]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/file.c
Merge tag 'drm/tegra/for-5.7-fixes' of git://anongit.freedesktop.org/tegra/linux...
[thirdparty/linux.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include "ctree.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
24 #include "tree-log.h"
25 #include "locking.h"
26 #include "volumes.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31
32 static struct kmem_cache *btrfs_inode_defrag_cachep;
33 /*
34 * when auto defrag is enabled we
35 * queue up these defrag structs to remember which
36 * inodes need defragging passes
37 */
38 struct inode_defrag {
39 struct rb_node rb_node;
40 /* objectid */
41 u64 ino;
42 /*
43 * transid where the defrag was added, we search for
44 * extents newer than this
45 */
46 u64 transid;
47
48 /* root objectid */
49 u64 root;
50
51 /* last offset we were able to defrag */
52 u64 last_offset;
53
54 /* if we've wrapped around back to zero once already */
55 int cycled;
56 };
57
58 static int __compare_inode_defrag(struct inode_defrag *defrag1,
59 struct inode_defrag *defrag2)
60 {
61 if (defrag1->root > defrag2->root)
62 return 1;
63 else if (defrag1->root < defrag2->root)
64 return -1;
65 else if (defrag1->ino > defrag2->ino)
66 return 1;
67 else if (defrag1->ino < defrag2->ino)
68 return -1;
69 else
70 return 0;
71 }
72
73 /* pop a record for an inode into the defrag tree. The lock
74 * must be held already
75 *
76 * If you're inserting a record for an older transid than an
77 * existing record, the transid already in the tree is lowered
78 *
79 * If an existing record is found the defrag item you
80 * pass in is freed
81 */
82 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
83 struct inode_defrag *defrag)
84 {
85 struct btrfs_fs_info *fs_info = inode->root->fs_info;
86 struct inode_defrag *entry;
87 struct rb_node **p;
88 struct rb_node *parent = NULL;
89 int ret;
90
91 p = &fs_info->defrag_inodes.rb_node;
92 while (*p) {
93 parent = *p;
94 entry = rb_entry(parent, struct inode_defrag, rb_node);
95
96 ret = __compare_inode_defrag(defrag, entry);
97 if (ret < 0)
98 p = &parent->rb_left;
99 else if (ret > 0)
100 p = &parent->rb_right;
101 else {
102 /* if we're reinserting an entry for
103 * an old defrag run, make sure to
104 * lower the transid of our existing record
105 */
106 if (defrag->transid < entry->transid)
107 entry->transid = defrag->transid;
108 if (defrag->last_offset > entry->last_offset)
109 entry->last_offset = defrag->last_offset;
110 return -EEXIST;
111 }
112 }
113 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
114 rb_link_node(&defrag->rb_node, parent, p);
115 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
116 return 0;
117 }
118
119 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
120 {
121 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
122 return 0;
123
124 if (btrfs_fs_closing(fs_info))
125 return 0;
126
127 return 1;
128 }
129
130 /*
131 * insert a defrag record for this inode if auto defrag is
132 * enabled
133 */
134 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
135 struct btrfs_inode *inode)
136 {
137 struct btrfs_root *root = inode->root;
138 struct btrfs_fs_info *fs_info = root->fs_info;
139 struct inode_defrag *defrag;
140 u64 transid;
141 int ret;
142
143 if (!__need_auto_defrag(fs_info))
144 return 0;
145
146 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
147 return 0;
148
149 if (trans)
150 transid = trans->transid;
151 else
152 transid = inode->root->last_trans;
153
154 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
155 if (!defrag)
156 return -ENOMEM;
157
158 defrag->ino = btrfs_ino(inode);
159 defrag->transid = transid;
160 defrag->root = root->root_key.objectid;
161
162 spin_lock(&fs_info->defrag_inodes_lock);
163 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
164 /*
165 * If we set IN_DEFRAG flag and evict the inode from memory,
166 * and then re-read this inode, this new inode doesn't have
167 * IN_DEFRAG flag. At the case, we may find the existed defrag.
168 */
169 ret = __btrfs_add_inode_defrag(inode, defrag);
170 if (ret)
171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
172 } else {
173 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
174 }
175 spin_unlock(&fs_info->defrag_inodes_lock);
176 return 0;
177 }
178
179 /*
180 * Requeue the defrag object. If there is a defrag object that points to
181 * the same inode in the tree, we will merge them together (by
182 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
183 */
184 static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
185 struct inode_defrag *defrag)
186 {
187 struct btrfs_fs_info *fs_info = inode->root->fs_info;
188 int ret;
189
190 if (!__need_auto_defrag(fs_info))
191 goto out;
192
193 /*
194 * Here we don't check the IN_DEFRAG flag, because we need merge
195 * them together.
196 */
197 spin_lock(&fs_info->defrag_inodes_lock);
198 ret = __btrfs_add_inode_defrag(inode, defrag);
199 spin_unlock(&fs_info->defrag_inodes_lock);
200 if (ret)
201 goto out;
202 return;
203 out:
204 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
205 }
206
207 /*
208 * pick the defragable inode that we want, if it doesn't exist, we will get
209 * the next one.
210 */
211 static struct inode_defrag *
212 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
213 {
214 struct inode_defrag *entry = NULL;
215 struct inode_defrag tmp;
216 struct rb_node *p;
217 struct rb_node *parent = NULL;
218 int ret;
219
220 tmp.ino = ino;
221 tmp.root = root;
222
223 spin_lock(&fs_info->defrag_inodes_lock);
224 p = fs_info->defrag_inodes.rb_node;
225 while (p) {
226 parent = p;
227 entry = rb_entry(parent, struct inode_defrag, rb_node);
228
229 ret = __compare_inode_defrag(&tmp, entry);
230 if (ret < 0)
231 p = parent->rb_left;
232 else if (ret > 0)
233 p = parent->rb_right;
234 else
235 goto out;
236 }
237
238 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
239 parent = rb_next(parent);
240 if (parent)
241 entry = rb_entry(parent, struct inode_defrag, rb_node);
242 else
243 entry = NULL;
244 }
245 out:
246 if (entry)
247 rb_erase(parent, &fs_info->defrag_inodes);
248 spin_unlock(&fs_info->defrag_inodes_lock);
249 return entry;
250 }
251
252 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
253 {
254 struct inode_defrag *defrag;
255 struct rb_node *node;
256
257 spin_lock(&fs_info->defrag_inodes_lock);
258 node = rb_first(&fs_info->defrag_inodes);
259 while (node) {
260 rb_erase(node, &fs_info->defrag_inodes);
261 defrag = rb_entry(node, struct inode_defrag, rb_node);
262 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
263
264 cond_resched_lock(&fs_info->defrag_inodes_lock);
265
266 node = rb_first(&fs_info->defrag_inodes);
267 }
268 spin_unlock(&fs_info->defrag_inodes_lock);
269 }
270
271 #define BTRFS_DEFRAG_BATCH 1024
272
273 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
274 struct inode_defrag *defrag)
275 {
276 struct btrfs_root *inode_root;
277 struct inode *inode;
278 struct btrfs_key key;
279 struct btrfs_ioctl_defrag_range_args range;
280 int num_defrag;
281 int ret;
282
283 /* get the inode */
284 key.objectid = defrag->root;
285 key.type = BTRFS_ROOT_ITEM_KEY;
286 key.offset = (u64)-1;
287
288 inode_root = btrfs_get_fs_root(fs_info, &key, true);
289 if (IS_ERR(inode_root)) {
290 ret = PTR_ERR(inode_root);
291 goto cleanup;
292 }
293
294 key.objectid = defrag->ino;
295 key.type = BTRFS_INODE_ITEM_KEY;
296 key.offset = 0;
297 inode = btrfs_iget(fs_info->sb, &key, inode_root);
298 btrfs_put_root(inode_root);
299 if (IS_ERR(inode)) {
300 ret = PTR_ERR(inode);
301 goto cleanup;
302 }
303
304 /* do a chunk of defrag */
305 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
306 memset(&range, 0, sizeof(range));
307 range.len = (u64)-1;
308 range.start = defrag->last_offset;
309
310 sb_start_write(fs_info->sb);
311 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
312 BTRFS_DEFRAG_BATCH);
313 sb_end_write(fs_info->sb);
314 /*
315 * if we filled the whole defrag batch, there
316 * must be more work to do. Queue this defrag
317 * again
318 */
319 if (num_defrag == BTRFS_DEFRAG_BATCH) {
320 defrag->last_offset = range.start;
321 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
322 } else if (defrag->last_offset && !defrag->cycled) {
323 /*
324 * we didn't fill our defrag batch, but
325 * we didn't start at zero. Make sure we loop
326 * around to the start of the file.
327 */
328 defrag->last_offset = 0;
329 defrag->cycled = 1;
330 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
331 } else {
332 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
333 }
334
335 iput(inode);
336 return 0;
337 cleanup:
338 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
339 return ret;
340 }
341
342 /*
343 * run through the list of inodes in the FS that need
344 * defragging
345 */
346 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
347 {
348 struct inode_defrag *defrag;
349 u64 first_ino = 0;
350 u64 root_objectid = 0;
351
352 atomic_inc(&fs_info->defrag_running);
353 while (1) {
354 /* Pause the auto defragger. */
355 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
356 &fs_info->fs_state))
357 break;
358
359 if (!__need_auto_defrag(fs_info))
360 break;
361
362 /* find an inode to defrag */
363 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
364 first_ino);
365 if (!defrag) {
366 if (root_objectid || first_ino) {
367 root_objectid = 0;
368 first_ino = 0;
369 continue;
370 } else {
371 break;
372 }
373 }
374
375 first_ino = defrag->ino + 1;
376 root_objectid = defrag->root;
377
378 __btrfs_run_defrag_inode(fs_info, defrag);
379 }
380 atomic_dec(&fs_info->defrag_running);
381
382 /*
383 * during unmount, we use the transaction_wait queue to
384 * wait for the defragger to stop
385 */
386 wake_up(&fs_info->transaction_wait);
387 return 0;
388 }
389
390 /* simple helper to fault in pages and copy. This should go away
391 * and be replaced with calls into generic code.
392 */
393 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
394 struct page **prepared_pages,
395 struct iov_iter *i)
396 {
397 size_t copied = 0;
398 size_t total_copied = 0;
399 int pg = 0;
400 int offset = offset_in_page(pos);
401
402 while (write_bytes > 0) {
403 size_t count = min_t(size_t,
404 PAGE_SIZE - offset, write_bytes);
405 struct page *page = prepared_pages[pg];
406 /*
407 * Copy data from userspace to the current page
408 */
409 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
410
411 /* Flush processor's dcache for this page */
412 flush_dcache_page(page);
413
414 /*
415 * if we get a partial write, we can end up with
416 * partially up to date pages. These add
417 * a lot of complexity, so make sure they don't
418 * happen by forcing this copy to be retried.
419 *
420 * The rest of the btrfs_file_write code will fall
421 * back to page at a time copies after we return 0.
422 */
423 if (!PageUptodate(page) && copied < count)
424 copied = 0;
425
426 iov_iter_advance(i, copied);
427 write_bytes -= copied;
428 total_copied += copied;
429
430 /* Return to btrfs_file_write_iter to fault page */
431 if (unlikely(copied == 0))
432 break;
433
434 if (copied < PAGE_SIZE - offset) {
435 offset += copied;
436 } else {
437 pg++;
438 offset = 0;
439 }
440 }
441 return total_copied;
442 }
443
444 /*
445 * unlocks pages after btrfs_file_write is done with them
446 */
447 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
448 {
449 size_t i;
450 for (i = 0; i < num_pages; i++) {
451 /* page checked is some magic around finding pages that
452 * have been modified without going through btrfs_set_page_dirty
453 * clear it here. There should be no need to mark the pages
454 * accessed as prepare_pages should have marked them accessed
455 * in prepare_pages via find_or_create_page()
456 */
457 ClearPageChecked(pages[i]);
458 unlock_page(pages[i]);
459 put_page(pages[i]);
460 }
461 }
462
463 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
464 const u64 start,
465 const u64 len,
466 struct extent_state **cached_state)
467 {
468 u64 search_start = start;
469 const u64 end = start + len - 1;
470
471 while (search_start < end) {
472 const u64 search_len = end - search_start + 1;
473 struct extent_map *em;
474 u64 em_len;
475 int ret = 0;
476
477 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
478 if (IS_ERR(em))
479 return PTR_ERR(em);
480
481 if (em->block_start != EXTENT_MAP_HOLE)
482 goto next;
483
484 em_len = em->len;
485 if (em->start < search_start)
486 em_len -= search_start - em->start;
487 if (em_len > search_len)
488 em_len = search_len;
489
490 ret = set_extent_bit(&inode->io_tree, search_start,
491 search_start + em_len - 1,
492 EXTENT_DELALLOC_NEW,
493 NULL, cached_state, GFP_NOFS);
494 next:
495 search_start = extent_map_end(em);
496 free_extent_map(em);
497 if (ret)
498 return ret;
499 }
500 return 0;
501 }
502
503 /*
504 * after copy_from_user, pages need to be dirtied and we need to make
505 * sure holes are created between the current EOF and the start of
506 * any next extents (if required).
507 *
508 * this also makes the decision about creating an inline extent vs
509 * doing real data extents, marking pages dirty and delalloc as required.
510 */
511 int btrfs_dirty_pages(struct inode *inode, struct page **pages,
512 size_t num_pages, loff_t pos, size_t write_bytes,
513 struct extent_state **cached)
514 {
515 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
516 int err = 0;
517 int i;
518 u64 num_bytes;
519 u64 start_pos;
520 u64 end_of_last_block;
521 u64 end_pos = pos + write_bytes;
522 loff_t isize = i_size_read(inode);
523 unsigned int extra_bits = 0;
524
525 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
526 num_bytes = round_up(write_bytes + pos - start_pos,
527 fs_info->sectorsize);
528
529 end_of_last_block = start_pos + num_bytes - 1;
530
531 /*
532 * The pages may have already been dirty, clear out old accounting so
533 * we can set things up properly
534 */
535 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos, end_of_last_block,
536 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
537 0, 0, cached);
538
539 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
540 if (start_pos >= isize &&
541 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
542 /*
543 * There can't be any extents following eof in this case
544 * so just set the delalloc new bit for the range
545 * directly.
546 */
547 extra_bits |= EXTENT_DELALLOC_NEW;
548 } else {
549 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
550 start_pos,
551 num_bytes, cached);
552 if (err)
553 return err;
554 }
555 }
556
557 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
558 extra_bits, cached);
559 if (err)
560 return err;
561
562 for (i = 0; i < num_pages; i++) {
563 struct page *p = pages[i];
564 SetPageUptodate(p);
565 ClearPageChecked(p);
566 set_page_dirty(p);
567 }
568
569 /*
570 * we've only changed i_size in ram, and we haven't updated
571 * the disk i_size. There is no need to log the inode
572 * at this time.
573 */
574 if (end_pos > isize)
575 i_size_write(inode, end_pos);
576 return 0;
577 }
578
579 /*
580 * this drops all the extents in the cache that intersect the range
581 * [start, end]. Existing extents are split as required.
582 */
583 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
584 int skip_pinned)
585 {
586 struct extent_map *em;
587 struct extent_map *split = NULL;
588 struct extent_map *split2 = NULL;
589 struct extent_map_tree *em_tree = &inode->extent_tree;
590 u64 len = end - start + 1;
591 u64 gen;
592 int ret;
593 int testend = 1;
594 unsigned long flags;
595 int compressed = 0;
596 bool modified;
597
598 WARN_ON(end < start);
599 if (end == (u64)-1) {
600 len = (u64)-1;
601 testend = 0;
602 }
603 while (1) {
604 int no_splits = 0;
605
606 modified = false;
607 if (!split)
608 split = alloc_extent_map();
609 if (!split2)
610 split2 = alloc_extent_map();
611 if (!split || !split2)
612 no_splits = 1;
613
614 write_lock(&em_tree->lock);
615 em = lookup_extent_mapping(em_tree, start, len);
616 if (!em) {
617 write_unlock(&em_tree->lock);
618 break;
619 }
620 flags = em->flags;
621 gen = em->generation;
622 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
623 if (testend && em->start + em->len >= start + len) {
624 free_extent_map(em);
625 write_unlock(&em_tree->lock);
626 break;
627 }
628 start = em->start + em->len;
629 if (testend)
630 len = start + len - (em->start + em->len);
631 free_extent_map(em);
632 write_unlock(&em_tree->lock);
633 continue;
634 }
635 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
636 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
637 clear_bit(EXTENT_FLAG_LOGGING, &flags);
638 modified = !list_empty(&em->list);
639 if (no_splits)
640 goto next;
641
642 if (em->start < start) {
643 split->start = em->start;
644 split->len = start - em->start;
645
646 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
647 split->orig_start = em->orig_start;
648 split->block_start = em->block_start;
649
650 if (compressed)
651 split->block_len = em->block_len;
652 else
653 split->block_len = split->len;
654 split->orig_block_len = max(split->block_len,
655 em->orig_block_len);
656 split->ram_bytes = em->ram_bytes;
657 } else {
658 split->orig_start = split->start;
659 split->block_len = 0;
660 split->block_start = em->block_start;
661 split->orig_block_len = 0;
662 split->ram_bytes = split->len;
663 }
664
665 split->generation = gen;
666 split->flags = flags;
667 split->compress_type = em->compress_type;
668 replace_extent_mapping(em_tree, em, split, modified);
669 free_extent_map(split);
670 split = split2;
671 split2 = NULL;
672 }
673 if (testend && em->start + em->len > start + len) {
674 u64 diff = start + len - em->start;
675
676 split->start = start + len;
677 split->len = em->start + em->len - (start + len);
678 split->flags = flags;
679 split->compress_type = em->compress_type;
680 split->generation = gen;
681
682 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
683 split->orig_block_len = max(em->block_len,
684 em->orig_block_len);
685
686 split->ram_bytes = em->ram_bytes;
687 if (compressed) {
688 split->block_len = em->block_len;
689 split->block_start = em->block_start;
690 split->orig_start = em->orig_start;
691 } else {
692 split->block_len = split->len;
693 split->block_start = em->block_start
694 + diff;
695 split->orig_start = em->orig_start;
696 }
697 } else {
698 split->ram_bytes = split->len;
699 split->orig_start = split->start;
700 split->block_len = 0;
701 split->block_start = em->block_start;
702 split->orig_block_len = 0;
703 }
704
705 if (extent_map_in_tree(em)) {
706 replace_extent_mapping(em_tree, em, split,
707 modified);
708 } else {
709 ret = add_extent_mapping(em_tree, split,
710 modified);
711 ASSERT(ret == 0); /* Logic error */
712 }
713 free_extent_map(split);
714 split = NULL;
715 }
716 next:
717 if (extent_map_in_tree(em))
718 remove_extent_mapping(em_tree, em);
719 write_unlock(&em_tree->lock);
720
721 /* once for us */
722 free_extent_map(em);
723 /* once for the tree*/
724 free_extent_map(em);
725 }
726 if (split)
727 free_extent_map(split);
728 if (split2)
729 free_extent_map(split2);
730 }
731
732 /*
733 * this is very complex, but the basic idea is to drop all extents
734 * in the range start - end. hint_block is filled in with a block number
735 * that would be a good hint to the block allocator for this file.
736 *
737 * If an extent intersects the range but is not entirely inside the range
738 * it is either truncated or split. Anything entirely inside the range
739 * is deleted from the tree.
740 */
741 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
742 struct btrfs_root *root, struct inode *inode,
743 struct btrfs_path *path, u64 start, u64 end,
744 u64 *drop_end, int drop_cache,
745 int replace_extent,
746 u32 extent_item_size,
747 int *key_inserted)
748 {
749 struct btrfs_fs_info *fs_info = root->fs_info;
750 struct extent_buffer *leaf;
751 struct btrfs_file_extent_item *fi;
752 struct btrfs_ref ref = { 0 };
753 struct btrfs_key key;
754 struct btrfs_key new_key;
755 u64 ino = btrfs_ino(BTRFS_I(inode));
756 u64 search_start = start;
757 u64 disk_bytenr = 0;
758 u64 num_bytes = 0;
759 u64 extent_offset = 0;
760 u64 extent_end = 0;
761 u64 last_end = start;
762 int del_nr = 0;
763 int del_slot = 0;
764 int extent_type;
765 int recow;
766 int ret;
767 int modify_tree = -1;
768 int update_refs;
769 int found = 0;
770 int leafs_visited = 0;
771
772 if (drop_cache)
773 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
774
775 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
776 modify_tree = 0;
777
778 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
779 root == fs_info->tree_root);
780 while (1) {
781 recow = 0;
782 ret = btrfs_lookup_file_extent(trans, root, path, ino,
783 search_start, modify_tree);
784 if (ret < 0)
785 break;
786 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
787 leaf = path->nodes[0];
788 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
789 if (key.objectid == ino &&
790 key.type == BTRFS_EXTENT_DATA_KEY)
791 path->slots[0]--;
792 }
793 ret = 0;
794 leafs_visited++;
795 next_slot:
796 leaf = path->nodes[0];
797 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
798 BUG_ON(del_nr > 0);
799 ret = btrfs_next_leaf(root, path);
800 if (ret < 0)
801 break;
802 if (ret > 0) {
803 ret = 0;
804 break;
805 }
806 leafs_visited++;
807 leaf = path->nodes[0];
808 recow = 1;
809 }
810
811 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
812
813 if (key.objectid > ino)
814 break;
815 if (WARN_ON_ONCE(key.objectid < ino) ||
816 key.type < BTRFS_EXTENT_DATA_KEY) {
817 ASSERT(del_nr == 0);
818 path->slots[0]++;
819 goto next_slot;
820 }
821 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
822 break;
823
824 fi = btrfs_item_ptr(leaf, path->slots[0],
825 struct btrfs_file_extent_item);
826 extent_type = btrfs_file_extent_type(leaf, fi);
827
828 if (extent_type == BTRFS_FILE_EXTENT_REG ||
829 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
830 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
831 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
832 extent_offset = btrfs_file_extent_offset(leaf, fi);
833 extent_end = key.offset +
834 btrfs_file_extent_num_bytes(leaf, fi);
835 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
836 extent_end = key.offset +
837 btrfs_file_extent_ram_bytes(leaf, fi);
838 } else {
839 /* can't happen */
840 BUG();
841 }
842
843 /*
844 * Don't skip extent items representing 0 byte lengths. They
845 * used to be created (bug) if while punching holes we hit
846 * -ENOSPC condition. So if we find one here, just ensure we
847 * delete it, otherwise we would insert a new file extent item
848 * with the same key (offset) as that 0 bytes length file
849 * extent item in the call to setup_items_for_insert() later
850 * in this function.
851 */
852 if (extent_end == key.offset && extent_end >= search_start) {
853 last_end = extent_end;
854 goto delete_extent_item;
855 }
856
857 if (extent_end <= search_start) {
858 path->slots[0]++;
859 goto next_slot;
860 }
861
862 found = 1;
863 search_start = max(key.offset, start);
864 if (recow || !modify_tree) {
865 modify_tree = -1;
866 btrfs_release_path(path);
867 continue;
868 }
869
870 /*
871 * | - range to drop - |
872 * | -------- extent -------- |
873 */
874 if (start > key.offset && end < extent_end) {
875 BUG_ON(del_nr > 0);
876 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
877 ret = -EOPNOTSUPP;
878 break;
879 }
880
881 memcpy(&new_key, &key, sizeof(new_key));
882 new_key.offset = start;
883 ret = btrfs_duplicate_item(trans, root, path,
884 &new_key);
885 if (ret == -EAGAIN) {
886 btrfs_release_path(path);
887 continue;
888 }
889 if (ret < 0)
890 break;
891
892 leaf = path->nodes[0];
893 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
894 struct btrfs_file_extent_item);
895 btrfs_set_file_extent_num_bytes(leaf, fi,
896 start - key.offset);
897
898 fi = btrfs_item_ptr(leaf, path->slots[0],
899 struct btrfs_file_extent_item);
900
901 extent_offset += start - key.offset;
902 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
903 btrfs_set_file_extent_num_bytes(leaf, fi,
904 extent_end - start);
905 btrfs_mark_buffer_dirty(leaf);
906
907 if (update_refs && disk_bytenr > 0) {
908 btrfs_init_generic_ref(&ref,
909 BTRFS_ADD_DELAYED_REF,
910 disk_bytenr, num_bytes, 0);
911 btrfs_init_data_ref(&ref,
912 root->root_key.objectid,
913 new_key.objectid,
914 start - extent_offset);
915 ret = btrfs_inc_extent_ref(trans, &ref);
916 BUG_ON(ret); /* -ENOMEM */
917 }
918 key.offset = start;
919 }
920 /*
921 * From here on out we will have actually dropped something, so
922 * last_end can be updated.
923 */
924 last_end = extent_end;
925
926 /*
927 * | ---- range to drop ----- |
928 * | -------- extent -------- |
929 */
930 if (start <= key.offset && end < extent_end) {
931 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
932 ret = -EOPNOTSUPP;
933 break;
934 }
935
936 memcpy(&new_key, &key, sizeof(new_key));
937 new_key.offset = end;
938 btrfs_set_item_key_safe(fs_info, path, &new_key);
939
940 extent_offset += end - key.offset;
941 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
942 btrfs_set_file_extent_num_bytes(leaf, fi,
943 extent_end - end);
944 btrfs_mark_buffer_dirty(leaf);
945 if (update_refs && disk_bytenr > 0)
946 inode_sub_bytes(inode, end - key.offset);
947 break;
948 }
949
950 search_start = extent_end;
951 /*
952 * | ---- range to drop ----- |
953 * | -------- extent -------- |
954 */
955 if (start > key.offset && end >= extent_end) {
956 BUG_ON(del_nr > 0);
957 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
958 ret = -EOPNOTSUPP;
959 break;
960 }
961
962 btrfs_set_file_extent_num_bytes(leaf, fi,
963 start - key.offset);
964 btrfs_mark_buffer_dirty(leaf);
965 if (update_refs && disk_bytenr > 0)
966 inode_sub_bytes(inode, extent_end - start);
967 if (end == extent_end)
968 break;
969
970 path->slots[0]++;
971 goto next_slot;
972 }
973
974 /*
975 * | ---- range to drop ----- |
976 * | ------ extent ------ |
977 */
978 if (start <= key.offset && end >= extent_end) {
979 delete_extent_item:
980 if (del_nr == 0) {
981 del_slot = path->slots[0];
982 del_nr = 1;
983 } else {
984 BUG_ON(del_slot + del_nr != path->slots[0]);
985 del_nr++;
986 }
987
988 if (update_refs &&
989 extent_type == BTRFS_FILE_EXTENT_INLINE) {
990 inode_sub_bytes(inode,
991 extent_end - key.offset);
992 extent_end = ALIGN(extent_end,
993 fs_info->sectorsize);
994 } else if (update_refs && disk_bytenr > 0) {
995 btrfs_init_generic_ref(&ref,
996 BTRFS_DROP_DELAYED_REF,
997 disk_bytenr, num_bytes, 0);
998 btrfs_init_data_ref(&ref,
999 root->root_key.objectid,
1000 key.objectid,
1001 key.offset - extent_offset);
1002 ret = btrfs_free_extent(trans, &ref);
1003 BUG_ON(ret); /* -ENOMEM */
1004 inode_sub_bytes(inode,
1005 extent_end - key.offset);
1006 }
1007
1008 if (end == extent_end)
1009 break;
1010
1011 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1012 path->slots[0]++;
1013 goto next_slot;
1014 }
1015
1016 ret = btrfs_del_items(trans, root, path, del_slot,
1017 del_nr);
1018 if (ret) {
1019 btrfs_abort_transaction(trans, ret);
1020 break;
1021 }
1022
1023 del_nr = 0;
1024 del_slot = 0;
1025
1026 btrfs_release_path(path);
1027 continue;
1028 }
1029
1030 BUG();
1031 }
1032
1033 if (!ret && del_nr > 0) {
1034 /*
1035 * Set path->slots[0] to first slot, so that after the delete
1036 * if items are move off from our leaf to its immediate left or
1037 * right neighbor leafs, we end up with a correct and adjusted
1038 * path->slots[0] for our insertion (if replace_extent != 0).
1039 */
1040 path->slots[0] = del_slot;
1041 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1042 if (ret)
1043 btrfs_abort_transaction(trans, ret);
1044 }
1045
1046 leaf = path->nodes[0];
1047 /*
1048 * If btrfs_del_items() was called, it might have deleted a leaf, in
1049 * which case it unlocked our path, so check path->locks[0] matches a
1050 * write lock.
1051 */
1052 if (!ret && replace_extent && leafs_visited == 1 &&
1053 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1054 path->locks[0] == BTRFS_WRITE_LOCK) &&
1055 btrfs_leaf_free_space(leaf) >=
1056 sizeof(struct btrfs_item) + extent_item_size) {
1057
1058 key.objectid = ino;
1059 key.type = BTRFS_EXTENT_DATA_KEY;
1060 key.offset = start;
1061 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1062 struct btrfs_key slot_key;
1063
1064 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1065 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1066 path->slots[0]++;
1067 }
1068 setup_items_for_insert(root, path, &key,
1069 &extent_item_size,
1070 extent_item_size,
1071 sizeof(struct btrfs_item) +
1072 extent_item_size, 1);
1073 *key_inserted = 1;
1074 }
1075
1076 if (!replace_extent || !(*key_inserted))
1077 btrfs_release_path(path);
1078 if (drop_end)
1079 *drop_end = found ? min(end, last_end) : end;
1080 return ret;
1081 }
1082
1083 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1084 struct btrfs_root *root, struct inode *inode, u64 start,
1085 u64 end, int drop_cache)
1086 {
1087 struct btrfs_path *path;
1088 int ret;
1089
1090 path = btrfs_alloc_path();
1091 if (!path)
1092 return -ENOMEM;
1093 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1094 drop_cache, 0, 0, NULL);
1095 btrfs_free_path(path);
1096 return ret;
1097 }
1098
1099 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1100 u64 objectid, u64 bytenr, u64 orig_offset,
1101 u64 *start, u64 *end)
1102 {
1103 struct btrfs_file_extent_item *fi;
1104 struct btrfs_key key;
1105 u64 extent_end;
1106
1107 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1108 return 0;
1109
1110 btrfs_item_key_to_cpu(leaf, &key, slot);
1111 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1112 return 0;
1113
1114 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1115 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1116 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1117 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1118 btrfs_file_extent_compression(leaf, fi) ||
1119 btrfs_file_extent_encryption(leaf, fi) ||
1120 btrfs_file_extent_other_encoding(leaf, fi))
1121 return 0;
1122
1123 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1124 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1125 return 0;
1126
1127 *start = key.offset;
1128 *end = extent_end;
1129 return 1;
1130 }
1131
1132 /*
1133 * Mark extent in the range start - end as written.
1134 *
1135 * This changes extent type from 'pre-allocated' to 'regular'. If only
1136 * part of extent is marked as written, the extent will be split into
1137 * two or three.
1138 */
1139 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1140 struct btrfs_inode *inode, u64 start, u64 end)
1141 {
1142 struct btrfs_fs_info *fs_info = trans->fs_info;
1143 struct btrfs_root *root = inode->root;
1144 struct extent_buffer *leaf;
1145 struct btrfs_path *path;
1146 struct btrfs_file_extent_item *fi;
1147 struct btrfs_ref ref = { 0 };
1148 struct btrfs_key key;
1149 struct btrfs_key new_key;
1150 u64 bytenr;
1151 u64 num_bytes;
1152 u64 extent_end;
1153 u64 orig_offset;
1154 u64 other_start;
1155 u64 other_end;
1156 u64 split;
1157 int del_nr = 0;
1158 int del_slot = 0;
1159 int recow;
1160 int ret;
1161 u64 ino = btrfs_ino(inode);
1162
1163 path = btrfs_alloc_path();
1164 if (!path)
1165 return -ENOMEM;
1166 again:
1167 recow = 0;
1168 split = start;
1169 key.objectid = ino;
1170 key.type = BTRFS_EXTENT_DATA_KEY;
1171 key.offset = split;
1172
1173 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1174 if (ret < 0)
1175 goto out;
1176 if (ret > 0 && path->slots[0] > 0)
1177 path->slots[0]--;
1178
1179 leaf = path->nodes[0];
1180 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1181 if (key.objectid != ino ||
1182 key.type != BTRFS_EXTENT_DATA_KEY) {
1183 ret = -EINVAL;
1184 btrfs_abort_transaction(trans, ret);
1185 goto out;
1186 }
1187 fi = btrfs_item_ptr(leaf, path->slots[0],
1188 struct btrfs_file_extent_item);
1189 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1190 ret = -EINVAL;
1191 btrfs_abort_transaction(trans, ret);
1192 goto out;
1193 }
1194 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1195 if (key.offset > start || extent_end < end) {
1196 ret = -EINVAL;
1197 btrfs_abort_transaction(trans, ret);
1198 goto out;
1199 }
1200
1201 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1202 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1203 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1204 memcpy(&new_key, &key, sizeof(new_key));
1205
1206 if (start == key.offset && end < extent_end) {
1207 other_start = 0;
1208 other_end = start;
1209 if (extent_mergeable(leaf, path->slots[0] - 1,
1210 ino, bytenr, orig_offset,
1211 &other_start, &other_end)) {
1212 new_key.offset = end;
1213 btrfs_set_item_key_safe(fs_info, path, &new_key);
1214 fi = btrfs_item_ptr(leaf, path->slots[0],
1215 struct btrfs_file_extent_item);
1216 btrfs_set_file_extent_generation(leaf, fi,
1217 trans->transid);
1218 btrfs_set_file_extent_num_bytes(leaf, fi,
1219 extent_end - end);
1220 btrfs_set_file_extent_offset(leaf, fi,
1221 end - orig_offset);
1222 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1223 struct btrfs_file_extent_item);
1224 btrfs_set_file_extent_generation(leaf, fi,
1225 trans->transid);
1226 btrfs_set_file_extent_num_bytes(leaf, fi,
1227 end - other_start);
1228 btrfs_mark_buffer_dirty(leaf);
1229 goto out;
1230 }
1231 }
1232
1233 if (start > key.offset && end == extent_end) {
1234 other_start = end;
1235 other_end = 0;
1236 if (extent_mergeable(leaf, path->slots[0] + 1,
1237 ino, bytenr, orig_offset,
1238 &other_start, &other_end)) {
1239 fi = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_file_extent_item);
1241 btrfs_set_file_extent_num_bytes(leaf, fi,
1242 start - key.offset);
1243 btrfs_set_file_extent_generation(leaf, fi,
1244 trans->transid);
1245 path->slots[0]++;
1246 new_key.offset = start;
1247 btrfs_set_item_key_safe(fs_info, path, &new_key);
1248
1249 fi = btrfs_item_ptr(leaf, path->slots[0],
1250 struct btrfs_file_extent_item);
1251 btrfs_set_file_extent_generation(leaf, fi,
1252 trans->transid);
1253 btrfs_set_file_extent_num_bytes(leaf, fi,
1254 other_end - start);
1255 btrfs_set_file_extent_offset(leaf, fi,
1256 start - orig_offset);
1257 btrfs_mark_buffer_dirty(leaf);
1258 goto out;
1259 }
1260 }
1261
1262 while (start > key.offset || end < extent_end) {
1263 if (key.offset == start)
1264 split = end;
1265
1266 new_key.offset = split;
1267 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1268 if (ret == -EAGAIN) {
1269 btrfs_release_path(path);
1270 goto again;
1271 }
1272 if (ret < 0) {
1273 btrfs_abort_transaction(trans, ret);
1274 goto out;
1275 }
1276
1277 leaf = path->nodes[0];
1278 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1279 struct btrfs_file_extent_item);
1280 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1281 btrfs_set_file_extent_num_bytes(leaf, fi,
1282 split - key.offset);
1283
1284 fi = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_file_extent_item);
1286
1287 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1288 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1289 btrfs_set_file_extent_num_bytes(leaf, fi,
1290 extent_end - split);
1291 btrfs_mark_buffer_dirty(leaf);
1292
1293 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
1294 num_bytes, 0);
1295 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
1296 orig_offset);
1297 ret = btrfs_inc_extent_ref(trans, &ref);
1298 if (ret) {
1299 btrfs_abort_transaction(trans, ret);
1300 goto out;
1301 }
1302
1303 if (split == start) {
1304 key.offset = start;
1305 } else {
1306 if (start != key.offset) {
1307 ret = -EINVAL;
1308 btrfs_abort_transaction(trans, ret);
1309 goto out;
1310 }
1311 path->slots[0]--;
1312 extent_end = end;
1313 }
1314 recow = 1;
1315 }
1316
1317 other_start = end;
1318 other_end = 0;
1319 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1320 num_bytes, 0);
1321 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset);
1322 if (extent_mergeable(leaf, path->slots[0] + 1,
1323 ino, bytenr, orig_offset,
1324 &other_start, &other_end)) {
1325 if (recow) {
1326 btrfs_release_path(path);
1327 goto again;
1328 }
1329 extent_end = other_end;
1330 del_slot = path->slots[0] + 1;
1331 del_nr++;
1332 ret = btrfs_free_extent(trans, &ref);
1333 if (ret) {
1334 btrfs_abort_transaction(trans, ret);
1335 goto out;
1336 }
1337 }
1338 other_start = 0;
1339 other_end = start;
1340 if (extent_mergeable(leaf, path->slots[0] - 1,
1341 ino, bytenr, orig_offset,
1342 &other_start, &other_end)) {
1343 if (recow) {
1344 btrfs_release_path(path);
1345 goto again;
1346 }
1347 key.offset = other_start;
1348 del_slot = path->slots[0];
1349 del_nr++;
1350 ret = btrfs_free_extent(trans, &ref);
1351 if (ret) {
1352 btrfs_abort_transaction(trans, ret);
1353 goto out;
1354 }
1355 }
1356 if (del_nr == 0) {
1357 fi = btrfs_item_ptr(leaf, path->slots[0],
1358 struct btrfs_file_extent_item);
1359 btrfs_set_file_extent_type(leaf, fi,
1360 BTRFS_FILE_EXTENT_REG);
1361 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1362 btrfs_mark_buffer_dirty(leaf);
1363 } else {
1364 fi = btrfs_item_ptr(leaf, del_slot - 1,
1365 struct btrfs_file_extent_item);
1366 btrfs_set_file_extent_type(leaf, fi,
1367 BTRFS_FILE_EXTENT_REG);
1368 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1369 btrfs_set_file_extent_num_bytes(leaf, fi,
1370 extent_end - key.offset);
1371 btrfs_mark_buffer_dirty(leaf);
1372
1373 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1374 if (ret < 0) {
1375 btrfs_abort_transaction(trans, ret);
1376 goto out;
1377 }
1378 }
1379 out:
1380 btrfs_free_path(path);
1381 return 0;
1382 }
1383
1384 /*
1385 * on error we return an unlocked page and the error value
1386 * on success we return a locked page and 0
1387 */
1388 static int prepare_uptodate_page(struct inode *inode,
1389 struct page *page, u64 pos,
1390 bool force_uptodate)
1391 {
1392 int ret = 0;
1393
1394 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1395 !PageUptodate(page)) {
1396 ret = btrfs_readpage(NULL, page);
1397 if (ret)
1398 return ret;
1399 lock_page(page);
1400 if (!PageUptodate(page)) {
1401 unlock_page(page);
1402 return -EIO;
1403 }
1404 if (page->mapping != inode->i_mapping) {
1405 unlock_page(page);
1406 return -EAGAIN;
1407 }
1408 }
1409 return 0;
1410 }
1411
1412 /*
1413 * this just gets pages into the page cache and locks them down.
1414 */
1415 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1416 size_t num_pages, loff_t pos,
1417 size_t write_bytes, bool force_uptodate)
1418 {
1419 int i;
1420 unsigned long index = pos >> PAGE_SHIFT;
1421 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1422 int err = 0;
1423 int faili;
1424
1425 for (i = 0; i < num_pages; i++) {
1426 again:
1427 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1428 mask | __GFP_WRITE);
1429 if (!pages[i]) {
1430 faili = i - 1;
1431 err = -ENOMEM;
1432 goto fail;
1433 }
1434
1435 if (i == 0)
1436 err = prepare_uptodate_page(inode, pages[i], pos,
1437 force_uptodate);
1438 if (!err && i == num_pages - 1)
1439 err = prepare_uptodate_page(inode, pages[i],
1440 pos + write_bytes, false);
1441 if (err) {
1442 put_page(pages[i]);
1443 if (err == -EAGAIN) {
1444 err = 0;
1445 goto again;
1446 }
1447 faili = i - 1;
1448 goto fail;
1449 }
1450 wait_on_page_writeback(pages[i]);
1451 }
1452
1453 return 0;
1454 fail:
1455 while (faili >= 0) {
1456 unlock_page(pages[faili]);
1457 put_page(pages[faili]);
1458 faili--;
1459 }
1460 return err;
1461
1462 }
1463
1464 /*
1465 * This function locks the extent and properly waits for data=ordered extents
1466 * to finish before allowing the pages to be modified if need.
1467 *
1468 * The return value:
1469 * 1 - the extent is locked
1470 * 0 - the extent is not locked, and everything is OK
1471 * -EAGAIN - need re-prepare the pages
1472 * the other < 0 number - Something wrong happens
1473 */
1474 static noinline int
1475 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
1476 size_t num_pages, loff_t pos,
1477 size_t write_bytes,
1478 u64 *lockstart, u64 *lockend,
1479 struct extent_state **cached_state)
1480 {
1481 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1482 u64 start_pos;
1483 u64 last_pos;
1484 int i;
1485 int ret = 0;
1486
1487 start_pos = round_down(pos, fs_info->sectorsize);
1488 last_pos = start_pos
1489 + round_up(pos + write_bytes - start_pos,
1490 fs_info->sectorsize) - 1;
1491
1492 if (start_pos < inode->vfs_inode.i_size) {
1493 struct btrfs_ordered_extent *ordered;
1494
1495 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1496 cached_state);
1497 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1498 last_pos - start_pos + 1);
1499 if (ordered &&
1500 ordered->file_offset + ordered->num_bytes > start_pos &&
1501 ordered->file_offset <= last_pos) {
1502 unlock_extent_cached(&inode->io_tree, start_pos,
1503 last_pos, cached_state);
1504 for (i = 0; i < num_pages; i++) {
1505 unlock_page(pages[i]);
1506 put_page(pages[i]);
1507 }
1508 btrfs_start_ordered_extent(&inode->vfs_inode,
1509 ordered, 1);
1510 btrfs_put_ordered_extent(ordered);
1511 return -EAGAIN;
1512 }
1513 if (ordered)
1514 btrfs_put_ordered_extent(ordered);
1515
1516 *lockstart = start_pos;
1517 *lockend = last_pos;
1518 ret = 1;
1519 }
1520
1521 /*
1522 * It's possible the pages are dirty right now, but we don't want
1523 * to clean them yet because copy_from_user may catch a page fault
1524 * and we might have to fall back to one page at a time. If that
1525 * happens, we'll unlock these pages and we'd have a window where
1526 * reclaim could sneak in and drop the once-dirty page on the floor
1527 * without writing it.
1528 *
1529 * We have the pages locked and the extent range locked, so there's
1530 * no way someone can start IO on any dirty pages in this range.
1531 *
1532 * We'll call btrfs_dirty_pages() later on, and that will flip around
1533 * delalloc bits and dirty the pages as required.
1534 */
1535 for (i = 0; i < num_pages; i++) {
1536 set_page_extent_mapped(pages[i]);
1537 WARN_ON(!PageLocked(pages[i]));
1538 }
1539
1540 return ret;
1541 }
1542
1543 static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
1544 size_t *write_bytes)
1545 {
1546 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1547 struct btrfs_root *root = inode->root;
1548 u64 lockstart, lockend;
1549 u64 num_bytes;
1550 int ret;
1551
1552 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1553 return -EAGAIN;
1554
1555 lockstart = round_down(pos, fs_info->sectorsize);
1556 lockend = round_up(pos + *write_bytes,
1557 fs_info->sectorsize) - 1;
1558
1559 btrfs_lock_and_flush_ordered_range(inode, lockstart,
1560 lockend, NULL);
1561
1562 num_bytes = lockend - lockstart + 1;
1563 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1564 NULL, NULL, NULL);
1565 if (ret <= 0) {
1566 ret = 0;
1567 btrfs_drew_write_unlock(&root->snapshot_lock);
1568 } else {
1569 *write_bytes = min_t(size_t, *write_bytes ,
1570 num_bytes - pos + lockstart);
1571 }
1572
1573 unlock_extent(&inode->io_tree, lockstart, lockend);
1574
1575 return ret;
1576 }
1577
1578 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1579 struct iov_iter *i)
1580 {
1581 struct file *file = iocb->ki_filp;
1582 loff_t pos = iocb->ki_pos;
1583 struct inode *inode = file_inode(file);
1584 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1585 struct btrfs_root *root = BTRFS_I(inode)->root;
1586 struct page **pages = NULL;
1587 struct extent_changeset *data_reserved = NULL;
1588 u64 release_bytes = 0;
1589 u64 lockstart;
1590 u64 lockend;
1591 size_t num_written = 0;
1592 int nrptrs;
1593 int ret = 0;
1594 bool only_release_metadata = false;
1595 bool force_page_uptodate = false;
1596
1597 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1598 PAGE_SIZE / (sizeof(struct page *)));
1599 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1600 nrptrs = max(nrptrs, 8);
1601 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1602 if (!pages)
1603 return -ENOMEM;
1604
1605 while (iov_iter_count(i) > 0) {
1606 struct extent_state *cached_state = NULL;
1607 size_t offset = offset_in_page(pos);
1608 size_t sector_offset;
1609 size_t write_bytes = min(iov_iter_count(i),
1610 nrptrs * (size_t)PAGE_SIZE -
1611 offset);
1612 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1613 PAGE_SIZE);
1614 size_t reserve_bytes;
1615 size_t dirty_pages;
1616 size_t copied;
1617 size_t dirty_sectors;
1618 size_t num_sectors;
1619 int extents_locked;
1620
1621 WARN_ON(num_pages > nrptrs);
1622
1623 /*
1624 * Fault pages before locking them in prepare_pages
1625 * to avoid recursive lock
1626 */
1627 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1628 ret = -EFAULT;
1629 break;
1630 }
1631
1632 only_release_metadata = false;
1633 sector_offset = pos & (fs_info->sectorsize - 1);
1634 reserve_bytes = round_up(write_bytes + sector_offset,
1635 fs_info->sectorsize);
1636
1637 extent_changeset_release(data_reserved);
1638 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1639 write_bytes);
1640 if (ret < 0) {
1641 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1642 BTRFS_INODE_PREALLOC)) &&
1643 check_can_nocow(BTRFS_I(inode), pos,
1644 &write_bytes) > 0) {
1645 /*
1646 * For nodata cow case, no need to reserve
1647 * data space.
1648 */
1649 only_release_metadata = true;
1650 /*
1651 * our prealloc extent may be smaller than
1652 * write_bytes, so scale down.
1653 */
1654 num_pages = DIV_ROUND_UP(write_bytes + offset,
1655 PAGE_SIZE);
1656 reserve_bytes = round_up(write_bytes +
1657 sector_offset,
1658 fs_info->sectorsize);
1659 } else {
1660 break;
1661 }
1662 }
1663
1664 WARN_ON(reserve_bytes == 0);
1665 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1666 reserve_bytes);
1667 if (ret) {
1668 if (!only_release_metadata)
1669 btrfs_free_reserved_data_space(inode,
1670 data_reserved, pos,
1671 write_bytes);
1672 else
1673 btrfs_drew_write_unlock(&root->snapshot_lock);
1674 break;
1675 }
1676
1677 release_bytes = reserve_bytes;
1678 again:
1679 /*
1680 * This is going to setup the pages array with the number of
1681 * pages we want, so we don't really need to worry about the
1682 * contents of pages from loop to loop
1683 */
1684 ret = prepare_pages(inode, pages, num_pages,
1685 pos, write_bytes,
1686 force_page_uptodate);
1687 if (ret) {
1688 btrfs_delalloc_release_extents(BTRFS_I(inode),
1689 reserve_bytes);
1690 break;
1691 }
1692
1693 extents_locked = lock_and_cleanup_extent_if_need(
1694 BTRFS_I(inode), pages,
1695 num_pages, pos, write_bytes, &lockstart,
1696 &lockend, &cached_state);
1697 if (extents_locked < 0) {
1698 if (extents_locked == -EAGAIN)
1699 goto again;
1700 btrfs_delalloc_release_extents(BTRFS_I(inode),
1701 reserve_bytes);
1702 ret = extents_locked;
1703 break;
1704 }
1705
1706 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1707
1708 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1709 dirty_sectors = round_up(copied + sector_offset,
1710 fs_info->sectorsize);
1711 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1712
1713 /*
1714 * if we have trouble faulting in the pages, fall
1715 * back to one page at a time
1716 */
1717 if (copied < write_bytes)
1718 nrptrs = 1;
1719
1720 if (copied == 0) {
1721 force_page_uptodate = true;
1722 dirty_sectors = 0;
1723 dirty_pages = 0;
1724 } else {
1725 force_page_uptodate = false;
1726 dirty_pages = DIV_ROUND_UP(copied + offset,
1727 PAGE_SIZE);
1728 }
1729
1730 if (num_sectors > dirty_sectors) {
1731 /* release everything except the sectors we dirtied */
1732 release_bytes -= dirty_sectors <<
1733 fs_info->sb->s_blocksize_bits;
1734 if (only_release_metadata) {
1735 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1736 release_bytes, true);
1737 } else {
1738 u64 __pos;
1739
1740 __pos = round_down(pos,
1741 fs_info->sectorsize) +
1742 (dirty_pages << PAGE_SHIFT);
1743 btrfs_delalloc_release_space(inode,
1744 data_reserved, __pos,
1745 release_bytes, true);
1746 }
1747 }
1748
1749 release_bytes = round_up(copied + sector_offset,
1750 fs_info->sectorsize);
1751
1752 if (copied > 0)
1753 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1754 pos, copied, &cached_state);
1755
1756 /*
1757 * If we have not locked the extent range, because the range's
1758 * start offset is >= i_size, we might still have a non-NULL
1759 * cached extent state, acquired while marking the extent range
1760 * as delalloc through btrfs_dirty_pages(). Therefore free any
1761 * possible cached extent state to avoid a memory leak.
1762 */
1763 if (extents_locked)
1764 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1765 lockstart, lockend, &cached_state);
1766 else
1767 free_extent_state(cached_state);
1768
1769 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1770 if (ret) {
1771 btrfs_drop_pages(pages, num_pages);
1772 break;
1773 }
1774
1775 release_bytes = 0;
1776 if (only_release_metadata)
1777 btrfs_drew_write_unlock(&root->snapshot_lock);
1778
1779 if (only_release_metadata && copied > 0) {
1780 lockstart = round_down(pos,
1781 fs_info->sectorsize);
1782 lockend = round_up(pos + copied,
1783 fs_info->sectorsize) - 1;
1784
1785 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1786 lockend, EXTENT_NORESERVE, NULL,
1787 NULL, GFP_NOFS);
1788 }
1789
1790 btrfs_drop_pages(pages, num_pages);
1791
1792 cond_resched();
1793
1794 balance_dirty_pages_ratelimited(inode->i_mapping);
1795 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
1796 btrfs_btree_balance_dirty(fs_info);
1797
1798 pos += copied;
1799 num_written += copied;
1800 }
1801
1802 kfree(pages);
1803
1804 if (release_bytes) {
1805 if (only_release_metadata) {
1806 btrfs_drew_write_unlock(&root->snapshot_lock);
1807 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1808 release_bytes, true);
1809 } else {
1810 btrfs_delalloc_release_space(inode, data_reserved,
1811 round_down(pos, fs_info->sectorsize),
1812 release_bytes, true);
1813 }
1814 }
1815
1816 extent_changeset_free(data_reserved);
1817 return num_written ? num_written : ret;
1818 }
1819
1820 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1821 {
1822 struct file *file = iocb->ki_filp;
1823 struct inode *inode = file_inode(file);
1824 loff_t pos;
1825 ssize_t written;
1826 ssize_t written_buffered;
1827 loff_t endbyte;
1828 int err;
1829
1830 written = generic_file_direct_write(iocb, from);
1831
1832 if (written < 0 || !iov_iter_count(from))
1833 return written;
1834
1835 pos = iocb->ki_pos;
1836 written_buffered = btrfs_buffered_write(iocb, from);
1837 if (written_buffered < 0) {
1838 err = written_buffered;
1839 goto out;
1840 }
1841 /*
1842 * Ensure all data is persisted. We want the next direct IO read to be
1843 * able to read what was just written.
1844 */
1845 endbyte = pos + written_buffered - 1;
1846 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1847 if (err)
1848 goto out;
1849 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1850 if (err)
1851 goto out;
1852 written += written_buffered;
1853 iocb->ki_pos = pos + written_buffered;
1854 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1855 endbyte >> PAGE_SHIFT);
1856 out:
1857 return written ? written : err;
1858 }
1859
1860 static void update_time_for_write(struct inode *inode)
1861 {
1862 struct timespec64 now;
1863
1864 if (IS_NOCMTIME(inode))
1865 return;
1866
1867 now = current_time(inode);
1868 if (!timespec64_equal(&inode->i_mtime, &now))
1869 inode->i_mtime = now;
1870
1871 if (!timespec64_equal(&inode->i_ctime, &now))
1872 inode->i_ctime = now;
1873
1874 if (IS_I_VERSION(inode))
1875 inode_inc_iversion(inode);
1876 }
1877
1878 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1879 struct iov_iter *from)
1880 {
1881 struct file *file = iocb->ki_filp;
1882 struct inode *inode = file_inode(file);
1883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1884 struct btrfs_root *root = BTRFS_I(inode)->root;
1885 u64 start_pos;
1886 u64 end_pos;
1887 ssize_t num_written = 0;
1888 const bool sync = iocb->ki_flags & IOCB_DSYNC;
1889 ssize_t err;
1890 loff_t pos;
1891 size_t count;
1892 loff_t oldsize;
1893 int clean_page = 0;
1894
1895 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1896 (iocb->ki_flags & IOCB_NOWAIT))
1897 return -EOPNOTSUPP;
1898
1899 if (iocb->ki_flags & IOCB_NOWAIT) {
1900 if (!inode_trylock(inode))
1901 return -EAGAIN;
1902 } else {
1903 inode_lock(inode);
1904 }
1905
1906 err = generic_write_checks(iocb, from);
1907 if (err <= 0) {
1908 inode_unlock(inode);
1909 return err;
1910 }
1911
1912 pos = iocb->ki_pos;
1913 count = iov_iter_count(from);
1914 if (iocb->ki_flags & IOCB_NOWAIT) {
1915 /*
1916 * We will allocate space in case nodatacow is not set,
1917 * so bail
1918 */
1919 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1920 BTRFS_INODE_PREALLOC)) ||
1921 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1922 inode_unlock(inode);
1923 return -EAGAIN;
1924 }
1925 }
1926
1927 current->backing_dev_info = inode_to_bdi(inode);
1928 err = file_remove_privs(file);
1929 if (err) {
1930 inode_unlock(inode);
1931 goto out;
1932 }
1933
1934 /*
1935 * If BTRFS flips readonly due to some impossible error
1936 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1937 * although we have opened a file as writable, we have
1938 * to stop this write operation to ensure FS consistency.
1939 */
1940 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1941 inode_unlock(inode);
1942 err = -EROFS;
1943 goto out;
1944 }
1945
1946 /*
1947 * We reserve space for updating the inode when we reserve space for the
1948 * extent we are going to write, so we will enospc out there. We don't
1949 * need to start yet another transaction to update the inode as we will
1950 * update the inode when we finish writing whatever data we write.
1951 */
1952 update_time_for_write(inode);
1953
1954 start_pos = round_down(pos, fs_info->sectorsize);
1955 oldsize = i_size_read(inode);
1956 if (start_pos > oldsize) {
1957 /* Expand hole size to cover write data, preventing empty gap */
1958 end_pos = round_up(pos + count,
1959 fs_info->sectorsize);
1960 err = btrfs_cont_expand(inode, oldsize, end_pos);
1961 if (err) {
1962 inode_unlock(inode);
1963 goto out;
1964 }
1965 if (start_pos > round_up(oldsize, fs_info->sectorsize))
1966 clean_page = 1;
1967 }
1968
1969 if (sync)
1970 atomic_inc(&BTRFS_I(inode)->sync_writers);
1971
1972 if (iocb->ki_flags & IOCB_DIRECT) {
1973 num_written = __btrfs_direct_write(iocb, from);
1974 } else {
1975 num_written = btrfs_buffered_write(iocb, from);
1976 if (num_written > 0)
1977 iocb->ki_pos = pos + num_written;
1978 if (clean_page)
1979 pagecache_isize_extended(inode, oldsize,
1980 i_size_read(inode));
1981 }
1982
1983 inode_unlock(inode);
1984
1985 /*
1986 * We also have to set last_sub_trans to the current log transid,
1987 * otherwise subsequent syncs to a file that's been synced in this
1988 * transaction will appear to have already occurred.
1989 */
1990 spin_lock(&BTRFS_I(inode)->lock);
1991 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1992 spin_unlock(&BTRFS_I(inode)->lock);
1993 if (num_written > 0)
1994 num_written = generic_write_sync(iocb, num_written);
1995
1996 if (sync)
1997 atomic_dec(&BTRFS_I(inode)->sync_writers);
1998 out:
1999 current->backing_dev_info = NULL;
2000 return num_written ? num_written : err;
2001 }
2002
2003 int btrfs_release_file(struct inode *inode, struct file *filp)
2004 {
2005 struct btrfs_file_private *private = filp->private_data;
2006
2007 if (private && private->filldir_buf)
2008 kfree(private->filldir_buf);
2009 kfree(private);
2010 filp->private_data = NULL;
2011
2012 /*
2013 * ordered_data_close is set by setattr when we are about to truncate
2014 * a file from a non-zero size to a zero size. This tries to
2015 * flush down new bytes that may have been written if the
2016 * application were using truncate to replace a file in place.
2017 */
2018 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2019 &BTRFS_I(inode)->runtime_flags))
2020 filemap_flush(inode->i_mapping);
2021 return 0;
2022 }
2023
2024 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2025 {
2026 int ret;
2027 struct blk_plug plug;
2028
2029 /*
2030 * This is only called in fsync, which would do synchronous writes, so
2031 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2032 * multiple disks using raid profile, a large IO can be split to
2033 * several segments of stripe length (currently 64K).
2034 */
2035 blk_start_plug(&plug);
2036 atomic_inc(&BTRFS_I(inode)->sync_writers);
2037 ret = btrfs_fdatawrite_range(inode, start, end);
2038 atomic_dec(&BTRFS_I(inode)->sync_writers);
2039 blk_finish_plug(&plug);
2040
2041 return ret;
2042 }
2043
2044 /*
2045 * fsync call for both files and directories. This logs the inode into
2046 * the tree log instead of forcing full commits whenever possible.
2047 *
2048 * It needs to call filemap_fdatawait so that all ordered extent updates are
2049 * in the metadata btree are up to date for copying to the log.
2050 *
2051 * It drops the inode mutex before doing the tree log commit. This is an
2052 * important optimization for directories because holding the mutex prevents
2053 * new operations on the dir while we write to disk.
2054 */
2055 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
2056 {
2057 struct dentry *dentry = file_dentry(file);
2058 struct inode *inode = d_inode(dentry);
2059 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2060 struct btrfs_root *root = BTRFS_I(inode)->root;
2061 struct btrfs_trans_handle *trans;
2062 struct btrfs_log_ctx ctx;
2063 int ret = 0, err;
2064
2065 trace_btrfs_sync_file(file, datasync);
2066
2067 btrfs_init_log_ctx(&ctx, inode);
2068
2069 /*
2070 * Set the range to full if the NO_HOLES feature is not enabled.
2071 * This is to avoid missing file extent items representing holes after
2072 * replaying the log.
2073 */
2074 if (!btrfs_fs_incompat(fs_info, NO_HOLES)) {
2075 start = 0;
2076 end = LLONG_MAX;
2077 }
2078
2079 /*
2080 * We write the dirty pages in the range and wait until they complete
2081 * out of the ->i_mutex. If so, we can flush the dirty pages by
2082 * multi-task, and make the performance up. See
2083 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2084 */
2085 ret = start_ordered_ops(inode, start, end);
2086 if (ret)
2087 goto out;
2088
2089 inode_lock(inode);
2090
2091 /*
2092 * We take the dio_sem here because the tree log stuff can race with
2093 * lockless dio writes and get an extent map logged for an extent we
2094 * never waited on. We need it this high up for lockdep reasons.
2095 */
2096 down_write(&BTRFS_I(inode)->dio_sem);
2097
2098 atomic_inc(&root->log_batch);
2099
2100 /*
2101 * If the inode needs a full sync, make sure we use a full range to
2102 * avoid log tree corruption, due to hole detection racing with ordered
2103 * extent completion for adjacent ranges and races between logging and
2104 * completion of ordered extents for adjancent ranges - both races
2105 * could lead to file extent items in the log with overlapping ranges.
2106 * Do this while holding the inode lock, to avoid races with other
2107 * tasks.
2108 */
2109 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2110 &BTRFS_I(inode)->runtime_flags)) {
2111 start = 0;
2112 end = LLONG_MAX;
2113 }
2114
2115 /*
2116 * Before we acquired the inode's lock, someone may have dirtied more
2117 * pages in the target range. We need to make sure that writeback for
2118 * any such pages does not start while we are logging the inode, because
2119 * if it does, any of the following might happen when we are not doing a
2120 * full inode sync:
2121 *
2122 * 1) We log an extent after its writeback finishes but before its
2123 * checksums are added to the csum tree, leading to -EIO errors
2124 * when attempting to read the extent after a log replay.
2125 *
2126 * 2) We can end up logging an extent before its writeback finishes.
2127 * Therefore after the log replay we will have a file extent item
2128 * pointing to an unwritten extent (and no data checksums as well).
2129 *
2130 * So trigger writeback for any eventual new dirty pages and then we
2131 * wait for all ordered extents to complete below.
2132 */
2133 ret = start_ordered_ops(inode, start, end);
2134 if (ret) {
2135 up_write(&BTRFS_I(inode)->dio_sem);
2136 inode_unlock(inode);
2137 goto out;
2138 }
2139
2140 /*
2141 * We have to do this here to avoid the priority inversion of waiting on
2142 * IO of a lower priority task while holding a transaction open.
2143 *
2144 * Also, the range length can be represented by u64, we have to do the
2145 * typecasts to avoid signed overflow if it's [0, LLONG_MAX].
2146 */
2147 ret = btrfs_wait_ordered_range(inode, start, (u64)end - (u64)start + 1);
2148 if (ret) {
2149 up_write(&BTRFS_I(inode)->dio_sem);
2150 inode_unlock(inode);
2151 goto out;
2152 }
2153 atomic_inc(&root->log_batch);
2154
2155 smp_mb();
2156 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
2157 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
2158 /*
2159 * We've had everything committed since the last time we were
2160 * modified so clear this flag in case it was set for whatever
2161 * reason, it's no longer relevant.
2162 */
2163 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2164 &BTRFS_I(inode)->runtime_flags);
2165 /*
2166 * An ordered extent might have started before and completed
2167 * already with io errors, in which case the inode was not
2168 * updated and we end up here. So check the inode's mapping
2169 * for any errors that might have happened since we last
2170 * checked called fsync.
2171 */
2172 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
2173 up_write(&BTRFS_I(inode)->dio_sem);
2174 inode_unlock(inode);
2175 goto out;
2176 }
2177
2178 /*
2179 * We use start here because we will need to wait on the IO to complete
2180 * in btrfs_sync_log, which could require joining a transaction (for
2181 * example checking cross references in the nocow path). If we use join
2182 * here we could get into a situation where we're waiting on IO to
2183 * happen that is blocked on a transaction trying to commit. With start
2184 * we inc the extwriter counter, so we wait for all extwriters to exit
2185 * before we start blocking joiners. This comment is to keep somebody
2186 * from thinking they are super smart and changing this to
2187 * btrfs_join_transaction *cough*Josef*cough*.
2188 */
2189 trans = btrfs_start_transaction(root, 0);
2190 if (IS_ERR(trans)) {
2191 ret = PTR_ERR(trans);
2192 up_write(&BTRFS_I(inode)->dio_sem);
2193 inode_unlock(inode);
2194 goto out;
2195 }
2196
2197 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
2198 if (ret < 0) {
2199 /* Fallthrough and commit/free transaction. */
2200 ret = 1;
2201 }
2202
2203 /* we've logged all the items and now have a consistent
2204 * version of the file in the log. It is possible that
2205 * someone will come in and modify the file, but that's
2206 * fine because the log is consistent on disk, and we
2207 * have references to all of the file's extents
2208 *
2209 * It is possible that someone will come in and log the
2210 * file again, but that will end up using the synchronization
2211 * inside btrfs_sync_log to keep things safe.
2212 */
2213 up_write(&BTRFS_I(inode)->dio_sem);
2214 inode_unlock(inode);
2215
2216 if (ret != BTRFS_NO_LOG_SYNC) {
2217 if (!ret) {
2218 ret = btrfs_sync_log(trans, root, &ctx);
2219 if (!ret) {
2220 ret = btrfs_end_transaction(trans);
2221 goto out;
2222 }
2223 }
2224 ret = btrfs_commit_transaction(trans);
2225 } else {
2226 ret = btrfs_end_transaction(trans);
2227 }
2228 out:
2229 ASSERT(list_empty(&ctx.list));
2230 err = file_check_and_advance_wb_err(file);
2231 if (!ret)
2232 ret = err;
2233 return ret > 0 ? -EIO : ret;
2234 }
2235
2236 static const struct vm_operations_struct btrfs_file_vm_ops = {
2237 .fault = filemap_fault,
2238 .map_pages = filemap_map_pages,
2239 .page_mkwrite = btrfs_page_mkwrite,
2240 };
2241
2242 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2243 {
2244 struct address_space *mapping = filp->f_mapping;
2245
2246 if (!mapping->a_ops->readpage)
2247 return -ENOEXEC;
2248
2249 file_accessed(filp);
2250 vma->vm_ops = &btrfs_file_vm_ops;
2251
2252 return 0;
2253 }
2254
2255 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2256 int slot, u64 start, u64 end)
2257 {
2258 struct btrfs_file_extent_item *fi;
2259 struct btrfs_key key;
2260
2261 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2262 return 0;
2263
2264 btrfs_item_key_to_cpu(leaf, &key, slot);
2265 if (key.objectid != btrfs_ino(inode) ||
2266 key.type != BTRFS_EXTENT_DATA_KEY)
2267 return 0;
2268
2269 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2270
2271 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2272 return 0;
2273
2274 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2275 return 0;
2276
2277 if (key.offset == end)
2278 return 1;
2279 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2280 return 1;
2281 return 0;
2282 }
2283
2284 static int fill_holes(struct btrfs_trans_handle *trans,
2285 struct btrfs_inode *inode,
2286 struct btrfs_path *path, u64 offset, u64 end)
2287 {
2288 struct btrfs_fs_info *fs_info = trans->fs_info;
2289 struct btrfs_root *root = inode->root;
2290 struct extent_buffer *leaf;
2291 struct btrfs_file_extent_item *fi;
2292 struct extent_map *hole_em;
2293 struct extent_map_tree *em_tree = &inode->extent_tree;
2294 struct btrfs_key key;
2295 int ret;
2296
2297 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2298 goto out;
2299
2300 key.objectid = btrfs_ino(inode);
2301 key.type = BTRFS_EXTENT_DATA_KEY;
2302 key.offset = offset;
2303
2304 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2305 if (ret <= 0) {
2306 /*
2307 * We should have dropped this offset, so if we find it then
2308 * something has gone horribly wrong.
2309 */
2310 if (ret == 0)
2311 ret = -EINVAL;
2312 return ret;
2313 }
2314
2315 leaf = path->nodes[0];
2316 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2317 u64 num_bytes;
2318
2319 path->slots[0]--;
2320 fi = btrfs_item_ptr(leaf, path->slots[0],
2321 struct btrfs_file_extent_item);
2322 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2323 end - offset;
2324 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2325 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2326 btrfs_set_file_extent_offset(leaf, fi, 0);
2327 btrfs_mark_buffer_dirty(leaf);
2328 goto out;
2329 }
2330
2331 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2332 u64 num_bytes;
2333
2334 key.offset = offset;
2335 btrfs_set_item_key_safe(fs_info, path, &key);
2336 fi = btrfs_item_ptr(leaf, path->slots[0],
2337 struct btrfs_file_extent_item);
2338 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2339 offset;
2340 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2341 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2342 btrfs_set_file_extent_offset(leaf, fi, 0);
2343 btrfs_mark_buffer_dirty(leaf);
2344 goto out;
2345 }
2346 btrfs_release_path(path);
2347
2348 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
2349 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2350 if (ret)
2351 return ret;
2352
2353 out:
2354 btrfs_release_path(path);
2355
2356 hole_em = alloc_extent_map();
2357 if (!hole_em) {
2358 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2359 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2360 } else {
2361 hole_em->start = offset;
2362 hole_em->len = end - offset;
2363 hole_em->ram_bytes = hole_em->len;
2364 hole_em->orig_start = offset;
2365
2366 hole_em->block_start = EXTENT_MAP_HOLE;
2367 hole_em->block_len = 0;
2368 hole_em->orig_block_len = 0;
2369 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2370 hole_em->generation = trans->transid;
2371
2372 do {
2373 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2374 write_lock(&em_tree->lock);
2375 ret = add_extent_mapping(em_tree, hole_em, 1);
2376 write_unlock(&em_tree->lock);
2377 } while (ret == -EEXIST);
2378 free_extent_map(hole_em);
2379 if (ret)
2380 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2381 &inode->runtime_flags);
2382 }
2383
2384 return 0;
2385 }
2386
2387 /*
2388 * Find a hole extent on given inode and change start/len to the end of hole
2389 * extent.(hole/vacuum extent whose em->start <= start &&
2390 * em->start + em->len > start)
2391 * When a hole extent is found, return 1 and modify start/len.
2392 */
2393 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2394 {
2395 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2396 struct extent_map *em;
2397 int ret = 0;
2398
2399 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2400 round_down(*start, fs_info->sectorsize),
2401 round_up(*len, fs_info->sectorsize));
2402 if (IS_ERR(em))
2403 return PTR_ERR(em);
2404
2405 /* Hole or vacuum extent(only exists in no-hole mode) */
2406 if (em->block_start == EXTENT_MAP_HOLE) {
2407 ret = 1;
2408 *len = em->start + em->len > *start + *len ?
2409 0 : *start + *len - em->start - em->len;
2410 *start = em->start + em->len;
2411 }
2412 free_extent_map(em);
2413 return ret;
2414 }
2415
2416 static int btrfs_punch_hole_lock_range(struct inode *inode,
2417 const u64 lockstart,
2418 const u64 lockend,
2419 struct extent_state **cached_state)
2420 {
2421 while (1) {
2422 struct btrfs_ordered_extent *ordered;
2423 int ret;
2424
2425 truncate_pagecache_range(inode, lockstart, lockend);
2426
2427 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2428 cached_state);
2429 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2430
2431 /*
2432 * We need to make sure we have no ordered extents in this range
2433 * and nobody raced in and read a page in this range, if we did
2434 * we need to try again.
2435 */
2436 if ((!ordered ||
2437 (ordered->file_offset + ordered->num_bytes <= lockstart ||
2438 ordered->file_offset > lockend)) &&
2439 !filemap_range_has_page(inode->i_mapping,
2440 lockstart, lockend)) {
2441 if (ordered)
2442 btrfs_put_ordered_extent(ordered);
2443 break;
2444 }
2445 if (ordered)
2446 btrfs_put_ordered_extent(ordered);
2447 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2448 lockend, cached_state);
2449 ret = btrfs_wait_ordered_range(inode, lockstart,
2450 lockend - lockstart + 1);
2451 if (ret)
2452 return ret;
2453 }
2454 return 0;
2455 }
2456
2457 static int btrfs_insert_clone_extent(struct btrfs_trans_handle *trans,
2458 struct inode *inode,
2459 struct btrfs_path *path,
2460 struct btrfs_clone_extent_info *clone_info,
2461 const u64 clone_len)
2462 {
2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2464 struct btrfs_root *root = BTRFS_I(inode)->root;
2465 struct btrfs_file_extent_item *extent;
2466 struct extent_buffer *leaf;
2467 struct btrfs_key key;
2468 int slot;
2469 struct btrfs_ref ref = { 0 };
2470 u64 ref_offset;
2471 int ret;
2472
2473 if (clone_len == 0)
2474 return 0;
2475
2476 if (clone_info->disk_offset == 0 &&
2477 btrfs_fs_incompat(fs_info, NO_HOLES))
2478 return 0;
2479
2480 key.objectid = btrfs_ino(BTRFS_I(inode));
2481 key.type = BTRFS_EXTENT_DATA_KEY;
2482 key.offset = clone_info->file_offset;
2483 ret = btrfs_insert_empty_item(trans, root, path, &key,
2484 clone_info->item_size);
2485 if (ret)
2486 return ret;
2487 leaf = path->nodes[0];
2488 slot = path->slots[0];
2489 write_extent_buffer(leaf, clone_info->extent_buf,
2490 btrfs_item_ptr_offset(leaf, slot),
2491 clone_info->item_size);
2492 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2493 btrfs_set_file_extent_offset(leaf, extent, clone_info->data_offset);
2494 btrfs_set_file_extent_num_bytes(leaf, extent, clone_len);
2495 btrfs_mark_buffer_dirty(leaf);
2496 btrfs_release_path(path);
2497
2498 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
2499 clone_info->file_offset, clone_len);
2500 if (ret)
2501 return ret;
2502
2503 /* If it's a hole, nothing more needs to be done. */
2504 if (clone_info->disk_offset == 0)
2505 return 0;
2506
2507 inode_add_bytes(inode, clone_len);
2508 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2509 clone_info->disk_offset,
2510 clone_info->disk_len, 0);
2511 ref_offset = clone_info->file_offset - clone_info->data_offset;
2512 btrfs_init_data_ref(&ref, root->root_key.objectid,
2513 btrfs_ino(BTRFS_I(inode)), ref_offset);
2514 ret = btrfs_inc_extent_ref(trans, &ref);
2515
2516 return ret;
2517 }
2518
2519 /*
2520 * The respective range must have been previously locked, as well as the inode.
2521 * The end offset is inclusive (last byte of the range).
2522 * @clone_info is NULL for fallocate's hole punching and non-NULL for extent
2523 * cloning.
2524 * When cloning, we don't want to end up in a state where we dropped extents
2525 * without inserting a new one, so we must abort the transaction to avoid a
2526 * corruption.
2527 */
2528 int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2529 const u64 start, const u64 end,
2530 struct btrfs_clone_extent_info *clone_info,
2531 struct btrfs_trans_handle **trans_out)
2532 {
2533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2534 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2535 u64 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2536 struct btrfs_root *root = BTRFS_I(inode)->root;
2537 struct btrfs_trans_handle *trans = NULL;
2538 struct btrfs_block_rsv *rsv;
2539 unsigned int rsv_count;
2540 u64 cur_offset;
2541 u64 drop_end;
2542 u64 len = end - start;
2543 int ret = 0;
2544
2545 if (end <= start)
2546 return -EINVAL;
2547
2548 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2549 if (!rsv) {
2550 ret = -ENOMEM;
2551 goto out;
2552 }
2553 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2554 rsv->failfast = 1;
2555
2556 /*
2557 * 1 - update the inode
2558 * 1 - removing the extents in the range
2559 * 1 - adding the hole extent if no_holes isn't set or if we are cloning
2560 * an extent
2561 */
2562 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || clone_info)
2563 rsv_count = 3;
2564 else
2565 rsv_count = 2;
2566
2567 trans = btrfs_start_transaction(root, rsv_count);
2568 if (IS_ERR(trans)) {
2569 ret = PTR_ERR(trans);
2570 trans = NULL;
2571 goto out_free;
2572 }
2573
2574 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2575 min_size, false);
2576 BUG_ON(ret);
2577 trans->block_rsv = rsv;
2578
2579 cur_offset = start;
2580 while (cur_offset < end) {
2581 ret = __btrfs_drop_extents(trans, root, inode, path,
2582 cur_offset, end + 1, &drop_end,
2583 1, 0, 0, NULL);
2584 if (ret != -ENOSPC) {
2585 /*
2586 * When cloning we want to avoid transaction aborts when
2587 * nothing was done and we are attempting to clone parts
2588 * of inline extents, in such cases -EOPNOTSUPP is
2589 * returned by __btrfs_drop_extents() without having
2590 * changed anything in the file.
2591 */
2592 if (clone_info && ret && ret != -EOPNOTSUPP)
2593 btrfs_abort_transaction(trans, ret);
2594 break;
2595 }
2596
2597 trans->block_rsv = &fs_info->trans_block_rsv;
2598
2599 if (!clone_info && cur_offset < drop_end &&
2600 cur_offset < ino_size) {
2601 ret = fill_holes(trans, BTRFS_I(inode), path,
2602 cur_offset, drop_end);
2603 if (ret) {
2604 /*
2605 * If we failed then we didn't insert our hole
2606 * entries for the area we dropped, so now the
2607 * fs is corrupted, so we must abort the
2608 * transaction.
2609 */
2610 btrfs_abort_transaction(trans, ret);
2611 break;
2612 }
2613 } else if (!clone_info && cur_offset < drop_end) {
2614 /*
2615 * We are past the i_size here, but since we didn't
2616 * insert holes we need to clear the mapped area so we
2617 * know to not set disk_i_size in this area until a new
2618 * file extent is inserted here.
2619 */
2620 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2621 cur_offset, drop_end - cur_offset);
2622 if (ret) {
2623 /*
2624 * We couldn't clear our area, so we could
2625 * presumably adjust up and corrupt the fs, so
2626 * we need to abort.
2627 */
2628 btrfs_abort_transaction(trans, ret);
2629 break;
2630 }
2631 }
2632
2633 if (clone_info && drop_end > clone_info->file_offset) {
2634 u64 clone_len = drop_end - clone_info->file_offset;
2635
2636 ret = btrfs_insert_clone_extent(trans, inode, path,
2637 clone_info, clone_len);
2638 if (ret) {
2639 btrfs_abort_transaction(trans, ret);
2640 break;
2641 }
2642 clone_info->data_len -= clone_len;
2643 clone_info->data_offset += clone_len;
2644 clone_info->file_offset += clone_len;
2645 }
2646
2647 cur_offset = drop_end;
2648
2649 ret = btrfs_update_inode(trans, root, inode);
2650 if (ret)
2651 break;
2652
2653 btrfs_end_transaction(trans);
2654 btrfs_btree_balance_dirty(fs_info);
2655
2656 trans = btrfs_start_transaction(root, rsv_count);
2657 if (IS_ERR(trans)) {
2658 ret = PTR_ERR(trans);
2659 trans = NULL;
2660 break;
2661 }
2662
2663 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2664 rsv, min_size, false);
2665 BUG_ON(ret); /* shouldn't happen */
2666 trans->block_rsv = rsv;
2667
2668 if (!clone_info) {
2669 ret = find_first_non_hole(inode, &cur_offset, &len);
2670 if (unlikely(ret < 0))
2671 break;
2672 if (ret && !len) {
2673 ret = 0;
2674 break;
2675 }
2676 }
2677 }
2678
2679 /*
2680 * If we were cloning, force the next fsync to be a full one since we
2681 * we replaced (or just dropped in the case of cloning holes when
2682 * NO_HOLES is enabled) extents and extent maps.
2683 * This is for the sake of simplicity, and cloning into files larger
2684 * than 16Mb would force the full fsync any way (when
2685 * try_release_extent_mapping() is invoked during page cache truncation.
2686 */
2687 if (clone_info)
2688 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2689 &BTRFS_I(inode)->runtime_flags);
2690
2691 if (ret)
2692 goto out_trans;
2693
2694 trans->block_rsv = &fs_info->trans_block_rsv;
2695 /*
2696 * If we are using the NO_HOLES feature we might have had already an
2697 * hole that overlaps a part of the region [lockstart, lockend] and
2698 * ends at (or beyond) lockend. Since we have no file extent items to
2699 * represent holes, drop_end can be less than lockend and so we must
2700 * make sure we have an extent map representing the existing hole (the
2701 * call to __btrfs_drop_extents() might have dropped the existing extent
2702 * map representing the existing hole), otherwise the fast fsync path
2703 * will not record the existence of the hole region
2704 * [existing_hole_start, lockend].
2705 */
2706 if (drop_end <= end)
2707 drop_end = end + 1;
2708 /*
2709 * Don't insert file hole extent item if it's for a range beyond eof
2710 * (because it's useless) or if it represents a 0 bytes range (when
2711 * cur_offset == drop_end).
2712 */
2713 if (!clone_info && cur_offset < ino_size && cur_offset < drop_end) {
2714 ret = fill_holes(trans, BTRFS_I(inode), path,
2715 cur_offset, drop_end);
2716 if (ret) {
2717 /* Same comment as above. */
2718 btrfs_abort_transaction(trans, ret);
2719 goto out_trans;
2720 }
2721 } else if (!clone_info && cur_offset < drop_end) {
2722 /* See the comment in the loop above for the reasoning here. */
2723 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
2724 cur_offset, drop_end - cur_offset);
2725 if (ret) {
2726 btrfs_abort_transaction(trans, ret);
2727 goto out_trans;
2728 }
2729
2730 }
2731 if (clone_info) {
2732 ret = btrfs_insert_clone_extent(trans, inode, path, clone_info,
2733 clone_info->data_len);
2734 if (ret) {
2735 btrfs_abort_transaction(trans, ret);
2736 goto out_trans;
2737 }
2738 }
2739
2740 out_trans:
2741 if (!trans)
2742 goto out_free;
2743
2744 trans->block_rsv = &fs_info->trans_block_rsv;
2745 if (ret)
2746 btrfs_end_transaction(trans);
2747 else
2748 *trans_out = trans;
2749 out_free:
2750 btrfs_free_block_rsv(fs_info, rsv);
2751 out:
2752 return ret;
2753 }
2754
2755 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2756 {
2757 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2758 struct btrfs_root *root = BTRFS_I(inode)->root;
2759 struct extent_state *cached_state = NULL;
2760 struct btrfs_path *path;
2761 struct btrfs_trans_handle *trans = NULL;
2762 u64 lockstart;
2763 u64 lockend;
2764 u64 tail_start;
2765 u64 tail_len;
2766 u64 orig_start = offset;
2767 int ret = 0;
2768 bool same_block;
2769 u64 ino_size;
2770 bool truncated_block = false;
2771 bool updated_inode = false;
2772
2773 ret = btrfs_wait_ordered_range(inode, offset, len);
2774 if (ret)
2775 return ret;
2776
2777 inode_lock(inode);
2778 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2779 ret = find_first_non_hole(inode, &offset, &len);
2780 if (ret < 0)
2781 goto out_only_mutex;
2782 if (ret && !len) {
2783 /* Already in a large hole */
2784 ret = 0;
2785 goto out_only_mutex;
2786 }
2787
2788 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
2789 lockend = round_down(offset + len,
2790 btrfs_inode_sectorsize(inode)) - 1;
2791 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2792 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2793 /*
2794 * We needn't truncate any block which is beyond the end of the file
2795 * because we are sure there is no data there.
2796 */
2797 /*
2798 * Only do this if we are in the same block and we aren't doing the
2799 * entire block.
2800 */
2801 if (same_block && len < fs_info->sectorsize) {
2802 if (offset < ino_size) {
2803 truncated_block = true;
2804 ret = btrfs_truncate_block(inode, offset, len, 0);
2805 } else {
2806 ret = 0;
2807 }
2808 goto out_only_mutex;
2809 }
2810
2811 /* zero back part of the first block */
2812 if (offset < ino_size) {
2813 truncated_block = true;
2814 ret = btrfs_truncate_block(inode, offset, 0, 0);
2815 if (ret) {
2816 inode_unlock(inode);
2817 return ret;
2818 }
2819 }
2820
2821 /* Check the aligned pages after the first unaligned page,
2822 * if offset != orig_start, which means the first unaligned page
2823 * including several following pages are already in holes,
2824 * the extra check can be skipped */
2825 if (offset == orig_start) {
2826 /* after truncate page, check hole again */
2827 len = offset + len - lockstart;
2828 offset = lockstart;
2829 ret = find_first_non_hole(inode, &offset, &len);
2830 if (ret < 0)
2831 goto out_only_mutex;
2832 if (ret && !len) {
2833 ret = 0;
2834 goto out_only_mutex;
2835 }
2836 lockstart = offset;
2837 }
2838
2839 /* Check the tail unaligned part is in a hole */
2840 tail_start = lockend + 1;
2841 tail_len = offset + len - tail_start;
2842 if (tail_len) {
2843 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2844 if (unlikely(ret < 0))
2845 goto out_only_mutex;
2846 if (!ret) {
2847 /* zero the front end of the last page */
2848 if (tail_start + tail_len < ino_size) {
2849 truncated_block = true;
2850 ret = btrfs_truncate_block(inode,
2851 tail_start + tail_len,
2852 0, 1);
2853 if (ret)
2854 goto out_only_mutex;
2855 }
2856 }
2857 }
2858
2859 if (lockend < lockstart) {
2860 ret = 0;
2861 goto out_only_mutex;
2862 }
2863
2864 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2865 &cached_state);
2866 if (ret)
2867 goto out_only_mutex;
2868
2869 path = btrfs_alloc_path();
2870 if (!path) {
2871 ret = -ENOMEM;
2872 goto out;
2873 }
2874
2875 ret = btrfs_punch_hole_range(inode, path, lockstart, lockend, NULL,
2876 &trans);
2877 btrfs_free_path(path);
2878 if (ret)
2879 goto out;
2880
2881 ASSERT(trans != NULL);
2882 inode_inc_iversion(inode);
2883 inode->i_mtime = inode->i_ctime = current_time(inode);
2884 ret = btrfs_update_inode(trans, root, inode);
2885 updated_inode = true;
2886 btrfs_end_transaction(trans);
2887 btrfs_btree_balance_dirty(fs_info);
2888 out:
2889 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2890 &cached_state);
2891 out_only_mutex:
2892 if (!updated_inode && truncated_block && !ret) {
2893 /*
2894 * If we only end up zeroing part of a page, we still need to
2895 * update the inode item, so that all the time fields are
2896 * updated as well as the necessary btrfs inode in memory fields
2897 * for detecting, at fsync time, if the inode isn't yet in the
2898 * log tree or it's there but not up to date.
2899 */
2900 struct timespec64 now = current_time(inode);
2901
2902 inode_inc_iversion(inode);
2903 inode->i_mtime = now;
2904 inode->i_ctime = now;
2905 trans = btrfs_start_transaction(root, 1);
2906 if (IS_ERR(trans)) {
2907 ret = PTR_ERR(trans);
2908 } else {
2909 int ret2;
2910
2911 ret = btrfs_update_inode(trans, root, inode);
2912 ret2 = btrfs_end_transaction(trans);
2913 if (!ret)
2914 ret = ret2;
2915 }
2916 }
2917 inode_unlock(inode);
2918 return ret;
2919 }
2920
2921 /* Helper structure to record which range is already reserved */
2922 struct falloc_range {
2923 struct list_head list;
2924 u64 start;
2925 u64 len;
2926 };
2927
2928 /*
2929 * Helper function to add falloc range
2930 *
2931 * Caller should have locked the larger range of extent containing
2932 * [start, len)
2933 */
2934 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2935 {
2936 struct falloc_range *prev = NULL;
2937 struct falloc_range *range = NULL;
2938
2939 if (list_empty(head))
2940 goto insert;
2941
2942 /*
2943 * As fallocate iterate by bytenr order, we only need to check
2944 * the last range.
2945 */
2946 prev = list_entry(head->prev, struct falloc_range, list);
2947 if (prev->start + prev->len == start) {
2948 prev->len += len;
2949 return 0;
2950 }
2951 insert:
2952 range = kmalloc(sizeof(*range), GFP_KERNEL);
2953 if (!range)
2954 return -ENOMEM;
2955 range->start = start;
2956 range->len = len;
2957 list_add_tail(&range->list, head);
2958 return 0;
2959 }
2960
2961 static int btrfs_fallocate_update_isize(struct inode *inode,
2962 const u64 end,
2963 const int mode)
2964 {
2965 struct btrfs_trans_handle *trans;
2966 struct btrfs_root *root = BTRFS_I(inode)->root;
2967 int ret;
2968 int ret2;
2969
2970 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2971 return 0;
2972
2973 trans = btrfs_start_transaction(root, 1);
2974 if (IS_ERR(trans))
2975 return PTR_ERR(trans);
2976
2977 inode->i_ctime = current_time(inode);
2978 i_size_write(inode, end);
2979 btrfs_inode_safe_disk_i_size_write(inode, 0);
2980 ret = btrfs_update_inode(trans, root, inode);
2981 ret2 = btrfs_end_transaction(trans);
2982
2983 return ret ? ret : ret2;
2984 }
2985
2986 enum {
2987 RANGE_BOUNDARY_WRITTEN_EXTENT,
2988 RANGE_BOUNDARY_PREALLOC_EXTENT,
2989 RANGE_BOUNDARY_HOLE,
2990 };
2991
2992 static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2993 u64 offset)
2994 {
2995 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2996 struct extent_map *em;
2997 int ret;
2998
2999 offset = round_down(offset, sectorsize);
3000 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize);
3001 if (IS_ERR(em))
3002 return PTR_ERR(em);
3003
3004 if (em->block_start == EXTENT_MAP_HOLE)
3005 ret = RANGE_BOUNDARY_HOLE;
3006 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3007 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
3008 else
3009 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
3010
3011 free_extent_map(em);
3012 return ret;
3013 }
3014
3015 static int btrfs_zero_range(struct inode *inode,
3016 loff_t offset,
3017 loff_t len,
3018 const int mode)
3019 {
3020 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3021 struct extent_map *em;
3022 struct extent_changeset *data_reserved = NULL;
3023 int ret;
3024 u64 alloc_hint = 0;
3025 const u64 sectorsize = btrfs_inode_sectorsize(inode);
3026 u64 alloc_start = round_down(offset, sectorsize);
3027 u64 alloc_end = round_up(offset + len, sectorsize);
3028 u64 bytes_to_reserve = 0;
3029 bool space_reserved = false;
3030
3031 inode_dio_wait(inode);
3032
3033 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3034 alloc_end - alloc_start);
3035 if (IS_ERR(em)) {
3036 ret = PTR_ERR(em);
3037 goto out;
3038 }
3039
3040 /*
3041 * Avoid hole punching and extent allocation for some cases. More cases
3042 * could be considered, but these are unlikely common and we keep things
3043 * as simple as possible for now. Also, intentionally, if the target
3044 * range contains one or more prealloc extents together with regular
3045 * extents and holes, we drop all the existing extents and allocate a
3046 * new prealloc extent, so that we get a larger contiguous disk extent.
3047 */
3048 if (em->start <= alloc_start &&
3049 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3050 const u64 em_end = em->start + em->len;
3051
3052 if (em_end >= offset + len) {
3053 /*
3054 * The whole range is already a prealloc extent,
3055 * do nothing except updating the inode's i_size if
3056 * needed.
3057 */
3058 free_extent_map(em);
3059 ret = btrfs_fallocate_update_isize(inode, offset + len,
3060 mode);
3061 goto out;
3062 }
3063 /*
3064 * Part of the range is already a prealloc extent, so operate
3065 * only on the remaining part of the range.
3066 */
3067 alloc_start = em_end;
3068 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
3069 len = offset + len - alloc_start;
3070 offset = alloc_start;
3071 alloc_hint = em->block_start + em->len;
3072 }
3073 free_extent_map(em);
3074
3075 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
3076 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
3077 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
3078 sectorsize);
3079 if (IS_ERR(em)) {
3080 ret = PTR_ERR(em);
3081 goto out;
3082 }
3083
3084 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3085 free_extent_map(em);
3086 ret = btrfs_fallocate_update_isize(inode, offset + len,
3087 mode);
3088 goto out;
3089 }
3090 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
3091 free_extent_map(em);
3092 ret = btrfs_truncate_block(inode, offset, len, 0);
3093 if (!ret)
3094 ret = btrfs_fallocate_update_isize(inode,
3095 offset + len,
3096 mode);
3097 return ret;
3098 }
3099 free_extent_map(em);
3100 alloc_start = round_down(offset, sectorsize);
3101 alloc_end = alloc_start + sectorsize;
3102 goto reserve_space;
3103 }
3104
3105 alloc_start = round_up(offset, sectorsize);
3106 alloc_end = round_down(offset + len, sectorsize);
3107
3108 /*
3109 * For unaligned ranges, check the pages at the boundaries, they might
3110 * map to an extent, in which case we need to partially zero them, or
3111 * they might map to a hole, in which case we need our allocation range
3112 * to cover them.
3113 */
3114 if (!IS_ALIGNED(offset, sectorsize)) {
3115 ret = btrfs_zero_range_check_range_boundary(inode, offset);
3116 if (ret < 0)
3117 goto out;
3118 if (ret == RANGE_BOUNDARY_HOLE) {
3119 alloc_start = round_down(offset, sectorsize);
3120 ret = 0;
3121 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3122 ret = btrfs_truncate_block(inode, offset, 0, 0);
3123 if (ret)
3124 goto out;
3125 } else {
3126 ret = 0;
3127 }
3128 }
3129
3130 if (!IS_ALIGNED(offset + len, sectorsize)) {
3131 ret = btrfs_zero_range_check_range_boundary(inode,
3132 offset + len);
3133 if (ret < 0)
3134 goto out;
3135 if (ret == RANGE_BOUNDARY_HOLE) {
3136 alloc_end = round_up(offset + len, sectorsize);
3137 ret = 0;
3138 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
3139 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
3140 if (ret)
3141 goto out;
3142 } else {
3143 ret = 0;
3144 }
3145 }
3146
3147 reserve_space:
3148 if (alloc_start < alloc_end) {
3149 struct extent_state *cached_state = NULL;
3150 const u64 lockstart = alloc_start;
3151 const u64 lockend = alloc_end - 1;
3152
3153 bytes_to_reserve = alloc_end - alloc_start;
3154 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3155 bytes_to_reserve);
3156 if (ret < 0)
3157 goto out;
3158 space_reserved = true;
3159 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3160 alloc_start, bytes_to_reserve);
3161 if (ret)
3162 goto out;
3163 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
3164 &cached_state);
3165 if (ret)
3166 goto out;
3167 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3168 alloc_end - alloc_start,
3169 i_blocksize(inode),
3170 offset + len, &alloc_hint);
3171 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
3172 lockend, &cached_state);
3173 /* btrfs_prealloc_file_range releases reserved space on error */
3174 if (ret) {
3175 space_reserved = false;
3176 goto out;
3177 }
3178 }
3179 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3180 out:
3181 if (ret && space_reserved)
3182 btrfs_free_reserved_data_space(inode, data_reserved,
3183 alloc_start, bytes_to_reserve);
3184 extent_changeset_free(data_reserved);
3185
3186 return ret;
3187 }
3188
3189 static long btrfs_fallocate(struct file *file, int mode,
3190 loff_t offset, loff_t len)
3191 {
3192 struct inode *inode = file_inode(file);
3193 struct extent_state *cached_state = NULL;
3194 struct extent_changeset *data_reserved = NULL;
3195 struct falloc_range *range;
3196 struct falloc_range *tmp;
3197 struct list_head reserve_list;
3198 u64 cur_offset;
3199 u64 last_byte;
3200 u64 alloc_start;
3201 u64 alloc_end;
3202 u64 alloc_hint = 0;
3203 u64 locked_end;
3204 u64 actual_end = 0;
3205 struct extent_map *em;
3206 int blocksize = btrfs_inode_sectorsize(inode);
3207 int ret;
3208
3209 alloc_start = round_down(offset, blocksize);
3210 alloc_end = round_up(offset + len, blocksize);
3211 cur_offset = alloc_start;
3212
3213 /* Make sure we aren't being give some crap mode */
3214 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3215 FALLOC_FL_ZERO_RANGE))
3216 return -EOPNOTSUPP;
3217
3218 if (mode & FALLOC_FL_PUNCH_HOLE)
3219 return btrfs_punch_hole(inode, offset, len);
3220
3221 /*
3222 * Only trigger disk allocation, don't trigger qgroup reserve
3223 *
3224 * For qgroup space, it will be checked later.
3225 */
3226 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
3227 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3228 alloc_end - alloc_start);
3229 if (ret < 0)
3230 return ret;
3231 }
3232
3233 inode_lock(inode);
3234
3235 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3236 ret = inode_newsize_ok(inode, offset + len);
3237 if (ret)
3238 goto out;
3239 }
3240
3241 /*
3242 * TODO: Move these two operations after we have checked
3243 * accurate reserved space, or fallocate can still fail but
3244 * with page truncated or size expanded.
3245 *
3246 * But that's a minor problem and won't do much harm BTW.
3247 */
3248 if (alloc_start > inode->i_size) {
3249 ret = btrfs_cont_expand(inode, i_size_read(inode),
3250 alloc_start);
3251 if (ret)
3252 goto out;
3253 } else if (offset + len > inode->i_size) {
3254 /*
3255 * If we are fallocating from the end of the file onward we
3256 * need to zero out the end of the block if i_size lands in the
3257 * middle of a block.
3258 */
3259 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
3260 if (ret)
3261 goto out;
3262 }
3263
3264 /*
3265 * wait for ordered IO before we have any locks. We'll loop again
3266 * below with the locks held.
3267 */
3268 ret = btrfs_wait_ordered_range(inode, alloc_start,
3269 alloc_end - alloc_start);
3270 if (ret)
3271 goto out;
3272
3273 if (mode & FALLOC_FL_ZERO_RANGE) {
3274 ret = btrfs_zero_range(inode, offset, len, mode);
3275 inode_unlock(inode);
3276 return ret;
3277 }
3278
3279 locked_end = alloc_end - 1;
3280 while (1) {
3281 struct btrfs_ordered_extent *ordered;
3282
3283 /* the extent lock is ordered inside the running
3284 * transaction
3285 */
3286 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
3287 locked_end, &cached_state);
3288 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3289
3290 if (ordered &&
3291 ordered->file_offset + ordered->num_bytes > alloc_start &&
3292 ordered->file_offset < alloc_end) {
3293 btrfs_put_ordered_extent(ordered);
3294 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3295 alloc_start, locked_end,
3296 &cached_state);
3297 /*
3298 * we can't wait on the range with the transaction
3299 * running or with the extent lock held
3300 */
3301 ret = btrfs_wait_ordered_range(inode, alloc_start,
3302 alloc_end - alloc_start);
3303 if (ret)
3304 goto out;
3305 } else {
3306 if (ordered)
3307 btrfs_put_ordered_extent(ordered);
3308 break;
3309 }
3310 }
3311
3312 /* First, check if we exceed the qgroup limit */
3313 INIT_LIST_HEAD(&reserve_list);
3314 while (cur_offset < alloc_end) {
3315 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3316 alloc_end - cur_offset);
3317 if (IS_ERR(em)) {
3318 ret = PTR_ERR(em);
3319 break;
3320 }
3321 last_byte = min(extent_map_end(em), alloc_end);
3322 actual_end = min_t(u64, extent_map_end(em), offset + len);
3323 last_byte = ALIGN(last_byte, blocksize);
3324 if (em->block_start == EXTENT_MAP_HOLE ||
3325 (cur_offset >= inode->i_size &&
3326 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3327 ret = add_falloc_range(&reserve_list, cur_offset,
3328 last_byte - cur_offset);
3329 if (ret < 0) {
3330 free_extent_map(em);
3331 break;
3332 }
3333 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3334 cur_offset, last_byte - cur_offset);
3335 if (ret < 0) {
3336 cur_offset = last_byte;
3337 free_extent_map(em);
3338 break;
3339 }
3340 } else {
3341 /*
3342 * Do not need to reserve unwritten extent for this
3343 * range, free reserved data space first, otherwise
3344 * it'll result in false ENOSPC error.
3345 */
3346 btrfs_free_reserved_data_space(inode, data_reserved,
3347 cur_offset, last_byte - cur_offset);
3348 }
3349 free_extent_map(em);
3350 cur_offset = last_byte;
3351 }
3352
3353 /*
3354 * If ret is still 0, means we're OK to fallocate.
3355 * Or just cleanup the list and exit.
3356 */
3357 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3358 if (!ret)
3359 ret = btrfs_prealloc_file_range(inode, mode,
3360 range->start,
3361 range->len, i_blocksize(inode),
3362 offset + len, &alloc_hint);
3363 else
3364 btrfs_free_reserved_data_space(inode,
3365 data_reserved, range->start,
3366 range->len);
3367 list_del(&range->list);
3368 kfree(range);
3369 }
3370 if (ret < 0)
3371 goto out_unlock;
3372
3373 /*
3374 * We didn't need to allocate any more space, but we still extended the
3375 * size of the file so we need to update i_size and the inode item.
3376 */
3377 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3378 out_unlock:
3379 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3380 &cached_state);
3381 out:
3382 inode_unlock(inode);
3383 /* Let go of our reservation. */
3384 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
3385 btrfs_free_reserved_data_space(inode, data_reserved,
3386 cur_offset, alloc_end - cur_offset);
3387 extent_changeset_free(data_reserved);
3388 return ret;
3389 }
3390
3391 static loff_t find_desired_extent(struct inode *inode, loff_t offset,
3392 int whence)
3393 {
3394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3395 struct extent_map *em = NULL;
3396 struct extent_state *cached_state = NULL;
3397 loff_t i_size = inode->i_size;
3398 u64 lockstart;
3399 u64 lockend;
3400 u64 start;
3401 u64 len;
3402 int ret = 0;
3403
3404 if (i_size == 0 || offset >= i_size)
3405 return -ENXIO;
3406
3407 /*
3408 * offset can be negative, in this case we start finding DATA/HOLE from
3409 * the very start of the file.
3410 */
3411 start = max_t(loff_t, 0, offset);
3412
3413 lockstart = round_down(start, fs_info->sectorsize);
3414 lockend = round_up(i_size, fs_info->sectorsize);
3415 if (lockend <= lockstart)
3416 lockend = lockstart + fs_info->sectorsize;
3417 lockend--;
3418 len = lockend - lockstart + 1;
3419
3420 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3421 &cached_state);
3422
3423 while (start < i_size) {
3424 em = btrfs_get_extent_fiemap(BTRFS_I(inode), start, len);
3425 if (IS_ERR(em)) {
3426 ret = PTR_ERR(em);
3427 em = NULL;
3428 break;
3429 }
3430
3431 if (whence == SEEK_HOLE &&
3432 (em->block_start == EXTENT_MAP_HOLE ||
3433 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3434 break;
3435 else if (whence == SEEK_DATA &&
3436 (em->block_start != EXTENT_MAP_HOLE &&
3437 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3438 break;
3439
3440 start = em->start + em->len;
3441 free_extent_map(em);
3442 em = NULL;
3443 cond_resched();
3444 }
3445 free_extent_map(em);
3446 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3447 &cached_state);
3448 if (ret) {
3449 offset = ret;
3450 } else {
3451 if (whence == SEEK_DATA && start >= i_size)
3452 offset = -ENXIO;
3453 else
3454 offset = min_t(loff_t, start, i_size);
3455 }
3456
3457 return offset;
3458 }
3459
3460 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3461 {
3462 struct inode *inode = file->f_mapping->host;
3463
3464 switch (whence) {
3465 default:
3466 return generic_file_llseek(file, offset, whence);
3467 case SEEK_DATA:
3468 case SEEK_HOLE:
3469 inode_lock_shared(inode);
3470 offset = find_desired_extent(inode, offset, whence);
3471 inode_unlock_shared(inode);
3472 break;
3473 }
3474
3475 if (offset < 0)
3476 return offset;
3477
3478 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3479 }
3480
3481 static int btrfs_file_open(struct inode *inode, struct file *filp)
3482 {
3483 filp->f_mode |= FMODE_NOWAIT;
3484 return generic_file_open(inode, filp);
3485 }
3486
3487 const struct file_operations btrfs_file_operations = {
3488 .llseek = btrfs_file_llseek,
3489 .read_iter = generic_file_read_iter,
3490 .splice_read = generic_file_splice_read,
3491 .write_iter = btrfs_file_write_iter,
3492 .mmap = btrfs_file_mmap,
3493 .open = btrfs_file_open,
3494 .release = btrfs_release_file,
3495 .fsync = btrfs_sync_file,
3496 .fallocate = btrfs_fallocate,
3497 .unlocked_ioctl = btrfs_ioctl,
3498 #ifdef CONFIG_COMPAT
3499 .compat_ioctl = btrfs_compat_ioctl,
3500 #endif
3501 .remap_file_range = btrfs_remap_file_range,
3502 };
3503
3504 void __cold btrfs_auto_defrag_exit(void)
3505 {
3506 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3507 }
3508
3509 int __init btrfs_auto_defrag_init(void)
3510 {
3511 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3512 sizeof(struct inode_defrag), 0,
3513 SLAB_MEM_SPREAD,
3514 NULL);
3515 if (!btrfs_inode_defrag_cachep)
3516 return -ENOMEM;
3517
3518 return 0;
3519 }
3520
3521 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3522 {
3523 int ret;
3524
3525 /*
3526 * So with compression we will find and lock a dirty page and clear the
3527 * first one as dirty, setup an async extent, and immediately return
3528 * with the entire range locked but with nobody actually marked with
3529 * writeback. So we can't just filemap_write_and_wait_range() and
3530 * expect it to work since it will just kick off a thread to do the
3531 * actual work. So we need to call filemap_fdatawrite_range _again_
3532 * since it will wait on the page lock, which won't be unlocked until
3533 * after the pages have been marked as writeback and so we're good to go
3534 * from there. We have to do this otherwise we'll miss the ordered
3535 * extents and that results in badness. Please Josef, do not think you
3536 * know better and pull this out at some point in the future, it is
3537 * right and you are wrong.
3538 */
3539 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3540 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3541 &BTRFS_I(inode)->runtime_flags))
3542 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3543
3544 return ret;
3545 }