]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/btrfs/extent_io.c
btrfs: Simplify page unlocking in alloc_extent_buffer
[thirdparty/kernel/linux.git] / fs / btrfs / extent_io.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 return !RB_EMPTY_NODE(&state->rb_node);
34 }
35
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39
40 static DEFINE_SPINLOCK(leak_lock);
41
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50 }
51
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60 }
61
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85 }
86
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
95 }
96 #else
97 #define btrfs_leak_debug_add(new, head) do {} while (0)
98 #define btrfs_leak_debug_del(entry) do {} while (0)
99 #define btrfs_leak_debug_check() do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101 #endif
102
103 #define BUFFER_LRU_MAX 64
104
105 struct tree_entry {
106 u64 start;
107 u64 end;
108 struct rb_node rb_node;
109 };
110
111 struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121 };
122
123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126 {
127 int ret;
128
129 if (!changeset)
130 return 0;
131 if (set && (state->state & bits) == bits)
132 return 0;
133 if (!set && (state->state & bits) == 0)
134 return 0;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 return ret;
139 }
140
141 static void flush_write_bio(struct extent_page_data *epd);
142
143 static inline struct btrfs_fs_info *
144 tree_fs_info(struct extent_io_tree *tree)
145 {
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
149 }
150
151 int __init extent_io_init(void)
152 {
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
157 return -ENOMEM;
158
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
164
165 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS))
168 goto free_buffer_cache;
169
170 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
171 goto free_bioset;
172
173 return 0;
174
175 free_bioset:
176 bioset_exit(&btrfs_bioset);
177
178 free_buffer_cache:
179 kmem_cache_destroy(extent_buffer_cache);
180 extent_buffer_cache = NULL;
181
182 free_state_cache:
183 kmem_cache_destroy(extent_state_cache);
184 extent_state_cache = NULL;
185 return -ENOMEM;
186 }
187
188 void __cold extent_io_exit(void)
189 {
190 btrfs_leak_debug_check();
191
192 /*
193 * Make sure all delayed rcu free are flushed before we
194 * destroy caches.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(extent_state_cache);
198 kmem_cache_destroy(extent_buffer_cache);
199 bioset_exit(&btrfs_bioset);
200 }
201
202 void extent_io_tree_init(struct extent_io_tree *tree,
203 void *private_data)
204 {
205 tree->state = RB_ROOT;
206 tree->ops = NULL;
207 tree->dirty_bytes = 0;
208 spin_lock_init(&tree->lock);
209 tree->private_data = private_data;
210 }
211
212 static struct extent_state *alloc_extent_state(gfp_t mask)
213 {
214 struct extent_state *state;
215
216 /*
217 * The given mask might be not appropriate for the slab allocator,
218 * drop the unsupported bits
219 */
220 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
221 state = kmem_cache_alloc(extent_state_cache, mask);
222 if (!state)
223 return state;
224 state->state = 0;
225 state->failrec = NULL;
226 RB_CLEAR_NODE(&state->rb_node);
227 btrfs_leak_debug_add(&state->leak_list, &states);
228 refcount_set(&state->refs, 1);
229 init_waitqueue_head(&state->wq);
230 trace_alloc_extent_state(state, mask, _RET_IP_);
231 return state;
232 }
233
234 void free_extent_state(struct extent_state *state)
235 {
236 if (!state)
237 return;
238 if (refcount_dec_and_test(&state->refs)) {
239 WARN_ON(extent_state_in_tree(state));
240 btrfs_leak_debug_del(&state->leak_list);
241 trace_free_extent_state(state, _RET_IP_);
242 kmem_cache_free(extent_state_cache, state);
243 }
244 }
245
246 static struct rb_node *tree_insert(struct rb_root *root,
247 struct rb_node *search_start,
248 u64 offset,
249 struct rb_node *node,
250 struct rb_node ***p_in,
251 struct rb_node **parent_in)
252 {
253 struct rb_node **p;
254 struct rb_node *parent = NULL;
255 struct tree_entry *entry;
256
257 if (p_in && parent_in) {
258 p = *p_in;
259 parent = *parent_in;
260 goto do_insert;
261 }
262
263 p = search_start ? &search_start : &root->rb_node;
264 while (*p) {
265 parent = *p;
266 entry = rb_entry(parent, struct tree_entry, rb_node);
267
268 if (offset < entry->start)
269 p = &(*p)->rb_left;
270 else if (offset > entry->end)
271 p = &(*p)->rb_right;
272 else
273 return parent;
274 }
275
276 do_insert:
277 rb_link_node(node, parent, p);
278 rb_insert_color(node, root);
279 return NULL;
280 }
281
282 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
283 struct rb_node **prev_ret,
284 struct rb_node **next_ret,
285 struct rb_node ***p_ret,
286 struct rb_node **parent_ret)
287 {
288 struct rb_root *root = &tree->state;
289 struct rb_node **n = &root->rb_node;
290 struct rb_node *prev = NULL;
291 struct rb_node *orig_prev = NULL;
292 struct tree_entry *entry;
293 struct tree_entry *prev_entry = NULL;
294
295 while (*n) {
296 prev = *n;
297 entry = rb_entry(prev, struct tree_entry, rb_node);
298 prev_entry = entry;
299
300 if (offset < entry->start)
301 n = &(*n)->rb_left;
302 else if (offset > entry->end)
303 n = &(*n)->rb_right;
304 else
305 return *n;
306 }
307
308 if (p_ret)
309 *p_ret = n;
310 if (parent_ret)
311 *parent_ret = prev;
312
313 if (prev_ret) {
314 orig_prev = prev;
315 while (prev && offset > prev_entry->end) {
316 prev = rb_next(prev);
317 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
318 }
319 *prev_ret = prev;
320 prev = orig_prev;
321 }
322
323 if (next_ret) {
324 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
325 while (prev && offset < prev_entry->start) {
326 prev = rb_prev(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *next_ret = prev;
330 }
331 return NULL;
332 }
333
334 static inline struct rb_node *
335 tree_search_for_insert(struct extent_io_tree *tree,
336 u64 offset,
337 struct rb_node ***p_ret,
338 struct rb_node **parent_ret)
339 {
340 struct rb_node *prev = NULL;
341 struct rb_node *ret;
342
343 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
344 if (!ret)
345 return prev;
346 return ret;
347 }
348
349 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
350 u64 offset)
351 {
352 return tree_search_for_insert(tree, offset, NULL, NULL);
353 }
354
355 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
356 struct extent_state *other)
357 {
358 if (tree->ops && tree->ops->merge_extent_hook)
359 tree->ops->merge_extent_hook(tree->private_data, new, other);
360 }
361
362 /*
363 * utility function to look for merge candidates inside a given range.
364 * Any extents with matching state are merged together into a single
365 * extent in the tree. Extents with EXTENT_IO in their state field
366 * are not merged because the end_io handlers need to be able to do
367 * operations on them without sleeping (or doing allocations/splits).
368 *
369 * This should be called with the tree lock held.
370 */
371 static void merge_state(struct extent_io_tree *tree,
372 struct extent_state *state)
373 {
374 struct extent_state *other;
375 struct rb_node *other_node;
376
377 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
378 return;
379
380 other_node = rb_prev(&state->rb_node);
381 if (other_node) {
382 other = rb_entry(other_node, struct extent_state, rb_node);
383 if (other->end == state->start - 1 &&
384 other->state == state->state) {
385 merge_cb(tree, state, other);
386 state->start = other->start;
387 rb_erase(&other->rb_node, &tree->state);
388 RB_CLEAR_NODE(&other->rb_node);
389 free_extent_state(other);
390 }
391 }
392 other_node = rb_next(&state->rb_node);
393 if (other_node) {
394 other = rb_entry(other_node, struct extent_state, rb_node);
395 if (other->start == state->end + 1 &&
396 other->state == state->state) {
397 merge_cb(tree, state, other);
398 state->end = other->end;
399 rb_erase(&other->rb_node, &tree->state);
400 RB_CLEAR_NODE(&other->rb_node);
401 free_extent_state(other);
402 }
403 }
404 }
405
406 static void set_state_cb(struct extent_io_tree *tree,
407 struct extent_state *state, unsigned *bits)
408 {
409 if (tree->ops && tree->ops->set_bit_hook)
410 tree->ops->set_bit_hook(tree->private_data, state, bits);
411 }
412
413 static void clear_state_cb(struct extent_io_tree *tree,
414 struct extent_state *state, unsigned *bits)
415 {
416 if (tree->ops && tree->ops->clear_bit_hook)
417 tree->ops->clear_bit_hook(tree->private_data, state, bits);
418 }
419
420 static void set_state_bits(struct extent_io_tree *tree,
421 struct extent_state *state, unsigned *bits,
422 struct extent_changeset *changeset);
423
424 /*
425 * insert an extent_state struct into the tree. 'bits' are set on the
426 * struct before it is inserted.
427 *
428 * This may return -EEXIST if the extent is already there, in which case the
429 * state struct is freed.
430 *
431 * The tree lock is not taken internally. This is a utility function and
432 * probably isn't what you want to call (see set/clear_extent_bit).
433 */
434 static int insert_state(struct extent_io_tree *tree,
435 struct extent_state *state, u64 start, u64 end,
436 struct rb_node ***p,
437 struct rb_node **parent,
438 unsigned *bits, struct extent_changeset *changeset)
439 {
440 struct rb_node *node;
441
442 if (end < start)
443 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
444 end, start);
445 state->start = start;
446 state->end = end;
447
448 set_state_bits(tree, state, bits, changeset);
449
450 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
451 if (node) {
452 struct extent_state *found;
453 found = rb_entry(node, struct extent_state, rb_node);
454 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
455 found->start, found->end, start, end);
456 return -EEXIST;
457 }
458 merge_state(tree, state);
459 return 0;
460 }
461
462 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
463 u64 split)
464 {
465 if (tree->ops && tree->ops->split_extent_hook)
466 tree->ops->split_extent_hook(tree->private_data, orig, split);
467 }
468
469 /*
470 * split a given extent state struct in two, inserting the preallocated
471 * struct 'prealloc' as the newly created second half. 'split' indicates an
472 * offset inside 'orig' where it should be split.
473 *
474 * Before calling,
475 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
476 * are two extent state structs in the tree:
477 * prealloc: [orig->start, split - 1]
478 * orig: [ split, orig->end ]
479 *
480 * The tree locks are not taken by this function. They need to be held
481 * by the caller.
482 */
483 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
484 struct extent_state *prealloc, u64 split)
485 {
486 struct rb_node *node;
487
488 split_cb(tree, orig, split);
489
490 prealloc->start = orig->start;
491 prealloc->end = split - 1;
492 prealloc->state = orig->state;
493 orig->start = split;
494
495 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
496 &prealloc->rb_node, NULL, NULL);
497 if (node) {
498 free_extent_state(prealloc);
499 return -EEXIST;
500 }
501 return 0;
502 }
503
504 static struct extent_state *next_state(struct extent_state *state)
505 {
506 struct rb_node *next = rb_next(&state->rb_node);
507 if (next)
508 return rb_entry(next, struct extent_state, rb_node);
509 else
510 return NULL;
511 }
512
513 /*
514 * utility function to clear some bits in an extent state struct.
515 * it will optionally wake up any one waiting on this state (wake == 1).
516 *
517 * If no bits are set on the state struct after clearing things, the
518 * struct is freed and removed from the tree
519 */
520 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
521 struct extent_state *state,
522 unsigned *bits, int wake,
523 struct extent_changeset *changeset)
524 {
525 struct extent_state *next;
526 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
527 int ret;
528
529 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
530 u64 range = state->end - state->start + 1;
531 WARN_ON(range > tree->dirty_bytes);
532 tree->dirty_bytes -= range;
533 }
534 clear_state_cb(tree, state, bits);
535 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
536 BUG_ON(ret < 0);
537 state->state &= ~bits_to_clear;
538 if (wake)
539 wake_up(&state->wq);
540 if (state->state == 0) {
541 next = next_state(state);
542 if (extent_state_in_tree(state)) {
543 rb_erase(&state->rb_node, &tree->state);
544 RB_CLEAR_NODE(&state->rb_node);
545 free_extent_state(state);
546 } else {
547 WARN_ON(1);
548 }
549 } else {
550 merge_state(tree, state);
551 next = next_state(state);
552 }
553 return next;
554 }
555
556 static struct extent_state *
557 alloc_extent_state_atomic(struct extent_state *prealloc)
558 {
559 if (!prealloc)
560 prealloc = alloc_extent_state(GFP_ATOMIC);
561
562 return prealloc;
563 }
564
565 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
566 {
567 btrfs_panic(tree_fs_info(tree), err,
568 "Locking error: Extent tree was modified by another thread while locked.");
569 }
570
571 /*
572 * clear some bits on a range in the tree. This may require splitting
573 * or inserting elements in the tree, so the gfp mask is used to
574 * indicate which allocations or sleeping are allowed.
575 *
576 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
577 * the given range from the tree regardless of state (ie for truncate).
578 *
579 * the range [start, end] is inclusive.
580 *
581 * This takes the tree lock, and returns 0 on success and < 0 on error.
582 */
583 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
584 unsigned bits, int wake, int delete,
585 struct extent_state **cached_state,
586 gfp_t mask, struct extent_changeset *changeset)
587 {
588 struct extent_state *state;
589 struct extent_state *cached;
590 struct extent_state *prealloc = NULL;
591 struct rb_node *node;
592 u64 last_end;
593 int err;
594 int clear = 0;
595
596 btrfs_debug_check_extent_io_range(tree, start, end);
597
598 if (bits & EXTENT_DELALLOC)
599 bits |= EXTENT_NORESERVE;
600
601 if (delete)
602 bits |= ~EXTENT_CTLBITS;
603 bits |= EXTENT_FIRST_DELALLOC;
604
605 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
606 clear = 1;
607 again:
608 if (!prealloc && gfpflags_allow_blocking(mask)) {
609 /*
610 * Don't care for allocation failure here because we might end
611 * up not needing the pre-allocated extent state at all, which
612 * is the case if we only have in the tree extent states that
613 * cover our input range and don't cover too any other range.
614 * If we end up needing a new extent state we allocate it later.
615 */
616 prealloc = alloc_extent_state(mask);
617 }
618
619 spin_lock(&tree->lock);
620 if (cached_state) {
621 cached = *cached_state;
622
623 if (clear) {
624 *cached_state = NULL;
625 cached_state = NULL;
626 }
627
628 if (cached && extent_state_in_tree(cached) &&
629 cached->start <= start && cached->end > start) {
630 if (clear)
631 refcount_dec(&cached->refs);
632 state = cached;
633 goto hit_next;
634 }
635 if (clear)
636 free_extent_state(cached);
637 }
638 /*
639 * this search will find the extents that end after
640 * our range starts
641 */
642 node = tree_search(tree, start);
643 if (!node)
644 goto out;
645 state = rb_entry(node, struct extent_state, rb_node);
646 hit_next:
647 if (state->start > end)
648 goto out;
649 WARN_ON(state->end < start);
650 last_end = state->end;
651
652 /* the state doesn't have the wanted bits, go ahead */
653 if (!(state->state & bits)) {
654 state = next_state(state);
655 goto next;
656 }
657
658 /*
659 * | ---- desired range ---- |
660 * | state | or
661 * | ------------- state -------------- |
662 *
663 * We need to split the extent we found, and may flip
664 * bits on second half.
665 *
666 * If the extent we found extends past our range, we
667 * just split and search again. It'll get split again
668 * the next time though.
669 *
670 * If the extent we found is inside our range, we clear
671 * the desired bit on it.
672 */
673
674 if (state->start < start) {
675 prealloc = alloc_extent_state_atomic(prealloc);
676 BUG_ON(!prealloc);
677 err = split_state(tree, state, prealloc, start);
678 if (err)
679 extent_io_tree_panic(tree, err);
680
681 prealloc = NULL;
682 if (err)
683 goto out;
684 if (state->end <= end) {
685 state = clear_state_bit(tree, state, &bits, wake,
686 changeset);
687 goto next;
688 }
689 goto search_again;
690 }
691 /*
692 * | ---- desired range ---- |
693 * | state |
694 * We need to split the extent, and clear the bit
695 * on the first half
696 */
697 if (state->start <= end && state->end > end) {
698 prealloc = alloc_extent_state_atomic(prealloc);
699 BUG_ON(!prealloc);
700 err = split_state(tree, state, prealloc, end + 1);
701 if (err)
702 extent_io_tree_panic(tree, err);
703
704 if (wake)
705 wake_up(&state->wq);
706
707 clear_state_bit(tree, prealloc, &bits, wake, changeset);
708
709 prealloc = NULL;
710 goto out;
711 }
712
713 state = clear_state_bit(tree, state, &bits, wake, changeset);
714 next:
715 if (last_end == (u64)-1)
716 goto out;
717 start = last_end + 1;
718 if (start <= end && state && !need_resched())
719 goto hit_next;
720
721 search_again:
722 if (start > end)
723 goto out;
724 spin_unlock(&tree->lock);
725 if (gfpflags_allow_blocking(mask))
726 cond_resched();
727 goto again;
728
729 out:
730 spin_unlock(&tree->lock);
731 if (prealloc)
732 free_extent_state(prealloc);
733
734 return 0;
735
736 }
737
738 static void wait_on_state(struct extent_io_tree *tree,
739 struct extent_state *state)
740 __releases(tree->lock)
741 __acquires(tree->lock)
742 {
743 DEFINE_WAIT(wait);
744 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
745 spin_unlock(&tree->lock);
746 schedule();
747 spin_lock(&tree->lock);
748 finish_wait(&state->wq, &wait);
749 }
750
751 /*
752 * waits for one or more bits to clear on a range in the state tree.
753 * The range [start, end] is inclusive.
754 * The tree lock is taken by this function
755 */
756 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
757 unsigned long bits)
758 {
759 struct extent_state *state;
760 struct rb_node *node;
761
762 btrfs_debug_check_extent_io_range(tree, start, end);
763
764 spin_lock(&tree->lock);
765 again:
766 while (1) {
767 /*
768 * this search will find all the extents that end after
769 * our range starts
770 */
771 node = tree_search(tree, start);
772 process_node:
773 if (!node)
774 break;
775
776 state = rb_entry(node, struct extent_state, rb_node);
777
778 if (state->start > end)
779 goto out;
780
781 if (state->state & bits) {
782 start = state->start;
783 refcount_inc(&state->refs);
784 wait_on_state(tree, state);
785 free_extent_state(state);
786 goto again;
787 }
788 start = state->end + 1;
789
790 if (start > end)
791 break;
792
793 if (!cond_resched_lock(&tree->lock)) {
794 node = rb_next(node);
795 goto process_node;
796 }
797 }
798 out:
799 spin_unlock(&tree->lock);
800 }
801
802 static void set_state_bits(struct extent_io_tree *tree,
803 struct extent_state *state,
804 unsigned *bits, struct extent_changeset *changeset)
805 {
806 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
807 int ret;
808
809 set_state_cb(tree, state, bits);
810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
814 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
815 BUG_ON(ret < 0);
816 state->state |= bits_to_set;
817 }
818
819 static void cache_state_if_flags(struct extent_state *state,
820 struct extent_state **cached_ptr,
821 unsigned flags)
822 {
823 if (cached_ptr && !(*cached_ptr)) {
824 if (!flags || (state->state & flags)) {
825 *cached_ptr = state;
826 refcount_inc(&state->refs);
827 }
828 }
829 }
830
831 static void cache_state(struct extent_state *state,
832 struct extent_state **cached_ptr)
833 {
834 return cache_state_if_flags(state, cached_ptr,
835 EXTENT_IOBITS | EXTENT_BOUNDARY);
836 }
837
838 /*
839 * set some bits on a range in the tree. This may require allocations or
840 * sleeping, so the gfp mask is used to indicate what is allowed.
841 *
842 * If any of the exclusive bits are set, this will fail with -EEXIST if some
843 * part of the range already has the desired bits set. The start of the
844 * existing range is returned in failed_start in this case.
845 *
846 * [start, end] is inclusive This takes the tree lock.
847 */
848
849 static int __must_check
850 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
851 unsigned bits, unsigned exclusive_bits,
852 u64 *failed_start, struct extent_state **cached_state,
853 gfp_t mask, struct extent_changeset *changeset)
854 {
855 struct extent_state *state;
856 struct extent_state *prealloc = NULL;
857 struct rb_node *node;
858 struct rb_node **p;
859 struct rb_node *parent;
860 int err = 0;
861 u64 last_start;
862 u64 last_end;
863
864 btrfs_debug_check_extent_io_range(tree, start, end);
865
866 bits |= EXTENT_FIRST_DELALLOC;
867 again:
868 if (!prealloc && gfpflags_allow_blocking(mask)) {
869 /*
870 * Don't care for allocation failure here because we might end
871 * up not needing the pre-allocated extent state at all, which
872 * is the case if we only have in the tree extent states that
873 * cover our input range and don't cover too any other range.
874 * If we end up needing a new extent state we allocate it later.
875 */
876 prealloc = alloc_extent_state(mask);
877 }
878
879 spin_lock(&tree->lock);
880 if (cached_state && *cached_state) {
881 state = *cached_state;
882 if (state->start <= start && state->end > start &&
883 extent_state_in_tree(state)) {
884 node = &state->rb_node;
885 goto hit_next;
886 }
887 }
888 /*
889 * this search will find all the extents that end after
890 * our range starts.
891 */
892 node = tree_search_for_insert(tree, start, &p, &parent);
893 if (!node) {
894 prealloc = alloc_extent_state_atomic(prealloc);
895 BUG_ON(!prealloc);
896 err = insert_state(tree, prealloc, start, end,
897 &p, &parent, &bits, changeset);
898 if (err)
899 extent_io_tree_panic(tree, err);
900
901 cache_state(prealloc, cached_state);
902 prealloc = NULL;
903 goto out;
904 }
905 state = rb_entry(node, struct extent_state, rb_node);
906 hit_next:
907 last_start = state->start;
908 last_end = state->end;
909
910 /*
911 * | ---- desired range ---- |
912 * | state |
913 *
914 * Just lock what we found and keep going
915 */
916 if (state->start == start && state->end <= end) {
917 if (state->state & exclusive_bits) {
918 *failed_start = state->start;
919 err = -EEXIST;
920 goto out;
921 }
922
923 set_state_bits(tree, state, &bits, changeset);
924 cache_state(state, cached_state);
925 merge_state(tree, state);
926 if (last_end == (u64)-1)
927 goto out;
928 start = last_end + 1;
929 state = next_state(state);
930 if (start < end && state && state->start == start &&
931 !need_resched())
932 goto hit_next;
933 goto search_again;
934 }
935
936 /*
937 * | ---- desired range ---- |
938 * | state |
939 * or
940 * | ------------- state -------------- |
941 *
942 * We need to split the extent we found, and may flip bits on
943 * second half.
944 *
945 * If the extent we found extends past our
946 * range, we just split and search again. It'll get split
947 * again the next time though.
948 *
949 * If the extent we found is inside our range, we set the
950 * desired bit on it.
951 */
952 if (state->start < start) {
953 if (state->state & exclusive_bits) {
954 *failed_start = start;
955 err = -EEXIST;
956 goto out;
957 }
958
959 prealloc = alloc_extent_state_atomic(prealloc);
960 BUG_ON(!prealloc);
961 err = split_state(tree, state, prealloc, start);
962 if (err)
963 extent_io_tree_panic(tree, err);
964
965 prealloc = NULL;
966 if (err)
967 goto out;
968 if (state->end <= end) {
969 set_state_bits(tree, state, &bits, changeset);
970 cache_state(state, cached_state);
971 merge_state(tree, state);
972 if (last_end == (u64)-1)
973 goto out;
974 start = last_end + 1;
975 state = next_state(state);
976 if (start < end && state && state->start == start &&
977 !need_resched())
978 goto hit_next;
979 }
980 goto search_again;
981 }
982 /*
983 * | ---- desired range ---- |
984 * | state | or | state |
985 *
986 * There's a hole, we need to insert something in it and
987 * ignore the extent we found.
988 */
989 if (state->start > start) {
990 u64 this_end;
991 if (end < last_start)
992 this_end = end;
993 else
994 this_end = last_start - 1;
995
996 prealloc = alloc_extent_state_atomic(prealloc);
997 BUG_ON(!prealloc);
998
999 /*
1000 * Avoid to free 'prealloc' if it can be merged with
1001 * the later extent.
1002 */
1003 err = insert_state(tree, prealloc, start, this_end,
1004 NULL, NULL, &bits, changeset);
1005 if (err)
1006 extent_io_tree_panic(tree, err);
1007
1008 cache_state(prealloc, cached_state);
1009 prealloc = NULL;
1010 start = this_end + 1;
1011 goto search_again;
1012 }
1013 /*
1014 * | ---- desired range ---- |
1015 * | state |
1016 * We need to split the extent, and set the bit
1017 * on the first half
1018 */
1019 if (state->start <= end && state->end > end) {
1020 if (state->state & exclusive_bits) {
1021 *failed_start = start;
1022 err = -EEXIST;
1023 goto out;
1024 }
1025
1026 prealloc = alloc_extent_state_atomic(prealloc);
1027 BUG_ON(!prealloc);
1028 err = split_state(tree, state, prealloc, end + 1);
1029 if (err)
1030 extent_io_tree_panic(tree, err);
1031
1032 set_state_bits(tree, prealloc, &bits, changeset);
1033 cache_state(prealloc, cached_state);
1034 merge_state(tree, prealloc);
1035 prealloc = NULL;
1036 goto out;
1037 }
1038
1039 search_again:
1040 if (start > end)
1041 goto out;
1042 spin_unlock(&tree->lock);
1043 if (gfpflags_allow_blocking(mask))
1044 cond_resched();
1045 goto again;
1046
1047 out:
1048 spin_unlock(&tree->lock);
1049 if (prealloc)
1050 free_extent_state(prealloc);
1051
1052 return err;
1053
1054 }
1055
1056 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1057 unsigned bits, u64 * failed_start,
1058 struct extent_state **cached_state, gfp_t mask)
1059 {
1060 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1061 cached_state, mask, NULL);
1062 }
1063
1064
1065 /**
1066 * convert_extent_bit - convert all bits in a given range from one bit to
1067 * another
1068 * @tree: the io tree to search
1069 * @start: the start offset in bytes
1070 * @end: the end offset in bytes (inclusive)
1071 * @bits: the bits to set in this range
1072 * @clear_bits: the bits to clear in this range
1073 * @cached_state: state that we're going to cache
1074 *
1075 * This will go through and set bits for the given range. If any states exist
1076 * already in this range they are set with the given bit and cleared of the
1077 * clear_bits. This is only meant to be used by things that are mergeable, ie
1078 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1079 * boundary bits like LOCK.
1080 *
1081 * All allocations are done with GFP_NOFS.
1082 */
1083 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1084 unsigned bits, unsigned clear_bits,
1085 struct extent_state **cached_state)
1086 {
1087 struct extent_state *state;
1088 struct extent_state *prealloc = NULL;
1089 struct rb_node *node;
1090 struct rb_node **p;
1091 struct rb_node *parent;
1092 int err = 0;
1093 u64 last_start;
1094 u64 last_end;
1095 bool first_iteration = true;
1096
1097 btrfs_debug_check_extent_io_range(tree, start, end);
1098
1099 again:
1100 if (!prealloc) {
1101 /*
1102 * Best effort, don't worry if extent state allocation fails
1103 * here for the first iteration. We might have a cached state
1104 * that matches exactly the target range, in which case no
1105 * extent state allocations are needed. We'll only know this
1106 * after locking the tree.
1107 */
1108 prealloc = alloc_extent_state(GFP_NOFS);
1109 if (!prealloc && !first_iteration)
1110 return -ENOMEM;
1111 }
1112
1113 spin_lock(&tree->lock);
1114 if (cached_state && *cached_state) {
1115 state = *cached_state;
1116 if (state->start <= start && state->end > start &&
1117 extent_state_in_tree(state)) {
1118 node = &state->rb_node;
1119 goto hit_next;
1120 }
1121 }
1122
1123 /*
1124 * this search will find all the extents that end after
1125 * our range starts.
1126 */
1127 node = tree_search_for_insert(tree, start, &p, &parent);
1128 if (!node) {
1129 prealloc = alloc_extent_state_atomic(prealloc);
1130 if (!prealloc) {
1131 err = -ENOMEM;
1132 goto out;
1133 }
1134 err = insert_state(tree, prealloc, start, end,
1135 &p, &parent, &bits, NULL);
1136 if (err)
1137 extent_io_tree_panic(tree, err);
1138 cache_state(prealloc, cached_state);
1139 prealloc = NULL;
1140 goto out;
1141 }
1142 state = rb_entry(node, struct extent_state, rb_node);
1143 hit_next:
1144 last_start = state->start;
1145 last_end = state->end;
1146
1147 /*
1148 * | ---- desired range ---- |
1149 * | state |
1150 *
1151 * Just lock what we found and keep going
1152 */
1153 if (state->start == start && state->end <= end) {
1154 set_state_bits(tree, state, &bits, NULL);
1155 cache_state(state, cached_state);
1156 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1157 if (last_end == (u64)-1)
1158 goto out;
1159 start = last_end + 1;
1160 if (start < end && state && state->start == start &&
1161 !need_resched())
1162 goto hit_next;
1163 goto search_again;
1164 }
1165
1166 /*
1167 * | ---- desired range ---- |
1168 * | state |
1169 * or
1170 * | ------------- state -------------- |
1171 *
1172 * We need to split the extent we found, and may flip bits on
1173 * second half.
1174 *
1175 * If the extent we found extends past our
1176 * range, we just split and search again. It'll get split
1177 * again the next time though.
1178 *
1179 * If the extent we found is inside our range, we set the
1180 * desired bit on it.
1181 */
1182 if (state->start < start) {
1183 prealloc = alloc_extent_state_atomic(prealloc);
1184 if (!prealloc) {
1185 err = -ENOMEM;
1186 goto out;
1187 }
1188 err = split_state(tree, state, prealloc, start);
1189 if (err)
1190 extent_io_tree_panic(tree, err);
1191 prealloc = NULL;
1192 if (err)
1193 goto out;
1194 if (state->end <= end) {
1195 set_state_bits(tree, state, &bits, NULL);
1196 cache_state(state, cached_state);
1197 state = clear_state_bit(tree, state, &clear_bits, 0,
1198 NULL);
1199 if (last_end == (u64)-1)
1200 goto out;
1201 start = last_end + 1;
1202 if (start < end && state && state->start == start &&
1203 !need_resched())
1204 goto hit_next;
1205 }
1206 goto search_again;
1207 }
1208 /*
1209 * | ---- desired range ---- |
1210 * | state | or | state |
1211 *
1212 * There's a hole, we need to insert something in it and
1213 * ignore the extent we found.
1214 */
1215 if (state->start > start) {
1216 u64 this_end;
1217 if (end < last_start)
1218 this_end = end;
1219 else
1220 this_end = last_start - 1;
1221
1222 prealloc = alloc_extent_state_atomic(prealloc);
1223 if (!prealloc) {
1224 err = -ENOMEM;
1225 goto out;
1226 }
1227
1228 /*
1229 * Avoid to free 'prealloc' if it can be merged with
1230 * the later extent.
1231 */
1232 err = insert_state(tree, prealloc, start, this_end,
1233 NULL, NULL, &bits, NULL);
1234 if (err)
1235 extent_io_tree_panic(tree, err);
1236 cache_state(prealloc, cached_state);
1237 prealloc = NULL;
1238 start = this_end + 1;
1239 goto search_again;
1240 }
1241 /*
1242 * | ---- desired range ---- |
1243 * | state |
1244 * We need to split the extent, and set the bit
1245 * on the first half
1246 */
1247 if (state->start <= end && state->end > end) {
1248 prealloc = alloc_extent_state_atomic(prealloc);
1249 if (!prealloc) {
1250 err = -ENOMEM;
1251 goto out;
1252 }
1253
1254 err = split_state(tree, state, prealloc, end + 1);
1255 if (err)
1256 extent_io_tree_panic(tree, err);
1257
1258 set_state_bits(tree, prealloc, &bits, NULL);
1259 cache_state(prealloc, cached_state);
1260 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1261 prealloc = NULL;
1262 goto out;
1263 }
1264
1265 search_again:
1266 if (start > end)
1267 goto out;
1268 spin_unlock(&tree->lock);
1269 cond_resched();
1270 first_iteration = false;
1271 goto again;
1272
1273 out:
1274 spin_unlock(&tree->lock);
1275 if (prealloc)
1276 free_extent_state(prealloc);
1277
1278 return err;
1279 }
1280
1281 /* wrappers around set/clear extent bit */
1282 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1283 unsigned bits, struct extent_changeset *changeset)
1284 {
1285 /*
1286 * We don't support EXTENT_LOCKED yet, as current changeset will
1287 * record any bits changed, so for EXTENT_LOCKED case, it will
1288 * either fail with -EEXIST or changeset will record the whole
1289 * range.
1290 */
1291 BUG_ON(bits & EXTENT_LOCKED);
1292
1293 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1294 changeset);
1295 }
1296
1297 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1298 unsigned bits, int wake, int delete,
1299 struct extent_state **cached)
1300 {
1301 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1302 cached, GFP_NOFS, NULL);
1303 }
1304
1305 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1306 unsigned bits, struct extent_changeset *changeset)
1307 {
1308 /*
1309 * Don't support EXTENT_LOCKED case, same reason as
1310 * set_record_extent_bits().
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1315 changeset);
1316 }
1317
1318 /*
1319 * either insert or lock state struct between start and end use mask to tell
1320 * us if waiting is desired.
1321 */
1322 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1323 struct extent_state **cached_state)
1324 {
1325 int err;
1326 u64 failed_start;
1327
1328 while (1) {
1329 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1330 EXTENT_LOCKED, &failed_start,
1331 cached_state, GFP_NOFS, NULL);
1332 if (err == -EEXIST) {
1333 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1334 start = failed_start;
1335 } else
1336 break;
1337 WARN_ON(start > end);
1338 }
1339 return err;
1340 }
1341
1342 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1343 {
1344 int err;
1345 u64 failed_start;
1346
1347 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348 &failed_start, NULL, GFP_NOFS, NULL);
1349 if (err == -EEXIST) {
1350 if (failed_start > start)
1351 clear_extent_bit(tree, start, failed_start - 1,
1352 EXTENT_LOCKED, 1, 0, NULL);
1353 return 0;
1354 }
1355 return 1;
1356 }
1357
1358 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1359 {
1360 unsigned long index = start >> PAGE_SHIFT;
1361 unsigned long end_index = end >> PAGE_SHIFT;
1362 struct page *page;
1363
1364 while (index <= end_index) {
1365 page = find_get_page(inode->i_mapping, index);
1366 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1367 clear_page_dirty_for_io(page);
1368 put_page(page);
1369 index++;
1370 }
1371 }
1372
1373 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1374 {
1375 unsigned long index = start >> PAGE_SHIFT;
1376 unsigned long end_index = end >> PAGE_SHIFT;
1377 struct page *page;
1378
1379 while (index <= end_index) {
1380 page = find_get_page(inode->i_mapping, index);
1381 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1382 __set_page_dirty_nobuffers(page);
1383 account_page_redirty(page);
1384 put_page(page);
1385 index++;
1386 }
1387 }
1388
1389 /*
1390 * helper function to set both pages and extents in the tree writeback
1391 */
1392 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1393 {
1394 tree->ops->set_range_writeback(tree->private_data, start, end);
1395 }
1396
1397 /* find the first state struct with 'bits' set after 'start', and
1398 * return it. tree->lock must be held. NULL will returned if
1399 * nothing was found after 'start'
1400 */
1401 static struct extent_state *
1402 find_first_extent_bit_state(struct extent_io_tree *tree,
1403 u64 start, unsigned bits)
1404 {
1405 struct rb_node *node;
1406 struct extent_state *state;
1407
1408 /*
1409 * this search will find all the extents that end after
1410 * our range starts.
1411 */
1412 node = tree_search(tree, start);
1413 if (!node)
1414 goto out;
1415
1416 while (1) {
1417 state = rb_entry(node, struct extent_state, rb_node);
1418 if (state->end >= start && (state->state & bits))
1419 return state;
1420
1421 node = rb_next(node);
1422 if (!node)
1423 break;
1424 }
1425 out:
1426 return NULL;
1427 }
1428
1429 /*
1430 * find the first offset in the io tree with 'bits' set. zero is
1431 * returned if we find something, and *start_ret and *end_ret are
1432 * set to reflect the state struct that was found.
1433 *
1434 * If nothing was found, 1 is returned. If found something, return 0.
1435 */
1436 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1437 u64 *start_ret, u64 *end_ret, unsigned bits,
1438 struct extent_state **cached_state)
1439 {
1440 struct extent_state *state;
1441 struct rb_node *n;
1442 int ret = 1;
1443
1444 spin_lock(&tree->lock);
1445 if (cached_state && *cached_state) {
1446 state = *cached_state;
1447 if (state->end == start - 1 && extent_state_in_tree(state)) {
1448 n = rb_next(&state->rb_node);
1449 while (n) {
1450 state = rb_entry(n, struct extent_state,
1451 rb_node);
1452 if (state->state & bits)
1453 goto got_it;
1454 n = rb_next(n);
1455 }
1456 free_extent_state(*cached_state);
1457 *cached_state = NULL;
1458 goto out;
1459 }
1460 free_extent_state(*cached_state);
1461 *cached_state = NULL;
1462 }
1463
1464 state = find_first_extent_bit_state(tree, start, bits);
1465 got_it:
1466 if (state) {
1467 cache_state_if_flags(state, cached_state, 0);
1468 *start_ret = state->start;
1469 *end_ret = state->end;
1470 ret = 0;
1471 }
1472 out:
1473 spin_unlock(&tree->lock);
1474 return ret;
1475 }
1476
1477 /*
1478 * find a contiguous range of bytes in the file marked as delalloc, not
1479 * more than 'max_bytes'. start and end are used to return the range,
1480 *
1481 * 1 is returned if we find something, 0 if nothing was in the tree
1482 */
1483 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1484 u64 *start, u64 *end, u64 max_bytes,
1485 struct extent_state **cached_state)
1486 {
1487 struct rb_node *node;
1488 struct extent_state *state;
1489 u64 cur_start = *start;
1490 u64 found = 0;
1491 u64 total_bytes = 0;
1492
1493 spin_lock(&tree->lock);
1494
1495 /*
1496 * this search will find all the extents that end after
1497 * our range starts.
1498 */
1499 node = tree_search(tree, cur_start);
1500 if (!node) {
1501 if (!found)
1502 *end = (u64)-1;
1503 goto out;
1504 }
1505
1506 while (1) {
1507 state = rb_entry(node, struct extent_state, rb_node);
1508 if (found && (state->start != cur_start ||
1509 (state->state & EXTENT_BOUNDARY))) {
1510 goto out;
1511 }
1512 if (!(state->state & EXTENT_DELALLOC)) {
1513 if (!found)
1514 *end = state->end;
1515 goto out;
1516 }
1517 if (!found) {
1518 *start = state->start;
1519 *cached_state = state;
1520 refcount_inc(&state->refs);
1521 }
1522 found++;
1523 *end = state->end;
1524 cur_start = state->end + 1;
1525 node = rb_next(node);
1526 total_bytes += state->end - state->start + 1;
1527 if (total_bytes >= max_bytes)
1528 break;
1529 if (!node)
1530 break;
1531 }
1532 out:
1533 spin_unlock(&tree->lock);
1534 return found;
1535 }
1536
1537 static int __process_pages_contig(struct address_space *mapping,
1538 struct page *locked_page,
1539 pgoff_t start_index, pgoff_t end_index,
1540 unsigned long page_ops, pgoff_t *index_ret);
1541
1542 static noinline void __unlock_for_delalloc(struct inode *inode,
1543 struct page *locked_page,
1544 u64 start, u64 end)
1545 {
1546 unsigned long index = start >> PAGE_SHIFT;
1547 unsigned long end_index = end >> PAGE_SHIFT;
1548
1549 ASSERT(locked_page);
1550 if (index == locked_page->index && end_index == index)
1551 return;
1552
1553 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1554 PAGE_UNLOCK, NULL);
1555 }
1556
1557 static noinline int lock_delalloc_pages(struct inode *inode,
1558 struct page *locked_page,
1559 u64 delalloc_start,
1560 u64 delalloc_end)
1561 {
1562 unsigned long index = delalloc_start >> PAGE_SHIFT;
1563 unsigned long index_ret = index;
1564 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1565 int ret;
1566
1567 ASSERT(locked_page);
1568 if (index == locked_page->index && index == end_index)
1569 return 0;
1570
1571 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1572 end_index, PAGE_LOCK, &index_ret);
1573 if (ret == -EAGAIN)
1574 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1575 (u64)index_ret << PAGE_SHIFT);
1576 return ret;
1577 }
1578
1579 /*
1580 * find a contiguous range of bytes in the file marked as delalloc, not
1581 * more than 'max_bytes'. start and end are used to return the range,
1582 *
1583 * 1 is returned if we find something, 0 if nothing was in the tree
1584 */
1585 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1586 struct extent_io_tree *tree,
1587 struct page *locked_page, u64 *start,
1588 u64 *end, u64 max_bytes)
1589 {
1590 u64 delalloc_start;
1591 u64 delalloc_end;
1592 u64 found;
1593 struct extent_state *cached_state = NULL;
1594 int ret;
1595 int loops = 0;
1596
1597 again:
1598 /* step one, find a bunch of delalloc bytes starting at start */
1599 delalloc_start = *start;
1600 delalloc_end = 0;
1601 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1602 max_bytes, &cached_state);
1603 if (!found || delalloc_end <= *start) {
1604 *start = delalloc_start;
1605 *end = delalloc_end;
1606 free_extent_state(cached_state);
1607 return 0;
1608 }
1609
1610 /*
1611 * start comes from the offset of locked_page. We have to lock
1612 * pages in order, so we can't process delalloc bytes before
1613 * locked_page
1614 */
1615 if (delalloc_start < *start)
1616 delalloc_start = *start;
1617
1618 /*
1619 * make sure to limit the number of pages we try to lock down
1620 */
1621 if (delalloc_end + 1 - delalloc_start > max_bytes)
1622 delalloc_end = delalloc_start + max_bytes - 1;
1623
1624 /* step two, lock all the pages after the page that has start */
1625 ret = lock_delalloc_pages(inode, locked_page,
1626 delalloc_start, delalloc_end);
1627 if (ret == -EAGAIN) {
1628 /* some of the pages are gone, lets avoid looping by
1629 * shortening the size of the delalloc range we're searching
1630 */
1631 free_extent_state(cached_state);
1632 cached_state = NULL;
1633 if (!loops) {
1634 max_bytes = PAGE_SIZE;
1635 loops = 1;
1636 goto again;
1637 } else {
1638 found = 0;
1639 goto out_failed;
1640 }
1641 }
1642 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1643
1644 /* step three, lock the state bits for the whole range */
1645 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1646
1647 /* then test to make sure it is all still delalloc */
1648 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1649 EXTENT_DELALLOC, 1, cached_state);
1650 if (!ret) {
1651 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1652 &cached_state);
1653 __unlock_for_delalloc(inode, locked_page,
1654 delalloc_start, delalloc_end);
1655 cond_resched();
1656 goto again;
1657 }
1658 free_extent_state(cached_state);
1659 *start = delalloc_start;
1660 *end = delalloc_end;
1661 out_failed:
1662 return found;
1663 }
1664
1665 static int __process_pages_contig(struct address_space *mapping,
1666 struct page *locked_page,
1667 pgoff_t start_index, pgoff_t end_index,
1668 unsigned long page_ops, pgoff_t *index_ret)
1669 {
1670 unsigned long nr_pages = end_index - start_index + 1;
1671 unsigned long pages_locked = 0;
1672 pgoff_t index = start_index;
1673 struct page *pages[16];
1674 unsigned ret;
1675 int err = 0;
1676 int i;
1677
1678 if (page_ops & PAGE_LOCK) {
1679 ASSERT(page_ops == PAGE_LOCK);
1680 ASSERT(index_ret && *index_ret == start_index);
1681 }
1682
1683 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1684 mapping_set_error(mapping, -EIO);
1685
1686 while (nr_pages > 0) {
1687 ret = find_get_pages_contig(mapping, index,
1688 min_t(unsigned long,
1689 nr_pages, ARRAY_SIZE(pages)), pages);
1690 if (ret == 0) {
1691 /*
1692 * Only if we're going to lock these pages,
1693 * can we find nothing at @index.
1694 */
1695 ASSERT(page_ops & PAGE_LOCK);
1696 err = -EAGAIN;
1697 goto out;
1698 }
1699
1700 for (i = 0; i < ret; i++) {
1701 if (page_ops & PAGE_SET_PRIVATE2)
1702 SetPagePrivate2(pages[i]);
1703
1704 if (pages[i] == locked_page) {
1705 put_page(pages[i]);
1706 pages_locked++;
1707 continue;
1708 }
1709 if (page_ops & PAGE_CLEAR_DIRTY)
1710 clear_page_dirty_for_io(pages[i]);
1711 if (page_ops & PAGE_SET_WRITEBACK)
1712 set_page_writeback(pages[i]);
1713 if (page_ops & PAGE_SET_ERROR)
1714 SetPageError(pages[i]);
1715 if (page_ops & PAGE_END_WRITEBACK)
1716 end_page_writeback(pages[i]);
1717 if (page_ops & PAGE_UNLOCK)
1718 unlock_page(pages[i]);
1719 if (page_ops & PAGE_LOCK) {
1720 lock_page(pages[i]);
1721 if (!PageDirty(pages[i]) ||
1722 pages[i]->mapping != mapping) {
1723 unlock_page(pages[i]);
1724 put_page(pages[i]);
1725 err = -EAGAIN;
1726 goto out;
1727 }
1728 }
1729 put_page(pages[i]);
1730 pages_locked++;
1731 }
1732 nr_pages -= ret;
1733 index += ret;
1734 cond_resched();
1735 }
1736 out:
1737 if (err && index_ret)
1738 *index_ret = start_index + pages_locked - 1;
1739 return err;
1740 }
1741
1742 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1743 u64 delalloc_end, struct page *locked_page,
1744 unsigned clear_bits,
1745 unsigned long page_ops)
1746 {
1747 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1748 NULL);
1749
1750 __process_pages_contig(inode->i_mapping, locked_page,
1751 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1752 page_ops, NULL);
1753 }
1754
1755 /*
1756 * count the number of bytes in the tree that have a given bit(s)
1757 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1758 * cached. The total number found is returned.
1759 */
1760 u64 count_range_bits(struct extent_io_tree *tree,
1761 u64 *start, u64 search_end, u64 max_bytes,
1762 unsigned bits, int contig)
1763 {
1764 struct rb_node *node;
1765 struct extent_state *state;
1766 u64 cur_start = *start;
1767 u64 total_bytes = 0;
1768 u64 last = 0;
1769 int found = 0;
1770
1771 if (WARN_ON(search_end <= cur_start))
1772 return 0;
1773
1774 spin_lock(&tree->lock);
1775 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1776 total_bytes = tree->dirty_bytes;
1777 goto out;
1778 }
1779 /*
1780 * this search will find all the extents that end after
1781 * our range starts.
1782 */
1783 node = tree_search(tree, cur_start);
1784 if (!node)
1785 goto out;
1786
1787 while (1) {
1788 state = rb_entry(node, struct extent_state, rb_node);
1789 if (state->start > search_end)
1790 break;
1791 if (contig && found && state->start > last + 1)
1792 break;
1793 if (state->end >= cur_start && (state->state & bits) == bits) {
1794 total_bytes += min(search_end, state->end) + 1 -
1795 max(cur_start, state->start);
1796 if (total_bytes >= max_bytes)
1797 break;
1798 if (!found) {
1799 *start = max(cur_start, state->start);
1800 found = 1;
1801 }
1802 last = state->end;
1803 } else if (contig && found) {
1804 break;
1805 }
1806 node = rb_next(node);
1807 if (!node)
1808 break;
1809 }
1810 out:
1811 spin_unlock(&tree->lock);
1812 return total_bytes;
1813 }
1814
1815 /*
1816 * set the private field for a given byte offset in the tree. If there isn't
1817 * an extent_state there already, this does nothing.
1818 */
1819 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1820 struct io_failure_record *failrec)
1821 {
1822 struct rb_node *node;
1823 struct extent_state *state;
1824 int ret = 0;
1825
1826 spin_lock(&tree->lock);
1827 /*
1828 * this search will find all the extents that end after
1829 * our range starts.
1830 */
1831 node = tree_search(tree, start);
1832 if (!node) {
1833 ret = -ENOENT;
1834 goto out;
1835 }
1836 state = rb_entry(node, struct extent_state, rb_node);
1837 if (state->start != start) {
1838 ret = -ENOENT;
1839 goto out;
1840 }
1841 state->failrec = failrec;
1842 out:
1843 spin_unlock(&tree->lock);
1844 return ret;
1845 }
1846
1847 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1848 struct io_failure_record **failrec)
1849 {
1850 struct rb_node *node;
1851 struct extent_state *state;
1852 int ret = 0;
1853
1854 spin_lock(&tree->lock);
1855 /*
1856 * this search will find all the extents that end after
1857 * our range starts.
1858 */
1859 node = tree_search(tree, start);
1860 if (!node) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state = rb_entry(node, struct extent_state, rb_node);
1865 if (state->start != start) {
1866 ret = -ENOENT;
1867 goto out;
1868 }
1869 *failrec = state->failrec;
1870 out:
1871 spin_unlock(&tree->lock);
1872 return ret;
1873 }
1874
1875 /*
1876 * searches a range in the state tree for a given mask.
1877 * If 'filled' == 1, this returns 1 only if every extent in the tree
1878 * has the bits set. Otherwise, 1 is returned if any bit in the
1879 * range is found set.
1880 */
1881 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1882 unsigned bits, int filled, struct extent_state *cached)
1883 {
1884 struct extent_state *state = NULL;
1885 struct rb_node *node;
1886 int bitset = 0;
1887
1888 spin_lock(&tree->lock);
1889 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1890 cached->end > start)
1891 node = &cached->rb_node;
1892 else
1893 node = tree_search(tree, start);
1894 while (node && start <= end) {
1895 state = rb_entry(node, struct extent_state, rb_node);
1896
1897 if (filled && state->start > start) {
1898 bitset = 0;
1899 break;
1900 }
1901
1902 if (state->start > end)
1903 break;
1904
1905 if (state->state & bits) {
1906 bitset = 1;
1907 if (!filled)
1908 break;
1909 } else if (filled) {
1910 bitset = 0;
1911 break;
1912 }
1913
1914 if (state->end == (u64)-1)
1915 break;
1916
1917 start = state->end + 1;
1918 if (start > end)
1919 break;
1920 node = rb_next(node);
1921 if (!node) {
1922 if (filled)
1923 bitset = 0;
1924 break;
1925 }
1926 }
1927 spin_unlock(&tree->lock);
1928 return bitset;
1929 }
1930
1931 /*
1932 * helper function to set a given page up to date if all the
1933 * extents in the tree for that page are up to date
1934 */
1935 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1936 {
1937 u64 start = page_offset(page);
1938 u64 end = start + PAGE_SIZE - 1;
1939 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1940 SetPageUptodate(page);
1941 }
1942
1943 int free_io_failure(struct extent_io_tree *failure_tree,
1944 struct extent_io_tree *io_tree,
1945 struct io_failure_record *rec)
1946 {
1947 int ret;
1948 int err = 0;
1949
1950 set_state_failrec(failure_tree, rec->start, NULL);
1951 ret = clear_extent_bits(failure_tree, rec->start,
1952 rec->start + rec->len - 1,
1953 EXTENT_LOCKED | EXTENT_DIRTY);
1954 if (ret)
1955 err = ret;
1956
1957 ret = clear_extent_bits(io_tree, rec->start,
1958 rec->start + rec->len - 1,
1959 EXTENT_DAMAGED);
1960 if (ret && !err)
1961 err = ret;
1962
1963 kfree(rec);
1964 return err;
1965 }
1966
1967 /*
1968 * this bypasses the standard btrfs submit functions deliberately, as
1969 * the standard behavior is to write all copies in a raid setup. here we only
1970 * want to write the one bad copy. so we do the mapping for ourselves and issue
1971 * submit_bio directly.
1972 * to avoid any synchronization issues, wait for the data after writing, which
1973 * actually prevents the read that triggered the error from finishing.
1974 * currently, there can be no more than two copies of every data bit. thus,
1975 * exactly one rewrite is required.
1976 */
1977 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1978 u64 length, u64 logical, struct page *page,
1979 unsigned int pg_offset, int mirror_num)
1980 {
1981 struct bio *bio;
1982 struct btrfs_device *dev;
1983 u64 map_length = 0;
1984 u64 sector;
1985 struct btrfs_bio *bbio = NULL;
1986 int ret;
1987
1988 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1989 BUG_ON(!mirror_num);
1990
1991 bio = btrfs_io_bio_alloc(1);
1992 bio->bi_iter.bi_size = 0;
1993 map_length = length;
1994
1995 /*
1996 * Avoid races with device replace and make sure our bbio has devices
1997 * associated to its stripes that don't go away while we are doing the
1998 * read repair operation.
1999 */
2000 btrfs_bio_counter_inc_blocked(fs_info);
2001 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2002 /*
2003 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004 * to update all raid stripes, but here we just want to correct
2005 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006 * stripe's dev and sector.
2007 */
2008 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2009 &map_length, &bbio, 0);
2010 if (ret) {
2011 btrfs_bio_counter_dec(fs_info);
2012 bio_put(bio);
2013 return -EIO;
2014 }
2015 ASSERT(bbio->mirror_num == 1);
2016 } else {
2017 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2018 &map_length, &bbio, mirror_num);
2019 if (ret) {
2020 btrfs_bio_counter_dec(fs_info);
2021 bio_put(bio);
2022 return -EIO;
2023 }
2024 BUG_ON(mirror_num != bbio->mirror_num);
2025 }
2026
2027 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2028 bio->bi_iter.bi_sector = sector;
2029 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2030 btrfs_put_bbio(bbio);
2031 if (!dev || !dev->bdev ||
2032 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2033 btrfs_bio_counter_dec(fs_info);
2034 bio_put(bio);
2035 return -EIO;
2036 }
2037 bio_set_dev(bio, dev->bdev);
2038 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2039 bio_add_page(bio, page, length, pg_offset);
2040
2041 if (btrfsic_submit_bio_wait(bio)) {
2042 /* try to remap that extent elsewhere? */
2043 btrfs_bio_counter_dec(fs_info);
2044 bio_put(bio);
2045 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2046 return -EIO;
2047 }
2048
2049 btrfs_info_rl_in_rcu(fs_info,
2050 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2051 ino, start,
2052 rcu_str_deref(dev->name), sector);
2053 btrfs_bio_counter_dec(fs_info);
2054 bio_put(bio);
2055 return 0;
2056 }
2057
2058 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2059 struct extent_buffer *eb, int mirror_num)
2060 {
2061 u64 start = eb->start;
2062 int i, num_pages = num_extent_pages(eb);
2063 int ret = 0;
2064
2065 if (sb_rdonly(fs_info->sb))
2066 return -EROFS;
2067
2068 for (i = 0; i < num_pages; i++) {
2069 struct page *p = eb->pages[i];
2070
2071 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2072 start - page_offset(p), mirror_num);
2073 if (ret)
2074 break;
2075 start += PAGE_SIZE;
2076 }
2077
2078 return ret;
2079 }
2080
2081 /*
2082 * each time an IO finishes, we do a fast check in the IO failure tree
2083 * to see if we need to process or clean up an io_failure_record
2084 */
2085 int clean_io_failure(struct btrfs_fs_info *fs_info,
2086 struct extent_io_tree *failure_tree,
2087 struct extent_io_tree *io_tree, u64 start,
2088 struct page *page, u64 ino, unsigned int pg_offset)
2089 {
2090 u64 private;
2091 struct io_failure_record *failrec;
2092 struct extent_state *state;
2093 int num_copies;
2094 int ret;
2095
2096 private = 0;
2097 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2098 EXTENT_DIRTY, 0);
2099 if (!ret)
2100 return 0;
2101
2102 ret = get_state_failrec(failure_tree, start, &failrec);
2103 if (ret)
2104 return 0;
2105
2106 BUG_ON(!failrec->this_mirror);
2107
2108 if (failrec->in_validation) {
2109 /* there was no real error, just free the record */
2110 btrfs_debug(fs_info,
2111 "clean_io_failure: freeing dummy error at %llu",
2112 failrec->start);
2113 goto out;
2114 }
2115 if (sb_rdonly(fs_info->sb))
2116 goto out;
2117
2118 spin_lock(&io_tree->lock);
2119 state = find_first_extent_bit_state(io_tree,
2120 failrec->start,
2121 EXTENT_LOCKED);
2122 spin_unlock(&io_tree->lock);
2123
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
2128 if (num_copies > 1) {
2129 repair_io_failure(fs_info, ino, start, failrec->len,
2130 failrec->logical, page, pg_offset,
2131 failrec->failed_mirror);
2132 }
2133 }
2134
2135 out:
2136 free_io_failure(failure_tree, io_tree, failrec);
2137
2138 return 0;
2139 }
2140
2141 /*
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2146 */
2147 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2148 {
2149 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2150 struct io_failure_record *failrec;
2151 struct extent_state *state, *next;
2152
2153 if (RB_EMPTY_ROOT(&failure_tree->state))
2154 return;
2155
2156 spin_lock(&failure_tree->lock);
2157 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 while (state) {
2159 if (state->start > end)
2160 break;
2161
2162 ASSERT(state->end <= end);
2163
2164 next = next_state(state);
2165
2166 failrec = state->failrec;
2167 free_extent_state(state);
2168 kfree(failrec);
2169
2170 state = next;
2171 }
2172 spin_unlock(&failure_tree->lock);
2173 }
2174
2175 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2176 struct io_failure_record **failrec_ret)
2177 {
2178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2179 struct io_failure_record *failrec;
2180 struct extent_map *em;
2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184 int ret;
2185 u64 logical;
2186
2187 ret = get_state_failrec(failure_tree, start, &failrec);
2188 if (ret) {
2189 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 if (!failrec)
2191 return -ENOMEM;
2192
2193 failrec->start = start;
2194 failrec->len = end - start + 1;
2195 failrec->this_mirror = 0;
2196 failrec->bio_flags = 0;
2197 failrec->in_validation = 0;
2198
2199 read_lock(&em_tree->lock);
2200 em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 if (!em) {
2202 read_unlock(&em_tree->lock);
2203 kfree(failrec);
2204 return -EIO;
2205 }
2206
2207 if (em->start > start || em->start + em->len <= start) {
2208 free_extent_map(em);
2209 em = NULL;
2210 }
2211 read_unlock(&em_tree->lock);
2212 if (!em) {
2213 kfree(failrec);
2214 return -EIO;
2215 }
2216
2217 logical = start - em->start;
2218 logical = em->block_start + logical;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 logical = em->block_start;
2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 extent_set_compress_type(&failrec->bio_flags,
2223 em->compress_type);
2224 }
2225
2226 btrfs_debug(fs_info,
2227 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2228 logical, start, failrec->len);
2229
2230 failrec->logical = logical;
2231 free_extent_map(em);
2232
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
2235 EXTENT_LOCKED | EXTENT_DIRTY);
2236 if (ret >= 0)
2237 ret = set_state_failrec(failure_tree, start, failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2241 if (ret < 0) {
2242 kfree(failrec);
2243 return ret;
2244 }
2245 } else {
2246 btrfs_debug(fs_info,
2247 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260 }
2261
2262 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2263 struct io_failure_record *failrec, int failed_mirror)
2264 {
2265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2266 int num_copies;
2267
2268 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
2275 btrfs_debug(fs_info,
2276 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2277 num_copies, failrec->this_mirror, failed_mirror);
2278 return false;
2279 }
2280
2281 /*
2282 * there are two premises:
2283 * a) deliver good data to the caller
2284 * b) correct the bad sectors on disk
2285 */
2286 if (failed_bio_pages > 1) {
2287 /*
2288 * to fulfill b), we need to know the exact failing sectors, as
2289 * we don't want to rewrite any more than the failed ones. thus,
2290 * we need separate read requests for the failed bio
2291 *
2292 * if the following BUG_ON triggers, our validation request got
2293 * merged. we need separate requests for our algorithm to work.
2294 */
2295 BUG_ON(failrec->in_validation);
2296 failrec->in_validation = 1;
2297 failrec->this_mirror = failed_mirror;
2298 } else {
2299 /*
2300 * we're ready to fulfill a) and b) alongside. get a good copy
2301 * of the failed sector and if we succeed, we have setup
2302 * everything for repair_io_failure to do the rest for us.
2303 */
2304 if (failrec->in_validation) {
2305 BUG_ON(failrec->this_mirror != failed_mirror);
2306 failrec->in_validation = 0;
2307 failrec->this_mirror = 0;
2308 }
2309 failrec->failed_mirror = failed_mirror;
2310 failrec->this_mirror++;
2311 if (failrec->this_mirror == failed_mirror)
2312 failrec->this_mirror++;
2313 }
2314
2315 if (failrec->this_mirror > num_copies) {
2316 btrfs_debug(fs_info,
2317 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2318 num_copies, failrec->this_mirror, failed_mirror);
2319 return false;
2320 }
2321
2322 return true;
2323 }
2324
2325
2326 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2327 struct io_failure_record *failrec,
2328 struct page *page, int pg_offset, int icsum,
2329 bio_end_io_t *endio_func, void *data)
2330 {
2331 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2332 struct bio *bio;
2333 struct btrfs_io_bio *btrfs_failed_bio;
2334 struct btrfs_io_bio *btrfs_bio;
2335
2336 bio = btrfs_io_bio_alloc(1);
2337 bio->bi_end_io = endio_func;
2338 bio->bi_iter.bi_sector = failrec->logical >> 9;
2339 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2340 bio->bi_iter.bi_size = 0;
2341 bio->bi_private = data;
2342
2343 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 if (btrfs_failed_bio->csum) {
2345 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2346
2347 btrfs_bio = btrfs_io_bio(bio);
2348 btrfs_bio->csum = btrfs_bio->csum_inline;
2349 icsum *= csum_size;
2350 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2351 csum_size);
2352 }
2353
2354 bio_add_page(bio, page, failrec->len, pg_offset);
2355
2356 return bio;
2357 }
2358
2359 /*
2360 * this is a generic handler for readpage errors (default
2361 * readpage_io_failed_hook). if other copies exist, read those and write back
2362 * good data to the failed position. does not investigate in remapping the
2363 * failed extent elsewhere, hoping the device will be smart enough to do this as
2364 * needed
2365 */
2366
2367 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2368 struct page *page, u64 start, u64 end,
2369 int failed_mirror)
2370 {
2371 struct io_failure_record *failrec;
2372 struct inode *inode = page->mapping->host;
2373 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2374 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2375 struct bio *bio;
2376 int read_mode = 0;
2377 blk_status_t status;
2378 int ret;
2379 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2380
2381 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2382
2383 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2384 if (ret)
2385 return ret;
2386
2387 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2388 failed_mirror)) {
2389 free_io_failure(failure_tree, tree, failrec);
2390 return -EIO;
2391 }
2392
2393 if (failed_bio_pages > 1)
2394 read_mode |= REQ_FAILFAST_DEV;
2395
2396 phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 start - page_offset(page),
2399 (int)phy_offset, failed_bio->bi_end_io,
2400 NULL);
2401 bio->bi_opf = REQ_OP_READ | read_mode;
2402
2403 btrfs_debug(btrfs_sb(inode->i_sb),
2404 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2405 read_mode, failrec->this_mirror, failrec->in_validation);
2406
2407 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2408 failrec->bio_flags, 0);
2409 if (status) {
2410 free_io_failure(failure_tree, tree, failrec);
2411 bio_put(bio);
2412 ret = blk_status_to_errno(status);
2413 }
2414
2415 return ret;
2416 }
2417
2418 /* lots and lots of room for performance fixes in the end_bio funcs */
2419
2420 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2421 {
2422 int uptodate = (err == 0);
2423 struct extent_io_tree *tree;
2424 int ret = 0;
2425
2426 tree = &BTRFS_I(page->mapping->host)->io_tree;
2427
2428 if (tree->ops && tree->ops->writepage_end_io_hook)
2429 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2430 uptodate);
2431
2432 if (!uptodate) {
2433 ClearPageUptodate(page);
2434 SetPageError(page);
2435 ret = err < 0 ? err : -EIO;
2436 mapping_set_error(page->mapping, ret);
2437 }
2438 }
2439
2440 /*
2441 * after a writepage IO is done, we need to:
2442 * clear the uptodate bits on error
2443 * clear the writeback bits in the extent tree for this IO
2444 * end_page_writeback if the page has no more pending IO
2445 *
2446 * Scheduling is not allowed, so the extent state tree is expected
2447 * to have one and only one object corresponding to this IO.
2448 */
2449 static void end_bio_extent_writepage(struct bio *bio)
2450 {
2451 int error = blk_status_to_errno(bio->bi_status);
2452 struct bio_vec *bvec;
2453 u64 start;
2454 u64 end;
2455 int i;
2456
2457 ASSERT(!bio_flagged(bio, BIO_CLONED));
2458 bio_for_each_segment_all(bvec, bio, i) {
2459 struct page *page = bvec->bv_page;
2460 struct inode *inode = page->mapping->host;
2461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2462
2463 /* We always issue full-page reads, but if some block
2464 * in a page fails to read, blk_update_request() will
2465 * advance bv_offset and adjust bv_len to compensate.
2466 * Print a warning for nonzero offsets, and an error
2467 * if they don't add up to a full page. */
2468 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2469 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2470 btrfs_err(fs_info,
2471 "partial page write in btrfs with offset %u and length %u",
2472 bvec->bv_offset, bvec->bv_len);
2473 else
2474 btrfs_info(fs_info,
2475 "incomplete page write in btrfs with offset %u and length %u",
2476 bvec->bv_offset, bvec->bv_len);
2477 }
2478
2479 start = page_offset(page);
2480 end = start + bvec->bv_offset + bvec->bv_len - 1;
2481
2482 end_extent_writepage(page, error, start, end);
2483 end_page_writeback(page);
2484 }
2485
2486 bio_put(bio);
2487 }
2488
2489 static void
2490 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491 int uptodate)
2492 {
2493 struct extent_state *cached = NULL;
2494 u64 end = start + len - 1;
2495
2496 if (uptodate && tree->track_uptodate)
2497 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2498 unlock_extent_cached_atomic(tree, start, end, &cached);
2499 }
2500
2501 /*
2502 * after a readpage IO is done, we need to:
2503 * clear the uptodate bits on error
2504 * set the uptodate bits if things worked
2505 * set the page up to date if all extents in the tree are uptodate
2506 * clear the lock bit in the extent tree
2507 * unlock the page if there are no other extents locked for it
2508 *
2509 * Scheduling is not allowed, so the extent state tree is expected
2510 * to have one and only one object corresponding to this IO.
2511 */
2512 static void end_bio_extent_readpage(struct bio *bio)
2513 {
2514 struct bio_vec *bvec;
2515 int uptodate = !bio->bi_status;
2516 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2517 struct extent_io_tree *tree, *failure_tree;
2518 u64 offset = 0;
2519 u64 start;
2520 u64 end;
2521 u64 len;
2522 u64 extent_start = 0;
2523 u64 extent_len = 0;
2524 int mirror;
2525 int ret;
2526 int i;
2527
2528 ASSERT(!bio_flagged(bio, BIO_CLONED));
2529 bio_for_each_segment_all(bvec, bio, i) {
2530 struct page *page = bvec->bv_page;
2531 struct inode *inode = page->mapping->host;
2532 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2533
2534 btrfs_debug(fs_info,
2535 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2536 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2537 io_bio->mirror_num);
2538 tree = &BTRFS_I(inode)->io_tree;
2539 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2540
2541 /* We always issue full-page reads, but if some block
2542 * in a page fails to read, blk_update_request() will
2543 * advance bv_offset and adjust bv_len to compensate.
2544 * Print a warning for nonzero offsets, and an error
2545 * if they don't add up to a full page. */
2546 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2547 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2548 btrfs_err(fs_info,
2549 "partial page read in btrfs with offset %u and length %u",
2550 bvec->bv_offset, bvec->bv_len);
2551 else
2552 btrfs_info(fs_info,
2553 "incomplete page read in btrfs with offset %u and length %u",
2554 bvec->bv_offset, bvec->bv_len);
2555 }
2556
2557 start = page_offset(page);
2558 end = start + bvec->bv_offset + bvec->bv_len - 1;
2559 len = bvec->bv_len;
2560
2561 mirror = io_bio->mirror_num;
2562 if (likely(uptodate && tree->ops)) {
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 page, start, end,
2565 mirror);
2566 if (ret)
2567 uptodate = 0;
2568 else
2569 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2570 failure_tree, tree, start,
2571 page,
2572 btrfs_ino(BTRFS_I(inode)), 0);
2573 }
2574
2575 if (likely(uptodate))
2576 goto readpage_ok;
2577
2578 if (tree->ops) {
2579 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2580 if (ret == -EAGAIN) {
2581 /*
2582 * Data inode's readpage_io_failed_hook() always
2583 * returns -EAGAIN.
2584 *
2585 * The generic bio_readpage_error handles errors
2586 * the following way: If possible, new read
2587 * requests are created and submitted and will
2588 * end up in end_bio_extent_readpage as well (if
2589 * we're lucky, not in the !uptodate case). In
2590 * that case it returns 0 and we just go on with
2591 * the next page in our bio. If it can't handle
2592 * the error it will return -EIO and we remain
2593 * responsible for that page.
2594 */
2595 ret = bio_readpage_error(bio, offset, page,
2596 start, end, mirror);
2597 if (ret == 0) {
2598 uptodate = !bio->bi_status;
2599 offset += len;
2600 continue;
2601 }
2602 }
2603
2604 /*
2605 * metadata's readpage_io_failed_hook() always returns
2606 * -EIO and fixes nothing. -EIO is also returned if
2607 * data inode error could not be fixed.
2608 */
2609 ASSERT(ret == -EIO);
2610 }
2611 readpage_ok:
2612 if (likely(uptodate)) {
2613 loff_t i_size = i_size_read(inode);
2614 pgoff_t end_index = i_size >> PAGE_SHIFT;
2615 unsigned off;
2616
2617 /* Zero out the end if this page straddles i_size */
2618 off = i_size & (PAGE_SIZE-1);
2619 if (page->index == end_index && off)
2620 zero_user_segment(page, off, PAGE_SIZE);
2621 SetPageUptodate(page);
2622 } else {
2623 ClearPageUptodate(page);
2624 SetPageError(page);
2625 }
2626 unlock_page(page);
2627 offset += len;
2628
2629 if (unlikely(!uptodate)) {
2630 if (extent_len) {
2631 endio_readpage_release_extent(tree,
2632 extent_start,
2633 extent_len, 1);
2634 extent_start = 0;
2635 extent_len = 0;
2636 }
2637 endio_readpage_release_extent(tree, start,
2638 end - start + 1, 0);
2639 } else if (!extent_len) {
2640 extent_start = start;
2641 extent_len = end + 1 - start;
2642 } else if (extent_start + extent_len == start) {
2643 extent_len += end + 1 - start;
2644 } else {
2645 endio_readpage_release_extent(tree, extent_start,
2646 extent_len, uptodate);
2647 extent_start = start;
2648 extent_len = end + 1 - start;
2649 }
2650 }
2651
2652 if (extent_len)
2653 endio_readpage_release_extent(tree, extent_start, extent_len,
2654 uptodate);
2655 if (io_bio->end_io)
2656 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2657 bio_put(bio);
2658 }
2659
2660 /*
2661 * Initialize the members up to but not including 'bio'. Use after allocating a
2662 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2663 * 'bio' because use of __GFP_ZERO is not supported.
2664 */
2665 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2666 {
2667 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2668 }
2669
2670 /*
2671 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2672 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2673 * for the appropriate container_of magic
2674 */
2675 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2676 {
2677 struct bio *bio;
2678
2679 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2680 bio_set_dev(bio, bdev);
2681 bio->bi_iter.bi_sector = first_byte >> 9;
2682 btrfs_io_bio_init(btrfs_io_bio(bio));
2683 return bio;
2684 }
2685
2686 struct bio *btrfs_bio_clone(struct bio *bio)
2687 {
2688 struct btrfs_io_bio *btrfs_bio;
2689 struct bio *new;
2690
2691 /* Bio allocation backed by a bioset does not fail */
2692 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2693 btrfs_bio = btrfs_io_bio(new);
2694 btrfs_io_bio_init(btrfs_bio);
2695 btrfs_bio->iter = bio->bi_iter;
2696 return new;
2697 }
2698
2699 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2700 {
2701 struct bio *bio;
2702
2703 /* Bio allocation backed by a bioset does not fail */
2704 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2705 btrfs_io_bio_init(btrfs_io_bio(bio));
2706 return bio;
2707 }
2708
2709 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2710 {
2711 struct bio *bio;
2712 struct btrfs_io_bio *btrfs_bio;
2713
2714 /* this will never fail when it's backed by a bioset */
2715 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2716 ASSERT(bio);
2717
2718 btrfs_bio = btrfs_io_bio(bio);
2719 btrfs_io_bio_init(btrfs_bio);
2720
2721 bio_trim(bio, offset >> 9, size >> 9);
2722 btrfs_bio->iter = bio->bi_iter;
2723 return bio;
2724 }
2725
2726 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 unsigned long bio_flags)
2728 {
2729 blk_status_t ret = 0;
2730 struct bio_vec *bvec = bio_last_bvec_all(bio);
2731 struct page *page = bvec->bv_page;
2732 struct extent_io_tree *tree = bio->bi_private;
2733 u64 start;
2734
2735 start = page_offset(page) + bvec->bv_offset;
2736
2737 bio->bi_private = NULL;
2738
2739 if (tree->ops)
2740 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2741 mirror_num, bio_flags, start);
2742 else
2743 btrfsic_submit_bio(bio);
2744
2745 return blk_status_to_errno(ret);
2746 }
2747
2748 /*
2749 * @opf: bio REQ_OP_* and REQ_* flags as one value
2750 * @tree: tree so we can call our merge_bio hook
2751 * @wbc: optional writeback control for io accounting
2752 * @page: page to add to the bio
2753 * @pg_offset: offset of the new bio or to check whether we are adding
2754 * a contiguous page to the previous one
2755 * @size: portion of page that we want to write
2756 * @offset: starting offset in the page
2757 * @bdev: attach newly created bios to this bdev
2758 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2759 * @end_io_func: end_io callback for new bio
2760 * @mirror_num: desired mirror to read/write
2761 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2762 * @bio_flags: flags of the current bio to see if we can merge them
2763 */
2764 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2765 struct writeback_control *wbc,
2766 struct page *page, u64 offset,
2767 size_t size, unsigned long pg_offset,
2768 struct block_device *bdev,
2769 struct bio **bio_ret,
2770 bio_end_io_t end_io_func,
2771 int mirror_num,
2772 unsigned long prev_bio_flags,
2773 unsigned long bio_flags,
2774 bool force_bio_submit)
2775 {
2776 int ret = 0;
2777 struct bio *bio;
2778 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2779 sector_t sector = offset >> 9;
2780
2781 ASSERT(bio_ret);
2782
2783 if (*bio_ret) {
2784 bool contig;
2785 bool can_merge = true;
2786
2787 bio = *bio_ret;
2788 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2789 contig = bio->bi_iter.bi_sector == sector;
2790 else
2791 contig = bio_end_sector(bio) == sector;
2792
2793 if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2794 page_size, bio, bio_flags))
2795 can_merge = false;
2796
2797 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2798 force_bio_submit ||
2799 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2800 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2801 if (ret < 0) {
2802 *bio_ret = NULL;
2803 return ret;
2804 }
2805 bio = NULL;
2806 } else {
2807 if (wbc)
2808 wbc_account_io(wbc, page, page_size);
2809 return 0;
2810 }
2811 }
2812
2813 bio = btrfs_bio_alloc(bdev, offset);
2814 bio_add_page(bio, page, page_size, pg_offset);
2815 bio->bi_end_io = end_io_func;
2816 bio->bi_private = tree;
2817 bio->bi_write_hint = page->mapping->host->i_write_hint;
2818 bio->bi_opf = opf;
2819 if (wbc) {
2820 wbc_init_bio(wbc, bio);
2821 wbc_account_io(wbc, page, page_size);
2822 }
2823
2824 *bio_ret = bio;
2825
2826 return ret;
2827 }
2828
2829 static void attach_extent_buffer_page(struct extent_buffer *eb,
2830 struct page *page)
2831 {
2832 if (!PagePrivate(page)) {
2833 SetPagePrivate(page);
2834 get_page(page);
2835 set_page_private(page, (unsigned long)eb);
2836 } else {
2837 WARN_ON(page->private != (unsigned long)eb);
2838 }
2839 }
2840
2841 void set_page_extent_mapped(struct page *page)
2842 {
2843 if (!PagePrivate(page)) {
2844 SetPagePrivate(page);
2845 get_page(page);
2846 set_page_private(page, EXTENT_PAGE_PRIVATE);
2847 }
2848 }
2849
2850 static struct extent_map *
2851 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852 u64 start, u64 len, get_extent_t *get_extent,
2853 struct extent_map **em_cached)
2854 {
2855 struct extent_map *em;
2856
2857 if (em_cached && *em_cached) {
2858 em = *em_cached;
2859 if (extent_map_in_tree(em) && start >= em->start &&
2860 start < extent_map_end(em)) {
2861 refcount_inc(&em->refs);
2862 return em;
2863 }
2864
2865 free_extent_map(em);
2866 *em_cached = NULL;
2867 }
2868
2869 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2870 if (em_cached && !IS_ERR_OR_NULL(em)) {
2871 BUG_ON(*em_cached);
2872 refcount_inc(&em->refs);
2873 *em_cached = em;
2874 }
2875 return em;
2876 }
2877 /*
2878 * basic readpage implementation. Locked extent state structs are inserted
2879 * into the tree that are removed when the IO is done (by the end_io
2880 * handlers)
2881 * XXX JDM: This needs looking at to ensure proper page locking
2882 * return 0 on success, otherwise return error
2883 */
2884 static int __do_readpage(struct extent_io_tree *tree,
2885 struct page *page,
2886 get_extent_t *get_extent,
2887 struct extent_map **em_cached,
2888 struct bio **bio, int mirror_num,
2889 unsigned long *bio_flags, unsigned int read_flags,
2890 u64 *prev_em_start)
2891 {
2892 struct inode *inode = page->mapping->host;
2893 u64 start = page_offset(page);
2894 const u64 end = start + PAGE_SIZE - 1;
2895 u64 cur = start;
2896 u64 extent_offset;
2897 u64 last_byte = i_size_read(inode);
2898 u64 block_start;
2899 u64 cur_end;
2900 struct extent_map *em;
2901 struct block_device *bdev;
2902 int ret = 0;
2903 int nr = 0;
2904 size_t pg_offset = 0;
2905 size_t iosize;
2906 size_t disk_io_size;
2907 size_t blocksize = inode->i_sb->s_blocksize;
2908 unsigned long this_bio_flag = 0;
2909
2910 set_page_extent_mapped(page);
2911
2912 if (!PageUptodate(page)) {
2913 if (cleancache_get_page(page) == 0) {
2914 BUG_ON(blocksize != PAGE_SIZE);
2915 unlock_extent(tree, start, end);
2916 goto out;
2917 }
2918 }
2919
2920 if (page->index == last_byte >> PAGE_SHIFT) {
2921 char *userpage;
2922 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2923
2924 if (zero_offset) {
2925 iosize = PAGE_SIZE - zero_offset;
2926 userpage = kmap_atomic(page);
2927 memset(userpage + zero_offset, 0, iosize);
2928 flush_dcache_page(page);
2929 kunmap_atomic(userpage);
2930 }
2931 }
2932 while (cur <= end) {
2933 bool force_bio_submit = false;
2934 u64 offset;
2935
2936 if (cur >= last_byte) {
2937 char *userpage;
2938 struct extent_state *cached = NULL;
2939
2940 iosize = PAGE_SIZE - pg_offset;
2941 userpage = kmap_atomic(page);
2942 memset(userpage + pg_offset, 0, iosize);
2943 flush_dcache_page(page);
2944 kunmap_atomic(userpage);
2945 set_extent_uptodate(tree, cur, cur + iosize - 1,
2946 &cached, GFP_NOFS);
2947 unlock_extent_cached(tree, cur,
2948 cur + iosize - 1, &cached);
2949 break;
2950 }
2951 em = __get_extent_map(inode, page, pg_offset, cur,
2952 end - cur + 1, get_extent, em_cached);
2953 if (IS_ERR_OR_NULL(em)) {
2954 SetPageError(page);
2955 unlock_extent(tree, cur, end);
2956 break;
2957 }
2958 extent_offset = cur - em->start;
2959 BUG_ON(extent_map_end(em) <= cur);
2960 BUG_ON(end < cur);
2961
2962 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2963 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2964 extent_set_compress_type(&this_bio_flag,
2965 em->compress_type);
2966 }
2967
2968 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2969 cur_end = min(extent_map_end(em) - 1, end);
2970 iosize = ALIGN(iosize, blocksize);
2971 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2972 disk_io_size = em->block_len;
2973 offset = em->block_start;
2974 } else {
2975 offset = em->block_start + extent_offset;
2976 disk_io_size = iosize;
2977 }
2978 bdev = em->bdev;
2979 block_start = em->block_start;
2980 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2981 block_start = EXTENT_MAP_HOLE;
2982
2983 /*
2984 * If we have a file range that points to a compressed extent
2985 * and it's followed by a consecutive file range that points to
2986 * to the same compressed extent (possibly with a different
2987 * offset and/or length, so it either points to the whole extent
2988 * or only part of it), we must make sure we do not submit a
2989 * single bio to populate the pages for the 2 ranges because
2990 * this makes the compressed extent read zero out the pages
2991 * belonging to the 2nd range. Imagine the following scenario:
2992 *
2993 * File layout
2994 * [0 - 8K] [8K - 24K]
2995 * | |
2996 * | |
2997 * points to extent X, points to extent X,
2998 * offset 4K, length of 8K offset 0, length 16K
2999 *
3000 * [extent X, compressed length = 4K uncompressed length = 16K]
3001 *
3002 * If the bio to read the compressed extent covers both ranges,
3003 * it will decompress extent X into the pages belonging to the
3004 * first range and then it will stop, zeroing out the remaining
3005 * pages that belong to the other range that points to extent X.
3006 * So here we make sure we submit 2 bios, one for the first
3007 * range and another one for the third range. Both will target
3008 * the same physical extent from disk, but we can't currently
3009 * make the compressed bio endio callback populate the pages
3010 * for both ranges because each compressed bio is tightly
3011 * coupled with a single extent map, and each range can have
3012 * an extent map with a different offset value relative to the
3013 * uncompressed data of our extent and different lengths. This
3014 * is a corner case so we prioritize correctness over
3015 * non-optimal behavior (submitting 2 bios for the same extent).
3016 */
3017 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3018 prev_em_start && *prev_em_start != (u64)-1 &&
3019 *prev_em_start != em->orig_start)
3020 force_bio_submit = true;
3021
3022 if (prev_em_start)
3023 *prev_em_start = em->orig_start;
3024
3025 free_extent_map(em);
3026 em = NULL;
3027
3028 /* we've found a hole, just zero and go on */
3029 if (block_start == EXTENT_MAP_HOLE) {
3030 char *userpage;
3031 struct extent_state *cached = NULL;
3032
3033 userpage = kmap_atomic(page);
3034 memset(userpage + pg_offset, 0, iosize);
3035 flush_dcache_page(page);
3036 kunmap_atomic(userpage);
3037
3038 set_extent_uptodate(tree, cur, cur + iosize - 1,
3039 &cached, GFP_NOFS);
3040 unlock_extent_cached(tree, cur,
3041 cur + iosize - 1, &cached);
3042 cur = cur + iosize;
3043 pg_offset += iosize;
3044 continue;
3045 }
3046 /* the get_extent function already copied into the page */
3047 if (test_range_bit(tree, cur, cur_end,
3048 EXTENT_UPTODATE, 1, NULL)) {
3049 check_page_uptodate(tree, page);
3050 unlock_extent(tree, cur, cur + iosize - 1);
3051 cur = cur + iosize;
3052 pg_offset += iosize;
3053 continue;
3054 }
3055 /* we have an inline extent but it didn't get marked up
3056 * to date. Error out
3057 */
3058 if (block_start == EXTENT_MAP_INLINE) {
3059 SetPageError(page);
3060 unlock_extent(tree, cur, cur + iosize - 1);
3061 cur = cur + iosize;
3062 pg_offset += iosize;
3063 continue;
3064 }
3065
3066 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3067 page, offset, disk_io_size,
3068 pg_offset, bdev, bio,
3069 end_bio_extent_readpage, mirror_num,
3070 *bio_flags,
3071 this_bio_flag,
3072 force_bio_submit);
3073 if (!ret) {
3074 nr++;
3075 *bio_flags = this_bio_flag;
3076 } else {
3077 SetPageError(page);
3078 unlock_extent(tree, cur, cur + iosize - 1);
3079 goto out;
3080 }
3081 cur = cur + iosize;
3082 pg_offset += iosize;
3083 }
3084 out:
3085 if (!nr) {
3086 if (!PageError(page))
3087 SetPageUptodate(page);
3088 unlock_page(page);
3089 }
3090 return ret;
3091 }
3092
3093 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3094 struct page *pages[], int nr_pages,
3095 u64 start, u64 end,
3096 struct extent_map **em_cached,
3097 struct bio **bio,
3098 unsigned long *bio_flags,
3099 u64 *prev_em_start)
3100 {
3101 struct inode *inode;
3102 struct btrfs_ordered_extent *ordered;
3103 int index;
3104
3105 inode = pages[0]->mapping->host;
3106 while (1) {
3107 lock_extent(tree, start, end);
3108 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3109 end - start + 1);
3110 if (!ordered)
3111 break;
3112 unlock_extent(tree, start, end);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3115 }
3116
3117 for (index = 0; index < nr_pages; index++) {
3118 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3119 bio, 0, bio_flags, 0, prev_em_start);
3120 put_page(pages[index]);
3121 }
3122 }
3123
3124 static void __extent_readpages(struct extent_io_tree *tree,
3125 struct page *pages[],
3126 int nr_pages,
3127 struct extent_map **em_cached,
3128 struct bio **bio, unsigned long *bio_flags,
3129 u64 *prev_em_start)
3130 {
3131 u64 start = 0;
3132 u64 end = 0;
3133 u64 page_start;
3134 int index;
3135 int first_index = 0;
3136
3137 for (index = 0; index < nr_pages; index++) {
3138 page_start = page_offset(pages[index]);
3139 if (!end) {
3140 start = page_start;
3141 end = start + PAGE_SIZE - 1;
3142 first_index = index;
3143 } else if (end + 1 == page_start) {
3144 end += PAGE_SIZE;
3145 } else {
3146 __do_contiguous_readpages(tree, &pages[first_index],
3147 index - first_index, start,
3148 end, em_cached,
3149 bio, bio_flags,
3150 prev_em_start);
3151 start = page_start;
3152 end = start + PAGE_SIZE - 1;
3153 first_index = index;
3154 }
3155 }
3156
3157 if (end)
3158 __do_contiguous_readpages(tree, &pages[first_index],
3159 index - first_index, start,
3160 end, em_cached, bio,
3161 bio_flags, prev_em_start);
3162 }
3163
3164 static int __extent_read_full_page(struct extent_io_tree *tree,
3165 struct page *page,
3166 get_extent_t *get_extent,
3167 struct bio **bio, int mirror_num,
3168 unsigned long *bio_flags,
3169 unsigned int read_flags)
3170 {
3171 struct inode *inode = page->mapping->host;
3172 struct btrfs_ordered_extent *ordered;
3173 u64 start = page_offset(page);
3174 u64 end = start + PAGE_SIZE - 1;
3175 int ret;
3176
3177 while (1) {
3178 lock_extent(tree, start, end);
3179 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3180 PAGE_SIZE);
3181 if (!ordered)
3182 break;
3183 unlock_extent(tree, start, end);
3184 btrfs_start_ordered_extent(inode, ordered, 1);
3185 btrfs_put_ordered_extent(ordered);
3186 }
3187
3188 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3189 bio_flags, read_flags, NULL);
3190 return ret;
3191 }
3192
3193 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3194 get_extent_t *get_extent, int mirror_num)
3195 {
3196 struct bio *bio = NULL;
3197 unsigned long bio_flags = 0;
3198 int ret;
3199
3200 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3201 &bio_flags, 0);
3202 if (bio)
3203 ret = submit_one_bio(bio, mirror_num, bio_flags);
3204 return ret;
3205 }
3206
3207 static void update_nr_written(struct writeback_control *wbc,
3208 unsigned long nr_written)
3209 {
3210 wbc->nr_to_write -= nr_written;
3211 }
3212
3213 /*
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
3222 */
3223 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228 {
3229 struct extent_io_tree *tree = epd->tree;
3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
3245 BTRFS_MAX_EXTENT_SIZE);
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written, wbc);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
3271 PAGE_SIZE) >> PAGE_SHIFT;
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298 done:
3299 return ret;
3300 }
3301
3302 /*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 unsigned int write_flags, int *nr_ret)
3317 {
3318 struct extent_io_tree *tree = epd->tree;
3319 u64 start = page_offset(page);
3320 u64 page_end = start + PAGE_SIZE - 1;
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
3324 u64 block_start;
3325 u64 iosize;
3326 struct extent_map *em;
3327 struct block_device *bdev;
3328 size_t pg_offset = 0;
3329 size_t blocksize;
3330 int ret = 0;
3331 int nr = 0;
3332 bool compressed;
3333
3334 if (tree->ops && tree->ops->writepage_start_hook) {
3335 ret = tree->ops->writepage_start_hook(page, start,
3336 page_end);
3337 if (ret) {
3338 /* Fixup worker will requeue */
3339 if (ret == -EBUSY)
3340 wbc->pages_skipped++;
3341 else
3342 redirty_page_for_writepage(wbc, page);
3343
3344 update_nr_written(wbc, nr_written);
3345 unlock_page(page);
3346 return 1;
3347 }
3348 }
3349
3350 /*
3351 * we don't want to touch the inode after unlocking the page,
3352 * so we update the mapping writeback index now
3353 */
3354 update_nr_written(wbc, nr_written + 1);
3355
3356 end = page_end;
3357 if (i_size <= start) {
3358 if (tree->ops && tree->ops->writepage_end_io_hook)
3359 tree->ops->writepage_end_io_hook(page, start,
3360 page_end, NULL, 1);
3361 goto done;
3362 }
3363
3364 blocksize = inode->i_sb->s_blocksize;
3365
3366 while (cur <= end) {
3367 u64 em_end;
3368 u64 offset;
3369
3370 if (cur >= i_size) {
3371 if (tree->ops && tree->ops->writepage_end_io_hook)
3372 tree->ops->writepage_end_io_hook(page, cur,
3373 page_end, NULL, 1);
3374 break;
3375 }
3376 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3377 end - cur + 1, 1);
3378 if (IS_ERR_OR_NULL(em)) {
3379 SetPageError(page);
3380 ret = PTR_ERR_OR_ZERO(em);
3381 break;
3382 }
3383
3384 extent_offset = cur - em->start;
3385 em_end = extent_map_end(em);
3386 BUG_ON(em_end <= cur);
3387 BUG_ON(end < cur);
3388 iosize = min(em_end - cur, end - cur + 1);
3389 iosize = ALIGN(iosize, blocksize);
3390 offset = em->block_start + extent_offset;
3391 bdev = em->bdev;
3392 block_start = em->block_start;
3393 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3394 free_extent_map(em);
3395 em = NULL;
3396
3397 /*
3398 * compressed and inline extents are written through other
3399 * paths in the FS
3400 */
3401 if (compressed || block_start == EXTENT_MAP_HOLE ||
3402 block_start == EXTENT_MAP_INLINE) {
3403 /*
3404 * end_io notification does not happen here for
3405 * compressed extents
3406 */
3407 if (!compressed && tree->ops &&
3408 tree->ops->writepage_end_io_hook)
3409 tree->ops->writepage_end_io_hook(page, cur,
3410 cur + iosize - 1,
3411 NULL, 1);
3412 else if (compressed) {
3413 /* we don't want to end_page_writeback on
3414 * a compressed extent. this happens
3415 * elsewhere
3416 */
3417 nr++;
3418 }
3419
3420 cur += iosize;
3421 pg_offset += iosize;
3422 continue;
3423 }
3424
3425 set_range_writeback(tree, cur, cur + iosize - 1);
3426 if (!PageWriteback(page)) {
3427 btrfs_err(BTRFS_I(inode)->root->fs_info,
3428 "page %lu not writeback, cur %llu end %llu",
3429 page->index, cur, end);
3430 }
3431
3432 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3433 page, offset, iosize, pg_offset,
3434 bdev, &epd->bio,
3435 end_bio_extent_writepage,
3436 0, 0, 0, false);
3437 if (ret) {
3438 SetPageError(page);
3439 if (PageWriteback(page))
3440 end_page_writeback(page);
3441 }
3442
3443 cur = cur + iosize;
3444 pg_offset += iosize;
3445 nr++;
3446 }
3447 done:
3448 *nr_ret = nr;
3449 return ret;
3450 }
3451
3452 /*
3453 * the writepage semantics are similar to regular writepage. extent
3454 * records are inserted to lock ranges in the tree, and as dirty areas
3455 * are found, they are marked writeback. Then the lock bits are removed
3456 * and the end_io handler clears the writeback ranges
3457 */
3458 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3459 struct extent_page_data *epd)
3460 {
3461 struct inode *inode = page->mapping->host;
3462 u64 start = page_offset(page);
3463 u64 page_end = start + PAGE_SIZE - 1;
3464 int ret;
3465 int nr = 0;
3466 size_t pg_offset = 0;
3467 loff_t i_size = i_size_read(inode);
3468 unsigned long end_index = i_size >> PAGE_SHIFT;
3469 unsigned int write_flags = 0;
3470 unsigned long nr_written = 0;
3471
3472 write_flags = wbc_to_write_flags(wbc);
3473
3474 trace___extent_writepage(page, inode, wbc);
3475
3476 WARN_ON(!PageLocked(page));
3477
3478 ClearPageError(page);
3479
3480 pg_offset = i_size & (PAGE_SIZE - 1);
3481 if (page->index > end_index ||
3482 (page->index == end_index && !pg_offset)) {
3483 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3484 unlock_page(page);
3485 return 0;
3486 }
3487
3488 if (page->index == end_index) {
3489 char *userpage;
3490
3491 userpage = kmap_atomic(page);
3492 memset(userpage + pg_offset, 0,
3493 PAGE_SIZE - pg_offset);
3494 kunmap_atomic(userpage);
3495 flush_dcache_page(page);
3496 }
3497
3498 pg_offset = 0;
3499
3500 set_page_extent_mapped(page);
3501
3502 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3503 if (ret == 1)
3504 goto done_unlocked;
3505 if (ret)
3506 goto done;
3507
3508 ret = __extent_writepage_io(inode, page, wbc, epd,
3509 i_size, nr_written, write_flags, &nr);
3510 if (ret == 1)
3511 goto done_unlocked;
3512
3513 done:
3514 if (nr == 0) {
3515 /* make sure the mapping tag for page dirty gets cleared */
3516 set_page_writeback(page);
3517 end_page_writeback(page);
3518 }
3519 if (PageError(page)) {
3520 ret = ret < 0 ? ret : -EIO;
3521 end_extent_writepage(page, ret, start, page_end);
3522 }
3523 unlock_page(page);
3524 return ret;
3525
3526 done_unlocked:
3527 return 0;
3528 }
3529
3530 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3531 {
3532 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3533 TASK_UNINTERRUPTIBLE);
3534 }
3535
3536 static noinline_for_stack int
3537 lock_extent_buffer_for_io(struct extent_buffer *eb,
3538 struct btrfs_fs_info *fs_info,
3539 struct extent_page_data *epd)
3540 {
3541 int i, num_pages;
3542 int flush = 0;
3543 int ret = 0;
3544
3545 if (!btrfs_try_tree_write_lock(eb)) {
3546 flush = 1;
3547 flush_write_bio(epd);
3548 btrfs_tree_lock(eb);
3549 }
3550
3551 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3552 btrfs_tree_unlock(eb);
3553 if (!epd->sync_io)
3554 return 0;
3555 if (!flush) {
3556 flush_write_bio(epd);
3557 flush = 1;
3558 }
3559 while (1) {
3560 wait_on_extent_buffer_writeback(eb);
3561 btrfs_tree_lock(eb);
3562 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3563 break;
3564 btrfs_tree_unlock(eb);
3565 }
3566 }
3567
3568 /*
3569 * We need to do this to prevent races in people who check if the eb is
3570 * under IO since we can end up having no IO bits set for a short period
3571 * of time.
3572 */
3573 spin_lock(&eb->refs_lock);
3574 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3575 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3576 spin_unlock(&eb->refs_lock);
3577 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3578 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3579 -eb->len,
3580 fs_info->dirty_metadata_batch);
3581 ret = 1;
3582 } else {
3583 spin_unlock(&eb->refs_lock);
3584 }
3585
3586 btrfs_tree_unlock(eb);
3587
3588 if (!ret)
3589 return ret;
3590
3591 num_pages = num_extent_pages(eb);
3592 for (i = 0; i < num_pages; i++) {
3593 struct page *p = eb->pages[i];
3594
3595 if (!trylock_page(p)) {
3596 if (!flush) {
3597 flush_write_bio(epd);
3598 flush = 1;
3599 }
3600 lock_page(p);
3601 }
3602 }
3603
3604 return ret;
3605 }
3606
3607 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3608 {
3609 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3610 smp_mb__after_atomic();
3611 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3612 }
3613
3614 static void set_btree_ioerr(struct page *page)
3615 {
3616 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3617
3618 SetPageError(page);
3619 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3620 return;
3621
3622 /*
3623 * If writeback for a btree extent that doesn't belong to a log tree
3624 * failed, increment the counter transaction->eb_write_errors.
3625 * We do this because while the transaction is running and before it's
3626 * committing (when we call filemap_fdata[write|wait]_range against
3627 * the btree inode), we might have
3628 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3629 * returns an error or an error happens during writeback, when we're
3630 * committing the transaction we wouldn't know about it, since the pages
3631 * can be no longer dirty nor marked anymore for writeback (if a
3632 * subsequent modification to the extent buffer didn't happen before the
3633 * transaction commit), which makes filemap_fdata[write|wait]_range not
3634 * able to find the pages tagged with SetPageError at transaction
3635 * commit time. So if this happens we must abort the transaction,
3636 * otherwise we commit a super block with btree roots that point to
3637 * btree nodes/leafs whose content on disk is invalid - either garbage
3638 * or the content of some node/leaf from a past generation that got
3639 * cowed or deleted and is no longer valid.
3640 *
3641 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3642 * not be enough - we need to distinguish between log tree extents vs
3643 * non-log tree extents, and the next filemap_fdatawait_range() call
3644 * will catch and clear such errors in the mapping - and that call might
3645 * be from a log sync and not from a transaction commit. Also, checking
3646 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3647 * not done and would not be reliable - the eb might have been released
3648 * from memory and reading it back again means that flag would not be
3649 * set (since it's a runtime flag, not persisted on disk).
3650 *
3651 * Using the flags below in the btree inode also makes us achieve the
3652 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3653 * writeback for all dirty pages and before filemap_fdatawait_range()
3654 * is called, the writeback for all dirty pages had already finished
3655 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3656 * filemap_fdatawait_range() would return success, as it could not know
3657 * that writeback errors happened (the pages were no longer tagged for
3658 * writeback).
3659 */
3660 switch (eb->log_index) {
3661 case -1:
3662 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3663 break;
3664 case 0:
3665 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3666 break;
3667 case 1:
3668 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3669 break;
3670 default:
3671 BUG(); /* unexpected, logic error */
3672 }
3673 }
3674
3675 static void end_bio_extent_buffer_writepage(struct bio *bio)
3676 {
3677 struct bio_vec *bvec;
3678 struct extent_buffer *eb;
3679 int i, done;
3680
3681 ASSERT(!bio_flagged(bio, BIO_CLONED));
3682 bio_for_each_segment_all(bvec, bio, i) {
3683 struct page *page = bvec->bv_page;
3684
3685 eb = (struct extent_buffer *)page->private;
3686 BUG_ON(!eb);
3687 done = atomic_dec_and_test(&eb->io_pages);
3688
3689 if (bio->bi_status ||
3690 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3691 ClearPageUptodate(page);
3692 set_btree_ioerr(page);
3693 }
3694
3695 end_page_writeback(page);
3696
3697 if (!done)
3698 continue;
3699
3700 end_extent_buffer_writeback(eb);
3701 }
3702
3703 bio_put(bio);
3704 }
3705
3706 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3707 struct btrfs_fs_info *fs_info,
3708 struct writeback_control *wbc,
3709 struct extent_page_data *epd)
3710 {
3711 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3712 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3713 u64 offset = eb->start;
3714 u32 nritems;
3715 int i, num_pages;
3716 unsigned long start, end;
3717 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3718 int ret = 0;
3719
3720 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3721 num_pages = num_extent_pages(eb);
3722 atomic_set(&eb->io_pages, num_pages);
3723
3724 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 nritems = btrfs_header_nritems(eb);
3726 if (btrfs_header_level(eb) > 0) {
3727 end = btrfs_node_key_ptr_offset(nritems);
3728
3729 memzero_extent_buffer(eb, end, eb->len - end);
3730 } else {
3731 /*
3732 * leaf:
3733 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3734 */
3735 start = btrfs_item_nr_offset(nritems);
3736 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3737 memzero_extent_buffer(eb, start, end - start);
3738 }
3739
3740 for (i = 0; i < num_pages; i++) {
3741 struct page *p = eb->pages[i];
3742
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
3745 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3746 p, offset, PAGE_SIZE, 0, bdev,
3747 &epd->bio,
3748 end_bio_extent_buffer_writepage,
3749 0, 0, 0, false);
3750 if (ret) {
3751 set_btree_ioerr(p);
3752 if (PageWriteback(p))
3753 end_page_writeback(p);
3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 end_extent_buffer_writeback(eb);
3756 ret = -EIO;
3757 break;
3758 }
3759 offset += PAGE_SIZE;
3760 update_nr_written(wbc, 1);
3761 unlock_page(p);
3762 }
3763
3764 if (unlikely(ret)) {
3765 for (; i < num_pages; i++) {
3766 struct page *p = eb->pages[i];
3767 clear_page_dirty_for_io(p);
3768 unlock_page(p);
3769 }
3770 }
3771
3772 return ret;
3773 }
3774
3775 int btree_write_cache_pages(struct address_space *mapping,
3776 struct writeback_control *wbc)
3777 {
3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 struct extent_buffer *eb, *prev_eb = NULL;
3781 struct extent_page_data epd = {
3782 .bio = NULL,
3783 .tree = tree,
3784 .extent_locked = 0,
3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3786 };
3787 int ret = 0;
3788 int done = 0;
3789 int nr_to_write_done = 0;
3790 struct pagevec pvec;
3791 int nr_pages;
3792 pgoff_t index;
3793 pgoff_t end; /* Inclusive */
3794 int scanned = 0;
3795 int tag;
3796
3797 pagevec_init(&pvec);
3798 if (wbc->range_cyclic) {
3799 index = mapping->writeback_index; /* Start from prev offset */
3800 end = -1;
3801 } else {
3802 index = wbc->range_start >> PAGE_SHIFT;
3803 end = wbc->range_end >> PAGE_SHIFT;
3804 scanned = 1;
3805 }
3806 if (wbc->sync_mode == WB_SYNC_ALL)
3807 tag = PAGECACHE_TAG_TOWRITE;
3808 else
3809 tag = PAGECACHE_TAG_DIRTY;
3810 retry:
3811 if (wbc->sync_mode == WB_SYNC_ALL)
3812 tag_pages_for_writeback(mapping, index, end);
3813 while (!done && !nr_to_write_done && (index <= end) &&
3814 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3815 tag))) {
3816 unsigned i;
3817
3818 scanned = 1;
3819 for (i = 0; i < nr_pages; i++) {
3820 struct page *page = pvec.pages[i];
3821
3822 if (!PagePrivate(page))
3823 continue;
3824
3825 spin_lock(&mapping->private_lock);
3826 if (!PagePrivate(page)) {
3827 spin_unlock(&mapping->private_lock);
3828 continue;
3829 }
3830
3831 eb = (struct extent_buffer *)page->private;
3832
3833 /*
3834 * Shouldn't happen and normally this would be a BUG_ON
3835 * but no sense in crashing the users box for something
3836 * we can survive anyway.
3837 */
3838 if (WARN_ON(!eb)) {
3839 spin_unlock(&mapping->private_lock);
3840 continue;
3841 }
3842
3843 if (eb == prev_eb) {
3844 spin_unlock(&mapping->private_lock);
3845 continue;
3846 }
3847
3848 ret = atomic_inc_not_zero(&eb->refs);
3849 spin_unlock(&mapping->private_lock);
3850 if (!ret)
3851 continue;
3852
3853 prev_eb = eb;
3854 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3855 if (!ret) {
3856 free_extent_buffer(eb);
3857 continue;
3858 }
3859
3860 ret = write_one_eb(eb, fs_info, wbc, &epd);
3861 if (ret) {
3862 done = 1;
3863 free_extent_buffer(eb);
3864 break;
3865 }
3866 free_extent_buffer(eb);
3867
3868 /*
3869 * the filesystem may choose to bump up nr_to_write.
3870 * We have to make sure to honor the new nr_to_write
3871 * at any time
3872 */
3873 nr_to_write_done = wbc->nr_to_write <= 0;
3874 }
3875 pagevec_release(&pvec);
3876 cond_resched();
3877 }
3878 if (!scanned && !done) {
3879 /*
3880 * We hit the last page and there is more work to be done: wrap
3881 * back to the start of the file
3882 */
3883 scanned = 1;
3884 index = 0;
3885 goto retry;
3886 }
3887 flush_write_bio(&epd);
3888 return ret;
3889 }
3890
3891 /**
3892 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3893 * @mapping: address space structure to write
3894 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3895 * @data: data passed to __extent_writepage function
3896 *
3897 * If a page is already under I/O, write_cache_pages() skips it, even
3898 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3899 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3900 * and msync() need to guarantee that all the data which was dirty at the time
3901 * the call was made get new I/O started against them. If wbc->sync_mode is
3902 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3903 * existing IO to complete.
3904 */
3905 static int extent_write_cache_pages(struct address_space *mapping,
3906 struct writeback_control *wbc,
3907 struct extent_page_data *epd)
3908 {
3909 struct inode *inode = mapping->host;
3910 int ret = 0;
3911 int done = 0;
3912 int nr_to_write_done = 0;
3913 struct pagevec pvec;
3914 int nr_pages;
3915 pgoff_t index;
3916 pgoff_t end; /* Inclusive */
3917 pgoff_t done_index;
3918 int range_whole = 0;
3919 int scanned = 0;
3920 int tag;
3921
3922 /*
3923 * We have to hold onto the inode so that ordered extents can do their
3924 * work when the IO finishes. The alternative to this is failing to add
3925 * an ordered extent if the igrab() fails there and that is a huge pain
3926 * to deal with, so instead just hold onto the inode throughout the
3927 * writepages operation. If it fails here we are freeing up the inode
3928 * anyway and we'd rather not waste our time writing out stuff that is
3929 * going to be truncated anyway.
3930 */
3931 if (!igrab(inode))
3932 return 0;
3933
3934 pagevec_init(&pvec);
3935 if (wbc->range_cyclic) {
3936 index = mapping->writeback_index; /* Start from prev offset */
3937 end = -1;
3938 } else {
3939 index = wbc->range_start >> PAGE_SHIFT;
3940 end = wbc->range_end >> PAGE_SHIFT;
3941 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942 range_whole = 1;
3943 scanned = 1;
3944 }
3945 if (wbc->sync_mode == WB_SYNC_ALL)
3946 tag = PAGECACHE_TAG_TOWRITE;
3947 else
3948 tag = PAGECACHE_TAG_DIRTY;
3949 retry:
3950 if (wbc->sync_mode == WB_SYNC_ALL)
3951 tag_pages_for_writeback(mapping, index, end);
3952 done_index = index;
3953 while (!done && !nr_to_write_done && (index <= end) &&
3954 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3955 &index, end, tag))) {
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
3962 done_index = page->index;
3963 /*
3964 * At this point we hold neither the i_pages lock nor
3965 * the page lock: the page may be truncated or
3966 * invalidated (changing page->mapping to NULL),
3967 * or even swizzled back from swapper_space to
3968 * tmpfs file mapping
3969 */
3970 if (!trylock_page(page)) {
3971 flush_write_bio(epd);
3972 lock_page(page);
3973 }
3974
3975 if (unlikely(page->mapping != mapping)) {
3976 unlock_page(page);
3977 continue;
3978 }
3979
3980 if (wbc->sync_mode != WB_SYNC_NONE) {
3981 if (PageWriteback(page))
3982 flush_write_bio(epd);
3983 wait_on_page_writeback(page);
3984 }
3985
3986 if (PageWriteback(page) ||
3987 !clear_page_dirty_for_io(page)) {
3988 unlock_page(page);
3989 continue;
3990 }
3991
3992 ret = __extent_writepage(page, wbc, epd);
3993
3994 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3995 unlock_page(page);
3996 ret = 0;
3997 }
3998 if (ret < 0) {
3999 /*
4000 * done_index is set past this page,
4001 * so media errors will not choke
4002 * background writeout for the entire
4003 * file. This has consequences for
4004 * range_cyclic semantics (ie. it may
4005 * not be suitable for data integrity
4006 * writeout).
4007 */
4008 done_index = page->index + 1;
4009 done = 1;
4010 break;
4011 }
4012
4013 /*
4014 * the filesystem may choose to bump up nr_to_write.
4015 * We have to make sure to honor the new nr_to_write
4016 * at any time
4017 */
4018 nr_to_write_done = wbc->nr_to_write <= 0;
4019 }
4020 pagevec_release(&pvec);
4021 cond_resched();
4022 }
4023 if (!scanned && !done) {
4024 /*
4025 * We hit the last page and there is more work to be done: wrap
4026 * back to the start of the file
4027 */
4028 scanned = 1;
4029 index = 0;
4030 goto retry;
4031 }
4032
4033 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4034 mapping->writeback_index = done_index;
4035
4036 btrfs_add_delayed_iput(inode);
4037 return ret;
4038 }
4039
4040 static void flush_write_bio(struct extent_page_data *epd)
4041 {
4042 if (epd->bio) {
4043 int ret;
4044
4045 ret = submit_one_bio(epd->bio, 0, 0);
4046 BUG_ON(ret < 0); /* -ENOMEM */
4047 epd->bio = NULL;
4048 }
4049 }
4050
4051 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4052 {
4053 int ret;
4054 struct extent_page_data epd = {
4055 .bio = NULL,
4056 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4057 .extent_locked = 0,
4058 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4059 };
4060
4061 ret = __extent_writepage(page, wbc, &epd);
4062
4063 flush_write_bio(&epd);
4064 return ret;
4065 }
4066
4067 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4068 int mode)
4069 {
4070 int ret = 0;
4071 struct address_space *mapping = inode->i_mapping;
4072 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4073 struct page *page;
4074 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4075 PAGE_SHIFT;
4076
4077 struct extent_page_data epd = {
4078 .bio = NULL,
4079 .tree = tree,
4080 .extent_locked = 1,
4081 .sync_io = mode == WB_SYNC_ALL,
4082 };
4083 struct writeback_control wbc_writepages = {
4084 .sync_mode = mode,
4085 .nr_to_write = nr_pages * 2,
4086 .range_start = start,
4087 .range_end = end + 1,
4088 };
4089
4090 while (start <= end) {
4091 page = find_get_page(mapping, start >> PAGE_SHIFT);
4092 if (clear_page_dirty_for_io(page))
4093 ret = __extent_writepage(page, &wbc_writepages, &epd);
4094 else {
4095 if (tree->ops && tree->ops->writepage_end_io_hook)
4096 tree->ops->writepage_end_io_hook(page, start,
4097 start + PAGE_SIZE - 1,
4098 NULL, 1);
4099 unlock_page(page);
4100 }
4101 put_page(page);
4102 start += PAGE_SIZE;
4103 }
4104
4105 flush_write_bio(&epd);
4106 return ret;
4107 }
4108
4109 int extent_writepages(struct address_space *mapping,
4110 struct writeback_control *wbc)
4111 {
4112 int ret = 0;
4113 struct extent_page_data epd = {
4114 .bio = NULL,
4115 .tree = &BTRFS_I(mapping->host)->io_tree,
4116 .extent_locked = 0,
4117 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4118 };
4119
4120 ret = extent_write_cache_pages(mapping, wbc, &epd);
4121 flush_write_bio(&epd);
4122 return ret;
4123 }
4124
4125 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4126 unsigned nr_pages)
4127 {
4128 struct bio *bio = NULL;
4129 unsigned page_idx;
4130 unsigned long bio_flags = 0;
4131 struct page *pagepool[16];
4132 struct page *page;
4133 struct extent_map *em_cached = NULL;
4134 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4135 int nr = 0;
4136 u64 prev_em_start = (u64)-1;
4137
4138 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4139 page = list_entry(pages->prev, struct page, lru);
4140
4141 prefetchw(&page->flags);
4142 list_del(&page->lru);
4143 if (add_to_page_cache_lru(page, mapping,
4144 page->index,
4145 readahead_gfp_mask(mapping))) {
4146 put_page(page);
4147 continue;
4148 }
4149
4150 pagepool[nr++] = page;
4151 if (nr < ARRAY_SIZE(pagepool))
4152 continue;
4153 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4154 &bio_flags, &prev_em_start);
4155 nr = 0;
4156 }
4157 if (nr)
4158 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4159 &bio_flags, &prev_em_start);
4160
4161 if (em_cached)
4162 free_extent_map(em_cached);
4163
4164 BUG_ON(!list_empty(pages));
4165 if (bio)
4166 return submit_one_bio(bio, 0, bio_flags);
4167 return 0;
4168 }
4169
4170 /*
4171 * basic invalidatepage code, this waits on any locked or writeback
4172 * ranges corresponding to the page, and then deletes any extent state
4173 * records from the tree
4174 */
4175 int extent_invalidatepage(struct extent_io_tree *tree,
4176 struct page *page, unsigned long offset)
4177 {
4178 struct extent_state *cached_state = NULL;
4179 u64 start = page_offset(page);
4180 u64 end = start + PAGE_SIZE - 1;
4181 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4182
4183 start += ALIGN(offset, blocksize);
4184 if (start > end)
4185 return 0;
4186
4187 lock_extent_bits(tree, start, end, &cached_state);
4188 wait_on_page_writeback(page);
4189 clear_extent_bit(tree, start, end,
4190 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4191 EXTENT_DO_ACCOUNTING,
4192 1, 1, &cached_state);
4193 return 0;
4194 }
4195
4196 /*
4197 * a helper for releasepage, this tests for areas of the page that
4198 * are locked or under IO and drops the related state bits if it is safe
4199 * to drop the page.
4200 */
4201 static int try_release_extent_state(struct extent_io_tree *tree,
4202 struct page *page, gfp_t mask)
4203 {
4204 u64 start = page_offset(page);
4205 u64 end = start + PAGE_SIZE - 1;
4206 int ret = 1;
4207
4208 if (test_range_bit(tree, start, end,
4209 EXTENT_IOBITS, 0, NULL))
4210 ret = 0;
4211 else {
4212 /*
4213 * at this point we can safely clear everything except the
4214 * locked bit and the nodatasum bit
4215 */
4216 ret = __clear_extent_bit(tree, start, end,
4217 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4218 0, 0, NULL, mask, NULL);
4219
4220 /* if clear_extent_bit failed for enomem reasons,
4221 * we can't allow the release to continue.
4222 */
4223 if (ret < 0)
4224 ret = 0;
4225 else
4226 ret = 1;
4227 }
4228 return ret;
4229 }
4230
4231 /*
4232 * a helper for releasepage. As long as there are no locked extents
4233 * in the range corresponding to the page, both state records and extent
4234 * map records are removed
4235 */
4236 int try_release_extent_mapping(struct page *page, gfp_t mask)
4237 {
4238 struct extent_map *em;
4239 u64 start = page_offset(page);
4240 u64 end = start + PAGE_SIZE - 1;
4241 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4242 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4243 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4244
4245 if (gfpflags_allow_blocking(mask) &&
4246 page->mapping->host->i_size > SZ_16M) {
4247 u64 len;
4248 while (start <= end) {
4249 len = end - start + 1;
4250 write_lock(&map->lock);
4251 em = lookup_extent_mapping(map, start, len);
4252 if (!em) {
4253 write_unlock(&map->lock);
4254 break;
4255 }
4256 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4257 em->start != start) {
4258 write_unlock(&map->lock);
4259 free_extent_map(em);
4260 break;
4261 }
4262 if (!test_range_bit(tree, em->start,
4263 extent_map_end(em) - 1,
4264 EXTENT_LOCKED | EXTENT_WRITEBACK,
4265 0, NULL)) {
4266 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4267 &btrfs_inode->runtime_flags);
4268 remove_extent_mapping(map, em);
4269 /* once for the rb tree */
4270 free_extent_map(em);
4271 }
4272 start = extent_map_end(em);
4273 write_unlock(&map->lock);
4274
4275 /* once for us */
4276 free_extent_map(em);
4277 }
4278 }
4279 return try_release_extent_state(tree, page, mask);
4280 }
4281
4282 /*
4283 * helper function for fiemap, which doesn't want to see any holes.
4284 * This maps until we find something past 'last'
4285 */
4286 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4287 u64 offset, u64 last)
4288 {
4289 u64 sectorsize = btrfs_inode_sectorsize(inode);
4290 struct extent_map *em;
4291 u64 len;
4292
4293 if (offset >= last)
4294 return NULL;
4295
4296 while (1) {
4297 len = last - offset;
4298 if (len == 0)
4299 break;
4300 len = ALIGN(len, sectorsize);
4301 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4302 len, 0);
4303 if (IS_ERR_OR_NULL(em))
4304 return em;
4305
4306 /* if this isn't a hole return it */
4307 if (em->block_start != EXTENT_MAP_HOLE)
4308 return em;
4309
4310 /* this is a hole, advance to the next extent */
4311 offset = extent_map_end(em);
4312 free_extent_map(em);
4313 if (offset >= last)
4314 break;
4315 }
4316 return NULL;
4317 }
4318
4319 /*
4320 * To cache previous fiemap extent
4321 *
4322 * Will be used for merging fiemap extent
4323 */
4324 struct fiemap_cache {
4325 u64 offset;
4326 u64 phys;
4327 u64 len;
4328 u32 flags;
4329 bool cached;
4330 };
4331
4332 /*
4333 * Helper to submit fiemap extent.
4334 *
4335 * Will try to merge current fiemap extent specified by @offset, @phys,
4336 * @len and @flags with cached one.
4337 * And only when we fails to merge, cached one will be submitted as
4338 * fiemap extent.
4339 *
4340 * Return value is the same as fiemap_fill_next_extent().
4341 */
4342 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4343 struct fiemap_cache *cache,
4344 u64 offset, u64 phys, u64 len, u32 flags)
4345 {
4346 int ret = 0;
4347
4348 if (!cache->cached)
4349 goto assign;
4350
4351 /*
4352 * Sanity check, extent_fiemap() should have ensured that new
4353 * fiemap extent won't overlap with cahced one.
4354 * Not recoverable.
4355 *
4356 * NOTE: Physical address can overlap, due to compression
4357 */
4358 if (cache->offset + cache->len > offset) {
4359 WARN_ON(1);
4360 return -EINVAL;
4361 }
4362
4363 /*
4364 * Only merges fiemap extents if
4365 * 1) Their logical addresses are continuous
4366 *
4367 * 2) Their physical addresses are continuous
4368 * So truly compressed (physical size smaller than logical size)
4369 * extents won't get merged with each other
4370 *
4371 * 3) Share same flags except FIEMAP_EXTENT_LAST
4372 * So regular extent won't get merged with prealloc extent
4373 */
4374 if (cache->offset + cache->len == offset &&
4375 cache->phys + cache->len == phys &&
4376 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4377 (flags & ~FIEMAP_EXTENT_LAST)) {
4378 cache->len += len;
4379 cache->flags |= flags;
4380 goto try_submit_last;
4381 }
4382
4383 /* Not mergeable, need to submit cached one */
4384 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4385 cache->len, cache->flags);
4386 cache->cached = false;
4387 if (ret)
4388 return ret;
4389 assign:
4390 cache->cached = true;
4391 cache->offset = offset;
4392 cache->phys = phys;
4393 cache->len = len;
4394 cache->flags = flags;
4395 try_submit_last:
4396 if (cache->flags & FIEMAP_EXTENT_LAST) {
4397 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4398 cache->phys, cache->len, cache->flags);
4399 cache->cached = false;
4400 }
4401 return ret;
4402 }
4403
4404 /*
4405 * Emit last fiemap cache
4406 *
4407 * The last fiemap cache may still be cached in the following case:
4408 * 0 4k 8k
4409 * |<- Fiemap range ->|
4410 * |<------------ First extent ----------->|
4411 *
4412 * In this case, the first extent range will be cached but not emitted.
4413 * So we must emit it before ending extent_fiemap().
4414 */
4415 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4416 struct fiemap_extent_info *fieinfo,
4417 struct fiemap_cache *cache)
4418 {
4419 int ret;
4420
4421 if (!cache->cached)
4422 return 0;
4423
4424 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4425 cache->len, cache->flags);
4426 cache->cached = false;
4427 if (ret > 0)
4428 ret = 0;
4429 return ret;
4430 }
4431
4432 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4433 __u64 start, __u64 len)
4434 {
4435 int ret = 0;
4436 u64 off = start;
4437 u64 max = start + len;
4438 u32 flags = 0;
4439 u32 found_type;
4440 u64 last;
4441 u64 last_for_get_extent = 0;
4442 u64 disko = 0;
4443 u64 isize = i_size_read(inode);
4444 struct btrfs_key found_key;
4445 struct extent_map *em = NULL;
4446 struct extent_state *cached_state = NULL;
4447 struct btrfs_path *path;
4448 struct btrfs_root *root = BTRFS_I(inode)->root;
4449 struct fiemap_cache cache = { 0 };
4450 int end = 0;
4451 u64 em_start = 0;
4452 u64 em_len = 0;
4453 u64 em_end = 0;
4454
4455 if (len == 0)
4456 return -EINVAL;
4457
4458 path = btrfs_alloc_path();
4459 if (!path)
4460 return -ENOMEM;
4461 path->leave_spinning = 1;
4462
4463 start = round_down(start, btrfs_inode_sectorsize(inode));
4464 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4465
4466 /*
4467 * lookup the last file extent. We're not using i_size here
4468 * because there might be preallocation past i_size
4469 */
4470 ret = btrfs_lookup_file_extent(NULL, root, path,
4471 btrfs_ino(BTRFS_I(inode)), -1, 0);
4472 if (ret < 0) {
4473 btrfs_free_path(path);
4474 return ret;
4475 } else {
4476 WARN_ON(!ret);
4477 if (ret == 1)
4478 ret = 0;
4479 }
4480
4481 path->slots[0]--;
4482 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4483 found_type = found_key.type;
4484
4485 /* No extents, but there might be delalloc bits */
4486 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4487 found_type != BTRFS_EXTENT_DATA_KEY) {
4488 /* have to trust i_size as the end */
4489 last = (u64)-1;
4490 last_for_get_extent = isize;
4491 } else {
4492 /*
4493 * remember the start of the last extent. There are a
4494 * bunch of different factors that go into the length of the
4495 * extent, so its much less complex to remember where it started
4496 */
4497 last = found_key.offset;
4498 last_for_get_extent = last + 1;
4499 }
4500 btrfs_release_path(path);
4501
4502 /*
4503 * we might have some extents allocated but more delalloc past those
4504 * extents. so, we trust isize unless the start of the last extent is
4505 * beyond isize
4506 */
4507 if (last < isize) {
4508 last = (u64)-1;
4509 last_for_get_extent = isize;
4510 }
4511
4512 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4513 &cached_state);
4514
4515 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4516 if (!em)
4517 goto out;
4518 if (IS_ERR(em)) {
4519 ret = PTR_ERR(em);
4520 goto out;
4521 }
4522
4523 while (!end) {
4524 u64 offset_in_extent = 0;
4525
4526 /* break if the extent we found is outside the range */
4527 if (em->start >= max || extent_map_end(em) < off)
4528 break;
4529
4530 /*
4531 * get_extent may return an extent that starts before our
4532 * requested range. We have to make sure the ranges
4533 * we return to fiemap always move forward and don't
4534 * overlap, so adjust the offsets here
4535 */
4536 em_start = max(em->start, off);
4537
4538 /*
4539 * record the offset from the start of the extent
4540 * for adjusting the disk offset below. Only do this if the
4541 * extent isn't compressed since our in ram offset may be past
4542 * what we have actually allocated on disk.
4543 */
4544 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4545 offset_in_extent = em_start - em->start;
4546 em_end = extent_map_end(em);
4547 em_len = em_end - em_start;
4548 flags = 0;
4549 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4550 disko = em->block_start + offset_in_extent;
4551 else
4552 disko = 0;
4553
4554 /*
4555 * bump off for our next call to get_extent
4556 */
4557 off = extent_map_end(em);
4558 if (off >= max)
4559 end = 1;
4560
4561 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4562 end = 1;
4563 flags |= FIEMAP_EXTENT_LAST;
4564 } else if (em->block_start == EXTENT_MAP_INLINE) {
4565 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4566 FIEMAP_EXTENT_NOT_ALIGNED);
4567 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4568 flags |= (FIEMAP_EXTENT_DELALLOC |
4569 FIEMAP_EXTENT_UNKNOWN);
4570 } else if (fieinfo->fi_extents_max) {
4571 u64 bytenr = em->block_start -
4572 (em->start - em->orig_start);
4573
4574 /*
4575 * As btrfs supports shared space, this information
4576 * can be exported to userspace tools via
4577 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4578 * then we're just getting a count and we can skip the
4579 * lookup stuff.
4580 */
4581 ret = btrfs_check_shared(root,
4582 btrfs_ino(BTRFS_I(inode)),
4583 bytenr);
4584 if (ret < 0)
4585 goto out_free;
4586 if (ret)
4587 flags |= FIEMAP_EXTENT_SHARED;
4588 ret = 0;
4589 }
4590 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4591 flags |= FIEMAP_EXTENT_ENCODED;
4592 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4593 flags |= FIEMAP_EXTENT_UNWRITTEN;
4594
4595 free_extent_map(em);
4596 em = NULL;
4597 if ((em_start >= last) || em_len == (u64)-1 ||
4598 (last == (u64)-1 && isize <= em_end)) {
4599 flags |= FIEMAP_EXTENT_LAST;
4600 end = 1;
4601 }
4602
4603 /* now scan forward to see if this is really the last extent. */
4604 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4605 if (IS_ERR(em)) {
4606 ret = PTR_ERR(em);
4607 goto out;
4608 }
4609 if (!em) {
4610 flags |= FIEMAP_EXTENT_LAST;
4611 end = 1;
4612 }
4613 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4614 em_len, flags);
4615 if (ret) {
4616 if (ret == 1)
4617 ret = 0;
4618 goto out_free;
4619 }
4620 }
4621 out_free:
4622 if (!ret)
4623 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4624 free_extent_map(em);
4625 out:
4626 btrfs_free_path(path);
4627 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4628 &cached_state);
4629 return ret;
4630 }
4631
4632 static void __free_extent_buffer(struct extent_buffer *eb)
4633 {
4634 btrfs_leak_debug_del(&eb->leak_list);
4635 kmem_cache_free(extent_buffer_cache, eb);
4636 }
4637
4638 int extent_buffer_under_io(struct extent_buffer *eb)
4639 {
4640 return (atomic_read(&eb->io_pages) ||
4641 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4642 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4643 }
4644
4645 /*
4646 * Helper for releasing extent buffer page.
4647 */
4648 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4649 {
4650 int index;
4651 struct page *page;
4652 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4653
4654 BUG_ON(extent_buffer_under_io(eb));
4655
4656 index = num_extent_pages(eb);
4657 if (index == 0)
4658 return;
4659
4660 do {
4661 index--;
4662 page = eb->pages[index];
4663 if (!page)
4664 continue;
4665 if (mapped)
4666 spin_lock(&page->mapping->private_lock);
4667 /*
4668 * We do this since we'll remove the pages after we've
4669 * removed the eb from the radix tree, so we could race
4670 * and have this page now attached to the new eb. So
4671 * only clear page_private if it's still connected to
4672 * this eb.
4673 */
4674 if (PagePrivate(page) &&
4675 page->private == (unsigned long)eb) {
4676 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4677 BUG_ON(PageDirty(page));
4678 BUG_ON(PageWriteback(page));
4679 /*
4680 * We need to make sure we haven't be attached
4681 * to a new eb.
4682 */
4683 ClearPagePrivate(page);
4684 set_page_private(page, 0);
4685 /* One for the page private */
4686 put_page(page);
4687 }
4688
4689 if (mapped)
4690 spin_unlock(&page->mapping->private_lock);
4691
4692 /* One for when we allocated the page */
4693 put_page(page);
4694 } while (index != 0);
4695 }
4696
4697 /*
4698 * Helper for releasing the extent buffer.
4699 */
4700 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4701 {
4702 btrfs_release_extent_buffer_page(eb);
4703 __free_extent_buffer(eb);
4704 }
4705
4706 static struct extent_buffer *
4707 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4708 unsigned long len)
4709 {
4710 struct extent_buffer *eb = NULL;
4711
4712 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4713 eb->start = start;
4714 eb->len = len;
4715 eb->fs_info = fs_info;
4716 eb->bflags = 0;
4717 rwlock_init(&eb->lock);
4718 atomic_set(&eb->write_locks, 0);
4719 atomic_set(&eb->read_locks, 0);
4720 atomic_set(&eb->blocking_readers, 0);
4721 atomic_set(&eb->blocking_writers, 0);
4722 atomic_set(&eb->spinning_readers, 0);
4723 atomic_set(&eb->spinning_writers, 0);
4724 eb->lock_nested = 0;
4725 init_waitqueue_head(&eb->write_lock_wq);
4726 init_waitqueue_head(&eb->read_lock_wq);
4727
4728 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4729
4730 spin_lock_init(&eb->refs_lock);
4731 atomic_set(&eb->refs, 1);
4732 atomic_set(&eb->io_pages, 0);
4733
4734 /*
4735 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4736 */
4737 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4738 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4739 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4740
4741 return eb;
4742 }
4743
4744 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4745 {
4746 int i;
4747 struct page *p;
4748 struct extent_buffer *new;
4749 int num_pages = num_extent_pages(src);
4750
4751 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4752 if (new == NULL)
4753 return NULL;
4754
4755 for (i = 0; i < num_pages; i++) {
4756 p = alloc_page(GFP_NOFS);
4757 if (!p) {
4758 btrfs_release_extent_buffer(new);
4759 return NULL;
4760 }
4761 attach_extent_buffer_page(new, p);
4762 WARN_ON(PageDirty(p));
4763 SetPageUptodate(p);
4764 new->pages[i] = p;
4765 copy_page(page_address(p), page_address(src->pages[i]));
4766 }
4767
4768 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4769 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4770
4771 return new;
4772 }
4773
4774 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4775 u64 start, unsigned long len)
4776 {
4777 struct extent_buffer *eb;
4778 int num_pages;
4779 int i;
4780
4781 eb = __alloc_extent_buffer(fs_info, start, len);
4782 if (!eb)
4783 return NULL;
4784
4785 num_pages = num_extent_pages(eb);
4786 for (i = 0; i < num_pages; i++) {
4787 eb->pages[i] = alloc_page(GFP_NOFS);
4788 if (!eb->pages[i])
4789 goto err;
4790 }
4791 set_extent_buffer_uptodate(eb);
4792 btrfs_set_header_nritems(eb, 0);
4793 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4794
4795 return eb;
4796 err:
4797 for (; i > 0; i--)
4798 __free_page(eb->pages[i - 1]);
4799 __free_extent_buffer(eb);
4800 return NULL;
4801 }
4802
4803 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4804 u64 start)
4805 {
4806 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4807 }
4808
4809 static void check_buffer_tree_ref(struct extent_buffer *eb)
4810 {
4811 int refs;
4812 /* the ref bit is tricky. We have to make sure it is set
4813 * if we have the buffer dirty. Otherwise the
4814 * code to free a buffer can end up dropping a dirty
4815 * page
4816 *
4817 * Once the ref bit is set, it won't go away while the
4818 * buffer is dirty or in writeback, and it also won't
4819 * go away while we have the reference count on the
4820 * eb bumped.
4821 *
4822 * We can't just set the ref bit without bumping the
4823 * ref on the eb because free_extent_buffer might
4824 * see the ref bit and try to clear it. If this happens
4825 * free_extent_buffer might end up dropping our original
4826 * ref by mistake and freeing the page before we are able
4827 * to add one more ref.
4828 *
4829 * So bump the ref count first, then set the bit. If someone
4830 * beat us to it, drop the ref we added.
4831 */
4832 refs = atomic_read(&eb->refs);
4833 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4834 return;
4835
4836 spin_lock(&eb->refs_lock);
4837 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4838 atomic_inc(&eb->refs);
4839 spin_unlock(&eb->refs_lock);
4840 }
4841
4842 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4843 struct page *accessed)
4844 {
4845 int num_pages, i;
4846
4847 check_buffer_tree_ref(eb);
4848
4849 num_pages = num_extent_pages(eb);
4850 for (i = 0; i < num_pages; i++) {
4851 struct page *p = eb->pages[i];
4852
4853 if (p != accessed)
4854 mark_page_accessed(p);
4855 }
4856 }
4857
4858 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4859 u64 start)
4860 {
4861 struct extent_buffer *eb;
4862
4863 rcu_read_lock();
4864 eb = radix_tree_lookup(&fs_info->buffer_radix,
4865 start >> PAGE_SHIFT);
4866 if (eb && atomic_inc_not_zero(&eb->refs)) {
4867 rcu_read_unlock();
4868 /*
4869 * Lock our eb's refs_lock to avoid races with
4870 * free_extent_buffer. When we get our eb it might be flagged
4871 * with EXTENT_BUFFER_STALE and another task running
4872 * free_extent_buffer might have seen that flag set,
4873 * eb->refs == 2, that the buffer isn't under IO (dirty and
4874 * writeback flags not set) and it's still in the tree (flag
4875 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4876 * of decrementing the extent buffer's reference count twice.
4877 * So here we could race and increment the eb's reference count,
4878 * clear its stale flag, mark it as dirty and drop our reference
4879 * before the other task finishes executing free_extent_buffer,
4880 * which would later result in an attempt to free an extent
4881 * buffer that is dirty.
4882 */
4883 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4884 spin_lock(&eb->refs_lock);
4885 spin_unlock(&eb->refs_lock);
4886 }
4887 mark_extent_buffer_accessed(eb, NULL);
4888 return eb;
4889 }
4890 rcu_read_unlock();
4891
4892 return NULL;
4893 }
4894
4895 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4896 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4897 u64 start)
4898 {
4899 struct extent_buffer *eb, *exists = NULL;
4900 int ret;
4901
4902 eb = find_extent_buffer(fs_info, start);
4903 if (eb)
4904 return eb;
4905 eb = alloc_dummy_extent_buffer(fs_info, start);
4906 if (!eb)
4907 return NULL;
4908 eb->fs_info = fs_info;
4909 again:
4910 ret = radix_tree_preload(GFP_NOFS);
4911 if (ret)
4912 goto free_eb;
4913 spin_lock(&fs_info->buffer_lock);
4914 ret = radix_tree_insert(&fs_info->buffer_radix,
4915 start >> PAGE_SHIFT, eb);
4916 spin_unlock(&fs_info->buffer_lock);
4917 radix_tree_preload_end();
4918 if (ret == -EEXIST) {
4919 exists = find_extent_buffer(fs_info, start);
4920 if (exists)
4921 goto free_eb;
4922 else
4923 goto again;
4924 }
4925 check_buffer_tree_ref(eb);
4926 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4927
4928 /*
4929 * We will free dummy extent buffer's if they come into
4930 * free_extent_buffer with a ref count of 2, but if we are using this we
4931 * want the buffers to stay in memory until we're done with them, so
4932 * bump the ref count again.
4933 */
4934 atomic_inc(&eb->refs);
4935 return eb;
4936 free_eb:
4937 btrfs_release_extent_buffer(eb);
4938 return exists;
4939 }
4940 #endif
4941
4942 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4943 u64 start)
4944 {
4945 unsigned long len = fs_info->nodesize;
4946 int num_pages;
4947 int i;
4948 unsigned long index = start >> PAGE_SHIFT;
4949 struct extent_buffer *eb;
4950 struct extent_buffer *exists = NULL;
4951 struct page *p;
4952 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4953 int uptodate = 1;
4954 int ret;
4955
4956 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4957 btrfs_err(fs_info, "bad tree block start %llu", start);
4958 return ERR_PTR(-EINVAL);
4959 }
4960
4961 eb = find_extent_buffer(fs_info, start);
4962 if (eb)
4963 return eb;
4964
4965 eb = __alloc_extent_buffer(fs_info, start, len);
4966 if (!eb)
4967 return ERR_PTR(-ENOMEM);
4968
4969 num_pages = num_extent_pages(eb);
4970 for (i = 0; i < num_pages; i++, index++) {
4971 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4972 if (!p) {
4973 exists = ERR_PTR(-ENOMEM);
4974 goto free_eb;
4975 }
4976
4977 spin_lock(&mapping->private_lock);
4978 if (PagePrivate(p)) {
4979 /*
4980 * We could have already allocated an eb for this page
4981 * and attached one so lets see if we can get a ref on
4982 * the existing eb, and if we can we know it's good and
4983 * we can just return that one, else we know we can just
4984 * overwrite page->private.
4985 */
4986 exists = (struct extent_buffer *)p->private;
4987 if (atomic_inc_not_zero(&exists->refs)) {
4988 spin_unlock(&mapping->private_lock);
4989 unlock_page(p);
4990 put_page(p);
4991 mark_extent_buffer_accessed(exists, p);
4992 goto free_eb;
4993 }
4994 exists = NULL;
4995
4996 /*
4997 * Do this so attach doesn't complain and we need to
4998 * drop the ref the old guy had.
4999 */
5000 ClearPagePrivate(p);
5001 WARN_ON(PageDirty(p));
5002 put_page(p);
5003 }
5004 attach_extent_buffer_page(eb, p);
5005 spin_unlock(&mapping->private_lock);
5006 WARN_ON(PageDirty(p));
5007 eb->pages[i] = p;
5008 if (!PageUptodate(p))
5009 uptodate = 0;
5010
5011 /*
5012 * see below about how we avoid a nasty race with release page
5013 * and why we unlock later
5014 */
5015 }
5016 if (uptodate)
5017 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5018 again:
5019 ret = radix_tree_preload(GFP_NOFS);
5020 if (ret) {
5021 exists = ERR_PTR(ret);
5022 goto free_eb;
5023 }
5024
5025 spin_lock(&fs_info->buffer_lock);
5026 ret = radix_tree_insert(&fs_info->buffer_radix,
5027 start >> PAGE_SHIFT, eb);
5028 spin_unlock(&fs_info->buffer_lock);
5029 radix_tree_preload_end();
5030 if (ret == -EEXIST) {
5031 exists = find_extent_buffer(fs_info, start);
5032 if (exists)
5033 goto free_eb;
5034 else
5035 goto again;
5036 }
5037 /* add one reference for the tree */
5038 check_buffer_tree_ref(eb);
5039 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5040
5041 /*
5042 * there is a race where release page may have
5043 * tried to find this extent buffer in the radix
5044 * but failed. It will tell the VM it is safe to
5045 * reclaim the, and it will clear the page private bit.
5046 * We must make sure to set the page private bit properly
5047 * after the extent buffer is in the radix tree so
5048 * it doesn't get lost
5049 */
5050 for (i = 0; i < num_pages; i++)
5051 unlock_page(eb->pages[i]);
5052 return eb;
5053
5054 free_eb:
5055 WARN_ON(!atomic_dec_and_test(&eb->refs));
5056 for (i = 0; i < num_pages; i++) {
5057 if (eb->pages[i])
5058 unlock_page(eb->pages[i]);
5059 }
5060
5061 btrfs_release_extent_buffer(eb);
5062 return exists;
5063 }
5064
5065 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5066 {
5067 struct extent_buffer *eb =
5068 container_of(head, struct extent_buffer, rcu_head);
5069
5070 __free_extent_buffer(eb);
5071 }
5072
5073 /* Expects to have eb->eb_lock already held */
5074 static int release_extent_buffer(struct extent_buffer *eb)
5075 {
5076 WARN_ON(atomic_read(&eb->refs) == 0);
5077 if (atomic_dec_and_test(&eb->refs)) {
5078 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5079 struct btrfs_fs_info *fs_info = eb->fs_info;
5080
5081 spin_unlock(&eb->refs_lock);
5082
5083 spin_lock(&fs_info->buffer_lock);
5084 radix_tree_delete(&fs_info->buffer_radix,
5085 eb->start >> PAGE_SHIFT);
5086 spin_unlock(&fs_info->buffer_lock);
5087 } else {
5088 spin_unlock(&eb->refs_lock);
5089 }
5090
5091 /* Should be safe to release our pages at this point */
5092 btrfs_release_extent_buffer_page(eb);
5093 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5094 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5095 __free_extent_buffer(eb);
5096 return 1;
5097 }
5098 #endif
5099 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5100 return 1;
5101 }
5102 spin_unlock(&eb->refs_lock);
5103
5104 return 0;
5105 }
5106
5107 void free_extent_buffer(struct extent_buffer *eb)
5108 {
5109 int refs;
5110 int old;
5111 if (!eb)
5112 return;
5113
5114 while (1) {
5115 refs = atomic_read(&eb->refs);
5116 if (refs <= 3)
5117 break;
5118 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5119 if (old == refs)
5120 return;
5121 }
5122
5123 spin_lock(&eb->refs_lock);
5124 if (atomic_read(&eb->refs) == 2 &&
5125 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5126 atomic_dec(&eb->refs);
5127
5128 if (atomic_read(&eb->refs) == 2 &&
5129 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5130 !extent_buffer_under_io(eb) &&
5131 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5132 atomic_dec(&eb->refs);
5133
5134 /*
5135 * I know this is terrible, but it's temporary until we stop tracking
5136 * the uptodate bits and such for the extent buffers.
5137 */
5138 release_extent_buffer(eb);
5139 }
5140
5141 void free_extent_buffer_stale(struct extent_buffer *eb)
5142 {
5143 if (!eb)
5144 return;
5145
5146 spin_lock(&eb->refs_lock);
5147 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5148
5149 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5150 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5151 atomic_dec(&eb->refs);
5152 release_extent_buffer(eb);
5153 }
5154
5155 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5156 {
5157 int i;
5158 int num_pages;
5159 struct page *page;
5160
5161 num_pages = num_extent_pages(eb);
5162
5163 for (i = 0; i < num_pages; i++) {
5164 page = eb->pages[i];
5165 if (!PageDirty(page))
5166 continue;
5167
5168 lock_page(page);
5169 WARN_ON(!PagePrivate(page));
5170
5171 clear_page_dirty_for_io(page);
5172 xa_lock_irq(&page->mapping->i_pages);
5173 if (!PageDirty(page)) {
5174 radix_tree_tag_clear(&page->mapping->i_pages,
5175 page_index(page),
5176 PAGECACHE_TAG_DIRTY);
5177 }
5178 xa_unlock_irq(&page->mapping->i_pages);
5179 ClearPageError(page);
5180 unlock_page(page);
5181 }
5182 WARN_ON(atomic_read(&eb->refs) == 0);
5183 }
5184
5185 int set_extent_buffer_dirty(struct extent_buffer *eb)
5186 {
5187 int i;
5188 int num_pages;
5189 int was_dirty = 0;
5190
5191 check_buffer_tree_ref(eb);
5192
5193 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5194
5195 num_pages = num_extent_pages(eb);
5196 WARN_ON(atomic_read(&eb->refs) == 0);
5197 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5198
5199 for (i = 0; i < num_pages; i++)
5200 set_page_dirty(eb->pages[i]);
5201 return was_dirty;
5202 }
5203
5204 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5205 {
5206 int i;
5207 struct page *page;
5208 int num_pages;
5209
5210 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5211 num_pages = num_extent_pages(eb);
5212 for (i = 0; i < num_pages; i++) {
5213 page = eb->pages[i];
5214 if (page)
5215 ClearPageUptodate(page);
5216 }
5217 }
5218
5219 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5220 {
5221 int i;
5222 struct page *page;
5223 int num_pages;
5224
5225 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5226 num_pages = num_extent_pages(eb);
5227 for (i = 0; i < num_pages; i++) {
5228 page = eb->pages[i];
5229 SetPageUptodate(page);
5230 }
5231 }
5232
5233 int read_extent_buffer_pages(struct extent_io_tree *tree,
5234 struct extent_buffer *eb, int wait, int mirror_num)
5235 {
5236 int i;
5237 struct page *page;
5238 int err;
5239 int ret = 0;
5240 int locked_pages = 0;
5241 int all_uptodate = 1;
5242 int num_pages;
5243 unsigned long num_reads = 0;
5244 struct bio *bio = NULL;
5245 unsigned long bio_flags = 0;
5246
5247 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5248 return 0;
5249
5250 num_pages = num_extent_pages(eb);
5251 for (i = 0; i < num_pages; i++) {
5252 page = eb->pages[i];
5253 if (wait == WAIT_NONE) {
5254 if (!trylock_page(page))
5255 goto unlock_exit;
5256 } else {
5257 lock_page(page);
5258 }
5259 locked_pages++;
5260 }
5261 /*
5262 * We need to firstly lock all pages to make sure that
5263 * the uptodate bit of our pages won't be affected by
5264 * clear_extent_buffer_uptodate().
5265 */
5266 for (i = 0; i < num_pages; i++) {
5267 page = eb->pages[i];
5268 if (!PageUptodate(page)) {
5269 num_reads++;
5270 all_uptodate = 0;
5271 }
5272 }
5273
5274 if (all_uptodate) {
5275 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5276 goto unlock_exit;
5277 }
5278
5279 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5280 eb->read_mirror = 0;
5281 atomic_set(&eb->io_pages, num_reads);
5282 for (i = 0; i < num_pages; i++) {
5283 page = eb->pages[i];
5284
5285 if (!PageUptodate(page)) {
5286 if (ret) {
5287 atomic_dec(&eb->io_pages);
5288 unlock_page(page);
5289 continue;
5290 }
5291
5292 ClearPageError(page);
5293 err = __extent_read_full_page(tree, page,
5294 btree_get_extent, &bio,
5295 mirror_num, &bio_flags,
5296 REQ_META);
5297 if (err) {
5298 ret = err;
5299 /*
5300 * We use &bio in above __extent_read_full_page,
5301 * so we ensure that if it returns error, the
5302 * current page fails to add itself to bio and
5303 * it's been unlocked.
5304 *
5305 * We must dec io_pages by ourselves.
5306 */
5307 atomic_dec(&eb->io_pages);
5308 }
5309 } else {
5310 unlock_page(page);
5311 }
5312 }
5313
5314 if (bio) {
5315 err = submit_one_bio(bio, mirror_num, bio_flags);
5316 if (err)
5317 return err;
5318 }
5319
5320 if (ret || wait != WAIT_COMPLETE)
5321 return ret;
5322
5323 for (i = 0; i < num_pages; i++) {
5324 page = eb->pages[i];
5325 wait_on_page_locked(page);
5326 if (!PageUptodate(page))
5327 ret = -EIO;
5328 }
5329
5330 return ret;
5331
5332 unlock_exit:
5333 while (locked_pages > 0) {
5334 locked_pages--;
5335 page = eb->pages[locked_pages];
5336 unlock_page(page);
5337 }
5338 return ret;
5339 }
5340
5341 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5342 unsigned long start, unsigned long len)
5343 {
5344 size_t cur;
5345 size_t offset;
5346 struct page *page;
5347 char *kaddr;
5348 char *dst = (char *)dstv;
5349 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5350 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5351
5352 if (start + len > eb->len) {
5353 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5354 eb->start, eb->len, start, len);
5355 memset(dst, 0, len);
5356 return;
5357 }
5358
5359 offset = (start_offset + start) & (PAGE_SIZE - 1);
5360
5361 while (len > 0) {
5362 page = eb->pages[i];
5363
5364 cur = min(len, (PAGE_SIZE - offset));
5365 kaddr = page_address(page);
5366 memcpy(dst, kaddr + offset, cur);
5367
5368 dst += cur;
5369 len -= cur;
5370 offset = 0;
5371 i++;
5372 }
5373 }
5374
5375 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5376 void __user *dstv,
5377 unsigned long start, unsigned long len)
5378 {
5379 size_t cur;
5380 size_t offset;
5381 struct page *page;
5382 char *kaddr;
5383 char __user *dst = (char __user *)dstv;
5384 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5385 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5386 int ret = 0;
5387
5388 WARN_ON(start > eb->len);
5389 WARN_ON(start + len > eb->start + eb->len);
5390
5391 offset = (start_offset + start) & (PAGE_SIZE - 1);
5392
5393 while (len > 0) {
5394 page = eb->pages[i];
5395
5396 cur = min(len, (PAGE_SIZE - offset));
5397 kaddr = page_address(page);
5398 if (copy_to_user(dst, kaddr + offset, cur)) {
5399 ret = -EFAULT;
5400 break;
5401 }
5402
5403 dst += cur;
5404 len -= cur;
5405 offset = 0;
5406 i++;
5407 }
5408
5409 return ret;
5410 }
5411
5412 /*
5413 * return 0 if the item is found within a page.
5414 * return 1 if the item spans two pages.
5415 * return -EINVAL otherwise.
5416 */
5417 int map_private_extent_buffer(const struct extent_buffer *eb,
5418 unsigned long start, unsigned long min_len,
5419 char **map, unsigned long *map_start,
5420 unsigned long *map_len)
5421 {
5422 size_t offset = start & (PAGE_SIZE - 1);
5423 char *kaddr;
5424 struct page *p;
5425 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5426 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5427 unsigned long end_i = (start_offset + start + min_len - 1) >>
5428 PAGE_SHIFT;
5429
5430 if (start + min_len > eb->len) {
5431 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5432 eb->start, eb->len, start, min_len);
5433 return -EINVAL;
5434 }
5435
5436 if (i != end_i)
5437 return 1;
5438
5439 if (i == 0) {
5440 offset = start_offset;
5441 *map_start = 0;
5442 } else {
5443 offset = 0;
5444 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5445 }
5446
5447 p = eb->pages[i];
5448 kaddr = page_address(p);
5449 *map = kaddr + offset;
5450 *map_len = PAGE_SIZE - offset;
5451 return 0;
5452 }
5453
5454 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5455 unsigned long start, unsigned long len)
5456 {
5457 size_t cur;
5458 size_t offset;
5459 struct page *page;
5460 char *kaddr;
5461 char *ptr = (char *)ptrv;
5462 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5463 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5464 int ret = 0;
5465
5466 WARN_ON(start > eb->len);
5467 WARN_ON(start + len > eb->start + eb->len);
5468
5469 offset = (start_offset + start) & (PAGE_SIZE - 1);
5470
5471 while (len > 0) {
5472 page = eb->pages[i];
5473
5474 cur = min(len, (PAGE_SIZE - offset));
5475
5476 kaddr = page_address(page);
5477 ret = memcmp(ptr, kaddr + offset, cur);
5478 if (ret)
5479 break;
5480
5481 ptr += cur;
5482 len -= cur;
5483 offset = 0;
5484 i++;
5485 }
5486 return ret;
5487 }
5488
5489 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5490 const void *srcv)
5491 {
5492 char *kaddr;
5493
5494 WARN_ON(!PageUptodate(eb->pages[0]));
5495 kaddr = page_address(eb->pages[0]);
5496 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5497 BTRFS_FSID_SIZE);
5498 }
5499
5500 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5501 {
5502 char *kaddr;
5503
5504 WARN_ON(!PageUptodate(eb->pages[0]));
5505 kaddr = page_address(eb->pages[0]);
5506 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5507 BTRFS_FSID_SIZE);
5508 }
5509
5510 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5511 unsigned long start, unsigned long len)
5512 {
5513 size_t cur;
5514 size_t offset;
5515 struct page *page;
5516 char *kaddr;
5517 char *src = (char *)srcv;
5518 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5519 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5520
5521 WARN_ON(start > eb->len);
5522 WARN_ON(start + len > eb->start + eb->len);
5523
5524 offset = (start_offset + start) & (PAGE_SIZE - 1);
5525
5526 while (len > 0) {
5527 page = eb->pages[i];
5528 WARN_ON(!PageUptodate(page));
5529
5530 cur = min(len, PAGE_SIZE - offset);
5531 kaddr = page_address(page);
5532 memcpy(kaddr + offset, src, cur);
5533
5534 src += cur;
5535 len -= cur;
5536 offset = 0;
5537 i++;
5538 }
5539 }
5540
5541 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5542 unsigned long len)
5543 {
5544 size_t cur;
5545 size_t offset;
5546 struct page *page;
5547 char *kaddr;
5548 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5549 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5550
5551 WARN_ON(start > eb->len);
5552 WARN_ON(start + len > eb->start + eb->len);
5553
5554 offset = (start_offset + start) & (PAGE_SIZE - 1);
5555
5556 while (len > 0) {
5557 page = eb->pages[i];
5558 WARN_ON(!PageUptodate(page));
5559
5560 cur = min(len, PAGE_SIZE - offset);
5561 kaddr = page_address(page);
5562 memset(kaddr + offset, 0, cur);
5563
5564 len -= cur;
5565 offset = 0;
5566 i++;
5567 }
5568 }
5569
5570 void copy_extent_buffer_full(struct extent_buffer *dst,
5571 struct extent_buffer *src)
5572 {
5573 int i;
5574 int num_pages;
5575
5576 ASSERT(dst->len == src->len);
5577
5578 num_pages = num_extent_pages(dst);
5579 for (i = 0; i < num_pages; i++)
5580 copy_page(page_address(dst->pages[i]),
5581 page_address(src->pages[i]));
5582 }
5583
5584 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5585 unsigned long dst_offset, unsigned long src_offset,
5586 unsigned long len)
5587 {
5588 u64 dst_len = dst->len;
5589 size_t cur;
5590 size_t offset;
5591 struct page *page;
5592 char *kaddr;
5593 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5594 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5595
5596 WARN_ON(src->len != dst_len);
5597
5598 offset = (start_offset + dst_offset) &
5599 (PAGE_SIZE - 1);
5600
5601 while (len > 0) {
5602 page = dst->pages[i];
5603 WARN_ON(!PageUptodate(page));
5604
5605 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5606
5607 kaddr = page_address(page);
5608 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5609
5610 src_offset += cur;
5611 len -= cur;
5612 offset = 0;
5613 i++;
5614 }
5615 }
5616
5617 /*
5618 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5619 * given bit number
5620 * @eb: the extent buffer
5621 * @start: offset of the bitmap item in the extent buffer
5622 * @nr: bit number
5623 * @page_index: return index of the page in the extent buffer that contains the
5624 * given bit number
5625 * @page_offset: return offset into the page given by page_index
5626 *
5627 * This helper hides the ugliness of finding the byte in an extent buffer which
5628 * contains a given bit.
5629 */
5630 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5631 unsigned long start, unsigned long nr,
5632 unsigned long *page_index,
5633 size_t *page_offset)
5634 {
5635 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5636 size_t byte_offset = BIT_BYTE(nr);
5637 size_t offset;
5638
5639 /*
5640 * The byte we want is the offset of the extent buffer + the offset of
5641 * the bitmap item in the extent buffer + the offset of the byte in the
5642 * bitmap item.
5643 */
5644 offset = start_offset + start + byte_offset;
5645
5646 *page_index = offset >> PAGE_SHIFT;
5647 *page_offset = offset & (PAGE_SIZE - 1);
5648 }
5649
5650 /**
5651 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5652 * @eb: the extent buffer
5653 * @start: offset of the bitmap item in the extent buffer
5654 * @nr: bit number to test
5655 */
5656 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5657 unsigned long nr)
5658 {
5659 u8 *kaddr;
5660 struct page *page;
5661 unsigned long i;
5662 size_t offset;
5663
5664 eb_bitmap_offset(eb, start, nr, &i, &offset);
5665 page = eb->pages[i];
5666 WARN_ON(!PageUptodate(page));
5667 kaddr = page_address(page);
5668 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5669 }
5670
5671 /**
5672 * extent_buffer_bitmap_set - set an area of a bitmap
5673 * @eb: the extent buffer
5674 * @start: offset of the bitmap item in the extent buffer
5675 * @pos: bit number of the first bit
5676 * @len: number of bits to set
5677 */
5678 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5679 unsigned long pos, unsigned long len)
5680 {
5681 u8 *kaddr;
5682 struct page *page;
5683 unsigned long i;
5684 size_t offset;
5685 const unsigned int size = pos + len;
5686 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5687 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5688
5689 eb_bitmap_offset(eb, start, pos, &i, &offset);
5690 page = eb->pages[i];
5691 WARN_ON(!PageUptodate(page));
5692 kaddr = page_address(page);
5693
5694 while (len >= bits_to_set) {
5695 kaddr[offset] |= mask_to_set;
5696 len -= bits_to_set;
5697 bits_to_set = BITS_PER_BYTE;
5698 mask_to_set = ~0;
5699 if (++offset >= PAGE_SIZE && len > 0) {
5700 offset = 0;
5701 page = eb->pages[++i];
5702 WARN_ON(!PageUptodate(page));
5703 kaddr = page_address(page);
5704 }
5705 }
5706 if (len) {
5707 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5708 kaddr[offset] |= mask_to_set;
5709 }
5710 }
5711
5712
5713 /**
5714 * extent_buffer_bitmap_clear - clear an area of a bitmap
5715 * @eb: the extent buffer
5716 * @start: offset of the bitmap item in the extent buffer
5717 * @pos: bit number of the first bit
5718 * @len: number of bits to clear
5719 */
5720 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5721 unsigned long pos, unsigned long len)
5722 {
5723 u8 *kaddr;
5724 struct page *page;
5725 unsigned long i;
5726 size_t offset;
5727 const unsigned int size = pos + len;
5728 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5729 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5730
5731 eb_bitmap_offset(eb, start, pos, &i, &offset);
5732 page = eb->pages[i];
5733 WARN_ON(!PageUptodate(page));
5734 kaddr = page_address(page);
5735
5736 while (len >= bits_to_clear) {
5737 kaddr[offset] &= ~mask_to_clear;
5738 len -= bits_to_clear;
5739 bits_to_clear = BITS_PER_BYTE;
5740 mask_to_clear = ~0;
5741 if (++offset >= PAGE_SIZE && len > 0) {
5742 offset = 0;
5743 page = eb->pages[++i];
5744 WARN_ON(!PageUptodate(page));
5745 kaddr = page_address(page);
5746 }
5747 }
5748 if (len) {
5749 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5750 kaddr[offset] &= ~mask_to_clear;
5751 }
5752 }
5753
5754 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5755 {
5756 unsigned long distance = (src > dst) ? src - dst : dst - src;
5757 return distance < len;
5758 }
5759
5760 static void copy_pages(struct page *dst_page, struct page *src_page,
5761 unsigned long dst_off, unsigned long src_off,
5762 unsigned long len)
5763 {
5764 char *dst_kaddr = page_address(dst_page);
5765 char *src_kaddr;
5766 int must_memmove = 0;
5767
5768 if (dst_page != src_page) {
5769 src_kaddr = page_address(src_page);
5770 } else {
5771 src_kaddr = dst_kaddr;
5772 if (areas_overlap(src_off, dst_off, len))
5773 must_memmove = 1;
5774 }
5775
5776 if (must_memmove)
5777 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5778 else
5779 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5780 }
5781
5782 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5783 unsigned long src_offset, unsigned long len)
5784 {
5785 struct btrfs_fs_info *fs_info = dst->fs_info;
5786 size_t cur;
5787 size_t dst_off_in_page;
5788 size_t src_off_in_page;
5789 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5790 unsigned long dst_i;
5791 unsigned long src_i;
5792
5793 if (src_offset + len > dst->len) {
5794 btrfs_err(fs_info,
5795 "memmove bogus src_offset %lu move len %lu dst len %lu",
5796 src_offset, len, dst->len);
5797 BUG_ON(1);
5798 }
5799 if (dst_offset + len > dst->len) {
5800 btrfs_err(fs_info,
5801 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5802 dst_offset, len, dst->len);
5803 BUG_ON(1);
5804 }
5805
5806 while (len > 0) {
5807 dst_off_in_page = (start_offset + dst_offset) &
5808 (PAGE_SIZE - 1);
5809 src_off_in_page = (start_offset + src_offset) &
5810 (PAGE_SIZE - 1);
5811
5812 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5813 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5814
5815 cur = min(len, (unsigned long)(PAGE_SIZE -
5816 src_off_in_page));
5817 cur = min_t(unsigned long, cur,
5818 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5819
5820 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5821 dst_off_in_page, src_off_in_page, cur);
5822
5823 src_offset += cur;
5824 dst_offset += cur;
5825 len -= cur;
5826 }
5827 }
5828
5829 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5830 unsigned long src_offset, unsigned long len)
5831 {
5832 struct btrfs_fs_info *fs_info = dst->fs_info;
5833 size_t cur;
5834 size_t dst_off_in_page;
5835 size_t src_off_in_page;
5836 unsigned long dst_end = dst_offset + len - 1;
5837 unsigned long src_end = src_offset + len - 1;
5838 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5839 unsigned long dst_i;
5840 unsigned long src_i;
5841
5842 if (src_offset + len > dst->len) {
5843 btrfs_err(fs_info,
5844 "memmove bogus src_offset %lu move len %lu len %lu",
5845 src_offset, len, dst->len);
5846 BUG_ON(1);
5847 }
5848 if (dst_offset + len > dst->len) {
5849 btrfs_err(fs_info,
5850 "memmove bogus dst_offset %lu move len %lu len %lu",
5851 dst_offset, len, dst->len);
5852 BUG_ON(1);
5853 }
5854 if (dst_offset < src_offset) {
5855 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5856 return;
5857 }
5858 while (len > 0) {
5859 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5860 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5861
5862 dst_off_in_page = (start_offset + dst_end) &
5863 (PAGE_SIZE - 1);
5864 src_off_in_page = (start_offset + src_end) &
5865 (PAGE_SIZE - 1);
5866
5867 cur = min_t(unsigned long, len, src_off_in_page + 1);
5868 cur = min(cur, dst_off_in_page + 1);
5869 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5870 dst_off_in_page - cur + 1,
5871 src_off_in_page - cur + 1, cur);
5872
5873 dst_end -= cur;
5874 src_end -= cur;
5875 len -= cur;
5876 }
5877 }
5878
5879 int try_release_extent_buffer(struct page *page)
5880 {
5881 struct extent_buffer *eb;
5882
5883 /*
5884 * We need to make sure nobody is attaching this page to an eb right
5885 * now.
5886 */
5887 spin_lock(&page->mapping->private_lock);
5888 if (!PagePrivate(page)) {
5889 spin_unlock(&page->mapping->private_lock);
5890 return 1;
5891 }
5892
5893 eb = (struct extent_buffer *)page->private;
5894 BUG_ON(!eb);
5895
5896 /*
5897 * This is a little awful but should be ok, we need to make sure that
5898 * the eb doesn't disappear out from under us while we're looking at
5899 * this page.
5900 */
5901 spin_lock(&eb->refs_lock);
5902 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5903 spin_unlock(&eb->refs_lock);
5904 spin_unlock(&page->mapping->private_lock);
5905 return 0;
5906 }
5907 spin_unlock(&page->mapping->private_lock);
5908
5909 /*
5910 * If tree ref isn't set then we know the ref on this eb is a real ref,
5911 * so just return, this page will likely be freed soon anyway.
5912 */
5913 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5914 spin_unlock(&eb->refs_lock);
5915 return 0;
5916 }
5917
5918 return release_extent_buffer(eb);
5919 }