DELAYED_REFS
47
48
49 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
50 struct btrfs_delayed_ref_node *node, u64 parent,
51 u64 root_objectid, u64 owner_objectid,
52 u64 owner_offset, int refs_to_drop,
53 struct btrfs_delayed_extent_op *extra_op);
54 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
55 struct extent_buffer *leaf,
56 struct btrfs_extent_item *ei);
57 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
58 u64 parent, u64 root_objectid,
59 u64 flags, u64 owner, u64 offset,
60 struct btrfs_key *ins, int ref_mod);
61 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
62 struct btrfs_delayed_ref_node *node,
63 struct btrfs_delayed_extent_op *extent_op);
64 static int find_next_key(struct btrfs_path *path, int level,
65 struct btrfs_key *key);
66
67 static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
68 {
69 return (cache->flags & bits) == bits;
70 }
71
72 /* simple helper to search for an existing data extent at a given offset */
73 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
74 {
75 struct btrfs_root *root = btrfs_extent_root(fs_info, start);
76 int ret;
77 struct btrfs_key key;
78 struct btrfs_path *path;
79
80 path = btrfs_alloc_path();
81 if (!path)
82 return -ENOMEM;
83
84 key.objectid = start;
85 key.offset = len;
86 key.type = BTRFS_EXTENT_ITEM_KEY;
87 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
88 btrfs_free_path(path);
89 return ret;
90 }
91
92 /*
93 * helper function to lookup reference count and flags of a tree block.
94 *
95 * the head node for delayed ref is used to store the sum of all the
96 * reference count modifications queued up in the rbtree. the head
97 * node may also store the extent flags to set. This way you can check
98 * to see what the reference count and extent flags would be if all of
99 * the delayed refs are not processed.
100 */
101 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
102 struct btrfs_fs_info *fs_info, u64 bytenr,
103 u64 offset, int metadata, u64 *refs, u64 *flags)
104 {
105 struct btrfs_root *extent_root;
106 struct btrfs_delayed_ref_head *head;
107 struct btrfs_delayed_ref_root *delayed_refs;
108 struct btrfs_path *path;
109 struct btrfs_extent_item *ei;
110 struct extent_buffer *leaf;
111 struct btrfs_key key;
112 u32 item_size;
113 u64 num_refs;
114 u64 extent_flags;
115 int ret;
116
117 /*
118 * If we don't have skinny metadata, don't bother doing anything
119 * different
120 */
121 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
122 offset = fs_info->nodesize;
123 metadata = 0;
124 }
125
126 path = btrfs_alloc_path();
127 if (!path)
128 return -ENOMEM;
129
130 if (!trans) {
131 path->skip_locking = 1;
132 path->search_commit_root = 1;
133 }
134
135 search_again:
136 key.objectid = bytenr;
137 key.offset = offset;
138 if (metadata)
139 key.type = BTRFS_METADATA_ITEM_KEY;
140 else
141 key.type = BTRFS_EXTENT_ITEM_KEY;
142
143 extent_root = btrfs_extent_root(fs_info, bytenr);
144 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
145 if (ret < 0)
146 goto out_free;
147
148 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
149 if (path->slots[0]) {
150 path->slots[0]--;
151 btrfs_item_key_to_cpu(path->nodes[0], &key,
152 path->slots[0]);
153 if (key.objectid == bytenr &&
154 key.type == BTRFS_EXTENT_ITEM_KEY &&
155 key.offset == fs_info->nodesize)
156 ret = 0;
157 }
158 }
159
160 if (ret == 0) {
161 leaf = path->nodes[0];
162 item_size = btrfs_item_size(leaf, path->slots[0]);
163 if (item_size >= sizeof(*ei)) {
164 ei = btrfs_item_ptr(leaf, path->slots[0],
165 struct btrfs_extent_item);
166 num_refs = btrfs_extent_refs(leaf, ei);
167 extent_flags = btrfs_extent_flags(leaf, ei);
168 } else {
169 ret = -EUCLEAN;
170 btrfs_err(fs_info,
171 "unexpected extent item size, has %u expect >= %zu",
172 item_size, sizeof(*ei));
173 if (trans)
174 btrfs_abort_transaction(trans, ret);
175 else
176 btrfs_handle_fs_error(fs_info, ret, NULL);
177
178 goto out_free;
179 }
180
181 BUG_ON(num_refs == 0);
182 } else {
183 num_refs = 0;
184 extent_flags = 0;
185 ret = 0;
186 }
187
188 if (!trans)
189 goto out;
190
191 delayed_refs = &trans->transaction->delayed_refs;
192 spin_lock(&delayed_refs->lock);
193 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
194 if (head) {
195 if (!mutex_trylock(&head->mutex)) {
196 refcount_inc(&head->refs);
197 spin_unlock(&delayed_refs->lock);
198
199 btrfs_release_path(path);
200
201 /*
202 * Mutex was contended, block until it's released and try
203 * again
204 */
205 mutex_lock(&head->mutex);
206 mutex_unlock(&head->mutex);
207 btrfs_put_delayed_ref_head(head);
208 goto search_again;
209 }
210 spin_lock(&head->lock);
211 if (head->extent_op && head->extent_op->update_flags)
212 extent_flags |= head->extent_op->flags_to_set;
213 else
214 BUG_ON(num_refs == 0);
215
216 num_refs += head->ref_mod;
217 spin_unlock(&head->lock);
218 mutex_unlock(&head->mutex);
219 }
220 spin_unlock(&delayed_refs->lock);
221 out:
222 WARN_ON(num_refs == 0);
223 if (refs)
224 *refs = num_refs;
225 if (flags)
226 *flags = extent_flags;
227 out_free:
228 btrfs_free_path(path);
229 return ret;
230 }
231
232 /*
233 * Back reference rules. Back refs have three main goals:
234 *
235 * 1) differentiate between all holders of references to an extent so that
236 * when a reference is dropped we can make sure it was a valid reference
237 * before freeing the extent.
238 *
239 * 2) Provide enough information to quickly find the holders of an extent
240 * if we notice a given block is corrupted or bad.
241 *
242 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
243 * maintenance. This is actually the same as #2, but with a slightly
244 * different use case.
245 *
246 * There are two kinds of back refs. The implicit back refs is optimized
247 * for pointers in non-shared tree blocks. For a given pointer in a block,
248 * back refs of this kind provide information about the block's owner tree
249 * and the pointer's key. These information allow us to find the block by
250 * b-tree searching. The full back refs is for pointers in tree blocks not
251 * referenced by their owner trees. The location of tree block is recorded
252 * in the back refs. Actually the full back refs is generic, and can be
253 * used in all cases the implicit back refs is used. The major shortcoming
254 * of the full back refs is its overhead. Every time a tree block gets
255 * COWed, we have to update back refs entry for all pointers in it.
256 *
257 * For a newly allocated tree block, we use implicit back refs for
258 * pointers in it. This means most tree related operations only involve
259 * implicit back refs. For a tree block created in old transaction, the
260 * only way to drop a reference to it is COW it. So we can detect the
261 * event that tree block loses its owner tree's reference and do the
262 * back refs conversion.
263 *
264 * When a tree block is COWed through a tree, there are four cases:
265 *
266 * The reference count of the block is one and the tree is the block's
267 * owner tree. Nothing to do in this case.
268 *
269 * The reference count of the block is one and the tree is not the
270 * block's owner tree. In this case, full back refs is used for pointers
271 * in the block. Remove these full back refs, add implicit back refs for
272 * every pointers in the new block.
273 *
274 * The reference count of the block is greater than one and the tree is
275 * the block's owner tree. In this case, implicit back refs is used for
276 * pointers in the block. Add full back refs for every pointers in the
277 * block, increase lower level extents' reference counts. The original
278 * implicit back refs are entailed to the new block.
279 *
280 * The reference count of the block is greater than one and the tree is
281 * not the block's owner tree. Add implicit back refs for every pointer in
282 * the new block, increase lower level extents' reference count.
283 *
284 * Back Reference Key composing:
285 *
286 * The key objectid corresponds to the first byte in the extent,
287 * The key type is used to differentiate between types of back refs.
288 * There are different meanings of the key offset for different types
289 * of back refs.
290 *
291 * File extents can be referenced by:
292 *
293 * - multiple snapshots, subvolumes, or different generations in one subvol
294 * - different files inside a single subvolume
295 * - different offsets inside a file (bookend extents in file.c)
296 *
297 * The extent ref structure for the implicit back refs has fields for:
298 *
299 * - Objectid of the subvolume root
300 * - objectid of the file holding the reference
301 * - original offset in the file
302 * - how many bookend extents
303 *
304 * The key offset for the implicit back refs is hash of the first
305 * three fields.
306 *
307 * The extent ref structure for the full back refs has field for:
308 *
309 * - number of pointers in the tree leaf
310 *
311 * The key offset for the implicit back refs is the first byte of
312 * the tree leaf
313 *
314 * When a file extent is allocated, The implicit back refs is used.
315 * the fields are filled in:
316 *
317 * (root_key.objectid, inode objectid, offset in file, 1)
318 *
319 * When a file extent is removed file truncation, we find the
320 * corresponding implicit back refs and check the following fields:
321 *
322 * (btrfs_header_owner(leaf), inode objectid, offset in file)
323 *
324 * Btree extents can be referenced by:
325 *
326 * - Different subvolumes
327 *
328 * Both the implicit back refs and the full back refs for tree blocks
329 * only consist of key. The key offset for the implicit back refs is
330 * objectid of block's owner tree. The key offset for the full back refs
331 * is the first byte of parent block.
332 *
333 * When implicit back refs is used, information about the lowest key and
334 * level of the tree block are required. These information are stored in
335 * tree block info structure.
336 */
337
338 /*
339 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
340 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
341 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
342 */
343 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
344 struct btrfs_extent_inline_ref *iref,
345 enum btrfs_inline_ref_type is_data)
346 {
347 int type = btrfs_extent_inline_ref_type(eb, iref);
348 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
349
350 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
351 type == BTRFS_SHARED_BLOCK_REF_KEY ||
352 type == BTRFS_SHARED_DATA_REF_KEY ||
353 type == BTRFS_EXTENT_DATA_REF_KEY) {
354 if (is_data == BTRFS_REF_TYPE_BLOCK) {
355 if (type == BTRFS_TREE_BLOCK_REF_KEY)
356 return type;
357 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
358 ASSERT(eb->fs_info);
359 /*
360 * Every shared one has parent tree block,
361 * which must be aligned to sector size.
362 */
363 if (offset &&
364 IS_ALIGNED(offset, eb->fs_info->sectorsize))
365 return type;
366 }
367 } else if (is_data == BTRFS_REF_TYPE_DATA) {
368 if (type == BTRFS_EXTENT_DATA_REF_KEY)
369 return type;
370 if (type == BTRFS_SHARED_DATA_REF_KEY) {
371 ASSERT(eb->fs_info);
372 /*
373 * Every shared one has parent tree block,
374 * which must be aligned to sector size.
375 */
376 if (offset &&
377 IS_ALIGNED(offset, eb->fs_info->sectorsize))
378 return type;
379 }
380 } else {
381 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
382 return type;
383 }
384 }
385
386 WARN_ON(1);
387 btrfs_print_leaf(eb);
388 btrfs_err(eb->fs_info,
389 "eb %llu iref 0x%lx invalid extent inline ref type %d",
390 eb->start, (unsigned long)iref, type);
391
392 return BTRFS_REF_TYPE_INVALID;
393 }
394
395 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
396 {
397 u32 high_crc = ~(u32)0;
398 u32 low_crc = ~(u32)0;
399 __le64 lenum;
400
401 lenum = cpu_to_le64(root_objectid);
402 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
403 lenum = cpu_to_le64(owner);
404 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
405 lenum = cpu_to_le64(offset);
406 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
407
408 return ((u64)high_crc << 31) ^ (u64)low_crc;
409 }
410
411 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
412 struct btrfs_extent_data_ref *ref)
413 {
414 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
415 btrfs_extent_data_ref_objectid(leaf, ref),
416 btrfs_extent_data_ref_offset(leaf, ref));
417 }
418
419 static int match_extent_data_ref(struct extent_buffer *leaf,
420 struct btrfs_extent_data_ref *ref,
421 u64 root_objectid, u64 owner, u64 offset)
422 {
423 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
424 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
425 btrfs_extent_data_ref_offset(leaf, ref) != offset)
426 return 0;
427 return 1;
428 }
429
430 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
431 struct btrfs_path *path,
432 u64 bytenr, u64 parent,
433 u64 root_objectid,
434 u64 owner, u64 offset)
435 {
436 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
437 struct btrfs_key key;
438 struct btrfs_extent_data_ref *ref;
439 struct extent_buffer *leaf;
440 u32 nritems;
441 int ret;
442 int recow;
443 int err = -ENOENT;
444
445 key.objectid = bytenr;
446 if (parent) {
447 key.type = BTRFS_SHARED_DATA_REF_KEY;
448 key.offset = parent;
449 } else {
450 key.type = BTRFS_EXTENT_DATA_REF_KEY;
451 key.offset = hash_extent_data_ref(root_objectid,
452 owner, offset);
453 }
454 again:
455 recow = 0;
456 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
457 if (ret < 0) {
458 err = ret;
459 goto fail;
460 }
461
462 if (parent) {
463 if (!ret)
464 return 0;
465 goto fail;
466 }
467
468 leaf = path->nodes[0];
469 nritems = btrfs_header_nritems(leaf);
470 while (1) {
471 if (path->slots[0] >= nritems) {
472 ret = btrfs_next_leaf(root, path);
473 if (ret < 0)
474 err = ret;
475 if (ret)
476 goto fail;
477
478 leaf = path->nodes[0];
479 nritems = btrfs_header_nritems(leaf);
480 recow = 1;
481 }
482
483 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
484 if (key.objectid != bytenr ||
485 key.type != BTRFS_EXTENT_DATA_REF_KEY)
486 goto fail;
487
488 ref = btrfs_item_ptr(leaf, path->slots[0],
489 struct btrfs_extent_data_ref);
490
491 if (match_extent_data_ref(leaf, ref, root_objectid,
492 owner, offset)) {
493 if (recow) {
494 btrfs_release_path(path);
495 goto again;
496 }
497 err = 0;
498 break;
499 }
500 path->slots[0]++;
501 }
502 fail:
503 return err;
504 }
505
506 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
507 struct btrfs_path *path,
508 u64 bytenr, u64 parent,
509 u64 root_objectid, u64 owner,
510 u64 offset, int refs_to_add)
511 {
512 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
513 struct btrfs_key key;
514 struct extent_buffer *leaf;
515 u32 size;
516 u32 num_refs;
517 int ret;
518
519 key.objectid = bytenr;
520 if (parent) {
521 key.type = BTRFS_SHARED_DATA_REF_KEY;
522 key.offset = parent;
523 size = sizeof(struct btrfs_shared_data_ref);
524 } else {
525 key.type = BTRFS_EXTENT_DATA_REF_KEY;
526 key.offset = hash_extent_data_ref(root_objectid,
527 owner, offset);
528 size = sizeof(struct btrfs_extent_data_ref);
529 }
530
531 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
532 if (ret && ret != -EEXIST)
533 goto fail;
534
535 leaf = path->nodes[0];
536 if (parent) {
537 struct btrfs_shared_data_ref *ref;
538 ref = btrfs_item_ptr(leaf, path->slots[0],
539 struct btrfs_shared_data_ref);
540 if (ret == 0) {
541 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
542 } else {
543 num_refs = btrfs_shared_data_ref_count(leaf, ref);
544 num_refs += refs_to_add;
545 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
546 }
547 } else {
548 struct btrfs_extent_data_ref *ref;
549 while (ret == -EEXIST) {
550 ref = btrfs_item_ptr(leaf, path->slots[0],
551 struct btrfs_extent_data_ref);
552 if (match_extent_data_ref(leaf, ref, root_objectid,
553 owner, offset))
554 break;
555 btrfs_release_path(path);
556 key.offset++;
557 ret = btrfs_insert_empty_item(trans, root, path, &key,
558 size);
559 if (ret && ret != -EEXIST)
560 goto fail;
561
562 leaf = path->nodes[0];
563 }
564 ref = btrfs_item_ptr(leaf, path->slots[0],
565 struct btrfs_extent_data_ref);
566 if (ret == 0) {
567 btrfs_set_extent_data_ref_root(leaf, ref,
568 root_objectid);
569 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
570 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
571 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
572 } else {
573 num_refs = btrfs_extent_data_ref_count(leaf, ref);
574 num_refs += refs_to_add;
575 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
576 }
577 }
578 btrfs_mark_buffer_dirty(leaf);
579 ret = 0;
580 fail:
581 btrfs_release_path(path);
582 return ret;
583 }
584
585 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
586 struct btrfs_root *root,
587 struct btrfs_path *path,
588 int refs_to_drop)
589 {
590 struct btrfs_key key;
591 struct btrfs_extent_data_ref *ref1 = NULL;
592 struct btrfs_shared_data_ref *ref2 = NULL;
593 struct extent_buffer *leaf;
594 u32 num_refs = 0;
595 int ret = 0;
596
597 leaf = path->nodes[0];
598 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
599
600 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
601 ref1 = btrfs_item_ptr(leaf, path->slots[0],
602 struct btrfs_extent_data_ref);
603 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
604 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
605 ref2 = btrfs_item_ptr(leaf, path->slots[0],
606 struct btrfs_shared_data_ref);
607 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
608 } else {
609 btrfs_err(trans->fs_info,
610 "unrecognized backref key (%llu %u %llu)",
611 key.objectid, key.type, key.offset);
612 btrfs_abort_transaction(trans, -EUCLEAN);
613 return -EUCLEAN;
614 }
615
616 BUG_ON(num_refs < refs_to_drop);
617 num_refs -= refs_to_drop;
618
619 if (num_refs == 0) {
620 ret = btrfs_del_item(trans, root, path);
621 } else {
622 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
623 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
624 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
625 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
626 btrfs_mark_buffer_dirty(leaf);
627 }
628 return ret;
629 }
630
631 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
632 struct btrfs_extent_inline_ref *iref)
633 {
634 struct btrfs_key key;
635 struct extent_buffer *leaf;
636 struct btrfs_extent_data_ref *ref1;
637 struct btrfs_shared_data_ref *ref2;
638 u32 num_refs = 0;
639 int type;
640
641 leaf = path->nodes[0];
642 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
643
644 if (iref) {
645 /*
646 * If type is invalid, we should have bailed out earlier than
647 * this call.
648 */
649 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
650 ASSERT(type != BTRFS_REF_TYPE_INVALID);
651 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
652 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
653 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
654 } else {
655 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
656 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
657 }
658 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
659 ref1 = btrfs_item_ptr(leaf, path->slots[0],
660 struct btrfs_extent_data_ref);
661 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
662 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
663 ref2 = btrfs_item_ptr(leaf, path->slots[0],
664 struct btrfs_shared_data_ref);
665 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
666 } else {
667 WARN_ON(1);
668 }
669 return num_refs;
670 }
671
672 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
673 struct btrfs_path *path,
674 u64 bytenr, u64 parent,
675 u64 root_objectid)
676 {
677 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
678 struct btrfs_key key;
679 int ret;
680
681 key.objectid = bytenr;
682 if (parent) {
683 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
684 key.offset = parent;
685 } else {
686 key.type = BTRFS_TREE_BLOCK_REF_KEY;
687 key.offset = root_objectid;
688 }
689
690 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
691 if (ret > 0)
692 ret = -ENOENT;
693 return ret;
694 }
695
696 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
697 struct btrfs_path *path,
698 u64 bytenr, u64 parent,
699 u64 root_objectid)
700 {
701 struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
702 struct btrfs_key key;
703 int ret;
704
705 key.objectid = bytenr;
706 if (parent) {
707 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
708 key.offset = parent;
709 } else {
710 key.type = BTRFS_TREE_BLOCK_REF_KEY;
711 key.offset = root_objectid;
712 }
713
714 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
715 btrfs_release_path(path);
716 return ret;
717 }
718
719 static inline int extent_ref_type(u64 parent, u64 owner)
720 {
721 int type;
722 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
723 if (parent > 0)
724 type = BTRFS_SHARED_BLOCK_REF_KEY;
725 else
726 type = BTRFS_TREE_BLOCK_REF_KEY;
727 } else {
728 if (parent > 0)
729 type = BTRFS_SHARED_DATA_REF_KEY;
730 else
731 type = BTRFS_EXTENT_DATA_REF_KEY;
732 }
733 return type;
734 }
735
736 static int find_next_key(struct btrfs_path *path, int level,
737 struct btrfs_key *key)
738
739 {
740 for (; level < BTRFS_MAX_LEVEL; level++) {
741 if (!path->nodes[level])
742 break;
743 if (path->slots[level] + 1 >=
744 btrfs_header_nritems(path->nodes[level]))
745 continue;
746 if (level == 0)
747 btrfs_item_key_to_cpu(path->nodes[level], key,
748 path->slots[level] + 1);
749 else
750 btrfs_node_key_to_cpu(path->nodes[level], key,
751 path->slots[level] + 1);
752 return 0;
753 }
754 return 1;
755 }
756
757 /*
758 * look for inline back ref. if back ref is found, *ref_ret is set
759 * to the address of inline back ref, and 0 is returned.
760 *
761 * if back ref isn't found, *ref_ret is set to the address where it
762 * should be inserted, and -ENOENT is returned.
763 *
764 * if insert is true and there are too many inline back refs, the path
765 * points to the extent item, and -EAGAIN is returned.
766 *
767 * NOTE: inline back refs are ordered in the same way that back ref
768 * items in the tree are ordered.
769 */
770 static noinline_for_stack
771 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
772 struct btrfs_path *path,
773 struct btrfs_extent_inline_ref **ref_ret,
774 u64 bytenr, u64 num_bytes,
775 u64 parent, u64 root_objectid,
776 u64 owner, u64 offset, int insert)
777 {
778 struct btrfs_fs_info *fs_info = trans->fs_info;
779 struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
780 struct btrfs_key key;
781 struct extent_buffer *leaf;
782 struct btrfs_extent_item *ei;
783 struct btrfs_extent_inline_ref *iref;
784 u64 flags;
785 u64 item_size;
786 unsigned long ptr;
787 unsigned long end;
788 int extra_size;
789 int type;
790 int want;
791 int ret;
792 int err = 0;
793 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
794 int needed;
795
796 key.objectid = bytenr;
797 key.type = BTRFS_EXTENT_ITEM_KEY;
798 key.offset = num_bytes;
799
800 want = extent_ref_type(parent, owner);
801 if (insert) {
802 extra_size = btrfs_extent_inline_ref_size(want);
803 path->search_for_extension = 1;
804 path->keep_locks = 1;
805 } else
806 extra_size = -1;
807
808 /*
809 * Owner is our level, so we can just add one to get the level for the
810 * block we are interested in.
811 */
812 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
813 key.type = BTRFS_METADATA_ITEM_KEY;
814 key.offset = owner;
815 }
816
817 again:
818 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
819 if (ret < 0) {
820 err = ret;
821 goto out;
822 }
823
824 /*
825 * We may be a newly converted file system which still has the old fat
826 * extent entries for metadata, so try and see if we have one of those.
827 */
828 if (ret > 0 && skinny_metadata) {
829 skinny_metadata = false;
830 if (path->slots[0]) {
831 path->slots[0]--;
832 btrfs_item_key_to_cpu(path->nodes[0], &key,
833 path->slots[0]);
834 if (key.objectid == bytenr &&
835 key.type == BTRFS_EXTENT_ITEM_KEY &&
836 key.offset == num_bytes)
837 ret = 0;
838 }
839 if (ret) {
840 key.objectid = bytenr;
841 key.type = BTRFS_EXTENT_ITEM_KEY;
842 key.offset = num_bytes;
843 btrfs_release_path(path);
844 goto again;
845 }
846 }
847
848 if (ret && !insert) {
849 err = -ENOENT;
850 goto out;
851 } else if (WARN_ON(ret)) {
852 btrfs_print_leaf(path->nodes[0]);
853 btrfs_err(fs_info,
854 "extent item not found for insert, bytenr %llu num_bytes %llu parent %llu root_objectid %llu owner %llu offset %llu",
855 bytenr, num_bytes, parent, root_objectid, owner,
856 offset);
857 err = -EIO;
858 goto out;
859 }
860
861 leaf = path->nodes[0];
862 item_size = btrfs_item_size(leaf, path->slots[0]);
863 if (unlikely(item_size < sizeof(*ei))) {
864 err = -EUCLEAN;
865 btrfs_err(fs_info,
866 "unexpected extent item size, has %llu expect >= %zu",
867 item_size, sizeof(*ei));
868 btrfs_abort_transaction(trans, err);
869 goto out;
870 }
871
872 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
873 flags = btrfs_extent_flags(leaf, ei);
874
875 ptr = (unsigned long)(ei + 1);
876 end = (unsigned long)ei + item_size;
877
878 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
879 ptr += sizeof(struct btrfs_tree_block_info);
880 BUG_ON(ptr > end);
881 }
882
883 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
884 needed = BTRFS_REF_TYPE_DATA;
885 else
886 needed = BTRFS_REF_TYPE_BLOCK;
887
888 err = -ENOENT;
889 while (1) {
890 if (ptr >= end) {
891 if (ptr > end) {
892 err = -EUCLEAN;
893 btrfs_print_leaf(path->nodes[0]);
894 btrfs_crit(fs_info,
895 "overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
896 path->slots[0], root_objectid, owner, offset, parent);
897 }
898 break;
899 }
900 iref = (struct btrfs_extent_inline_ref *)ptr;
901 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
902 if (type == BTRFS_REF_TYPE_INVALID) {
903 err = -EUCLEAN;
904 goto out;
905 }
906
907 if (want < type)
908 break;
909 if (want > type) {
910 ptr += btrfs_extent_inline_ref_size(type);
911 continue;
912 }
913
914 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
915 struct btrfs_extent_data_ref *dref;
916 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
917 if (match_extent_data_ref(leaf, dref, root_objectid,
918 owner, offset)) {
919 err = 0;
920 break;
921 }
922 if (hash_extent_data_ref_item(leaf, dref) <
923 hash_extent_data_ref(root_objectid, owner, offset))
924 break;
925 } else {
926 u64 ref_offset;
927 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
928 if (parent > 0) {
929 if (parent == ref_offset) {
930 err = 0;
931 break;
932 }
933 if (ref_offset < parent)
934 break;
935 } else {
936 if (root_objectid == ref_offset) {
937 err = 0;
938 break;
939 }
940 if (ref_offset < root_objectid)
941 break;
942 }
943 }
944 ptr += btrfs_extent_inline_ref_size(type);
945 }
946 if (err == -ENOENT && insert) {
947 if (item_size + extra_size >=
948 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
949 err = -EAGAIN;
950 goto out;
951 }
952 /*
953 * To add new inline back ref, we have to make sure
954 * there is no corresponding back ref item.
955 * For simplicity, we just do not add new inline back
956 * ref if there is any kind of item for this block
957 */
958 if (find_next_key(path, 0, &key) == 0 &&
959 key.objectid == bytenr &&
960 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
961 err = -EAGAIN;
962 goto out;
963 }
964 }
965 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
966 out:
967 if (insert) {
968 path->keep_locks = 0;
969 path->search_for_extension = 0;
970 btrfs_unlock_up_safe(path, 1);
971 }
972 return err;
973 }
974
975 /*
976 * helper to add new inline back ref
977 */
978 static noinline_for_stack
979 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
980 struct btrfs_path *path,
981 struct btrfs_extent_inline_ref *iref,
982 u64 parent, u64 root_objectid,
983 u64 owner, u64 offset, int refs_to_add,
984 struct btrfs_delayed_extent_op *extent_op)
985 {
986 struct extent_buffer *leaf;
987 struct btrfs_extent_item *ei;
988 unsigned long ptr;
989 unsigned long end;
990 unsigned long item_offset;
991 u64 refs;
992 int size;
993 int type;
994
995 leaf = path->nodes[0];
996 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
997 item_offset = (unsigned long)iref - (unsigned long)ei;
998
999 type = extent_ref_type(parent, owner);
1000 size = btrfs_extent_inline_ref_size(type);
1001
1002 btrfs_extend_item(path, size);
1003
1004 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1005 refs = btrfs_extent_refs(leaf, ei);
1006 refs += refs_to_add;
1007 btrfs_set_extent_refs(leaf, ei, refs);
1008 if (extent_op)
1009 __run_delayed_extent_op(extent_op, leaf, ei);
1010
1011 ptr = (unsigned long)ei + item_offset;
1012 end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
1013 if (ptr < end - size)
1014 memmove_extent_buffer(leaf, ptr + size, ptr,
1015 end - size - ptr);
1016
1017 iref = (struct btrfs_extent_inline_ref *)ptr;
1018 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1019 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1020 struct btrfs_extent_data_ref *dref;
1021 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1022 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1023 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1024 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1025 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1026 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1027 struct btrfs_shared_data_ref *sref;
1028 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1029 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1030 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1031 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1032 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1033 } else {
1034 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1035 }
1036 btrfs_mark_buffer_dirty(leaf);
1037 }
1038
1039 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1040 struct btrfs_path *path,
1041 struct btrfs_extent_inline_ref **ref_ret,
1042 u64 bytenr, u64 num_bytes, u64 parent,
1043 u64 root_objectid, u64 owner, u64 offset)
1044 {
1045 int ret;
1046
1047 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1048 num_bytes, parent, root_objectid,
1049 owner, offset, 0);
1050 if (ret != -ENOENT)
1051 return ret;
1052
1053 btrfs_release_path(path);
1054 *ref_ret = NULL;
1055
1056 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1057 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1058 root_objectid);
1059 } else {
1060 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1061 root_objectid, owner, offset);
1062 }
1063 return ret;
1064 }
1065
1066 /*
1067 * helper to update/remove inline back ref
1068 */
1069 static noinline_for_stack int update_inline_extent_backref(struct btrfs_path *path,
1070 struct btrfs_extent_inline_ref *iref,
1071 int refs_to_mod,
1072 struct btrfs_delayed_extent_op *extent_op)
1073 {
1074 struct extent_buffer *leaf = path->nodes[0];
1075 struct btrfs_fs_info *fs_info = leaf->fs_info;
1076 struct btrfs_extent_item *ei;
1077 struct btrfs_extent_data_ref *dref = NULL;
1078 struct btrfs_shared_data_ref *sref = NULL;
1079 unsigned long ptr;
1080 unsigned long end;
1081 u32 item_size;
1082 int size;
1083 int type;
1084 u64 refs;
1085
1086 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1087 refs = btrfs_extent_refs(leaf, ei);
1088 if (unlikely(refs_to_mod < 0 && refs + refs_to_mod <= 0)) {
1089 struct btrfs_key key;
1090 u32 extent_size;
1091
1092 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1093 if (key.type == BTRFS_METADATA_ITEM_KEY)
1094 extent_size = fs_info->nodesize;
1095 else
1096 extent_size = key.offset;
1097 btrfs_print_leaf(leaf);
1098 btrfs_err(fs_info,
1099 "invalid refs_to_mod for extent %llu num_bytes %u, has %d expect >= -%llu",
1100 key.objectid, extent_size, refs_to_mod, refs);
1101 return -EUCLEAN;
1102 }
1103 refs += refs_to_mod;
1104 btrfs_set_extent_refs(leaf, ei, refs);
1105 if (extent_op)
1106 __run_delayed_extent_op(extent_op, leaf, ei);
1107
1108 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1109 /*
1110 * Function btrfs_get_extent_inline_ref_type() has already printed
1111 * error messages.
1112 */
1113 if (unlikely(type == BTRFS_REF_TYPE_INVALID))
1114 return -EUCLEAN;
1115
1116 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1117 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1118 refs = btrfs_extent_data_ref_count(leaf, dref);
1119 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1120 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1121 refs = btrfs_shared_data_ref_count(leaf, sref);
1122 } else {
1123 refs = 1;
1124 /*
1125 * For tree blocks we can only drop one ref for it, and tree
1126 * blocks should not have refs > 1.
1127 *
1128 * Furthermore if we're inserting a new inline backref, we
1129 * won't reach this path either. That would be
1130 * setup_inline_extent_backref().
1131 */
1132 if (unlikely(refs_to_mod != -1)) {
1133 struct btrfs_key key;
1134
1135 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1136
1137 btrfs_print_leaf(leaf);
1138 btrfs_err(fs_info,
1139 "invalid refs_to_mod for tree block %llu, has %d expect -1",
1140 key.objectid, refs_to_mod);
1141 return -EUCLEAN;
1142 }
1143 }
1144
1145 if (unlikely(refs_to_mod < 0 && refs < -refs_to_mod)) {
1146 struct btrfs_key key;
1147 u32 extent_size;
1148
1149 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1150 if (key.type == BTRFS_METADATA_ITEM_KEY)
1151 extent_size = fs_info->nodesize;
1152 else
1153 extent_size = key.offset;
1154 btrfs_print_leaf(leaf);
1155 btrfs_err(fs_info,
1156 "invalid refs_to_mod for backref entry, iref %lu extent %llu num_bytes %u, has %d expect >= -%llu",
1157 (unsigned long)iref, key.objectid, extent_size,
1158 refs_to_mod, refs);
1159 return -EUCLEAN;
1160 }
1161 refs += refs_to_mod;
1162
1163 if (refs > 0) {
1164 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1165 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1166 else
1167 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1168 } else {
1169 size = btrfs_extent_inline_ref_size(type);
1170 item_size = btrfs_item_size(leaf, path->slots[0]);
1171 ptr = (unsigned long)iref;
1172 end = (unsigned long)ei + item_size;
1173 if (ptr + size < end)
1174 memmove_extent_buffer(leaf, ptr, ptr + size,
1175 end - ptr - size);
1176 item_size -= size;
1177 btrfs_truncate_item(path, item_size, 1);
1178 }
1179 btrfs_mark_buffer_dirty(leaf);
1180 return 0;
1181 }
1182
1183 static noinline_for_stack
1184 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 num_bytes, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add,
1189 struct btrfs_delayed_extent_op *extent_op)
1190 {
1191 struct btrfs_extent_inline_ref *iref;
1192 int ret;
1193
1194 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1195 num_bytes, parent, root_objectid,
1196 owner, offset, 1);
1197 if (ret == 0) {
1198 /*
1199 * We're adding refs to a tree block we already own, this
1200 * should not happen at all.
1201 */
1202 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1203 btrfs_print_leaf(path->nodes[0]);
1204 btrfs_crit(trans->fs_info,
1205 "adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu slot %u",
1206 bytenr, num_bytes, root_objectid, path->slots[0]);
1207 return -EUCLEAN;
1208 }
1209 ret = update_inline_extent_backref(path, iref, refs_to_add, extent_op);
1210 } else if (ret == -ENOENT) {
1211 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1212 root_objectid, owner, offset,
1213 refs_to_add, extent_op);
1214 ret = 0;
1215 }
1216 return ret;
1217 }
1218
1219 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1220 struct btrfs_root *root,
1221 struct btrfs_path *path,
1222 struct btrfs_extent_inline_ref *iref,
1223 int refs_to_drop, int is_data)
1224 {
1225 int ret = 0;
1226
1227 BUG_ON(!is_data && refs_to_drop != 1);
1228 if (iref)
1229 ret = update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
1230 else if (is_data)
1231 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1232 else
1233 ret = btrfs_del_item(trans, root, path);
1234 return ret;
1235 }
1236
1237 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1238 u64 *discarded_bytes)
1239 {
1240 int j, ret = 0;
1241 u64 bytes_left, end;
1242 u64 aligned_start = ALIGN(start, 1 << SECTOR_SHIFT);
1243
1244 if (WARN_ON(start != aligned_start)) {
1245 len -= aligned_start - start;
1246 len = round_down(len, 1 << SECTOR_SHIFT);
1247 start = aligned_start;
1248 }
1249
1250 *discarded_bytes = 0;
1251
1252 if (!len)
1253 return 0;
1254
1255 end = start + len;
1256 bytes_left = len;
1257
1258 /* Skip any superblocks on this device. */
1259 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1260 u64 sb_start = btrfs_sb_offset(j);
1261 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1262 u64 size = sb_start - start;
1263
1264 if (!in_range(sb_start, start, bytes_left) &&
1265 !in_range(sb_end, start, bytes_left) &&
1266 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1267 continue;
1268
1269 /*
1270 * Superblock spans beginning of range. Adjust start and
1271 * try again.
1272 */
1273 if (sb_start <= start) {
1274 start += sb_end - start;
1275 if (start > end) {
1276 bytes_left = 0;
1277 break;
1278 }
1279 bytes_left = end - start;
1280 continue;
1281 }
1282
1283 if (size) {
1284 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1285 size >> SECTOR_SHIFT,
1286 GFP_NOFS);
1287 if (!ret)
1288 *discarded_bytes += size;
1289 else if (ret != -EOPNOTSUPP)
1290 return ret;
1291 }
1292
1293 start = sb_end;
1294 if (start > end) {
1295 bytes_left = 0;
1296 break;
1297 }
1298 bytes_left = end - start;
1299 }
1300
1301 if (bytes_left) {
1302 ret = blkdev_issue_discard(bdev, start >> SECTOR_SHIFT,
1303 bytes_left >> SECTOR_SHIFT,
1304 GFP_NOFS);
1305 if (!ret)
1306 *discarded_bytes += bytes_left;
1307 }
1308 return ret;
1309 }
1310
1311 static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
1312 {
1313 struct btrfs_device *dev = stripe->dev;
1314 struct btrfs_fs_info *fs_info = dev->fs_info;
1315 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1316 u64 phys = stripe->physical;
1317 u64 len = stripe->length;
1318 u64 discarded = 0;
1319 int ret = 0;
1320
1321 /* Zone reset on a zoned filesystem */
1322 if (btrfs_can_zone_reset(dev, phys, len)) {
1323 u64 src_disc;
1324
1325 ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
1326 if (ret)
1327 goto out;
1328
1329 if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
1330 dev != dev_replace->srcdev)
1331 goto out;
1332
1333 src_disc = discarded;
1334
1335 /* Send to replace target as well */
1336 ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
1337 &discarded);
1338 discarded += src_disc;
1339 } else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
1340 ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
1341 } else {
1342 ret = 0;
1343 *bytes = 0;
1344 }
1345
1346 out:
1347 *bytes = discarded;
1348 return ret;
1349 }
1350
1351 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1352 u64 num_bytes, u64 *actual_bytes)
1353 {
1354 int ret = 0;
1355 u64 discarded_bytes = 0;
1356 u64 end = bytenr + num_bytes;
1357 u64 cur = bytenr;
1358
1359 /*
1360 * Avoid races with device replace and make sure the devices in the
1361 * stripes don't go away while we are discarding.
1362 */
1363 btrfs_bio_counter_inc_blocked(fs_info);
1364 while (cur < end) {
1365 struct btrfs_discard_stripe *stripes;
1366 unsigned int num_stripes;
1367 int i;
1368
1369 num_bytes = end - cur;
1370 stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
1371 if (IS_ERR(stripes)) {
1372 ret = PTR_ERR(stripes);
1373 if (ret == -EOPNOTSUPP)
1374 ret = 0;
1375 break;
1376 }
1377
1378 for (i = 0; i < num_stripes; i++) {
1379 struct btrfs_discard_stripe *stripe = stripes + i;
1380 u64 bytes;
1381
1382 if (!stripe->dev->bdev) {
1383 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1384 continue;
1385 }
1386
1387 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
1388 &stripe->dev->dev_state))
1389 continue;
1390
1391 ret = do_discard_extent(stripe, &bytes);
1392 if (ret) {
1393 /*
1394 * Keep going if discard is not supported by the
1395 * device.
1396 */
1397 if (ret != -EOPNOTSUPP)
1398 break;
1399 ret = 0;
1400 } else {
1401 discarded_bytes += bytes;
1402 }
1403 }
1404 kfree(stripes);
1405 if (ret)
1406 break;
1407 cur += num_bytes;
1408 }
1409 btrfs_bio_counter_dec(fs_info);
1410 if (actual_bytes)
1411 *actual_bytes = discarded_bytes;
1412 return ret;
1413 }
1414
1415 /* Can return -ENOMEM */
1416 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1417 struct btrfs_ref *generic_ref)
1418 {
1419 struct btrfs_fs_info *fs_info = trans->fs_info;
1420 int ret;
1421
1422 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
1423 generic_ref->action);
1424 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
1425 generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
1426
1427 if (generic_ref->type == BTRFS_REF_METADATA)
1428 ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
1429 else
1430 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
1431
1432 btrfs_ref_tree_mod(fs_info, generic_ref);
1433
1434 return ret;
1435 }
1436
1437 /*
1438 * __btrfs_inc_extent_ref - insert backreference for a given extent
1439 *
1440 * The counterpart is in __btrfs_free_extent(), with examples and more details
1441 * how it works.
1442 *
1443 * @trans: Handle of transaction
1444 *
1445 * @node: The delayed ref node used to get the bytenr/length for
1446 * extent whose references are incremented.
1447 *
1448 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1449 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1450 * bytenr of the parent block. Since new extents are always
1451 * created with indirect references, this will only be the case
1452 * when relocating a shared extent. In that case, root_objectid
1453 * will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
1454 * be 0
1455 *
1456 * @root_objectid: The id of the root where this modification has originated,
1457 * this can be either one of the well-known metadata trees or
1458 * the subvolume id which references this extent.
1459 *
1460 * @owner: For data extents it is the inode number of the owning file.
1461 * For metadata extents this parameter holds the level in the
1462 * tree of the extent.
1463 *
1464 * @offset: For metadata extents the offset is ignored and is currently
1465 * always passed as 0. For data extents it is the fileoffset
1466 * this extent belongs to.
1467 *
1468 * @refs_to_add Number of references to add
1469 *
1470 * @extent_op Pointer to a structure, holding information necessary when
1471 * updating a tree block's flags
1472 *
1473 */
1474 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1475 struct btrfs_delayed_ref_node *node,
1476 u64 parent, u64 root_objectid,
1477 u64 owner, u64 offset, int refs_to_add,
1478 struct btrfs_delayed_extent_op *extent_op)
1479 {
1480 struct btrfs_path *path;
1481 struct extent_buffer *leaf;
1482 struct btrfs_extent_item *item;
1483 struct btrfs_key key;
1484 u64 bytenr = node->bytenr;
1485 u64 num_bytes = node->num_bytes;
1486 u64 refs;
1487 int ret;
1488
1489 path = btrfs_alloc_path();
1490 if (!path)
1491 return -ENOMEM;
1492
1493 /* this will setup the path even if it fails to insert the back ref */
1494 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
1495 parent, root_objectid, owner,
1496 offset, refs_to_add, extent_op);
1497 if ((ret < 0 && ret != -EAGAIN) || !ret)
1498 goto out;
1499
1500 /*
1501 * Ok we had -EAGAIN which means we didn't have space to insert and
1502 * inline extent ref, so just update the reference count and add a
1503 * normal backref.
1504 */
1505 leaf = path->nodes[0];
1506 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1507 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1508 refs = btrfs_extent_refs(leaf, item);
1509 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1510 if (extent_op)
1511 __run_delayed_extent_op(extent_op, leaf, item);
1512
1513 btrfs_mark_buffer_dirty(leaf);
1514 btrfs_release_path(path);
1515
1516 /* now insert the actual backref */
1517 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1518 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1519 root_objectid);
1520 else
1521 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1522 root_objectid, owner, offset,
1523 refs_to_add);
1524
1525 if (ret)
1526 btrfs_abort_transaction(trans, ret);
1527 out:
1528 btrfs_free_path(path);
1529 return ret;
1530 }
1531
1532 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1533 struct btrfs_delayed_ref_node *node,
1534 struct btrfs_delayed_extent_op *extent_op,
1535 bool insert_reserved)
1536 {
1537 int ret = 0;
1538 struct btrfs_delayed_data_ref *ref;
1539 struct btrfs_key ins;
1540 u64 parent = 0;
1541 u64 ref_root = 0;
1542 u64 flags = 0;
1543
1544 ins.objectid = node->bytenr;
1545 ins.offset = node->num_bytes;
1546 ins.type = BTRFS_EXTENT_ITEM_KEY;
1547
1548 ref = btrfs_delayed_node_to_data_ref(node);
1549 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
1550
1551 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1552 parent = ref->parent;
1553 ref_root = ref->root;
1554
1555 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1556 if (extent_op)
1557 flags |= extent_op->flags_to_set;
1558 ret = alloc_reserved_file_extent(trans, parent, ref_root,
1559 flags, ref->objectid,
1560 ref->offset, &ins,
1561 node->ref_mod);
1562 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1563 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1564 ref->objectid, ref->offset,
1565 node->ref_mod, extent_op);
1566 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1567 ret = __btrfs_free_extent(trans, node, parent,
1568 ref_root, ref->objectid,
1569 ref->offset, node->ref_mod,
1570 extent_op);
1571 } else {
1572 BUG();
1573 }
1574 return ret;
1575 }
1576
1577 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1578 struct extent_buffer *leaf,
1579 struct btrfs_extent_item *ei)
1580 {
1581 u64 flags = btrfs_extent_flags(leaf, ei);
1582 if (extent_op->update_flags) {
1583 flags |= extent_op->flags_to_set;
1584 btrfs_set_extent_flags(leaf, ei, flags);
1585 }
1586
1587 if (extent_op->update_key) {
1588 struct btrfs_tree_block_info *bi;
1589 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1590 bi = (struct btrfs_tree_block_info *)(ei + 1);
1591 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1592 }
1593 }
1594
1595 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1596 struct btrfs_delayed_ref_head *head,
1597 struct btrfs_delayed_extent_op *extent_op)
1598 {
1599 struct btrfs_fs_info *fs_info = trans->fs_info;
1600 struct btrfs_root *root;
1601 struct btrfs_key key;
1602 struct btrfs_path *path;
1603 struct btrfs_extent_item *ei;
1604 struct extent_buffer *leaf;
1605 u32 item_size;
1606 int ret;
1607 int err = 0;
1608 int metadata = 1;
1609
1610 if (TRANS_ABORTED(trans))
1611 return 0;
1612
1613 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1614 metadata = 0;
1615
1616 path = btrfs_alloc_path();
1617 if (!path)
1618 return -ENOMEM;
1619
1620 key.objectid = head->bytenr;
1621
1622 if (metadata) {
1623 key.type = BTRFS_METADATA_ITEM_KEY;
1624 key.offset = extent_op->level;
1625 } else {
1626 key.type = BTRFS_EXTENT_ITEM_KEY;
1627 key.offset = head->num_bytes;
1628 }
1629
1630 root = btrfs_extent_root(fs_info, key.objectid);
1631 again:
1632 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1633 if (ret < 0) {
1634 err = ret;
1635 goto out;
1636 }
1637 if (ret > 0) {
1638 if (metadata) {
1639 if (path->slots[0] > 0) {
1640 path->slots[0]--;
1641 btrfs_item_key_to_cpu(path->nodes[0], &key,
1642 path->slots[0]);
1643 if (key.objectid == head->bytenr &&
1644 key.type == BTRFS_EXTENT_ITEM_KEY &&
1645 key.offset == head->num_bytes)
1646 ret = 0;
1647 }
1648 if (ret > 0) {
1649 btrfs_release_path(path);
1650 metadata = 0;
1651
1652 key.objectid = head->bytenr;
1653 key.offset = head->num_bytes;
1654 key.type = BTRFS_EXTENT_ITEM_KEY;
1655 goto again;
1656 }
1657 } else {
1658 err = -EUCLEAN;
1659 btrfs_err(fs_info,
1660 "missing extent item for extent %llu num_bytes %llu level %d",
1661 head->bytenr, head->num_bytes, extent_op->level);
1662 goto out;
1663 }
1664 }
1665
1666 leaf = path->nodes[0];
1667 item_size = btrfs_item_size(leaf, path->slots[0]);
1668
1669 if (unlikely(item_size < sizeof(*ei))) {
1670 err = -EUCLEAN;
1671 btrfs_err(fs_info,
1672 "unexpected extent item size, has %u expect >= %zu",
1673 item_size, sizeof(*ei));
1674 btrfs_abort_transaction(trans, err);
1675 goto out;
1676 }
1677
1678 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1679 __run_delayed_extent_op(extent_op, leaf, ei);
1680
1681 btrfs_mark_buffer_dirty(leaf);
1682 out:
1683 btrfs_free_path(path);
1684 return err;
1685 }
1686
1687 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
1688 struct btrfs_delayed_ref_node *node,
1689 struct btrfs_delayed_extent_op *extent_op,
1690 bool insert_reserved)
1691 {
1692 int ret = 0;
1693 struct btrfs_delayed_tree_ref *ref;
1694 u64 parent = 0;
1695 u64 ref_root = 0;
1696
1697 ref = btrfs_delayed_node_to_tree_ref(node);
1698 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
1699
1700 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1701 parent = ref->parent;
1702 ref_root = ref->root;
1703
1704 if (unlikely(node->ref_mod != 1)) {
1705 btrfs_err(trans->fs_info,
1706 "btree block %llu has %d references rather than 1: action %d ref_root %llu parent %llu",
1707 node->bytenr, node->ref_mod, node->action, ref_root,
1708 parent);
1709 return -EUCLEAN;
1710 }
1711 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1712 BUG_ON(!extent_op || !extent_op->update_flags);
1713 ret = alloc_reserved_tree_block(trans, node, extent_op);
1714 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1715 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
1716 ref->level, 0, 1, extent_op);
1717 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1718 ret = __btrfs_free_extent(trans, node, parent, ref_root,
1719 ref->level, 0, 1, extent_op);
1720 } else {
1721 BUG();
1722 }
1723 return ret;
1724 }
1725
1726 /* helper function to actually process a single delayed ref entry */
1727 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
1728 struct btrfs_delayed_ref_node *node,
1729 struct btrfs_delayed_extent_op *extent_op,
1730 bool insert_reserved)
1731 {
1732 int ret = 0;
1733
1734 if (TRANS_ABORTED(trans)) {
1735 if (insert_reserved)
1736 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1737 return 0;
1738 }
1739
1740 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
1741 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
1742 ret = run_delayed_tree_ref(trans, node, extent_op,
1743 insert_reserved);
1744 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
1745 node->type == BTRFS_SHARED_DATA_REF_KEY)
1746 ret = run_delayed_data_ref(trans, node, extent_op,
1747 insert_reserved);
1748 else
1749 BUG();
1750 if (ret && insert_reserved)
1751 btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
1752 if (ret < 0)
1753 btrfs_err(trans->fs_info,
1754 "failed to run delayed ref for logical %llu num_bytes %llu type %u action %u ref_mod %d: %d",
1755 node->bytenr, node->num_bytes, node->type,
1756 node->action, node->ref_mod, ret);
1757 return ret;
1758 }
1759
1760 static inline struct btrfs_delayed_ref_node *
1761 select_delayed_ref(struct btrfs_delayed_ref_head *head)
1762 {
1763 struct btrfs_delayed_ref_node *ref;
1764
1765 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1766 return NULL;
1767
1768 /*
1769 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1770 * This is to prevent a ref count from going down to zero, which deletes
1771 * the extent item from the extent tree, when there still are references
1772 * to add, which would fail because they would not find the extent item.
1773 */
1774 if (!list_empty(&head->ref_add_list))
1775 return list_first_entry(&head->ref_add_list,
1776 struct btrfs_delayed_ref_node, add_list);
1777
1778 ref = rb_entry(rb_first_cached(&head->ref_tree),
1779 struct btrfs_delayed_ref_node, ref_node);
1780 ASSERT(list_empty(&ref->add_list));
1781 return ref;
1782 }
1783
1784 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
1785 struct btrfs_delayed_ref_head *head)
1786 {
1787 spin_lock(&delayed_refs->lock);
1788 head->processing = false;
1789 delayed_refs->num_heads_ready++;
1790 spin_unlock(&delayed_refs->lock);
1791 btrfs_delayed_ref_unlock(head);
1792 }
1793
1794 static struct btrfs_delayed_extent_op *cleanup_extent_op(
1795 struct btrfs_delayed_ref_head *head)
1796 {
1797 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
1798
1799 if (!extent_op)
1800 return NULL;
1801
1802 if (head->must_insert_reserved) {
1803 head->extent_op = NULL;
1804 btrfs_free_delayed_extent_op(extent_op);
1805 return NULL;
1806 }
1807 return extent_op;
1808 }
1809
1810 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
1811 struct btrfs_delayed_ref_head *head)
1812 {
1813 struct btrfs_delayed_extent_op *extent_op;
1814 int ret;
1815
1816 extent_op = cleanup_extent_op(head);
1817 if (!extent_op)
1818 return 0;
1819 head->extent_op = NULL;
1820 spin_unlock(&head->lock);
1821 ret = run_delayed_extent_op(trans, head, extent_op);
1822 btrfs_free_delayed_extent_op(extent_op);
1823 return ret ? ret : 1;
1824 }
1825
1826 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
1827 struct btrfs_delayed_ref_root *delayed_refs,
1828 struct btrfs_delayed_ref_head *head)
1829 {
1830 int nr_items = 1; /* Dropping this ref head update. */
1831
1832 /*
1833 * We had csum deletions accounted for in our delayed refs rsv, we need
1834 * to drop the csum leaves for this update from our delayed_refs_rsv.
1835 */
1836 if (head->total_ref_mod < 0 && head->is_data) {
1837 spin_lock(&delayed_refs->lock);
1838 delayed_refs->pending_csums -= head->num_bytes;
1839 spin_unlock(&delayed_refs->lock);
1840 nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
1841 }
1842
1843 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
1844 }
1845
1846 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
1847 struct btrfs_delayed_ref_head *head)
1848 {
1849
1850 struct btrfs_fs_info *fs_info = trans->fs_info;
1851 struct btrfs_delayed_ref_root *delayed_refs;
1852 int ret;
1853
1854 delayed_refs = &trans->transaction->delayed_refs;
1855
1856 ret = run_and_cleanup_extent_op(trans, head);
1857 if (ret < 0) {
1858 unselect_delayed_ref_head(delayed_refs, head);
1859 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
1860 return ret;
1861 } else if (ret) {
1862 return ret;
1863 }
1864
1865 /*
1866 * Need to drop our head ref lock and re-acquire the delayed ref lock
1867 * and then re-check to make sure nobody got added.
1868 */
1869 spin_unlock(&head->lock);
1870 spin_lock(&delayed_refs->lock);
1871 spin_lock(&head->lock);
1872 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
1873 spin_unlock(&head->lock);
1874 spin_unlock(&delayed_refs->lock);
1875 return 1;
1876 }
1877 btrfs_delete_ref_head(delayed_refs, head);
1878 spin_unlock(&head->lock);
1879 spin_unlock(&delayed_refs->lock);
1880
1881 if (head->must_insert_reserved) {
1882 btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
1883 if (head->is_data) {
1884 struct btrfs_root *csum_root;
1885
1886 csum_root = btrfs_csum_root(fs_info, head->bytenr);
1887 ret = btrfs_del_csums(trans, csum_root, head->bytenr,
1888 head->num_bytes);
1889 }
1890 }
1891
1892 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
1893
1894 trace_run_delayed_ref_head(fs_info, head, 0);
1895 btrfs_delayed_ref_unlock(head);
1896 btrfs_put_delayed_ref_head(head);
1897 return ret;
1898 }
1899
1900 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
1901 struct btrfs_trans_handle *trans)
1902 {
1903 struct btrfs_delayed_ref_root *delayed_refs =
1904 &trans->transaction->delayed_refs;
1905 struct btrfs_delayed_ref_head *head = NULL;
1906 int ret;
1907
1908 spin_lock(&delayed_refs->lock);
1909 head = btrfs_select_ref_head(delayed_refs);
1910 if (!head) {
1911 spin_unlock(&delayed_refs->lock);
1912 return head;
1913 }
1914
1915 /*
1916 * Grab the lock that says we are going to process all the refs for
1917 * this head
1918 */
1919 ret = btrfs_delayed_ref_lock(delayed_refs, head);
1920 spin_unlock(&delayed_refs->lock);
1921
1922 /*
1923 * We may have dropped the spin lock to get the head mutex lock, and
1924 * that might have given someone else time to free the head. If that's
1925 * true, it has been removed from our list and we can move on.
1926 */
1927 if (ret == -EAGAIN)
1928 head = ERR_PTR(-EAGAIN);
1929
1930 return head;
1931 }
1932
1933 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
1934 struct btrfs_delayed_ref_head *locked_ref)
1935 {
1936 struct btrfs_fs_info *fs_info = trans->fs_info;
1937 struct btrfs_delayed_ref_root *delayed_refs;
1938 struct btrfs_delayed_extent_op *extent_op;
1939 struct btrfs_delayed_ref_node *ref;
1940 bool must_insert_reserved;
1941 int ret;
1942
1943 delayed_refs = &trans->transaction->delayed_refs;
1944
1945 lockdep_assert_held(&locked_ref->mutex);
1946 lockdep_assert_held(&locked_ref->lock);
1947
1948 while ((ref = select_delayed_ref(locked_ref))) {
1949 if (ref->seq &&
1950 btrfs_check_delayed_seq(fs_info, ref->seq)) {
1951 spin_unlock(&locked_ref->lock);
1952 unselect_delayed_ref_head(delayed_refs, locked_ref);
1953 return -EAGAIN;
1954 }
1955
1956 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
1957 RB_CLEAR_NODE(&ref->ref_node);
1958 if (!list_empty(&ref->add_list))
1959 list_del(&ref->add_list);
1960 /*
1961 * When we play the delayed ref, also correct the ref_mod on
1962 * head
1963 */
1964 switch (ref->action) {
1965 case BTRFS_ADD_DELAYED_REF:
1966 case BTRFS_ADD_DELAYED_EXTENT:
1967 locked_ref->ref_mod -= ref->ref_mod;
1968 break;
1969 case BTRFS_DROP_DELAYED_REF:
1970 locked_ref->ref_mod += ref->ref_mod;
1971 break;
1972 default:
1973 WARN_ON(1);
1974 }
1975 atomic_dec(&delayed_refs->num_entries);
1976
1977 /*
1978 * Record the must_insert_reserved flag before we drop the
1979 * spin lock.
1980 */
1981 must_insert_reserved = locked_ref->must_insert_reserved;
1982 locked_ref->must_insert_reserved = false;
1983
1984 extent_op = locked_ref->extent_op;
1985 locked_ref->extent_op = NULL;
1986 spin_unlock(&locked_ref->lock);
1987
1988 ret = run_one_delayed_ref(trans, ref, extent_op,
1989 must_insert_reserved);
1990
1991 btrfs_free_delayed_extent_op(extent_op);
1992 if (ret) {
1993 unselect_delayed_ref_head(delayed_refs, locked_ref);
1994 btrfs_put_delayed_ref(ref);
1995 return ret;
1996 }
1997
1998 btrfs_put_delayed_ref(ref);
1999 cond_resched();
2000
2001 spin_lock(&locked_ref->lock);
2002 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2003 }
2004
2005 return 0;
2006 }
2007
2008 /*
2009 * Returns 0 on success or if called with an already aborted transaction.
2010 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2011 */
2012 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2013 unsigned long nr)
2014 {
2015 struct btrfs_fs_info *fs_info = trans->fs_info;
2016 struct btrfs_delayed_ref_root *delayed_refs;
2017 struct btrfs_delayed_ref_head *locked_ref = NULL;
2018 int ret;
2019 unsigned long count = 0;
2020
2021 delayed_refs = &trans->transaction->delayed_refs;
2022 do {
2023 if (!locked_ref) {
2024 locked_ref = btrfs_obtain_ref_head(trans);
2025 if (IS_ERR_OR_NULL(locked_ref)) {
2026 if (PTR_ERR(locked_ref) == -EAGAIN) {
2027 continue;
2028 } else {
2029 break;
2030 }
2031 }
2032 count++;
2033 }
2034 /*
2035 * We need to try and merge add/drops of the same ref since we
2036 * can run into issues with relocate dropping the implicit ref
2037 * and then it being added back again before the drop can
2038 * finish. If we merged anything we need to re-loop so we can
2039 * get a good ref.
2040 * Or we can get node references of the same type that weren't
2041 * merged when created due to bumps in the tree mod seq, and
2042 * we need to merge them to prevent adding an inline extent
2043 * backref before dropping it (triggering a BUG_ON at
2044 * insert_inline_extent_backref()).
2045 */
2046 spin_lock(&locked_ref->lock);
2047 btrfs_merge_delayed_refs(fs_info, delayed_refs, locked_ref);
2048
2049 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref);
2050 if (ret < 0 && ret != -EAGAIN) {
2051 /*
2052 * Error, btrfs_run_delayed_refs_for_head already
2053 * unlocked everything so just bail out
2054 */
2055 return ret;
2056 } else if (!ret) {
2057 /*
2058 * Success, perform the usual cleanup of a processed
2059 * head
2060 */
2061 ret = cleanup_ref_head(trans, locked_ref);
2062 if (ret > 0 ) {
2063 /* We dropped our lock, we need to loop. */
2064 ret = 0;
2065 continue;
2066 } else if (ret) {
2067 return ret;
2068 }
2069 }
2070
2071 /*
2072 * Either success case or btrfs_run_delayed_refs_for_head
2073 * returned -EAGAIN, meaning we need to select another head
2074 */
2075
2076 locked_ref = NULL;
2077 cond_resched();
2078 } while ((nr != -1 && count < nr) || locked_ref);
2079
2080 return 0;
2081 }
2082
2083 #ifdef SCRAMBLE_DELAYED_REFS
2084 /*
2085 * Normally delayed refs get processed in ascending bytenr order. This
2086 * correlates in most cases to the order added. To expose dependencies on this
2087 * order, we start to process the tree in the middle instead of the beginning
2088 */
2089 static u64 find_middle(struct rb_root *root)
2090 {
2091 struct rb_node *n = root->rb_node;
2092 struct btrfs_delayed_ref_node *entry;
2093 int alt = 1;
2094 u64 middle;
2095 u64 first = 0, last = 0;
2096
2097 n = rb_first(root);
2098 if (n) {
2099 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2100 first = entry->bytenr;
2101 }
2102 n = rb_last(root);
2103 if (n) {
2104 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2105 last = entry->bytenr;
2106 }
2107 n = root->rb_node;
2108
2109 while (n) {
2110 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2111 WARN_ON(!entry->in_tree);
2112
2113 middle = entry->bytenr;
2114
2115 if (alt)
2116 n = n->rb_left;
2117 else
2118 n = n->rb_right;
2119
2120 alt = 1 - alt;
2121 }
2122 return middle;
2123 }
2124 #endif
2125
2126 /*
2127 * this starts processing the delayed reference count updates and
2128 * extent insertions we have queued up so far. count can be
2129 * 0, which means to process everything in the tree at the start
2130 * of the run (but not newly added entries), or it can be some target
2131 * number you'd like to process.
2132 *
2133 * Returns 0 on success or if called with an aborted transaction
2134 * Returns <0 on error and aborts the transaction
2135 */
2136 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2137 unsigned long count)
2138 {
2139 struct btrfs_fs_info *fs_info = trans->fs_info;
2140 struct rb_node *node;
2141 struct btrfs_delayed_ref_root *delayed_refs;
2142 struct btrfs_delayed_ref_head *head;
2143 int ret;
2144 int run_all = count == (unsigned long)-1;
2145
2146 /* We'll clean this up in btrfs_cleanup_transaction */
2147 if (TRANS_ABORTED(trans))
2148 return 0;
2149
2150 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
2151 return 0;
2152
2153 delayed_refs = &trans->transaction->delayed_refs;
2154 if (count == 0)
2155 count = delayed_refs->num_heads_ready;
2156
2157 again:
2158 #ifdef SCRAMBLE_DELAYED_REFS
2159 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2160 #endif
2161 ret = __btrfs_run_delayed_refs(trans, count);
2162 if (ret < 0) {
2163 btrfs_abort_transaction(trans, ret);
2164 return ret;
2165 }
2166
2167 if (run_all) {
2168 btrfs_create_pending_block_groups(trans);
2169
2170 spin_lock(&delayed_refs->lock);
2171 node = rb_first_cached(&delayed_refs->href_root);
2172 if (!node) {
2173 spin_unlock(&delayed_refs->lock);
2174 goto out;
2175 }
2176 head = rb_entry(node, struct btrfs_delayed_ref_head,
2177 href_node);
2178 refcount_inc(&head->refs);
2179 spin_unlock(&delayed_refs->lock);
2180
2181 /* Mutex was contended, block until it's released and retry. */
2182 mutex_lock(&head->mutex);
2183 mutex_unlock(&head->mutex);
2184
2185 btrfs_put_delayed_ref_head(head);
2186 cond_resched();
2187 goto again;
2188 }
2189 out:
2190 return 0;
2191 }
2192
2193 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2194 struct extent_buffer *eb, u64 flags)
2195 {
2196 struct btrfs_delayed_extent_op *extent_op;
2197 int level = btrfs_header_level(eb);
2198 int ret;
2199
2200 extent_op = btrfs_alloc_delayed_extent_op();
2201 if (!extent_op)
2202 return -ENOMEM;
2203
2204 extent_op->flags_to_set = flags;
2205 extent_op->update_flags = true;
2206 extent_op->update_key = false;
2207 extent_op->level = level;
2208
2209 ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
2210 if (ret)
2211 btrfs_free_delayed_extent_op(extent_op);
2212 return ret;
2213 }
2214
2215 static noinline int check_delayed_ref(struct btrfs_root *root,
2216 struct btrfs_path *path,
2217 u64 objectid, u64 offset, u64 bytenr)
2218 {
2219 struct btrfs_delayed_ref_head *head;
2220 struct btrfs_delayed_ref_node *ref;
2221 struct btrfs_delayed_data_ref *data_ref;
2222 struct btrfs_delayed_ref_root *delayed_refs;
2223 struct btrfs_transaction *cur_trans;
2224 struct rb_node *node;
2225 int ret = 0;
2226
2227 spin_lock(&root->fs_info->trans_lock);
2228 cur_trans = root->fs_info->running_transaction;
2229 if (cur_trans)
2230 refcount_inc(&cur_trans->use_count);
2231 spin_unlock(&root->fs_info->trans_lock);
2232 if (!cur_trans)
2233 return 0;
2234
2235 delayed_refs = &cur_trans->delayed_refs;
2236 spin_lock(&delayed_refs->lock);
2237 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
2238 if (!head) {
2239 spin_unlock(&delayed_refs->lock);
2240 btrfs_put_transaction(cur_trans);
2241 return 0;
2242 }
2243
2244 if (!mutex_trylock(&head->mutex)) {
2245 if (path->nowait) {
2246 spin_unlock(&delayed_refs->lock);
2247 btrfs_put_transaction(cur_trans);
2248 return -EAGAIN;
2249 }
2250
2251 refcount_inc(&head->refs);
2252 spin_unlock(&delayed_refs->lock);
2253
2254 btrfs_release_path(path);
2255
2256 /*
2257 * Mutex was contended, block until it's released and let
2258 * caller try again
2259 */
2260 mutex_lock(&head->mutex);
2261 mutex_unlock(&head->mutex);
2262 btrfs_put_delayed_ref_head(head);
2263 btrfs_put_transaction(cur_trans);
2264 return -EAGAIN;
2265 }
2266 spin_unlock(&delayed_refs->lock);
2267
2268 spin_lock(&head->lock);
2269 /*
2270 * XXX: We should replace this with a proper search function in the
2271 * future.
2272 */
2273 for (node = rb_first_cached(&head->ref_tree); node;
2274 node = rb_next(node)) {
2275 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
2276 /* If it's a shared ref we know a cross reference exists */
2277 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2278 ret = 1;
2279 break;
2280 }
2281
2282 data_ref = btrfs_delayed_node_to_data_ref(ref);
2283
2284 /*
2285 * If our ref doesn't match the one we're currently looking at
2286 * then we have a cross reference.
2287 */
2288 if (data_ref->root != root->root_key.objectid ||
2289 data_ref->objectid != objectid ||
2290 data_ref->offset != offset) {
2291 ret = 1;
2292 break;
2293 }
2294 }
2295 spin_unlock(&head->lock);
2296 mutex_unlock(&head->mutex);
2297 btrfs_put_transaction(cur_trans);
2298 return ret;
2299 }
2300
2301 static noinline int check_committed_ref(struct btrfs_root *root,
2302 struct btrfs_path *path,
2303 u64 objectid, u64 offset, u64 bytenr,
2304 bool strict)
2305 {
2306 struct btrfs_fs_info *fs_info = root->fs_info;
2307 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2308 struct extent_buffer *leaf;
2309 struct btrfs_extent_data_ref *ref;
2310 struct btrfs_extent_inline_ref *iref;
2311 struct btrfs_extent_item *ei;
2312 struct btrfs_key key;
2313 u32 item_size;
2314 int type;
2315 int ret;
2316
2317 key.objectid = bytenr;
2318 key.offset = (u64)-1;
2319 key.type = BTRFS_EXTENT_ITEM_KEY;
2320
2321 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2322 if (ret < 0)
2323 goto out;
2324 BUG_ON(ret == 0); /* Corruption */
2325
2326 ret = -ENOENT;
2327 if (path->slots[0] == 0)
2328 goto out;
2329
2330 path->slots[0]--;
2331 leaf = path->nodes[0];
2332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2333
2334 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2335 goto out;
2336
2337 ret = 1;
2338 item_size = btrfs_item_size(leaf, path->slots[0]);
2339 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2340
2341 /* If extent item has more than 1 inline ref then it's shared */
2342 if (item_size != sizeof(*ei) +
2343 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2344 goto out;
2345
2346 /*
2347 * If extent created before last snapshot => it's shared unless the
2348 * snapshot has been deleted. Use the heuristic if strict is false.
2349 */
2350 if (!strict &&
2351 (btrfs_extent_generation(leaf, ei) <=
2352 btrfs_root_last_snapshot(&root->root_item)))
2353 goto out;
2354
2355 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2356
2357 /* If this extent has SHARED_DATA_REF then it's shared */
2358 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
2359 if (type != BTRFS_EXTENT_DATA_REF_KEY)
2360 goto out;
2361
2362 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2363 if (btrfs_extent_refs(leaf, ei) !=
2364 btrfs_extent_data_ref_count(leaf, ref) ||
2365 btrfs_extent_data_ref_root(leaf, ref) !=
2366 root->root_key.objectid ||
2367 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2368 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2369 goto out;
2370
2371 ret = 0;
2372 out:
2373 return ret;
2374 }
2375
2376 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
2377 u64 bytenr, bool strict, struct btrfs_path *path)
2378 {
2379 int ret;
2380
2381 do {
2382 ret = check_committed_ref(root, path, objectid,
2383 offset, bytenr, strict);
2384 if (ret && ret != -ENOENT)
2385 goto out;
2386
2387 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
2388 } while (ret == -EAGAIN);
2389
2390 out:
2391 btrfs_release_path(path);
2392 if (btrfs_is_data_reloc_root(root))
2393 WARN_ON(ret > 0);
2394 return ret;
2395 }
2396
2397 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2398 struct btrfs_root *root,
2399 struct extent_buffer *buf,
2400 int full_backref, int inc)
2401 {
2402 struct btrfs_fs_info *fs_info = root->fs_info;
2403 u64 bytenr;
2404 u64 num_bytes;
2405 u64 parent;
2406 u64 ref_root;
2407 u32 nritems;
2408 struct btrfs_key key;
2409 struct btrfs_file_extent_item *fi;
2410 struct btrfs_ref generic_ref = { 0 };
2411 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
2412 int i;
2413 int action;
2414 int level;
2415 int ret = 0;
2416
2417 if (btrfs_is_testing(fs_info))
2418 return 0;
2419
2420 ref_root = btrfs_header_owner(buf);
2421 nritems = btrfs_header_nritems(buf);
2422 level = btrfs_header_level(buf);
2423
2424 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
2425 return 0;
2426
2427 if (full_backref)
2428 parent = buf->start;
2429 else
2430 parent = 0;
2431 if (inc)
2432 action = BTRFS_ADD_DELAYED_REF;
2433 else
2434 action = BTRFS_DROP_DELAYED_REF;
2435
2436 for (i = 0; i < nritems; i++) {
2437 if (level == 0) {
2438 btrfs_item_key_to_cpu(buf, &key, i);
2439 if (key.type != BTRFS_EXTENT_DATA_KEY)
2440 continue;
2441 fi = btrfs_item_ptr(buf, i,
2442 struct btrfs_file_extent_item);
2443 if (btrfs_file_extent_type(buf, fi) ==
2444 BTRFS_FILE_EXTENT_INLINE)
2445 continue;
2446 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2447 if (bytenr == 0)
2448 continue;
2449
2450 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2451 key.offset -= btrfs_file_extent_offset(buf, fi);
2452 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2453 num_bytes, parent);
2454 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
2455 key.offset, root->root_key.objectid,
2456 for_reloc);
2457 if (inc)
2458 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2459 else
2460 ret = btrfs_free_extent(trans, &generic_ref);
2461 if (ret)
2462 goto fail;
2463 } else {
2464 bytenr = btrfs_node_blockptr(buf, i);
2465 num_bytes = fs_info->nodesize;
2466 btrfs_init_generic_ref(&generic_ref, action, bytenr,
2467 num_bytes, parent);
2468 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
2469 root->root_key.objectid, for_reloc);
2470 if (inc)
2471 ret = btrfs_inc_extent_ref(trans, &generic_ref);
2472 else
2473 ret = btrfs_free_extent(trans, &generic_ref);
2474 if (ret)
2475 goto fail;
2476 }
2477 }
2478 return 0;
2479 fail:
2480 return ret;
2481 }
2482
2483 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2484 struct extent_buffer *buf, int full_backref)
2485 {
2486 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2487 }
2488
2489 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2490 struct extent_buffer *buf, int full_backref)
2491 {
2492 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2493 }
2494
2495 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
2496 {
2497 struct btrfs_fs_info *fs_info = root->fs_info;
2498 u64 flags;
2499 u64 ret;
2500
2501 if (data)
2502 flags = BTRFS_BLOCK_GROUP_DATA;
2503 else if (root == fs_info->chunk_root)
2504 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2505 else
2506 flags = BTRFS_BLOCK_GROUP_METADATA;
2507
2508 ret = btrfs_get_alloc_profile(fs_info, flags);
2509 return ret;
2510 }
2511
2512 static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
2513 {
2514 struct rb_node *leftmost;
2515 u64 bytenr = 0;
2516
2517 read_lock(&fs_info->block_group_cache_lock);
2518 /* Get the block group with the lowest logical start address. */
2519 leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
2520 if (leftmost) {
2521 struct btrfs_block_group *bg;
2522
2523 bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
2524 bytenr = bg->start;
2525 }
2526 read_unlock(&fs_info->block_group_cache_lock);
2527
2528 return bytenr;
2529 }
2530
2531 static int pin_down_extent(struct btrfs_trans_handle *trans,
2532 struct btrfs_block_group *cache,
2533 u64 bytenr, u64 num_bytes, int reserved)
2534 {
2535 struct btrfs_fs_info *fs_info = cache->fs_info;
2536
2537 spin_lock(&cache->space_info->lock);
2538 spin_lock(&cache->lock);
2539 cache->pinned += num_bytes;
2540 btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
2541 num_bytes);
2542 if (reserved) {
2543 cache->reserved -= num_bytes;
2544 cache->space_info->bytes_reserved -= num_bytes;
2545 }
2546 spin_unlock(&cache->lock);
2547 spin_unlock(&cache->space_info->lock);
2548
2549 set_extent_bit(&trans->transaction->pinned_extents, bytenr,
2550 bytenr + num_bytes - 1, EXTENT_DIRTY, NULL);
2551 return 0;
2552 }
2553
2554 int btrfs_pin_extent(struct btrfs_trans_handle *trans,
2555 u64 bytenr, u64 num_bytes, int reserved)
2556 {
2557 struct btrfs_block_group *cache;
2558
2559 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2560 BUG_ON(!cache); /* Logic error */
2561
2562 pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
2563
2564 btrfs_put_block_group(cache);
2565 return 0;
2566 }
2567
2568 /*
2569 * this function must be called within transaction
2570 */
2571 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2572 u64 bytenr, u64 num_bytes)
2573 {
2574 struct btrfs_block_group *cache;
2575 int ret;
2576
2577 cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
2578 if (!cache)
2579 return -EINVAL;
2580
2581 /*
2582 * Fully cache the free space first so that our pin removes the free space
2583 * from the cache.
2584 */
2585 ret = btrfs_cache_block_group(cache, true);
2586 if (ret)
2587 goto out;
2588
2589 pin_down_extent(trans, cache, bytenr, num_bytes, 0);
2590
2591 /* remove us from the free space cache (if we're there at all) */
2592 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
2593 out:
2594 btrfs_put_block_group(cache);
2595 return ret;
2596 }
2597
2598 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
2599 u64 start, u64 num_bytes)
2600 {
2601 int ret;
2602 struct btrfs_block_group *block_group;
2603
2604 block_group = btrfs_lookup_block_group(fs_info, start);
2605 if (!block_group)
2606 return -EINVAL;
2607
2608 ret = btrfs_cache_block_group(block_group, true);
2609 if (ret)
2610 goto out;
2611
2612 ret = btrfs_remove_free_space(block_group, start, num_bytes);
2613 out:
2614 btrfs_put_block_group(block_group);
2615 return ret;
2616 }
2617
2618 int btrfs_exclude_logged_extents(struct extent_buffer *eb)
2619 {
2620 struct btrfs_fs_info *fs_info = eb->fs_info;
2621 struct btrfs_file_extent_item *item;
2622 struct btrfs_key key;
2623 int found_type;
2624 int i;
2625 int ret = 0;
2626
2627 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
2628 return 0;
2629
2630 for (i = 0; i < btrfs_header_nritems(eb); i++) {
2631 btrfs_item_key_to_cpu(eb, &key, i);
2632 if (key.type != BTRFS_EXTENT_DATA_KEY)
2633 continue;
2634 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
2635 found_type = btrfs_file_extent_type(eb, item);
2636 if (found_type == BTRFS_FILE_EXTENT_INLINE)
2637 continue;
2638 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
2639 continue;
2640 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
2641 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2642 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
2643 if (ret)
2644 break;
2645 }
2646
2647 return ret;
2648 }
2649
2650 static void
2651 btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
2652 {
2653 atomic_inc(&bg->reservations);
2654 }
2655
2656 /*
2657 * Returns the free cluster for the given space info and sets empty_cluster to
2658 * what it should be based on the mount options.
2659 */
2660 static struct btrfs_free_cluster *
2661 fetch_cluster_info(struct btrfs_fs_info *fs_info,
2662 struct btrfs_space_info *space_info, u64 *empty_cluster)
2663 {
2664 struct btrfs_free_cluster *ret = NULL;
2665
2666 *empty_cluster = 0;
2667 if (btrfs_mixed_space_info(space_info))
2668 return ret;
2669
2670 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
2671 ret = &fs_info->meta_alloc_cluster;
2672 if (btrfs_test_opt(fs_info, SSD))
2673 *empty_cluster = SZ_2M;
2674 else
2675 *empty_cluster = SZ_64K;
2676 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
2677 btrfs_test_opt(fs_info, SSD_SPREAD)) {
2678 *empty_cluster = SZ_2M;
2679 ret = &fs_info->data_alloc_cluster;
2680 }
2681
2682 return ret;
2683 }
2684
2685 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
2686 u64 start, u64 end,
2687 const bool return_free_space)
2688 {
2689 struct btrfs_block_group *cache = NULL;
2690 struct btrfs_space_info *space_info;
2691 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2692 struct btrfs_free_cluster *cluster = NULL;
2693 u64 len;
2694 u64 total_unpinned = 0;
2695 u64 empty_cluster = 0;
2696 bool readonly;
2697
2698 while (start <= end) {
2699 readonly = false;
2700 if (!cache ||
2701 start >= cache->start + cache->length) {
2702 if (cache)
2703 btrfs_put_block_group(cache);
2704 total_unpinned = 0;
2705 cache = btrfs_lookup_block_group(fs_info, start);
2706 BUG_ON(!cache); /* Logic error */
2707
2708 cluster = fetch_cluster_info(fs_info,
2709 cache->space_info,
2710 &empty_cluster);
2711 empty_cluster <<= 1;
2712 }
2713
2714 len = cache->start + cache->length - start;
2715 len = min(len, end + 1 - start);
2716
2717 if (return_free_space)
2718 btrfs_add_free_space(cache, start, len);
2719
2720 start += len;
2721 total_unpinned += len;
2722 space_info = cache->space_info;
2723
2724 /*
2725 * If this space cluster has been marked as fragmented and we've
2726 * unpinned enough in this block group to potentially allow a
2727 * cluster to be created inside of it go ahead and clear the
2728 * fragmented check.
2729 */
2730 if (cluster && cluster->fragmented &&
2731 total_unpinned > empty_cluster) {
2732 spin_lock(&cluster->lock);
2733 cluster->fragmented = 0;
2734 spin_unlock(&cluster->lock);
2735 }
2736
2737 spin_lock(&space_info->lock);
2738 spin_lock(&cache->lock);
2739 cache->pinned -= len;
2740 btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
2741 space_info->max_extent_size = 0;
2742 if (cache->ro) {
2743 space_info->bytes_readonly += len;
2744 readonly = true;
2745 } else if (btrfs_is_zoned(fs_info)) {
2746 /* Need reset before reusing in a zoned block group */
2747 space_info->bytes_zone_unusable += len;
2748 readonly = true;
2749 }
2750 spin_unlock(&cache->lock);
2751 if (!readonly && return_free_space &&
2752 global_rsv->space_info == space_info) {
2753 spin_lock(&global_rsv->lock);
2754 if (!global_rsv->full) {
2755 u64 to_add = min(len, global_rsv->size -
2756 global_rsv->reserved);
2757
2758 global_rsv->reserved += to_add;
2759 btrfs_space_info_update_bytes_may_use(fs_info,
2760 space_info, to_add);
2761 if (global_rsv->reserved >= global_rsv->size)
2762 global_rsv->full = 1;
2763 len -= to_add;
2764 }
2765 spin_unlock(&global_rsv->lock);
2766 }
2767 /* Add to any tickets we may have */
2768 if (!readonly && return_free_space && len)
2769 btrfs_try_granting_tickets(fs_info, space_info);
2770 spin_unlock(&space_info->lock);
2771 }
2772
2773 if (cache)
2774 btrfs_put_block_group(cache);
2775 return 0;
2776 }
2777
2778 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
2779 {
2780 struct btrfs_fs_info *fs_info = trans->fs_info;
2781 struct btrfs_block_group *block_group, *tmp;
2782 struct list_head *deleted_bgs;
2783 struct extent_io_tree *unpin;
2784 u64 start;
2785 u64 end;
2786 int ret;
2787
2788 unpin = &trans->transaction->pinned_extents;
2789
2790 while (!TRANS_ABORTED(trans)) {
2791 struct extent_state *cached_state = NULL;
2792
2793 mutex_lock(&fs_info->unused_bg_unpin_mutex);
2794 if (!find_first_extent_bit(unpin, 0, &start, &end,
2795 EXTENT_DIRTY, &cached_state)) {
2796 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2797 break;
2798 }
2799
2800 if (btrfs_test_opt(fs_info, DISCARD_SYNC))
2801 ret = btrfs_discard_extent(fs_info, start,
2802 end + 1 - start, NULL);
2803
2804 clear_extent_dirty(unpin, start, end, &cached_state);
2805 unpin_extent_range(fs_info, start, end, true);
2806 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2807 free_extent_state(cached_state);
2808 cond_resched();
2809 }
2810
2811 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
2812 btrfs_discard_calc_delay(&fs_info->discard_ctl);
2813 btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
2814 }
2815
2816 /*
2817 * Transaction is finished. We don't need the lock anymore. We
2818 * do need to clean up the block groups in case of a transaction
2819 * abort.
2820 */
2821 deleted_bgs = &trans->transaction->deleted_bgs;
2822 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
2823 u64 trimmed = 0;
2824
2825 ret = -EROFS;
2826 if (!TRANS_ABORTED(trans))
2827 ret = btrfs_discard_extent(fs_info,
2828 block_group->start,
2829 block_group->length,
2830 &trimmed);
2831
2832 list_del_init(&block_group->bg_list);
2833 btrfs_unfreeze_block_group(block_group);
2834 btrfs_put_block_group(block_group);
2835
2836 if (ret) {
2837 const char *errstr = btrfs_decode_error(ret);
2838 btrfs_warn(fs_info,
2839 "discard failed while removing blockgroup: errno=%d %s",
2840 ret, errstr);
2841 }
2842 }
2843
2844 return 0;
2845 }
2846
2847 static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
2848 u64 bytenr, u64 num_bytes, bool is_data)
2849 {
2850 int ret;
2851
2852 if (is_data) {
2853 struct btrfs_root *csum_root;
2854
2855 csum_root = btrfs_csum_root(trans->fs_info, bytenr);
2856 ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
2857 if (ret) {
2858 btrfs_abort_transaction(trans, ret);
2859 return ret;
2860 }
2861 }
2862
2863 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
2864 if (ret) {
2865 btrfs_abort_transaction(trans, ret);
2866 return ret;
2867 }
2868
2869 ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
2870 if (ret)
2871 btrfs_abort_transaction(trans, ret);
2872
2873 return ret;
2874 }
2875
2876 #define abort_and_dump(trans, path, fmt, args...) \
2877 ({ \
2878 btrfs_abort_transaction(trans, -EUCLEAN); \
2879 btrfs_print_leaf(path->nodes[0]); \
2880 btrfs_crit(trans->fs_info, fmt, ##args); \
2881 })
2882
2883 /*
2884 * Drop one or more refs of @node.
2885 *
2886 * 1. Locate the extent refs.
2887 * It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
2888 * Locate it, then reduce the refs number or remove the ref line completely.
2889 *
2890 * 2. Update the refs count in EXTENT/METADATA_ITEM
2891 *
2892 * Inline backref case:
2893 *
2894 * in extent tree we have:
2895 *
2896 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2897 * refs 2 gen 6 flags DATA
2898 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2899 * extent data backref root FS_TREE objectid 257 offset 0 count 1
2900 *
2901 * This function gets called with:
2902 *
2903 * node->bytenr = 13631488
2904 * node->num_bytes = 1048576
2905 * root_objectid = FS_TREE
2906 * owner_objectid = 257
2907 * owner_offset = 0
2908 * refs_to_drop = 1
2909 *
2910 * Then we should get some like:
2911 *
2912 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
2913 * refs 1 gen 6 flags DATA
2914 * extent data backref root FS_TREE objectid 258 offset 0 count 1
2915 *
2916 * Keyed backref case:
2917 *
2918 * in extent tree we have:
2919 *
2920 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2921 * refs 754 gen 6 flags DATA
2922 * [...]
2923 * item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
2924 * extent data backref root FS_TREE objectid 866 offset 0 count 1
2925 *
2926 * This function get called with:
2927 *
2928 * node->bytenr = 13631488
2929 * node->num_bytes = 1048576
2930 * root_objectid = FS_TREE
2931 * owner_objectid = 866
2932 * owner_offset = 0
2933 * refs_to_drop = 1
2934 *
2935 * Then we should get some like:
2936 *
2937 * item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
2938 * refs 753 gen 6 flags DATA
2939 *
2940 * And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
2941 */
2942 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2943 struct btrfs_delayed_ref_node *node, u64 parent,
2944 u64 root_objectid, u64 owner_objectid,
2945 u64 owner_offset, int refs_to_drop,
2946 struct btrfs_delayed_extent_op *extent_op)
2947 {
2948 struct btrfs_fs_info *info = trans->fs_info;
2949 struct btrfs_key key;
2950 struct btrfs_path *path;
2951 struct btrfs_root *extent_root;
2952 struct extent_buffer *leaf;
2953 struct btrfs_extent_item *ei;
2954 struct btrfs_extent_inline_ref *iref;
2955 int ret;
2956 int is_data;
2957 int extent_slot = 0;
2958 int found_extent = 0;
2959 int num_to_del = 1;
2960 u32 item_size;
2961 u64 refs;
2962 u64 bytenr = node->bytenr;
2963 u64 num_bytes = node->num_bytes;
2964 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
2965
2966 extent_root = btrfs_extent_root(info, bytenr);
2967 ASSERT(extent_root);
2968
2969 path = btrfs_alloc_path();
2970 if (!path)
2971 return -ENOMEM;
2972
2973 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
2974
2975 if (!is_data && refs_to_drop != 1) {
2976 btrfs_crit(info,
2977 "invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
2978 node->bytenr, refs_to_drop);
2979 ret = -EINVAL;
2980 btrfs_abort_transaction(trans, ret);
2981 goto out;
2982 }
2983
2984 if (is_data)
2985 skinny_metadata = false;
2986
2987 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
2988 parent, root_objectid, owner_objectid,
2989 owner_offset);
2990 if (ret == 0) {
2991 /*
2992 * Either the inline backref or the SHARED_DATA_REF/
2993 * SHARED_BLOCK_REF is found
2994 *
2995 * Here is a quick path to locate EXTENT/METADATA_ITEM.
2996 * It's possible the EXTENT/METADATA_ITEM is near current slot.
2997 */
2998 extent_slot = path->slots[0];
2999 while (extent_slot >= 0) {
3000 btrfs_item_key_to_cpu(path->nodes[0], &key,
3001 extent_slot);
3002 if (key.objectid != bytenr)
3003 break;
3004 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3005 key.offset == num_bytes) {
3006 found_extent = 1;
3007 break;
3008 }
3009 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3010 key.offset == owner_objectid) {
3011 found_extent = 1;
3012 break;
3013 }
3014
3015 /* Quick path didn't find the EXTEMT/METADATA_ITEM */
3016 if (path->slots[0] - extent_slot > 5)
3017 break;
3018 extent_slot--;
3019 }
3020
3021 if (!found_extent) {
3022 if (iref) {
3023 abort_and_dump(trans, path,
3024 "invalid iref slot %u, no EXTENT/METADATA_ITEM found but has inline extent ref",
3025 path->slots[0]);
3026 ret = -EUCLEAN;
3027 goto out;
3028 }
3029 /* Must be SHARED_* item, remove the backref first */
3030 ret = remove_extent_backref(trans, extent_root, path,
3031 NULL, refs_to_drop, is_data);
3032 if (ret) {
3033 btrfs_abort_transaction(trans, ret);
3034 goto out;
3035 }
3036 btrfs_release_path(path);
3037
3038 /* Slow path to locate EXTENT/METADATA_ITEM */
3039 key.objectid = bytenr;
3040 key.type = BTRFS_EXTENT_ITEM_KEY;
3041 key.offset = num_bytes;
3042
3043 if (!is_data && skinny_metadata) {
3044 key.type = BTRFS_METADATA_ITEM_KEY;
3045 key.offset = owner_objectid;
3046 }
3047
3048 ret = btrfs_search_slot(trans, extent_root,
3049 &key, path, -1, 1);
3050 if (ret > 0 && skinny_metadata && path->slots[0]) {
3051 /*
3052 * Couldn't find our skinny metadata item,
3053 * see if we have ye olde extent item.
3054 */
3055 path->slots[0]--;
3056 btrfs_item_key_to_cpu(path->nodes[0], &key,
3057 path->slots[0]);
3058 if (key.objectid == bytenr &&
3059 key.type == BTRFS_EXTENT_ITEM_KEY &&
3060 key.offset == num_bytes)
3061 ret = 0;
3062 }
3063
3064 if (ret > 0 && skinny_metadata) {
3065 skinny_metadata = false;
3066 key.objectid = bytenr;
3067 key.type = BTRFS_EXTENT_ITEM_KEY;
3068 key.offset = num_bytes;
3069 btrfs_release_path(path);
3070 ret = btrfs_search_slot(trans, extent_root,
3071 &key, path, -1, 1);
3072 }
3073
3074 if (ret) {
3075 if (ret > 0)
3076 btrfs_print_leaf(path->nodes[0]);
3077 btrfs_err(info,
3078 "umm, got %d back from search, was looking for %llu, slot %d",
3079 ret, bytenr, path->slots[0]);
3080 }
3081 if (ret < 0) {
3082 btrfs_abort_transaction(trans, ret);
3083 goto out;
3084 }
3085 extent_slot = path->slots[0];
3086 }
3087 } else if (WARN_ON(ret == -ENOENT)) {
3088 abort_and_dump(trans, path,
3089 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu slot %d",
3090 bytenr, parent, root_objectid, owner_objectid,
3091 owner_offset, path->slots[0]);
3092 goto out;
3093 } else {
3094 btrfs_abort_transaction(trans, ret);
3095 goto out;
3096 }
3097
3098 leaf = path->nodes[0];
3099 item_size = btrfs_item_size(leaf, extent_slot);
3100 if (unlikely(item_size < sizeof(*ei))) {
3101 ret = -EUCLEAN;
3102 btrfs_err(trans->fs_info,
3103 "unexpected extent item size, has %u expect >= %zu",
3104 item_size, sizeof(*ei));
3105 btrfs_abort_transaction(trans, ret);
3106 goto out;
3107 }
3108 ei = btrfs_item_ptr(leaf, extent_slot,
3109 struct btrfs_extent_item);
3110 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
3111 key.type == BTRFS_EXTENT_ITEM_KEY) {
3112 struct btrfs_tree_block_info *bi;
3113
3114 if (item_size < sizeof(*ei) + sizeof(*bi)) {
3115 abort_and_dump(trans, path,
3116 "invalid extent item size for key (%llu, %u, %llu) slot %u owner %llu, has %u expect >= %zu",
3117 key.objectid, key.type, key.offset,
3118 path->slots[0], owner_objectid, item_size,
3119 sizeof(*ei) + sizeof(*bi));
3120 ret = -EUCLEAN;
3121 goto out;
3122 }
3123 bi = (struct btrfs_tree_block_info *)(ei + 1);
3124 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
3125 }
3126
3127 refs = btrfs_extent_refs(leaf, ei);
3128 if (refs < refs_to_drop) {
3129 abort_and_dump(trans, path,
3130 "trying to drop %d refs but we only have %llu for bytenr %llu slot %u",
3131 refs_to_drop, refs, bytenr, path->slots[0]);
3132 ret = -EUCLEAN;
3133 goto out;
3134 }
3135 refs -= refs_to_drop;
3136
3137 if (refs > 0) {
3138 if (extent_op)
3139 __run_delayed_extent_op(extent_op, leaf, ei);
3140 /*
3141 * In the case of inline back ref, reference count will
3142 * be updated by remove_extent_backref
3143 */
3144 if (iref) {
3145 if (!found_extent) {
3146 abort_and_dump(trans, path,
3147 "invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found, slot %u",
3148 path->slots[0]);
3149 ret = -EUCLEAN;
3150 goto out;
3151 }
3152 } else {
3153 btrfs_set_extent_refs(leaf, ei, refs);
3154 btrfs_mark_buffer_dirty(leaf);
3155 }
3156 if (found_extent) {
3157 ret = remove_extent_backref(trans, extent_root, path,
3158 iref, refs_to_drop, is_data);
3159 if (ret) {
3160 btrfs_abort_transaction(trans, ret);
3161 goto out;
3162 }
3163 }
3164 } else {
3165 /* In this branch refs == 1 */
3166 if (found_extent) {
3167 if (is_data && refs_to_drop !=
3168 extent_data_ref_count(path, iref)) {
3169 abort_and_dump(trans, path,
3170 "invalid refs_to_drop, current refs %u refs_to_drop %u slot %u",
3171 extent_data_ref_count(path, iref),
3172 refs_to_drop, path->slots[0]);
3173 ret = -EUCLEAN;
3174 goto out;
3175 }
3176 if (iref) {
3177 if (path->slots[0] != extent_slot) {
3178 abort_and_dump(trans, path,
3179 "invalid iref, extent item key (%llu %u %llu) slot %u doesn't have wanted iref",
3180 key.objectid, key.type,
3181 key.offset, path->slots[0]);
3182 ret = -EUCLEAN;
3183 goto out;
3184 }
3185 } else {
3186 /*
3187 * No inline ref, we must be at SHARED_* item,
3188 * And it's single ref, it must be:
3189 * | extent_slot ||extent_slot + 1|
3190 * [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
3191 */
3192 if (path->slots[0] != extent_slot + 1) {
3193 abort_and_dump(trans, path,
3194 "invalid SHARED_* item slot %u, previous item is not EXTENT/METADATA_ITEM",
3195 path->slots[0]);
3196 ret = -EUCLEAN;
3197 goto out;
3198 }
3199 path->slots[0] = extent_slot;
3200 num_to_del = 2;
3201 }
3202 }
3203
3204 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
3205 num_to_del);
3206 if (ret) {
3207 btrfs_abort_transaction(trans, ret);
3208 goto out;
3209 }
3210 btrfs_release_path(path);
3211
3212 ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
3213 }
3214 btrfs_release_path(path);
3215
3216 out:
3217 btrfs_free_path(path);
3218 return ret;
3219 }
3220
3221 /*
3222 * when we free an block, it is possible (and likely) that we free the last
3223 * delayed ref for that extent as well. This searches the delayed ref tree for
3224 * a given extent, and if there are no other delayed refs to be processed, it
3225 * removes it from the tree.
3226 */
3227 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
3228 u64 bytenr)
3229 {
3230 struct btrfs_delayed_ref_head *head;
3231 struct btrfs_delayed_ref_root *delayed_refs;
3232 int ret = 0;
3233
3234 delayed_refs = &trans->transaction->delayed_refs;
3235 spin_lock(&delayed_refs->lock);
3236 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3237 if (!head)
3238 goto out_delayed_unlock;
3239
3240 spin_lock(&head->lock);
3241 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
3242 goto out;
3243
3244 if (cleanup_extent_op(head) != NULL)
3245 goto out;
3246
3247 /*
3248 * waiting for the lock here would deadlock. If someone else has it
3249 * locked they are already in the process of dropping it anyway
3250 */
3251 if (!mutex_trylock(&head->mutex))
3252 goto out;
3253
3254 btrfs_delete_ref_head(delayed_refs, head);
3255 head->processing = false;
3256
3257 spin_unlock(&head->lock);
3258 spin_unlock(&delayed_refs->lock);
3259
3260 BUG_ON(head->extent_op);
3261 if (head->must_insert_reserved)
3262 ret = 1;
3263
3264 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
3265 mutex_unlock(&head->mutex);
3266 btrfs_put_delayed_ref_head(head);
3267 return ret;
3268 out:
3269 spin_unlock(&head->lock);
3270
3271 out_delayed_unlock:
3272 spin_unlock(&delayed_refs->lock);
3273 return 0;
3274 }
3275
3276 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
3277 u64 root_id,
3278 struct extent_buffer *buf,
3279 u64 parent, int last_ref)
3280 {
3281 struct btrfs_fs_info *fs_info = trans->fs_info;
3282 struct btrfs_ref generic_ref = { 0 };
3283 int ret;
3284
3285 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
3286 buf->start, buf->len, parent);
3287 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
3288 root_id, 0, false);
3289
3290 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3291 btrfs_ref_tree_mod(fs_info, &generic_ref);
3292 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
3293 BUG_ON(ret); /* -ENOMEM */
3294 }
3295
3296 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
3297 struct btrfs_block_group *cache;
3298 bool must_pin = false;
3299
3300 if (root_id != BTRFS_TREE_LOG_OBJECTID) {
3301 ret = check_ref_cleanup(trans, buf->start);
3302 if (!ret) {
3303 btrfs_redirty_list_add(trans->transaction, buf);
3304 goto out;
3305 }
3306 }
3307
3308 cache = btrfs_lookup_block_group(fs_info, buf->start);
3309
3310 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
3311 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3312 btrfs_put_block_group(cache);
3313 goto out;
3314 }
3315
3316 /*
3317 * If there are tree mod log users we may have recorded mod log
3318 * operations for this node. If we re-allocate this node we
3319 * could replay operations on this node that happened when it
3320 * existed in a completely different root. For example if it
3321 * was part of root A, then was reallocated to root B, and we
3322 * are doing a btrfs_old_search_slot(root b), we could replay
3323 * operations that happened when the block was part of root A,
3324 * giving us an inconsistent view of the btree.
3325 *
3326 * We are safe from races here because at this point no other
3327 * node or root points to this extent buffer, so if after this
3328 * check a new tree mod log user joins we will not have an
3329 * existing log of operations on this node that we have to
3330 * contend with.
3331 */
3332 if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
3333 must_pin = true;
3334
3335 if (must_pin || btrfs_is_zoned(fs_info)) {
3336 btrfs_redirty_list_add(trans->transaction, buf);
3337 pin_down_extent(trans, cache, buf->start, buf->len, 1);
3338 btrfs_put_block_group(cache);
3339 goto out;
3340 }
3341
3342 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
3343
3344 btrfs_add_free_space(cache, buf->start, buf->len);
3345 btrfs_free_reserved_bytes(cache, buf->len, 0);
3346 btrfs_put_block_group(cache);
3347 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
3348 }
3349 out:
3350 if (last_ref) {
3351 /*
3352 * Deleting the buffer, clear the corrupt flag since it doesn't
3353 * matter anymore.
3354 */
3355 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
3356 }
3357 }
3358
3359 /* Can return -ENOMEM */
3360 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
3361 {
3362 struct btrfs_fs_info *fs_info = trans->fs_info;
3363 int ret;
3364
3365 if (btrfs_is_testing(fs_info))
3366 return 0;
3367
3368 /*
3369 * tree log blocks never actually go into the extent allocation
3370 * tree, just update pinning info and exit early.
3371 */
3372 if ((ref->type == BTRFS_REF_METADATA &&
3373 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3374 (ref->type == BTRFS_REF_DATA &&
3375 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
3376 /* unlocks the pinned mutex */
3377 btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
3378 ret = 0;
3379 } else if (ref->type == BTRFS_REF_METADATA) {
3380 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
3381 } else {
3382 ret = btrfs_add_delayed_data_ref(trans, ref, 0);
3383 }
3384
3385 if (!((ref->type == BTRFS_REF_METADATA &&
3386 ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
3387 (ref->type == BTRFS_REF_DATA &&
3388 ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
3389 btrfs_ref_tree_mod(fs_info, ref);
3390
3391 return ret;
3392 }
3393
3394 enum btrfs_loop_type {
3395 /*
3396 * Start caching block groups but do not wait for progress or for them
3397 * to be done.
3398 */
3399 LOOP_CACHING_NOWAIT,
3400
3401 /*
3402 * Wait for the block group free_space >= the space we're waiting for if
3403 * the block group isn't cached.
3404 */
3405 LOOP_CACHING_WAIT,
3406
3407 /*
3408 * Allow allocations to happen from block groups that do not yet have a
3409 * size classification.
3410 */
3411 LOOP_UNSET_SIZE_CLASS,
3412
3413 /*
3414 * Allocate a chunk and then retry the allocation.
3415 */
3416 LOOP_ALLOC_CHUNK,
3417
3418 /*
3419 * Ignore the size class restrictions for this allocation.
3420 */
3421 LOOP_WRONG_SIZE_CLASS,
3422
3423 /*
3424 * Ignore the empty size, only try to allocate the number of bytes
3425 * needed for this allocation.
3426 */
3427 LOOP_NO_EMPTY_SIZE,
3428 };
3429
3430 static inline void
3431 btrfs_lock_block_group(struct btrfs_block_group *cache,
3432 int delalloc)
3433 {
3434 if (delalloc)
3435 down_read(&cache->data_rwsem);
3436 }
3437
3438 static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
3439 int delalloc)
3440 {
3441 btrfs_get_block_group(cache);
3442 if (delalloc)
3443 down_read(&cache->data_rwsem);
3444 }
3445
3446 static struct btrfs_block_group *btrfs_lock_cluster(
3447 struct btrfs_block_group *block_group,
3448 struct btrfs_free_cluster *cluster,
3449 int delalloc)
3450 __acquires(&cluster->refill_lock)
3451 {
3452 struct btrfs_block_group *used_bg = NULL;
3453
3454 spin_lock(&cluster->refill_lock);
3455 while (1) {
3456 used_bg = cluster->block_group;
3457 if (!used_bg)
3458 return NULL;
3459
3460 if (used_bg == block_group)
3461 return used_bg;
3462
3463 btrfs_get_block_group(used_bg);
3464
3465 if (!delalloc)
3466 return used_bg;
3467
3468 if (down_read_trylock(&used_bg->data_rwsem))
3469 return used_bg;
3470
3471 spin_unlock(&cluster->refill_lock);
3472
3473 /* We should only have one-level nested. */
3474 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
3475
3476 spin_lock(&cluster->refill_lock);
3477 if (used_bg == cluster->block_group)
3478 return used_bg;
3479
3480 up_read(&used_bg->data_rwsem);
3481 btrfs_put_block_group(used_bg);
3482 }
3483 }
3484
3485 static inline void
3486 btrfs_release_block_group(struct btrfs_block_group *cache,
3487 int delalloc)
3488 {
3489 if (delalloc)
3490 up_read(&cache->data_rwsem);
3491 btrfs_put_block_group(cache);
3492 }
3493
3494 /*
3495 * Helper function for find_free_extent().
3496 *
3497 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3498 * Return >0 to inform caller that we find nothing
3499 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3500 */
3501 static int find_free_extent_clustered(struct btrfs_block_group *bg,
3502 struct find_free_extent_ctl *ffe_ctl,
3503 struct btrfs_block_group **cluster_bg_ret)
3504 {
3505 struct btrfs_block_group *cluster_bg;
3506 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3507 u64 aligned_cluster;
3508 u64 offset;
3509 int ret;
3510
3511 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
3512 if (!cluster_bg)
3513 goto refill_cluster;
3514 if (cluster_bg != bg && (cluster_bg->ro ||
3515 !block_group_bits(cluster_bg, ffe_ctl->flags)))
3516 goto release_cluster;
3517
3518 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
3519 ffe_ctl->num_bytes, cluster_bg->start,
3520 &ffe_ctl->max_extent_size);
3521 if (offset) {
3522 /* We have a block, we're done */
3523 spin_unlock(&last_ptr->refill_lock);
3524 trace_btrfs_reserve_extent_cluster(cluster_bg, ffe_ctl);
3525 *cluster_bg_ret = cluster_bg;
3526 ffe_ctl->found_offset = offset;
3527 return 0;
3528 }
3529 WARN_ON(last_ptr->block_group != cluster_bg);
3530
3531 release_cluster:
3532 /*
3533 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3534 * lets just skip it and let the allocator find whatever block it can
3535 * find. If we reach this point, we will have tried the cluster
3536 * allocator plenty of times and not have found anything, so we are
3537 * likely way too fragmented for the clustering stuff to find anything.
3538 *
3539 * However, if the cluster is taken from the current block group,
3540 * release the cluster first, so that we stand a better chance of
3541 * succeeding in the unclustered allocation.
3542 */
3543 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
3544 spin_unlock(&last_ptr->refill_lock);
3545 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3546 return -ENOENT;
3547 }
3548
3549 /* This cluster didn't work out, free it and start over */
3550 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3551
3552 if (cluster_bg != bg)
3553 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
3554
3555 refill_cluster:
3556 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
3557 spin_unlock(&last_ptr->refill_lock);
3558 return -ENOENT;
3559 }
3560
3561 aligned_cluster = max_t(u64,
3562 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
3563 bg->full_stripe_len);
3564 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
3565 ffe_ctl->num_bytes, aligned_cluster);
3566 if (ret == 0) {
3567 /* Now pull our allocation out of this cluster */
3568 offset = btrfs_alloc_from_cluster(bg, last_ptr,
3569 ffe_ctl->num_bytes, ffe_ctl->search_start,
3570 &ffe_ctl->max_extent_size);
3571 if (offset) {
3572 /* We found one, proceed */
3573 spin_unlock(&last_ptr->refill_lock);
3574 ffe_ctl->found_offset = offset;
3575 trace_btrfs_reserve_extent_cluster(bg, ffe_ctl);
3576 return 0;
3577 }
3578 }
3579 /*
3580 * At this point we either didn't find a cluster or we weren't able to
3581 * allocate a block from our cluster. Free the cluster we've been
3582 * trying to use, and go to the next block group.
3583 */
3584 btrfs_return_cluster_to_free_space(NULL, last_ptr);
3585 spin_unlock(&last_ptr->refill_lock);
3586 return 1;
3587 }
3588
3589 /*
3590 * Return >0 to inform caller that we find nothing
3591 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3592 */
3593 static int find_free_extent_unclustered(struct btrfs_block_group *bg,
3594 struct find_free_extent_ctl *ffe_ctl)
3595 {
3596 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3597 u64 offset;
3598
3599 /*
3600 * We are doing an unclustered allocation, set the fragmented flag so
3601 * we don't bother trying to setup a cluster again until we get more
3602 * space.
3603 */
3604 if (unlikely(last_ptr)) {
3605 spin_lock(&last_ptr->lock);
3606 last_ptr->fragmented = 1;
3607 spin_unlock(&last_ptr->lock);
3608 }
3609 if (ffe_ctl->cached) {
3610 struct btrfs_free_space_ctl *free_space_ctl;
3611
3612 free_space_ctl = bg->free_space_ctl;
3613 spin_lock(&free_space_ctl->tree_lock);
3614 if (free_space_ctl->free_space <
3615 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
3616 ffe_ctl->empty_size) {
3617 ffe_ctl->total_free_space = max_t(u64,
3618 ffe_ctl->total_free_space,
3619 free_space_ctl->free_space);
3620 spin_unlock(&free_space_ctl->tree_lock);
3621 return 1;
3622 }
3623 spin_unlock(&free_space_ctl->tree_lock);
3624 }
3625
3626 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
3627 ffe_ctl->num_bytes, ffe_ctl->empty_size,
3628 &ffe_ctl->max_extent_size);
3629 if (!offset)
3630 return 1;
3631 ffe_ctl->found_offset = offset;
3632 return 0;
3633 }
3634
3635 static int do_allocation_clustered(struct btrfs_block_group *block_group,
3636 struct find_free_extent_ctl *ffe_ctl,
3637 struct btrfs_block_group **bg_ret)
3638 {
3639 int ret;
3640
3641 /* We want to try and use the cluster allocator, so lets look there */
3642 if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
3643 ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
3644 if (ret >= 0)
3645 return ret;
3646 /* ret == -ENOENT case falls through */
3647 }
3648
3649 return find_free_extent_unclustered(block_group, ffe_ctl);
3650 }
3651
3652 /*
3653 * Tree-log block group locking
3654 * ============================
3655 *
3656 * fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
3657 * indicates the starting address of a block group, which is reserved only
3658 * for tree-log metadata.
3659 *
3660 * Lock nesting
3661 * ============
3662 *
3663 * space_info::lock
3664 * block_group::lock
3665 * fs_info::treelog_bg_lock
3666 */
3667
3668 /*
3669 * Simple allocator for sequential-only block group. It only allows sequential
3670 * allocation. No need to play with trees. This function also reserves the
3671 * bytes as in btrfs_add_reserved_bytes.
3672 */
3673 static int do_allocation_zoned(struct btrfs_block_group *block_group,
3674 struct find_free_extent_ctl *ffe_ctl,
3675 struct btrfs_block_group **bg_ret)
3676 {
3677 struct btrfs_fs_info *fs_info = block_group->fs_info;
3678 struct btrfs_space_info *space_info = block_group->space_info;
3679 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3680 u64 start = block_group->start;
3681 u64 num_bytes = ffe_ctl->num_bytes;
3682 u64 avail;
3683 u64 bytenr = block_group->start;
3684 u64 log_bytenr;
3685 u64 data_reloc_bytenr;
3686 int ret = 0;
3687 bool skip = false;
3688
3689 ASSERT(btrfs_is_zoned(block_group->fs_info));
3690
3691 /*
3692 * Do not allow non-tree-log blocks in the dedicated tree-log block
3693 * group, and vice versa.
3694 */
3695 spin_lock(&fs_info->treelog_bg_lock);
3696 log_bytenr = fs_info->treelog_bg;
3697 if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
3698 (!ffe_ctl->for_treelog && bytenr == log_bytenr)))
3699 skip = true;
3700 spin_unlock(&fs_info->treelog_bg_lock);
3701 if (skip)
3702 return 1;
3703
3704 /*
3705 * Do not allow non-relocation blocks in the dedicated relocation block
3706 * group, and vice versa.
3707 */
3708 spin_lock(&fs_info->relocation_bg_lock);
3709 data_reloc_bytenr = fs_info->data_reloc_bg;
3710 if (data_reloc_bytenr &&
3711 ((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
3712 (!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
3713 skip = true;
3714 spin_unlock(&fs_info->relocation_bg_lock);
3715 if (skip)
3716 return 1;
3717
3718 /* Check RO and no space case before trying to activate it */
3719 spin_lock(&block_group->lock);
3720 if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
3721 ret = 1;
3722 /*
3723 * May need to clear fs_info->{treelog,data_reloc}_bg.
3724 * Return the error after taking the locks.
3725 */
3726 }
3727 spin_unlock(&block_group->lock);
3728
3729 /* Metadata block group is activated at write time. */
3730 if (!ret && (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
3731 !btrfs_zone_activate(block_group)) {
3732 ret = 1;
3733 /*
3734 * May need to clear fs_info->{treelog,data_reloc}_bg.
3735 * Return the error after taking the locks.
3736 */
3737 }
3738
3739 spin_lock(&space_info->lock);
3740 spin_lock(&block_group->lock);
3741 spin_lock(&fs_info->treelog_bg_lock);
3742 spin_lock(&fs_info->relocation_bg_lock);
3743
3744 if (ret)
3745 goto out;
3746
3747 ASSERT(!ffe_ctl->for_treelog ||
3748 block_group->start == fs_info->treelog_bg ||
3749 fs_info->treelog_bg == 0);
3750 ASSERT(!ffe_ctl->for_data_reloc ||
3751 block_group->start == fs_info->data_reloc_bg ||
3752 fs_info->data_reloc_bg == 0);
3753
3754 if (block_group->ro ||
3755 (!ffe_ctl->for_data_reloc &&
3756 test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))) {
3757 ret = 1;
3758 goto out;
3759 }
3760
3761 /*
3762 * Do not allow currently using block group to be tree-log dedicated
3763 * block group.
3764 */
3765 if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
3766 (block_group->used || block_group->reserved)) {
3767 ret = 1;
3768 goto out;
3769 }
3770
3771 /*
3772 * Do not allow currently used block group to be the data relocation
3773 * dedicated block group.
3774 */
3775 if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
3776 (block_group->used || block_group->reserved)) {
3777 ret = 1;
3778 goto out;
3779 }
3780
3781 WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
3782 avail = block_group->zone_capacity - block_group->alloc_offset;
3783 if (avail < num_bytes) {
3784 if (ffe_ctl->max_extent_size < avail) {
3785 /*
3786 * With sequential allocator, free space is always
3787 * contiguous
3788 */
3789 ffe_ctl->max_extent_size = avail;
3790 ffe_ctl->total_free_space = avail;
3791 }
3792 ret = 1;
3793 goto out;
3794 }
3795
3796 if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
3797 fs_info->treelog_bg = block_group->start;
3798
3799 if (ffe_ctl->for_data_reloc) {
3800 if (!fs_info->data_reloc_bg)
3801 fs_info->data_reloc_bg = block_group->start;
3802 /*
3803 * Do not allow allocations from this block group, unless it is
3804 * for data relocation. Compared to increasing the ->ro, setting
3805 * the ->zoned_data_reloc_ongoing flag still allows nocow
3806 * writers to come in. See btrfs_inc_nocow_writers().
3807 *
3808 * We need to disable an allocation to avoid an allocation of
3809 * regular (non-relocation data) extent. With mix of relocation
3810 * extents and regular extents, we can dispatch WRITE commands
3811 * (for relocation extents) and ZONE APPEND commands (for
3812 * regular extents) at the same time to the same zone, which
3813 * easily break the write pointer.
3814 *
3815 * Also, this flag avoids this block group to be zone finished.
3816 */
3817 set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
3818 }
3819
3820 ffe_ctl->found_offset = start + block_group->alloc_offset;
3821 block_group->alloc_offset += num_bytes;
3822 spin_lock(&ctl->tree_lock);
3823 ctl->free_space -= num_bytes;
3824 spin_unlock(&ctl->tree_lock);
3825
3826 /*
3827 * We do not check if found_offset is aligned to stripesize. The
3828 * address is anyway rewritten when using zone append writing.
3829 */
3830
3831 ffe_ctl->search_start = ffe_ctl->found_offset;
3832
3833 out:
3834 if (ret && ffe_ctl->for_treelog)
3835 fs_info->treelog_bg = 0;
3836 if (ret && ffe_ctl->for_data_reloc)
3837 fs_info->data_reloc_bg = 0;
3838 spin_unlock(&fs_info->relocation_bg_lock);
3839 spin_unlock(&fs_info->treelog_bg_lock);
3840 spin_unlock(&block_group->lock);
3841 spin_unlock(&space_info->lock);
3842 return ret;
3843 }
3844
3845 static int do_allocation(struct btrfs_block_group *block_group,
3846 struct find_free_extent_ctl *ffe_ctl,
3847 struct btrfs_block_group **bg_ret)
3848 {
3849 switch (ffe_ctl->policy) {
3850 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3851 return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
3852 case BTRFS_EXTENT_ALLOC_ZONED:
3853 return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
3854 default:
3855 BUG();
3856 }
3857 }
3858
3859 static void release_block_group(struct btrfs_block_group *block_group,
3860 struct find_free_extent_ctl *ffe_ctl,
3861 int delalloc)
3862 {
3863 switch (ffe_ctl->policy) {
3864 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3865 ffe_ctl->retry_uncached = false;
3866 break;
3867 case BTRFS_EXTENT_ALLOC_ZONED:
3868 /* Nothing to do */
3869 break;
3870 default:
3871 BUG();
3872 }
3873
3874 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
3875 ffe_ctl->index);
3876 btrfs_release_block_group(block_group, delalloc);
3877 }
3878
3879 static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
3880 struct btrfs_key *ins)
3881 {
3882 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
3883
3884 if (!ffe_ctl->use_cluster && last_ptr) {
3885 spin_lock(&last_ptr->lock);
3886 last_ptr->window_start = ins->objectid;
3887 spin_unlock(&last_ptr->lock);
3888 }
3889 }
3890
3891 static void found_extent(struct find_free_extent_ctl *ffe_ctl,
3892 struct btrfs_key *ins)
3893 {
3894 switch (ffe_ctl->policy) {
3895 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3896 found_extent_clustered(ffe_ctl, ins);
3897 break;
3898 case BTRFS_EXTENT_ALLOC_ZONED:
3899 /* Nothing to do */
3900 break;
3901 default:
3902 BUG();
3903 }
3904 }
3905
3906 static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
3907 struct find_free_extent_ctl *ffe_ctl)
3908 {
3909 /* Block group's activeness is not a requirement for METADATA block groups. */
3910 if (!(ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA))
3911 return 0;
3912
3913 /* If we can activate new zone, just allocate a chunk and use it */
3914 if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
3915 return 0;
3916
3917 /*
3918 * We already reached the max active zones. Try to finish one block
3919 * group to make a room for a new block group. This is only possible
3920 * for a data block group because btrfs_zone_finish() may need to wait
3921 * for a running transaction which can cause a deadlock for metadata
3922 * allocation.
3923 */
3924 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
3925 int ret = btrfs_zone_finish_one_bg(fs_info);
3926
3927 if (ret == 1)
3928 return 0;
3929 else if (ret < 0)
3930 return ret;
3931 }
3932
3933 /*
3934 * If we have enough free space left in an already active block group
3935 * and we can't activate any other zone now, do not allow allocating a
3936 * new chunk and let find_free_extent() retry with a smaller size.
3937 */
3938 if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
3939 return -ENOSPC;
3940
3941 /*
3942 * Even min_alloc_size is not left in any block groups. Since we cannot
3943 * activate a new block group, allocating it may not help. Let's tell a
3944 * caller to try again and hope it progress something by writing some
3945 * parts of the region. That is only possible for data block groups,
3946 * where a part of the region can be written.
3947 */
3948 if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
3949 return -EAGAIN;
3950
3951 /*
3952 * We cannot activate a new block group and no enough space left in any
3953 * block groups. So, allocating a new block group may not help. But,
3954 * there is nothing to do anyway, so let's go with it.
3955 */
3956 return 0;
3957 }
3958
3959 static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
3960 struct find_free_extent_ctl *ffe_ctl)
3961 {
3962 switch (ffe_ctl->policy) {
3963 case BTRFS_EXTENT_ALLOC_CLUSTERED:
3964 return 0;
3965 case BTRFS_EXTENT_ALLOC_ZONED:
3966 return can_allocate_chunk_zoned(fs_info, ffe_ctl);
3967 default:
3968 BUG();
3969 }
3970 }
3971
3972 /*
3973 * Return >0 means caller needs to re-search for free extent
3974 * Return 0 means we have the needed free extent.
3975 * Return <0 means we failed to locate any free extent.
3976 */
3977 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
3978 struct btrfs_key *ins,
3979 struct find_free_extent_ctl *ffe_ctl,
3980 bool full_search)
3981 {
3982 struct btrfs_root *root = fs_info->chunk_root;
3983 int ret;
3984
3985 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
3986 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
3987 ffe_ctl->orig_have_caching_bg = true;
3988
3989 if (ins->objectid) {
3990 found_extent(ffe_ctl, ins);
3991 return 0;
3992 }
3993
3994 if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
3995 return 1;
3996
3997 ffe_ctl->index++;
3998 if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
3999 return 1;
4000
4001 /* See the comments for btrfs_loop_type for an explanation of the phases. */
4002 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
4003 ffe_ctl->index = 0;
4004 /*
4005 * We want to skip the LOOP_CACHING_WAIT step if we don't have
4006 * any uncached bgs and we've already done a full search
4007 * through.
4008 */
4009 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT &&
4010 (!ffe_ctl->orig_have_caching_bg && full_search))
4011 ffe_ctl->loop++;
4012 ffe_ctl->loop++;
4013
4014 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
4015 struct btrfs_trans_handle *trans;
4016 int exist = 0;
4017
4018 /* Check if allocation policy allows to create a new chunk */
4019 ret = can_allocate_chunk(fs_info, ffe_ctl);
4020 if (ret)
4021 return ret;
4022
4023 trans = current->journal_info;
4024 if (trans)
4025 exist = 1;
4026 else
4027 trans = btrfs_join_transaction(root);
4028
4029 if (IS_ERR(trans)) {
4030 ret = PTR_ERR(trans);
4031 return ret;
4032 }
4033
4034 ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
4035 CHUNK_ALLOC_FORCE_FOR_EXTENT);
4036
4037 /* Do not bail out on ENOSPC since we can do more. */
4038 if (ret == -ENOSPC) {
4039 ret = 0;
4040 ffe_ctl->loop++;
4041 }
4042 else if (ret < 0)
4043 btrfs_abort_transaction(trans, ret);
4044 else
4045 ret = 0;
4046 if (!exist)
4047 btrfs_end_transaction(trans);
4048 if (ret)
4049 return ret;
4050 }
4051
4052 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
4053 if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
4054 return -ENOSPC;
4055
4056 /*
4057 * Don't loop again if we already have no empty_size and
4058 * no empty_cluster.
4059 */
4060 if (ffe_ctl->empty_size == 0 &&
4061 ffe_ctl->empty_cluster == 0)
4062 return -ENOSPC;
4063 ffe_ctl->empty_size = 0;
4064 ffe_ctl->empty_cluster = 0;
4065 }
4066 return 1;
4067 }
4068 return -ENOSPC;
4069 }
4070
4071 static bool find_free_extent_check_size_class(struct find_free_extent_ctl *ffe_ctl,
4072 struct btrfs_block_group *bg)
4073 {
4074 if (ffe_ctl->policy == BTRFS_EXTENT_ALLOC_ZONED)
4075 return true;
4076 if (!btrfs_block_group_should_use_size_class(bg))
4077 return true;
4078 if (ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS)
4079 return true;
4080 if (ffe_ctl->loop >= LOOP_UNSET_SIZE_CLASS &&
4081 bg->size_class == BTRFS_BG_SZ_NONE)
4082 return true;
4083 return ffe_ctl->size_class == bg->size_class;
4084 }
4085
4086 static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
4087 struct find_free_extent_ctl *ffe_ctl,
4088 struct btrfs_space_info *space_info,
4089 struct btrfs_key *ins)
4090 {
4091 /*
4092 * If our free space is heavily fragmented we may not be able to make
4093 * big contiguous allocations, so instead of doing the expensive search
4094 * for free space, simply return ENOSPC with our max_extent_size so we
4095 * can go ahead and search for a more manageable chunk.
4096 *
4097 * If our max_extent_size is large enough for our allocation simply
4098 * disable clustering since we will likely not be able to find enough
4099 * space to create a cluster and induce latency trying.
4100 */
4101 if (space_info->max_extent_size) {
4102 spin_lock(&space_info->lock);
4103 if (space_info->max_extent_size &&
4104 ffe_ctl->num_bytes > space_info->max_extent_size) {
4105 ins->offset = space_info->max_extent_size;
4106 spin_unlock(&space_info->lock);
4107 return -ENOSPC;
4108 } else if (space_info->max_extent_size) {
4109 ffe_ctl->use_cluster = false;
4110 }
4111 spin_unlock(&space_info->lock);
4112 }
4113
4114 ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
4115 &ffe_ctl->empty_cluster);
4116 if (ffe_ctl->last_ptr) {
4117 struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
4118
4119 spin_lock(&last_ptr->lock);
4120 if (last_ptr->block_group)
4121 ffe_ctl->hint_byte = last_ptr->window_start;
4122 if (last_ptr->fragmented) {
4123 /*
4124 * We still set window_start so we can keep track of the
4125 * last place we found an allocation to try and save
4126 * some time.
4127 */
4128 ffe_ctl->hint_byte = last_ptr->window_start;
4129 ffe_ctl->use_cluster = false;
4130 }
4131 spin_unlock(&last_ptr->lock);
4132 }
4133
4134 return 0;
4135 }
4136
4137 static int prepare_allocation(struct btrfs_fs_info *fs_info,
4138 struct find_free_extent_ctl *ffe_ctl,
4139 struct btrfs_space_info *space_info,
4140 struct btrfs_key *ins)
4141 {
4142 switch (ffe_ctl->policy) {
4143 case BTRFS_EXTENT_ALLOC_CLUSTERED:
4144 return prepare_allocation_clustered(fs_info, ffe_ctl,
4145 space_info, ins);
4146 case BTRFS_EXTENT_ALLOC_ZONED:
4147 if (ffe_ctl->for_treelog) {
4148 spin_lock(&fs_info->treelog_bg_lock);
4149 if (fs_info->treelog_bg)
4150 ffe_ctl->hint_byte = fs_info->treelog_bg;
4151 spin_unlock(&fs_info->treelog_bg_lock);
4152 }
4153 if (ffe_ctl->for_data_reloc) {
4154 spin_lock(&fs_info->relocation_bg_lock);
4155 if (fs_info->data_reloc_bg)
4156 ffe_ctl->hint_byte = fs_info->data_reloc_bg;
4157 spin_unlock(&fs_info->relocation_bg_lock);
4158 }
4159 return 0;
4160 default:
4161 BUG();
4162 }
4163 }
4164
4165 /*
4166 * walks the btree of allocated extents and find a hole of a given size.
4167 * The key ins is changed to record the hole:
4168 * ins->objectid == start position
4169 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4170 * ins->offset == the size of the hole.
4171 * Any available blocks before search_start are skipped.
4172 *
4173 * If there is no suitable free space, we will record the max size of
4174 * the free space extent currently.
4175 *
4176 * The overall logic and call chain:
4177 *
4178 * find_free_extent()
4179 * |- Iterate through all block groups
4180 * | |- Get a valid block group
4181 * | |- Try to do clustered allocation in that block group
4182 * | |- Try to do unclustered allocation in that block group
4183 * | |- Check if the result is valid
4184 * | | |- If valid, then exit
4185 * | |- Jump to next block group
4186 * |
4187 * |- Push harder to find free extents
4188 * |- If not found, re-iterate all block groups
4189 */
4190 static noinline int find_free_extent(struct btrfs_root *root,
4191 struct btrfs_key *ins,
4192 struct find_free_extent_ctl *ffe_ctl)
4193 {
4194 struct btrfs_fs_info *fs_info = root->fs_info;
4195 int ret = 0;
4196 int cache_block_group_error = 0;
4197 struct btrfs_block_group *block_group = NULL;
4198 struct btrfs_space_info *space_info;
4199 bool full_search = false;
4200
4201 WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
4202
4203 ffe_ctl->search_start = 0;
4204 /* For clustered allocation */
4205 ffe_ctl->empty_cluster = 0;
4206 ffe_ctl->last_ptr = NULL;
4207 ffe_ctl->use_cluster = true;
4208 ffe_ctl->have_caching_bg = false;
4209 ffe_ctl->orig_have_caching_bg = false;
4210 ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
4211 ffe_ctl->loop = 0;
4212 ffe_ctl->retry_uncached = false;
4213 ffe_ctl->cached = 0;
4214 ffe_ctl->max_extent_size = 0;
4215 ffe_ctl->total_free_space = 0;
4216 ffe_ctl->found_offset = 0;
4217 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
4218 ffe_ctl->size_class = btrfs_calc_block_group_size_class(ffe_ctl->num_bytes);
4219
4220 if (btrfs_is_zoned(fs_info))
4221 ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
4222
4223 ins->type = BTRFS_EXTENT_ITEM_KEY;
4224 ins->objectid = 0;
4225 ins->offset = 0;
4226
4227 trace_find_free_extent(root, ffe_ctl);
4228
4229 space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
4230 if (!space_info) {
4231 btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
4232 return -ENOSPC;
4233 }
4234
4235 ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
4236 if (ret < 0)
4237 return ret;
4238
4239 ffe_ctl->search_start = max(ffe_ctl->search_start,
4240 first_logical_byte(fs_info));
4241 ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
4242 if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
4243 block_group = btrfs_lookup_block_group(fs_info,
4244 ffe_ctl->search_start);
4245 /*
4246 * we don't want to use the block group if it doesn't match our
4247 * allocation bits, or if its not cached.
4248 *
4249 * However if we are re-searching with an ideal block group
4250 * picked out then we don't care that the block group is cached.
4251 */
4252 if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
4253 block_group->cached != BTRFS_CACHE_NO) {
4254 down_read(&space_info->groups_sem);
4255 if (list_empty(&block_group->list) ||
4256 block_group->ro) {
4257 /*
4258 * someone is removing this block group,
4259 * we can't jump into the have_block_group
4260 * target because our list pointers are not
4261 * valid
4262 */
4263 btrfs_put_block_group(block_group);
4264 up_read(&space_info->groups_sem);
4265 } else {
4266 ffe_ctl->index = btrfs_bg_flags_to_raid_index(
4267 block_group->flags);
4268 btrfs_lock_block_group(block_group,
4269 ffe_ctl->delalloc);
4270 ffe_ctl->hinted = true;
4271 goto have_block_group;
4272 }
4273 } else if (block_group) {
4274 btrfs_put_block_group(block_group);
4275 }
4276 }
4277 search:
4278 trace_find_free_extent_search_loop(root, ffe_ctl);
4279 ffe_ctl->have_caching_bg = false;
4280 if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
4281 ffe_ctl->index == 0)
4282 full_search = true;
4283 down_read(&space_info->groups_sem);
4284 list_for_each_entry(block_group,
4285 &space_info->block_groups[ffe_ctl->index], list) {
4286 struct btrfs_block_group *bg_ret;
4287
4288 ffe_ctl->hinted = false;
4289 /* If the block group is read-only, we can skip it entirely. */
4290 if (unlikely(block_group->ro)) {
4291 if (ffe_ctl->for_treelog)
4292 btrfs_clear_treelog_bg(block_group);
4293 if (ffe_ctl->for_data_reloc)
4294 btrfs_clear_data_reloc_bg(block_group);
4295 continue;
4296 }
4297
4298 btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
4299 ffe_ctl->search_start = block_group->start;
4300
4301 /*
4302 * this can happen if we end up cycling through all the
4303 * raid types, but we want to make sure we only allocate
4304 * for the proper type.
4305 */
4306 if (!block_group_bits(block_group, ffe_ctl->flags)) {
4307 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4308 BTRFS_BLOCK_GROUP_RAID1_MASK |
4309 BTRFS_BLOCK_GROUP_RAID56_MASK |
4310 BTRFS_BLOCK_GROUP_RAID10;
4311
4312 /*
4313 * if they asked for extra copies and this block group
4314 * doesn't provide them, bail. This does allow us to
4315 * fill raid0 from raid1.
4316 */
4317 if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
4318 goto loop;
4319
4320 /*
4321 * This block group has different flags than we want.
4322 * It's possible that we have MIXED_GROUP flag but no
4323 * block group is mixed. Just skip such block group.
4324 */
4325 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4326 continue;
4327 }
4328
4329 have_block_group:
4330 trace_find_free_extent_have_block_group(root, ffe_ctl, block_group);
4331 ffe_ctl->cached = btrfs_block_group_done(block_group);
4332 if (unlikely(!ffe_ctl->cached)) {
4333 ffe_ctl->have_caching_bg = true;
4334 ret = btrfs_cache_block_group(block_group, false);
4335
4336 /*
4337 * If we get ENOMEM here or something else we want to
4338 * try other block groups, because it may not be fatal.
4339 * However if we can't find anything else we need to
4340 * save our return here so that we return the actual
4341 * error that caused problems, not ENOSPC.
4342 */
4343 if (ret < 0) {
4344 if (!cache_block_group_error)
4345 cache_block_group_error = ret;
4346 ret = 0;
4347 goto loop;
4348 }
4349 ret = 0;
4350 }
4351
4352 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) {
4353 if (!cache_block_group_error)
4354 cache_block_group_error = -EIO;
4355 goto loop;
4356 }
4357
4358 if (!find_free_extent_check_size_class(ffe_ctl, block_group))
4359 goto loop;
4360
4361 bg_ret = NULL;
4362 ret = do_allocation(block_group, ffe_ctl, &bg_ret);
4363 if (ret > 0)
4364 goto loop;
4365
4366 if (bg_ret && bg_ret != block_group) {
4367 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4368 block_group = bg_ret;
4369 }
4370
4371 /* Checks */
4372 ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
4373 fs_info->stripesize);
4374
4375 /* move on to the next group */
4376 if (ffe_ctl->search_start + ffe_ctl->num_bytes >
4377 block_group->start + block_group->length) {
4378 btrfs_add_free_space_unused(block_group,
4379 ffe_ctl->found_offset,
4380 ffe_ctl->num_bytes);
4381 goto loop;
4382 }
4383
4384 if (ffe_ctl->found_offset < ffe_ctl->search_start)
4385 btrfs_add_free_space_unused(block_group,
4386 ffe_ctl->found_offset,
4387 ffe_ctl->search_start - ffe_ctl->found_offset);
4388
4389 ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
4390 ffe_ctl->num_bytes,
4391 ffe_ctl->delalloc,
4392 ffe_ctl->loop >= LOOP_WRONG_SIZE_CLASS);
4393 if (ret == -EAGAIN) {
4394 btrfs_add_free_space_unused(block_group,
4395 ffe_ctl->found_offset,
4396 ffe_ctl->num_bytes);
4397 goto loop;
4398 }
4399 btrfs_inc_block_group_reservations(block_group);
4400
4401 /* we are all good, lets return */
4402 ins->objectid = ffe_ctl->search_start;
4403 ins->offset = ffe_ctl->num_bytes;
4404
4405 trace_btrfs_reserve_extent(block_group, ffe_ctl);
4406 btrfs_release_block_group(block_group, ffe_ctl->delalloc);
4407 break;
4408 loop:
4409 if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
4410 !ffe_ctl->retry_uncached) {
4411 ffe_ctl->retry_uncached = true;
4412 btrfs_wait_block_group_cache_progress(block_group,
4413 ffe_ctl->num_bytes +
4414 ffe_ctl->empty_cluster +
4415 ffe_ctl->empty_size);
4416 goto have_block_group;
4417 }
4418 release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
4419 cond_resched();
4420 }
4421 up_read(&space_info->groups_sem);
4422
4423 ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
4424 if (ret > 0)
4425 goto search;
4426
4427 if (ret == -ENOSPC && !cache_block_group_error) {
4428 /*
4429 * Use ffe_ctl->total_free_space as fallback if we can't find
4430 * any contiguous hole.
4431 */
4432 if (!ffe_ctl->max_extent_size)
4433 ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
4434 spin_lock(&space_info->lock);
4435 space_info->max_extent_size = ffe_ctl->max_extent_size;
4436 spin_unlock(&space_info->lock);
4437 ins->offset = ffe_ctl->max_extent_size;
4438 } else if (ret == -ENOSPC) {
4439 ret = cache_block_group_error;
4440 }
4441 return ret;
4442 }
4443
4444 /*
4445 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4446 * hole that is at least as big as @num_bytes.
4447 *
4448 * @root - The root that will contain this extent
4449 *
4450 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4451 * is used for accounting purposes. This value differs
4452 * from @num_bytes only in the case of compressed extents.
4453 *
4454 * @num_bytes - Number of bytes to allocate on-disk.
4455 *
4456 * @min_alloc_size - Indicates the minimum amount of space that the
4457 * allocator should try to satisfy. In some cases
4458 * @num_bytes may be larger than what is required and if
4459 * the filesystem is fragmented then allocation fails.
4460 * However, the presence of @min_alloc_size gives a
4461 * chance to try and satisfy the smaller allocation.
4462 *
4463 * @empty_size - A hint that you plan on doing more COW. This is the
4464 * size in bytes the allocator should try to find free
4465 * next to the block it returns. This is just a hint and
4466 * may be ignored by the allocator.
4467 *
4468 * @hint_byte - Hint to the allocator to start searching above the byte
4469 * address passed. It might be ignored.
4470 *
4471 * @ins - This key is modified to record the found hole. It will
4472 * have the following values:
4473 * ins->objectid == start position
4474 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4475 * ins->offset == the size of the hole.
4476 *
4477 * @is_data - Boolean flag indicating whether an extent is
4478 * allocated for data (true) or metadata (false)
4479 *
4480 * @delalloc - Boolean flag indicating whether this allocation is for
4481 * delalloc or not. If 'true' data_rwsem of block groups
4482 * is going to be acquired.
4483 *
4484 *
4485 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4486 * case -ENOSPC is returned then @ins->offset will contain the size of the
4487 * largest available hole the allocator managed to find.
4488 */
4489 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
4490 u64 num_bytes, u64 min_alloc_size,
4491 u64 empty_size, u64 hint_byte,
4492 struct btrfs_key *ins, int is_data, int delalloc)
4493 {
4494 struct btrfs_fs_info *fs_info = root->fs_info;
4495 struct find_free_extent_ctl ffe_ctl = {};
4496 bool final_tried = num_bytes == min_alloc_size;
4497 u64 flags;
4498 int ret;
4499 bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4500 bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
4501
4502 flags = get_alloc_profile_by_root(root, is_data);
4503 again:
4504 WARN_ON(num_bytes < fs_info->sectorsize);
4505
4506 ffe_ctl.ram_bytes = ram_bytes;
4507 ffe_ctl.num_bytes = num_bytes;
4508 ffe_ctl.min_alloc_size = min_alloc_size;
4509 ffe_ctl.empty_size = empty_size;
4510 ffe_ctl.flags = flags;
4511 ffe_ctl.delalloc = delalloc;
4512 ffe_ctl.hint_byte = hint_byte;
4513 ffe_ctl.for_treelog = for_treelog;
4514 ffe_ctl.for_data_reloc = for_data_reloc;
4515
4516 ret = find_free_extent(root, ins, &ffe_ctl);
4517 if (!ret && !is_data) {
4518 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
4519 } else if (ret == -ENOSPC) {
4520 if (!final_tried && ins->offset) {
4521 num_bytes = min(num_bytes >> 1, ins->offset);
4522 num_bytes = round_down(num_bytes,
4523 fs_info->sectorsize);
4524 num_bytes = max(num_bytes, min_alloc_size);
4525 ram_bytes = num_bytes;
4526 if (num_bytes == min_alloc_size)
4527 final_tried = true;
4528 goto again;
4529 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4530 struct btrfs_space_info *sinfo;
4531
4532 sinfo = btrfs_find_space_info(fs_info, flags);
4533 btrfs_err(fs_info,
4534 "allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
4535 flags, num_bytes, for_treelog, for_data_reloc);
4536 if (sinfo)
4537 btrfs_dump_space_info(fs_info, sinfo,
4538 num_bytes, 1);
4539 }
4540 }
4541
4542 return ret;
4543 }
4544
4545 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
4546 u64 start, u64 len, int delalloc)
4547 {
4548 struct btrfs_block_group *cache;
4549
4550 cache = btrfs_lookup_block_group(fs_info, start);
4551 if (!cache) {
4552 btrfs_err(fs_info, "Unable to find block group for %llu",
4553 start);
4554 return -ENOSPC;
4555 }
4556
4557 btrfs_add_free_space(cache, start, len);
4558 btrfs_free_reserved_bytes(cache, len, delalloc);
4559 trace_btrfs_reserved_extent_free(fs_info, start, len);
4560
4561 btrfs_put_block_group(cache);
4562 return 0;
4563 }
4564
4565 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
4566 u64 len)
4567 {
4568 struct btrfs_block_group *cache;
4569 int ret = 0;
4570
4571 cache = btrfs_lookup_block_group(trans->fs_info, start);
4572 if (!cache) {
4573 btrfs_err(trans->fs_info, "unable to find block group for %llu",
4574 start);
4575 return -ENOSPC;
4576 }
4577
4578 ret = pin_down_extent(trans, cache, start, len, 1);
4579 btrfs_put_block_group(cache);
4580 return ret;
4581 }
4582
4583 static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
4584 u64 num_bytes)
4585 {
4586 struct btrfs_fs_info *fs_info = trans->fs_info;
4587 int ret;
4588
4589 ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
4590 if (ret)
4591 return ret;
4592
4593 ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
4594 if (ret) {
4595 ASSERT(!ret);
4596 btrfs_err(fs_info, "update block group failed for %llu %llu",
4597 bytenr, num_bytes);
4598 return ret;
4599 }
4600
4601 trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
4602 return 0;
4603 }
4604
4605 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4606 u64 parent, u64 root_objectid,
4607 u64 flags, u64 owner, u64 offset,
4608 struct btrfs_key *ins, int ref_mod)
4609 {
4610 struct btrfs_fs_info *fs_info = trans->fs_info;
4611 struct btrfs_root *extent_root;
4612 int ret;
4613 struct btrfs_extent_item *extent_item;
4614 struct btrfs_extent_inline_ref *iref;
4615 struct btrfs_path *path;
4616 struct extent_buffer *leaf;
4617 int type;
4618 u32 size;
4619
4620 if (parent > 0)
4621 type = BTRFS_SHARED_DATA_REF_KEY;
4622 else
4623 type = BTRFS_EXTENT_DATA_REF_KEY;
4624
4625 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
4626
4627 path = btrfs_alloc_path();
4628 if (!path)
4629 return -ENOMEM;
4630
4631 extent_root = btrfs_extent_root(fs_info, ins->objectid);
4632 ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
4633 if (ret) {
4634 btrfs_free_path(path);
4635 return ret;
4636 }
4637
4638 leaf = path->nodes[0];
4639 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4640 struct btrfs_extent_item);
4641 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
4642 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4643 btrfs_set_extent_flags(leaf, extent_item,
4644 flags | BTRFS_EXTENT_FLAG_DATA);
4645
4646 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4647 btrfs_set_extent_inline_ref_type(leaf, iref, type);
4648 if (parent > 0) {
4649 struct btrfs_shared_data_ref *ref;
4650 ref = (struct btrfs_shared_data_ref *)(iref + 1);
4651 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
4652 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
4653 } else {
4654 struct btrfs_extent_data_ref *ref;
4655 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
4656 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
4657 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
4658 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
4659 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
4660 }
4661
4662 btrfs_mark_buffer_dirty(path->nodes[0]);
4663 btrfs_free_path(path);
4664
4665 return alloc_reserved_extent(trans, ins->objectid, ins->offset);
4666 }
4667
4668 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4669 struct btrfs_delayed_ref_node *node,
4670 struct btrfs_delayed_extent_op *extent_op)
4671 {
4672 struct btrfs_fs_info *fs_info = trans->fs_info;
4673 struct btrfs_root *extent_root;
4674 int ret;
4675 struct btrfs_extent_item *extent_item;
4676 struct btrfs_key extent_key;
4677 struct btrfs_tree_block_info *block_info;
4678 struct btrfs_extent_inline_ref *iref;
4679 struct btrfs_path *path;
4680 struct extent_buffer *leaf;
4681 struct btrfs_delayed_tree_ref *ref;
4682 u32 size = sizeof(*extent_item) + sizeof(*iref);
4683 u64 flags = extent_op->flags_to_set;
4684 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4685
4686 ref = btrfs_delayed_node_to_tree_ref(node);
4687
4688 extent_key.objectid = node->bytenr;
4689 if (skinny_metadata) {
4690 extent_key.offset = ref->level;
4691 extent_key.type = BTRFS_METADATA_ITEM_KEY;
4692 } else {
4693 extent_key.offset = node->num_bytes;
4694 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
4695 size += sizeof(*block_info);
4696 }
4697
4698 path = btrfs_alloc_path();
4699 if (!path)
4700 return -ENOMEM;
4701
4702 extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
4703 ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
4704 size);
4705 if (ret) {
4706 btrfs_free_path(path);
4707 return ret;
4708 }
4709
4710 leaf = path->nodes[0];
4711 extent_item = btrfs_item_ptr(leaf, path->slots[0],
4712 struct btrfs_extent_item);
4713 btrfs_set_extent_refs(leaf, extent_item, 1);
4714 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
4715 btrfs_set_extent_flags(leaf, extent_item,
4716 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
4717
4718 if (skinny_metadata) {
4719 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
4720 } else {
4721 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
4722 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4723 btrfs_set_tree_block_level(leaf, block_info, ref->level);
4724 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
4725 }
4726
4727 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
4728 btrfs_set_extent_inline_ref_type(leaf, iref,
4729 BTRFS_SHARED_BLOCK_REF_KEY);
4730 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
4731 } else {
4732 btrfs_set_extent_inline_ref_type(leaf, iref,
4733 BTRFS_TREE_BLOCK_REF_KEY);
4734 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
4735 }
4736
4737 btrfs_mark_buffer_dirty(leaf);
4738 btrfs_free_path(path);
4739
4740 return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
4741 }
4742
4743 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
4744 struct btrfs_root *root, u64 owner,
4745 u64 offset, u64 ram_bytes,
4746 struct btrfs_key *ins)
4747 {
4748 struct btrfs_ref generic_ref = { 0 };
4749
4750 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
4751
4752 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4753 ins->objectid, ins->offset, 0);
4754 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
4755 offset, 0, false);
4756 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
4757
4758 return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
4759 }
4760
4761 /*
4762 * this is used by the tree logging recovery code. It records that
4763 * an extent has been allocated and makes sure to clear the free
4764 * space cache bits as well
4765 */
4766 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
4767 u64 root_objectid, u64 owner, u64 offset,
4768 struct btrfs_key *ins)
4769 {
4770 struct btrfs_fs_info *fs_info = trans->fs_info;
4771 int ret;
4772 struct btrfs_block_group *block_group;
4773 struct btrfs_space_info *space_info;
4774
4775 /*
4776 * Mixed block groups will exclude before processing the log so we only
4777 * need to do the exclude dance if this fs isn't mixed.
4778 */
4779 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
4780 ret = __exclude_logged_extent(fs_info, ins->objectid,
4781 ins->offset);
4782 if (ret)
4783 return ret;
4784 }
4785
4786 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
4787 if (!block_group)
4788 return -EINVAL;
4789
4790 space_info = block_group->space_info;
4791 spin_lock(&space_info->lock);
4792 spin_lock(&block_group->lock);
4793 space_info->bytes_reserved += ins->offset;
4794 block_group->reserved += ins->offset;
4795 spin_unlock(&block_group->lock);
4796 spin_unlock(&space_info->lock);
4797
4798 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
4799 offset, ins, 1);
4800 if (ret)
4801 btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
4802 btrfs_put_block_group(block_group);
4803 return ret;
4804 }
4805
4806 static struct extent_buffer *
4807 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4808 u64 bytenr, int level, u64 owner,
4809 enum btrfs_lock_nesting nest)
4810 {
4811 struct btrfs_fs_info *fs_info = root->fs_info;
4812 struct extent_buffer *buf;
4813 u64 lockdep_owner = owner;
4814
4815 buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
4816 if (IS_ERR(buf))
4817 return buf;
4818
4819 /*
4820 * Extra safety check in case the extent tree is corrupted and extent
4821 * allocator chooses to use a tree block which is already used and
4822 * locked.
4823 */
4824 if (buf->lock_owner == current->pid) {
4825 btrfs_err_rl(fs_info,
4826 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4827 buf->start, btrfs_header_owner(buf), current->pid);
4828 free_extent_buffer(buf);
4829 return ERR_PTR(-EUCLEAN);
4830 }
4831
4832 /*
4833 * The reloc trees are just snapshots, so we need them to appear to be
4834 * just like any other fs tree WRT lockdep.
4835 *
4836 * The exception however is in replace_path() in relocation, where we
4837 * hold the lock on the original fs root and then search for the reloc
4838 * root. At that point we need to make sure any reloc root buffers are
4839 * set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
4840 * lockdep happy.
4841 */
4842 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
4843 !test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
4844 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4845
4846 /* btrfs_clear_buffer_dirty() accesses generation field. */
4847 btrfs_set_header_generation(buf, trans->transid);
4848
4849 /*
4850 * This needs to stay, because we could allocate a freed block from an
4851 * old tree into a new tree, so we need to make sure this new block is
4852 * set to the appropriate level and owner.
4853 */
4854 btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
4855
4856 __btrfs_tree_lock(buf, nest);
4857 btrfs_clear_buffer_dirty(trans, buf);
4858 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
4859 clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
4860
4861 set_extent_buffer_uptodate(buf);
4862
4863 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
4864 btrfs_set_header_level(buf, level);
4865 btrfs_set_header_bytenr(buf, buf->start);
4866 btrfs_set_header_generation(buf, trans->transid);
4867 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
4868 btrfs_set_header_owner(buf, owner);
4869 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
4870 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
4871 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
4872 buf->log_index = root->log_transid % 2;
4873 /*
4874 * we allow two log transactions at a time, use different
4875 * EXTENT bit to differentiate dirty pages.
4876 */
4877 if (buf->log_index == 0)
4878 set_extent_bit(&root->dirty_log_pages, buf->start,
4879 buf->start + buf->len - 1,
4880 EXTENT_DIRTY, NULL);
4881 else
4882 set_extent_bit(&root->dirty_log_pages, buf->start,
4883 buf->start + buf->len - 1,
4884 EXTENT_NEW, NULL);
4885 } else {
4886 buf->log_index = -1;
4887 set_extent_bit(&trans->transaction->dirty_pages, buf->start,
4888 buf->start + buf->len - 1, EXTENT_DIRTY, NULL);
4889 }
4890 /* this returns a buffer locked for blocking */
4891 return buf;
4892 }
4893
4894 /*
4895 * finds a free extent and does all the dirty work required for allocation
4896 * returns the tree buffer or an ERR_PTR on error.
4897 */
4898 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
4899 struct btrfs_root *root,
4900 u64 parent, u64 root_objectid,
4901 const struct btrfs_disk_key *key,
4902 int level, u64 hint,
4903 u64 empty_size,
4904 enum btrfs_lock_nesting nest)
4905 {
4906 struct btrfs_fs_info *fs_info = root->fs_info;
4907 struct btrfs_key ins;
4908 struct btrfs_block_rsv *block_rsv;
4909 struct extent_buffer *buf;
4910 struct btrfs_delayed_extent_op *extent_op;
4911 struct btrfs_ref generic_ref = { 0 };
4912 u64 flags = 0;
4913 int ret;
4914 u32 blocksize = fs_info->nodesize;
4915 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
4916
4917 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4918 if (btrfs_is_testing(fs_info)) {
4919 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
4920 level, root_objectid, nest);
4921 if (!IS_ERR(buf))
4922 root->alloc_bytenr += blocksize;
4923 return buf;
4924 }
4925 #endif
4926
4927 block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
4928 if (IS_ERR(block_rsv))
4929 return ERR_CAST(block_rsv);
4930
4931 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
4932 empty_size, hint, &ins, 0, 0);
4933 if (ret)
4934 goto out_unuse;
4935
4936 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
4937 root_objectid, nest);
4938 if (IS_ERR(buf)) {
4939 ret = PTR_ERR(buf);
4940 goto out_free_reserved;
4941 }
4942
4943 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
4944 if (parent == 0)
4945 parent = ins.objectid;
4946 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
4947 } else
4948 BUG_ON(parent > 0);
4949
4950 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
4951 extent_op = btrfs_alloc_delayed_extent_op();
4952 if (!extent_op) {
4953 ret = -ENOMEM;
4954 goto out_free_buf;
4955 }
4956 if (key)
4957 memcpy(&extent_op->key, key, sizeof(extent_op->key));
4958 else
4959 memset(&extent_op->key, 0, sizeof(extent_op->key));
4960 extent_op->flags_to_set = flags;
4961 extent_op->update_key = skinny_metadata ? false : true;
4962 extent_op->update_flags = true;
4963 extent_op->level = level;
4964
4965 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
4966 ins.objectid, ins.offset, parent);
4967 btrfs_init_tree_ref(&generic_ref, level, root_objectid,
4968 root->root_key.objectid, false);
4969 btrfs_ref_tree_mod(fs_info, &generic_ref);
4970 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
4971 if (ret)
4972 goto out_free_delayed;
4973 }
4974 return buf;
4975
4976 out_free_delayed:
4977 btrfs_free_delayed_extent_op(extent_op);
4978 out_free_buf:
4979 btrfs_tree_unlock(buf);
4980 free_extent_buffer(buf);
4981 out_free_reserved:
4982 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
4983 out_unuse:
4984 btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
4985 return ERR_PTR(ret);
4986 }
4987
4988 struct walk_control {
4989 u64 refs[BTRFS_MAX_LEVEL];
4990 u64 flags[BTRFS_MAX_LEVEL];
4991 struct btrfs_key update_progress;
4992 struct btrfs_key drop_progress;
4993 int drop_level;
4994 int stage;
4995 int level;
4996 int shared_level;
4997 int update_ref;
4998 int keep_locks;
4999 int reada_slot;
5000 int reada_count;
5001 int restarted;
5002 };
5003
5004 #define DROP_REFERENCE 1
5005 #define UPDATE_BACKREF 2
5006
5007 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5008 struct btrfs_root *root,
5009 struct walk_control *wc,
5010 struct btrfs_path *path)
5011 {
5012 struct btrfs_fs_info *fs_info = root->fs_info;
5013 u64 bytenr;
5014 u64 generation;
5015 u64 refs;
5016 u64 flags;
5017 u32 nritems;
5018 struct btrfs_key key;
5019 struct extent_buffer *eb;
5020 int ret;
5021 int slot;
5022 int nread = 0;
5023
5024 if (path->slots[wc->level] < wc->reada_slot) {
5025 wc->reada_count = wc->reada_count * 2 / 3;
5026 wc->reada_count = max(wc->reada_count, 2);
5027 } else {
5028 wc->reada_count = wc->reada_count * 3 / 2;
5029 wc->reada_count = min_t(int, wc->reada_count,
5030 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
5031 }
5032
5033 eb = path->nodes[wc->level];
5034 nritems = btrfs_header_nritems(eb);
5035
5036 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5037 if (nread >= wc->reada_count)
5038 break;
5039
5040 cond_resched();
5041 bytenr = btrfs_node_blockptr(eb, slot);
5042 generation = btrfs_node_ptr_generation(eb, slot);
5043
5044 if (slot == path->slots[wc->level])
5045 goto reada;
5046
5047 if (wc->stage == UPDATE_BACKREF &&
5048 generation <= root->root_key.offset)
5049 continue;
5050
5051 /* We don't lock the tree block, it's OK to be racy here */
5052 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
5053 wc->level - 1, 1, &refs,
5054 &flags);
5055 /* We don't care about errors in readahead. */
5056 if (ret < 0)
5057 continue;
5058 BUG_ON(refs == 0);
5059
5060 if (wc->stage == DROP_REFERENCE) {
5061 if (refs == 1)
5062 goto reada;
5063
5064 if (wc->level == 1 &&
5065 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5066 continue;
5067 if (!wc->update_ref ||
5068 generation <= root->root_key.offset)
5069 continue;
5070 btrfs_node_key_to_cpu(eb, &key, slot);
5071 ret = btrfs_comp_cpu_keys(&key,
5072 &wc->update_progress);
5073 if (ret < 0)
5074 continue;
5075 } else {
5076 if (wc->level == 1 &&
5077 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5078 continue;
5079 }
5080 reada:
5081 btrfs_readahead_node_child(eb, slot);
5082 nread++;
5083 }
5084 wc->reada_slot = slot;
5085 }
5086
5087 /*
5088 * helper to process tree block while walking down the tree.
5089 *
5090 * when wc->stage == UPDATE_BACKREF, this function updates
5091 * back refs for pointers in the block.
5092 *
5093 * NOTE: return value 1 means we should stop walking down.
5094 */
5095 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5096 struct btrfs_root *root,
5097 struct btrfs_path *path,
5098 struct walk_control *wc, int lookup_info)
5099 {
5100 struct btrfs_fs_info *fs_info = root->fs_info;
5101 int level = wc->level;
5102 struct extent_buffer *eb = path->nodes[level];
5103 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5104 int ret;
5105
5106 if (wc->stage == UPDATE_BACKREF &&
5107 btrfs_header_owner(eb) != root->root_key.objectid)
5108 return 1;
5109
5110 /*
5111 * when reference count of tree block is 1, it won't increase
5112 * again. once full backref flag is set, we never clear it.
5113 */
5114 if (lookup_info &&
5115 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5116 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5117 BUG_ON(!path->locks[level]);
5118 ret = btrfs_lookup_extent_info(trans, fs_info,
5119 eb->start, level, 1,
5120 &wc->refs[level],
5121 &wc->flags[level]);
5122 BUG_ON(ret == -ENOMEM);
5123 if (ret)
5124 return ret;
5125 BUG_ON(wc->refs[level] == 0);
5126 }
5127
5128 if (wc->stage == DROP_REFERENCE) {
5129 if (wc->refs[level] > 1)
5130 return 1;
5131
5132 if (path->locks[level] && !wc->keep_locks) {
5133 btrfs_tree_unlock_rw(eb, path->locks[level]);
5134 path->locks[level] = 0;
5135 }
5136 return 0;
5137 }
5138
5139 /* wc->stage == UPDATE_BACKREF */
5140 if (!(wc->flags[level] & flag)) {
5141 BUG_ON(!path->locks[level]);
5142 ret = btrfs_inc_ref(trans, root, eb, 1);
5143 BUG_ON(ret); /* -ENOMEM */
5144 ret = btrfs_dec_ref(trans, root, eb, 0);
5145 BUG_ON(ret); /* -ENOMEM */
5146 ret = btrfs_set_disk_extent_flags(trans, eb, flag);
5147 BUG_ON(ret); /* -ENOMEM */
5148 wc->flags[level] |= flag;
5149 }
5150
5151 /*
5152 * the block is shared by multiple trees, so it's not good to
5153 * keep the tree lock
5154 */
5155 if (path->locks[level] && level > 0) {
5156 btrfs_tree_unlock_rw(eb, path->locks[level]);
5157 path->locks[level] = 0;
5158 }
5159 return 0;
5160 }
5161
5162 /*
5163 * This is used to verify a ref exists for this root to deal with a bug where we
5164 * would have a drop_progress key that hadn't been updated properly.
5165 */
5166 static int check_ref_exists(struct btrfs_trans_handle *trans,
5167 struct btrfs_root *root, u64 bytenr, u64 parent,
5168 int level)
5169 {
5170 struct btrfs_path *path;
5171 struct btrfs_extent_inline_ref *iref;
5172 int ret;
5173
5174 path = btrfs_alloc_path();
5175 if (!path)
5176 return -ENOMEM;
5177
5178 ret = lookup_extent_backref(trans, path, &iref, bytenr,
5179 root->fs_info->nodesize, parent,
5180 root->root_key.objectid, level, 0);
5181 btrfs_free_path(path);
5182 if (ret == -ENOENT)
5183 return 0;
5184 if (ret < 0)
5185 return ret;
5186 return 1;
5187 }
5188
5189 /*
5190 * helper to process tree block pointer.
5191 *
5192 * when wc->stage == DROP_REFERENCE, this function checks
5193 * reference count of the block pointed to. if the block
5194 * is shared and we need update back refs for the subtree
5195 * rooted at the block, this function changes wc->stage to
5196 * UPDATE_BACKREF. if the block is shared and there is no
5197 * need to update back, this function drops the reference
5198 * to the block.
5199 *
5200 * NOTE: return value 1 means we should stop walking down.
5201 */
5202 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5203 struct btrfs_root *root,
5204 struct btrfs_path *path,
5205 struct walk_control *wc, int *lookup_info)
5206 {
5207 struct btrfs_fs_info *fs_info = root->fs_info;
5208 u64 bytenr;
5209 u64 generation;
5210 u64 parent;
5211 struct btrfs_tree_parent_check check = { 0 };
5212 struct btrfs_key key;
5213 struct btrfs_ref ref = { 0 };
5214 struct extent_buffer *next;
5215 int level = wc->level;
5216 int reada = 0;
5217 int ret = 0;
5218 bool need_account = false;
5219
5220 generation = btrfs_node_ptr_generation(path->nodes[level],
5221 path->slots[level]);
5222 /*
5223 * if the lower level block was created before the snapshot
5224 * was created, we know there is no need to update back refs
5225 * for the subtree
5226 */
5227 if (wc->stage == UPDATE_BACKREF &&
5228 generation <= root->root_key.offset) {
5229 *lookup_info = 1;
5230 return 1;
5231 }
5232
5233 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5234
5235 check.level = level - 1;
5236 check.transid = generation;
5237 check.owner_root = root->root_key.objectid;
5238 check.has_first_key = true;
5239 btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
5240 path->slots[level]);
5241
5242 next = find_extent_buffer(fs_info, bytenr);
5243 if (!next) {
5244 next = btrfs_find_create_tree_block(fs_info, bytenr,
5245 root->root_key.objectid, level - 1);
5246 if (IS_ERR(next))
5247 return PTR_ERR(next);
5248 reada = 1;
5249 }
5250 btrfs_tree_lock(next);
5251
5252 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
5253 &wc->refs[level - 1],
5254 &wc->flags[level - 1]);
5255 if (ret < 0)
5256 goto out_unlock;
5257
5258 if (unlikely(wc->refs[level - 1] == 0)) {
5259 btrfs_err(fs_info, "Missing references.");
5260 ret = -EIO;
5261 goto out_unlock;
5262 }
5263 *lookup_info = 0;
5264
5265 if (wc->stage == DROP_REFERENCE) {
5266 if (wc->refs[level - 1] > 1) {
5267 need_account = true;
5268 if (level == 1 &&
5269 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5270 goto skip;
5271
5272 if (!wc->update_ref ||
5273 generation <= root->root_key.offset)
5274 goto skip;
5275
5276 btrfs_node_key_to_cpu(path->nodes[level], &key,
5277 path->slots[level]);
5278 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
5279 if (ret < 0)
5280 goto skip;
5281
5282 wc->stage = UPDATE_BACKREF;
5283 wc->shared_level = level - 1;
5284 }
5285 } else {
5286 if (level == 1 &&
5287 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5288 goto skip;
5289 }
5290
5291 if (!btrfs_buffer_uptodate(next, generation, 0)) {
5292 btrfs_tree_unlock(next);
5293 free_extent_buffer(next);
5294 next = NULL;
5295 *lookup_info = 1;
5296 }
5297
5298 if (!next) {
5299 if (reada && level == 1)
5300 reada_walk_down(trans, root, wc, path);
5301 next = read_tree_block(fs_info, bytenr, &check);
5302 if (IS_ERR(next)) {
5303 return PTR_ERR(next);
5304 } else if (!extent_buffer_uptodate(next)) {
5305 free_extent_buffer(next);
5306 return -EIO;
5307 }
5308 btrfs_tree_lock(next);
5309 }
5310
5311 level--;
5312 ASSERT(level == btrfs_header_level(next));
5313 if (level != btrfs_header_level(next)) {
5314 btrfs_err(root->fs_info, "mismatched level");
5315 ret = -EIO;
5316 goto out_unlock;
5317 }
5318 path->nodes[level] = next;
5319 path->slots[level] = 0;
5320 path->locks[level] = BTRFS_WRITE_LOCK;
5321 wc->level = level;
5322 if (wc->level == 1)
5323 wc->reada_slot = 0;
5324 return 0;
5325 skip:
5326 wc->refs[level - 1] = 0;
5327 wc->flags[level - 1] = 0;
5328 if (wc->stage == DROP_REFERENCE) {
5329 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
5330 parent = path->nodes[level]->start;
5331 } else {
5332 ASSERT(root->root_key.objectid ==
5333 btrfs_header_owner(path->nodes[level]));
5334 if (root->root_key.objectid !=
5335 btrfs_header_owner(path->nodes[level])) {
5336 btrfs_err(root->fs_info,
5337 "mismatched block owner");
5338 ret = -EIO;
5339 goto out_unlock;
5340 }
5341 parent = 0;
5342 }
5343
5344 /*
5345 * If we had a drop_progress we need to verify the refs are set
5346 * as expected. If we find our ref then we know that from here
5347 * on out everything should be correct, and we can clear the
5348 * ->restarted flag.
5349 */
5350 if (wc->restarted) {
5351 ret = check_ref_exists(trans, root, bytenr, parent,
5352 level - 1);
5353 if (ret < 0)
5354 goto out_unlock;
5355 if (ret == 0)
5356 goto no_delete;
5357 ret = 0;
5358 wc->restarted = 0;
5359 }
5360
5361 /*
5362 * Reloc tree doesn't contribute to qgroup numbers, and we have
5363 * already accounted them at merge time (replace_path),
5364 * thus we could skip expensive subtree trace here.
5365 */
5366 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
5367 need_account) {
5368 ret = btrfs_qgroup_trace_subtree(trans, next,
5369 generation, level - 1);
5370 if (ret) {
5371 btrfs_err_rl(fs_info,
5372 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5373 ret);
5374 }
5375 }
5376
5377 /*
5378 * We need to update the next key in our walk control so we can
5379 * update the drop_progress key accordingly. We don't care if
5380 * find_next_key doesn't find a key because that means we're at
5381 * the end and are going to clean up now.
5382 */
5383 wc->drop_level = level;
5384 find_next_key(path, level, &wc->drop_progress);
5385
5386 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
5387 fs_info->nodesize, parent);
5388 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
5389 0, false);
5390 ret = btrfs_free_extent(trans, &ref);
5391 if (ret)
5392 goto out_unlock;
5393 }
5394 no_delete:
5395 *lookup_info = 1;
5396 ret = 1;
5397
5398 out_unlock:
5399 btrfs_tree_unlock(next);
5400 free_extent_buffer(next);
5401
5402 return ret;
5403 }
5404
5405 /*
5406 * helper to process tree block while walking up the tree.
5407 *
5408 * when wc->stage == DROP_REFERENCE, this function drops
5409 * reference count on the block.
5410 *
5411 * when wc->stage == UPDATE_BACKREF, this function changes
5412 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5413 * to UPDATE_BACKREF previously while processing the block.
5414 *
5415 * NOTE: return value 1 means we should stop walking up.
5416 */
5417 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
5418 struct btrfs_root *root,
5419 struct btrfs_path *path,
5420 struct walk_control *wc)
5421 {
5422 struct btrfs_fs_info *fs_info = root->fs_info;
5423 int ret;
5424 int level = wc->level;
5425 struct extent_buffer *eb = path->nodes[level];
5426 u64 parent = 0;
5427
5428 if (wc->stage == UPDATE_BACKREF) {
5429 BUG_ON(wc->shared_level < level);
5430 if (level < wc->shared_level)
5431 goto out;
5432
5433 ret = find_next_key(path, level + 1, &wc->update_progress);
5434 if (ret > 0)
5435 wc->update_ref = 0;
5436
5437 wc->stage = DROP_REFERENCE;
5438 wc->shared_level = -1;
5439 path->slots[level] = 0;
5440
5441 /*
5442 * check reference count again if the block isn't locked.
5443 * we should start walking down the tree again if reference
5444 * count is one.
5445 */
5446 if (!path->locks[level]) {
5447 BUG_ON(level == 0);
5448 btrfs_tree_lock(eb);
5449 path->locks[level] = BTRFS_WRITE_LOCK;
5450
5451 ret = btrfs_lookup_extent_info(trans, fs_info,
5452 eb->start, level, 1,
5453 &wc->refs[level],
5454 &wc->flags[level]);
5455 if (ret < 0) {
5456 btrfs_tree_unlock_rw(eb, path->locks[level]);
5457 path->locks[level] = 0;
5458 return ret;
5459 }
5460 BUG_ON(wc->refs[level] == 0);
5461 if (wc->refs[level] == 1) {
5462 btrfs_tree_unlock_rw(eb, path->locks[level]);
5463 path->locks[level] = 0;
5464 return 1;
5465 }
5466 }
5467 }
5468
5469 /* wc->stage == DROP_REFERENCE */
5470 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5471
5472 if (wc->refs[level] == 1) {
5473 if (level == 0) {
5474 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5475 ret = btrfs_dec_ref(trans, root, eb, 1);
5476 else
5477 ret = btrfs_dec_ref(trans, root, eb, 0);
5478 BUG_ON(ret); /* -ENOMEM */
5479 if (is_fstree(root->root_key.objectid)) {
5480 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
5481 if (ret) {
5482 btrfs_err_rl(fs_info,
5483 "error %d accounting leaf items, quota is out of sync, rescan required",
5484 ret);
5485 }
5486 }
5487 }
5488 /* Make block locked assertion in btrfs_clear_buffer_dirty happy. */
5489 if (!path->locks[level]) {
5490 btrfs_tree_lock(eb);
5491 path->locks[level] = BTRFS_WRITE_LOCK;
5492 }
5493 btrfs_clear_buffer_dirty(trans, eb);
5494 }
5495
5496 if (eb == root->node) {
5497 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5498 parent = eb->start;
5499 else if (root->root_key.objectid != btrfs_header_owner(eb))
5500 goto owner_mismatch;
5501 } else {
5502 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
5503 parent = path->nodes[level + 1]->start;
5504 else if (root->root_key.objectid !=
5505 btrfs_header_owner(path->nodes[level + 1]))
5506 goto owner_mismatch;
5507 }
5508
5509 btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
5510 wc->refs[level] == 1);
5511 out:
5512 wc->refs[level] = 0;
5513 wc->flags[level] = 0;
5514 return 0;
5515
5516 owner_mismatch:
5517 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
5518 btrfs_header_owner(eb), root->root_key.objectid);
5519 return -EUCLEAN;
5520 }
5521
5522 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
5523 struct btrfs_root *root,
5524 struct btrfs_path *path,
5525 struct walk_control *wc)
5526 {
5527 int level = wc->level;
5528 int lookup_info = 1;
5529 int ret = 0;
5530
5531 while (level >= 0) {
5532 ret = walk_down_proc(trans, root, path, wc, lookup_info);
5533 if (ret)
5534 break;
5535
5536 if (level == 0)
5537 break;
5538
5539 if (path->slots[level] >=
5540 btrfs_header_nritems(path->nodes[level]))
5541 break;
5542
5543 ret = do_walk_down(trans, root, path, wc, &lookup_info);
5544 if (ret > 0) {
5545 path->slots[level]++;
5546 continue;
5547 } else if (ret < 0)
5548 break;
5549 level = wc->level;
5550 }
5551 return (ret == 1) ? 0 : ret;
5552 }
5553
5554 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
5555 struct btrfs_root *root,
5556 struct btrfs_path *path,
5557 struct walk_control *wc, int max_level)
5558 {
5559 int level = wc->level;
5560 int ret;
5561
5562 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
5563 while (level < max_level && path->nodes[level]) {
5564 wc->level = level;
5565 if (path->slots[level] + 1 <
5566 btrfs_header_nritems(path->nodes[level])) {
5567 path->slots[level]++;
5568 return 0;
5569 } else {
5570 ret = walk_up_proc(trans, root, path, wc);
5571 if (ret > 0)
5572 return 0;
5573 if (ret < 0)
5574 return ret;
5575
5576 if (path->locks[level]) {
5577 btrfs_tree_unlock_rw(path->nodes[level],
5578 path->locks[level]);
5579 path->locks[level] = 0;
5580 }
5581 free_extent_buffer(path->nodes[level]);
5582 path->nodes[level] = NULL;
5583 level++;
5584 }
5585 }
5586 return 1;
5587 }
5588
5589 /*
5590 * drop a subvolume tree.
5591 *
5592 * this function traverses the tree freeing any blocks that only
5593 * referenced by the tree.
5594 *
5595 * when a shared tree block is found. this function decreases its
5596 * reference count by one. if update_ref is true, this function
5597 * also make sure backrefs for the shared block and all lower level
5598 * blocks are properly updated.
5599 *
5600 * If called with for_reloc == 0, may exit early with -EAGAIN
5601 */
5602 int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
5603 {
5604 const bool is_reloc_root = (root->root_key.objectid ==
5605 BTRFS_TREE_RELOC_OBJECTID);
5606 struct btrfs_fs_info *fs_info = root->fs_info;
5607 struct btrfs_path *path;
5608 struct btrfs_trans_handle *trans;
5609 struct btrfs_root *tree_root = fs_info->tree_root;
5610 struct btrfs_root_item *root_item = &root->root_item;
5611 struct walk_control *wc;
5612 struct btrfs_key key;
5613 int err = 0;
5614 int ret;
5615 int level;
5616 bool root_dropped = false;
5617 bool unfinished_drop = false;
5618
5619 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
5620
5621 path = btrfs_alloc_path();
5622 if (!path) {
5623 err = -ENOMEM;
5624 goto out;
5625 }
5626
5627 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5628 if (!wc) {
5629 btrfs_free_path(path);
5630 err = -ENOMEM;
5631 goto out;
5632 }
5633
5634 /*
5635 * Use join to avoid potential EINTR from transaction start. See
5636 * wait_reserve_ticket and the whole reservation callchain.
5637 */
5638 if (for_reloc)
5639 trans = btrfs_join_transaction(tree_root);
5640 else
5641 trans = btrfs_start_transaction(tree_root, 0);
5642 if (IS_ERR(trans)) {
5643 err = PTR_ERR(trans);
5644 goto out_free;
5645 }
5646
5647 err = btrfs_run_delayed_items(trans);
5648 if (err)
5649 goto out_end_trans;
5650
5651 /*
5652 * This will help us catch people modifying the fs tree while we're
5653 * dropping it. It is unsafe to mess with the fs tree while it's being
5654 * dropped as we unlock the root node and parent nodes as we walk down
5655 * the tree, assuming nothing will change. If something does change
5656 * then we'll have stale information and drop references to blocks we've
5657 * already dropped.
5658 */
5659 set_bit(BTRFS_ROOT_DELETING, &root->state);
5660 unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
5661
5662 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
5663 level = btrfs_header_level(root->node);
5664 path->nodes[level] = btrfs_lock_root_node(root);
5665 path->slots[level] = 0;
5666 path->locks[level] = BTRFS_WRITE_LOCK;
5667 memset(&wc->update_progress, 0,
5668 sizeof(wc->update_progress));
5669 } else {
5670 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
5671 memcpy(&wc->update_progress, &key,
5672 sizeof(wc->update_progress));
5673
5674 level = btrfs_root_drop_level(root_item);
5675 BUG_ON(level == 0);
5676 path->lowest_level = level;
5677 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5678 path->lowest_level = 0;
5679 if (ret < 0) {
5680 err = ret;
5681 goto out_end_trans;
5682 }
5683 WARN_ON(ret > 0);
5684
5685 /*
5686 * unlock our path, this is safe because only this
5687 * function is allowed to delete this snapshot
5688 */
5689 btrfs_unlock_up_safe(path, 0);
5690
5691 level = btrfs_header_level(root->node);
5692 while (1) {
5693 btrfs_tree_lock(path->nodes[level]);
5694 path->locks[level] = BTRFS_WRITE_LOCK;
5695
5696 ret = btrfs_lookup_extent_info(trans, fs_info,
5697 path->nodes[level]->start,
5698 level, 1, &wc->refs[level],
5699 &wc->flags[level]);
5700 if (ret < 0) {
5701 err = ret;
5702 goto out_end_trans;
5703 }
5704 BUG_ON(wc->refs[level] == 0);
5705
5706 if (level == btrfs_root_drop_level(root_item))
5707 break;
5708
5709 btrfs_tree_unlock(path->nodes[level]);
5710 path->locks[level] = 0;
5711 WARN_ON(wc->refs[level] != 1);
5712 level--;
5713 }
5714 }
5715
5716 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
5717 wc->level = level;
5718 wc->shared_level = -1;
5719 wc->stage = DROP_REFERENCE;
5720 wc->update_ref = update_ref;
5721 wc->keep_locks = 0;
5722 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5723
5724 while (1) {
5725
5726 ret = walk_down_tree(trans, root, path, wc);
5727 if (ret < 0) {
5728 btrfs_abort_transaction(trans, ret);
5729 err = ret;
5730 break;
5731 }
5732
5733 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
5734 if (ret < 0) {
5735 btrfs_abort_transaction(trans, ret);
5736 err = ret;
5737 break;
5738 }
5739
5740 if (ret > 0) {
5741 BUG_ON(wc->stage != DROP_REFERENCE);
5742 break;
5743 }
5744
5745 if (wc->stage == DROP_REFERENCE) {
5746 wc->drop_level = wc->level;
5747 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
5748 &wc->drop_progress,
5749 path->slots[wc->drop_level]);
5750 }
5751 btrfs_cpu_key_to_disk(&root_item->drop_progress,
5752 &wc->drop_progress);
5753 btrfs_set_root_drop_level(root_item, wc->drop_level);
5754
5755 BUG_ON(wc->level == 0);
5756 if (btrfs_should_end_transaction(trans) ||
5757 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
5758 ret = btrfs_update_root(trans, tree_root,
5759 &root->root_key,
5760 root_item);
5761 if (ret) {
5762 btrfs_abort_transaction(trans, ret);
5763 err = ret;
5764 goto out_end_trans;
5765 }
5766
5767 if (!is_reloc_root)
5768 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5769
5770 btrfs_end_transaction_throttle(trans);
5771 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
5772 btrfs_debug(fs_info,
5773 "drop snapshot early exit");
5774 err = -EAGAIN;
5775 goto out_free;
5776 }
5777
5778 /*
5779 * Use join to avoid potential EINTR from transaction
5780 * start. See wait_reserve_ticket and the whole
5781 * reservation callchain.
5782 */
5783 if (for_reloc)
5784 trans = btrfs_join_transaction(tree_root);
5785 else
5786 trans = btrfs_start_transaction(tree_root, 0);
5787 if (IS_ERR(trans)) {
5788 err = PTR_ERR(trans);
5789 goto out_free;
5790 }
5791 }
5792 }
5793 btrfs_release_path(path);
5794 if (err)
5795 goto out_end_trans;
5796
5797 ret = btrfs_del_root(trans, &root->root_key);
5798 if (ret) {
5799 btrfs_abort_transaction(trans, ret);
5800 err = ret;
5801 goto out_end_trans;
5802 }
5803
5804 if (!is_reloc_root) {
5805 ret = btrfs_find_root(tree_root, &root->root_key, path,
5806 NULL, NULL);
5807 if (ret < 0) {
5808 btrfs_abort_transaction(trans, ret);
5809 err = ret;
5810 goto out_end_trans;
5811 } else if (ret > 0) {
5812 /* if we fail to delete the orphan item this time
5813 * around, it'll get picked up the next time.
5814 *
5815 * The most common failure here is just -ENOENT.
5816 */
5817 btrfs_del_orphan_item(trans, tree_root,
5818 root->root_key.objectid);
5819 }
5820 }
5821
5822 /*
5823 * This subvolume is going to be completely dropped, and won't be
5824 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5825 * commit transaction time. So free it here manually.
5826 */
5827 btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
5828 btrfs_qgroup_free_meta_all_pertrans(root);
5829
5830 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
5831 btrfs_add_dropped_root(trans, root);
5832 else
5833 btrfs_put_root(root);
5834 root_dropped = true;
5835 out_end_trans:
5836 if (!is_reloc_root)
5837 btrfs_set_last_root_drop_gen(fs_info, trans->transid);
5838
5839 btrfs_end_transaction_throttle(trans);
5840 out_free:
5841 kfree(wc);
5842 btrfs_free_path(path);
5843 out:
5844 /*
5845 * We were an unfinished drop root, check to see if there are any
5846 * pending, and if not clear and wake up any waiters.
5847 */
5848 if (!err && unfinished_drop)
5849 btrfs_maybe_wake_unfinished_drop(fs_info);
5850
5851 /*
5852 * So if we need to stop dropping the snapshot for whatever reason we
5853 * need to make sure to add it back to the dead root list so that we
5854 * keep trying to do the work later. This also cleans up roots if we
5855 * don't have it in the radix (like when we recover after a power fail
5856 * or unmount) so we don't leak memory.
5857 */
5858 if (!for_reloc && !root_dropped)
5859 btrfs_add_dead_root(root);
5860 return err;
5861 }
5862
5863 /*
5864 * drop subtree rooted at tree block 'node'.
5865 *
5866 * NOTE: this function will unlock and release tree block 'node'
5867 * only used by relocation code
5868 */
5869 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
5870 struct btrfs_root *root,
5871 struct extent_buffer *node,
5872 struct extent_buffer *parent)
5873 {
5874 struct btrfs_fs_info *fs_info = root->fs_info;
5875 struct btrfs_path *path;
5876 struct walk_control *wc;
5877 int level;
5878 int parent_level;
5879 int ret = 0;
5880 int wret;
5881
5882 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
5883
5884 path = btrfs_alloc_path();
5885 if (!path)
5886 return -ENOMEM;
5887
5888 wc = kzalloc(sizeof(*wc), GFP_NOFS);
5889 if (!wc) {
5890 btrfs_free_path(path);
5891 return -ENOMEM;
5892 }
5893
5894 btrfs_assert_tree_write_locked(parent);
5895 parent_level = btrfs_header_level(parent);
5896 atomic_inc(&parent->refs);
5897 path->nodes[parent_level] = parent;
5898 path->slots[parent_level] = btrfs_header_nritems(parent);
5899
5900 btrfs_assert_tree_write_locked(node);
5901 level = btrfs_header_level(node);
5902 path->nodes[level] = node;
5903 path->slots[level] = 0;
5904 path->locks[level] = BTRFS_WRITE_LOCK;
5905
5906 wc->refs[parent_level] = 1;
5907 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5908 wc->level = level;
5909 wc->shared_level = -1;
5910 wc->stage = DROP_REFERENCE;
5911 wc->update_ref = 0;
5912 wc->keep_locks = 1;
5913 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
5914
5915 while (1) {
5916 wret = walk_down_tree(trans, root, path, wc);
5917 if (wret < 0) {
5918 ret = wret;
5919 break;
5920 }
5921
5922 wret = walk_up_tree(trans, root, path, wc, parent_level);
5923 if (wret < 0)
5924 ret = wret;
5925 if (wret != 0)
5926 break;
5927 }
5928
5929 kfree(wc);
5930 btrfs_free_path(path);
5931 return ret;
5932 }
5933
5934 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
5935 u64 start, u64 end)
5936 {
5937 return unpin_extent_range(fs_info, start, end, false);
5938 }
5939
5940 /*
5941 * It used to be that old block groups would be left around forever.
5942 * Iterating over them would be enough to trim unused space. Since we
5943 * now automatically remove them, we also need to iterate over unallocated
5944 * space.
5945 *
5946 * We don't want a transaction for this since the discard may take a
5947 * substantial amount of time. We don't require that a transaction be
5948 * running, but we do need to take a running transaction into account
5949 * to ensure that we're not discarding chunks that were released or
5950 * allocated in the current transaction.
5951 *
5952 * Holding the chunks lock will prevent other threads from allocating
5953 * or releasing chunks, but it won't prevent a running transaction
5954 * from committing and releasing the memory that the pending chunks
5955 * list head uses. For that, we need to take a reference to the
5956 * transaction and hold the commit root sem. We only need to hold
5957 * it while performing the free space search since we have already
5958 * held back allocations.
5959 */
5960 static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
5961 {
5962 u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
5963 int ret;
5964
5965 *trimmed = 0;
5966
5967 /* Discard not supported = nothing to do. */
5968 if (!bdev_max_discard_sectors(device->bdev))
5969 return 0;
5970
5971 /* Not writable = nothing to do. */
5972 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
5973 return 0;
5974
5975 /* No free space = nothing to do. */
5976 if (device->total_bytes <= device->bytes_used)
5977 return 0;
5978
5979 ret = 0;
5980
5981 while (1) {
5982 struct btrfs_fs_info *fs_info = device->fs_info;
5983 u64 bytes;
5984
5985 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
5986 if (ret)
5987 break;
5988
5989 find_first_clear_extent_bit(&device->alloc_state, start,
5990 &start, &end,
5991 CHUNK_TRIMMED | CHUNK_ALLOCATED);
5992
5993 /* Check if there are any CHUNK_* bits left */
5994 if (start > device->total_bytes) {
5995 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5996 btrfs_warn_in_rcu(fs_info,
5997 "ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
5998 start, end - start + 1,
5999 btrfs_dev_name(device),
6000 device->total_bytes);
6001 mutex_unlock(&fs_info->chunk_mutex);
6002 ret = 0;
6003 break;
6004 }
6005
6006 /* Ensure we skip the reserved space on each device. */
6007 start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
6008
6009 /*
6010 * If find_first_clear_extent_bit find a range that spans the
6011 * end of the device it will set end to -1, in this case it's up
6012 * to the caller to trim the value to the size of the device.
6013 */
6014 end = min(end, device->total_bytes - 1);
6015
6016 len = end - start + 1;
6017
6018 /* We didn't find any extents */
6019 if (!len) {
6020 mutex_unlock(&fs_info->chunk_mutex);
6021 ret = 0;
6022 break;
6023 }
6024
6025 ret = btrfs_issue_discard(device->bdev, start, len,
6026 &bytes);
6027 if (!ret)
6028 set_extent_bit(&device->alloc_state, start,
6029 start + bytes - 1, CHUNK_TRIMMED, NULL);
6030 mutex_unlock(&fs_info->chunk_mutex);
6031
6032 if (ret)
6033 break;
6034
6035 start += len;
6036 *trimmed += bytes;
6037
6038 if (fatal_signal_pending(current)) {
6039 ret = -ERESTARTSYS;
6040 break;
6041 }
6042
6043 cond_resched();
6044 }
6045
6046 return ret;
6047 }
6048
6049 /*
6050 * Trim the whole filesystem by:
6051 * 1) trimming the free space in each block group
6052 * 2) trimming the unallocated space on each device
6053 *
6054 * This will also continue trimming even if a block group or device encounters
6055 * an error. The return value will be the last error, or 0 if nothing bad
6056 * happens.
6057 */
6058 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
6059 {
6060 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6061 struct btrfs_block_group *cache = NULL;
6062 struct btrfs_device *device;
6063 u64 group_trimmed;
6064 u64 range_end = U64_MAX;
6065 u64 start;
6066 u64 end;
6067 u64 trimmed = 0;
6068 u64 bg_failed = 0;
6069 u64 dev_failed = 0;
6070 int bg_ret = 0;
6071 int dev_ret = 0;
6072 int ret = 0;
6073
6074 if (range->start == U64_MAX)
6075 return -EINVAL;
6076
6077 /*
6078 * Check range overflow if range->len is set.
6079 * The default range->len is U64_MAX.
6080 */
6081 if (range->len != U64_MAX &&
6082 check_add_overflow(range->start, range->len, &range_end))
6083 return -EINVAL;
6084
6085 cache = btrfs_lookup_first_block_group(fs_info, range->start);
6086 for (; cache; cache = btrfs_next_block_group(cache)) {
6087 if (cache->start >= range_end) {
6088 btrfs_put_block_group(cache);
6089 break;
6090 }
6091
6092 start = max(range->start, cache->start);
6093 end = min(range_end, cache->start + cache->length);
6094
6095 if (end - start >= range->minlen) {
6096 if (!btrfs_block_group_done(cache)) {
6097 ret = btrfs_cache_block_group(cache, true);
6098 if (ret) {
6099 bg_failed++;
6100 bg_ret = ret;
6101 continue;
6102 }
6103 }
6104 ret = btrfs_trim_block_group(cache,
6105 &group_trimmed,
6106 start,
6107 end,
6108 range->minlen);
6109
6110 trimmed += group_trimmed;
6111 if (ret) {
6112 bg_failed++;
6113 bg_ret = ret;
6114 continue;
6115 }
6116 }
6117 }
6118
6119 if (bg_failed)
6120 btrfs_warn(fs_info,
6121 "failed to trim %llu block group(s), last error %d",
6122 bg_failed, bg_ret);
6123
6124 mutex_lock(&fs_devices->device_list_mutex);
6125 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6126 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
6127 continue;
6128
6129 ret = btrfs_trim_free_extents(device, &group_trimmed);
6130 if (ret) {
6131 dev_failed++;
6132 dev_ret = ret;
6133 break;
6134 }
6135
6136 trimmed += group_trimmed;
6137 }
6138 mutex_unlock(&fs_devices->device_list_mutex);
6139
6140 if (dev_failed)
6141 btrfs_warn(fs_info,
6142 "failed to trim %llu device(s), last error %d",
6143 dev_failed, dev_ret);
6144 range->len = trimmed;
6145 if (bg_ret)
6146 return bg_ret;
6147 return dev_ret;
6148 }