]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/extent_io.c
61d961a30dee2c6c1a7e7186086367aa818ca9a8
[thirdparty/linux.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "bio.h"
24 #include "locking.h"
25 #include "rcu-string.h"
26 #include "backref.h"
27 #include "disk-io.h"
28 #include "subpage.h"
29 #include "zoned.h"
30 #include "block-group.h"
31 #include "compression.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "file-item.h"
35 #include "file.h"
36 #include "dev-replace.h"
37 #include "super.h"
38 #include "transaction.h"
39
40 static struct kmem_cache *extent_buffer_cache;
41
42 #ifdef CONFIG_BTRFS_DEBUG
43 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
44 {
45 struct btrfs_fs_info *fs_info = eb->fs_info;
46 unsigned long flags;
47
48 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
49 list_add(&eb->leak_list, &fs_info->allocated_ebs);
50 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
51 }
52
53 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
54 {
55 struct btrfs_fs_info *fs_info = eb->fs_info;
56 unsigned long flags;
57
58 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
59 list_del(&eb->leak_list);
60 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
61 }
62
63 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
64 {
65 struct extent_buffer *eb;
66 unsigned long flags;
67
68 /*
69 * If we didn't get into open_ctree our allocated_ebs will not be
70 * initialized, so just skip this.
71 */
72 if (!fs_info->allocated_ebs.next)
73 return;
74
75 WARN_ON(!list_empty(&fs_info->allocated_ebs));
76 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
77 while (!list_empty(&fs_info->allocated_ebs)) {
78 eb = list_first_entry(&fs_info->allocated_ebs,
79 struct extent_buffer, leak_list);
80 pr_err(
81 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
82 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
83 btrfs_header_owner(eb));
84 list_del(&eb->leak_list);
85 kmem_cache_free(extent_buffer_cache, eb);
86 }
87 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
88 }
89 #else
90 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
91 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
92 #endif
93
94 /*
95 * Structure to record info about the bio being assembled, and other info like
96 * how many bytes are there before stripe/ordered extent boundary.
97 */
98 struct btrfs_bio_ctrl {
99 struct btrfs_bio *bbio;
100 enum btrfs_compression_type compress_type;
101 u32 len_to_oe_boundary;
102 blk_opf_t opf;
103 btrfs_bio_end_io_t end_io_func;
104 struct writeback_control *wbc;
105 };
106
107 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
108 {
109 struct btrfs_bio *bbio = bio_ctrl->bbio;
110
111 if (!bbio)
112 return;
113
114 /* Caller should ensure the bio has at least some range added */
115 ASSERT(bbio->bio.bi_iter.bi_size);
116
117 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
118 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
119 btrfs_submit_compressed_read(bbio);
120 else
121 btrfs_submit_bio(bbio, 0);
122
123 /* The bbio is owned by the end_io handler now */
124 bio_ctrl->bbio = NULL;
125 }
126
127 /*
128 * Submit or fail the current bio in the bio_ctrl structure.
129 */
130 static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
131 {
132 struct btrfs_bio *bbio = bio_ctrl->bbio;
133
134 if (!bbio)
135 return;
136
137 if (ret) {
138 ASSERT(ret < 0);
139 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
140 /* The bio is owned by the end_io handler now */
141 bio_ctrl->bbio = NULL;
142 } else {
143 submit_one_bio(bio_ctrl);
144 }
145 }
146
147 int __init extent_buffer_init_cachep(void)
148 {
149 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
150 sizeof(struct extent_buffer), 0,
151 SLAB_MEM_SPREAD, NULL);
152 if (!extent_buffer_cache)
153 return -ENOMEM;
154
155 return 0;
156 }
157
158 void __cold extent_buffer_free_cachep(void)
159 {
160 /*
161 * Make sure all delayed rcu free are flushed before we
162 * destroy caches.
163 */
164 rcu_barrier();
165 kmem_cache_destroy(extent_buffer_cache);
166 }
167
168 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
169 {
170 unsigned long index = start >> PAGE_SHIFT;
171 unsigned long end_index = end >> PAGE_SHIFT;
172 struct page *page;
173
174 while (index <= end_index) {
175 page = find_get_page(inode->i_mapping, index);
176 BUG_ON(!page); /* Pages should be in the extent_io_tree */
177 clear_page_dirty_for_io(page);
178 put_page(page);
179 index++;
180 }
181 }
182
183 static void process_one_page(struct btrfs_fs_info *fs_info,
184 struct page *page, struct page *locked_page,
185 unsigned long page_ops, u64 start, u64 end)
186 {
187 struct folio *folio = page_folio(page);
188 u32 len;
189
190 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
191 len = end + 1 - start;
192
193 if (page_ops & PAGE_SET_ORDERED)
194 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
195 if (page_ops & PAGE_START_WRITEBACK) {
196 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
197 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
198 }
199 if (page_ops & PAGE_END_WRITEBACK)
200 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
201
202 if (page != locked_page && (page_ops & PAGE_UNLOCK))
203 btrfs_folio_end_writer_lock(fs_info, folio, start, len);
204 }
205
206 static void __process_pages_contig(struct address_space *mapping,
207 struct page *locked_page, u64 start, u64 end,
208 unsigned long page_ops)
209 {
210 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
211 pgoff_t start_index = start >> PAGE_SHIFT;
212 pgoff_t end_index = end >> PAGE_SHIFT;
213 pgoff_t index = start_index;
214 struct folio_batch fbatch;
215 int i;
216
217 folio_batch_init(&fbatch);
218 while (index <= end_index) {
219 int found_folios;
220
221 found_folios = filemap_get_folios_contig(mapping, &index,
222 end_index, &fbatch);
223 for (i = 0; i < found_folios; i++) {
224 struct folio *folio = fbatch.folios[i];
225
226 process_one_page(fs_info, &folio->page, locked_page,
227 page_ops, start, end);
228 }
229 folio_batch_release(&fbatch);
230 cond_resched();
231 }
232 }
233
234 static noinline void __unlock_for_delalloc(struct inode *inode,
235 struct page *locked_page,
236 u64 start, u64 end)
237 {
238 unsigned long index = start >> PAGE_SHIFT;
239 unsigned long end_index = end >> PAGE_SHIFT;
240
241 ASSERT(locked_page);
242 if (index == locked_page->index && end_index == index)
243 return;
244
245 __process_pages_contig(inode->i_mapping, locked_page, start, end,
246 PAGE_UNLOCK);
247 }
248
249 static noinline int lock_delalloc_pages(struct inode *inode,
250 struct page *locked_page,
251 u64 start,
252 u64 end)
253 {
254 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
255 struct address_space *mapping = inode->i_mapping;
256 pgoff_t start_index = start >> PAGE_SHIFT;
257 pgoff_t end_index = end >> PAGE_SHIFT;
258 pgoff_t index = start_index;
259 u64 processed_end = start;
260 struct folio_batch fbatch;
261
262 if (index == locked_page->index && index == end_index)
263 return 0;
264
265 folio_batch_init(&fbatch);
266 while (index <= end_index) {
267 unsigned int found_folios, i;
268
269 found_folios = filemap_get_folios_contig(mapping, &index,
270 end_index, &fbatch);
271 if (found_folios == 0)
272 goto out;
273
274 for (i = 0; i < found_folios; i++) {
275 struct folio *folio = fbatch.folios[i];
276 struct page *page = folio_page(folio, 0);
277 u32 len = end + 1 - start;
278
279 if (page == locked_page)
280 continue;
281
282 if (btrfs_folio_start_writer_lock(fs_info, folio, start,
283 len))
284 goto out;
285
286 if (!PageDirty(page) || page->mapping != mapping) {
287 btrfs_folio_end_writer_lock(fs_info, folio, start,
288 len);
289 goto out;
290 }
291
292 processed_end = page_offset(page) + PAGE_SIZE - 1;
293 }
294 folio_batch_release(&fbatch);
295 cond_resched();
296 }
297
298 return 0;
299 out:
300 folio_batch_release(&fbatch);
301 if (processed_end > start)
302 __unlock_for_delalloc(inode, locked_page, start, processed_end);
303 return -EAGAIN;
304 }
305
306 /*
307 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
308 * more than @max_bytes.
309 *
310 * @start: The original start bytenr to search.
311 * Will store the extent range start bytenr.
312 * @end: The original end bytenr of the search range
313 * Will store the extent range end bytenr.
314 *
315 * Return true if we find a delalloc range which starts inside the original
316 * range, and @start/@end will store the delalloc range start/end.
317 *
318 * Return false if we can't find any delalloc range which starts inside the
319 * original range, and @start/@end will be the non-delalloc range start/end.
320 */
321 EXPORT_FOR_TESTS
322 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
323 struct page *locked_page, u64 *start,
324 u64 *end)
325 {
326 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
327 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
328 const u64 orig_start = *start;
329 const u64 orig_end = *end;
330 /* The sanity tests may not set a valid fs_info. */
331 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
332 u64 delalloc_start;
333 u64 delalloc_end;
334 bool found;
335 struct extent_state *cached_state = NULL;
336 int ret;
337 int loops = 0;
338
339 /* Caller should pass a valid @end to indicate the search range end */
340 ASSERT(orig_end > orig_start);
341
342 /* The range should at least cover part of the page */
343 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
344 orig_end <= page_offset(locked_page)));
345 again:
346 /* step one, find a bunch of delalloc bytes starting at start */
347 delalloc_start = *start;
348 delalloc_end = 0;
349 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
350 max_bytes, &cached_state);
351 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
352 *start = delalloc_start;
353
354 /* @delalloc_end can be -1, never go beyond @orig_end */
355 *end = min(delalloc_end, orig_end);
356 free_extent_state(cached_state);
357 return false;
358 }
359
360 /*
361 * start comes from the offset of locked_page. We have to lock
362 * pages in order, so we can't process delalloc bytes before
363 * locked_page
364 */
365 if (delalloc_start < *start)
366 delalloc_start = *start;
367
368 /*
369 * make sure to limit the number of pages we try to lock down
370 */
371 if (delalloc_end + 1 - delalloc_start > max_bytes)
372 delalloc_end = delalloc_start + max_bytes - 1;
373
374 /* step two, lock all the pages after the page that has start */
375 ret = lock_delalloc_pages(inode, locked_page,
376 delalloc_start, delalloc_end);
377 ASSERT(!ret || ret == -EAGAIN);
378 if (ret == -EAGAIN) {
379 /* some of the pages are gone, lets avoid looping by
380 * shortening the size of the delalloc range we're searching
381 */
382 free_extent_state(cached_state);
383 cached_state = NULL;
384 if (!loops) {
385 max_bytes = PAGE_SIZE;
386 loops = 1;
387 goto again;
388 } else {
389 found = false;
390 goto out_failed;
391 }
392 }
393
394 /* step three, lock the state bits for the whole range */
395 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
396
397 /* then test to make sure it is all still delalloc */
398 ret = test_range_bit(tree, delalloc_start, delalloc_end,
399 EXTENT_DELALLOC, cached_state);
400 if (!ret) {
401 unlock_extent(tree, delalloc_start, delalloc_end,
402 &cached_state);
403 __unlock_for_delalloc(inode, locked_page,
404 delalloc_start, delalloc_end);
405 cond_resched();
406 goto again;
407 }
408 free_extent_state(cached_state);
409 *start = delalloc_start;
410 *end = delalloc_end;
411 out_failed:
412 return found;
413 }
414
415 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
416 struct page *locked_page,
417 u32 clear_bits, unsigned long page_ops)
418 {
419 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
420
421 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
422 start, end, page_ops);
423 }
424
425 static bool btrfs_verify_page(struct page *page, u64 start)
426 {
427 if (!fsverity_active(page->mapping->host) ||
428 PageUptodate(page) ||
429 start >= i_size_read(page->mapping->host))
430 return true;
431 return fsverity_verify_page(page);
432 }
433
434 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
435 {
436 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
437 struct folio *folio = page_folio(page);
438
439 ASSERT(page_offset(page) <= start &&
440 start + len <= page_offset(page) + PAGE_SIZE);
441
442 if (uptodate && btrfs_verify_page(page, start))
443 btrfs_folio_set_uptodate(fs_info, folio, start, len);
444 else
445 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
446
447 if (!btrfs_is_subpage(fs_info, page->mapping))
448 unlock_page(page);
449 else
450 btrfs_subpage_end_reader(fs_info, folio, start, len);
451 }
452
453 /*
454 * After a write IO is done, we need to:
455 *
456 * - clear the uptodate bits on error
457 * - clear the writeback bits in the extent tree for the range
458 * - filio_end_writeback() if there is no more pending io for the folio
459 *
460 * Scheduling is not allowed, so the extent state tree is expected
461 * to have one and only one object corresponding to this IO.
462 */
463 static void end_bbio_data_write(struct btrfs_bio *bbio)
464 {
465 struct bio *bio = &bbio->bio;
466 int error = blk_status_to_errno(bio->bi_status);
467 struct folio_iter fi;
468
469 ASSERT(!bio_flagged(bio, BIO_CLONED));
470 bio_for_each_folio_all(fi, bio) {
471 struct folio *folio = fi.folio;
472 struct inode *inode = folio->mapping->host;
473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
474 const u32 sectorsize = fs_info->sectorsize;
475 u64 start = folio_pos(folio) + fi.offset;
476 u32 len = fi.length;
477
478 /* Only order 0 (single page) folios are allowed for data. */
479 ASSERT(folio_order(folio) == 0);
480
481 /* Our read/write should always be sector aligned. */
482 if (!IS_ALIGNED(fi.offset, sectorsize))
483 btrfs_err(fs_info,
484 "partial page write in btrfs with offset %zu and length %zu",
485 fi.offset, fi.length);
486 else if (!IS_ALIGNED(fi.length, sectorsize))
487 btrfs_info(fs_info,
488 "incomplete page write with offset %zu and length %zu",
489 fi.offset, fi.length);
490
491 btrfs_finish_ordered_extent(bbio->ordered,
492 folio_page(folio, 0), start, len, !error);
493 if (error)
494 mapping_set_error(folio->mapping, error);
495 btrfs_folio_clear_writeback(fs_info, folio, start, len);
496 }
497
498 bio_put(bio);
499 }
500
501 /*
502 * Record previously processed extent range
503 *
504 * For endio_readpage_release_extent() to handle a full extent range, reducing
505 * the extent io operations.
506 */
507 struct processed_extent {
508 struct btrfs_inode *inode;
509 /* Start of the range in @inode */
510 u64 start;
511 /* End of the range in @inode */
512 u64 end;
513 bool uptodate;
514 };
515
516 /*
517 * Try to release processed extent range
518 *
519 * May not release the extent range right now if the current range is
520 * contiguous to processed extent.
521 *
522 * Will release processed extent when any of @inode, @uptodate, the range is
523 * no longer contiguous to the processed range.
524 *
525 * Passing @inode == NULL will force processed extent to be released.
526 */
527 static void endio_readpage_release_extent(struct processed_extent *processed,
528 struct btrfs_inode *inode, u64 start, u64 end,
529 bool uptodate)
530 {
531 struct extent_state *cached = NULL;
532 struct extent_io_tree *tree;
533
534 /* The first extent, initialize @processed */
535 if (!processed->inode)
536 goto update;
537
538 /*
539 * Contiguous to processed extent, just uptodate the end.
540 *
541 * Several things to notice:
542 *
543 * - bio can be merged as long as on-disk bytenr is contiguous
544 * This means we can have page belonging to other inodes, thus need to
545 * check if the inode still matches.
546 * - bvec can contain range beyond current page for multi-page bvec
547 * Thus we need to do processed->end + 1 >= start check
548 */
549 if (processed->inode == inode && processed->uptodate == uptodate &&
550 processed->end + 1 >= start && end >= processed->end) {
551 processed->end = end;
552 return;
553 }
554
555 tree = &processed->inode->io_tree;
556 /*
557 * Now we don't have range contiguous to the processed range, release
558 * the processed range now.
559 */
560 unlock_extent(tree, processed->start, processed->end, &cached);
561
562 update:
563 /* Update processed to current range */
564 processed->inode = inode;
565 processed->start = start;
566 processed->end = end;
567 processed->uptodate = uptodate;
568 }
569
570 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
571 {
572 struct folio *folio = page_folio(page);
573
574 ASSERT(folio_test_locked(folio));
575 if (!btrfs_is_subpage(fs_info, folio->mapping))
576 return;
577
578 ASSERT(folio_test_private(folio));
579 btrfs_subpage_start_reader(fs_info, folio, page_offset(page), PAGE_SIZE);
580 }
581
582 /*
583 * After a data read IO is done, we need to:
584 *
585 * - clear the uptodate bits on error
586 * - set the uptodate bits if things worked
587 * - set the folio up to date if all extents in the tree are uptodate
588 * - clear the lock bit in the extent tree
589 * - unlock the folio if there are no other extents locked for it
590 *
591 * Scheduling is not allowed, so the extent state tree is expected
592 * to have one and only one object corresponding to this IO.
593 */
594 static void end_bbio_data_read(struct btrfs_bio *bbio)
595 {
596 struct bio *bio = &bbio->bio;
597 struct processed_extent processed = { 0 };
598 struct folio_iter fi;
599 /*
600 * The offset to the beginning of a bio, since one bio can never be
601 * larger than UINT_MAX, u32 here is enough.
602 */
603 u32 bio_offset = 0;
604
605 ASSERT(!bio_flagged(bio, BIO_CLONED));
606 bio_for_each_folio_all(fi, &bbio->bio) {
607 bool uptodate = !bio->bi_status;
608 struct folio *folio = fi.folio;
609 struct inode *inode = folio->mapping->host;
610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
611 const u32 sectorsize = fs_info->sectorsize;
612 u64 start;
613 u64 end;
614 u32 len;
615
616 /* For now only order 0 folios are supported for data. */
617 ASSERT(folio_order(folio) == 0);
618 btrfs_debug(fs_info,
619 "%s: bi_sector=%llu, err=%d, mirror=%u",
620 __func__, bio->bi_iter.bi_sector, bio->bi_status,
621 bbio->mirror_num);
622
623 /*
624 * We always issue full-sector reads, but if some block in a
625 * folio fails to read, blk_update_request() will advance
626 * bv_offset and adjust bv_len to compensate. Print a warning
627 * for unaligned offsets, and an error if they don't add up to
628 * a full sector.
629 */
630 if (!IS_ALIGNED(fi.offset, sectorsize))
631 btrfs_err(fs_info,
632 "partial page read in btrfs with offset %zu and length %zu",
633 fi.offset, fi.length);
634 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
635 btrfs_info(fs_info,
636 "incomplete page read with offset %zu and length %zu",
637 fi.offset, fi.length);
638
639 start = folio_pos(folio) + fi.offset;
640 end = start + fi.length - 1;
641 len = fi.length;
642
643 if (likely(uptodate)) {
644 loff_t i_size = i_size_read(inode);
645 pgoff_t end_index = i_size >> folio_shift(folio);
646
647 /*
648 * Zero out the remaining part if this range straddles
649 * i_size.
650 *
651 * Here we should only zero the range inside the folio,
652 * not touch anything else.
653 *
654 * NOTE: i_size is exclusive while end is inclusive.
655 */
656 if (folio_index(folio) == end_index && i_size <= end) {
657 u32 zero_start = max(offset_in_folio(folio, i_size),
658 offset_in_folio(folio, start));
659 u32 zero_len = offset_in_folio(folio, end) + 1 -
660 zero_start;
661
662 folio_zero_range(folio, zero_start, zero_len);
663 }
664 }
665
666 /* Update page status and unlock. */
667 end_page_read(folio_page(folio, 0), uptodate, start, len);
668 endio_readpage_release_extent(&processed, BTRFS_I(inode),
669 start, end, uptodate);
670
671 ASSERT(bio_offset + len > bio_offset);
672 bio_offset += len;
673
674 }
675 /* Release the last extent */
676 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
677 bio_put(bio);
678 }
679
680 /*
681 * Populate every free slot in a provided array with pages.
682 *
683 * @nr_pages: number of pages to allocate
684 * @page_array: the array to fill with pages; any existing non-null entries in
685 * the array will be skipped
686 * @extra_gfp: the extra GFP flags for the allocation.
687 *
688 * Return: 0 if all pages were able to be allocated;
689 * -ENOMEM otherwise, the partially allocated pages would be freed and
690 * the array slots zeroed
691 */
692 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
693 gfp_t extra_gfp)
694 {
695 unsigned int allocated;
696
697 for (allocated = 0; allocated < nr_pages;) {
698 unsigned int last = allocated;
699
700 allocated = alloc_pages_bulk_array(GFP_NOFS | extra_gfp,
701 nr_pages, page_array);
702
703 if (allocated == nr_pages)
704 return 0;
705
706 /*
707 * During this iteration, no page could be allocated, even
708 * though alloc_pages_bulk_array() falls back to alloc_page()
709 * if it could not bulk-allocate. So we must be out of memory.
710 */
711 if (allocated == last) {
712 for (int i = 0; i < allocated; i++) {
713 __free_page(page_array[i]);
714 page_array[i] = NULL;
715 }
716 return -ENOMEM;
717 }
718
719 memalloc_retry_wait(GFP_NOFS);
720 }
721 return 0;
722 }
723
724 /*
725 * Populate needed folios for the extent buffer.
726 *
727 * For now, the folios populated are always in order 0 (aka, single page).
728 */
729 static int alloc_eb_folio_array(struct extent_buffer *eb, gfp_t extra_gfp)
730 {
731 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
732 int num_pages = num_extent_pages(eb);
733 int ret;
734
735 ret = btrfs_alloc_page_array(num_pages, page_array, extra_gfp);
736 if (ret < 0)
737 return ret;
738
739 for (int i = 0; i < num_pages; i++)
740 eb->folios[i] = page_folio(page_array[i]);
741 return 0;
742 }
743
744 static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
745 struct page *page, u64 disk_bytenr,
746 unsigned int pg_offset)
747 {
748 struct bio *bio = &bio_ctrl->bbio->bio;
749 struct bio_vec *bvec = bio_last_bvec_all(bio);
750 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
751
752 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
753 /*
754 * For compression, all IO should have its logical bytenr set
755 * to the starting bytenr of the compressed extent.
756 */
757 return bio->bi_iter.bi_sector == sector;
758 }
759
760 /*
761 * The contig check requires the following conditions to be met:
762 *
763 * 1) The pages are belonging to the same inode
764 * This is implied by the call chain.
765 *
766 * 2) The range has adjacent logical bytenr
767 *
768 * 3) The range has adjacent file offset
769 * This is required for the usage of btrfs_bio->file_offset.
770 */
771 return bio_end_sector(bio) == sector &&
772 page_offset(bvec->bv_page) + bvec->bv_offset + bvec->bv_len ==
773 page_offset(page) + pg_offset;
774 }
775
776 static void alloc_new_bio(struct btrfs_inode *inode,
777 struct btrfs_bio_ctrl *bio_ctrl,
778 u64 disk_bytenr, u64 file_offset)
779 {
780 struct btrfs_fs_info *fs_info = inode->root->fs_info;
781 struct btrfs_bio *bbio;
782
783 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
784 bio_ctrl->end_io_func, NULL);
785 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
786 bbio->inode = inode;
787 bbio->file_offset = file_offset;
788 bio_ctrl->bbio = bbio;
789 bio_ctrl->len_to_oe_boundary = U32_MAX;
790
791 /* Limit data write bios to the ordered boundary. */
792 if (bio_ctrl->wbc) {
793 struct btrfs_ordered_extent *ordered;
794
795 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
796 if (ordered) {
797 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
798 ordered->file_offset +
799 ordered->disk_num_bytes - file_offset);
800 bbio->ordered = ordered;
801 }
802
803 /*
804 * Pick the last added device to support cgroup writeback. For
805 * multi-device file systems this means blk-cgroup policies have
806 * to always be set on the last added/replaced device.
807 * This is a bit odd but has been like that for a long time.
808 */
809 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
810 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
811 }
812 }
813
814 /*
815 * @disk_bytenr: logical bytenr where the write will be
816 * @page: page to add to the bio
817 * @size: portion of page that we want to write to
818 * @pg_offset: offset of the new bio or to check whether we are adding
819 * a contiguous page to the previous one
820 *
821 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
822 * new one in @bio_ctrl->bbio.
823 * The mirror number for this IO should already be initizlied in
824 * @bio_ctrl->mirror_num.
825 */
826 static void submit_extent_page(struct btrfs_bio_ctrl *bio_ctrl,
827 u64 disk_bytenr, struct page *page,
828 size_t size, unsigned long pg_offset)
829 {
830 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
831
832 ASSERT(pg_offset + size <= PAGE_SIZE);
833 ASSERT(bio_ctrl->end_io_func);
834
835 if (bio_ctrl->bbio &&
836 !btrfs_bio_is_contig(bio_ctrl, page, disk_bytenr, pg_offset))
837 submit_one_bio(bio_ctrl);
838
839 do {
840 u32 len = size;
841
842 /* Allocate new bio if needed */
843 if (!bio_ctrl->bbio) {
844 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
845 page_offset(page) + pg_offset);
846 }
847
848 /* Cap to the current ordered extent boundary if there is one. */
849 if (len > bio_ctrl->len_to_oe_boundary) {
850 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
851 ASSERT(is_data_inode(&inode->vfs_inode));
852 len = bio_ctrl->len_to_oe_boundary;
853 }
854
855 if (bio_add_page(&bio_ctrl->bbio->bio, page, len, pg_offset) != len) {
856 /* bio full: move on to a new one */
857 submit_one_bio(bio_ctrl);
858 continue;
859 }
860
861 if (bio_ctrl->wbc)
862 wbc_account_cgroup_owner(bio_ctrl->wbc, page, len);
863
864 size -= len;
865 pg_offset += len;
866 disk_bytenr += len;
867
868 /*
869 * len_to_oe_boundary defaults to U32_MAX, which isn't page or
870 * sector aligned. alloc_new_bio() then sets it to the end of
871 * our ordered extent for writes into zoned devices.
872 *
873 * When len_to_oe_boundary is tracking an ordered extent, we
874 * trust the ordered extent code to align things properly, and
875 * the check above to cap our write to the ordered extent
876 * boundary is correct.
877 *
878 * When len_to_oe_boundary is U32_MAX, the cap above would
879 * result in a 4095 byte IO for the last page right before
880 * we hit the bio limit of UINT_MAX. bio_add_page() has all
881 * the checks required to make sure we don't overflow the bio,
882 * and we should just ignore len_to_oe_boundary completely
883 * unless we're using it to track an ordered extent.
884 *
885 * It's pretty hard to make a bio sized U32_MAX, but it can
886 * happen when the page cache is able to feed us contiguous
887 * pages for large extents.
888 */
889 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
890 bio_ctrl->len_to_oe_boundary -= len;
891
892 /* Ordered extent boundary: move on to a new bio. */
893 if (bio_ctrl->len_to_oe_boundary == 0)
894 submit_one_bio(bio_ctrl);
895 } while (size);
896 }
897
898 static int attach_extent_buffer_folio(struct extent_buffer *eb,
899 struct folio *folio,
900 struct btrfs_subpage *prealloc)
901 {
902 struct btrfs_fs_info *fs_info = eb->fs_info;
903 int ret = 0;
904
905 /*
906 * If the page is mapped to btree inode, we should hold the private
907 * lock to prevent race.
908 * For cloned or dummy extent buffers, their pages are not mapped and
909 * will not race with any other ebs.
910 */
911 if (folio->mapping)
912 lockdep_assert_held(&folio->mapping->private_lock);
913
914 if (fs_info->nodesize >= PAGE_SIZE) {
915 if (!folio_test_private(folio))
916 folio_attach_private(folio, eb);
917 else
918 WARN_ON(folio_get_private(folio) != eb);
919 return 0;
920 }
921
922 /* Already mapped, just free prealloc */
923 if (folio_test_private(folio)) {
924 btrfs_free_subpage(prealloc);
925 return 0;
926 }
927
928 if (prealloc)
929 /* Has preallocated memory for subpage */
930 folio_attach_private(folio, prealloc);
931 else
932 /* Do new allocation to attach subpage */
933 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
934 return ret;
935 }
936
937 int set_page_extent_mapped(struct page *page)
938 {
939 struct folio *folio = page_folio(page);
940 struct btrfs_fs_info *fs_info;
941
942 ASSERT(page->mapping);
943
944 if (folio_test_private(folio))
945 return 0;
946
947 fs_info = btrfs_sb(page->mapping->host->i_sb);
948
949 if (btrfs_is_subpage(fs_info, page->mapping))
950 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
951
952 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
953 return 0;
954 }
955
956 void clear_page_extent_mapped(struct page *page)
957 {
958 struct folio *folio = page_folio(page);
959 struct btrfs_fs_info *fs_info;
960
961 ASSERT(page->mapping);
962
963 if (!folio_test_private(folio))
964 return;
965
966 fs_info = btrfs_sb(page->mapping->host->i_sb);
967 if (btrfs_is_subpage(fs_info, page->mapping))
968 return btrfs_detach_subpage(fs_info, folio);
969
970 folio_detach_private(folio);
971 }
972
973 static struct extent_map *
974 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
975 u64 start, u64 len, struct extent_map **em_cached)
976 {
977 struct extent_map *em;
978
979 if (em_cached && *em_cached) {
980 em = *em_cached;
981 if (extent_map_in_tree(em) && start >= em->start &&
982 start < extent_map_end(em)) {
983 refcount_inc(&em->refs);
984 return em;
985 }
986
987 free_extent_map(em);
988 *em_cached = NULL;
989 }
990
991 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
992 if (em_cached && !IS_ERR(em)) {
993 BUG_ON(*em_cached);
994 refcount_inc(&em->refs);
995 *em_cached = em;
996 }
997 return em;
998 }
999 /*
1000 * basic readpage implementation. Locked extent state structs are inserted
1001 * into the tree that are removed when the IO is done (by the end_io
1002 * handlers)
1003 * XXX JDM: This needs looking at to ensure proper page locking
1004 * return 0 on success, otherwise return error
1005 */
1006 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1007 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
1008 {
1009 struct inode *inode = page->mapping->host;
1010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1011 u64 start = page_offset(page);
1012 const u64 end = start + PAGE_SIZE - 1;
1013 u64 cur = start;
1014 u64 extent_offset;
1015 u64 last_byte = i_size_read(inode);
1016 u64 block_start;
1017 struct extent_map *em;
1018 int ret = 0;
1019 size_t pg_offset = 0;
1020 size_t iosize;
1021 size_t blocksize = inode->i_sb->s_blocksize;
1022 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1023
1024 ret = set_page_extent_mapped(page);
1025 if (ret < 0) {
1026 unlock_extent(tree, start, end, NULL);
1027 unlock_page(page);
1028 return ret;
1029 }
1030
1031 if (page->index == last_byte >> PAGE_SHIFT) {
1032 size_t zero_offset = offset_in_page(last_byte);
1033
1034 if (zero_offset) {
1035 iosize = PAGE_SIZE - zero_offset;
1036 memzero_page(page, zero_offset, iosize);
1037 }
1038 }
1039 bio_ctrl->end_io_func = end_bbio_data_read;
1040 begin_page_read(fs_info, page);
1041 while (cur <= end) {
1042 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
1043 bool force_bio_submit = false;
1044 u64 disk_bytenr;
1045
1046 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1047 if (cur >= last_byte) {
1048 iosize = PAGE_SIZE - pg_offset;
1049 memzero_page(page, pg_offset, iosize);
1050 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1051 end_page_read(page, true, cur, iosize);
1052 break;
1053 }
1054 em = __get_extent_map(inode, page, pg_offset, cur,
1055 end - cur + 1, em_cached);
1056 if (IS_ERR(em)) {
1057 unlock_extent(tree, cur, end, NULL);
1058 end_page_read(page, false, cur, end + 1 - cur);
1059 return PTR_ERR(em);
1060 }
1061 extent_offset = cur - em->start;
1062 BUG_ON(extent_map_end(em) <= cur);
1063 BUG_ON(end < cur);
1064
1065 compress_type = extent_map_compression(em);
1066
1067 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1068 iosize = ALIGN(iosize, blocksize);
1069 if (compress_type != BTRFS_COMPRESS_NONE)
1070 disk_bytenr = em->block_start;
1071 else
1072 disk_bytenr = em->block_start + extent_offset;
1073 block_start = em->block_start;
1074 if (em->flags & EXTENT_FLAG_PREALLOC)
1075 block_start = EXTENT_MAP_HOLE;
1076
1077 /*
1078 * If we have a file range that points to a compressed extent
1079 * and it's followed by a consecutive file range that points
1080 * to the same compressed extent (possibly with a different
1081 * offset and/or length, so it either points to the whole extent
1082 * or only part of it), we must make sure we do not submit a
1083 * single bio to populate the pages for the 2 ranges because
1084 * this makes the compressed extent read zero out the pages
1085 * belonging to the 2nd range. Imagine the following scenario:
1086 *
1087 * File layout
1088 * [0 - 8K] [8K - 24K]
1089 * | |
1090 * | |
1091 * points to extent X, points to extent X,
1092 * offset 4K, length of 8K offset 0, length 16K
1093 *
1094 * [extent X, compressed length = 4K uncompressed length = 16K]
1095 *
1096 * If the bio to read the compressed extent covers both ranges,
1097 * it will decompress extent X into the pages belonging to the
1098 * first range and then it will stop, zeroing out the remaining
1099 * pages that belong to the other range that points to extent X.
1100 * So here we make sure we submit 2 bios, one for the first
1101 * range and another one for the third range. Both will target
1102 * the same physical extent from disk, but we can't currently
1103 * make the compressed bio endio callback populate the pages
1104 * for both ranges because each compressed bio is tightly
1105 * coupled with a single extent map, and each range can have
1106 * an extent map with a different offset value relative to the
1107 * uncompressed data of our extent and different lengths. This
1108 * is a corner case so we prioritize correctness over
1109 * non-optimal behavior (submitting 2 bios for the same extent).
1110 */
1111 if (compress_type != BTRFS_COMPRESS_NONE &&
1112 prev_em_start && *prev_em_start != (u64)-1 &&
1113 *prev_em_start != em->start)
1114 force_bio_submit = true;
1115
1116 if (prev_em_start)
1117 *prev_em_start = em->start;
1118
1119 free_extent_map(em);
1120 em = NULL;
1121
1122 /* we've found a hole, just zero and go on */
1123 if (block_start == EXTENT_MAP_HOLE) {
1124 memzero_page(page, pg_offset, iosize);
1125
1126 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1127 end_page_read(page, true, cur, iosize);
1128 cur = cur + iosize;
1129 pg_offset += iosize;
1130 continue;
1131 }
1132 /* the get_extent function already copied into the page */
1133 if (block_start == EXTENT_MAP_INLINE) {
1134 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1135 end_page_read(page, true, cur, iosize);
1136 cur = cur + iosize;
1137 pg_offset += iosize;
1138 continue;
1139 }
1140
1141 if (bio_ctrl->compress_type != compress_type) {
1142 submit_one_bio(bio_ctrl);
1143 bio_ctrl->compress_type = compress_type;
1144 }
1145
1146 if (force_bio_submit)
1147 submit_one_bio(bio_ctrl);
1148 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1149 pg_offset);
1150 cur = cur + iosize;
1151 pg_offset += iosize;
1152 }
1153
1154 return 0;
1155 }
1156
1157 int btrfs_read_folio(struct file *file, struct folio *folio)
1158 {
1159 struct page *page = &folio->page;
1160 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1161 u64 start = page_offset(page);
1162 u64 end = start + PAGE_SIZE - 1;
1163 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1164 int ret;
1165
1166 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1167
1168 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, NULL);
1169 /*
1170 * If btrfs_do_readpage() failed we will want to submit the assembled
1171 * bio to do the cleanup.
1172 */
1173 submit_one_bio(&bio_ctrl);
1174 return ret;
1175 }
1176
1177 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1178 u64 start, u64 end,
1179 struct extent_map **em_cached,
1180 struct btrfs_bio_ctrl *bio_ctrl,
1181 u64 *prev_em_start)
1182 {
1183 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1184 int index;
1185
1186 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1187
1188 for (index = 0; index < nr_pages; index++) {
1189 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1190 prev_em_start);
1191 put_page(pages[index]);
1192 }
1193 }
1194
1195 /*
1196 * helper for __extent_writepage, doing all of the delayed allocation setup.
1197 *
1198 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1199 * to write the page (copy into inline extent). In this case the IO has
1200 * been started and the page is already unlocked.
1201 *
1202 * This returns 0 if all went well (page still locked)
1203 * This returns < 0 if there were errors (page still locked)
1204 */
1205 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1206 struct page *page, struct writeback_control *wbc)
1207 {
1208 const u64 page_start = page_offset(page);
1209 const u64 page_end = page_start + PAGE_SIZE - 1;
1210 u64 delalloc_start = page_start;
1211 u64 delalloc_end = page_end;
1212 u64 delalloc_to_write = 0;
1213 int ret = 0;
1214
1215 while (delalloc_start < page_end) {
1216 delalloc_end = page_end;
1217 if (!find_lock_delalloc_range(&inode->vfs_inode, page,
1218 &delalloc_start, &delalloc_end)) {
1219 delalloc_start = delalloc_end + 1;
1220 continue;
1221 }
1222
1223 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1224 delalloc_end, wbc);
1225 if (ret < 0)
1226 return ret;
1227
1228 delalloc_start = delalloc_end + 1;
1229 }
1230
1231 /*
1232 * delalloc_end is already one less than the total length, so
1233 * we don't subtract one from PAGE_SIZE
1234 */
1235 delalloc_to_write +=
1236 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1237
1238 /*
1239 * If btrfs_run_dealloc_range() already started I/O and unlocked
1240 * the pages, we just need to account for them here.
1241 */
1242 if (ret == 1) {
1243 wbc->nr_to_write -= delalloc_to_write;
1244 return 1;
1245 }
1246
1247 if (wbc->nr_to_write < delalloc_to_write) {
1248 int thresh = 8192;
1249
1250 if (delalloc_to_write < thresh * 2)
1251 thresh = delalloc_to_write;
1252 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1253 thresh);
1254 }
1255
1256 return 0;
1257 }
1258
1259 /*
1260 * Find the first byte we need to write.
1261 *
1262 * For subpage, one page can contain several sectors, and
1263 * __extent_writepage_io() will just grab all extent maps in the page
1264 * range and try to submit all non-inline/non-compressed extents.
1265 *
1266 * This is a big problem for subpage, we shouldn't re-submit already written
1267 * data at all.
1268 * This function will lookup subpage dirty bit to find which range we really
1269 * need to submit.
1270 *
1271 * Return the next dirty range in [@start, @end).
1272 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
1273 */
1274 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
1275 struct page *page, u64 *start, u64 *end)
1276 {
1277 struct folio *folio = page_folio(page);
1278 struct btrfs_subpage *subpage = folio_get_private(folio);
1279 struct btrfs_subpage_info *spi = fs_info->subpage_info;
1280 u64 orig_start = *start;
1281 /* Declare as unsigned long so we can use bitmap ops */
1282 unsigned long flags;
1283 int range_start_bit;
1284 int range_end_bit;
1285
1286 /*
1287 * For regular sector size == page size case, since one page only
1288 * contains one sector, we return the page offset directly.
1289 */
1290 if (!btrfs_is_subpage(fs_info, page->mapping)) {
1291 *start = page_offset(page);
1292 *end = page_offset(page) + PAGE_SIZE;
1293 return;
1294 }
1295
1296 range_start_bit = spi->dirty_offset +
1297 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
1298
1299 /* We should have the page locked, but just in case */
1300 spin_lock_irqsave(&subpage->lock, flags);
1301 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
1302 spi->dirty_offset + spi->bitmap_nr_bits);
1303 spin_unlock_irqrestore(&subpage->lock, flags);
1304
1305 range_start_bit -= spi->dirty_offset;
1306 range_end_bit -= spi->dirty_offset;
1307
1308 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
1309 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
1310 }
1311
1312 /*
1313 * helper for __extent_writepage. This calls the writepage start hooks,
1314 * and does the loop to map the page into extents and bios.
1315 *
1316 * We return 1 if the IO is started and the page is unlocked,
1317 * 0 if all went well (page still locked)
1318 * < 0 if there were errors (page still locked)
1319 */
1320 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
1321 struct page *page,
1322 struct btrfs_bio_ctrl *bio_ctrl,
1323 loff_t i_size,
1324 int *nr_ret)
1325 {
1326 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1327 u64 cur = page_offset(page);
1328 u64 end = cur + PAGE_SIZE - 1;
1329 u64 extent_offset;
1330 u64 block_start;
1331 struct extent_map *em;
1332 int ret = 0;
1333 int nr = 0;
1334
1335 ret = btrfs_writepage_cow_fixup(page);
1336 if (ret) {
1337 /* Fixup worker will requeue */
1338 redirty_page_for_writepage(bio_ctrl->wbc, page);
1339 unlock_page(page);
1340 return 1;
1341 }
1342
1343 bio_ctrl->end_io_func = end_bbio_data_write;
1344 while (cur <= end) {
1345 u32 len = end - cur + 1;
1346 u64 disk_bytenr;
1347 u64 em_end;
1348 u64 dirty_range_start = cur;
1349 u64 dirty_range_end;
1350 u32 iosize;
1351
1352 if (cur >= i_size) {
1353 btrfs_mark_ordered_io_finished(inode, page, cur, len,
1354 true);
1355 /*
1356 * This range is beyond i_size, thus we don't need to
1357 * bother writing back.
1358 * But we still need to clear the dirty subpage bit, or
1359 * the next time the page gets dirtied, we will try to
1360 * writeback the sectors with subpage dirty bits,
1361 * causing writeback without ordered extent.
1362 */
1363 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, len);
1364 break;
1365 }
1366
1367 find_next_dirty_byte(fs_info, page, &dirty_range_start,
1368 &dirty_range_end);
1369 if (cur < dirty_range_start) {
1370 cur = dirty_range_start;
1371 continue;
1372 }
1373
1374 em = btrfs_get_extent(inode, NULL, 0, cur, len);
1375 if (IS_ERR(em)) {
1376 ret = PTR_ERR_OR_ZERO(em);
1377 goto out_error;
1378 }
1379
1380 extent_offset = cur - em->start;
1381 em_end = extent_map_end(em);
1382 ASSERT(cur <= em_end);
1383 ASSERT(cur < end);
1384 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
1385 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
1386
1387 block_start = em->block_start;
1388 disk_bytenr = em->block_start + extent_offset;
1389
1390 ASSERT(!extent_map_is_compressed(em));
1391 ASSERT(block_start != EXTENT_MAP_HOLE);
1392 ASSERT(block_start != EXTENT_MAP_INLINE);
1393
1394 /*
1395 * Note that em_end from extent_map_end() and dirty_range_end from
1396 * find_next_dirty_byte() are all exclusive
1397 */
1398 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
1399 free_extent_map(em);
1400 em = NULL;
1401
1402 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
1403 if (!PageWriteback(page)) {
1404 btrfs_err(inode->root->fs_info,
1405 "page %lu not writeback, cur %llu end %llu",
1406 page->index, cur, end);
1407 }
1408
1409 /*
1410 * Although the PageDirty bit is cleared before entering this
1411 * function, subpage dirty bit is not cleared.
1412 * So clear subpage dirty bit here so next time we won't submit
1413 * page for range already written to disk.
1414 */
1415 btrfs_folio_clear_dirty(fs_info, page_folio(page), cur, iosize);
1416
1417 submit_extent_page(bio_ctrl, disk_bytenr, page, iosize,
1418 cur - page_offset(page));
1419 cur += iosize;
1420 nr++;
1421 }
1422
1423 btrfs_folio_assert_not_dirty(fs_info, page_folio(page));
1424 *nr_ret = nr;
1425 return 0;
1426
1427 out_error:
1428 /*
1429 * If we finish without problem, we should not only clear page dirty,
1430 * but also empty subpage dirty bits
1431 */
1432 *nr_ret = nr;
1433 return ret;
1434 }
1435
1436 /*
1437 * the writepage semantics are similar to regular writepage. extent
1438 * records are inserted to lock ranges in the tree, and as dirty areas
1439 * are found, they are marked writeback. Then the lock bits are removed
1440 * and the end_io handler clears the writeback ranges
1441 *
1442 * Return 0 if everything goes well.
1443 * Return <0 for error.
1444 */
1445 static int __extent_writepage(struct page *page, struct btrfs_bio_ctrl *bio_ctrl)
1446 {
1447 struct folio *folio = page_folio(page);
1448 struct inode *inode = page->mapping->host;
1449 const u64 page_start = page_offset(page);
1450 int ret;
1451 int nr = 0;
1452 size_t pg_offset;
1453 loff_t i_size = i_size_read(inode);
1454 unsigned long end_index = i_size >> PAGE_SHIFT;
1455
1456 trace___extent_writepage(page, inode, bio_ctrl->wbc);
1457
1458 WARN_ON(!PageLocked(page));
1459
1460 pg_offset = offset_in_page(i_size);
1461 if (page->index > end_index ||
1462 (page->index == end_index && !pg_offset)) {
1463 folio_invalidate(folio, 0, folio_size(folio));
1464 folio_unlock(folio);
1465 return 0;
1466 }
1467
1468 if (page->index == end_index)
1469 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
1470
1471 ret = set_page_extent_mapped(page);
1472 if (ret < 0)
1473 goto done;
1474
1475 ret = writepage_delalloc(BTRFS_I(inode), page, bio_ctrl->wbc);
1476 if (ret == 1)
1477 return 0;
1478 if (ret)
1479 goto done;
1480
1481 ret = __extent_writepage_io(BTRFS_I(inode), page, bio_ctrl, i_size, &nr);
1482 if (ret == 1)
1483 return 0;
1484
1485 bio_ctrl->wbc->nr_to_write--;
1486
1487 done:
1488 if (nr == 0) {
1489 /* make sure the mapping tag for page dirty gets cleared */
1490 set_page_writeback(page);
1491 end_page_writeback(page);
1492 }
1493 if (ret) {
1494 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page, page_start,
1495 PAGE_SIZE, !ret);
1496 mapping_set_error(page->mapping, ret);
1497 }
1498 unlock_page(page);
1499 ASSERT(ret <= 0);
1500 return ret;
1501 }
1502
1503 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1504 {
1505 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1506 TASK_UNINTERRUPTIBLE);
1507 }
1508
1509 /*
1510 * Lock extent buffer status and pages for writeback.
1511 *
1512 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1513 * extent buffer is not dirty)
1514 * Return %true is the extent buffer is submitted to bio.
1515 */
1516 static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1517 struct writeback_control *wbc)
1518 {
1519 struct btrfs_fs_info *fs_info = eb->fs_info;
1520 bool ret = false;
1521
1522 btrfs_tree_lock(eb);
1523 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1524 btrfs_tree_unlock(eb);
1525 if (wbc->sync_mode != WB_SYNC_ALL)
1526 return false;
1527 wait_on_extent_buffer_writeback(eb);
1528 btrfs_tree_lock(eb);
1529 }
1530
1531 /*
1532 * We need to do this to prevent races in people who check if the eb is
1533 * under IO since we can end up having no IO bits set for a short period
1534 * of time.
1535 */
1536 spin_lock(&eb->refs_lock);
1537 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1538 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1539 spin_unlock(&eb->refs_lock);
1540 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1541 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1542 -eb->len,
1543 fs_info->dirty_metadata_batch);
1544 ret = true;
1545 } else {
1546 spin_unlock(&eb->refs_lock);
1547 }
1548 btrfs_tree_unlock(eb);
1549 return ret;
1550 }
1551
1552 static void set_btree_ioerr(struct extent_buffer *eb)
1553 {
1554 struct btrfs_fs_info *fs_info = eb->fs_info;
1555
1556 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1557
1558 /*
1559 * A read may stumble upon this buffer later, make sure that it gets an
1560 * error and knows there was an error.
1561 */
1562 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1563
1564 /*
1565 * We need to set the mapping with the io error as well because a write
1566 * error will flip the file system readonly, and then syncfs() will
1567 * return a 0 because we are readonly if we don't modify the err seq for
1568 * the superblock.
1569 */
1570 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1571
1572 /*
1573 * If writeback for a btree extent that doesn't belong to a log tree
1574 * failed, increment the counter transaction->eb_write_errors.
1575 * We do this because while the transaction is running and before it's
1576 * committing (when we call filemap_fdata[write|wait]_range against
1577 * the btree inode), we might have
1578 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1579 * returns an error or an error happens during writeback, when we're
1580 * committing the transaction we wouldn't know about it, since the pages
1581 * can be no longer dirty nor marked anymore for writeback (if a
1582 * subsequent modification to the extent buffer didn't happen before the
1583 * transaction commit), which makes filemap_fdata[write|wait]_range not
1584 * able to find the pages tagged with SetPageError at transaction
1585 * commit time. So if this happens we must abort the transaction,
1586 * otherwise we commit a super block with btree roots that point to
1587 * btree nodes/leafs whose content on disk is invalid - either garbage
1588 * or the content of some node/leaf from a past generation that got
1589 * cowed or deleted and is no longer valid.
1590 *
1591 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1592 * not be enough - we need to distinguish between log tree extents vs
1593 * non-log tree extents, and the next filemap_fdatawait_range() call
1594 * will catch and clear such errors in the mapping - and that call might
1595 * be from a log sync and not from a transaction commit. Also, checking
1596 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1597 * not done and would not be reliable - the eb might have been released
1598 * from memory and reading it back again means that flag would not be
1599 * set (since it's a runtime flag, not persisted on disk).
1600 *
1601 * Using the flags below in the btree inode also makes us achieve the
1602 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1603 * writeback for all dirty pages and before filemap_fdatawait_range()
1604 * is called, the writeback for all dirty pages had already finished
1605 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1606 * filemap_fdatawait_range() would return success, as it could not know
1607 * that writeback errors happened (the pages were no longer tagged for
1608 * writeback).
1609 */
1610 switch (eb->log_index) {
1611 case -1:
1612 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1613 break;
1614 case 0:
1615 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1616 break;
1617 case 1:
1618 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1619 break;
1620 default:
1621 BUG(); /* unexpected, logic error */
1622 }
1623 }
1624
1625 /*
1626 * The endio specific version which won't touch any unsafe spinlock in endio
1627 * context.
1628 */
1629 static struct extent_buffer *find_extent_buffer_nolock(
1630 struct btrfs_fs_info *fs_info, u64 start)
1631 {
1632 struct extent_buffer *eb;
1633
1634 rcu_read_lock();
1635 eb = radix_tree_lookup(&fs_info->buffer_radix,
1636 start >> fs_info->sectorsize_bits);
1637 if (eb && atomic_inc_not_zero(&eb->refs)) {
1638 rcu_read_unlock();
1639 return eb;
1640 }
1641 rcu_read_unlock();
1642 return NULL;
1643 }
1644
1645 static void end_bbio_meta_write(struct btrfs_bio *bbio)
1646 {
1647 struct extent_buffer *eb = bbio->private;
1648 struct btrfs_fs_info *fs_info = eb->fs_info;
1649 bool uptodate = !bbio->bio.bi_status;
1650 struct folio_iter fi;
1651 u32 bio_offset = 0;
1652
1653 if (!uptodate)
1654 set_btree_ioerr(eb);
1655
1656 bio_for_each_folio_all(fi, &bbio->bio) {
1657 u64 start = eb->start + bio_offset;
1658 struct folio *folio = fi.folio;
1659 u32 len = fi.length;
1660
1661 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1662 bio_offset += len;
1663 }
1664
1665 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1666 smp_mb__after_atomic();
1667 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1668
1669 bio_put(&bbio->bio);
1670 }
1671
1672 static void prepare_eb_write(struct extent_buffer *eb)
1673 {
1674 u32 nritems;
1675 unsigned long start;
1676 unsigned long end;
1677
1678 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1679
1680 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1681 nritems = btrfs_header_nritems(eb);
1682 if (btrfs_header_level(eb) > 0) {
1683 end = btrfs_node_key_ptr_offset(eb, nritems);
1684 memzero_extent_buffer(eb, end, eb->len - end);
1685 } else {
1686 /*
1687 * Leaf:
1688 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1689 */
1690 start = btrfs_item_nr_offset(eb, nritems);
1691 end = btrfs_item_nr_offset(eb, 0);
1692 if (nritems == 0)
1693 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1694 else
1695 end += btrfs_item_offset(eb, nritems - 1);
1696 memzero_extent_buffer(eb, start, end - start);
1697 }
1698 }
1699
1700 static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1701 struct writeback_control *wbc)
1702 {
1703 struct btrfs_fs_info *fs_info = eb->fs_info;
1704 struct btrfs_bio *bbio;
1705
1706 prepare_eb_write(eb);
1707
1708 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1709 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1710 eb->fs_info, end_bbio_meta_write, eb);
1711 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1712 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1713 wbc_init_bio(wbc, &bbio->bio);
1714 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1715 bbio->file_offset = eb->start;
1716 if (fs_info->nodesize < PAGE_SIZE) {
1717 struct folio *folio = eb->folios[0];
1718 bool ret;
1719
1720 folio_lock(folio);
1721 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1722 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1723 eb->len)) {
1724 folio_clear_dirty_for_io(folio);
1725 wbc->nr_to_write--;
1726 }
1727 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1728 eb->start - folio_pos(folio));
1729 ASSERT(ret);
1730 wbc_account_cgroup_owner(wbc, folio_page(folio, 0), eb->len);
1731 folio_unlock(folio);
1732 } else {
1733 int num_folios = num_extent_folios(eb);
1734
1735 for (int i = 0; i < num_folios; i++) {
1736 struct folio *folio = eb->folios[i];
1737 bool ret;
1738
1739 folio_lock(folio);
1740 folio_clear_dirty_for_io(folio);
1741 folio_start_writeback(folio);
1742 ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
1743 ASSERT(ret);
1744 wbc_account_cgroup_owner(wbc, folio_page(folio, 0),
1745 folio_size(folio));
1746 wbc->nr_to_write -= folio_nr_pages(folio);
1747 folio_unlock(folio);
1748 }
1749 }
1750 btrfs_submit_bio(bbio, 0);
1751 }
1752
1753 /*
1754 * Submit one subpage btree page.
1755 *
1756 * The main difference to submit_eb_page() is:
1757 * - Page locking
1758 * For subpage, we don't rely on page locking at all.
1759 *
1760 * - Flush write bio
1761 * We only flush bio if we may be unable to fit current extent buffers into
1762 * current bio.
1763 *
1764 * Return >=0 for the number of submitted extent buffers.
1765 * Return <0 for fatal error.
1766 */
1767 static int submit_eb_subpage(struct page *page, struct writeback_control *wbc)
1768 {
1769 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1770 struct folio *folio = page_folio(page);
1771 int submitted = 0;
1772 u64 page_start = page_offset(page);
1773 int bit_start = 0;
1774 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1775
1776 /* Lock and write each dirty extent buffers in the range */
1777 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
1778 struct btrfs_subpage *subpage = folio_get_private(folio);
1779 struct extent_buffer *eb;
1780 unsigned long flags;
1781 u64 start;
1782
1783 /*
1784 * Take private lock to ensure the subpage won't be detached
1785 * in the meantime.
1786 */
1787 spin_lock(&page->mapping->private_lock);
1788 if (!folio_test_private(folio)) {
1789 spin_unlock(&page->mapping->private_lock);
1790 break;
1791 }
1792 spin_lock_irqsave(&subpage->lock, flags);
1793 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
1794 subpage->bitmaps)) {
1795 spin_unlock_irqrestore(&subpage->lock, flags);
1796 spin_unlock(&page->mapping->private_lock);
1797 bit_start++;
1798 continue;
1799 }
1800
1801 start = page_start + bit_start * fs_info->sectorsize;
1802 bit_start += sectors_per_node;
1803
1804 /*
1805 * Here we just want to grab the eb without touching extra
1806 * spin locks, so call find_extent_buffer_nolock().
1807 */
1808 eb = find_extent_buffer_nolock(fs_info, start);
1809 spin_unlock_irqrestore(&subpage->lock, flags);
1810 spin_unlock(&page->mapping->private_lock);
1811
1812 /*
1813 * The eb has already reached 0 refs thus find_extent_buffer()
1814 * doesn't return it. We don't need to write back such eb
1815 * anyway.
1816 */
1817 if (!eb)
1818 continue;
1819
1820 if (lock_extent_buffer_for_io(eb, wbc)) {
1821 write_one_eb(eb, wbc);
1822 submitted++;
1823 }
1824 free_extent_buffer(eb);
1825 }
1826 return submitted;
1827 }
1828
1829 /*
1830 * Submit all page(s) of one extent buffer.
1831 *
1832 * @page: the page of one extent buffer
1833 * @eb_context: to determine if we need to submit this page, if current page
1834 * belongs to this eb, we don't need to submit
1835 *
1836 * The caller should pass each page in their bytenr order, and here we use
1837 * @eb_context to determine if we have submitted pages of one extent buffer.
1838 *
1839 * If we have, we just skip until we hit a new page that doesn't belong to
1840 * current @eb_context.
1841 *
1842 * If not, we submit all the page(s) of the extent buffer.
1843 *
1844 * Return >0 if we have submitted the extent buffer successfully.
1845 * Return 0 if we don't need to submit the page, as it's already submitted by
1846 * previous call.
1847 * Return <0 for fatal error.
1848 */
1849 static int submit_eb_page(struct page *page, struct btrfs_eb_write_context *ctx)
1850 {
1851 struct writeback_control *wbc = ctx->wbc;
1852 struct address_space *mapping = page->mapping;
1853 struct folio *folio = page_folio(page);
1854 struct extent_buffer *eb;
1855 int ret;
1856
1857 if (!folio_test_private(folio))
1858 return 0;
1859
1860 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
1861 return submit_eb_subpage(page, wbc);
1862
1863 spin_lock(&mapping->private_lock);
1864 if (!folio_test_private(folio)) {
1865 spin_unlock(&mapping->private_lock);
1866 return 0;
1867 }
1868
1869 eb = folio_get_private(folio);
1870
1871 /*
1872 * Shouldn't happen and normally this would be a BUG_ON but no point
1873 * crashing the machine for something we can survive anyway.
1874 */
1875 if (WARN_ON(!eb)) {
1876 spin_unlock(&mapping->private_lock);
1877 return 0;
1878 }
1879
1880 if (eb == ctx->eb) {
1881 spin_unlock(&mapping->private_lock);
1882 return 0;
1883 }
1884 ret = atomic_inc_not_zero(&eb->refs);
1885 spin_unlock(&mapping->private_lock);
1886 if (!ret)
1887 return 0;
1888
1889 ctx->eb = eb;
1890
1891 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1892 if (ret) {
1893 if (ret == -EBUSY)
1894 ret = 0;
1895 free_extent_buffer(eb);
1896 return ret;
1897 }
1898
1899 if (!lock_extent_buffer_for_io(eb, wbc)) {
1900 free_extent_buffer(eb);
1901 return 0;
1902 }
1903 /* Implies write in zoned mode. */
1904 if (ctx->zoned_bg) {
1905 /* Mark the last eb in the block group. */
1906 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1907 ctx->zoned_bg->meta_write_pointer += eb->len;
1908 }
1909 write_one_eb(eb, wbc);
1910 free_extent_buffer(eb);
1911 return 1;
1912 }
1913
1914 int btree_write_cache_pages(struct address_space *mapping,
1915 struct writeback_control *wbc)
1916 {
1917 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1918 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
1919 int ret = 0;
1920 int done = 0;
1921 int nr_to_write_done = 0;
1922 struct folio_batch fbatch;
1923 unsigned int nr_folios;
1924 pgoff_t index;
1925 pgoff_t end; /* Inclusive */
1926 int scanned = 0;
1927 xa_mark_t tag;
1928
1929 folio_batch_init(&fbatch);
1930 if (wbc->range_cyclic) {
1931 index = mapping->writeback_index; /* Start from prev offset */
1932 end = -1;
1933 /*
1934 * Start from the beginning does not need to cycle over the
1935 * range, mark it as scanned.
1936 */
1937 scanned = (index == 0);
1938 } else {
1939 index = wbc->range_start >> PAGE_SHIFT;
1940 end = wbc->range_end >> PAGE_SHIFT;
1941 scanned = 1;
1942 }
1943 if (wbc->sync_mode == WB_SYNC_ALL)
1944 tag = PAGECACHE_TAG_TOWRITE;
1945 else
1946 tag = PAGECACHE_TAG_DIRTY;
1947 btrfs_zoned_meta_io_lock(fs_info);
1948 retry:
1949 if (wbc->sync_mode == WB_SYNC_ALL)
1950 tag_pages_for_writeback(mapping, index, end);
1951 while (!done && !nr_to_write_done && (index <= end) &&
1952 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
1953 tag, &fbatch))) {
1954 unsigned i;
1955
1956 for (i = 0; i < nr_folios; i++) {
1957 struct folio *folio = fbatch.folios[i];
1958
1959 ret = submit_eb_page(&folio->page, &ctx);
1960 if (ret == 0)
1961 continue;
1962 if (ret < 0) {
1963 done = 1;
1964 break;
1965 }
1966
1967 /*
1968 * the filesystem may choose to bump up nr_to_write.
1969 * We have to make sure to honor the new nr_to_write
1970 * at any time
1971 */
1972 nr_to_write_done = wbc->nr_to_write <= 0;
1973 }
1974 folio_batch_release(&fbatch);
1975 cond_resched();
1976 }
1977 if (!scanned && !done) {
1978 /*
1979 * We hit the last page and there is more work to be done: wrap
1980 * back to the start of the file
1981 */
1982 scanned = 1;
1983 index = 0;
1984 goto retry;
1985 }
1986 /*
1987 * If something went wrong, don't allow any metadata write bio to be
1988 * submitted.
1989 *
1990 * This would prevent use-after-free if we had dirty pages not
1991 * cleaned up, which can still happen by fuzzed images.
1992 *
1993 * - Bad extent tree
1994 * Allowing existing tree block to be allocated for other trees.
1995 *
1996 * - Log tree operations
1997 * Exiting tree blocks get allocated to log tree, bumps its
1998 * generation, then get cleaned in tree re-balance.
1999 * Such tree block will not be written back, since it's clean,
2000 * thus no WRITTEN flag set.
2001 * And after log writes back, this tree block is not traced by
2002 * any dirty extent_io_tree.
2003 *
2004 * - Offending tree block gets re-dirtied from its original owner
2005 * Since it has bumped generation, no WRITTEN flag, it can be
2006 * reused without COWing. This tree block will not be traced
2007 * by btrfs_transaction::dirty_pages.
2008 *
2009 * Now such dirty tree block will not be cleaned by any dirty
2010 * extent io tree. Thus we don't want to submit such wild eb
2011 * if the fs already has error.
2012 *
2013 * We can get ret > 0 from submit_extent_page() indicating how many ebs
2014 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2015 */
2016 if (ret > 0)
2017 ret = 0;
2018 if (!ret && BTRFS_FS_ERROR(fs_info))
2019 ret = -EROFS;
2020
2021 if (ctx.zoned_bg)
2022 btrfs_put_block_group(ctx.zoned_bg);
2023 btrfs_zoned_meta_io_unlock(fs_info);
2024 return ret;
2025 }
2026
2027 /*
2028 * Walk the list of dirty pages of the given address space and write all of them.
2029 *
2030 * @mapping: address space structure to write
2031 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2032 * @bio_ctrl: holds context for the write, namely the bio
2033 *
2034 * If a page is already under I/O, write_cache_pages() skips it, even
2035 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2036 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2037 * and msync() need to guarantee that all the data which was dirty at the time
2038 * the call was made get new I/O started against them. If wbc->sync_mode is
2039 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2040 * existing IO to complete.
2041 */
2042 static int extent_write_cache_pages(struct address_space *mapping,
2043 struct btrfs_bio_ctrl *bio_ctrl)
2044 {
2045 struct writeback_control *wbc = bio_ctrl->wbc;
2046 struct inode *inode = mapping->host;
2047 int ret = 0;
2048 int done = 0;
2049 int nr_to_write_done = 0;
2050 struct folio_batch fbatch;
2051 unsigned int nr_folios;
2052 pgoff_t index;
2053 pgoff_t end; /* Inclusive */
2054 pgoff_t done_index;
2055 int range_whole = 0;
2056 int scanned = 0;
2057 xa_mark_t tag;
2058
2059 /*
2060 * We have to hold onto the inode so that ordered extents can do their
2061 * work when the IO finishes. The alternative to this is failing to add
2062 * an ordered extent if the igrab() fails there and that is a huge pain
2063 * to deal with, so instead just hold onto the inode throughout the
2064 * writepages operation. If it fails here we are freeing up the inode
2065 * anyway and we'd rather not waste our time writing out stuff that is
2066 * going to be truncated anyway.
2067 */
2068 if (!igrab(inode))
2069 return 0;
2070
2071 folio_batch_init(&fbatch);
2072 if (wbc->range_cyclic) {
2073 index = mapping->writeback_index; /* Start from prev offset */
2074 end = -1;
2075 /*
2076 * Start from the beginning does not need to cycle over the
2077 * range, mark it as scanned.
2078 */
2079 scanned = (index == 0);
2080 } else {
2081 index = wbc->range_start >> PAGE_SHIFT;
2082 end = wbc->range_end >> PAGE_SHIFT;
2083 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2084 range_whole = 1;
2085 scanned = 1;
2086 }
2087
2088 /*
2089 * We do the tagged writepage as long as the snapshot flush bit is set
2090 * and we are the first one who do the filemap_flush() on this inode.
2091 *
2092 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2093 * not race in and drop the bit.
2094 */
2095 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2096 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2097 &BTRFS_I(inode)->runtime_flags))
2098 wbc->tagged_writepages = 1;
2099
2100 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2101 tag = PAGECACHE_TAG_TOWRITE;
2102 else
2103 tag = PAGECACHE_TAG_DIRTY;
2104 retry:
2105 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2106 tag_pages_for_writeback(mapping, index, end);
2107 done_index = index;
2108 while (!done && !nr_to_write_done && (index <= end) &&
2109 (nr_folios = filemap_get_folios_tag(mapping, &index,
2110 end, tag, &fbatch))) {
2111 unsigned i;
2112
2113 for (i = 0; i < nr_folios; i++) {
2114 struct folio *folio = fbatch.folios[i];
2115
2116 done_index = folio_next_index(folio);
2117 /*
2118 * At this point we hold neither the i_pages lock nor
2119 * the page lock: the page may be truncated or
2120 * invalidated (changing page->mapping to NULL),
2121 * or even swizzled back from swapper_space to
2122 * tmpfs file mapping
2123 */
2124 if (!folio_trylock(folio)) {
2125 submit_write_bio(bio_ctrl, 0);
2126 folio_lock(folio);
2127 }
2128
2129 if (unlikely(folio->mapping != mapping)) {
2130 folio_unlock(folio);
2131 continue;
2132 }
2133
2134 if (!folio_test_dirty(folio)) {
2135 /* Someone wrote it for us. */
2136 folio_unlock(folio);
2137 continue;
2138 }
2139
2140 if (wbc->sync_mode != WB_SYNC_NONE) {
2141 if (folio_test_writeback(folio))
2142 submit_write_bio(bio_ctrl, 0);
2143 folio_wait_writeback(folio);
2144 }
2145
2146 if (folio_test_writeback(folio) ||
2147 !folio_clear_dirty_for_io(folio)) {
2148 folio_unlock(folio);
2149 continue;
2150 }
2151
2152 ret = __extent_writepage(&folio->page, bio_ctrl);
2153 if (ret < 0) {
2154 done = 1;
2155 break;
2156 }
2157
2158 /*
2159 * The filesystem may choose to bump up nr_to_write.
2160 * We have to make sure to honor the new nr_to_write
2161 * at any time.
2162 */
2163 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2164 wbc->nr_to_write <= 0);
2165 }
2166 folio_batch_release(&fbatch);
2167 cond_resched();
2168 }
2169 if (!scanned && !done) {
2170 /*
2171 * We hit the last page and there is more work to be done: wrap
2172 * back to the start of the file
2173 */
2174 scanned = 1;
2175 index = 0;
2176
2177 /*
2178 * If we're looping we could run into a page that is locked by a
2179 * writer and that writer could be waiting on writeback for a
2180 * page in our current bio, and thus deadlock, so flush the
2181 * write bio here.
2182 */
2183 submit_write_bio(bio_ctrl, 0);
2184 goto retry;
2185 }
2186
2187 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2188 mapping->writeback_index = done_index;
2189
2190 btrfs_add_delayed_iput(BTRFS_I(inode));
2191 return ret;
2192 }
2193
2194 /*
2195 * Submit the pages in the range to bio for call sites which delalloc range has
2196 * already been ran (aka, ordered extent inserted) and all pages are still
2197 * locked.
2198 */
2199 void extent_write_locked_range(struct inode *inode, struct page *locked_page,
2200 u64 start, u64 end, struct writeback_control *wbc,
2201 bool pages_dirty)
2202 {
2203 bool found_error = false;
2204 int ret = 0;
2205 struct address_space *mapping = inode->i_mapping;
2206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2207 const u32 sectorsize = fs_info->sectorsize;
2208 loff_t i_size = i_size_read(inode);
2209 u64 cur = start;
2210 struct btrfs_bio_ctrl bio_ctrl = {
2211 .wbc = wbc,
2212 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2213 };
2214
2215 if (wbc->no_cgroup_owner)
2216 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2217
2218 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2219
2220 while (cur <= end) {
2221 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2222 u32 cur_len = cur_end + 1 - cur;
2223 struct page *page;
2224 int nr = 0;
2225
2226 page = find_get_page(mapping, cur >> PAGE_SHIFT);
2227 ASSERT(PageLocked(page));
2228 if (pages_dirty && page != locked_page) {
2229 ASSERT(PageDirty(page));
2230 clear_page_dirty_for_io(page);
2231 }
2232
2233 ret = __extent_writepage_io(BTRFS_I(inode), page, &bio_ctrl,
2234 i_size, &nr);
2235 if (ret == 1)
2236 goto next_page;
2237
2238 /* Make sure the mapping tag for page dirty gets cleared. */
2239 if (nr == 0) {
2240 set_page_writeback(page);
2241 end_page_writeback(page);
2242 }
2243 if (ret) {
2244 btrfs_mark_ordered_io_finished(BTRFS_I(inode), page,
2245 cur, cur_len, !ret);
2246 mapping_set_error(page->mapping, ret);
2247 }
2248 btrfs_folio_unlock_writer(fs_info, page_folio(page), cur, cur_len);
2249 if (ret < 0)
2250 found_error = true;
2251 next_page:
2252 put_page(page);
2253 cur = cur_end + 1;
2254 }
2255
2256 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2257 }
2258
2259 int extent_writepages(struct address_space *mapping,
2260 struct writeback_control *wbc)
2261 {
2262 struct inode *inode = mapping->host;
2263 int ret = 0;
2264 struct btrfs_bio_ctrl bio_ctrl = {
2265 .wbc = wbc,
2266 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2267 };
2268
2269 /*
2270 * Allow only a single thread to do the reloc work in zoned mode to
2271 * protect the write pointer updates.
2272 */
2273 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2274 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2275 submit_write_bio(&bio_ctrl, ret);
2276 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2277 return ret;
2278 }
2279
2280 void extent_readahead(struct readahead_control *rac)
2281 {
2282 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2283 struct page *pagepool[16];
2284 struct extent_map *em_cached = NULL;
2285 u64 prev_em_start = (u64)-1;
2286 int nr;
2287
2288 while ((nr = readahead_page_batch(rac, pagepool))) {
2289 u64 contig_start = readahead_pos(rac);
2290 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
2291
2292 contiguous_readpages(pagepool, nr, contig_start, contig_end,
2293 &em_cached, &bio_ctrl, &prev_em_start);
2294 }
2295
2296 if (em_cached)
2297 free_extent_map(em_cached);
2298 submit_one_bio(&bio_ctrl);
2299 }
2300
2301 /*
2302 * basic invalidate_folio code, this waits on any locked or writeback
2303 * ranges corresponding to the folio, and then deletes any extent state
2304 * records from the tree
2305 */
2306 int extent_invalidate_folio(struct extent_io_tree *tree,
2307 struct folio *folio, size_t offset)
2308 {
2309 struct extent_state *cached_state = NULL;
2310 u64 start = folio_pos(folio);
2311 u64 end = start + folio_size(folio) - 1;
2312 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
2313
2314 /* This function is only called for the btree inode */
2315 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2316
2317 start += ALIGN(offset, blocksize);
2318 if (start > end)
2319 return 0;
2320
2321 lock_extent(tree, start, end, &cached_state);
2322 folio_wait_writeback(folio);
2323
2324 /*
2325 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2326 * so here we only need to unlock the extent range to free any
2327 * existing extent state.
2328 */
2329 unlock_extent(tree, start, end, &cached_state);
2330 return 0;
2331 }
2332
2333 /*
2334 * a helper for release_folio, this tests for areas of the page that
2335 * are locked or under IO and drops the related state bits if it is safe
2336 * to drop the page.
2337 */
2338 static int try_release_extent_state(struct extent_io_tree *tree,
2339 struct page *page, gfp_t mask)
2340 {
2341 u64 start = page_offset(page);
2342 u64 end = start + PAGE_SIZE - 1;
2343 int ret = 1;
2344
2345 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2346 ret = 0;
2347 } else {
2348 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2349 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2350 EXTENT_QGROUP_RESERVED);
2351
2352 /*
2353 * At this point we can safely clear everything except the
2354 * locked bit, the nodatasum bit and the delalloc new bit.
2355 * The delalloc new bit will be cleared by ordered extent
2356 * completion.
2357 */
2358 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2359
2360 /* if clear_extent_bit failed for enomem reasons,
2361 * we can't allow the release to continue.
2362 */
2363 if (ret < 0)
2364 ret = 0;
2365 else
2366 ret = 1;
2367 }
2368 return ret;
2369 }
2370
2371 /*
2372 * a helper for release_folio. As long as there are no locked extents
2373 * in the range corresponding to the page, both state records and extent
2374 * map records are removed
2375 */
2376 int try_release_extent_mapping(struct page *page, gfp_t mask)
2377 {
2378 struct extent_map *em;
2379 u64 start = page_offset(page);
2380 u64 end = start + PAGE_SIZE - 1;
2381 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
2382 struct extent_io_tree *tree = &btrfs_inode->io_tree;
2383 struct extent_map_tree *map = &btrfs_inode->extent_tree;
2384
2385 if (gfpflags_allow_blocking(mask) &&
2386 page->mapping->host->i_size > SZ_16M) {
2387 u64 len;
2388 while (start <= end) {
2389 struct btrfs_fs_info *fs_info;
2390 u64 cur_gen;
2391
2392 len = end - start + 1;
2393 write_lock(&map->lock);
2394 em = lookup_extent_mapping(map, start, len);
2395 if (!em) {
2396 write_unlock(&map->lock);
2397 break;
2398 }
2399 if ((em->flags & EXTENT_FLAG_PINNED) ||
2400 em->start != start) {
2401 write_unlock(&map->lock);
2402 free_extent_map(em);
2403 break;
2404 }
2405 if (test_range_bit_exists(tree, em->start,
2406 extent_map_end(em) - 1,
2407 EXTENT_LOCKED))
2408 goto next;
2409 /*
2410 * If it's not in the list of modified extents, used
2411 * by a fast fsync, we can remove it. If it's being
2412 * logged we can safely remove it since fsync took an
2413 * extra reference on the em.
2414 */
2415 if (list_empty(&em->list) ||
2416 (em->flags & EXTENT_FLAG_LOGGING))
2417 goto remove_em;
2418 /*
2419 * If it's in the list of modified extents, remove it
2420 * only if its generation is older then the current one,
2421 * in which case we don't need it for a fast fsync.
2422 * Otherwise don't remove it, we could be racing with an
2423 * ongoing fast fsync that could miss the new extent.
2424 */
2425 fs_info = btrfs_inode->root->fs_info;
2426 spin_lock(&fs_info->trans_lock);
2427 cur_gen = fs_info->generation;
2428 spin_unlock(&fs_info->trans_lock);
2429 if (em->generation >= cur_gen)
2430 goto next;
2431 remove_em:
2432 /*
2433 * We only remove extent maps that are not in the list of
2434 * modified extents or that are in the list but with a
2435 * generation lower then the current generation, so there
2436 * is no need to set the full fsync flag on the inode (it
2437 * hurts the fsync performance for workloads with a data
2438 * size that exceeds or is close to the system's memory).
2439 */
2440 remove_extent_mapping(map, em);
2441 /* once for the rb tree */
2442 free_extent_map(em);
2443 next:
2444 start = extent_map_end(em);
2445 write_unlock(&map->lock);
2446
2447 /* once for us */
2448 free_extent_map(em);
2449
2450 cond_resched(); /* Allow large-extent preemption. */
2451 }
2452 }
2453 return try_release_extent_state(tree, page, mask);
2454 }
2455
2456 /*
2457 * To cache previous fiemap extent
2458 *
2459 * Will be used for merging fiemap extent
2460 */
2461 struct fiemap_cache {
2462 u64 offset;
2463 u64 phys;
2464 u64 len;
2465 u32 flags;
2466 bool cached;
2467 };
2468
2469 /*
2470 * Helper to submit fiemap extent.
2471 *
2472 * Will try to merge current fiemap extent specified by @offset, @phys,
2473 * @len and @flags with cached one.
2474 * And only when we fails to merge, cached one will be submitted as
2475 * fiemap extent.
2476 *
2477 * Return value is the same as fiemap_fill_next_extent().
2478 */
2479 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
2480 struct fiemap_cache *cache,
2481 u64 offset, u64 phys, u64 len, u32 flags)
2482 {
2483 int ret = 0;
2484
2485 /* Set at the end of extent_fiemap(). */
2486 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
2487
2488 if (!cache->cached)
2489 goto assign;
2490
2491 /*
2492 * Sanity check, extent_fiemap() should have ensured that new
2493 * fiemap extent won't overlap with cached one.
2494 * Not recoverable.
2495 *
2496 * NOTE: Physical address can overlap, due to compression
2497 */
2498 if (cache->offset + cache->len > offset) {
2499 WARN_ON(1);
2500 return -EINVAL;
2501 }
2502
2503 /*
2504 * Only merges fiemap extents if
2505 * 1) Their logical addresses are continuous
2506 *
2507 * 2) Their physical addresses are continuous
2508 * So truly compressed (physical size smaller than logical size)
2509 * extents won't get merged with each other
2510 *
2511 * 3) Share same flags
2512 */
2513 if (cache->offset + cache->len == offset &&
2514 cache->phys + cache->len == phys &&
2515 cache->flags == flags) {
2516 cache->len += len;
2517 return 0;
2518 }
2519
2520 /* Not mergeable, need to submit cached one */
2521 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2522 cache->len, cache->flags);
2523 cache->cached = false;
2524 if (ret)
2525 return ret;
2526 assign:
2527 cache->cached = true;
2528 cache->offset = offset;
2529 cache->phys = phys;
2530 cache->len = len;
2531 cache->flags = flags;
2532
2533 return 0;
2534 }
2535
2536 /*
2537 * Emit last fiemap cache
2538 *
2539 * The last fiemap cache may still be cached in the following case:
2540 * 0 4k 8k
2541 * |<- Fiemap range ->|
2542 * |<------------ First extent ----------->|
2543 *
2544 * In this case, the first extent range will be cached but not emitted.
2545 * So we must emit it before ending extent_fiemap().
2546 */
2547 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
2548 struct fiemap_cache *cache)
2549 {
2550 int ret;
2551
2552 if (!cache->cached)
2553 return 0;
2554
2555 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
2556 cache->len, cache->flags);
2557 cache->cached = false;
2558 if (ret > 0)
2559 ret = 0;
2560 return ret;
2561 }
2562
2563 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
2564 {
2565 struct extent_buffer *clone;
2566 struct btrfs_key key;
2567 int slot;
2568 int ret;
2569
2570 path->slots[0]++;
2571 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
2572 return 0;
2573
2574 ret = btrfs_next_leaf(inode->root, path);
2575 if (ret != 0)
2576 return ret;
2577
2578 /*
2579 * Don't bother with cloning if there are no more file extent items for
2580 * our inode.
2581 */
2582 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2583 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
2584 return 1;
2585
2586 /* See the comment at fiemap_search_slot() about why we clone. */
2587 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2588 if (!clone)
2589 return -ENOMEM;
2590
2591 slot = path->slots[0];
2592 btrfs_release_path(path);
2593 path->nodes[0] = clone;
2594 path->slots[0] = slot;
2595
2596 return 0;
2597 }
2598
2599 /*
2600 * Search for the first file extent item that starts at a given file offset or
2601 * the one that starts immediately before that offset.
2602 * Returns: 0 on success, < 0 on error, 1 if not found.
2603 */
2604 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
2605 u64 file_offset)
2606 {
2607 const u64 ino = btrfs_ino(inode);
2608 struct btrfs_root *root = inode->root;
2609 struct extent_buffer *clone;
2610 struct btrfs_key key;
2611 int slot;
2612 int ret;
2613
2614 key.objectid = ino;
2615 key.type = BTRFS_EXTENT_DATA_KEY;
2616 key.offset = file_offset;
2617
2618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2619 if (ret < 0)
2620 return ret;
2621
2622 if (ret > 0 && path->slots[0] > 0) {
2623 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
2624 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
2625 path->slots[0]--;
2626 }
2627
2628 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2629 ret = btrfs_next_leaf(root, path);
2630 if (ret != 0)
2631 return ret;
2632
2633 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2634 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2635 return 1;
2636 }
2637
2638 /*
2639 * We clone the leaf and use it during fiemap. This is because while
2640 * using the leaf we do expensive things like checking if an extent is
2641 * shared, which can take a long time. In order to prevent blocking
2642 * other tasks for too long, we use a clone of the leaf. We have locked
2643 * the file range in the inode's io tree, so we know none of our file
2644 * extent items can change. This way we avoid blocking other tasks that
2645 * want to insert items for other inodes in the same leaf or b+tree
2646 * rebalance operations (triggered for example when someone is trying
2647 * to push items into this leaf when trying to insert an item in a
2648 * neighbour leaf).
2649 * We also need the private clone because holding a read lock on an
2650 * extent buffer of the subvolume's b+tree will make lockdep unhappy
2651 * when we call fiemap_fill_next_extent(), because that may cause a page
2652 * fault when filling the user space buffer with fiemap data.
2653 */
2654 clone = btrfs_clone_extent_buffer(path->nodes[0]);
2655 if (!clone)
2656 return -ENOMEM;
2657
2658 slot = path->slots[0];
2659 btrfs_release_path(path);
2660 path->nodes[0] = clone;
2661 path->slots[0] = slot;
2662
2663 return 0;
2664 }
2665
2666 /*
2667 * Process a range which is a hole or a prealloc extent in the inode's subvolume
2668 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
2669 * extent. The end offset (@end) is inclusive.
2670 */
2671 static int fiemap_process_hole(struct btrfs_inode *inode,
2672 struct fiemap_extent_info *fieinfo,
2673 struct fiemap_cache *cache,
2674 struct extent_state **delalloc_cached_state,
2675 struct btrfs_backref_share_check_ctx *backref_ctx,
2676 u64 disk_bytenr, u64 extent_offset,
2677 u64 extent_gen,
2678 u64 start, u64 end)
2679 {
2680 const u64 i_size = i_size_read(&inode->vfs_inode);
2681 u64 cur_offset = start;
2682 u64 last_delalloc_end = 0;
2683 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
2684 bool checked_extent_shared = false;
2685 int ret;
2686
2687 /*
2688 * There can be no delalloc past i_size, so don't waste time looking for
2689 * it beyond i_size.
2690 */
2691 while (cur_offset < end && cur_offset < i_size) {
2692 struct extent_state *cached_state = NULL;
2693 u64 delalloc_start;
2694 u64 delalloc_end;
2695 u64 prealloc_start;
2696 u64 lockstart;
2697 u64 lockend;
2698 u64 prealloc_len = 0;
2699 bool delalloc;
2700
2701 lockstart = round_down(cur_offset, inode->root->fs_info->sectorsize);
2702 lockend = round_up(end, inode->root->fs_info->sectorsize);
2703
2704 /*
2705 * We are only locking for the delalloc range because that's the
2706 * only thing that can change here. With fiemap we have a lock
2707 * on the inode, so no buffered or direct writes can happen.
2708 *
2709 * However mmaps and normal page writeback will cause this to
2710 * change arbitrarily. We have to lock the extent lock here to
2711 * make sure that nobody messes with the tree while we're doing
2712 * btrfs_find_delalloc_in_range.
2713 */
2714 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2715 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
2716 delalloc_cached_state,
2717 &delalloc_start,
2718 &delalloc_end);
2719 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
2720 if (!delalloc)
2721 break;
2722
2723 /*
2724 * If this is a prealloc extent we have to report every section
2725 * of it that has no delalloc.
2726 */
2727 if (disk_bytenr != 0) {
2728 if (last_delalloc_end == 0) {
2729 prealloc_start = start;
2730 prealloc_len = delalloc_start - start;
2731 } else {
2732 prealloc_start = last_delalloc_end + 1;
2733 prealloc_len = delalloc_start - prealloc_start;
2734 }
2735 }
2736
2737 if (prealloc_len > 0) {
2738 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2739 ret = btrfs_is_data_extent_shared(inode,
2740 disk_bytenr,
2741 extent_gen,
2742 backref_ctx);
2743 if (ret < 0)
2744 return ret;
2745 else if (ret > 0)
2746 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2747
2748 checked_extent_shared = true;
2749 }
2750 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2751 disk_bytenr + extent_offset,
2752 prealloc_len, prealloc_flags);
2753 if (ret)
2754 return ret;
2755 extent_offset += prealloc_len;
2756 }
2757
2758 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
2759 delalloc_end + 1 - delalloc_start,
2760 FIEMAP_EXTENT_DELALLOC |
2761 FIEMAP_EXTENT_UNKNOWN);
2762 if (ret)
2763 return ret;
2764
2765 last_delalloc_end = delalloc_end;
2766 cur_offset = delalloc_end + 1;
2767 extent_offset += cur_offset - delalloc_start;
2768 cond_resched();
2769 }
2770
2771 /*
2772 * Either we found no delalloc for the whole prealloc extent or we have
2773 * a prealloc extent that spans i_size or starts at or after i_size.
2774 */
2775 if (disk_bytenr != 0 && last_delalloc_end < end) {
2776 u64 prealloc_start;
2777 u64 prealloc_len;
2778
2779 if (last_delalloc_end == 0) {
2780 prealloc_start = start;
2781 prealloc_len = end + 1 - start;
2782 } else {
2783 prealloc_start = last_delalloc_end + 1;
2784 prealloc_len = end + 1 - prealloc_start;
2785 }
2786
2787 if (!checked_extent_shared && fieinfo->fi_extents_max) {
2788 ret = btrfs_is_data_extent_shared(inode,
2789 disk_bytenr,
2790 extent_gen,
2791 backref_ctx);
2792 if (ret < 0)
2793 return ret;
2794 else if (ret > 0)
2795 prealloc_flags |= FIEMAP_EXTENT_SHARED;
2796 }
2797 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
2798 disk_bytenr + extent_offset,
2799 prealloc_len, prealloc_flags);
2800 if (ret)
2801 return ret;
2802 }
2803
2804 return 0;
2805 }
2806
2807 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
2808 struct btrfs_path *path,
2809 u64 *last_extent_end_ret)
2810 {
2811 const u64 ino = btrfs_ino(inode);
2812 struct btrfs_root *root = inode->root;
2813 struct extent_buffer *leaf;
2814 struct btrfs_file_extent_item *ei;
2815 struct btrfs_key key;
2816 u64 disk_bytenr;
2817 int ret;
2818
2819 /*
2820 * Lookup the last file extent. We're not using i_size here because
2821 * there might be preallocation past i_size.
2822 */
2823 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
2824 /* There can't be a file extent item at offset (u64)-1 */
2825 ASSERT(ret != 0);
2826 if (ret < 0)
2827 return ret;
2828
2829 /*
2830 * For a non-existing key, btrfs_search_slot() always leaves us at a
2831 * slot > 0, except if the btree is empty, which is impossible because
2832 * at least it has the inode item for this inode and all the items for
2833 * the root inode 256.
2834 */
2835 ASSERT(path->slots[0] > 0);
2836 path->slots[0]--;
2837 leaf = path->nodes[0];
2838 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2839 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
2840 /* No file extent items in the subvolume tree. */
2841 *last_extent_end_ret = 0;
2842 return 0;
2843 }
2844
2845 /*
2846 * For an inline extent, the disk_bytenr is where inline data starts at,
2847 * so first check if we have an inline extent item before checking if we
2848 * have an implicit hole (disk_bytenr == 0).
2849 */
2850 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2851 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
2852 *last_extent_end_ret = btrfs_file_extent_end(path);
2853 return 0;
2854 }
2855
2856 /*
2857 * Find the last file extent item that is not a hole (when NO_HOLES is
2858 * not enabled). This should take at most 2 iterations in the worst
2859 * case: we have one hole file extent item at slot 0 of a leaf and
2860 * another hole file extent item as the last item in the previous leaf.
2861 * This is because we merge file extent items that represent holes.
2862 */
2863 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2864 while (disk_bytenr == 0) {
2865 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
2866 if (ret < 0) {
2867 return ret;
2868 } else if (ret > 0) {
2869 /* No file extent items that are not holes. */
2870 *last_extent_end_ret = 0;
2871 return 0;
2872 }
2873 leaf = path->nodes[0];
2874 ei = btrfs_item_ptr(leaf, path->slots[0],
2875 struct btrfs_file_extent_item);
2876 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2877 }
2878
2879 *last_extent_end_ret = btrfs_file_extent_end(path);
2880 return 0;
2881 }
2882
2883 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
2884 u64 start, u64 len)
2885 {
2886 const u64 ino = btrfs_ino(inode);
2887 struct extent_state *delalloc_cached_state = NULL;
2888 struct btrfs_path *path;
2889 struct fiemap_cache cache = { 0 };
2890 struct btrfs_backref_share_check_ctx *backref_ctx;
2891 u64 last_extent_end;
2892 u64 prev_extent_end;
2893 u64 range_start;
2894 u64 range_end;
2895 const u64 sectorsize = inode->root->fs_info->sectorsize;
2896 bool stopped = false;
2897 int ret;
2898
2899 backref_ctx = btrfs_alloc_backref_share_check_ctx();
2900 path = btrfs_alloc_path();
2901 if (!backref_ctx || !path) {
2902 ret = -ENOMEM;
2903 goto out;
2904 }
2905
2906 range_start = round_down(start, sectorsize);
2907 range_end = round_up(start + len, sectorsize);
2908 prev_extent_end = range_start;
2909
2910 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
2911
2912 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
2913 if (ret < 0)
2914 goto out_unlock;
2915 btrfs_release_path(path);
2916
2917 path->reada = READA_FORWARD;
2918 ret = fiemap_search_slot(inode, path, range_start);
2919 if (ret < 0) {
2920 goto out_unlock;
2921 } else if (ret > 0) {
2922 /*
2923 * No file extent item found, but we may have delalloc between
2924 * the current offset and i_size. So check for that.
2925 */
2926 ret = 0;
2927 goto check_eof_delalloc;
2928 }
2929
2930 while (prev_extent_end < range_end) {
2931 struct extent_buffer *leaf = path->nodes[0];
2932 struct btrfs_file_extent_item *ei;
2933 struct btrfs_key key;
2934 u64 extent_end;
2935 u64 extent_len;
2936 u64 extent_offset = 0;
2937 u64 extent_gen;
2938 u64 disk_bytenr = 0;
2939 u64 flags = 0;
2940 int extent_type;
2941 u8 compression;
2942
2943 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2944 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
2945 break;
2946
2947 extent_end = btrfs_file_extent_end(path);
2948
2949 /*
2950 * The first iteration can leave us at an extent item that ends
2951 * before our range's start. Move to the next item.
2952 */
2953 if (extent_end <= range_start)
2954 goto next_item;
2955
2956 backref_ctx->curr_leaf_bytenr = leaf->start;
2957
2958 /* We have in implicit hole (NO_HOLES feature enabled). */
2959 if (prev_extent_end < key.offset) {
2960 const u64 hole_end = min(key.offset, range_end) - 1;
2961
2962 ret = fiemap_process_hole(inode, fieinfo, &cache,
2963 &delalloc_cached_state,
2964 backref_ctx, 0, 0, 0,
2965 prev_extent_end, hole_end);
2966 if (ret < 0) {
2967 goto out_unlock;
2968 } else if (ret > 0) {
2969 /* fiemap_fill_next_extent() told us to stop. */
2970 stopped = true;
2971 break;
2972 }
2973
2974 /* We've reached the end of the fiemap range, stop. */
2975 if (key.offset >= range_end) {
2976 stopped = true;
2977 break;
2978 }
2979 }
2980
2981 extent_len = extent_end - key.offset;
2982 ei = btrfs_item_ptr(leaf, path->slots[0],
2983 struct btrfs_file_extent_item);
2984 compression = btrfs_file_extent_compression(leaf, ei);
2985 extent_type = btrfs_file_extent_type(leaf, ei);
2986 extent_gen = btrfs_file_extent_generation(leaf, ei);
2987
2988 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2989 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
2990 if (compression == BTRFS_COMPRESS_NONE)
2991 extent_offset = btrfs_file_extent_offset(leaf, ei);
2992 }
2993
2994 if (compression != BTRFS_COMPRESS_NONE)
2995 flags |= FIEMAP_EXTENT_ENCODED;
2996
2997 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2998 flags |= FIEMAP_EXTENT_DATA_INLINE;
2999 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
3000 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
3001 extent_len, flags);
3002 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
3003 ret = fiemap_process_hole(inode, fieinfo, &cache,
3004 &delalloc_cached_state,
3005 backref_ctx,
3006 disk_bytenr, extent_offset,
3007 extent_gen, key.offset,
3008 extent_end - 1);
3009 } else if (disk_bytenr == 0) {
3010 /* We have an explicit hole. */
3011 ret = fiemap_process_hole(inode, fieinfo, &cache,
3012 &delalloc_cached_state,
3013 backref_ctx, 0, 0, 0,
3014 key.offset, extent_end - 1);
3015 } else {
3016 /* We have a regular extent. */
3017 if (fieinfo->fi_extents_max) {
3018 ret = btrfs_is_data_extent_shared(inode,
3019 disk_bytenr,
3020 extent_gen,
3021 backref_ctx);
3022 if (ret < 0)
3023 goto out_unlock;
3024 else if (ret > 0)
3025 flags |= FIEMAP_EXTENT_SHARED;
3026 }
3027
3028 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
3029 disk_bytenr + extent_offset,
3030 extent_len, flags);
3031 }
3032
3033 if (ret < 0) {
3034 goto out_unlock;
3035 } else if (ret > 0) {
3036 /* fiemap_fill_next_extent() told us to stop. */
3037 stopped = true;
3038 break;
3039 }
3040
3041 prev_extent_end = extent_end;
3042 next_item:
3043 if (fatal_signal_pending(current)) {
3044 ret = -EINTR;
3045 goto out_unlock;
3046 }
3047
3048 ret = fiemap_next_leaf_item(inode, path);
3049 if (ret < 0) {
3050 goto out_unlock;
3051 } else if (ret > 0) {
3052 /* No more file extent items for this inode. */
3053 break;
3054 }
3055 cond_resched();
3056 }
3057
3058 check_eof_delalloc:
3059 /*
3060 * Release (and free) the path before emitting any final entries to
3061 * fiemap_fill_next_extent() to keep lockdep happy. This is because
3062 * once we find no more file extent items exist, we may have a
3063 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
3064 * faults when copying data to the user space buffer.
3065 */
3066 btrfs_free_path(path);
3067 path = NULL;
3068
3069 if (!stopped && prev_extent_end < range_end) {
3070 ret = fiemap_process_hole(inode, fieinfo, &cache,
3071 &delalloc_cached_state, backref_ctx,
3072 0, 0, 0, prev_extent_end, range_end - 1);
3073 if (ret < 0)
3074 goto out_unlock;
3075 prev_extent_end = range_end;
3076 }
3077
3078 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
3079 const u64 i_size = i_size_read(&inode->vfs_inode);
3080
3081 if (prev_extent_end < i_size) {
3082 struct extent_state *cached_state = NULL;
3083 u64 delalloc_start;
3084 u64 delalloc_end;
3085 u64 lockstart;
3086 u64 lockend;
3087 bool delalloc;
3088
3089 lockstart = round_down(prev_extent_end, sectorsize);
3090 lockend = round_up(i_size, sectorsize);
3091
3092 /*
3093 * See the comment in fiemap_process_hole as to why
3094 * we're doing the locking here.
3095 */
3096 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3097 delalloc = btrfs_find_delalloc_in_range(inode,
3098 prev_extent_end,
3099 i_size - 1,
3100 &delalloc_cached_state,
3101 &delalloc_start,
3102 &delalloc_end);
3103 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3104 if (!delalloc)
3105 cache.flags |= FIEMAP_EXTENT_LAST;
3106 } else {
3107 cache.flags |= FIEMAP_EXTENT_LAST;
3108 }
3109 }
3110
3111 ret = emit_last_fiemap_cache(fieinfo, &cache);
3112
3113 out_unlock:
3114 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
3115 out:
3116 free_extent_state(delalloc_cached_state);
3117 btrfs_free_backref_share_ctx(backref_ctx);
3118 btrfs_free_path(path);
3119 return ret;
3120 }
3121
3122 static void __free_extent_buffer(struct extent_buffer *eb)
3123 {
3124 kmem_cache_free(extent_buffer_cache, eb);
3125 }
3126
3127 static int extent_buffer_under_io(const struct extent_buffer *eb)
3128 {
3129 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3130 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3131 }
3132
3133 static bool folio_range_has_eb(struct btrfs_fs_info *fs_info, struct folio *folio)
3134 {
3135 struct btrfs_subpage *subpage;
3136
3137 lockdep_assert_held(&folio->mapping->private_lock);
3138
3139 if (folio_test_private(folio)) {
3140 subpage = folio_get_private(folio);
3141 if (atomic_read(&subpage->eb_refs))
3142 return true;
3143 /*
3144 * Even there is no eb refs here, we may still have
3145 * end_page_read() call relying on page::private.
3146 */
3147 if (atomic_read(&subpage->readers))
3148 return true;
3149 }
3150 return false;
3151 }
3152
3153 static void detach_extent_buffer_folio(struct extent_buffer *eb, struct folio *folio)
3154 {
3155 struct btrfs_fs_info *fs_info = eb->fs_info;
3156 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3157
3158 /*
3159 * For mapped eb, we're going to change the folio private, which should
3160 * be done under the private_lock.
3161 */
3162 if (mapped)
3163 spin_lock(&folio->mapping->private_lock);
3164
3165 if (!folio_test_private(folio)) {
3166 if (mapped)
3167 spin_unlock(&folio->mapping->private_lock);
3168 return;
3169 }
3170
3171 if (fs_info->nodesize >= PAGE_SIZE) {
3172 /*
3173 * We do this since we'll remove the pages after we've
3174 * removed the eb from the radix tree, so we could race
3175 * and have this page now attached to the new eb. So
3176 * only clear folio if it's still connected to
3177 * this eb.
3178 */
3179 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
3180 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3181 BUG_ON(folio_test_dirty(folio));
3182 BUG_ON(folio_test_writeback(folio));
3183 /* We need to make sure we haven't be attached to a new eb. */
3184 folio_detach_private(folio);
3185 }
3186 if (mapped)
3187 spin_unlock(&folio->mapping->private_lock);
3188 return;
3189 }
3190
3191 /*
3192 * For subpage, we can have dummy eb with folio private attached. In
3193 * this case, we can directly detach the private as such folio is only
3194 * attached to one dummy eb, no sharing.
3195 */
3196 if (!mapped) {
3197 btrfs_detach_subpage(fs_info, folio);
3198 return;
3199 }
3200
3201 btrfs_folio_dec_eb_refs(fs_info, folio);
3202
3203 /*
3204 * We can only detach the folio private if there are no other ebs in the
3205 * page range and no unfinished IO.
3206 */
3207 if (!folio_range_has_eb(fs_info, folio))
3208 btrfs_detach_subpage(fs_info, folio);
3209
3210 spin_unlock(&folio->mapping->private_lock);
3211 }
3212
3213 /* Release all pages attached to the extent buffer */
3214 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
3215 {
3216 ASSERT(!extent_buffer_under_io(eb));
3217
3218 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
3219 struct folio *folio = eb->folios[i];
3220
3221 if (!folio)
3222 continue;
3223
3224 detach_extent_buffer_folio(eb, folio);
3225
3226 /* One for when we allocated the folio. */
3227 folio_put(folio);
3228 }
3229 }
3230
3231 /*
3232 * Helper for releasing the extent buffer.
3233 */
3234 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3235 {
3236 btrfs_release_extent_buffer_pages(eb);
3237 btrfs_leak_debug_del_eb(eb);
3238 __free_extent_buffer(eb);
3239 }
3240
3241 static struct extent_buffer *
3242 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
3243 unsigned long len)
3244 {
3245 struct extent_buffer *eb = NULL;
3246
3247 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
3248 eb->start = start;
3249 eb->len = len;
3250 eb->fs_info = fs_info;
3251 init_rwsem(&eb->lock);
3252
3253 btrfs_leak_debug_add_eb(eb);
3254
3255 spin_lock_init(&eb->refs_lock);
3256 atomic_set(&eb->refs, 1);
3257
3258 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
3259
3260 return eb;
3261 }
3262
3263 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
3264 {
3265 struct extent_buffer *new;
3266 int num_folios = num_extent_folios(src);
3267 int ret;
3268
3269 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
3270 if (new == NULL)
3271 return NULL;
3272
3273 /*
3274 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
3275 * btrfs_release_extent_buffer() have different behavior for
3276 * UNMAPPED subpage extent buffer.
3277 */
3278 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
3279
3280 ret = alloc_eb_folio_array(new, 0);
3281 if (ret) {
3282 btrfs_release_extent_buffer(new);
3283 return NULL;
3284 }
3285
3286 for (int i = 0; i < num_folios; i++) {
3287 struct folio *folio = new->folios[i];
3288 int ret;
3289
3290 ret = attach_extent_buffer_folio(new, folio, NULL);
3291 if (ret < 0) {
3292 btrfs_release_extent_buffer(new);
3293 return NULL;
3294 }
3295 WARN_ON(folio_test_dirty(folio));
3296 }
3297 copy_extent_buffer_full(new, src);
3298 set_extent_buffer_uptodate(new);
3299
3300 return new;
3301 }
3302
3303 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3304 u64 start, unsigned long len)
3305 {
3306 struct extent_buffer *eb;
3307 int num_folios = 0;
3308 int ret;
3309
3310 eb = __alloc_extent_buffer(fs_info, start, len);
3311 if (!eb)
3312 return NULL;
3313
3314 ret = alloc_eb_folio_array(eb, 0);
3315 if (ret)
3316 goto err;
3317
3318 num_folios = num_extent_folios(eb);
3319 for (int i = 0; i < num_folios; i++) {
3320 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
3321 if (ret < 0)
3322 goto err;
3323 }
3324
3325 set_extent_buffer_uptodate(eb);
3326 btrfs_set_header_nritems(eb, 0);
3327 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3328
3329 return eb;
3330 err:
3331 for (int i = 0; i < num_folios; i++) {
3332 if (eb->folios[i]) {
3333 detach_extent_buffer_folio(eb, eb->folios[i]);
3334 __folio_put(eb->folios[i]);
3335 }
3336 }
3337 __free_extent_buffer(eb);
3338 return NULL;
3339 }
3340
3341 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
3342 u64 start)
3343 {
3344 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
3345 }
3346
3347 static void check_buffer_tree_ref(struct extent_buffer *eb)
3348 {
3349 int refs;
3350 /*
3351 * The TREE_REF bit is first set when the extent_buffer is added
3352 * to the radix tree. It is also reset, if unset, when a new reference
3353 * is created by find_extent_buffer.
3354 *
3355 * It is only cleared in two cases: freeing the last non-tree
3356 * reference to the extent_buffer when its STALE bit is set or
3357 * calling release_folio when the tree reference is the only reference.
3358 *
3359 * In both cases, care is taken to ensure that the extent_buffer's
3360 * pages are not under io. However, release_folio can be concurrently
3361 * called with creating new references, which is prone to race
3362 * conditions between the calls to check_buffer_tree_ref in those
3363 * codepaths and clearing TREE_REF in try_release_extent_buffer.
3364 *
3365 * The actual lifetime of the extent_buffer in the radix tree is
3366 * adequately protected by the refcount, but the TREE_REF bit and
3367 * its corresponding reference are not. To protect against this
3368 * class of races, we call check_buffer_tree_ref from the codepaths
3369 * which trigger io. Note that once io is initiated, TREE_REF can no
3370 * longer be cleared, so that is the moment at which any such race is
3371 * best fixed.
3372 */
3373 refs = atomic_read(&eb->refs);
3374 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3375 return;
3376
3377 spin_lock(&eb->refs_lock);
3378 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3379 atomic_inc(&eb->refs);
3380 spin_unlock(&eb->refs_lock);
3381 }
3382
3383 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
3384 {
3385 int num_folios= num_extent_folios(eb);
3386
3387 check_buffer_tree_ref(eb);
3388
3389 for (int i = 0; i < num_folios; i++)
3390 folio_mark_accessed(eb->folios[i]);
3391 }
3392
3393 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
3394 u64 start)
3395 {
3396 struct extent_buffer *eb;
3397
3398 eb = find_extent_buffer_nolock(fs_info, start);
3399 if (!eb)
3400 return NULL;
3401 /*
3402 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
3403 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
3404 * another task running free_extent_buffer() might have seen that flag
3405 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
3406 * writeback flags not set) and it's still in the tree (flag
3407 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
3408 * decrementing the extent buffer's reference count twice. So here we
3409 * could race and increment the eb's reference count, clear its stale
3410 * flag, mark it as dirty and drop our reference before the other task
3411 * finishes executing free_extent_buffer, which would later result in
3412 * an attempt to free an extent buffer that is dirty.
3413 */
3414 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
3415 spin_lock(&eb->refs_lock);
3416 spin_unlock(&eb->refs_lock);
3417 }
3418 mark_extent_buffer_accessed(eb);
3419 return eb;
3420 }
3421
3422 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3423 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
3424 u64 start)
3425 {
3426 struct extent_buffer *eb, *exists = NULL;
3427 int ret;
3428
3429 eb = find_extent_buffer(fs_info, start);
3430 if (eb)
3431 return eb;
3432 eb = alloc_dummy_extent_buffer(fs_info, start);
3433 if (!eb)
3434 return ERR_PTR(-ENOMEM);
3435 eb->fs_info = fs_info;
3436 again:
3437 ret = radix_tree_preload(GFP_NOFS);
3438 if (ret) {
3439 exists = ERR_PTR(ret);
3440 goto free_eb;
3441 }
3442 spin_lock(&fs_info->buffer_lock);
3443 ret = radix_tree_insert(&fs_info->buffer_radix,
3444 start >> fs_info->sectorsize_bits, eb);
3445 spin_unlock(&fs_info->buffer_lock);
3446 radix_tree_preload_end();
3447 if (ret == -EEXIST) {
3448 exists = find_extent_buffer(fs_info, start);
3449 if (exists)
3450 goto free_eb;
3451 else
3452 goto again;
3453 }
3454 check_buffer_tree_ref(eb);
3455 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3456
3457 return eb;
3458 free_eb:
3459 btrfs_release_extent_buffer(eb);
3460 return exists;
3461 }
3462 #endif
3463
3464 static struct extent_buffer *grab_extent_buffer(
3465 struct btrfs_fs_info *fs_info, struct page *page)
3466 {
3467 struct folio *folio = page_folio(page);
3468 struct extent_buffer *exists;
3469
3470 /*
3471 * For subpage case, we completely rely on radix tree to ensure we
3472 * don't try to insert two ebs for the same bytenr. So here we always
3473 * return NULL and just continue.
3474 */
3475 if (fs_info->nodesize < PAGE_SIZE)
3476 return NULL;
3477
3478 /* Page not yet attached to an extent buffer */
3479 if (!folio_test_private(folio))
3480 return NULL;
3481
3482 /*
3483 * We could have already allocated an eb for this page and attached one
3484 * so lets see if we can get a ref on the existing eb, and if we can we
3485 * know it's good and we can just return that one, else we know we can
3486 * just overwrite folio private.
3487 */
3488 exists = folio_get_private(folio);
3489 if (atomic_inc_not_zero(&exists->refs))
3490 return exists;
3491
3492 WARN_ON(PageDirty(page));
3493 folio_detach_private(folio);
3494 return NULL;
3495 }
3496
3497 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
3498 {
3499 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
3500 btrfs_err(fs_info, "bad tree block start %llu", start);
3501 return -EINVAL;
3502 }
3503
3504 if (fs_info->nodesize < PAGE_SIZE &&
3505 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
3506 btrfs_err(fs_info,
3507 "tree block crosses page boundary, start %llu nodesize %u",
3508 start, fs_info->nodesize);
3509 return -EINVAL;
3510 }
3511 if (fs_info->nodesize >= PAGE_SIZE &&
3512 !PAGE_ALIGNED(start)) {
3513 btrfs_err(fs_info,
3514 "tree block is not page aligned, start %llu nodesize %u",
3515 start, fs_info->nodesize);
3516 return -EINVAL;
3517 }
3518 if (!IS_ALIGNED(start, fs_info->nodesize) &&
3519 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
3520 btrfs_warn(fs_info,
3521 "tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
3522 start, fs_info->nodesize);
3523 }
3524 return 0;
3525 }
3526
3527
3528 /*
3529 * Return 0 if eb->folios[i] is attached to btree inode successfully.
3530 * Return >0 if there is already another extent buffer for the range,
3531 * and @found_eb_ret would be updated.
3532 * Return -EAGAIN if the filemap has an existing folio but with different size
3533 * than @eb.
3534 * The caller needs to free the existing folios and retry using the same order.
3535 */
3536 static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
3537 struct extent_buffer **found_eb_ret)
3538 {
3539
3540 struct btrfs_fs_info *fs_info = eb->fs_info;
3541 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3542 const unsigned long index = eb->start >> PAGE_SHIFT;
3543 struct folio *existing_folio;
3544 int ret;
3545
3546 ASSERT(found_eb_ret);
3547
3548 /* Caller should ensure the folio exists. */
3549 ASSERT(eb->folios[i]);
3550
3551 retry:
3552 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
3553 GFP_NOFS | __GFP_NOFAIL);
3554 if (!ret)
3555 return 0;
3556
3557 existing_folio = filemap_lock_folio(mapping, index + i);
3558 /* The page cache only exists for a very short time, just retry. */
3559 if (IS_ERR(existing_folio))
3560 goto retry;
3561
3562 /* For now, we should only have single-page folios for btree inode. */
3563 ASSERT(folio_nr_pages(existing_folio) == 1);
3564
3565 if (folio_size(existing_folio) != folio_size(eb->folios[0])) {
3566 folio_unlock(existing_folio);
3567 folio_put(existing_folio);
3568 return -EAGAIN;
3569 }
3570
3571 if (fs_info->nodesize < PAGE_SIZE) {
3572 /*
3573 * We're going to reuse the existing page, can drop our page
3574 * and subpage structure now.
3575 */
3576 __free_page(folio_page(eb->folios[i], 0));
3577 eb->folios[i] = existing_folio;
3578 } else {
3579 struct extent_buffer *existing_eb;
3580
3581 existing_eb = grab_extent_buffer(fs_info,
3582 folio_page(existing_folio, 0));
3583 if (existing_eb) {
3584 /* The extent buffer still exists, we can use it directly. */
3585 *found_eb_ret = existing_eb;
3586 folio_unlock(existing_folio);
3587 folio_put(existing_folio);
3588 return 1;
3589 }
3590 /* The extent buffer no longer exists, we can reuse the folio. */
3591 __free_page(folio_page(eb->folios[i], 0));
3592 eb->folios[i] = existing_folio;
3593 }
3594 return 0;
3595 }
3596
3597 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3598 u64 start, u64 owner_root, int level)
3599 {
3600 unsigned long len = fs_info->nodesize;
3601 int num_folios;
3602 int attached = 0;
3603 struct extent_buffer *eb;
3604 struct extent_buffer *existing_eb = NULL;
3605 struct address_space *mapping = fs_info->btree_inode->i_mapping;
3606 struct btrfs_subpage *prealloc = NULL;
3607 u64 lockdep_owner = owner_root;
3608 bool page_contig = true;
3609 int uptodate = 1;
3610 int ret;
3611
3612 if (check_eb_alignment(fs_info, start))
3613 return ERR_PTR(-EINVAL);
3614
3615 #if BITS_PER_LONG == 32
3616 if (start >= MAX_LFS_FILESIZE) {
3617 btrfs_err_rl(fs_info,
3618 "extent buffer %llu is beyond 32bit page cache limit", start);
3619 btrfs_err_32bit_limit(fs_info);
3620 return ERR_PTR(-EOVERFLOW);
3621 }
3622 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3623 btrfs_warn_32bit_limit(fs_info);
3624 #endif
3625
3626 eb = find_extent_buffer(fs_info, start);
3627 if (eb)
3628 return eb;
3629
3630 eb = __alloc_extent_buffer(fs_info, start, len);
3631 if (!eb)
3632 return ERR_PTR(-ENOMEM);
3633
3634 /*
3635 * The reloc trees are just snapshots, so we need them to appear to be
3636 * just like any other fs tree WRT lockdep.
3637 */
3638 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3639 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3640
3641 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3642
3643 /*
3644 * Preallocate folio private for subpage case, so that we won't
3645 * allocate memory with private_lock nor page lock hold.
3646 *
3647 * The memory will be freed by attach_extent_buffer_page() or freed
3648 * manually if we exit earlier.
3649 */
3650 if (fs_info->nodesize < PAGE_SIZE) {
3651 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3652 if (IS_ERR(prealloc)) {
3653 ret = PTR_ERR(prealloc);
3654 goto out;
3655 }
3656 }
3657
3658 reallocate:
3659 /* Allocate all pages first. */
3660 ret = alloc_eb_folio_array(eb, __GFP_NOFAIL);
3661 if (ret < 0) {
3662 btrfs_free_subpage(prealloc);
3663 goto out;
3664 }
3665
3666 num_folios = num_extent_folios(eb);
3667 /* Attach all pages to the filemap. */
3668 for (int i = 0; i < num_folios; i++) {
3669 struct folio *folio;
3670
3671 ret = attach_eb_folio_to_filemap(eb, i, &existing_eb);
3672 if (ret > 0) {
3673 ASSERT(existing_eb);
3674 goto out;
3675 }
3676
3677 /*
3678 * TODO: Special handling for a corner case where the order of
3679 * folios mismatch between the new eb and filemap.
3680 *
3681 * This happens when:
3682 *
3683 * - the new eb is using higher order folio
3684 *
3685 * - the filemap is still using 0-order folios for the range
3686 * This can happen at the previous eb allocation, and we don't
3687 * have higher order folio for the call.
3688 *
3689 * - the existing eb has already been freed
3690 *
3691 * In this case, we have to free the existing folios first, and
3692 * re-allocate using the same order.
3693 * Thankfully this is not going to happen yet, as we're still
3694 * using 0-order folios.
3695 */
3696 if (unlikely(ret == -EAGAIN)) {
3697 ASSERT(0);
3698 goto reallocate;
3699 }
3700 attached++;
3701
3702 /*
3703 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3704 * reliable, as we may choose to reuse the existing page cache
3705 * and free the allocated page.
3706 */
3707 folio = eb->folios[i];
3708 spin_lock(&mapping->private_lock);
3709 /* Should not fail, as we have preallocated the memory */
3710 ret = attach_extent_buffer_folio(eb, folio, prealloc);
3711 ASSERT(!ret);
3712 /*
3713 * To inform we have extra eb under allocation, so that
3714 * detach_extent_buffer_page() won't release the folio private
3715 * when the eb hasn't yet been inserted into radix tree.
3716 *
3717 * The ref will be decreased when the eb released the page, in
3718 * detach_extent_buffer_page().
3719 * Thus needs no special handling in error path.
3720 */
3721 btrfs_folio_inc_eb_refs(fs_info, folio);
3722 spin_unlock(&mapping->private_lock);
3723
3724 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3725
3726 /*
3727 * Check if the current page is physically contiguous with previous eb
3728 * page.
3729 * At this stage, either we allocated a large folio, thus @i
3730 * would only be 0, or we fall back to per-page allocation.
3731 */
3732 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3733 page_contig = false;
3734
3735 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3736 uptodate = 0;
3737
3738 /*
3739 * We can't unlock the pages just yet since the extent buffer
3740 * hasn't been properly inserted in the radix tree, this
3741 * opens a race with btree_release_folio which can free a page
3742 * while we are still filling in all pages for the buffer and
3743 * we could crash.
3744 */
3745 }
3746 if (uptodate)
3747 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3748 /* All pages are physically contiguous, can skip cross page handling. */
3749 if (page_contig)
3750 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3751 again:
3752 ret = radix_tree_preload(GFP_NOFS);
3753 if (ret)
3754 goto out;
3755
3756 spin_lock(&fs_info->buffer_lock);
3757 ret = radix_tree_insert(&fs_info->buffer_radix,
3758 start >> fs_info->sectorsize_bits, eb);
3759 spin_unlock(&fs_info->buffer_lock);
3760 radix_tree_preload_end();
3761 if (ret == -EEXIST) {
3762 ret = 0;
3763 existing_eb = find_extent_buffer(fs_info, start);
3764 if (existing_eb)
3765 goto out;
3766 else
3767 goto again;
3768 }
3769 /* add one reference for the tree */
3770 check_buffer_tree_ref(eb);
3771 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3772
3773 /*
3774 * Now it's safe to unlock the pages because any calls to
3775 * btree_release_folio will correctly detect that a page belongs to a
3776 * live buffer and won't free them prematurely.
3777 */
3778 for (int i = 0; i < num_folios; i++)
3779 unlock_page(folio_page(eb->folios[i], 0));
3780 return eb;
3781
3782 out:
3783 WARN_ON(!atomic_dec_and_test(&eb->refs));
3784
3785 /*
3786 * Any attached folios need to be detached before we unlock them. This
3787 * is because when we're inserting our new folios into the mapping, and
3788 * then attaching our eb to that folio. If we fail to insert our folio
3789 * we'll lookup the folio for that index, and grab that EB. We do not
3790 * want that to grab this eb, as we're getting ready to free it. So we
3791 * have to detach it first and then unlock it.
3792 *
3793 * We have to drop our reference and NULL it out here because in the
3794 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3795 * Below when we call btrfs_release_extent_buffer() we will call
3796 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3797 * case. If we left eb->folios[i] populated in the subpage case we'd
3798 * double put our reference and be super sad.
3799 */
3800 for (int i = 0; i < attached; i++) {
3801 ASSERT(eb->folios[i]);
3802 detach_extent_buffer_folio(eb, eb->folios[i]);
3803 unlock_page(folio_page(eb->folios[i], 0));
3804 folio_put(eb->folios[i]);
3805 eb->folios[i] = NULL;
3806 }
3807 /*
3808 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3809 * so it can be cleaned up without utlizing page->mapping.
3810 */
3811 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3812
3813 btrfs_release_extent_buffer(eb);
3814 if (ret < 0)
3815 return ERR_PTR(ret);
3816 ASSERT(existing_eb);
3817 return existing_eb;
3818 }
3819
3820 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3821 {
3822 struct extent_buffer *eb =
3823 container_of(head, struct extent_buffer, rcu_head);
3824
3825 __free_extent_buffer(eb);
3826 }
3827
3828 static int release_extent_buffer(struct extent_buffer *eb)
3829 __releases(&eb->refs_lock)
3830 {
3831 lockdep_assert_held(&eb->refs_lock);
3832
3833 WARN_ON(atomic_read(&eb->refs) == 0);
3834 if (atomic_dec_and_test(&eb->refs)) {
3835 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3836 struct btrfs_fs_info *fs_info = eb->fs_info;
3837
3838 spin_unlock(&eb->refs_lock);
3839
3840 spin_lock(&fs_info->buffer_lock);
3841 radix_tree_delete(&fs_info->buffer_radix,
3842 eb->start >> fs_info->sectorsize_bits);
3843 spin_unlock(&fs_info->buffer_lock);
3844 } else {
3845 spin_unlock(&eb->refs_lock);
3846 }
3847
3848 btrfs_leak_debug_del_eb(eb);
3849 /* Should be safe to release our pages at this point */
3850 btrfs_release_extent_buffer_pages(eb);
3851 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3852 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3853 __free_extent_buffer(eb);
3854 return 1;
3855 }
3856 #endif
3857 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3858 return 1;
3859 }
3860 spin_unlock(&eb->refs_lock);
3861
3862 return 0;
3863 }
3864
3865 void free_extent_buffer(struct extent_buffer *eb)
3866 {
3867 int refs;
3868 if (!eb)
3869 return;
3870
3871 refs = atomic_read(&eb->refs);
3872 while (1) {
3873 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3874 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3875 refs == 1))
3876 break;
3877 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3878 return;
3879 }
3880
3881 spin_lock(&eb->refs_lock);
3882 if (atomic_read(&eb->refs) == 2 &&
3883 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3884 !extent_buffer_under_io(eb) &&
3885 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3886 atomic_dec(&eb->refs);
3887
3888 /*
3889 * I know this is terrible, but it's temporary until we stop tracking
3890 * the uptodate bits and such for the extent buffers.
3891 */
3892 release_extent_buffer(eb);
3893 }
3894
3895 void free_extent_buffer_stale(struct extent_buffer *eb)
3896 {
3897 if (!eb)
3898 return;
3899
3900 spin_lock(&eb->refs_lock);
3901 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3902
3903 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3904 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3905 atomic_dec(&eb->refs);
3906 release_extent_buffer(eb);
3907 }
3908
3909 static void btree_clear_folio_dirty(struct folio *folio)
3910 {
3911 ASSERT(folio_test_dirty(folio));
3912 ASSERT(folio_test_locked(folio));
3913 folio_clear_dirty_for_io(folio);
3914 xa_lock_irq(&folio->mapping->i_pages);
3915 if (!folio_test_dirty(folio))
3916 __xa_clear_mark(&folio->mapping->i_pages,
3917 folio_index(folio), PAGECACHE_TAG_DIRTY);
3918 xa_unlock_irq(&folio->mapping->i_pages);
3919 }
3920
3921 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3922 {
3923 struct btrfs_fs_info *fs_info = eb->fs_info;
3924 struct folio *folio = eb->folios[0];
3925 bool last;
3926
3927 /* btree_clear_folio_dirty() needs page locked. */
3928 folio_lock(folio);
3929 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3930 if (last)
3931 btree_clear_folio_dirty(folio);
3932 folio_unlock(folio);
3933 WARN_ON(atomic_read(&eb->refs) == 0);
3934 }
3935
3936 void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3937 struct extent_buffer *eb)
3938 {
3939 struct btrfs_fs_info *fs_info = eb->fs_info;
3940 int num_folios;
3941
3942 btrfs_assert_tree_write_locked(eb);
3943
3944 if (trans && btrfs_header_generation(eb) != trans->transid)
3945 return;
3946
3947 /*
3948 * Instead of clearing the dirty flag off of the buffer, mark it as
3949 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3950 * write-ordering in zoned mode, without the need to later re-dirty
3951 * the extent_buffer.
3952 *
3953 * The actual zeroout of the buffer will happen later in
3954 * btree_csum_one_bio.
3955 */
3956 if (btrfs_is_zoned(fs_info)) {
3957 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3958 return;
3959 }
3960
3961 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3962 return;
3963
3964 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3965 fs_info->dirty_metadata_batch);
3966
3967 if (eb->fs_info->nodesize < PAGE_SIZE)
3968 return clear_subpage_extent_buffer_dirty(eb);
3969
3970 num_folios = num_extent_folios(eb);
3971 for (int i = 0; i < num_folios; i++) {
3972 struct folio *folio = eb->folios[i];
3973
3974 if (!folio_test_dirty(folio))
3975 continue;
3976 folio_lock(folio);
3977 btree_clear_folio_dirty(folio);
3978 folio_unlock(folio);
3979 }
3980 WARN_ON(atomic_read(&eb->refs) == 0);
3981 }
3982
3983 void set_extent_buffer_dirty(struct extent_buffer *eb)
3984 {
3985 int num_folios;
3986 bool was_dirty;
3987
3988 check_buffer_tree_ref(eb);
3989
3990 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3991
3992 num_folios = num_extent_folios(eb);
3993 WARN_ON(atomic_read(&eb->refs) == 0);
3994 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3995
3996 if (!was_dirty) {
3997 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3998
3999 /*
4000 * For subpage case, we can have other extent buffers in the
4001 * same page, and in clear_subpage_extent_buffer_dirty() we
4002 * have to clear page dirty without subpage lock held.
4003 * This can cause race where our page gets dirty cleared after
4004 * we just set it.
4005 *
4006 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4007 * its page for other reasons, we can use page lock to prevent
4008 * the above race.
4009 */
4010 if (subpage)
4011 lock_page(folio_page(eb->folios[0], 0));
4012 for (int i = 0; i < num_folios; i++)
4013 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
4014 eb->start, eb->len);
4015 if (subpage)
4016 unlock_page(folio_page(eb->folios[0], 0));
4017 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
4018 eb->len,
4019 eb->fs_info->dirty_metadata_batch);
4020 }
4021 #ifdef CONFIG_BTRFS_DEBUG
4022 for (int i = 0; i < num_folios; i++)
4023 ASSERT(folio_test_dirty(eb->folios[i]));
4024 #endif
4025 }
4026
4027 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4028 {
4029 struct btrfs_fs_info *fs_info = eb->fs_info;
4030 int num_folios = num_extent_folios(eb);
4031
4032 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4033 for (int i = 0; i < num_folios; i++) {
4034 struct folio *folio = eb->folios[i];
4035
4036 if (!folio)
4037 continue;
4038
4039 /*
4040 * This is special handling for metadata subpage, as regular
4041 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4042 */
4043 if (fs_info->nodesize >= PAGE_SIZE)
4044 folio_clear_uptodate(folio);
4045 else
4046 btrfs_subpage_clear_uptodate(fs_info, folio,
4047 eb->start, eb->len);
4048 }
4049 }
4050
4051 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4052 {
4053 struct btrfs_fs_info *fs_info = eb->fs_info;
4054 int num_folios = num_extent_folios(eb);
4055
4056 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4057 for (int i = 0; i < num_folios; i++) {
4058 struct folio *folio = eb->folios[i];
4059
4060 /*
4061 * This is special handling for metadata subpage, as regular
4062 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4063 */
4064 if (fs_info->nodesize >= PAGE_SIZE)
4065 folio_mark_uptodate(folio);
4066 else
4067 btrfs_subpage_set_uptodate(fs_info, folio,
4068 eb->start, eb->len);
4069 }
4070 }
4071
4072 static void end_bbio_meta_read(struct btrfs_bio *bbio)
4073 {
4074 struct extent_buffer *eb = bbio->private;
4075 struct btrfs_fs_info *fs_info = eb->fs_info;
4076 bool uptodate = !bbio->bio.bi_status;
4077 struct folio_iter fi;
4078 u32 bio_offset = 0;
4079
4080 eb->read_mirror = bbio->mirror_num;
4081
4082 if (uptodate &&
4083 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
4084 uptodate = false;
4085
4086 if (uptodate) {
4087 set_extent_buffer_uptodate(eb);
4088 } else {
4089 clear_extent_buffer_uptodate(eb);
4090 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4091 }
4092
4093 bio_for_each_folio_all(fi, &bbio->bio) {
4094 struct folio *folio = fi.folio;
4095 u64 start = eb->start + bio_offset;
4096 u32 len = fi.length;
4097
4098 if (uptodate)
4099 btrfs_folio_set_uptodate(fs_info, folio, start, len);
4100 else
4101 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
4102
4103 bio_offset += len;
4104 }
4105
4106 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
4107 smp_mb__after_atomic();
4108 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
4109 free_extent_buffer(eb);
4110
4111 bio_put(&bbio->bio);
4112 }
4113
4114 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
4115 struct btrfs_tree_parent_check *check)
4116 {
4117 struct btrfs_bio *bbio;
4118 bool ret;
4119
4120 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4121 return 0;
4122
4123 /*
4124 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
4125 * operation, which could potentially still be in flight. In this case
4126 * we simply want to return an error.
4127 */
4128 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
4129 return -EIO;
4130
4131 /* Someone else is already reading the buffer, just wait for it. */
4132 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
4133 goto done;
4134
4135 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
4136 eb->read_mirror = 0;
4137 check_buffer_tree_ref(eb);
4138 atomic_inc(&eb->refs);
4139
4140 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
4141 REQ_OP_READ | REQ_META, eb->fs_info,
4142 end_bbio_meta_read, eb);
4143 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
4144 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
4145 bbio->file_offset = eb->start;
4146 memcpy(&bbio->parent_check, check, sizeof(*check));
4147 if (eb->fs_info->nodesize < PAGE_SIZE) {
4148 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
4149 eb->start - folio_pos(eb->folios[0]));
4150 ASSERT(ret);
4151 } else {
4152 int num_folios = num_extent_folios(eb);
4153
4154 for (int i = 0; i < num_folios; i++) {
4155 struct folio *folio = eb->folios[i];
4156
4157 ret = bio_add_folio(&bbio->bio, folio, folio_size(folio), 0);
4158 ASSERT(ret);
4159 }
4160 }
4161 btrfs_submit_bio(bbio, mirror_num);
4162
4163 done:
4164 if (wait == WAIT_COMPLETE) {
4165 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
4166 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4167 return -EIO;
4168 }
4169
4170 return 0;
4171 }
4172
4173 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
4174 unsigned long len)
4175 {
4176 btrfs_warn(eb->fs_info,
4177 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
4178 eb->start, eb->len, start, len);
4179 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4180
4181 return true;
4182 }
4183
4184 /*
4185 * Check if the [start, start + len) range is valid before reading/writing
4186 * the eb.
4187 * NOTE: @start and @len are offset inside the eb, not logical address.
4188 *
4189 * Caller should not touch the dst/src memory if this function returns error.
4190 */
4191 static inline int check_eb_range(const struct extent_buffer *eb,
4192 unsigned long start, unsigned long len)
4193 {
4194 unsigned long offset;
4195
4196 /* start, start + len should not go beyond eb->len nor overflow */
4197 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
4198 return report_eb_range(eb, start, len);
4199
4200 return false;
4201 }
4202
4203 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
4204 unsigned long start, unsigned long len)
4205 {
4206 const int unit_size = folio_size(eb->folios[0]);
4207 size_t cur;
4208 size_t offset;
4209 char *dst = (char *)dstv;
4210 unsigned long i = get_eb_folio_index(eb, start);
4211
4212 if (check_eb_range(eb, start, len)) {
4213 /*
4214 * Invalid range hit, reset the memory, so callers won't get
4215 * some random garbage for their uninitialized memory.
4216 */
4217 memset(dstv, 0, len);
4218 return;
4219 }
4220
4221 if (eb->addr) {
4222 memcpy(dstv, eb->addr + start, len);
4223 return;
4224 }
4225
4226 offset = get_eb_offset_in_folio(eb, start);
4227
4228 while (len > 0) {
4229 char *kaddr;
4230
4231 cur = min(len, unit_size - offset);
4232 kaddr = folio_address(eb->folios[i]);
4233 memcpy(dst, kaddr + offset, cur);
4234
4235 dst += cur;
4236 len -= cur;
4237 offset = 0;
4238 i++;
4239 }
4240 }
4241
4242 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
4243 void __user *dstv,
4244 unsigned long start, unsigned long len)
4245 {
4246 const int unit_size = folio_size(eb->folios[0]);
4247 size_t cur;
4248 size_t offset;
4249 char __user *dst = (char __user *)dstv;
4250 unsigned long i = get_eb_folio_index(eb, start);
4251 int ret = 0;
4252
4253 WARN_ON(start > eb->len);
4254 WARN_ON(start + len > eb->start + eb->len);
4255
4256 if (eb->addr) {
4257 if (copy_to_user_nofault(dstv, eb->addr + start, len))
4258 ret = -EFAULT;
4259 return ret;
4260 }
4261
4262 offset = get_eb_offset_in_folio(eb, start);
4263
4264 while (len > 0) {
4265 char *kaddr;
4266
4267 cur = min(len, unit_size - offset);
4268 kaddr = folio_address(eb->folios[i]);
4269 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
4270 ret = -EFAULT;
4271 break;
4272 }
4273
4274 dst += cur;
4275 len -= cur;
4276 offset = 0;
4277 i++;
4278 }
4279
4280 return ret;
4281 }
4282
4283 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
4284 unsigned long start, unsigned long len)
4285 {
4286 const int unit_size = folio_size(eb->folios[0]);
4287 size_t cur;
4288 size_t offset;
4289 char *kaddr;
4290 char *ptr = (char *)ptrv;
4291 unsigned long i = get_eb_folio_index(eb, start);
4292 int ret = 0;
4293
4294 if (check_eb_range(eb, start, len))
4295 return -EINVAL;
4296
4297 if (eb->addr)
4298 return memcmp(ptrv, eb->addr + start, len);
4299
4300 offset = get_eb_offset_in_folio(eb, start);
4301
4302 while (len > 0) {
4303 cur = min(len, unit_size - offset);
4304 kaddr = folio_address(eb->folios[i]);
4305 ret = memcmp(ptr, kaddr + offset, cur);
4306 if (ret)
4307 break;
4308
4309 ptr += cur;
4310 len -= cur;
4311 offset = 0;
4312 i++;
4313 }
4314 return ret;
4315 }
4316
4317 /*
4318 * Check that the extent buffer is uptodate.
4319 *
4320 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
4321 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
4322 */
4323 static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
4324 {
4325 struct btrfs_fs_info *fs_info = eb->fs_info;
4326 struct folio *folio = eb->folios[i];
4327
4328 ASSERT(folio);
4329
4330 /*
4331 * If we are using the commit root we could potentially clear a page
4332 * Uptodate while we're using the extent buffer that we've previously
4333 * looked up. We don't want to complain in this case, as the page was
4334 * valid before, we just didn't write it out. Instead we want to catch
4335 * the case where we didn't actually read the block properly, which
4336 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
4337 */
4338 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4339 return;
4340
4341 if (fs_info->nodesize < PAGE_SIZE) {
4342 struct folio *folio = eb->folios[0];
4343
4344 ASSERT(i == 0);
4345 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
4346 eb->start, eb->len)))
4347 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
4348 } else {
4349 WARN_ON(!folio_test_uptodate(folio));
4350 }
4351 }
4352
4353 static void __write_extent_buffer(const struct extent_buffer *eb,
4354 const void *srcv, unsigned long start,
4355 unsigned long len, bool use_memmove)
4356 {
4357 const int unit_size = folio_size(eb->folios[0]);
4358 size_t cur;
4359 size_t offset;
4360 char *kaddr;
4361 char *src = (char *)srcv;
4362 unsigned long i = get_eb_folio_index(eb, start);
4363 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
4364 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4365
4366 if (check_eb_range(eb, start, len))
4367 return;
4368
4369 if (eb->addr) {
4370 if (use_memmove)
4371 memmove(eb->addr + start, srcv, len);
4372 else
4373 memcpy(eb->addr + start, srcv, len);
4374 return;
4375 }
4376
4377 offset = get_eb_offset_in_folio(eb, start);
4378
4379 while (len > 0) {
4380 if (check_uptodate)
4381 assert_eb_folio_uptodate(eb, i);
4382
4383 cur = min(len, unit_size - offset);
4384 kaddr = folio_address(eb->folios[i]);
4385 if (use_memmove)
4386 memmove(kaddr + offset, src, cur);
4387 else
4388 memcpy(kaddr + offset, src, cur);
4389
4390 src += cur;
4391 len -= cur;
4392 offset = 0;
4393 i++;
4394 }
4395 }
4396
4397 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
4398 unsigned long start, unsigned long len)
4399 {
4400 return __write_extent_buffer(eb, srcv, start, len, false);
4401 }
4402
4403 static void memset_extent_buffer(const struct extent_buffer *eb, int c,
4404 unsigned long start, unsigned long len)
4405 {
4406 const int unit_size = folio_size(eb->folios[0]);
4407 unsigned long cur = start;
4408
4409 if (eb->addr) {
4410 memset(eb->addr + start, c, len);
4411 return;
4412 }
4413
4414 while (cur < start + len) {
4415 unsigned long index = get_eb_folio_index(eb, cur);
4416 unsigned int offset = get_eb_offset_in_folio(eb, cur);
4417 unsigned int cur_len = min(start + len - cur, unit_size - offset);
4418
4419 assert_eb_folio_uptodate(eb, index);
4420 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
4421
4422 cur += cur_len;
4423 }
4424 }
4425
4426 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
4427 unsigned long len)
4428 {
4429 if (check_eb_range(eb, start, len))
4430 return;
4431 return memset_extent_buffer(eb, 0, start, len);
4432 }
4433
4434 void copy_extent_buffer_full(const struct extent_buffer *dst,
4435 const struct extent_buffer *src)
4436 {
4437 const int unit_size = folio_size(src->folios[0]);
4438 unsigned long cur = 0;
4439
4440 ASSERT(dst->len == src->len);
4441
4442 while (cur < src->len) {
4443 unsigned long index = get_eb_folio_index(src, cur);
4444 unsigned long offset = get_eb_offset_in_folio(src, cur);
4445 unsigned long cur_len = min(src->len, unit_size - offset);
4446 void *addr = folio_address(src->folios[index]) + offset;
4447
4448 write_extent_buffer(dst, addr, cur, cur_len);
4449
4450 cur += cur_len;
4451 }
4452 }
4453
4454 void copy_extent_buffer(const struct extent_buffer *dst,
4455 const struct extent_buffer *src,
4456 unsigned long dst_offset, unsigned long src_offset,
4457 unsigned long len)
4458 {
4459 const int unit_size = folio_size(dst->folios[0]);
4460 u64 dst_len = dst->len;
4461 size_t cur;
4462 size_t offset;
4463 char *kaddr;
4464 unsigned long i = get_eb_folio_index(dst, dst_offset);
4465
4466 if (check_eb_range(dst, dst_offset, len) ||
4467 check_eb_range(src, src_offset, len))
4468 return;
4469
4470 WARN_ON(src->len != dst_len);
4471
4472 offset = get_eb_offset_in_folio(dst, dst_offset);
4473
4474 while (len > 0) {
4475 assert_eb_folio_uptodate(dst, i);
4476
4477 cur = min(len, (unsigned long)(unit_size - offset));
4478
4479 kaddr = folio_address(dst->folios[i]);
4480 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4481
4482 src_offset += cur;
4483 len -= cur;
4484 offset = 0;
4485 i++;
4486 }
4487 }
4488
4489 /*
4490 * Calculate the folio and offset of the byte containing the given bit number.
4491 *
4492 * @eb: the extent buffer
4493 * @start: offset of the bitmap item in the extent buffer
4494 * @nr: bit number
4495 * @folio_index: return index of the folio in the extent buffer that contains
4496 * the given bit number
4497 * @folio_offset: return offset into the folio given by folio_index
4498 *
4499 * This helper hides the ugliness of finding the byte in an extent buffer which
4500 * contains a given bit.
4501 */
4502 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
4503 unsigned long start, unsigned long nr,
4504 unsigned long *folio_index,
4505 size_t *folio_offset)
4506 {
4507 size_t byte_offset = BIT_BYTE(nr);
4508 size_t offset;
4509
4510 /*
4511 * The byte we want is the offset of the extent buffer + the offset of
4512 * the bitmap item in the extent buffer + the offset of the byte in the
4513 * bitmap item.
4514 */
4515 offset = start + offset_in_folio(eb->folios[0], eb->start) + byte_offset;
4516
4517 *folio_index = offset >> folio_shift(eb->folios[0]);
4518 *folio_offset = offset_in_folio(eb->folios[0], offset);
4519 }
4520
4521 /*
4522 * Determine whether a bit in a bitmap item is set.
4523 *
4524 * @eb: the extent buffer
4525 * @start: offset of the bitmap item in the extent buffer
4526 * @nr: bit number to test
4527 */
4528 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
4529 unsigned long nr)
4530 {
4531 unsigned long i;
4532 size_t offset;
4533 u8 *kaddr;
4534
4535 eb_bitmap_offset(eb, start, nr, &i, &offset);
4536 assert_eb_folio_uptodate(eb, i);
4537 kaddr = folio_address(eb->folios[i]);
4538 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
4539 }
4540
4541 static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
4542 {
4543 unsigned long index = get_eb_folio_index(eb, bytenr);
4544
4545 if (check_eb_range(eb, bytenr, 1))
4546 return NULL;
4547 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4548 }
4549
4550 /*
4551 * Set an area of a bitmap to 1.
4552 *
4553 * @eb: the extent buffer
4554 * @start: offset of the bitmap item in the extent buffer
4555 * @pos: bit number of the first bit
4556 * @len: number of bits to set
4557 */
4558 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4559 unsigned long pos, unsigned long len)
4560 {
4561 unsigned int first_byte = start + BIT_BYTE(pos);
4562 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4563 const bool same_byte = (first_byte == last_byte);
4564 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4565 u8 *kaddr;
4566
4567 if (same_byte)
4568 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4569
4570 /* Handle the first byte. */
4571 kaddr = extent_buffer_get_byte(eb, first_byte);
4572 *kaddr |= mask;
4573 if (same_byte)
4574 return;
4575
4576 /* Handle the byte aligned part. */
4577 ASSERT(first_byte + 1 <= last_byte);
4578 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4579
4580 /* Handle the last byte. */
4581 kaddr = extent_buffer_get_byte(eb, last_byte);
4582 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4583 }
4584
4585
4586 /*
4587 * Clear an area of a bitmap.
4588 *
4589 * @eb: the extent buffer
4590 * @start: offset of the bitmap item in the extent buffer
4591 * @pos: bit number of the first bit
4592 * @len: number of bits to clear
4593 */
4594 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4595 unsigned long start, unsigned long pos,
4596 unsigned long len)
4597 {
4598 unsigned int first_byte = start + BIT_BYTE(pos);
4599 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4600 const bool same_byte = (first_byte == last_byte);
4601 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4602 u8 *kaddr;
4603
4604 if (same_byte)
4605 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4606
4607 /* Handle the first byte. */
4608 kaddr = extent_buffer_get_byte(eb, first_byte);
4609 *kaddr &= ~mask;
4610 if (same_byte)
4611 return;
4612
4613 /* Handle the byte aligned part. */
4614 ASSERT(first_byte + 1 <= last_byte);
4615 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4616
4617 /* Handle the last byte. */
4618 kaddr = extent_buffer_get_byte(eb, last_byte);
4619 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4620 }
4621
4622 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4623 {
4624 unsigned long distance = (src > dst) ? src - dst : dst - src;
4625 return distance < len;
4626 }
4627
4628 void memcpy_extent_buffer(const struct extent_buffer *dst,
4629 unsigned long dst_offset, unsigned long src_offset,
4630 unsigned long len)
4631 {
4632 const int unit_size = folio_size(dst->folios[0]);
4633 unsigned long cur_off = 0;
4634
4635 if (check_eb_range(dst, dst_offset, len) ||
4636 check_eb_range(dst, src_offset, len))
4637 return;
4638
4639 if (dst->addr) {
4640 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4641
4642 if (use_memmove)
4643 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4644 else
4645 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4646 return;
4647 }
4648
4649 while (cur_off < len) {
4650 unsigned long cur_src = cur_off + src_offset;
4651 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4652 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4653 unsigned long cur_len = min(src_offset + len - cur_src,
4654 unit_size - folio_off);
4655 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4656 const bool use_memmove = areas_overlap(src_offset + cur_off,
4657 dst_offset + cur_off, cur_len);
4658
4659 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4660 use_memmove);
4661 cur_off += cur_len;
4662 }
4663 }
4664
4665 void memmove_extent_buffer(const struct extent_buffer *dst,
4666 unsigned long dst_offset, unsigned long src_offset,
4667 unsigned long len)
4668 {
4669 unsigned long dst_end = dst_offset + len - 1;
4670 unsigned long src_end = src_offset + len - 1;
4671
4672 if (check_eb_range(dst, dst_offset, len) ||
4673 check_eb_range(dst, src_offset, len))
4674 return;
4675
4676 if (dst_offset < src_offset) {
4677 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4678 return;
4679 }
4680
4681 if (dst->addr) {
4682 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4683 return;
4684 }
4685
4686 while (len > 0) {
4687 unsigned long src_i;
4688 size_t cur;
4689 size_t dst_off_in_folio;
4690 size_t src_off_in_folio;
4691 void *src_addr;
4692 bool use_memmove;
4693
4694 src_i = get_eb_folio_index(dst, src_end);
4695
4696 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4697 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4698
4699 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4700 cur = min(cur, dst_off_in_folio + 1);
4701
4702 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4703 cur + 1;
4704 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4705 cur);
4706
4707 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4708 use_memmove);
4709
4710 dst_end -= cur;
4711 src_end -= cur;
4712 len -= cur;
4713 }
4714 }
4715
4716 #define GANG_LOOKUP_SIZE 16
4717 static struct extent_buffer *get_next_extent_buffer(
4718 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
4719 {
4720 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4721 struct extent_buffer *found = NULL;
4722 u64 page_start = page_offset(page);
4723 u64 cur = page_start;
4724
4725 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
4726 lockdep_assert_held(&fs_info->buffer_lock);
4727
4728 while (cur < page_start + PAGE_SIZE) {
4729 int ret;
4730 int i;
4731
4732 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4733 (void **)gang, cur >> fs_info->sectorsize_bits,
4734 min_t(unsigned int, GANG_LOOKUP_SIZE,
4735 PAGE_SIZE / fs_info->nodesize));
4736 if (ret == 0)
4737 goto out;
4738 for (i = 0; i < ret; i++) {
4739 /* Already beyond page end */
4740 if (gang[i]->start >= page_start + PAGE_SIZE)
4741 goto out;
4742 /* Found one */
4743 if (gang[i]->start >= bytenr) {
4744 found = gang[i];
4745 goto out;
4746 }
4747 }
4748 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4749 }
4750 out:
4751 return found;
4752 }
4753
4754 static int try_release_subpage_extent_buffer(struct page *page)
4755 {
4756 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4757 u64 cur = page_offset(page);
4758 const u64 end = page_offset(page) + PAGE_SIZE;
4759 int ret;
4760
4761 while (cur < end) {
4762 struct extent_buffer *eb = NULL;
4763
4764 /*
4765 * Unlike try_release_extent_buffer() which uses folio private
4766 * to grab buffer, for subpage case we rely on radix tree, thus
4767 * we need to ensure radix tree consistency.
4768 *
4769 * We also want an atomic snapshot of the radix tree, thus go
4770 * with spinlock rather than RCU.
4771 */
4772 spin_lock(&fs_info->buffer_lock);
4773 eb = get_next_extent_buffer(fs_info, page, cur);
4774 if (!eb) {
4775 /* No more eb in the page range after or at cur */
4776 spin_unlock(&fs_info->buffer_lock);
4777 break;
4778 }
4779 cur = eb->start + eb->len;
4780
4781 /*
4782 * The same as try_release_extent_buffer(), to ensure the eb
4783 * won't disappear out from under us.
4784 */
4785 spin_lock(&eb->refs_lock);
4786 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4787 spin_unlock(&eb->refs_lock);
4788 spin_unlock(&fs_info->buffer_lock);
4789 break;
4790 }
4791 spin_unlock(&fs_info->buffer_lock);
4792
4793 /*
4794 * If tree ref isn't set then we know the ref on this eb is a
4795 * real ref, so just return, this eb will likely be freed soon
4796 * anyway.
4797 */
4798 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4799 spin_unlock(&eb->refs_lock);
4800 break;
4801 }
4802
4803 /*
4804 * Here we don't care about the return value, we will always
4805 * check the folio private at the end. And
4806 * release_extent_buffer() will release the refs_lock.
4807 */
4808 release_extent_buffer(eb);
4809 }
4810 /*
4811 * Finally to check if we have cleared folio private, as if we have
4812 * released all ebs in the page, the folio private should be cleared now.
4813 */
4814 spin_lock(&page->mapping->private_lock);
4815 if (!folio_test_private(page_folio(page)))
4816 ret = 1;
4817 else
4818 ret = 0;
4819 spin_unlock(&page->mapping->private_lock);
4820 return ret;
4821
4822 }
4823
4824 int try_release_extent_buffer(struct page *page)
4825 {
4826 struct folio *folio = page_folio(page);
4827 struct extent_buffer *eb;
4828
4829 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
4830 return try_release_subpage_extent_buffer(page);
4831
4832 /*
4833 * We need to make sure nobody is changing folio private, as we rely on
4834 * folio private as the pointer to extent buffer.
4835 */
4836 spin_lock(&page->mapping->private_lock);
4837 if (!folio_test_private(folio)) {
4838 spin_unlock(&page->mapping->private_lock);
4839 return 1;
4840 }
4841
4842 eb = folio_get_private(folio);
4843 BUG_ON(!eb);
4844
4845 /*
4846 * This is a little awful but should be ok, we need to make sure that
4847 * the eb doesn't disappear out from under us while we're looking at
4848 * this page.
4849 */
4850 spin_lock(&eb->refs_lock);
4851 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4852 spin_unlock(&eb->refs_lock);
4853 spin_unlock(&page->mapping->private_lock);
4854 return 0;
4855 }
4856 spin_unlock(&page->mapping->private_lock);
4857
4858 /*
4859 * If tree ref isn't set then we know the ref on this eb is a real ref,
4860 * so just return, this page will likely be freed soon anyway.
4861 */
4862 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4863 spin_unlock(&eb->refs_lock);
4864 return 0;
4865 }
4866
4867 return release_extent_buffer(eb);
4868 }
4869
4870 /*
4871 * Attempt to readahead a child block.
4872 *
4873 * @fs_info: the fs_info
4874 * @bytenr: bytenr to read
4875 * @owner_root: objectid of the root that owns this eb
4876 * @gen: generation for the uptodate check, can be 0
4877 * @level: level for the eb
4878 *
4879 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4880 * normal uptodate check of the eb, without checking the generation. If we have
4881 * to read the block we will not block on anything.
4882 */
4883 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4884 u64 bytenr, u64 owner_root, u64 gen, int level)
4885 {
4886 struct btrfs_tree_parent_check check = {
4887 .has_first_key = 0,
4888 .level = level,
4889 .transid = gen
4890 };
4891 struct extent_buffer *eb;
4892 int ret;
4893
4894 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4895 if (IS_ERR(eb))
4896 return;
4897
4898 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4899 free_extent_buffer(eb);
4900 return;
4901 }
4902
4903 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4904 if (ret < 0)
4905 free_extent_buffer_stale(eb);
4906 else
4907 free_extent_buffer(eb);
4908 }
4909
4910 /*
4911 * Readahead a node's child block.
4912 *
4913 * @node: parent node we're reading from
4914 * @slot: slot in the parent node for the child we want to read
4915 *
4916 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4917 * the slot in the node provided.
4918 */
4919 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4920 {
4921 btrfs_readahead_tree_block(node->fs_info,
4922 btrfs_node_blockptr(node, slot),
4923 btrfs_header_owner(node),
4924 btrfs_node_ptr_generation(node, slot),
4925 btrfs_header_level(node) - 1);
4926 }