]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/extent_io.c
Merge tag 'for-5.8-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/linux.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent-io-tree.h"
18 #include "extent_map.h"
19 #include "ctree.h"
20 #include "btrfs_inode.h"
21 #include "volumes.h"
22 #include "check-integrity.h"
23 #include "locking.h"
24 #include "rcu-string.h"
25 #include "backref.h"
26 #include "disk-io.h"
27
28 static struct kmem_cache *extent_state_cache;
29 static struct kmem_cache *extent_buffer_cache;
30 static struct bio_set btrfs_bioset;
31
32 static inline bool extent_state_in_tree(const struct extent_state *state)
33 {
34 return !RB_EMPTY_NODE(&state->rb_node);
35 }
36
37 #ifdef CONFIG_BTRFS_DEBUG
38 static LIST_HEAD(states);
39 static DEFINE_SPINLOCK(leak_lock);
40
41 static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(lock, flags);
50 }
51
52 static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(lock, flags);
60 }
61
62 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
63 {
64 struct extent_buffer *eb;
65 unsigned long flags;
66
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
86 }
87
88 static inline void btrfs_extent_state_leak_debug_check(void)
89 {
90 struct extent_state *state;
91
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
97 refcount_read(&state->refs));
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
101 }
102
103 #define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
105 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
106 struct extent_io_tree *tree, u64 start, u64 end)
107 {
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
120 }
121 #else
122 #define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123 #define btrfs_leak_debug_del(lock, entry) do {} while (0)
124 #define btrfs_extent_state_leak_debug_check() do {} while (0)
125 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
126 #endif
127
128 struct tree_entry {
129 u64 start;
130 u64 end;
131 struct rb_node rb_node;
132 };
133
134 struct extent_page_data {
135 struct bio *bio;
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
139 unsigned int extent_locked:1;
140
141 /* tells the submit_bio code to use REQ_SYNC */
142 unsigned int sync_io:1;
143 };
144
145 static int add_extent_changeset(struct extent_state *state, unsigned bits,
146 struct extent_changeset *changeset,
147 int set)
148 {
149 int ret;
150
151 if (!changeset)
152 return 0;
153 if (set && (state->state & bits) == bits)
154 return 0;
155 if (!set && (state->state & bits) == 0)
156 return 0;
157 changeset->bytes_changed += state->end - state->start + 1;
158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
159 GFP_ATOMIC);
160 return ret;
161 }
162
163 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165 {
166 blk_status_t ret = 0;
167 struct extent_io_tree *tree = bio->bi_private;
168
169 bio->bi_private = NULL;
170
171 if (tree->ops)
172 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
173 mirror_num, bio_flags);
174 else
175 btrfsic_submit_bio(bio);
176
177 return blk_status_to_errno(ret);
178 }
179
180 /* Cleanup unsubmitted bios */
181 static void end_write_bio(struct extent_page_data *epd, int ret)
182 {
183 if (epd->bio) {
184 epd->bio->bi_status = errno_to_blk_status(ret);
185 bio_endio(epd->bio);
186 epd->bio = NULL;
187 }
188 }
189
190 /*
191 * Submit bio from extent page data via submit_one_bio
192 *
193 * Return 0 if everything is OK.
194 * Return <0 for error.
195 */
196 static int __must_check flush_write_bio(struct extent_page_data *epd)
197 {
198 int ret = 0;
199
200 if (epd->bio) {
201 ret = submit_one_bio(epd->bio, 0, 0);
202 /*
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
208 */
209 epd->bio = NULL;
210 }
211 return ret;
212 }
213
214 int __init extent_state_cache_init(void)
215 {
216 extent_state_cache = kmem_cache_create("btrfs_extent_state",
217 sizeof(struct extent_state), 0,
218 SLAB_MEM_SPREAD, NULL);
219 if (!extent_state_cache)
220 return -ENOMEM;
221 return 0;
222 }
223
224 int __init extent_io_init(void)
225 {
226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
227 sizeof(struct extent_buffer), 0,
228 SLAB_MEM_SPREAD, NULL);
229 if (!extent_buffer_cache)
230 return -ENOMEM;
231
232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 offsetof(struct btrfs_io_bio, bio),
234 BIOSET_NEED_BVECS))
235 goto free_buffer_cache;
236
237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
238 goto free_bioset;
239
240 return 0;
241
242 free_bioset:
243 bioset_exit(&btrfs_bioset);
244
245 free_buffer_cache:
246 kmem_cache_destroy(extent_buffer_cache);
247 extent_buffer_cache = NULL;
248 return -ENOMEM;
249 }
250
251 void __cold extent_state_cache_exit(void)
252 {
253 btrfs_extent_state_leak_debug_check();
254 kmem_cache_destroy(extent_state_cache);
255 }
256
257 void __cold extent_io_exit(void)
258 {
259 /*
260 * Make sure all delayed rcu free are flushed before we
261 * destroy caches.
262 */
263 rcu_barrier();
264 kmem_cache_destroy(extent_buffer_cache);
265 bioset_exit(&btrfs_bioset);
266 }
267
268 /*
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
274 */
275 static struct lock_class_key file_extent_tree_class;
276
277 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
278 struct extent_io_tree *tree, unsigned int owner,
279 void *private_data)
280 {
281 tree->fs_info = fs_info;
282 tree->state = RB_ROOT;
283 tree->ops = NULL;
284 tree->dirty_bytes = 0;
285 spin_lock_init(&tree->lock);
286 tree->private_data = private_data;
287 tree->owner = owner;
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
290 }
291
292 void extent_io_tree_release(struct extent_io_tree *tree)
293 {
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319 }
320
321 static struct extent_state *alloc_extent_state(gfp_t mask)
322 {
323 struct extent_state *state;
324
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
330 state = kmem_cache_alloc(extent_state_cache, mask);
331 if (!state)
332 return state;
333 state->state = 0;
334 state->failrec = NULL;
335 RB_CLEAR_NODE(&state->rb_node);
336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
337 refcount_set(&state->refs, 1);
338 init_waitqueue_head(&state->wq);
339 trace_alloc_extent_state(state, mask, _RET_IP_);
340 return state;
341 }
342
343 void free_extent_state(struct extent_state *state)
344 {
345 if (!state)
346 return;
347 if (refcount_dec_and_test(&state->refs)) {
348 WARN_ON(extent_state_in_tree(state));
349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
350 trace_free_extent_state(state, _RET_IP_);
351 kmem_cache_free(extent_state_cache, state);
352 }
353 }
354
355 static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
361 {
362 struct rb_node **p;
363 struct rb_node *parent = NULL;
364 struct tree_entry *entry;
365
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
372 p = search_start ? &search_start : &root->rb_node;
373 while (*p) {
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
385 do_insert:
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389 }
390
391 /**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
409 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
410 struct rb_node **next_ret,
411 struct rb_node **prev_ret,
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
414 {
415 struct rb_root *root = &tree->state;
416 struct rb_node **n = &root->rb_node;
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
425 prev_entry = entry;
426
427 if (offset < entry->start)
428 n = &(*n)->rb_left;
429 else if (offset > entry->end)
430 n = &(*n)->rb_right;
431 else
432 return *n;
433 }
434
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
440 if (next_ret) {
441 orig_prev = prev;
442 while (prev && offset > prev_entry->end) {
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
446 *next_ret = prev;
447 prev = orig_prev;
448 }
449
450 if (prev_ret) {
451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
452 while (prev && offset < prev_entry->start) {
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
456 *prev_ret = prev;
457 }
458 return NULL;
459 }
460
461 static inline struct rb_node *
462 tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
466 {
467 struct rb_node *next= NULL;
468 struct rb_node *ret;
469
470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
471 if (!ret)
472 return next;
473 return ret;
474 }
475
476 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478 {
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480 }
481
482 /*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
491 static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
493 {
494 struct extent_state *other;
495 struct rb_node *other_node;
496
497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
498 return;
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
509 state->start = other->start;
510 rb_erase(&other->rb_node, &tree->state);
511 RB_CLEAR_NODE(&other->rb_node);
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
524 state->end = other->end;
525 rb_erase(&other->rb_node, &tree->state);
526 RB_CLEAR_NODE(&other->rb_node);
527 free_extent_state(other);
528 }
529 }
530 }
531
532 static void set_state_bits(struct extent_io_tree *tree,
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
535
536 /*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546 static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
548 struct rb_node ***p,
549 struct rb_node **parent,
550 unsigned *bits, struct extent_changeset *changeset)
551 {
552 struct rb_node *node;
553
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
559 state->start = start;
560 state->end = end;
561
562 set_state_bits(tree, state, bits, changeset);
563
564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
570 found->start, found->end, start, end);
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575 }
576
577 /*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593 {
594 struct rb_node *node;
595
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
598
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
606 if (node) {
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611 }
612
613 static struct extent_state *next_state(struct extent_state *state)
614 {
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620 }
621
622 /*
623 * utility function to clear some bits in an extent state struct.
624 * it will optionally wake up anyone waiting on this state (wake == 1).
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
629 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
633 {
634 struct extent_state *next;
635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
636 int ret;
637
638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
649 state->state &= ~bits_to_clear;
650 if (wake)
651 wake_up(&state->wq);
652 if (state->state == 0) {
653 next = next_state(state);
654 if (extent_state_in_tree(state)) {
655 rb_erase(&state->rb_node, &tree->state);
656 RB_CLEAR_NODE(&state->rb_node);
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
663 next = next_state(state);
664 }
665 return next;
666 }
667
668 static struct extent_state *
669 alloc_extent_state_atomic(struct extent_state *prealloc)
670 {
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675 }
676
677 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
678 {
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
683 }
684
685 /*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
695 * This takes the tree lock, and returns 0 on success and < 0 on error.
696 */
697 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
701 {
702 struct extent_state *state;
703 struct extent_state *cached;
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
706 u64 last_end;
707 int err;
708 int clear = 0;
709
710 btrfs_debug_check_extent_io_range(tree, start, end);
711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
712
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
718
719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
720 clear = 1;
721 again:
722 if (!prealloc && gfpflags_allow_blocking(mask)) {
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
730 prealloc = alloc_extent_state(mask);
731 }
732
733 spin_lock(&tree->lock);
734 if (cached_state) {
735 cached = *cached_state;
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
744 if (clear)
745 refcount_dec(&cached->refs);
746 state = cached;
747 goto hit_next;
748 }
749 if (clear)
750 free_extent_state(cached);
751 }
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
756 node = tree_search(tree, start);
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
760 hit_next:
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
764 last_end = state->end;
765
766 /* the state doesn't have the wanted bits, go ahead */
767 if (!(state->state & bits)) {
768 state = next_state(state);
769 goto next;
770 }
771
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
791 err = split_state(tree, state, prealloc, start);
792 if (err)
793 extent_io_tree_panic(tree, err);
794
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
801 goto next;
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
814 err = split_state(tree, state, prealloc, end + 1);
815 if (err)
816 extent_io_tree_panic(tree, err);
817
818 if (wake)
819 wake_up(&state->wq);
820
821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
822
823 prealloc = NULL;
824 goto out;
825 }
826
827 state = clear_state_bit(tree, state, &bits, wake, changeset);
828 next:
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
832 if (start <= end && state && !need_resched())
833 goto hit_next;
834
835 search_again:
836 if (start > end)
837 goto out;
838 spin_unlock(&tree->lock);
839 if (gfpflags_allow_blocking(mask))
840 cond_resched();
841 goto again;
842
843 out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
850 }
851
852 static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
854 __releases(tree->lock)
855 __acquires(tree->lock)
856 {
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
859 spin_unlock(&tree->lock);
860 schedule();
861 spin_lock(&tree->lock);
862 finish_wait(&state->wq, &wait);
863 }
864
865 /*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
870 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
872 {
873 struct extent_state *state;
874 struct rb_node *node;
875
876 btrfs_debug_check_extent_io_range(tree, start, end);
877
878 spin_lock(&tree->lock);
879 again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
885 node = tree_search(tree, start);
886 process_node:
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
897 refcount_inc(&state->refs);
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
911 }
912 out:
913 spin_unlock(&tree->lock);
914 }
915
916 static void set_state_bits(struct extent_io_tree *tree,
917 struct extent_state *state,
918 unsigned *bits, struct extent_changeset *changeset)
919 {
920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
921 int ret;
922
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
932 state->state |= bits_to_set;
933 }
934
935 static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
937 unsigned flags)
938 {
939 if (cached_ptr && !(*cached_ptr)) {
940 if (!flags || (state->state & flags)) {
941 *cached_ptr = state;
942 refcount_inc(&state->refs);
943 }
944 }
945 }
946
947 static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949 {
950 return cache_state_if_flags(state, cached_ptr,
951 EXTENT_LOCKED | EXTENT_BOUNDARY);
952 }
953
954 /*
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
957 *
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
961 *
962 * [start, end] is inclusive This takes the tree lock.
963 */
964
965 static int __must_check
966 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
967 unsigned bits, unsigned exclusive_bits,
968 u64 *failed_start, struct extent_state **cached_state,
969 gfp_t mask, struct extent_changeset *changeset)
970 {
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
974 struct rb_node **p;
975 struct rb_node *parent;
976 int err = 0;
977 u64 last_start;
978 u64 last_end;
979
980 btrfs_debug_check_extent_io_range(tree, start, end);
981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
982
983 again:
984 if (!prealloc && gfpflags_allow_blocking(mask)) {
985 /*
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
991 */
992 prealloc = alloc_extent_state(mask);
993 }
994
995 spin_lock(&tree->lock);
996 if (cached_state && *cached_state) {
997 state = *cached_state;
998 if (state->start <= start && state->end > start &&
999 extent_state_in_tree(state)) {
1000 node = &state->rb_node;
1001 goto hit_next;
1002 }
1003 }
1004 /*
1005 * this search will find all the extents that end after
1006 * our range starts.
1007 */
1008 node = tree_search_for_insert(tree, start, &p, &parent);
1009 if (!node) {
1010 prealloc = alloc_extent_state_atomic(prealloc);
1011 BUG_ON(!prealloc);
1012 err = insert_state(tree, prealloc, start, end,
1013 &p, &parent, &bits, changeset);
1014 if (err)
1015 extent_io_tree_panic(tree, err);
1016
1017 cache_state(prealloc, cached_state);
1018 prealloc = NULL;
1019 goto out;
1020 }
1021 state = rb_entry(node, struct extent_state, rb_node);
1022 hit_next:
1023 last_start = state->start;
1024 last_end = state->end;
1025
1026 /*
1027 * | ---- desired range ---- |
1028 * | state |
1029 *
1030 * Just lock what we found and keep going
1031 */
1032 if (state->start == start && state->end <= end) {
1033 if (state->state & exclusive_bits) {
1034 *failed_start = state->start;
1035 err = -EEXIST;
1036 goto out;
1037 }
1038
1039 set_state_bits(tree, state, &bits, changeset);
1040 cache_state(state, cached_state);
1041 merge_state(tree, state);
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
1045 state = next_state(state);
1046 if (start < end && state && state->start == start &&
1047 !need_resched())
1048 goto hit_next;
1049 goto search_again;
1050 }
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * or
1056 * | ------------- state -------------- |
1057 *
1058 * We need to split the extent we found, and may flip bits on
1059 * second half.
1060 *
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1064 *
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1067 */
1068 if (state->start < start) {
1069 if (state->state & exclusive_bits) {
1070 *failed_start = start;
1071 err = -EEXIST;
1072 goto out;
1073 }
1074
1075 /*
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1078 */
1079 if ((state->state & bits) == bits) {
1080 start = state->end + 1;
1081 cache_state(state, cached_state);
1082 goto search_again;
1083 }
1084
1085 prealloc = alloc_extent_state_atomic(prealloc);
1086 BUG_ON(!prealloc);
1087 err = split_state(tree, state, prealloc, start);
1088 if (err)
1089 extent_io_tree_panic(tree, err);
1090
1091 prealloc = NULL;
1092 if (err)
1093 goto out;
1094 if (state->end <= end) {
1095 set_state_bits(tree, state, &bits, changeset);
1096 cache_state(state, cached_state);
1097 merge_state(tree, state);
1098 if (last_end == (u64)-1)
1099 goto out;
1100 start = last_end + 1;
1101 state = next_state(state);
1102 if (start < end && state && state->start == start &&
1103 !need_resched())
1104 goto hit_next;
1105 }
1106 goto search_again;
1107 }
1108 /*
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1111 *
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1114 */
1115 if (state->start > start) {
1116 u64 this_end;
1117 if (end < last_start)
1118 this_end = end;
1119 else
1120 this_end = last_start - 1;
1121
1122 prealloc = alloc_extent_state_atomic(prealloc);
1123 BUG_ON(!prealloc);
1124
1125 /*
1126 * Avoid to free 'prealloc' if it can be merged with
1127 * the later extent.
1128 */
1129 err = insert_state(tree, prealloc, start, this_end,
1130 NULL, NULL, &bits, changeset);
1131 if (err)
1132 extent_io_tree_panic(tree, err);
1133
1134 cache_state(prealloc, cached_state);
1135 prealloc = NULL;
1136 start = this_end + 1;
1137 goto search_again;
1138 }
1139 /*
1140 * | ---- desired range ---- |
1141 * | state |
1142 * We need to split the extent, and set the bit
1143 * on the first half
1144 */
1145 if (state->start <= end && state->end > end) {
1146 if (state->state & exclusive_bits) {
1147 *failed_start = start;
1148 err = -EEXIST;
1149 goto out;
1150 }
1151
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 BUG_ON(!prealloc);
1154 err = split_state(tree, state, prealloc, end + 1);
1155 if (err)
1156 extent_io_tree_panic(tree, err);
1157
1158 set_state_bits(tree, prealloc, &bits, changeset);
1159 cache_state(prealloc, cached_state);
1160 merge_state(tree, prealloc);
1161 prealloc = NULL;
1162 goto out;
1163 }
1164
1165 search_again:
1166 if (start > end)
1167 goto out;
1168 spin_unlock(&tree->lock);
1169 if (gfpflags_allow_blocking(mask))
1170 cond_resched();
1171 goto again;
1172
1173 out:
1174 spin_unlock(&tree->lock);
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
1180 }
1181
1182 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1183 unsigned bits, u64 * failed_start,
1184 struct extent_state **cached_state, gfp_t mask)
1185 {
1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1187 cached_state, mask, NULL);
1188 }
1189
1190
1191 /**
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
1199 * @cached_state: state that we're going to cache
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
1206 *
1207 * All allocations are done with GFP_NOFS.
1208 */
1209 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1210 unsigned bits, unsigned clear_bits,
1211 struct extent_state **cached_state)
1212 {
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
1216 struct rb_node **p;
1217 struct rb_node *parent;
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
1221 bool first_iteration = true;
1222
1223 btrfs_debug_check_extent_io_range(tree, start, end);
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
1226
1227 again:
1228 if (!prealloc) {
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
1236 prealloc = alloc_extent_state(GFP_NOFS);
1237 if (!prealloc && !first_iteration)
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
1245 extent_state_in_tree(state)) {
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
1255 node = tree_search_for_insert(tree, start, &p, &parent);
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
1262 err = insert_state(tree, prealloc, start, end,
1263 &p, &parent, &bits, NULL);
1264 if (err)
1265 extent_io_tree_panic(tree, err);
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271 hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
1282 set_state_bits(tree, state, &bits, NULL);
1283 cache_state(state, cached_state);
1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1285 if (last_end == (u64)-1)
1286 goto out;
1287 start = last_end + 1;
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
1316 err = split_state(tree, state, prealloc, start);
1317 if (err)
1318 extent_io_tree_panic(tree, err);
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
1323 set_state_bits(tree, state, &bits, NULL);
1324 cache_state(state, cached_state);
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
1361 NULL, NULL, &bits, NULL);
1362 if (err)
1363 extent_io_tree_panic(tree, err);
1364 cache_state(prealloc, cached_state);
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
1381
1382 err = split_state(tree, state, prealloc, end + 1);
1383 if (err)
1384 extent_io_tree_panic(tree, err);
1385
1386 set_state_bits(tree, prealloc, &bits, NULL);
1387 cache_state(prealloc, cached_state);
1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
1393 search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
1397 cond_resched();
1398 first_iteration = false;
1399 goto again;
1400
1401 out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
1407 }
1408
1409 /* wrappers around set/clear extent bit */
1410 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1411 unsigned bits, struct extent_changeset *changeset)
1412 {
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1422 changeset);
1423 }
1424
1425 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 unsigned bits)
1427 {
1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
1430 }
1431
1432 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 unsigned bits, int wake, int delete,
1434 struct extent_state **cached)
1435 {
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1437 cached, GFP_NOFS, NULL);
1438 }
1439
1440 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1441 unsigned bits, struct extent_changeset *changeset)
1442 {
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1450 changeset);
1451 }
1452
1453 /*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1457 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1458 struct extent_state **cached_state)
1459 {
1460 int err;
1461 u64 failed_start;
1462
1463 while (1) {
1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1465 EXTENT_LOCKED, &failed_start,
1466 cached_state, GFP_NOFS, NULL);
1467 if (err == -EEXIST) {
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
1470 } else
1471 break;
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475 }
1476
1477 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1478 {
1479 int err;
1480 u64 failed_start;
1481
1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1483 &failed_start, NULL, GFP_NOFS, NULL);
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
1487 EXTENT_LOCKED, 1, 0, NULL);
1488 return 0;
1489 }
1490 return 1;
1491 }
1492
1493 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1494 {
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
1503 put_page(page);
1504 index++;
1505 }
1506 }
1507
1508 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1509 {
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1517 __set_page_dirty_nobuffers(page);
1518 account_page_redirty(page);
1519 put_page(page);
1520 index++;
1521 }
1522 }
1523
1524 /* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
1528 static struct extent_state *
1529 find_first_extent_bit_state(struct extent_io_tree *tree,
1530 u64 start, unsigned bits)
1531 {
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
1540 if (!node)
1541 goto out;
1542
1543 while (1) {
1544 state = rb_entry(node, struct extent_state, rb_node);
1545 if (state->end >= start && (state->state & bits))
1546 return state;
1547
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552 out:
1553 return NULL;
1554 }
1555
1556 /*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
1561 * If nothing was found, 1 is returned. If found something, return 0.
1562 */
1563 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1564 u64 *start_ret, u64 *end_ret, unsigned bits,
1565 struct extent_state **cached_state)
1566 {
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
1574 while ((state = next_state(state)) != NULL) {
1575 if (state->state & bits)
1576 goto got_it;
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
1586 state = find_first_extent_bit_state(tree, start, bits);
1587 got_it:
1588 if (state) {
1589 cache_state_if_flags(state, cached_state, 0);
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
1594 out:
1595 spin_unlock(&tree->lock);
1596 return ret;
1597 }
1598
1599 /**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 u64 *start_ret, u64 *end_ret, unsigned bits)
1616 {
1617 struct extent_state *state;
1618 int ret = 1;
1619
1620 spin_lock(&tree->lock);
1621 state = find_first_extent_bit_state(tree, start, bits);
1622 if (state) {
1623 *start_ret = state->start;
1624 *end_ret = state->end;
1625 while ((state = next_state(state)) != NULL) {
1626 if (state->start > (*end_ret + 1))
1627 break;
1628 *end_ret = state->end;
1629 }
1630 ret = 0;
1631 }
1632 spin_unlock(&tree->lock);
1633 return ret;
1634 }
1635
1636 /**
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 u64 *start_ret, u64 *end_ret, unsigned bits)
1653 {
1654 struct extent_state *state;
1655 struct rb_node *node, *prev = NULL, *next;
1656
1657 spin_lock(&tree->lock);
1658
1659 /* Find first extent with bits cleared */
1660 while (1) {
1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1662 if (!node && !next && !prev) {
1663 /*
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1666 */
1667 *start_ret = 0;
1668 *end_ret = -1;
1669 goto out;
1670 } else if (!node && !next) {
1671 /*
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1674 */
1675 state = rb_entry(prev, struct extent_state, rb_node);
1676 *start_ret = state->end + 1;
1677 *end_ret = -1;
1678 goto out;
1679 } else if (!node) {
1680 node = next;
1681 }
1682 /*
1683 * At this point 'node' either contains 'start' or start is
1684 * before 'node'
1685 */
1686 state = rb_entry(node, struct extent_state, rb_node);
1687
1688 if (in_range(start, state->start, state->end - state->start + 1)) {
1689 if (state->state & bits) {
1690 /*
1691 * |--range with bits sets--|
1692 * |
1693 * start
1694 */
1695 start = state->end + 1;
1696 } else {
1697 /*
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1701 *
1702 * |--range with bits cleared----|
1703 * |
1704 * start
1705 */
1706 *start_ret = state->start;
1707 break;
1708 }
1709 } else {
1710 /*
1711 * |---prev range---|---hole/unset---|---node range---|
1712 * |
1713 * start
1714 *
1715 * or
1716 *
1717 * |---hole/unset--||--first node--|
1718 * 0 |
1719 * start
1720 */
1721 if (prev) {
1722 state = rb_entry(prev, struct extent_state,
1723 rb_node);
1724 *start_ret = state->end + 1;
1725 } else {
1726 *start_ret = 0;
1727 }
1728 break;
1729 }
1730 }
1731
1732 /*
1733 * Find the longest stretch from start until an entry which has the
1734 * bits set
1735 */
1736 while (1) {
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->end >= start && !(state->state & bits)) {
1739 *end_ret = state->end;
1740 } else {
1741 *end_ret = state->start - 1;
1742 break;
1743 }
1744
1745 node = rb_next(node);
1746 if (!node)
1747 break;
1748 }
1749 out:
1750 spin_unlock(&tree->lock);
1751 }
1752
1753 /*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1756 *
1757 * true is returned if we find something, false if nothing was in the tree
1758 */
1759 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 u64 *end, u64 max_bytes,
1761 struct extent_state **cached_state)
1762 {
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 bool found = false;
1767 u64 total_bytes = 0;
1768
1769 spin_lock(&tree->lock);
1770
1771 /*
1772 * this search will find all the extents that end after
1773 * our range starts.
1774 */
1775 node = tree_search(tree, cur_start);
1776 if (!node) {
1777 *end = (u64)-1;
1778 goto out;
1779 }
1780
1781 while (1) {
1782 state = rb_entry(node, struct extent_state, rb_node);
1783 if (found && (state->start != cur_start ||
1784 (state->state & EXTENT_BOUNDARY))) {
1785 goto out;
1786 }
1787 if (!(state->state & EXTENT_DELALLOC)) {
1788 if (!found)
1789 *end = state->end;
1790 goto out;
1791 }
1792 if (!found) {
1793 *start = state->start;
1794 *cached_state = state;
1795 refcount_inc(&state->refs);
1796 }
1797 found = true;
1798 *end = state->end;
1799 cur_start = state->end + 1;
1800 node = rb_next(node);
1801 total_bytes += state->end - state->start + 1;
1802 if (total_bytes >= max_bytes)
1803 break;
1804 if (!node)
1805 break;
1806 }
1807 out:
1808 spin_unlock(&tree->lock);
1809 return found;
1810 }
1811
1812 static int __process_pages_contig(struct address_space *mapping,
1813 struct page *locked_page,
1814 pgoff_t start_index, pgoff_t end_index,
1815 unsigned long page_ops, pgoff_t *index_ret);
1816
1817 static noinline void __unlock_for_delalloc(struct inode *inode,
1818 struct page *locked_page,
1819 u64 start, u64 end)
1820 {
1821 unsigned long index = start >> PAGE_SHIFT;
1822 unsigned long end_index = end >> PAGE_SHIFT;
1823
1824 ASSERT(locked_page);
1825 if (index == locked_page->index && end_index == index)
1826 return;
1827
1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 PAGE_UNLOCK, NULL);
1830 }
1831
1832 static noinline int lock_delalloc_pages(struct inode *inode,
1833 struct page *locked_page,
1834 u64 delalloc_start,
1835 u64 delalloc_end)
1836 {
1837 unsigned long index = delalloc_start >> PAGE_SHIFT;
1838 unsigned long index_ret = index;
1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1840 int ret;
1841
1842 ASSERT(locked_page);
1843 if (index == locked_page->index && index == end_index)
1844 return 0;
1845
1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 end_index, PAGE_LOCK, &index_ret);
1848 if (ret == -EAGAIN)
1849 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 (u64)index_ret << PAGE_SHIFT);
1851 return ret;
1852 }
1853
1854 /*
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
1857 *
1858 * Return: true if we find something
1859 * false if nothing was in the tree
1860 */
1861 EXPORT_FOR_TESTS
1862 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1863 struct page *locked_page, u64 *start,
1864 u64 *end)
1865 {
1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
1868 u64 delalloc_start;
1869 u64 delalloc_end;
1870 bool found;
1871 struct extent_state *cached_state = NULL;
1872 int ret;
1873 int loops = 0;
1874
1875 again:
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start = *start;
1878 delalloc_end = 0;
1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 max_bytes, &cached_state);
1881 if (!found || delalloc_end <= *start) {
1882 *start = delalloc_start;
1883 *end = delalloc_end;
1884 free_extent_state(cached_state);
1885 return false;
1886 }
1887
1888 /*
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1891 * locked_page
1892 */
1893 if (delalloc_start < *start)
1894 delalloc_start = *start;
1895
1896 /*
1897 * make sure to limit the number of pages we try to lock down
1898 */
1899 if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 delalloc_end = delalloc_start + max_bytes - 1;
1901
1902 /* step two, lock all the pages after the page that has start */
1903 ret = lock_delalloc_pages(inode, locked_page,
1904 delalloc_start, delalloc_end);
1905 ASSERT(!ret || ret == -EAGAIN);
1906 if (ret == -EAGAIN) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1909 */
1910 free_extent_state(cached_state);
1911 cached_state = NULL;
1912 if (!loops) {
1913 max_bytes = PAGE_SIZE;
1914 loops = 1;
1915 goto again;
1916 } else {
1917 found = false;
1918 goto out_failed;
1919 }
1920 }
1921
1922 /* step three, lock the state bits for the whole range */
1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1924
1925 /* then test to make sure it is all still delalloc */
1926 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1927 EXTENT_DELALLOC, 1, cached_state);
1928 if (!ret) {
1929 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1930 &cached_state);
1931 __unlock_for_delalloc(inode, locked_page,
1932 delalloc_start, delalloc_end);
1933 cond_resched();
1934 goto again;
1935 }
1936 free_extent_state(cached_state);
1937 *start = delalloc_start;
1938 *end = delalloc_end;
1939 out_failed:
1940 return found;
1941 }
1942
1943 static int __process_pages_contig(struct address_space *mapping,
1944 struct page *locked_page,
1945 pgoff_t start_index, pgoff_t end_index,
1946 unsigned long page_ops, pgoff_t *index_ret)
1947 {
1948 unsigned long nr_pages = end_index - start_index + 1;
1949 unsigned long pages_locked = 0;
1950 pgoff_t index = start_index;
1951 struct page *pages[16];
1952 unsigned ret;
1953 int err = 0;
1954 int i;
1955
1956 if (page_ops & PAGE_LOCK) {
1957 ASSERT(page_ops == PAGE_LOCK);
1958 ASSERT(index_ret && *index_ret == start_index);
1959 }
1960
1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1962 mapping_set_error(mapping, -EIO);
1963
1964 while (nr_pages > 0) {
1965 ret = find_get_pages_contig(mapping, index,
1966 min_t(unsigned long,
1967 nr_pages, ARRAY_SIZE(pages)), pages);
1968 if (ret == 0) {
1969 /*
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1972 */
1973 ASSERT(page_ops & PAGE_LOCK);
1974 err = -EAGAIN;
1975 goto out;
1976 }
1977
1978 for (i = 0; i < ret; i++) {
1979 if (page_ops & PAGE_SET_PRIVATE2)
1980 SetPagePrivate2(pages[i]);
1981
1982 if (locked_page && pages[i] == locked_page) {
1983 put_page(pages[i]);
1984 pages_locked++;
1985 continue;
1986 }
1987 if (page_ops & PAGE_CLEAR_DIRTY)
1988 clear_page_dirty_for_io(pages[i]);
1989 if (page_ops & PAGE_SET_WRITEBACK)
1990 set_page_writeback(pages[i]);
1991 if (page_ops & PAGE_SET_ERROR)
1992 SetPageError(pages[i]);
1993 if (page_ops & PAGE_END_WRITEBACK)
1994 end_page_writeback(pages[i]);
1995 if (page_ops & PAGE_UNLOCK)
1996 unlock_page(pages[i]);
1997 if (page_ops & PAGE_LOCK) {
1998 lock_page(pages[i]);
1999 if (!PageDirty(pages[i]) ||
2000 pages[i]->mapping != mapping) {
2001 unlock_page(pages[i]);
2002 put_page(pages[i]);
2003 err = -EAGAIN;
2004 goto out;
2005 }
2006 }
2007 put_page(pages[i]);
2008 pages_locked++;
2009 }
2010 nr_pages -= ret;
2011 index += ret;
2012 cond_resched();
2013 }
2014 out:
2015 if (err && index_ret)
2016 *index_ret = start_index + pages_locked - 1;
2017 return err;
2018 }
2019
2020 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
2021 struct page *locked_page,
2022 unsigned clear_bits,
2023 unsigned long page_ops)
2024 {
2025 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
2026 NULL);
2027
2028 __process_pages_contig(inode->i_mapping, locked_page,
2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
2030 page_ops, NULL);
2031 }
2032
2033 /*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2037 */
2038 u64 count_range_bits(struct extent_io_tree *tree,
2039 u64 *start, u64 search_end, u64 max_bytes,
2040 unsigned bits, int contig)
2041 {
2042 struct rb_node *node;
2043 struct extent_state *state;
2044 u64 cur_start = *start;
2045 u64 total_bytes = 0;
2046 u64 last = 0;
2047 int found = 0;
2048
2049 if (WARN_ON(search_end <= cur_start))
2050 return 0;
2051
2052 spin_lock(&tree->lock);
2053 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 total_bytes = tree->dirty_bytes;
2055 goto out;
2056 }
2057 /*
2058 * this search will find all the extents that end after
2059 * our range starts.
2060 */
2061 node = tree_search(tree, cur_start);
2062 if (!node)
2063 goto out;
2064
2065 while (1) {
2066 state = rb_entry(node, struct extent_state, rb_node);
2067 if (state->start > search_end)
2068 break;
2069 if (contig && found && state->start > last + 1)
2070 break;
2071 if (state->end >= cur_start && (state->state & bits) == bits) {
2072 total_bytes += min(search_end, state->end) + 1 -
2073 max(cur_start, state->start);
2074 if (total_bytes >= max_bytes)
2075 break;
2076 if (!found) {
2077 *start = max(cur_start, state->start);
2078 found = 1;
2079 }
2080 last = state->end;
2081 } else if (contig && found) {
2082 break;
2083 }
2084 node = rb_next(node);
2085 if (!node)
2086 break;
2087 }
2088 out:
2089 spin_unlock(&tree->lock);
2090 return total_bytes;
2091 }
2092
2093 /*
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
2097 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 struct io_failure_record *failrec)
2099 {
2100 struct rb_node *node;
2101 struct extent_state *state;
2102 int ret = 0;
2103
2104 spin_lock(&tree->lock);
2105 /*
2106 * this search will find all the extents that end after
2107 * our range starts.
2108 */
2109 node = tree_search(tree, start);
2110 if (!node) {
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114 state = rb_entry(node, struct extent_state, rb_node);
2115 if (state->start != start) {
2116 ret = -ENOENT;
2117 goto out;
2118 }
2119 state->failrec = failrec;
2120 out:
2121 spin_unlock(&tree->lock);
2122 return ret;
2123 }
2124
2125 int get_state_failrec(struct extent_io_tree *tree, u64 start,
2126 struct io_failure_record **failrec)
2127 {
2128 struct rb_node *node;
2129 struct extent_state *state;
2130 int ret = 0;
2131
2132 spin_lock(&tree->lock);
2133 /*
2134 * this search will find all the extents that end after
2135 * our range starts.
2136 */
2137 node = tree_search(tree, start);
2138 if (!node) {
2139 ret = -ENOENT;
2140 goto out;
2141 }
2142 state = rb_entry(node, struct extent_state, rb_node);
2143 if (state->start != start) {
2144 ret = -ENOENT;
2145 goto out;
2146 }
2147 *failrec = state->failrec;
2148 out:
2149 spin_unlock(&tree->lock);
2150 return ret;
2151 }
2152
2153 /*
2154 * searches a range in the state tree for a given mask.
2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2158 */
2159 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2160 unsigned bits, int filled, struct extent_state *cached)
2161 {
2162 struct extent_state *state = NULL;
2163 struct rb_node *node;
2164 int bitset = 0;
2165
2166 spin_lock(&tree->lock);
2167 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2168 cached->end > start)
2169 node = &cached->rb_node;
2170 else
2171 node = tree_search(tree, start);
2172 while (node && start <= end) {
2173 state = rb_entry(node, struct extent_state, rb_node);
2174
2175 if (filled && state->start > start) {
2176 bitset = 0;
2177 break;
2178 }
2179
2180 if (state->start > end)
2181 break;
2182
2183 if (state->state & bits) {
2184 bitset = 1;
2185 if (!filled)
2186 break;
2187 } else if (filled) {
2188 bitset = 0;
2189 break;
2190 }
2191
2192 if (state->end == (u64)-1)
2193 break;
2194
2195 start = state->end + 1;
2196 if (start > end)
2197 break;
2198 node = rb_next(node);
2199 if (!node) {
2200 if (filled)
2201 bitset = 0;
2202 break;
2203 }
2204 }
2205 spin_unlock(&tree->lock);
2206 return bitset;
2207 }
2208
2209 /*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
2213 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2214 {
2215 u64 start = page_offset(page);
2216 u64 end = start + PAGE_SIZE - 1;
2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2218 SetPageUptodate(page);
2219 }
2220
2221 int free_io_failure(struct extent_io_tree *failure_tree,
2222 struct extent_io_tree *io_tree,
2223 struct io_failure_record *rec)
2224 {
2225 int ret;
2226 int err = 0;
2227
2228 set_state_failrec(failure_tree, rec->start, NULL);
2229 ret = clear_extent_bits(failure_tree, rec->start,
2230 rec->start + rec->len - 1,
2231 EXTENT_LOCKED | EXTENT_DIRTY);
2232 if (ret)
2233 err = ret;
2234
2235 ret = clear_extent_bits(io_tree, rec->start,
2236 rec->start + rec->len - 1,
2237 EXTENT_DAMAGED);
2238 if (ret && !err)
2239 err = ret;
2240
2241 kfree(rec);
2242 return err;
2243 }
2244
2245 /*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
2250 * to avoid any synchronization issues, wait for the data after writing, which
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2254 */
2255 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 u64 length, u64 logical, struct page *page,
2257 unsigned int pg_offset, int mirror_num)
2258 {
2259 struct bio *bio;
2260 struct btrfs_device *dev;
2261 u64 map_length = 0;
2262 u64 sector;
2263 struct btrfs_bio *bbio = NULL;
2264 int ret;
2265
2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2267 BUG_ON(!mirror_num);
2268
2269 bio = btrfs_io_bio_alloc(1);
2270 bio->bi_iter.bi_size = 0;
2271 map_length = length;
2272
2273 /*
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2277 */
2278 btrfs_bio_counter_inc_blocked(fs_info);
2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2280 /*
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2285 */
2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 &map_length, &bbio, 0);
2288 if (ret) {
2289 btrfs_bio_counter_dec(fs_info);
2290 bio_put(bio);
2291 return -EIO;
2292 }
2293 ASSERT(bbio->mirror_num == 1);
2294 } else {
2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 &map_length, &bbio, mirror_num);
2297 if (ret) {
2298 btrfs_bio_counter_dec(fs_info);
2299 bio_put(bio);
2300 return -EIO;
2301 }
2302 BUG_ON(mirror_num != bbio->mirror_num);
2303 }
2304
2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2306 bio->bi_iter.bi_sector = sector;
2307 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2308 btrfs_put_bbio(bbio);
2309 if (!dev || !dev->bdev ||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2311 btrfs_bio_counter_dec(fs_info);
2312 bio_put(bio);
2313 return -EIO;
2314 }
2315 bio_set_dev(bio, dev->bdev);
2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2317 bio_add_page(bio, page, length, pg_offset);
2318
2319 if (btrfsic_submit_bio_wait(bio)) {
2320 /* try to remap that extent elsewhere? */
2321 btrfs_bio_counter_dec(fs_info);
2322 bio_put(bio);
2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2324 return -EIO;
2325 }
2326
2327 btrfs_info_rl_in_rcu(fs_info,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2329 ino, start,
2330 rcu_str_deref(dev->name), sector);
2331 btrfs_bio_counter_dec(fs_info);
2332 bio_put(bio);
2333 return 0;
2334 }
2335
2336 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2337 {
2338 struct btrfs_fs_info *fs_info = eb->fs_info;
2339 u64 start = eb->start;
2340 int i, num_pages = num_extent_pages(eb);
2341 int ret = 0;
2342
2343 if (sb_rdonly(fs_info->sb))
2344 return -EROFS;
2345
2346 for (i = 0; i < num_pages; i++) {
2347 struct page *p = eb->pages[i];
2348
2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2350 start - page_offset(p), mirror_num);
2351 if (ret)
2352 break;
2353 start += PAGE_SIZE;
2354 }
2355
2356 return ret;
2357 }
2358
2359 /*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2362 */
2363 int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 struct extent_io_tree *failure_tree,
2365 struct extent_io_tree *io_tree, u64 start,
2366 struct page *page, u64 ino, unsigned int pg_offset)
2367 {
2368 u64 private;
2369 struct io_failure_record *failrec;
2370 struct extent_state *state;
2371 int num_copies;
2372 int ret;
2373
2374 private = 0;
2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 EXTENT_DIRTY, 0);
2377 if (!ret)
2378 return 0;
2379
2380 ret = get_state_failrec(failure_tree, start, &failrec);
2381 if (ret)
2382 return 0;
2383
2384 BUG_ON(!failrec->this_mirror);
2385
2386 if (failrec->in_validation) {
2387 /* there was no real error, just free the record */
2388 btrfs_debug(fs_info,
2389 "clean_io_failure: freeing dummy error at %llu",
2390 failrec->start);
2391 goto out;
2392 }
2393 if (sb_rdonly(fs_info->sb))
2394 goto out;
2395
2396 spin_lock(&io_tree->lock);
2397 state = find_first_extent_bit_state(io_tree,
2398 failrec->start,
2399 EXTENT_LOCKED);
2400 spin_unlock(&io_tree->lock);
2401
2402 if (state && state->start <= failrec->start &&
2403 state->end >= failrec->start + failrec->len - 1) {
2404 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 failrec->len);
2406 if (num_copies > 1) {
2407 repair_io_failure(fs_info, ino, start, failrec->len,
2408 failrec->logical, page, pg_offset,
2409 failrec->failed_mirror);
2410 }
2411 }
2412
2413 out:
2414 free_io_failure(failure_tree, io_tree, failrec);
2415
2416 return 0;
2417 }
2418
2419 /*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
2425 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2426 {
2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2428 struct io_failure_record *failrec;
2429 struct extent_state *state, *next;
2430
2431 if (RB_EMPTY_ROOT(&failure_tree->state))
2432 return;
2433
2434 spin_lock(&failure_tree->lock);
2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 while (state) {
2437 if (state->start > end)
2438 break;
2439
2440 ASSERT(state->end <= end);
2441
2442 next = next_state(state);
2443
2444 failrec = state->failrec;
2445 free_extent_state(state);
2446 kfree(failrec);
2447
2448 state = next;
2449 }
2450 spin_unlock(&failure_tree->lock);
2451 }
2452
2453 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2454 struct io_failure_record **failrec_ret)
2455 {
2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2457 struct io_failure_record *failrec;
2458 struct extent_map *em;
2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2462 int ret;
2463 u64 logical;
2464
2465 ret = get_state_failrec(failure_tree, start, &failrec);
2466 if (ret) {
2467 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2468 if (!failrec)
2469 return -ENOMEM;
2470
2471 failrec->start = start;
2472 failrec->len = end - start + 1;
2473 failrec->this_mirror = 0;
2474 failrec->bio_flags = 0;
2475 failrec->in_validation = 0;
2476
2477 read_lock(&em_tree->lock);
2478 em = lookup_extent_mapping(em_tree, start, failrec->len);
2479 if (!em) {
2480 read_unlock(&em_tree->lock);
2481 kfree(failrec);
2482 return -EIO;
2483 }
2484
2485 if (em->start > start || em->start + em->len <= start) {
2486 free_extent_map(em);
2487 em = NULL;
2488 }
2489 read_unlock(&em_tree->lock);
2490 if (!em) {
2491 kfree(failrec);
2492 return -EIO;
2493 }
2494
2495 logical = start - em->start;
2496 logical = em->block_start + logical;
2497 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2498 logical = em->block_start;
2499 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2500 extent_set_compress_type(&failrec->bio_flags,
2501 em->compress_type);
2502 }
2503
2504 btrfs_debug(fs_info,
2505 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506 logical, start, failrec->len);
2507
2508 failrec->logical = logical;
2509 free_extent_map(em);
2510
2511 /* set the bits in the private failure tree */
2512 ret = set_extent_bits(failure_tree, start, end,
2513 EXTENT_LOCKED | EXTENT_DIRTY);
2514 if (ret >= 0)
2515 ret = set_state_failrec(failure_tree, start, failrec);
2516 /* set the bits in the inode's tree */
2517 if (ret >= 0)
2518 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2519 if (ret < 0) {
2520 kfree(failrec);
2521 return ret;
2522 }
2523 } else {
2524 btrfs_debug(fs_info,
2525 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526 failrec->logical, failrec->start, failrec->len,
2527 failrec->in_validation);
2528 /*
2529 * when data can be on disk more than twice, add to failrec here
2530 * (e.g. with a list for failed_mirror) to make
2531 * clean_io_failure() clean all those errors at once.
2532 */
2533 }
2534
2535 *failrec_ret = failrec;
2536
2537 return 0;
2538 }
2539
2540 static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2541 struct io_failure_record *failrec,
2542 int failed_mirror)
2543 {
2544 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2545 int num_copies;
2546
2547 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2548 if (num_copies == 1) {
2549 /*
2550 * we only have a single copy of the data, so don't bother with
2551 * all the retry and error correction code that follows. no
2552 * matter what the error is, it is very likely to persist.
2553 */
2554 btrfs_debug(fs_info,
2555 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2556 num_copies, failrec->this_mirror, failed_mirror);
2557 return false;
2558 }
2559
2560 /*
2561 * there are two premises:
2562 * a) deliver good data to the caller
2563 * b) correct the bad sectors on disk
2564 */
2565 if (needs_validation) {
2566 /*
2567 * to fulfill b), we need to know the exact failing sectors, as
2568 * we don't want to rewrite any more than the failed ones. thus,
2569 * we need separate read requests for the failed bio
2570 *
2571 * if the following BUG_ON triggers, our validation request got
2572 * merged. we need separate requests for our algorithm to work.
2573 */
2574 BUG_ON(failrec->in_validation);
2575 failrec->in_validation = 1;
2576 failrec->this_mirror = failed_mirror;
2577 } else {
2578 /*
2579 * we're ready to fulfill a) and b) alongside. get a good copy
2580 * of the failed sector and if we succeed, we have setup
2581 * everything for repair_io_failure to do the rest for us.
2582 */
2583 if (failrec->in_validation) {
2584 BUG_ON(failrec->this_mirror != failed_mirror);
2585 failrec->in_validation = 0;
2586 failrec->this_mirror = 0;
2587 }
2588 failrec->failed_mirror = failed_mirror;
2589 failrec->this_mirror++;
2590 if (failrec->this_mirror == failed_mirror)
2591 failrec->this_mirror++;
2592 }
2593
2594 if (failrec->this_mirror > num_copies) {
2595 btrfs_debug(fs_info,
2596 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2597 num_copies, failrec->this_mirror, failed_mirror);
2598 return false;
2599 }
2600
2601 return true;
2602 }
2603
2604 static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2605 {
2606 u64 len = 0;
2607 const u32 blocksize = inode->i_sb->s_blocksize;
2608
2609 /*
2610 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2611 * I/O error. In this case, we already know exactly which sector was
2612 * bad, so we don't need to validate.
2613 */
2614 if (bio->bi_status == BLK_STS_OK)
2615 return false;
2616
2617 /*
2618 * We need to validate each sector individually if the failed I/O was
2619 * for multiple sectors.
2620 *
2621 * There are a few possible bios that can end up here:
2622 * 1. A buffered read bio, which is not cloned.
2623 * 2. A direct I/O read bio, which is cloned.
2624 * 3. A (buffered or direct) repair bio, which is not cloned.
2625 *
2626 * For cloned bios (case 2), we can get the size from
2627 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2628 * it from the bvecs.
2629 */
2630 if (bio_flagged(bio, BIO_CLONED)) {
2631 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
2632 return true;
2633 } else {
2634 struct bio_vec *bvec;
2635 int i;
2636
2637 bio_for_each_bvec_all(bvec, bio, i) {
2638 len += bvec->bv_len;
2639 if (len > blocksize)
2640 return true;
2641 }
2642 }
2643 return false;
2644 }
2645
2646 blk_status_t btrfs_submit_read_repair(struct inode *inode,
2647 struct bio *failed_bio, u64 phy_offset,
2648 struct page *page, unsigned int pgoff,
2649 u64 start, u64 end, int failed_mirror,
2650 submit_bio_hook_t *submit_bio_hook)
2651 {
2652 struct io_failure_record *failrec;
2653 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2654 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2655 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2656 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2657 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
2658 bool need_validation;
2659 struct bio *repair_bio;
2660 struct btrfs_io_bio *repair_io_bio;
2661 blk_status_t status;
2662 int ret;
2663
2664 btrfs_debug(fs_info,
2665 "repair read error: read error at %llu", start);
2666
2667 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2668
2669 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2670 if (ret)
2671 return errno_to_blk_status(ret);
2672
2673 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2674
2675 if (!btrfs_check_repairable(inode, need_validation, failrec,
2676 failed_mirror)) {
2677 free_io_failure(failure_tree, tree, failrec);
2678 return BLK_STS_IOERR;
2679 }
2680
2681 repair_bio = btrfs_io_bio_alloc(1);
2682 repair_io_bio = btrfs_io_bio(repair_bio);
2683 repair_bio->bi_opf = REQ_OP_READ;
2684 if (need_validation)
2685 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2686 repair_bio->bi_end_io = failed_bio->bi_end_io;
2687 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2688 repair_bio->bi_private = failed_bio->bi_private;
2689
2690 if (failed_io_bio->csum) {
2691 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2692
2693 repair_io_bio->csum = repair_io_bio->csum_inline;
2694 memcpy(repair_io_bio->csum,
2695 failed_io_bio->csum + csum_size * icsum, csum_size);
2696 }
2697
2698 bio_add_page(repair_bio, page, failrec->len, pgoff);
2699 repair_io_bio->logical = failrec->start;
2700 repair_io_bio->iter = repair_bio->bi_iter;
2701
2702 btrfs_debug(btrfs_sb(inode->i_sb),
2703 "repair read error: submitting new read to mirror %d, in_validation=%d",
2704 failrec->this_mirror, failrec->in_validation);
2705
2706 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2707 failrec->bio_flags);
2708 if (status) {
2709 free_io_failure(failure_tree, tree, failrec);
2710 bio_put(repair_bio);
2711 }
2712 return status;
2713 }
2714
2715 /* lots and lots of room for performance fixes in the end_bio funcs */
2716
2717 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2718 {
2719 int uptodate = (err == 0);
2720 int ret = 0;
2721
2722 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
2723
2724 if (!uptodate) {
2725 ClearPageUptodate(page);
2726 SetPageError(page);
2727 ret = err < 0 ? err : -EIO;
2728 mapping_set_error(page->mapping, ret);
2729 }
2730 }
2731
2732 /*
2733 * after a writepage IO is done, we need to:
2734 * clear the uptodate bits on error
2735 * clear the writeback bits in the extent tree for this IO
2736 * end_page_writeback if the page has no more pending IO
2737 *
2738 * Scheduling is not allowed, so the extent state tree is expected
2739 * to have one and only one object corresponding to this IO.
2740 */
2741 static void end_bio_extent_writepage(struct bio *bio)
2742 {
2743 int error = blk_status_to_errno(bio->bi_status);
2744 struct bio_vec *bvec;
2745 u64 start;
2746 u64 end;
2747 struct bvec_iter_all iter_all;
2748
2749 ASSERT(!bio_flagged(bio, BIO_CLONED));
2750 bio_for_each_segment_all(bvec, bio, iter_all) {
2751 struct page *page = bvec->bv_page;
2752 struct inode *inode = page->mapping->host;
2753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2754
2755 /* We always issue full-page reads, but if some block
2756 * in a page fails to read, blk_update_request() will
2757 * advance bv_offset and adjust bv_len to compensate.
2758 * Print a warning for nonzero offsets, and an error
2759 * if they don't add up to a full page. */
2760 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2761 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2762 btrfs_err(fs_info,
2763 "partial page write in btrfs with offset %u and length %u",
2764 bvec->bv_offset, bvec->bv_len);
2765 else
2766 btrfs_info(fs_info,
2767 "incomplete page write in btrfs with offset %u and length %u",
2768 bvec->bv_offset, bvec->bv_len);
2769 }
2770
2771 start = page_offset(page);
2772 end = start + bvec->bv_offset + bvec->bv_len - 1;
2773
2774 end_extent_writepage(page, error, start, end);
2775 end_page_writeback(page);
2776 }
2777
2778 bio_put(bio);
2779 }
2780
2781 static void
2782 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2783 int uptodate)
2784 {
2785 struct extent_state *cached = NULL;
2786 u64 end = start + len - 1;
2787
2788 if (uptodate && tree->track_uptodate)
2789 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2790 unlock_extent_cached_atomic(tree, start, end, &cached);
2791 }
2792
2793 /*
2794 * after a readpage IO is done, we need to:
2795 * clear the uptodate bits on error
2796 * set the uptodate bits if things worked
2797 * set the page up to date if all extents in the tree are uptodate
2798 * clear the lock bit in the extent tree
2799 * unlock the page if there are no other extents locked for it
2800 *
2801 * Scheduling is not allowed, so the extent state tree is expected
2802 * to have one and only one object corresponding to this IO.
2803 */
2804 static void end_bio_extent_readpage(struct bio *bio)
2805 {
2806 struct bio_vec *bvec;
2807 int uptodate = !bio->bi_status;
2808 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2809 struct extent_io_tree *tree, *failure_tree;
2810 u64 offset = 0;
2811 u64 start;
2812 u64 end;
2813 u64 len;
2814 u64 extent_start = 0;
2815 u64 extent_len = 0;
2816 int mirror;
2817 int ret;
2818 struct bvec_iter_all iter_all;
2819
2820 ASSERT(!bio_flagged(bio, BIO_CLONED));
2821 bio_for_each_segment_all(bvec, bio, iter_all) {
2822 struct page *page = bvec->bv_page;
2823 struct inode *inode = page->mapping->host;
2824 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2825 bool data_inode = btrfs_ino(BTRFS_I(inode))
2826 != BTRFS_BTREE_INODE_OBJECTID;
2827
2828 btrfs_debug(fs_info,
2829 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2830 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2831 io_bio->mirror_num);
2832 tree = &BTRFS_I(inode)->io_tree;
2833 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2834
2835 /* We always issue full-page reads, but if some block
2836 * in a page fails to read, blk_update_request() will
2837 * advance bv_offset and adjust bv_len to compensate.
2838 * Print a warning for nonzero offsets, and an error
2839 * if they don't add up to a full page. */
2840 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2841 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2842 btrfs_err(fs_info,
2843 "partial page read in btrfs with offset %u and length %u",
2844 bvec->bv_offset, bvec->bv_len);
2845 else
2846 btrfs_info(fs_info,
2847 "incomplete page read in btrfs with offset %u and length %u",
2848 bvec->bv_offset, bvec->bv_len);
2849 }
2850
2851 start = page_offset(page);
2852 end = start + bvec->bv_offset + bvec->bv_len - 1;
2853 len = bvec->bv_len;
2854
2855 mirror = io_bio->mirror_num;
2856 if (likely(uptodate)) {
2857 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2858 page, start, end,
2859 mirror);
2860 if (ret)
2861 uptodate = 0;
2862 else
2863 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2864 failure_tree, tree, start,
2865 page,
2866 btrfs_ino(BTRFS_I(inode)), 0);
2867 }
2868
2869 if (likely(uptodate))
2870 goto readpage_ok;
2871
2872 if (data_inode) {
2873
2874 /*
2875 * The generic bio_readpage_error handles errors the
2876 * following way: If possible, new read requests are
2877 * created and submitted and will end up in
2878 * end_bio_extent_readpage as well (if we're lucky,
2879 * not in the !uptodate case). In that case it returns
2880 * 0 and we just go on with the next page in our bio.
2881 * If it can't handle the error it will return -EIO and
2882 * we remain responsible for that page.
2883 */
2884 if (!btrfs_submit_read_repair(inode, bio, offset, page,
2885 start - page_offset(page),
2886 start, end, mirror,
2887 tree->ops->submit_bio_hook)) {
2888 uptodate = !bio->bi_status;
2889 offset += len;
2890 continue;
2891 }
2892 } else {
2893 struct extent_buffer *eb;
2894
2895 eb = (struct extent_buffer *)page->private;
2896 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2897 eb->read_mirror = mirror;
2898 atomic_dec(&eb->io_pages);
2899 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2900 &eb->bflags))
2901 btree_readahead_hook(eb, -EIO);
2902 }
2903 readpage_ok:
2904 if (likely(uptodate)) {
2905 loff_t i_size = i_size_read(inode);
2906 pgoff_t end_index = i_size >> PAGE_SHIFT;
2907 unsigned off;
2908
2909 /* Zero out the end if this page straddles i_size */
2910 off = offset_in_page(i_size);
2911 if (page->index == end_index && off)
2912 zero_user_segment(page, off, PAGE_SIZE);
2913 SetPageUptodate(page);
2914 } else {
2915 ClearPageUptodate(page);
2916 SetPageError(page);
2917 }
2918 unlock_page(page);
2919 offset += len;
2920
2921 if (unlikely(!uptodate)) {
2922 if (extent_len) {
2923 endio_readpage_release_extent(tree,
2924 extent_start,
2925 extent_len, 1);
2926 extent_start = 0;
2927 extent_len = 0;
2928 }
2929 endio_readpage_release_extent(tree, start,
2930 end - start + 1, 0);
2931 } else if (!extent_len) {
2932 extent_start = start;
2933 extent_len = end + 1 - start;
2934 } else if (extent_start + extent_len == start) {
2935 extent_len += end + 1 - start;
2936 } else {
2937 endio_readpage_release_extent(tree, extent_start,
2938 extent_len, uptodate);
2939 extent_start = start;
2940 extent_len = end + 1 - start;
2941 }
2942 }
2943
2944 if (extent_len)
2945 endio_readpage_release_extent(tree, extent_start, extent_len,
2946 uptodate);
2947 btrfs_io_bio_free_csum(io_bio);
2948 bio_put(bio);
2949 }
2950
2951 /*
2952 * Initialize the members up to but not including 'bio'. Use after allocating a
2953 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2954 * 'bio' because use of __GFP_ZERO is not supported.
2955 */
2956 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2957 {
2958 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2959 }
2960
2961 /*
2962 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2963 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2964 * for the appropriate container_of magic
2965 */
2966 struct bio *btrfs_bio_alloc(u64 first_byte)
2967 {
2968 struct bio *bio;
2969
2970 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2971 bio->bi_iter.bi_sector = first_byte >> 9;
2972 btrfs_io_bio_init(btrfs_io_bio(bio));
2973 return bio;
2974 }
2975
2976 struct bio *btrfs_bio_clone(struct bio *bio)
2977 {
2978 struct btrfs_io_bio *btrfs_bio;
2979 struct bio *new;
2980
2981 /* Bio allocation backed by a bioset does not fail */
2982 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2983 btrfs_bio = btrfs_io_bio(new);
2984 btrfs_io_bio_init(btrfs_bio);
2985 btrfs_bio->iter = bio->bi_iter;
2986 return new;
2987 }
2988
2989 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2990 {
2991 struct bio *bio;
2992
2993 /* Bio allocation backed by a bioset does not fail */
2994 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2995 btrfs_io_bio_init(btrfs_io_bio(bio));
2996 return bio;
2997 }
2998
2999 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3000 {
3001 struct bio *bio;
3002 struct btrfs_io_bio *btrfs_bio;
3003
3004 /* this will never fail when it's backed by a bioset */
3005 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3006 ASSERT(bio);
3007
3008 btrfs_bio = btrfs_io_bio(bio);
3009 btrfs_io_bio_init(btrfs_bio);
3010
3011 bio_trim(bio, offset >> 9, size >> 9);
3012 btrfs_bio->iter = bio->bi_iter;
3013 return bio;
3014 }
3015
3016 /*
3017 * @opf: bio REQ_OP_* and REQ_* flags as one value
3018 * @wbc: optional writeback control for io accounting
3019 * @page: page to add to the bio
3020 * @pg_offset: offset of the new bio or to check whether we are adding
3021 * a contiguous page to the previous one
3022 * @size: portion of page that we want to write
3023 * @offset: starting offset in the page
3024 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3025 * @end_io_func: end_io callback for new bio
3026 * @mirror_num: desired mirror to read/write
3027 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3028 * @bio_flags: flags of the current bio to see if we can merge them
3029 */
3030 static int submit_extent_page(unsigned int opf,
3031 struct writeback_control *wbc,
3032 struct page *page, u64 offset,
3033 size_t size, unsigned long pg_offset,
3034 struct bio **bio_ret,
3035 bio_end_io_t end_io_func,
3036 int mirror_num,
3037 unsigned long prev_bio_flags,
3038 unsigned long bio_flags,
3039 bool force_bio_submit)
3040 {
3041 int ret = 0;
3042 struct bio *bio;
3043 size_t page_size = min_t(size_t, size, PAGE_SIZE);
3044 sector_t sector = offset >> 9;
3045 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
3046
3047 ASSERT(bio_ret);
3048
3049 if (*bio_ret) {
3050 bool contig;
3051 bool can_merge = true;
3052
3053 bio = *bio_ret;
3054 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
3055 contig = bio->bi_iter.bi_sector == sector;
3056 else
3057 contig = bio_end_sector(bio) == sector;
3058
3059 ASSERT(tree->ops);
3060 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
3061 can_merge = false;
3062
3063 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
3064 force_bio_submit ||
3065 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
3066 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
3067 if (ret < 0) {
3068 *bio_ret = NULL;
3069 return ret;
3070 }
3071 bio = NULL;
3072 } else {
3073 if (wbc)
3074 wbc_account_cgroup_owner(wbc, page, page_size);
3075 return 0;
3076 }
3077 }
3078
3079 bio = btrfs_bio_alloc(offset);
3080 bio_add_page(bio, page, page_size, pg_offset);
3081 bio->bi_end_io = end_io_func;
3082 bio->bi_private = tree;
3083 bio->bi_write_hint = page->mapping->host->i_write_hint;
3084 bio->bi_opf = opf;
3085 if (wbc) {
3086 struct block_device *bdev;
3087
3088 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3089 bio_set_dev(bio, bdev);
3090 wbc_init_bio(wbc, bio);
3091 wbc_account_cgroup_owner(wbc, page, page_size);
3092 }
3093
3094 *bio_ret = bio;
3095
3096 return ret;
3097 }
3098
3099 static void attach_extent_buffer_page(struct extent_buffer *eb,
3100 struct page *page)
3101 {
3102 if (!PagePrivate(page))
3103 attach_page_private(page, eb);
3104 else
3105 WARN_ON(page->private != (unsigned long)eb);
3106 }
3107
3108 void set_page_extent_mapped(struct page *page)
3109 {
3110 if (!PagePrivate(page))
3111 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3112 }
3113
3114 static struct extent_map *
3115 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3116 u64 start, u64 len, get_extent_t *get_extent,
3117 struct extent_map **em_cached)
3118 {
3119 struct extent_map *em;
3120
3121 if (em_cached && *em_cached) {
3122 em = *em_cached;
3123 if (extent_map_in_tree(em) && start >= em->start &&
3124 start < extent_map_end(em)) {
3125 refcount_inc(&em->refs);
3126 return em;
3127 }
3128
3129 free_extent_map(em);
3130 *em_cached = NULL;
3131 }
3132
3133 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3134 if (em_cached && !IS_ERR_OR_NULL(em)) {
3135 BUG_ON(*em_cached);
3136 refcount_inc(&em->refs);
3137 *em_cached = em;
3138 }
3139 return em;
3140 }
3141 /*
3142 * basic readpage implementation. Locked extent state structs are inserted
3143 * into the tree that are removed when the IO is done (by the end_io
3144 * handlers)
3145 * XXX JDM: This needs looking at to ensure proper page locking
3146 * return 0 on success, otherwise return error
3147 */
3148 static int __do_readpage(struct page *page,
3149 get_extent_t *get_extent,
3150 struct extent_map **em_cached,
3151 struct bio **bio, int mirror_num,
3152 unsigned long *bio_flags, unsigned int read_flags,
3153 u64 *prev_em_start)
3154 {
3155 struct inode *inode = page->mapping->host;
3156 u64 start = page_offset(page);
3157 const u64 end = start + PAGE_SIZE - 1;
3158 u64 cur = start;
3159 u64 extent_offset;
3160 u64 last_byte = i_size_read(inode);
3161 u64 block_start;
3162 u64 cur_end;
3163 struct extent_map *em;
3164 int ret = 0;
3165 int nr = 0;
3166 size_t pg_offset = 0;
3167 size_t iosize;
3168 size_t disk_io_size;
3169 size_t blocksize = inode->i_sb->s_blocksize;
3170 unsigned long this_bio_flag = 0;
3171 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3172
3173 set_page_extent_mapped(page);
3174
3175 if (!PageUptodate(page)) {
3176 if (cleancache_get_page(page) == 0) {
3177 BUG_ON(blocksize != PAGE_SIZE);
3178 unlock_extent(tree, start, end);
3179 goto out;
3180 }
3181 }
3182
3183 if (page->index == last_byte >> PAGE_SHIFT) {
3184 char *userpage;
3185 size_t zero_offset = offset_in_page(last_byte);
3186
3187 if (zero_offset) {
3188 iosize = PAGE_SIZE - zero_offset;
3189 userpage = kmap_atomic(page);
3190 memset(userpage + zero_offset, 0, iosize);
3191 flush_dcache_page(page);
3192 kunmap_atomic(userpage);
3193 }
3194 }
3195 while (cur <= end) {
3196 bool force_bio_submit = false;
3197 u64 offset;
3198
3199 if (cur >= last_byte) {
3200 char *userpage;
3201 struct extent_state *cached = NULL;
3202
3203 iosize = PAGE_SIZE - pg_offset;
3204 userpage = kmap_atomic(page);
3205 memset(userpage + pg_offset, 0, iosize);
3206 flush_dcache_page(page);
3207 kunmap_atomic(userpage);
3208 set_extent_uptodate(tree, cur, cur + iosize - 1,
3209 &cached, GFP_NOFS);
3210 unlock_extent_cached(tree, cur,
3211 cur + iosize - 1, &cached);
3212 break;
3213 }
3214 em = __get_extent_map(inode, page, pg_offset, cur,
3215 end - cur + 1, get_extent, em_cached);
3216 if (IS_ERR_OR_NULL(em)) {
3217 SetPageError(page);
3218 unlock_extent(tree, cur, end);
3219 break;
3220 }
3221 extent_offset = cur - em->start;
3222 BUG_ON(extent_map_end(em) <= cur);
3223 BUG_ON(end < cur);
3224
3225 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3226 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3227 extent_set_compress_type(&this_bio_flag,
3228 em->compress_type);
3229 }
3230
3231 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3232 cur_end = min(extent_map_end(em) - 1, end);
3233 iosize = ALIGN(iosize, blocksize);
3234 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3235 disk_io_size = em->block_len;
3236 offset = em->block_start;
3237 } else {
3238 offset = em->block_start + extent_offset;
3239 disk_io_size = iosize;
3240 }
3241 block_start = em->block_start;
3242 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3243 block_start = EXTENT_MAP_HOLE;
3244
3245 /*
3246 * If we have a file range that points to a compressed extent
3247 * and it's followed by a consecutive file range that points to
3248 * to the same compressed extent (possibly with a different
3249 * offset and/or length, so it either points to the whole extent
3250 * or only part of it), we must make sure we do not submit a
3251 * single bio to populate the pages for the 2 ranges because
3252 * this makes the compressed extent read zero out the pages
3253 * belonging to the 2nd range. Imagine the following scenario:
3254 *
3255 * File layout
3256 * [0 - 8K] [8K - 24K]
3257 * | |
3258 * | |
3259 * points to extent X, points to extent X,
3260 * offset 4K, length of 8K offset 0, length 16K
3261 *
3262 * [extent X, compressed length = 4K uncompressed length = 16K]
3263 *
3264 * If the bio to read the compressed extent covers both ranges,
3265 * it will decompress extent X into the pages belonging to the
3266 * first range and then it will stop, zeroing out the remaining
3267 * pages that belong to the other range that points to extent X.
3268 * So here we make sure we submit 2 bios, one for the first
3269 * range and another one for the third range. Both will target
3270 * the same physical extent from disk, but we can't currently
3271 * make the compressed bio endio callback populate the pages
3272 * for both ranges because each compressed bio is tightly
3273 * coupled with a single extent map, and each range can have
3274 * an extent map with a different offset value relative to the
3275 * uncompressed data of our extent and different lengths. This
3276 * is a corner case so we prioritize correctness over
3277 * non-optimal behavior (submitting 2 bios for the same extent).
3278 */
3279 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3280 prev_em_start && *prev_em_start != (u64)-1 &&
3281 *prev_em_start != em->start)
3282 force_bio_submit = true;
3283
3284 if (prev_em_start)
3285 *prev_em_start = em->start;
3286
3287 free_extent_map(em);
3288 em = NULL;
3289
3290 /* we've found a hole, just zero and go on */
3291 if (block_start == EXTENT_MAP_HOLE) {
3292 char *userpage;
3293 struct extent_state *cached = NULL;
3294
3295 userpage = kmap_atomic(page);
3296 memset(userpage + pg_offset, 0, iosize);
3297 flush_dcache_page(page);
3298 kunmap_atomic(userpage);
3299
3300 set_extent_uptodate(tree, cur, cur + iosize - 1,
3301 &cached, GFP_NOFS);
3302 unlock_extent_cached(tree, cur,
3303 cur + iosize - 1, &cached);
3304 cur = cur + iosize;
3305 pg_offset += iosize;
3306 continue;
3307 }
3308 /* the get_extent function already copied into the page */
3309 if (test_range_bit(tree, cur, cur_end,
3310 EXTENT_UPTODATE, 1, NULL)) {
3311 check_page_uptodate(tree, page);
3312 unlock_extent(tree, cur, cur + iosize - 1);
3313 cur = cur + iosize;
3314 pg_offset += iosize;
3315 continue;
3316 }
3317 /* we have an inline extent but it didn't get marked up
3318 * to date. Error out
3319 */
3320 if (block_start == EXTENT_MAP_INLINE) {
3321 SetPageError(page);
3322 unlock_extent(tree, cur, cur + iosize - 1);
3323 cur = cur + iosize;
3324 pg_offset += iosize;
3325 continue;
3326 }
3327
3328 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3329 page, offset, disk_io_size,
3330 pg_offset, bio,
3331 end_bio_extent_readpage, mirror_num,
3332 *bio_flags,
3333 this_bio_flag,
3334 force_bio_submit);
3335 if (!ret) {
3336 nr++;
3337 *bio_flags = this_bio_flag;
3338 } else {
3339 SetPageError(page);
3340 unlock_extent(tree, cur, cur + iosize - 1);
3341 goto out;
3342 }
3343 cur = cur + iosize;
3344 pg_offset += iosize;
3345 }
3346 out:
3347 if (!nr) {
3348 if (!PageError(page))
3349 SetPageUptodate(page);
3350 unlock_page(page);
3351 }
3352 return ret;
3353 }
3354
3355 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3356 u64 start, u64 end,
3357 struct extent_map **em_cached,
3358 struct bio **bio,
3359 unsigned long *bio_flags,
3360 u64 *prev_em_start)
3361 {
3362 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3363 int index;
3364
3365 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3366
3367 for (index = 0; index < nr_pages; index++) {
3368 __do_readpage(pages[index], btrfs_get_extent, em_cached,
3369 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3370 put_page(pages[index]);
3371 }
3372 }
3373
3374 static int __extent_read_full_page(struct page *page,
3375 get_extent_t *get_extent,
3376 struct bio **bio, int mirror_num,
3377 unsigned long *bio_flags,
3378 unsigned int read_flags)
3379 {
3380 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3381 u64 start = page_offset(page);
3382 u64 end = start + PAGE_SIZE - 1;
3383 int ret;
3384
3385 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3386
3387 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
3388 bio_flags, read_flags, NULL);
3389 return ret;
3390 }
3391
3392 int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3393 int mirror_num)
3394 {
3395 struct bio *bio = NULL;
3396 unsigned long bio_flags = 0;
3397 int ret;
3398
3399 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
3400 &bio_flags, 0);
3401 if (bio)
3402 ret = submit_one_bio(bio, mirror_num, bio_flags);
3403 return ret;
3404 }
3405
3406 static void update_nr_written(struct writeback_control *wbc,
3407 unsigned long nr_written)
3408 {
3409 wbc->nr_to_write -= nr_written;
3410 }
3411
3412 /*
3413 * helper for __extent_writepage, doing all of the delayed allocation setup.
3414 *
3415 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3416 * to write the page (copy into inline extent). In this case the IO has
3417 * been started and the page is already unlocked.
3418 *
3419 * This returns 0 if all went well (page still locked)
3420 * This returns < 0 if there were errors (page still locked)
3421 */
3422 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3423 struct page *page, struct writeback_control *wbc,
3424 u64 delalloc_start, unsigned long *nr_written)
3425 {
3426 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3427 bool found;
3428 u64 delalloc_to_write = 0;
3429 u64 delalloc_end = 0;
3430 int ret;
3431 int page_started = 0;
3432
3433
3434 while (delalloc_end < page_end) {
3435 found = find_lock_delalloc_range(inode, page,
3436 &delalloc_start,
3437 &delalloc_end);
3438 if (!found) {
3439 delalloc_start = delalloc_end + 1;
3440 continue;
3441 }
3442 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3443 delalloc_end, &page_started, nr_written, wbc);
3444 if (ret) {
3445 SetPageError(page);
3446 /*
3447 * btrfs_run_delalloc_range should return < 0 for error
3448 * but just in case, we use > 0 here meaning the IO is
3449 * started, so we don't want to return > 0 unless
3450 * things are going well.
3451 */
3452 ret = ret < 0 ? ret : -EIO;
3453 goto done;
3454 }
3455 /*
3456 * delalloc_end is already one less than the total length, so
3457 * we don't subtract one from PAGE_SIZE
3458 */
3459 delalloc_to_write += (delalloc_end - delalloc_start +
3460 PAGE_SIZE) >> PAGE_SHIFT;
3461 delalloc_start = delalloc_end + 1;
3462 }
3463 if (wbc->nr_to_write < delalloc_to_write) {
3464 int thresh = 8192;
3465
3466 if (delalloc_to_write < thresh * 2)
3467 thresh = delalloc_to_write;
3468 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3469 thresh);
3470 }
3471
3472 /* did the fill delalloc function already unlock and start
3473 * the IO?
3474 */
3475 if (page_started) {
3476 /*
3477 * we've unlocked the page, so we can't update
3478 * the mapping's writeback index, just update
3479 * nr_to_write.
3480 */
3481 wbc->nr_to_write -= *nr_written;
3482 return 1;
3483 }
3484
3485 ret = 0;
3486
3487 done:
3488 return ret;
3489 }
3490
3491 /*
3492 * helper for __extent_writepage. This calls the writepage start hooks,
3493 * and does the loop to map the page into extents and bios.
3494 *
3495 * We return 1 if the IO is started and the page is unlocked,
3496 * 0 if all went well (page still locked)
3497 * < 0 if there were errors (page still locked)
3498 */
3499 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3500 struct page *page,
3501 struct writeback_control *wbc,
3502 struct extent_page_data *epd,
3503 loff_t i_size,
3504 unsigned long nr_written,
3505 int *nr_ret)
3506 {
3507 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3508 u64 start = page_offset(page);
3509 u64 page_end = start + PAGE_SIZE - 1;
3510 u64 end;
3511 u64 cur = start;
3512 u64 extent_offset;
3513 u64 block_start;
3514 u64 iosize;
3515 struct extent_map *em;
3516 size_t pg_offset = 0;
3517 size_t blocksize;
3518 int ret = 0;
3519 int nr = 0;
3520 const unsigned int write_flags = wbc_to_write_flags(wbc);
3521 bool compressed;
3522
3523 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3524 if (ret) {
3525 /* Fixup worker will requeue */
3526 redirty_page_for_writepage(wbc, page);
3527 update_nr_written(wbc, nr_written);
3528 unlock_page(page);
3529 return 1;
3530 }
3531
3532 /*
3533 * we don't want to touch the inode after unlocking the page,
3534 * so we update the mapping writeback index now
3535 */
3536 update_nr_written(wbc, nr_written + 1);
3537
3538 end = page_end;
3539 blocksize = inode->i_sb->s_blocksize;
3540
3541 while (cur <= end) {
3542 u64 em_end;
3543 u64 offset;
3544
3545 if (cur >= i_size) {
3546 btrfs_writepage_endio_finish_ordered(page, cur,
3547 page_end, 1);
3548 break;
3549 }
3550 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3551 end - cur + 1);
3552 if (IS_ERR_OR_NULL(em)) {
3553 SetPageError(page);
3554 ret = PTR_ERR_OR_ZERO(em);
3555 break;
3556 }
3557
3558 extent_offset = cur - em->start;
3559 em_end = extent_map_end(em);
3560 BUG_ON(em_end <= cur);
3561 BUG_ON(end < cur);
3562 iosize = min(em_end - cur, end - cur + 1);
3563 iosize = ALIGN(iosize, blocksize);
3564 offset = em->block_start + extent_offset;
3565 block_start = em->block_start;
3566 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3567 free_extent_map(em);
3568 em = NULL;
3569
3570 /*
3571 * compressed and inline extents are written through other
3572 * paths in the FS
3573 */
3574 if (compressed || block_start == EXTENT_MAP_HOLE ||
3575 block_start == EXTENT_MAP_INLINE) {
3576 if (compressed)
3577 nr++;
3578 else
3579 btrfs_writepage_endio_finish_ordered(page, cur,
3580 cur + iosize - 1, 1);
3581 cur += iosize;
3582 pg_offset += iosize;
3583 continue;
3584 }
3585
3586 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3587 if (!PageWriteback(page)) {
3588 btrfs_err(BTRFS_I(inode)->root->fs_info,
3589 "page %lu not writeback, cur %llu end %llu",
3590 page->index, cur, end);
3591 }
3592
3593 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3594 page, offset, iosize, pg_offset,
3595 &epd->bio,
3596 end_bio_extent_writepage,
3597 0, 0, 0, false);
3598 if (ret) {
3599 SetPageError(page);
3600 if (PageWriteback(page))
3601 end_page_writeback(page);
3602 }
3603
3604 cur = cur + iosize;
3605 pg_offset += iosize;
3606 nr++;
3607 }
3608 *nr_ret = nr;
3609 return ret;
3610 }
3611
3612 /*
3613 * the writepage semantics are similar to regular writepage. extent
3614 * records are inserted to lock ranges in the tree, and as dirty areas
3615 * are found, they are marked writeback. Then the lock bits are removed
3616 * and the end_io handler clears the writeback ranges
3617 *
3618 * Return 0 if everything goes well.
3619 * Return <0 for error.
3620 */
3621 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3622 struct extent_page_data *epd)
3623 {
3624 struct inode *inode = page->mapping->host;
3625 u64 start = page_offset(page);
3626 u64 page_end = start + PAGE_SIZE - 1;
3627 int ret;
3628 int nr = 0;
3629 size_t pg_offset;
3630 loff_t i_size = i_size_read(inode);
3631 unsigned long end_index = i_size >> PAGE_SHIFT;
3632 unsigned long nr_written = 0;
3633
3634 trace___extent_writepage(page, inode, wbc);
3635
3636 WARN_ON(!PageLocked(page));
3637
3638 ClearPageError(page);
3639
3640 pg_offset = offset_in_page(i_size);
3641 if (page->index > end_index ||
3642 (page->index == end_index && !pg_offset)) {
3643 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3644 unlock_page(page);
3645 return 0;
3646 }
3647
3648 if (page->index == end_index) {
3649 char *userpage;
3650
3651 userpage = kmap_atomic(page);
3652 memset(userpage + pg_offset, 0,
3653 PAGE_SIZE - pg_offset);
3654 kunmap_atomic(userpage);
3655 flush_dcache_page(page);
3656 }
3657
3658 set_page_extent_mapped(page);
3659
3660 if (!epd->extent_locked) {
3661 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
3662 if (ret == 1)
3663 return 0;
3664 if (ret)
3665 goto done;
3666 }
3667
3668 ret = __extent_writepage_io(inode, page, wbc, epd,
3669 i_size, nr_written, &nr);
3670 if (ret == 1)
3671 return 0;
3672
3673 done:
3674 if (nr == 0) {
3675 /* make sure the mapping tag for page dirty gets cleared */
3676 set_page_writeback(page);
3677 end_page_writeback(page);
3678 }
3679 if (PageError(page)) {
3680 ret = ret < 0 ? ret : -EIO;
3681 end_extent_writepage(page, ret, start, page_end);
3682 }
3683 unlock_page(page);
3684 ASSERT(ret <= 0);
3685 return ret;
3686 }
3687
3688 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3689 {
3690 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3691 TASK_UNINTERRUPTIBLE);
3692 }
3693
3694 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3695 {
3696 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3697 smp_mb__after_atomic();
3698 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3699 }
3700
3701 /*
3702 * Lock eb pages and flush the bio if we can't the locks
3703 *
3704 * Return 0 if nothing went wrong
3705 * Return >0 is same as 0, except bio is not submitted
3706 * Return <0 if something went wrong, no page is locked
3707 */
3708 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
3709 struct extent_page_data *epd)
3710 {
3711 struct btrfs_fs_info *fs_info = eb->fs_info;
3712 int i, num_pages, failed_page_nr;
3713 int flush = 0;
3714 int ret = 0;
3715
3716 if (!btrfs_try_tree_write_lock(eb)) {
3717 ret = flush_write_bio(epd);
3718 if (ret < 0)
3719 return ret;
3720 flush = 1;
3721 btrfs_tree_lock(eb);
3722 }
3723
3724 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3725 btrfs_tree_unlock(eb);
3726 if (!epd->sync_io)
3727 return 0;
3728 if (!flush) {
3729 ret = flush_write_bio(epd);
3730 if (ret < 0)
3731 return ret;
3732 flush = 1;
3733 }
3734 while (1) {
3735 wait_on_extent_buffer_writeback(eb);
3736 btrfs_tree_lock(eb);
3737 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3738 break;
3739 btrfs_tree_unlock(eb);
3740 }
3741 }
3742
3743 /*
3744 * We need to do this to prevent races in people who check if the eb is
3745 * under IO since we can end up having no IO bits set for a short period
3746 * of time.
3747 */
3748 spin_lock(&eb->refs_lock);
3749 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3750 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3751 spin_unlock(&eb->refs_lock);
3752 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3753 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3754 -eb->len,
3755 fs_info->dirty_metadata_batch);
3756 ret = 1;
3757 } else {
3758 spin_unlock(&eb->refs_lock);
3759 }
3760
3761 btrfs_tree_unlock(eb);
3762
3763 if (!ret)
3764 return ret;
3765
3766 num_pages = num_extent_pages(eb);
3767 for (i = 0; i < num_pages; i++) {
3768 struct page *p = eb->pages[i];
3769
3770 if (!trylock_page(p)) {
3771 if (!flush) {
3772 int err;
3773
3774 err = flush_write_bio(epd);
3775 if (err < 0) {
3776 ret = err;
3777 failed_page_nr = i;
3778 goto err_unlock;
3779 }
3780 flush = 1;
3781 }
3782 lock_page(p);
3783 }
3784 }
3785
3786 return ret;
3787 err_unlock:
3788 /* Unlock already locked pages */
3789 for (i = 0; i < failed_page_nr; i++)
3790 unlock_page(eb->pages[i]);
3791 /*
3792 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3793 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3794 * be made and undo everything done before.
3795 */
3796 btrfs_tree_lock(eb);
3797 spin_lock(&eb->refs_lock);
3798 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3799 end_extent_buffer_writeback(eb);
3800 spin_unlock(&eb->refs_lock);
3801 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3802 fs_info->dirty_metadata_batch);
3803 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3804 btrfs_tree_unlock(eb);
3805 return ret;
3806 }
3807
3808 static void set_btree_ioerr(struct page *page)
3809 {
3810 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3811 struct btrfs_fs_info *fs_info;
3812
3813 SetPageError(page);
3814 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3815 return;
3816
3817 /*
3818 * If we error out, we should add back the dirty_metadata_bytes
3819 * to make it consistent.
3820 */
3821 fs_info = eb->fs_info;
3822 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3823 eb->len, fs_info->dirty_metadata_batch);
3824
3825 /*
3826 * If writeback for a btree extent that doesn't belong to a log tree
3827 * failed, increment the counter transaction->eb_write_errors.
3828 * We do this because while the transaction is running and before it's
3829 * committing (when we call filemap_fdata[write|wait]_range against
3830 * the btree inode), we might have
3831 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3832 * returns an error or an error happens during writeback, when we're
3833 * committing the transaction we wouldn't know about it, since the pages
3834 * can be no longer dirty nor marked anymore for writeback (if a
3835 * subsequent modification to the extent buffer didn't happen before the
3836 * transaction commit), which makes filemap_fdata[write|wait]_range not
3837 * able to find the pages tagged with SetPageError at transaction
3838 * commit time. So if this happens we must abort the transaction,
3839 * otherwise we commit a super block with btree roots that point to
3840 * btree nodes/leafs whose content on disk is invalid - either garbage
3841 * or the content of some node/leaf from a past generation that got
3842 * cowed or deleted and is no longer valid.
3843 *
3844 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3845 * not be enough - we need to distinguish between log tree extents vs
3846 * non-log tree extents, and the next filemap_fdatawait_range() call
3847 * will catch and clear such errors in the mapping - and that call might
3848 * be from a log sync and not from a transaction commit. Also, checking
3849 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3850 * not done and would not be reliable - the eb might have been released
3851 * from memory and reading it back again means that flag would not be
3852 * set (since it's a runtime flag, not persisted on disk).
3853 *
3854 * Using the flags below in the btree inode also makes us achieve the
3855 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3856 * writeback for all dirty pages and before filemap_fdatawait_range()
3857 * is called, the writeback for all dirty pages had already finished
3858 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3859 * filemap_fdatawait_range() would return success, as it could not know
3860 * that writeback errors happened (the pages were no longer tagged for
3861 * writeback).
3862 */
3863 switch (eb->log_index) {
3864 case -1:
3865 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3866 break;
3867 case 0:
3868 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3869 break;
3870 case 1:
3871 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3872 break;
3873 default:
3874 BUG(); /* unexpected, logic error */
3875 }
3876 }
3877
3878 static void end_bio_extent_buffer_writepage(struct bio *bio)
3879 {
3880 struct bio_vec *bvec;
3881 struct extent_buffer *eb;
3882 int done;
3883 struct bvec_iter_all iter_all;
3884
3885 ASSERT(!bio_flagged(bio, BIO_CLONED));
3886 bio_for_each_segment_all(bvec, bio, iter_all) {
3887 struct page *page = bvec->bv_page;
3888
3889 eb = (struct extent_buffer *)page->private;
3890 BUG_ON(!eb);
3891 done = atomic_dec_and_test(&eb->io_pages);
3892
3893 if (bio->bi_status ||
3894 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3895 ClearPageUptodate(page);
3896 set_btree_ioerr(page);
3897 }
3898
3899 end_page_writeback(page);
3900
3901 if (!done)
3902 continue;
3903
3904 end_extent_buffer_writeback(eb);
3905 }
3906
3907 bio_put(bio);
3908 }
3909
3910 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3911 struct writeback_control *wbc,
3912 struct extent_page_data *epd)
3913 {
3914 u64 offset = eb->start;
3915 u32 nritems;
3916 int i, num_pages;
3917 unsigned long start, end;
3918 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3919 int ret = 0;
3920
3921 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3922 num_pages = num_extent_pages(eb);
3923 atomic_set(&eb->io_pages, num_pages);
3924
3925 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3926 nritems = btrfs_header_nritems(eb);
3927 if (btrfs_header_level(eb) > 0) {
3928 end = btrfs_node_key_ptr_offset(nritems);
3929
3930 memzero_extent_buffer(eb, end, eb->len - end);
3931 } else {
3932 /*
3933 * leaf:
3934 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3935 */
3936 start = btrfs_item_nr_offset(nritems);
3937 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
3938 memzero_extent_buffer(eb, start, end - start);
3939 }
3940
3941 for (i = 0; i < num_pages; i++) {
3942 struct page *p = eb->pages[i];
3943
3944 clear_page_dirty_for_io(p);
3945 set_page_writeback(p);
3946 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
3947 p, offset, PAGE_SIZE, 0,
3948 &epd->bio,
3949 end_bio_extent_buffer_writepage,
3950 0, 0, 0, false);
3951 if (ret) {
3952 set_btree_ioerr(p);
3953 if (PageWriteback(p))
3954 end_page_writeback(p);
3955 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3956 end_extent_buffer_writeback(eb);
3957 ret = -EIO;
3958 break;
3959 }
3960 offset += PAGE_SIZE;
3961 update_nr_written(wbc, 1);
3962 unlock_page(p);
3963 }
3964
3965 if (unlikely(ret)) {
3966 for (; i < num_pages; i++) {
3967 struct page *p = eb->pages[i];
3968 clear_page_dirty_for_io(p);
3969 unlock_page(p);
3970 }
3971 }
3972
3973 return ret;
3974 }
3975
3976 int btree_write_cache_pages(struct address_space *mapping,
3977 struct writeback_control *wbc)
3978 {
3979 struct extent_buffer *eb, *prev_eb = NULL;
3980 struct extent_page_data epd = {
3981 .bio = NULL,
3982 .extent_locked = 0,
3983 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3984 };
3985 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3986 int ret = 0;
3987 int done = 0;
3988 int nr_to_write_done = 0;
3989 struct pagevec pvec;
3990 int nr_pages;
3991 pgoff_t index;
3992 pgoff_t end; /* Inclusive */
3993 int scanned = 0;
3994 xa_mark_t tag;
3995
3996 pagevec_init(&pvec);
3997 if (wbc->range_cyclic) {
3998 index = mapping->writeback_index; /* Start from prev offset */
3999 end = -1;
4000 /*
4001 * Start from the beginning does not need to cycle over the
4002 * range, mark it as scanned.
4003 */
4004 scanned = (index == 0);
4005 } else {
4006 index = wbc->range_start >> PAGE_SHIFT;
4007 end = wbc->range_end >> PAGE_SHIFT;
4008 scanned = 1;
4009 }
4010 if (wbc->sync_mode == WB_SYNC_ALL)
4011 tag = PAGECACHE_TAG_TOWRITE;
4012 else
4013 tag = PAGECACHE_TAG_DIRTY;
4014 retry:
4015 if (wbc->sync_mode == WB_SYNC_ALL)
4016 tag_pages_for_writeback(mapping, index, end);
4017 while (!done && !nr_to_write_done && (index <= end) &&
4018 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4019 tag))) {
4020 unsigned i;
4021
4022 for (i = 0; i < nr_pages; i++) {
4023 struct page *page = pvec.pages[i];
4024
4025 if (!PagePrivate(page))
4026 continue;
4027
4028 spin_lock(&mapping->private_lock);
4029 if (!PagePrivate(page)) {
4030 spin_unlock(&mapping->private_lock);
4031 continue;
4032 }
4033
4034 eb = (struct extent_buffer *)page->private;
4035
4036 /*
4037 * Shouldn't happen and normally this would be a BUG_ON
4038 * but no sense in crashing the users box for something
4039 * we can survive anyway.
4040 */
4041 if (WARN_ON(!eb)) {
4042 spin_unlock(&mapping->private_lock);
4043 continue;
4044 }
4045
4046 if (eb == prev_eb) {
4047 spin_unlock(&mapping->private_lock);
4048 continue;
4049 }
4050
4051 ret = atomic_inc_not_zero(&eb->refs);
4052 spin_unlock(&mapping->private_lock);
4053 if (!ret)
4054 continue;
4055
4056 prev_eb = eb;
4057 ret = lock_extent_buffer_for_io(eb, &epd);
4058 if (!ret) {
4059 free_extent_buffer(eb);
4060 continue;
4061 } else if (ret < 0) {
4062 done = 1;
4063 free_extent_buffer(eb);
4064 break;
4065 }
4066
4067 ret = write_one_eb(eb, wbc, &epd);
4068 if (ret) {
4069 done = 1;
4070 free_extent_buffer(eb);
4071 break;
4072 }
4073 free_extent_buffer(eb);
4074
4075 /*
4076 * the filesystem may choose to bump up nr_to_write.
4077 * We have to make sure to honor the new nr_to_write
4078 * at any time
4079 */
4080 nr_to_write_done = wbc->nr_to_write <= 0;
4081 }
4082 pagevec_release(&pvec);
4083 cond_resched();
4084 }
4085 if (!scanned && !done) {
4086 /*
4087 * We hit the last page and there is more work to be done: wrap
4088 * back to the start of the file
4089 */
4090 scanned = 1;
4091 index = 0;
4092 goto retry;
4093 }
4094 ASSERT(ret <= 0);
4095 if (ret < 0) {
4096 end_write_bio(&epd, ret);
4097 return ret;
4098 }
4099 /*
4100 * If something went wrong, don't allow any metadata write bio to be
4101 * submitted.
4102 *
4103 * This would prevent use-after-free if we had dirty pages not
4104 * cleaned up, which can still happen by fuzzed images.
4105 *
4106 * - Bad extent tree
4107 * Allowing existing tree block to be allocated for other trees.
4108 *
4109 * - Log tree operations
4110 * Exiting tree blocks get allocated to log tree, bumps its
4111 * generation, then get cleaned in tree re-balance.
4112 * Such tree block will not be written back, since it's clean,
4113 * thus no WRITTEN flag set.
4114 * And after log writes back, this tree block is not traced by
4115 * any dirty extent_io_tree.
4116 *
4117 * - Offending tree block gets re-dirtied from its original owner
4118 * Since it has bumped generation, no WRITTEN flag, it can be
4119 * reused without COWing. This tree block will not be traced
4120 * by btrfs_transaction::dirty_pages.
4121 *
4122 * Now such dirty tree block will not be cleaned by any dirty
4123 * extent io tree. Thus we don't want to submit such wild eb
4124 * if the fs already has error.
4125 */
4126 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4127 ret = flush_write_bio(&epd);
4128 } else {
4129 ret = -EUCLEAN;
4130 end_write_bio(&epd, ret);
4131 }
4132 return ret;
4133 }
4134
4135 /**
4136 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
4137 * @mapping: address space structure to write
4138 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4139 * @data: data passed to __extent_writepage function
4140 *
4141 * If a page is already under I/O, write_cache_pages() skips it, even
4142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4144 * and msync() need to guarantee that all the data which was dirty at the time
4145 * the call was made get new I/O started against them. If wbc->sync_mode is
4146 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4147 * existing IO to complete.
4148 */
4149 static int extent_write_cache_pages(struct address_space *mapping,
4150 struct writeback_control *wbc,
4151 struct extent_page_data *epd)
4152 {
4153 struct inode *inode = mapping->host;
4154 int ret = 0;
4155 int done = 0;
4156 int nr_to_write_done = 0;
4157 struct pagevec pvec;
4158 int nr_pages;
4159 pgoff_t index;
4160 pgoff_t end; /* Inclusive */
4161 pgoff_t done_index;
4162 int range_whole = 0;
4163 int scanned = 0;
4164 xa_mark_t tag;
4165
4166 /*
4167 * We have to hold onto the inode so that ordered extents can do their
4168 * work when the IO finishes. The alternative to this is failing to add
4169 * an ordered extent if the igrab() fails there and that is a huge pain
4170 * to deal with, so instead just hold onto the inode throughout the
4171 * writepages operation. If it fails here we are freeing up the inode
4172 * anyway and we'd rather not waste our time writing out stuff that is
4173 * going to be truncated anyway.
4174 */
4175 if (!igrab(inode))
4176 return 0;
4177
4178 pagevec_init(&pvec);
4179 if (wbc->range_cyclic) {
4180 index = mapping->writeback_index; /* Start from prev offset */
4181 end = -1;
4182 /*
4183 * Start from the beginning does not need to cycle over the
4184 * range, mark it as scanned.
4185 */
4186 scanned = (index == 0);
4187 } else {
4188 index = wbc->range_start >> PAGE_SHIFT;
4189 end = wbc->range_end >> PAGE_SHIFT;
4190 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4191 range_whole = 1;
4192 scanned = 1;
4193 }
4194
4195 /*
4196 * We do the tagged writepage as long as the snapshot flush bit is set
4197 * and we are the first one who do the filemap_flush() on this inode.
4198 *
4199 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4200 * not race in and drop the bit.
4201 */
4202 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4203 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4204 &BTRFS_I(inode)->runtime_flags))
4205 wbc->tagged_writepages = 1;
4206
4207 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4208 tag = PAGECACHE_TAG_TOWRITE;
4209 else
4210 tag = PAGECACHE_TAG_DIRTY;
4211 retry:
4212 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4213 tag_pages_for_writeback(mapping, index, end);
4214 done_index = index;
4215 while (!done && !nr_to_write_done && (index <= end) &&
4216 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4217 &index, end, tag))) {
4218 unsigned i;
4219
4220 for (i = 0; i < nr_pages; i++) {
4221 struct page *page = pvec.pages[i];
4222
4223 done_index = page->index + 1;
4224 /*
4225 * At this point we hold neither the i_pages lock nor
4226 * the page lock: the page may be truncated or
4227 * invalidated (changing page->mapping to NULL),
4228 * or even swizzled back from swapper_space to
4229 * tmpfs file mapping
4230 */
4231 if (!trylock_page(page)) {
4232 ret = flush_write_bio(epd);
4233 BUG_ON(ret < 0);
4234 lock_page(page);
4235 }
4236
4237 if (unlikely(page->mapping != mapping)) {
4238 unlock_page(page);
4239 continue;
4240 }
4241
4242 if (wbc->sync_mode != WB_SYNC_NONE) {
4243 if (PageWriteback(page)) {
4244 ret = flush_write_bio(epd);
4245 BUG_ON(ret < 0);
4246 }
4247 wait_on_page_writeback(page);
4248 }
4249
4250 if (PageWriteback(page) ||
4251 !clear_page_dirty_for_io(page)) {
4252 unlock_page(page);
4253 continue;
4254 }
4255
4256 ret = __extent_writepage(page, wbc, epd);
4257 if (ret < 0) {
4258 done = 1;
4259 break;
4260 }
4261
4262 /*
4263 * the filesystem may choose to bump up nr_to_write.
4264 * We have to make sure to honor the new nr_to_write
4265 * at any time
4266 */
4267 nr_to_write_done = wbc->nr_to_write <= 0;
4268 }
4269 pagevec_release(&pvec);
4270 cond_resched();
4271 }
4272 if (!scanned && !done) {
4273 /*
4274 * We hit the last page and there is more work to be done: wrap
4275 * back to the start of the file
4276 */
4277 scanned = 1;
4278 index = 0;
4279
4280 /*
4281 * If we're looping we could run into a page that is locked by a
4282 * writer and that writer could be waiting on writeback for a
4283 * page in our current bio, and thus deadlock, so flush the
4284 * write bio here.
4285 */
4286 ret = flush_write_bio(epd);
4287 if (!ret)
4288 goto retry;
4289 }
4290
4291 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4292 mapping->writeback_index = done_index;
4293
4294 btrfs_add_delayed_iput(inode);
4295 return ret;
4296 }
4297
4298 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4299 {
4300 int ret;
4301 struct extent_page_data epd = {
4302 .bio = NULL,
4303 .extent_locked = 0,
4304 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4305 };
4306
4307 ret = __extent_writepage(page, wbc, &epd);
4308 ASSERT(ret <= 0);
4309 if (ret < 0) {
4310 end_write_bio(&epd, ret);
4311 return ret;
4312 }
4313
4314 ret = flush_write_bio(&epd);
4315 ASSERT(ret <= 0);
4316 return ret;
4317 }
4318
4319 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4320 int mode)
4321 {
4322 int ret = 0;
4323 struct address_space *mapping = inode->i_mapping;
4324 struct page *page;
4325 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4326 PAGE_SHIFT;
4327
4328 struct extent_page_data epd = {
4329 .bio = NULL,
4330 .extent_locked = 1,
4331 .sync_io = mode == WB_SYNC_ALL,
4332 };
4333 struct writeback_control wbc_writepages = {
4334 .sync_mode = mode,
4335 .nr_to_write = nr_pages * 2,
4336 .range_start = start,
4337 .range_end = end + 1,
4338 /* We're called from an async helper function */
4339 .punt_to_cgroup = 1,
4340 .no_cgroup_owner = 1,
4341 };
4342
4343 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4344 while (start <= end) {
4345 page = find_get_page(mapping, start >> PAGE_SHIFT);
4346 if (clear_page_dirty_for_io(page))
4347 ret = __extent_writepage(page, &wbc_writepages, &epd);
4348 else {
4349 btrfs_writepage_endio_finish_ordered(page, start,
4350 start + PAGE_SIZE - 1, 1);
4351 unlock_page(page);
4352 }
4353 put_page(page);
4354 start += PAGE_SIZE;
4355 }
4356
4357 ASSERT(ret <= 0);
4358 if (ret == 0)
4359 ret = flush_write_bio(&epd);
4360 else
4361 end_write_bio(&epd, ret);
4362
4363 wbc_detach_inode(&wbc_writepages);
4364 return ret;
4365 }
4366
4367 int extent_writepages(struct address_space *mapping,
4368 struct writeback_control *wbc)
4369 {
4370 int ret = 0;
4371 struct extent_page_data epd = {
4372 .bio = NULL,
4373 .extent_locked = 0,
4374 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4375 };
4376
4377 ret = extent_write_cache_pages(mapping, wbc, &epd);
4378 ASSERT(ret <= 0);
4379 if (ret < 0) {
4380 end_write_bio(&epd, ret);
4381 return ret;
4382 }
4383 ret = flush_write_bio(&epd);
4384 return ret;
4385 }
4386
4387 void extent_readahead(struct readahead_control *rac)
4388 {
4389 struct bio *bio = NULL;
4390 unsigned long bio_flags = 0;
4391 struct page *pagepool[16];
4392 struct extent_map *em_cached = NULL;
4393 u64 prev_em_start = (u64)-1;
4394 int nr;
4395
4396 while ((nr = readahead_page_batch(rac, pagepool))) {
4397 u64 contig_start = page_offset(pagepool[0]);
4398 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
4399
4400 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4401
4402 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4403 &em_cached, &bio, &bio_flags, &prev_em_start);
4404 }
4405
4406 if (em_cached)
4407 free_extent_map(em_cached);
4408
4409 if (bio) {
4410 if (submit_one_bio(bio, 0, bio_flags))
4411 return;
4412 }
4413 }
4414
4415 /*
4416 * basic invalidatepage code, this waits on any locked or writeback
4417 * ranges corresponding to the page, and then deletes any extent state
4418 * records from the tree
4419 */
4420 int extent_invalidatepage(struct extent_io_tree *tree,
4421 struct page *page, unsigned long offset)
4422 {
4423 struct extent_state *cached_state = NULL;
4424 u64 start = page_offset(page);
4425 u64 end = start + PAGE_SIZE - 1;
4426 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4427
4428 start += ALIGN(offset, blocksize);
4429 if (start > end)
4430 return 0;
4431
4432 lock_extent_bits(tree, start, end, &cached_state);
4433 wait_on_page_writeback(page);
4434 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4435 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
4436 return 0;
4437 }
4438
4439 /*
4440 * a helper for releasepage, this tests for areas of the page that
4441 * are locked or under IO and drops the related state bits if it is safe
4442 * to drop the page.
4443 */
4444 static int try_release_extent_state(struct extent_io_tree *tree,
4445 struct page *page, gfp_t mask)
4446 {
4447 u64 start = page_offset(page);
4448 u64 end = start + PAGE_SIZE - 1;
4449 int ret = 1;
4450
4451 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
4452 ret = 0;
4453 } else {
4454 /*
4455 * at this point we can safely clear everything except the
4456 * locked bit and the nodatasum bit
4457 */
4458 ret = __clear_extent_bit(tree, start, end,
4459 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4460 0, 0, NULL, mask, NULL);
4461
4462 /* if clear_extent_bit failed for enomem reasons,
4463 * we can't allow the release to continue.
4464 */
4465 if (ret < 0)
4466 ret = 0;
4467 else
4468 ret = 1;
4469 }
4470 return ret;
4471 }
4472
4473 /*
4474 * a helper for releasepage. As long as there are no locked extents
4475 * in the range corresponding to the page, both state records and extent
4476 * map records are removed
4477 */
4478 int try_release_extent_mapping(struct page *page, gfp_t mask)
4479 {
4480 struct extent_map *em;
4481 u64 start = page_offset(page);
4482 u64 end = start + PAGE_SIZE - 1;
4483 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4484 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4485 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4486
4487 if (gfpflags_allow_blocking(mask) &&
4488 page->mapping->host->i_size > SZ_16M) {
4489 u64 len;
4490 while (start <= end) {
4491 len = end - start + 1;
4492 write_lock(&map->lock);
4493 em = lookup_extent_mapping(map, start, len);
4494 if (!em) {
4495 write_unlock(&map->lock);
4496 break;
4497 }
4498 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4499 em->start != start) {
4500 write_unlock(&map->lock);
4501 free_extent_map(em);
4502 break;
4503 }
4504 if (!test_range_bit(tree, em->start,
4505 extent_map_end(em) - 1,
4506 EXTENT_LOCKED, 0, NULL)) {
4507 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4508 &btrfs_inode->runtime_flags);
4509 remove_extent_mapping(map, em);
4510 /* once for the rb tree */
4511 free_extent_map(em);
4512 }
4513 start = extent_map_end(em);
4514 write_unlock(&map->lock);
4515
4516 /* once for us */
4517 free_extent_map(em);
4518 }
4519 }
4520 return try_release_extent_state(tree, page, mask);
4521 }
4522
4523 /*
4524 * helper function for fiemap, which doesn't want to see any holes.
4525 * This maps until we find something past 'last'
4526 */
4527 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4528 u64 offset, u64 last)
4529 {
4530 u64 sectorsize = btrfs_inode_sectorsize(inode);
4531 struct extent_map *em;
4532 u64 len;
4533
4534 if (offset >= last)
4535 return NULL;
4536
4537 while (1) {
4538 len = last - offset;
4539 if (len == 0)
4540 break;
4541 len = ALIGN(len, sectorsize);
4542 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
4543 if (IS_ERR_OR_NULL(em))
4544 return em;
4545
4546 /* if this isn't a hole return it */
4547 if (em->block_start != EXTENT_MAP_HOLE)
4548 return em;
4549
4550 /* this is a hole, advance to the next extent */
4551 offset = extent_map_end(em);
4552 free_extent_map(em);
4553 if (offset >= last)
4554 break;
4555 }
4556 return NULL;
4557 }
4558
4559 /*
4560 * To cache previous fiemap extent
4561 *
4562 * Will be used for merging fiemap extent
4563 */
4564 struct fiemap_cache {
4565 u64 offset;
4566 u64 phys;
4567 u64 len;
4568 u32 flags;
4569 bool cached;
4570 };
4571
4572 /*
4573 * Helper to submit fiemap extent.
4574 *
4575 * Will try to merge current fiemap extent specified by @offset, @phys,
4576 * @len and @flags with cached one.
4577 * And only when we fails to merge, cached one will be submitted as
4578 * fiemap extent.
4579 *
4580 * Return value is the same as fiemap_fill_next_extent().
4581 */
4582 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4583 struct fiemap_cache *cache,
4584 u64 offset, u64 phys, u64 len, u32 flags)
4585 {
4586 int ret = 0;
4587
4588 if (!cache->cached)
4589 goto assign;
4590
4591 /*
4592 * Sanity check, extent_fiemap() should have ensured that new
4593 * fiemap extent won't overlap with cached one.
4594 * Not recoverable.
4595 *
4596 * NOTE: Physical address can overlap, due to compression
4597 */
4598 if (cache->offset + cache->len > offset) {
4599 WARN_ON(1);
4600 return -EINVAL;
4601 }
4602
4603 /*
4604 * Only merges fiemap extents if
4605 * 1) Their logical addresses are continuous
4606 *
4607 * 2) Their physical addresses are continuous
4608 * So truly compressed (physical size smaller than logical size)
4609 * extents won't get merged with each other
4610 *
4611 * 3) Share same flags except FIEMAP_EXTENT_LAST
4612 * So regular extent won't get merged with prealloc extent
4613 */
4614 if (cache->offset + cache->len == offset &&
4615 cache->phys + cache->len == phys &&
4616 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4617 (flags & ~FIEMAP_EXTENT_LAST)) {
4618 cache->len += len;
4619 cache->flags |= flags;
4620 goto try_submit_last;
4621 }
4622
4623 /* Not mergeable, need to submit cached one */
4624 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4625 cache->len, cache->flags);
4626 cache->cached = false;
4627 if (ret)
4628 return ret;
4629 assign:
4630 cache->cached = true;
4631 cache->offset = offset;
4632 cache->phys = phys;
4633 cache->len = len;
4634 cache->flags = flags;
4635 try_submit_last:
4636 if (cache->flags & FIEMAP_EXTENT_LAST) {
4637 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4638 cache->phys, cache->len, cache->flags);
4639 cache->cached = false;
4640 }
4641 return ret;
4642 }
4643
4644 /*
4645 * Emit last fiemap cache
4646 *
4647 * The last fiemap cache may still be cached in the following case:
4648 * 0 4k 8k
4649 * |<- Fiemap range ->|
4650 * |<------------ First extent ----------->|
4651 *
4652 * In this case, the first extent range will be cached but not emitted.
4653 * So we must emit it before ending extent_fiemap().
4654 */
4655 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
4656 struct fiemap_cache *cache)
4657 {
4658 int ret;
4659
4660 if (!cache->cached)
4661 return 0;
4662
4663 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4664 cache->len, cache->flags);
4665 cache->cached = false;
4666 if (ret > 0)
4667 ret = 0;
4668 return ret;
4669 }
4670
4671 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4672 __u64 start, __u64 len)
4673 {
4674 int ret = 0;
4675 u64 off = start;
4676 u64 max = start + len;
4677 u32 flags = 0;
4678 u32 found_type;
4679 u64 last;
4680 u64 last_for_get_extent = 0;
4681 u64 disko = 0;
4682 u64 isize = i_size_read(inode);
4683 struct btrfs_key found_key;
4684 struct extent_map *em = NULL;
4685 struct extent_state *cached_state = NULL;
4686 struct btrfs_path *path;
4687 struct btrfs_root *root = BTRFS_I(inode)->root;
4688 struct fiemap_cache cache = { 0 };
4689 struct ulist *roots;
4690 struct ulist *tmp_ulist;
4691 int end = 0;
4692 u64 em_start = 0;
4693 u64 em_len = 0;
4694 u64 em_end = 0;
4695
4696 if (len == 0)
4697 return -EINVAL;
4698
4699 path = btrfs_alloc_path();
4700 if (!path)
4701 return -ENOMEM;
4702 path->leave_spinning = 1;
4703
4704 roots = ulist_alloc(GFP_KERNEL);
4705 tmp_ulist = ulist_alloc(GFP_KERNEL);
4706 if (!roots || !tmp_ulist) {
4707 ret = -ENOMEM;
4708 goto out_free_ulist;
4709 }
4710
4711 start = round_down(start, btrfs_inode_sectorsize(inode));
4712 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4713
4714 /*
4715 * lookup the last file extent. We're not using i_size here
4716 * because there might be preallocation past i_size
4717 */
4718 ret = btrfs_lookup_file_extent(NULL, root, path,
4719 btrfs_ino(BTRFS_I(inode)), -1, 0);
4720 if (ret < 0) {
4721 goto out_free_ulist;
4722 } else {
4723 WARN_ON(!ret);
4724 if (ret == 1)
4725 ret = 0;
4726 }
4727
4728 path->slots[0]--;
4729 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4730 found_type = found_key.type;
4731
4732 /* No extents, but there might be delalloc bits */
4733 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4734 found_type != BTRFS_EXTENT_DATA_KEY) {
4735 /* have to trust i_size as the end */
4736 last = (u64)-1;
4737 last_for_get_extent = isize;
4738 } else {
4739 /*
4740 * remember the start of the last extent. There are a
4741 * bunch of different factors that go into the length of the
4742 * extent, so its much less complex to remember where it started
4743 */
4744 last = found_key.offset;
4745 last_for_get_extent = last + 1;
4746 }
4747 btrfs_release_path(path);
4748
4749 /*
4750 * we might have some extents allocated but more delalloc past those
4751 * extents. so, we trust isize unless the start of the last extent is
4752 * beyond isize
4753 */
4754 if (last < isize) {
4755 last = (u64)-1;
4756 last_for_get_extent = isize;
4757 }
4758
4759 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4760 &cached_state);
4761
4762 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4763 if (!em)
4764 goto out;
4765 if (IS_ERR(em)) {
4766 ret = PTR_ERR(em);
4767 goto out;
4768 }
4769
4770 while (!end) {
4771 u64 offset_in_extent = 0;
4772
4773 /* break if the extent we found is outside the range */
4774 if (em->start >= max || extent_map_end(em) < off)
4775 break;
4776
4777 /*
4778 * get_extent may return an extent that starts before our
4779 * requested range. We have to make sure the ranges
4780 * we return to fiemap always move forward and don't
4781 * overlap, so adjust the offsets here
4782 */
4783 em_start = max(em->start, off);
4784
4785 /*
4786 * record the offset from the start of the extent
4787 * for adjusting the disk offset below. Only do this if the
4788 * extent isn't compressed since our in ram offset may be past
4789 * what we have actually allocated on disk.
4790 */
4791 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4792 offset_in_extent = em_start - em->start;
4793 em_end = extent_map_end(em);
4794 em_len = em_end - em_start;
4795 flags = 0;
4796 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4797 disko = em->block_start + offset_in_extent;
4798 else
4799 disko = 0;
4800
4801 /*
4802 * bump off for our next call to get_extent
4803 */
4804 off = extent_map_end(em);
4805 if (off >= max)
4806 end = 1;
4807
4808 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4809 end = 1;
4810 flags |= FIEMAP_EXTENT_LAST;
4811 } else if (em->block_start == EXTENT_MAP_INLINE) {
4812 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4813 FIEMAP_EXTENT_NOT_ALIGNED);
4814 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4815 flags |= (FIEMAP_EXTENT_DELALLOC |
4816 FIEMAP_EXTENT_UNKNOWN);
4817 } else if (fieinfo->fi_extents_max) {
4818 u64 bytenr = em->block_start -
4819 (em->start - em->orig_start);
4820
4821 /*
4822 * As btrfs supports shared space, this information
4823 * can be exported to userspace tools via
4824 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4825 * then we're just getting a count and we can skip the
4826 * lookup stuff.
4827 */
4828 ret = btrfs_check_shared(root,
4829 btrfs_ino(BTRFS_I(inode)),
4830 bytenr, roots, tmp_ulist);
4831 if (ret < 0)
4832 goto out_free;
4833 if (ret)
4834 flags |= FIEMAP_EXTENT_SHARED;
4835 ret = 0;
4836 }
4837 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4838 flags |= FIEMAP_EXTENT_ENCODED;
4839 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4840 flags |= FIEMAP_EXTENT_UNWRITTEN;
4841
4842 free_extent_map(em);
4843 em = NULL;
4844 if ((em_start >= last) || em_len == (u64)-1 ||
4845 (last == (u64)-1 && isize <= em_end)) {
4846 flags |= FIEMAP_EXTENT_LAST;
4847 end = 1;
4848 }
4849
4850 /* now scan forward to see if this is really the last extent. */
4851 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4852 if (IS_ERR(em)) {
4853 ret = PTR_ERR(em);
4854 goto out;
4855 }
4856 if (!em) {
4857 flags |= FIEMAP_EXTENT_LAST;
4858 end = 1;
4859 }
4860 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4861 em_len, flags);
4862 if (ret) {
4863 if (ret == 1)
4864 ret = 0;
4865 goto out_free;
4866 }
4867 }
4868 out_free:
4869 if (!ret)
4870 ret = emit_last_fiemap_cache(fieinfo, &cache);
4871 free_extent_map(em);
4872 out:
4873 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4874 &cached_state);
4875
4876 out_free_ulist:
4877 btrfs_free_path(path);
4878 ulist_free(roots);
4879 ulist_free(tmp_ulist);
4880 return ret;
4881 }
4882
4883 static void __free_extent_buffer(struct extent_buffer *eb)
4884 {
4885 kmem_cache_free(extent_buffer_cache, eb);
4886 }
4887
4888 int extent_buffer_under_io(const struct extent_buffer *eb)
4889 {
4890 return (atomic_read(&eb->io_pages) ||
4891 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4892 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4893 }
4894
4895 /*
4896 * Release all pages attached to the extent buffer.
4897 */
4898 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4899 {
4900 int i;
4901 int num_pages;
4902 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4903
4904 BUG_ON(extent_buffer_under_io(eb));
4905
4906 num_pages = num_extent_pages(eb);
4907 for (i = 0; i < num_pages; i++) {
4908 struct page *page = eb->pages[i];
4909
4910 if (!page)
4911 continue;
4912 if (mapped)
4913 spin_lock(&page->mapping->private_lock);
4914 /*
4915 * We do this since we'll remove the pages after we've
4916 * removed the eb from the radix tree, so we could race
4917 * and have this page now attached to the new eb. So
4918 * only clear page_private if it's still connected to
4919 * this eb.
4920 */
4921 if (PagePrivate(page) &&
4922 page->private == (unsigned long)eb) {
4923 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4924 BUG_ON(PageDirty(page));
4925 BUG_ON(PageWriteback(page));
4926 /*
4927 * We need to make sure we haven't be attached
4928 * to a new eb.
4929 */
4930 detach_page_private(page);
4931 }
4932
4933 if (mapped)
4934 spin_unlock(&page->mapping->private_lock);
4935
4936 /* One for when we allocated the page */
4937 put_page(page);
4938 }
4939 }
4940
4941 /*
4942 * Helper for releasing the extent buffer.
4943 */
4944 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4945 {
4946 btrfs_release_extent_buffer_pages(eb);
4947 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
4948 __free_extent_buffer(eb);
4949 }
4950
4951 static struct extent_buffer *
4952 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4953 unsigned long len)
4954 {
4955 struct extent_buffer *eb = NULL;
4956
4957 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4958 eb->start = start;
4959 eb->len = len;
4960 eb->fs_info = fs_info;
4961 eb->bflags = 0;
4962 rwlock_init(&eb->lock);
4963 atomic_set(&eb->blocking_readers, 0);
4964 eb->blocking_writers = 0;
4965 eb->lock_nested = false;
4966 init_waitqueue_head(&eb->write_lock_wq);
4967 init_waitqueue_head(&eb->read_lock_wq);
4968
4969 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4970 &fs_info->allocated_ebs);
4971
4972 spin_lock_init(&eb->refs_lock);
4973 atomic_set(&eb->refs, 1);
4974 atomic_set(&eb->io_pages, 0);
4975
4976 /*
4977 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4978 */
4979 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4980 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4981 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4982
4983 #ifdef CONFIG_BTRFS_DEBUG
4984 eb->spinning_writers = 0;
4985 atomic_set(&eb->spinning_readers, 0);
4986 atomic_set(&eb->read_locks, 0);
4987 eb->write_locks = 0;
4988 #endif
4989
4990 return eb;
4991 }
4992
4993 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4994 {
4995 int i;
4996 struct page *p;
4997 struct extent_buffer *new;
4998 int num_pages = num_extent_pages(src);
4999
5000 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5001 if (new == NULL)
5002 return NULL;
5003
5004 for (i = 0; i < num_pages; i++) {
5005 p = alloc_page(GFP_NOFS);
5006 if (!p) {
5007 btrfs_release_extent_buffer(new);
5008 return NULL;
5009 }
5010 attach_extent_buffer_page(new, p);
5011 WARN_ON(PageDirty(p));
5012 SetPageUptodate(p);
5013 new->pages[i] = p;
5014 copy_page(page_address(p), page_address(src->pages[i]));
5015 }
5016
5017 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
5018 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5019
5020 return new;
5021 }
5022
5023 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5024 u64 start, unsigned long len)
5025 {
5026 struct extent_buffer *eb;
5027 int num_pages;
5028 int i;
5029
5030 eb = __alloc_extent_buffer(fs_info, start, len);
5031 if (!eb)
5032 return NULL;
5033
5034 num_pages = num_extent_pages(eb);
5035 for (i = 0; i < num_pages; i++) {
5036 eb->pages[i] = alloc_page(GFP_NOFS);
5037 if (!eb->pages[i])
5038 goto err;
5039 }
5040 set_extent_buffer_uptodate(eb);
5041 btrfs_set_header_nritems(eb, 0);
5042 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5043
5044 return eb;
5045 err:
5046 for (; i > 0; i--)
5047 __free_page(eb->pages[i - 1]);
5048 __free_extent_buffer(eb);
5049 return NULL;
5050 }
5051
5052 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5053 u64 start)
5054 {
5055 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5056 }
5057
5058 static void check_buffer_tree_ref(struct extent_buffer *eb)
5059 {
5060 int refs;
5061 /*
5062 * The TREE_REF bit is first set when the extent_buffer is added
5063 * to the radix tree. It is also reset, if unset, when a new reference
5064 * is created by find_extent_buffer.
5065 *
5066 * It is only cleared in two cases: freeing the last non-tree
5067 * reference to the extent_buffer when its STALE bit is set or
5068 * calling releasepage when the tree reference is the only reference.
5069 *
5070 * In both cases, care is taken to ensure that the extent_buffer's
5071 * pages are not under io. However, releasepage can be concurrently
5072 * called with creating new references, which is prone to race
5073 * conditions between the calls to check_buffer_tree_ref in those
5074 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5075 *
5076 * The actual lifetime of the extent_buffer in the radix tree is
5077 * adequately protected by the refcount, but the TREE_REF bit and
5078 * its corresponding reference are not. To protect against this
5079 * class of races, we call check_buffer_tree_ref from the codepaths
5080 * which trigger io after they set eb->io_pages. Note that once io is
5081 * initiated, TREE_REF can no longer be cleared, so that is the
5082 * moment at which any such race is best fixed.
5083 */
5084 refs = atomic_read(&eb->refs);
5085 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5086 return;
5087
5088 spin_lock(&eb->refs_lock);
5089 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5090 atomic_inc(&eb->refs);
5091 spin_unlock(&eb->refs_lock);
5092 }
5093
5094 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5095 struct page *accessed)
5096 {
5097 int num_pages, i;
5098
5099 check_buffer_tree_ref(eb);
5100
5101 num_pages = num_extent_pages(eb);
5102 for (i = 0; i < num_pages; i++) {
5103 struct page *p = eb->pages[i];
5104
5105 if (p != accessed)
5106 mark_page_accessed(p);
5107 }
5108 }
5109
5110 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5111 u64 start)
5112 {
5113 struct extent_buffer *eb;
5114
5115 rcu_read_lock();
5116 eb = radix_tree_lookup(&fs_info->buffer_radix,
5117 start >> PAGE_SHIFT);
5118 if (eb && atomic_inc_not_zero(&eb->refs)) {
5119 rcu_read_unlock();
5120 /*
5121 * Lock our eb's refs_lock to avoid races with
5122 * free_extent_buffer. When we get our eb it might be flagged
5123 * with EXTENT_BUFFER_STALE and another task running
5124 * free_extent_buffer might have seen that flag set,
5125 * eb->refs == 2, that the buffer isn't under IO (dirty and
5126 * writeback flags not set) and it's still in the tree (flag
5127 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5128 * of decrementing the extent buffer's reference count twice.
5129 * So here we could race and increment the eb's reference count,
5130 * clear its stale flag, mark it as dirty and drop our reference
5131 * before the other task finishes executing free_extent_buffer,
5132 * which would later result in an attempt to free an extent
5133 * buffer that is dirty.
5134 */
5135 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5136 spin_lock(&eb->refs_lock);
5137 spin_unlock(&eb->refs_lock);
5138 }
5139 mark_extent_buffer_accessed(eb, NULL);
5140 return eb;
5141 }
5142 rcu_read_unlock();
5143
5144 return NULL;
5145 }
5146
5147 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5148 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5149 u64 start)
5150 {
5151 struct extent_buffer *eb, *exists = NULL;
5152 int ret;
5153
5154 eb = find_extent_buffer(fs_info, start);
5155 if (eb)
5156 return eb;
5157 eb = alloc_dummy_extent_buffer(fs_info, start);
5158 if (!eb)
5159 return ERR_PTR(-ENOMEM);
5160 eb->fs_info = fs_info;
5161 again:
5162 ret = radix_tree_preload(GFP_NOFS);
5163 if (ret) {
5164 exists = ERR_PTR(ret);
5165 goto free_eb;
5166 }
5167 spin_lock(&fs_info->buffer_lock);
5168 ret = radix_tree_insert(&fs_info->buffer_radix,
5169 start >> PAGE_SHIFT, eb);
5170 spin_unlock(&fs_info->buffer_lock);
5171 radix_tree_preload_end();
5172 if (ret == -EEXIST) {
5173 exists = find_extent_buffer(fs_info, start);
5174 if (exists)
5175 goto free_eb;
5176 else
5177 goto again;
5178 }
5179 check_buffer_tree_ref(eb);
5180 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5181
5182 return eb;
5183 free_eb:
5184 btrfs_release_extent_buffer(eb);
5185 return exists;
5186 }
5187 #endif
5188
5189 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5190 u64 start)
5191 {
5192 unsigned long len = fs_info->nodesize;
5193 int num_pages;
5194 int i;
5195 unsigned long index = start >> PAGE_SHIFT;
5196 struct extent_buffer *eb;
5197 struct extent_buffer *exists = NULL;
5198 struct page *p;
5199 struct address_space *mapping = fs_info->btree_inode->i_mapping;
5200 int uptodate = 1;
5201 int ret;
5202
5203 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5204 btrfs_err(fs_info, "bad tree block start %llu", start);
5205 return ERR_PTR(-EINVAL);
5206 }
5207
5208 eb = find_extent_buffer(fs_info, start);
5209 if (eb)
5210 return eb;
5211
5212 eb = __alloc_extent_buffer(fs_info, start, len);
5213 if (!eb)
5214 return ERR_PTR(-ENOMEM);
5215
5216 num_pages = num_extent_pages(eb);
5217 for (i = 0; i < num_pages; i++, index++) {
5218 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
5219 if (!p) {
5220 exists = ERR_PTR(-ENOMEM);
5221 goto free_eb;
5222 }
5223
5224 spin_lock(&mapping->private_lock);
5225 if (PagePrivate(p)) {
5226 /*
5227 * We could have already allocated an eb for this page
5228 * and attached one so lets see if we can get a ref on
5229 * the existing eb, and if we can we know it's good and
5230 * we can just return that one, else we know we can just
5231 * overwrite page->private.
5232 */
5233 exists = (struct extent_buffer *)p->private;
5234 if (atomic_inc_not_zero(&exists->refs)) {
5235 spin_unlock(&mapping->private_lock);
5236 unlock_page(p);
5237 put_page(p);
5238 mark_extent_buffer_accessed(exists, p);
5239 goto free_eb;
5240 }
5241 exists = NULL;
5242
5243 /*
5244 * Do this so attach doesn't complain and we need to
5245 * drop the ref the old guy had.
5246 */
5247 ClearPagePrivate(p);
5248 WARN_ON(PageDirty(p));
5249 put_page(p);
5250 }
5251 attach_extent_buffer_page(eb, p);
5252 spin_unlock(&mapping->private_lock);
5253 WARN_ON(PageDirty(p));
5254 eb->pages[i] = p;
5255 if (!PageUptodate(p))
5256 uptodate = 0;
5257
5258 /*
5259 * We can't unlock the pages just yet since the extent buffer
5260 * hasn't been properly inserted in the radix tree, this
5261 * opens a race with btree_releasepage which can free a page
5262 * while we are still filling in all pages for the buffer and
5263 * we could crash.
5264 */
5265 }
5266 if (uptodate)
5267 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5268 again:
5269 ret = radix_tree_preload(GFP_NOFS);
5270 if (ret) {
5271 exists = ERR_PTR(ret);
5272 goto free_eb;
5273 }
5274
5275 spin_lock(&fs_info->buffer_lock);
5276 ret = radix_tree_insert(&fs_info->buffer_radix,
5277 start >> PAGE_SHIFT, eb);
5278 spin_unlock(&fs_info->buffer_lock);
5279 radix_tree_preload_end();
5280 if (ret == -EEXIST) {
5281 exists = find_extent_buffer(fs_info, start);
5282 if (exists)
5283 goto free_eb;
5284 else
5285 goto again;
5286 }
5287 /* add one reference for the tree */
5288 check_buffer_tree_ref(eb);
5289 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5290
5291 /*
5292 * Now it's safe to unlock the pages because any calls to
5293 * btree_releasepage will correctly detect that a page belongs to a
5294 * live buffer and won't free them prematurely.
5295 */
5296 for (i = 0; i < num_pages; i++)
5297 unlock_page(eb->pages[i]);
5298 return eb;
5299
5300 free_eb:
5301 WARN_ON(!atomic_dec_and_test(&eb->refs));
5302 for (i = 0; i < num_pages; i++) {
5303 if (eb->pages[i])
5304 unlock_page(eb->pages[i]);
5305 }
5306
5307 btrfs_release_extent_buffer(eb);
5308 return exists;
5309 }
5310
5311 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5312 {
5313 struct extent_buffer *eb =
5314 container_of(head, struct extent_buffer, rcu_head);
5315
5316 __free_extent_buffer(eb);
5317 }
5318
5319 static int release_extent_buffer(struct extent_buffer *eb)
5320 __releases(&eb->refs_lock)
5321 {
5322 lockdep_assert_held(&eb->refs_lock);
5323
5324 WARN_ON(atomic_read(&eb->refs) == 0);
5325 if (atomic_dec_and_test(&eb->refs)) {
5326 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5327 struct btrfs_fs_info *fs_info = eb->fs_info;
5328
5329 spin_unlock(&eb->refs_lock);
5330
5331 spin_lock(&fs_info->buffer_lock);
5332 radix_tree_delete(&fs_info->buffer_radix,
5333 eb->start >> PAGE_SHIFT);
5334 spin_unlock(&fs_info->buffer_lock);
5335 } else {
5336 spin_unlock(&eb->refs_lock);
5337 }
5338
5339 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5340 /* Should be safe to release our pages at this point */
5341 btrfs_release_extent_buffer_pages(eb);
5342 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5343 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5344 __free_extent_buffer(eb);
5345 return 1;
5346 }
5347 #endif
5348 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5349 return 1;
5350 }
5351 spin_unlock(&eb->refs_lock);
5352
5353 return 0;
5354 }
5355
5356 void free_extent_buffer(struct extent_buffer *eb)
5357 {
5358 int refs;
5359 int old;
5360 if (!eb)
5361 return;
5362
5363 while (1) {
5364 refs = atomic_read(&eb->refs);
5365 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5366 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5367 refs == 1))
5368 break;
5369 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5370 if (old == refs)
5371 return;
5372 }
5373
5374 spin_lock(&eb->refs_lock);
5375 if (atomic_read(&eb->refs) == 2 &&
5376 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5377 !extent_buffer_under_io(eb) &&
5378 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5379 atomic_dec(&eb->refs);
5380
5381 /*
5382 * I know this is terrible, but it's temporary until we stop tracking
5383 * the uptodate bits and such for the extent buffers.
5384 */
5385 release_extent_buffer(eb);
5386 }
5387
5388 void free_extent_buffer_stale(struct extent_buffer *eb)
5389 {
5390 if (!eb)
5391 return;
5392
5393 spin_lock(&eb->refs_lock);
5394 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5395
5396 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5397 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5398 atomic_dec(&eb->refs);
5399 release_extent_buffer(eb);
5400 }
5401
5402 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
5403 {
5404 int i;
5405 int num_pages;
5406 struct page *page;
5407
5408 num_pages = num_extent_pages(eb);
5409
5410 for (i = 0; i < num_pages; i++) {
5411 page = eb->pages[i];
5412 if (!PageDirty(page))
5413 continue;
5414
5415 lock_page(page);
5416 WARN_ON(!PagePrivate(page));
5417
5418 clear_page_dirty_for_io(page);
5419 xa_lock_irq(&page->mapping->i_pages);
5420 if (!PageDirty(page))
5421 __xa_clear_mark(&page->mapping->i_pages,
5422 page_index(page), PAGECACHE_TAG_DIRTY);
5423 xa_unlock_irq(&page->mapping->i_pages);
5424 ClearPageError(page);
5425 unlock_page(page);
5426 }
5427 WARN_ON(atomic_read(&eb->refs) == 0);
5428 }
5429
5430 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5431 {
5432 int i;
5433 int num_pages;
5434 bool was_dirty;
5435
5436 check_buffer_tree_ref(eb);
5437
5438 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5439
5440 num_pages = num_extent_pages(eb);
5441 WARN_ON(atomic_read(&eb->refs) == 0);
5442 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5443
5444 if (!was_dirty)
5445 for (i = 0; i < num_pages; i++)
5446 set_page_dirty(eb->pages[i]);
5447
5448 #ifdef CONFIG_BTRFS_DEBUG
5449 for (i = 0; i < num_pages; i++)
5450 ASSERT(PageDirty(eb->pages[i]));
5451 #endif
5452
5453 return was_dirty;
5454 }
5455
5456 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5457 {
5458 int i;
5459 struct page *page;
5460 int num_pages;
5461
5462 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5463 num_pages = num_extent_pages(eb);
5464 for (i = 0; i < num_pages; i++) {
5465 page = eb->pages[i];
5466 if (page)
5467 ClearPageUptodate(page);
5468 }
5469 }
5470
5471 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5472 {
5473 int i;
5474 struct page *page;
5475 int num_pages;
5476
5477 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5478 num_pages = num_extent_pages(eb);
5479 for (i = 0; i < num_pages; i++) {
5480 page = eb->pages[i];
5481 SetPageUptodate(page);
5482 }
5483 }
5484
5485 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5486 {
5487 int i;
5488 struct page *page;
5489 int err;
5490 int ret = 0;
5491 int locked_pages = 0;
5492 int all_uptodate = 1;
5493 int num_pages;
5494 unsigned long num_reads = 0;
5495 struct bio *bio = NULL;
5496 unsigned long bio_flags = 0;
5497
5498 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5499 return 0;
5500
5501 num_pages = num_extent_pages(eb);
5502 for (i = 0; i < num_pages; i++) {
5503 page = eb->pages[i];
5504 if (wait == WAIT_NONE) {
5505 if (!trylock_page(page))
5506 goto unlock_exit;
5507 } else {
5508 lock_page(page);
5509 }
5510 locked_pages++;
5511 }
5512 /*
5513 * We need to firstly lock all pages to make sure that
5514 * the uptodate bit of our pages won't be affected by
5515 * clear_extent_buffer_uptodate().
5516 */
5517 for (i = 0; i < num_pages; i++) {
5518 page = eb->pages[i];
5519 if (!PageUptodate(page)) {
5520 num_reads++;
5521 all_uptodate = 0;
5522 }
5523 }
5524
5525 if (all_uptodate) {
5526 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5527 goto unlock_exit;
5528 }
5529
5530 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5531 eb->read_mirror = 0;
5532 atomic_set(&eb->io_pages, num_reads);
5533 /*
5534 * It is possible for releasepage to clear the TREE_REF bit before we
5535 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5536 */
5537 check_buffer_tree_ref(eb);
5538 for (i = 0; i < num_pages; i++) {
5539 page = eb->pages[i];
5540
5541 if (!PageUptodate(page)) {
5542 if (ret) {
5543 atomic_dec(&eb->io_pages);
5544 unlock_page(page);
5545 continue;
5546 }
5547
5548 ClearPageError(page);
5549 err = __extent_read_full_page(page,
5550 btree_get_extent, &bio,
5551 mirror_num, &bio_flags,
5552 REQ_META);
5553 if (err) {
5554 ret = err;
5555 /*
5556 * We use &bio in above __extent_read_full_page,
5557 * so we ensure that if it returns error, the
5558 * current page fails to add itself to bio and
5559 * it's been unlocked.
5560 *
5561 * We must dec io_pages by ourselves.
5562 */
5563 atomic_dec(&eb->io_pages);
5564 }
5565 } else {
5566 unlock_page(page);
5567 }
5568 }
5569
5570 if (bio) {
5571 err = submit_one_bio(bio, mirror_num, bio_flags);
5572 if (err)
5573 return err;
5574 }
5575
5576 if (ret || wait != WAIT_COMPLETE)
5577 return ret;
5578
5579 for (i = 0; i < num_pages; i++) {
5580 page = eb->pages[i];
5581 wait_on_page_locked(page);
5582 if (!PageUptodate(page))
5583 ret = -EIO;
5584 }
5585
5586 return ret;
5587
5588 unlock_exit:
5589 while (locked_pages > 0) {
5590 locked_pages--;
5591 page = eb->pages[locked_pages];
5592 unlock_page(page);
5593 }
5594 return ret;
5595 }
5596
5597 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5598 unsigned long start, unsigned long len)
5599 {
5600 size_t cur;
5601 size_t offset;
5602 struct page *page;
5603 char *kaddr;
5604 char *dst = (char *)dstv;
5605 unsigned long i = start >> PAGE_SHIFT;
5606
5607 if (start + len > eb->len) {
5608 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5609 eb->start, eb->len, start, len);
5610 memset(dst, 0, len);
5611 return;
5612 }
5613
5614 offset = offset_in_page(start);
5615
5616 while (len > 0) {
5617 page = eb->pages[i];
5618
5619 cur = min(len, (PAGE_SIZE - offset));
5620 kaddr = page_address(page);
5621 memcpy(dst, kaddr + offset, cur);
5622
5623 dst += cur;
5624 len -= cur;
5625 offset = 0;
5626 i++;
5627 }
5628 }
5629
5630 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5631 void __user *dstv,
5632 unsigned long start, unsigned long len)
5633 {
5634 size_t cur;
5635 size_t offset;
5636 struct page *page;
5637 char *kaddr;
5638 char __user *dst = (char __user *)dstv;
5639 unsigned long i = start >> PAGE_SHIFT;
5640 int ret = 0;
5641
5642 WARN_ON(start > eb->len);
5643 WARN_ON(start + len > eb->start + eb->len);
5644
5645 offset = offset_in_page(start);
5646
5647 while (len > 0) {
5648 page = eb->pages[i];
5649
5650 cur = min(len, (PAGE_SIZE - offset));
5651 kaddr = page_address(page);
5652 if (copy_to_user(dst, kaddr + offset, cur)) {
5653 ret = -EFAULT;
5654 break;
5655 }
5656
5657 dst += cur;
5658 len -= cur;
5659 offset = 0;
5660 i++;
5661 }
5662
5663 return ret;
5664 }
5665
5666 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5667 unsigned long start, unsigned long len)
5668 {
5669 size_t cur;
5670 size_t offset;
5671 struct page *page;
5672 char *kaddr;
5673 char *ptr = (char *)ptrv;
5674 unsigned long i = start >> PAGE_SHIFT;
5675 int ret = 0;
5676
5677 WARN_ON(start > eb->len);
5678 WARN_ON(start + len > eb->start + eb->len);
5679
5680 offset = offset_in_page(start);
5681
5682 while (len > 0) {
5683 page = eb->pages[i];
5684
5685 cur = min(len, (PAGE_SIZE - offset));
5686
5687 kaddr = page_address(page);
5688 ret = memcmp(ptr, kaddr + offset, cur);
5689 if (ret)
5690 break;
5691
5692 ptr += cur;
5693 len -= cur;
5694 offset = 0;
5695 i++;
5696 }
5697 return ret;
5698 }
5699
5700 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5701 const void *srcv)
5702 {
5703 char *kaddr;
5704
5705 WARN_ON(!PageUptodate(eb->pages[0]));
5706 kaddr = page_address(eb->pages[0]);
5707 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5708 BTRFS_FSID_SIZE);
5709 }
5710
5711 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5712 {
5713 char *kaddr;
5714
5715 WARN_ON(!PageUptodate(eb->pages[0]));
5716 kaddr = page_address(eb->pages[0]);
5717 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5718 BTRFS_FSID_SIZE);
5719 }
5720
5721 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5722 unsigned long start, unsigned long len)
5723 {
5724 size_t cur;
5725 size_t offset;
5726 struct page *page;
5727 char *kaddr;
5728 char *src = (char *)srcv;
5729 unsigned long i = start >> PAGE_SHIFT;
5730
5731 WARN_ON(start > eb->len);
5732 WARN_ON(start + len > eb->start + eb->len);
5733
5734 offset = offset_in_page(start);
5735
5736 while (len > 0) {
5737 page = eb->pages[i];
5738 WARN_ON(!PageUptodate(page));
5739
5740 cur = min(len, PAGE_SIZE - offset);
5741 kaddr = page_address(page);
5742 memcpy(kaddr + offset, src, cur);
5743
5744 src += cur;
5745 len -= cur;
5746 offset = 0;
5747 i++;
5748 }
5749 }
5750
5751 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5752 unsigned long len)
5753 {
5754 size_t cur;
5755 size_t offset;
5756 struct page *page;
5757 char *kaddr;
5758 unsigned long i = start >> PAGE_SHIFT;
5759
5760 WARN_ON(start > eb->len);
5761 WARN_ON(start + len > eb->start + eb->len);
5762
5763 offset = offset_in_page(start);
5764
5765 while (len > 0) {
5766 page = eb->pages[i];
5767 WARN_ON(!PageUptodate(page));
5768
5769 cur = min(len, PAGE_SIZE - offset);
5770 kaddr = page_address(page);
5771 memset(kaddr + offset, 0, cur);
5772
5773 len -= cur;
5774 offset = 0;
5775 i++;
5776 }
5777 }
5778
5779 void copy_extent_buffer_full(const struct extent_buffer *dst,
5780 const struct extent_buffer *src)
5781 {
5782 int i;
5783 int num_pages;
5784
5785 ASSERT(dst->len == src->len);
5786
5787 num_pages = num_extent_pages(dst);
5788 for (i = 0; i < num_pages; i++)
5789 copy_page(page_address(dst->pages[i]),
5790 page_address(src->pages[i]));
5791 }
5792
5793 void copy_extent_buffer(const struct extent_buffer *dst,
5794 const struct extent_buffer *src,
5795 unsigned long dst_offset, unsigned long src_offset,
5796 unsigned long len)
5797 {
5798 u64 dst_len = dst->len;
5799 size_t cur;
5800 size_t offset;
5801 struct page *page;
5802 char *kaddr;
5803 unsigned long i = dst_offset >> PAGE_SHIFT;
5804
5805 WARN_ON(src->len != dst_len);
5806
5807 offset = offset_in_page(dst_offset);
5808
5809 while (len > 0) {
5810 page = dst->pages[i];
5811 WARN_ON(!PageUptodate(page));
5812
5813 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5814
5815 kaddr = page_address(page);
5816 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5817
5818 src_offset += cur;
5819 len -= cur;
5820 offset = 0;
5821 i++;
5822 }
5823 }
5824
5825 /*
5826 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5827 * given bit number
5828 * @eb: the extent buffer
5829 * @start: offset of the bitmap item in the extent buffer
5830 * @nr: bit number
5831 * @page_index: return index of the page in the extent buffer that contains the
5832 * given bit number
5833 * @page_offset: return offset into the page given by page_index
5834 *
5835 * This helper hides the ugliness of finding the byte in an extent buffer which
5836 * contains a given bit.
5837 */
5838 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5839 unsigned long start, unsigned long nr,
5840 unsigned long *page_index,
5841 size_t *page_offset)
5842 {
5843 size_t byte_offset = BIT_BYTE(nr);
5844 size_t offset;
5845
5846 /*
5847 * The byte we want is the offset of the extent buffer + the offset of
5848 * the bitmap item in the extent buffer + the offset of the byte in the
5849 * bitmap item.
5850 */
5851 offset = start + byte_offset;
5852
5853 *page_index = offset >> PAGE_SHIFT;
5854 *page_offset = offset_in_page(offset);
5855 }
5856
5857 /**
5858 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5859 * @eb: the extent buffer
5860 * @start: offset of the bitmap item in the extent buffer
5861 * @nr: bit number to test
5862 */
5863 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5864 unsigned long nr)
5865 {
5866 u8 *kaddr;
5867 struct page *page;
5868 unsigned long i;
5869 size_t offset;
5870
5871 eb_bitmap_offset(eb, start, nr, &i, &offset);
5872 page = eb->pages[i];
5873 WARN_ON(!PageUptodate(page));
5874 kaddr = page_address(page);
5875 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5876 }
5877
5878 /**
5879 * extent_buffer_bitmap_set - set an area of a bitmap
5880 * @eb: the extent buffer
5881 * @start: offset of the bitmap item in the extent buffer
5882 * @pos: bit number of the first bit
5883 * @len: number of bits to set
5884 */
5885 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5886 unsigned long pos, unsigned long len)
5887 {
5888 u8 *kaddr;
5889 struct page *page;
5890 unsigned long i;
5891 size_t offset;
5892 const unsigned int size = pos + len;
5893 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5894 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5895
5896 eb_bitmap_offset(eb, start, pos, &i, &offset);
5897 page = eb->pages[i];
5898 WARN_ON(!PageUptodate(page));
5899 kaddr = page_address(page);
5900
5901 while (len >= bits_to_set) {
5902 kaddr[offset] |= mask_to_set;
5903 len -= bits_to_set;
5904 bits_to_set = BITS_PER_BYTE;
5905 mask_to_set = ~0;
5906 if (++offset >= PAGE_SIZE && len > 0) {
5907 offset = 0;
5908 page = eb->pages[++i];
5909 WARN_ON(!PageUptodate(page));
5910 kaddr = page_address(page);
5911 }
5912 }
5913 if (len) {
5914 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5915 kaddr[offset] |= mask_to_set;
5916 }
5917 }
5918
5919
5920 /**
5921 * extent_buffer_bitmap_clear - clear an area of a bitmap
5922 * @eb: the extent buffer
5923 * @start: offset of the bitmap item in the extent buffer
5924 * @pos: bit number of the first bit
5925 * @len: number of bits to clear
5926 */
5927 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5928 unsigned long start, unsigned long pos,
5929 unsigned long len)
5930 {
5931 u8 *kaddr;
5932 struct page *page;
5933 unsigned long i;
5934 size_t offset;
5935 const unsigned int size = pos + len;
5936 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5937 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5938
5939 eb_bitmap_offset(eb, start, pos, &i, &offset);
5940 page = eb->pages[i];
5941 WARN_ON(!PageUptodate(page));
5942 kaddr = page_address(page);
5943
5944 while (len >= bits_to_clear) {
5945 kaddr[offset] &= ~mask_to_clear;
5946 len -= bits_to_clear;
5947 bits_to_clear = BITS_PER_BYTE;
5948 mask_to_clear = ~0;
5949 if (++offset >= PAGE_SIZE && len > 0) {
5950 offset = 0;
5951 page = eb->pages[++i];
5952 WARN_ON(!PageUptodate(page));
5953 kaddr = page_address(page);
5954 }
5955 }
5956 if (len) {
5957 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5958 kaddr[offset] &= ~mask_to_clear;
5959 }
5960 }
5961
5962 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5963 {
5964 unsigned long distance = (src > dst) ? src - dst : dst - src;
5965 return distance < len;
5966 }
5967
5968 static void copy_pages(struct page *dst_page, struct page *src_page,
5969 unsigned long dst_off, unsigned long src_off,
5970 unsigned long len)
5971 {
5972 char *dst_kaddr = page_address(dst_page);
5973 char *src_kaddr;
5974 int must_memmove = 0;
5975
5976 if (dst_page != src_page) {
5977 src_kaddr = page_address(src_page);
5978 } else {
5979 src_kaddr = dst_kaddr;
5980 if (areas_overlap(src_off, dst_off, len))
5981 must_memmove = 1;
5982 }
5983
5984 if (must_memmove)
5985 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5986 else
5987 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5988 }
5989
5990 void memcpy_extent_buffer(const struct extent_buffer *dst,
5991 unsigned long dst_offset, unsigned long src_offset,
5992 unsigned long len)
5993 {
5994 struct btrfs_fs_info *fs_info = dst->fs_info;
5995 size_t cur;
5996 size_t dst_off_in_page;
5997 size_t src_off_in_page;
5998 unsigned long dst_i;
5999 unsigned long src_i;
6000
6001 if (src_offset + len > dst->len) {
6002 btrfs_err(fs_info,
6003 "memmove bogus src_offset %lu move len %lu dst len %lu",
6004 src_offset, len, dst->len);
6005 BUG();
6006 }
6007 if (dst_offset + len > dst->len) {
6008 btrfs_err(fs_info,
6009 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6010 dst_offset, len, dst->len);
6011 BUG();
6012 }
6013
6014 while (len > 0) {
6015 dst_off_in_page = offset_in_page(dst_offset);
6016 src_off_in_page = offset_in_page(src_offset);
6017
6018 dst_i = dst_offset >> PAGE_SHIFT;
6019 src_i = src_offset >> PAGE_SHIFT;
6020
6021 cur = min(len, (unsigned long)(PAGE_SIZE -
6022 src_off_in_page));
6023 cur = min_t(unsigned long, cur,
6024 (unsigned long)(PAGE_SIZE - dst_off_in_page));
6025
6026 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6027 dst_off_in_page, src_off_in_page, cur);
6028
6029 src_offset += cur;
6030 dst_offset += cur;
6031 len -= cur;
6032 }
6033 }
6034
6035 void memmove_extent_buffer(const struct extent_buffer *dst,
6036 unsigned long dst_offset, unsigned long src_offset,
6037 unsigned long len)
6038 {
6039 struct btrfs_fs_info *fs_info = dst->fs_info;
6040 size_t cur;
6041 size_t dst_off_in_page;
6042 size_t src_off_in_page;
6043 unsigned long dst_end = dst_offset + len - 1;
6044 unsigned long src_end = src_offset + len - 1;
6045 unsigned long dst_i;
6046 unsigned long src_i;
6047
6048 if (src_offset + len > dst->len) {
6049 btrfs_err(fs_info,
6050 "memmove bogus src_offset %lu move len %lu len %lu",
6051 src_offset, len, dst->len);
6052 BUG();
6053 }
6054 if (dst_offset + len > dst->len) {
6055 btrfs_err(fs_info,
6056 "memmove bogus dst_offset %lu move len %lu len %lu",
6057 dst_offset, len, dst->len);
6058 BUG();
6059 }
6060 if (dst_offset < src_offset) {
6061 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6062 return;
6063 }
6064 while (len > 0) {
6065 dst_i = dst_end >> PAGE_SHIFT;
6066 src_i = src_end >> PAGE_SHIFT;
6067
6068 dst_off_in_page = offset_in_page(dst_end);
6069 src_off_in_page = offset_in_page(src_end);
6070
6071 cur = min_t(unsigned long, len, src_off_in_page + 1);
6072 cur = min(cur, dst_off_in_page + 1);
6073 copy_pages(dst->pages[dst_i], dst->pages[src_i],
6074 dst_off_in_page - cur + 1,
6075 src_off_in_page - cur + 1, cur);
6076
6077 dst_end -= cur;
6078 src_end -= cur;
6079 len -= cur;
6080 }
6081 }
6082
6083 int try_release_extent_buffer(struct page *page)
6084 {
6085 struct extent_buffer *eb;
6086
6087 /*
6088 * We need to make sure nobody is attaching this page to an eb right
6089 * now.
6090 */
6091 spin_lock(&page->mapping->private_lock);
6092 if (!PagePrivate(page)) {
6093 spin_unlock(&page->mapping->private_lock);
6094 return 1;
6095 }
6096
6097 eb = (struct extent_buffer *)page->private;
6098 BUG_ON(!eb);
6099
6100 /*
6101 * This is a little awful but should be ok, we need to make sure that
6102 * the eb doesn't disappear out from under us while we're looking at
6103 * this page.
6104 */
6105 spin_lock(&eb->refs_lock);
6106 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
6107 spin_unlock(&eb->refs_lock);
6108 spin_unlock(&page->mapping->private_lock);
6109 return 0;
6110 }
6111 spin_unlock(&page->mapping->private_lock);
6112
6113 /*
6114 * If tree ref isn't set then we know the ref on this eb is a real ref,
6115 * so just return, this page will likely be freed soon anyway.
6116 */
6117 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6118 spin_unlock(&eb->refs_lock);
6119 return 0;
6120 }
6121
6122 return release_extent_buffer(eb);
6123 }