]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/inode.c
Merge tag 'for-6.8-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/linux.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 #include "raid-stripe-tree.h"
75
76 struct btrfs_iget_args {
77 u64 ino;
78 struct btrfs_root *root;
79 };
80
81 struct btrfs_dio_data {
82 ssize_t submitted;
83 struct extent_changeset *data_reserved;
84 struct btrfs_ordered_extent *ordered;
85 bool data_space_reserved;
86 bool nocow_done;
87 };
88
89 struct btrfs_dio_private {
90 /* Range of I/O */
91 u64 file_offset;
92 u32 bytes;
93
94 /* This must be last */
95 struct btrfs_bio bbio;
96 };
97
98 static struct bio_set btrfs_dio_bioset;
99
100 struct btrfs_rename_ctx {
101 /* Output field. Stores the index number of the old directory entry. */
102 u64 index;
103 };
104
105 /*
106 * Used by data_reloc_print_warning_inode() to pass needed info for filename
107 * resolution and output of error message.
108 */
109 struct data_reloc_warn {
110 struct btrfs_path path;
111 struct btrfs_fs_info *fs_info;
112 u64 extent_item_size;
113 u64 logical;
114 int mirror_num;
115 };
116
117 /*
118 * For the file_extent_tree, we want to hold the inode lock when we lookup and
119 * update the disk_i_size, but lockdep will complain because our io_tree we hold
120 * the tree lock and get the inode lock when setting delalloc. These two things
121 * are unrelated, so make a class for the file_extent_tree so we don't get the
122 * two locking patterns mixed up.
123 */
124 static struct lock_class_key file_extent_tree_class;
125
126 static const struct inode_operations btrfs_dir_inode_operations;
127 static const struct inode_operations btrfs_symlink_inode_operations;
128 static const struct inode_operations btrfs_special_inode_operations;
129 static const struct inode_operations btrfs_file_inode_operations;
130 static const struct address_space_operations btrfs_aops;
131 static const struct file_operations btrfs_dir_file_operations;
132
133 static struct kmem_cache *btrfs_inode_cachep;
134
135 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
136 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
137
138 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
139 struct page *locked_page, u64 start,
140 u64 end, struct writeback_control *wbc,
141 bool pages_dirty);
142 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
143 u64 len, u64 orig_start, u64 block_start,
144 u64 block_len, u64 orig_block_len,
145 u64 ram_bytes, int compress_type,
146 int type);
147
148 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
149 u64 root, void *warn_ctx)
150 {
151 struct data_reloc_warn *warn = warn_ctx;
152 struct btrfs_fs_info *fs_info = warn->fs_info;
153 struct extent_buffer *eb;
154 struct btrfs_inode_item *inode_item;
155 struct inode_fs_paths *ipath = NULL;
156 struct btrfs_root *local_root;
157 struct btrfs_key key;
158 unsigned int nofs_flag;
159 u32 nlink;
160 int ret;
161
162 local_root = btrfs_get_fs_root(fs_info, root, true);
163 if (IS_ERR(local_root)) {
164 ret = PTR_ERR(local_root);
165 goto err;
166 }
167
168 /* This makes the path point to (inum INODE_ITEM ioff). */
169 key.objectid = inum;
170 key.type = BTRFS_INODE_ITEM_KEY;
171 key.offset = 0;
172
173 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
174 if (ret) {
175 btrfs_put_root(local_root);
176 btrfs_release_path(&warn->path);
177 goto err;
178 }
179
180 eb = warn->path.nodes[0];
181 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
182 nlink = btrfs_inode_nlink(eb, inode_item);
183 btrfs_release_path(&warn->path);
184
185 nofs_flag = memalloc_nofs_save();
186 ipath = init_ipath(4096, local_root, &warn->path);
187 memalloc_nofs_restore(nofs_flag);
188 if (IS_ERR(ipath)) {
189 btrfs_put_root(local_root);
190 ret = PTR_ERR(ipath);
191 ipath = NULL;
192 /*
193 * -ENOMEM, not a critical error, just output an generic error
194 * without filename.
195 */
196 btrfs_warn(fs_info,
197 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
198 warn->logical, warn->mirror_num, root, inum, offset);
199 return ret;
200 }
201 ret = paths_from_inode(inum, ipath);
202 if (ret < 0)
203 goto err;
204
205 /*
206 * We deliberately ignore the bit ipath might have been too small to
207 * hold all of the paths here
208 */
209 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
210 btrfs_warn(fs_info,
211 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
212 warn->logical, warn->mirror_num, root, inum, offset,
213 fs_info->sectorsize, nlink,
214 (char *)(unsigned long)ipath->fspath->val[i]);
215 }
216
217 btrfs_put_root(local_root);
218 free_ipath(ipath);
219 return 0;
220
221 err:
222 btrfs_warn(fs_info,
223 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
224 warn->logical, warn->mirror_num, root, inum, offset, ret);
225
226 free_ipath(ipath);
227 return ret;
228 }
229
230 /*
231 * Do extra user-friendly error output (e.g. lookup all the affected files).
232 *
233 * Return true if we succeeded doing the backref lookup.
234 * Return false if such lookup failed, and has to fallback to the old error message.
235 */
236 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
237 const u8 *csum, const u8 *csum_expected,
238 int mirror_num)
239 {
240 struct btrfs_fs_info *fs_info = inode->root->fs_info;
241 struct btrfs_path path = { 0 };
242 struct btrfs_key found_key = { 0 };
243 struct extent_buffer *eb;
244 struct btrfs_extent_item *ei;
245 const u32 csum_size = fs_info->csum_size;
246 u64 logical;
247 u64 flags;
248 u32 item_size;
249 int ret;
250
251 mutex_lock(&fs_info->reloc_mutex);
252 logical = btrfs_get_reloc_bg_bytenr(fs_info);
253 mutex_unlock(&fs_info->reloc_mutex);
254
255 if (logical == U64_MAX) {
256 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
257 btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
260 CSUM_FMT_VALUE(csum_size, csum),
261 CSUM_FMT_VALUE(csum_size, csum_expected),
262 mirror_num);
263 return;
264 }
265
266 logical += file_off;
267 btrfs_warn_rl(fs_info,
268 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
269 inode->root->root_key.objectid,
270 btrfs_ino(inode), file_off, logical,
271 CSUM_FMT_VALUE(csum_size, csum),
272 CSUM_FMT_VALUE(csum_size, csum_expected),
273 mirror_num);
274
275 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
276 if (ret < 0) {
277 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
278 logical, ret);
279 return;
280 }
281 eb = path.nodes[0];
282 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
283 item_size = btrfs_item_size(eb, path.slots[0]);
284 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
285 unsigned long ptr = 0;
286 u64 ref_root;
287 u8 ref_level;
288
289 while (true) {
290 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
291 item_size, &ref_root,
292 &ref_level);
293 if (ret < 0) {
294 btrfs_warn_rl(fs_info,
295 "failed to resolve tree backref for logical %llu: %d",
296 logical, ret);
297 break;
298 }
299 if (ret > 0)
300 break;
301
302 btrfs_warn_rl(fs_info,
303 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
304 logical, mirror_num,
305 (ref_level ? "node" : "leaf"),
306 ref_level, ref_root);
307 }
308 btrfs_release_path(&path);
309 } else {
310 struct btrfs_backref_walk_ctx ctx = { 0 };
311 struct data_reloc_warn reloc_warn = { 0 };
312
313 btrfs_release_path(&path);
314
315 ctx.bytenr = found_key.objectid;
316 ctx.extent_item_pos = logical - found_key.objectid;
317 ctx.fs_info = fs_info;
318
319 reloc_warn.logical = logical;
320 reloc_warn.extent_item_size = found_key.offset;
321 reloc_warn.mirror_num = mirror_num;
322 reloc_warn.fs_info = fs_info;
323
324 iterate_extent_inodes(&ctx, true,
325 data_reloc_print_warning_inode, &reloc_warn);
326 }
327 }
328
329 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
330 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
331 {
332 struct btrfs_root *root = inode->root;
333 const u32 csum_size = root->fs_info->csum_size;
334
335 /* For data reloc tree, it's better to do a backref lookup instead. */
336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
337 return print_data_reloc_error(inode, logical_start, csum,
338 csum_expected, mirror_num);
339
340 /* Output without objectid, which is more meaningful */
341 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
342 btrfs_warn_rl(root->fs_info,
343 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
344 root->root_key.objectid, btrfs_ino(inode),
345 logical_start,
346 CSUM_FMT_VALUE(csum_size, csum),
347 CSUM_FMT_VALUE(csum_size, csum_expected),
348 mirror_num);
349 } else {
350 btrfs_warn_rl(root->fs_info,
351 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
352 root->root_key.objectid, btrfs_ino(inode),
353 logical_start,
354 CSUM_FMT_VALUE(csum_size, csum),
355 CSUM_FMT_VALUE(csum_size, csum_expected),
356 mirror_num);
357 }
358 }
359
360 /*
361 * Lock inode i_rwsem based on arguments passed.
362 *
363 * ilock_flags can have the following bit set:
364 *
365 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
366 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
367 * return -EAGAIN
368 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
369 */
370 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
371 {
372 if (ilock_flags & BTRFS_ILOCK_SHARED) {
373 if (ilock_flags & BTRFS_ILOCK_TRY) {
374 if (!inode_trylock_shared(&inode->vfs_inode))
375 return -EAGAIN;
376 else
377 return 0;
378 }
379 inode_lock_shared(&inode->vfs_inode);
380 } else {
381 if (ilock_flags & BTRFS_ILOCK_TRY) {
382 if (!inode_trylock(&inode->vfs_inode))
383 return -EAGAIN;
384 else
385 return 0;
386 }
387 inode_lock(&inode->vfs_inode);
388 }
389 if (ilock_flags & BTRFS_ILOCK_MMAP)
390 down_write(&inode->i_mmap_lock);
391 return 0;
392 }
393
394 /*
395 * Unock inode i_rwsem.
396 *
397 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
398 * to decide whether the lock acquired is shared or exclusive.
399 */
400 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
401 {
402 if (ilock_flags & BTRFS_ILOCK_MMAP)
403 up_write(&inode->i_mmap_lock);
404 if (ilock_flags & BTRFS_ILOCK_SHARED)
405 inode_unlock_shared(&inode->vfs_inode);
406 else
407 inode_unlock(&inode->vfs_inode);
408 }
409
410 /*
411 * Cleanup all submitted ordered extents in specified range to handle errors
412 * from the btrfs_run_delalloc_range() callback.
413 *
414 * NOTE: caller must ensure that when an error happens, it can not call
415 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
416 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
417 * to be released, which we want to happen only when finishing the ordered
418 * extent (btrfs_finish_ordered_io()).
419 */
420 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
421 struct page *locked_page,
422 u64 offset, u64 bytes)
423 {
424 unsigned long index = offset >> PAGE_SHIFT;
425 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
426 u64 page_start = 0, page_end = 0;
427 struct page *page;
428
429 if (locked_page) {
430 page_start = page_offset(locked_page);
431 page_end = page_start + PAGE_SIZE - 1;
432 }
433
434 while (index <= end_index) {
435 /*
436 * For locked page, we will call btrfs_mark_ordered_io_finished
437 * through btrfs_mark_ordered_io_finished() on it
438 * in run_delalloc_range() for the error handling, which will
439 * clear page Ordered and run the ordered extent accounting.
440 *
441 * Here we can't just clear the Ordered bit, or
442 * btrfs_mark_ordered_io_finished() would skip the accounting
443 * for the page range, and the ordered extent will never finish.
444 */
445 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
446 index++;
447 continue;
448 }
449 page = find_get_page(inode->vfs_inode.i_mapping, index);
450 index++;
451 if (!page)
452 continue;
453
454 /*
455 * Here we just clear all Ordered bits for every page in the
456 * range, then btrfs_mark_ordered_io_finished() will handle
457 * the ordered extent accounting for the range.
458 */
459 btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
460 page_folio(page), offset, bytes);
461 put_page(page);
462 }
463
464 if (locked_page) {
465 /* The locked page covers the full range, nothing needs to be done */
466 if (bytes + offset <= page_start + PAGE_SIZE)
467 return;
468 /*
469 * In case this page belongs to the delalloc range being
470 * instantiated then skip it, since the first page of a range is
471 * going to be properly cleaned up by the caller of
472 * run_delalloc_range
473 */
474 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
475 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
476 offset = page_offset(locked_page) + PAGE_SIZE;
477 }
478 }
479
480 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
481 }
482
483 static int btrfs_dirty_inode(struct btrfs_inode *inode);
484
485 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
486 struct btrfs_new_inode_args *args)
487 {
488 int err;
489
490 if (args->default_acl) {
491 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
492 ACL_TYPE_DEFAULT);
493 if (err)
494 return err;
495 }
496 if (args->acl) {
497 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
498 if (err)
499 return err;
500 }
501 if (!args->default_acl && !args->acl)
502 cache_no_acl(args->inode);
503 return btrfs_xattr_security_init(trans, args->inode, args->dir,
504 &args->dentry->d_name);
505 }
506
507 /*
508 * this does all the hard work for inserting an inline extent into
509 * the btree. The caller should have done a btrfs_drop_extents so that
510 * no overlapping inline items exist in the btree
511 */
512 static int insert_inline_extent(struct btrfs_trans_handle *trans,
513 struct btrfs_path *path,
514 struct btrfs_inode *inode, bool extent_inserted,
515 size_t size, size_t compressed_size,
516 int compress_type,
517 struct page **compressed_pages,
518 bool update_i_size)
519 {
520 struct btrfs_root *root = inode->root;
521 struct extent_buffer *leaf;
522 struct page *page = NULL;
523 char *kaddr;
524 unsigned long ptr;
525 struct btrfs_file_extent_item *ei;
526 int ret;
527 size_t cur_size = size;
528 u64 i_size;
529
530 ASSERT((compressed_size > 0 && compressed_pages) ||
531 (compressed_size == 0 && !compressed_pages));
532
533 if (compressed_size && compressed_pages)
534 cur_size = compressed_size;
535
536 if (!extent_inserted) {
537 struct btrfs_key key;
538 size_t datasize;
539
540 key.objectid = btrfs_ino(inode);
541 key.offset = 0;
542 key.type = BTRFS_EXTENT_DATA_KEY;
543
544 datasize = btrfs_file_extent_calc_inline_size(cur_size);
545 ret = btrfs_insert_empty_item(trans, root, path, &key,
546 datasize);
547 if (ret)
548 goto fail;
549 }
550 leaf = path->nodes[0];
551 ei = btrfs_item_ptr(leaf, path->slots[0],
552 struct btrfs_file_extent_item);
553 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
554 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
555 btrfs_set_file_extent_encryption(leaf, ei, 0);
556 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
557 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
558 ptr = btrfs_file_extent_inline_start(ei);
559
560 if (compress_type != BTRFS_COMPRESS_NONE) {
561 struct page *cpage;
562 int i = 0;
563 while (compressed_size > 0) {
564 cpage = compressed_pages[i];
565 cur_size = min_t(unsigned long, compressed_size,
566 PAGE_SIZE);
567
568 kaddr = kmap_local_page(cpage);
569 write_extent_buffer(leaf, kaddr, ptr, cur_size);
570 kunmap_local(kaddr);
571
572 i++;
573 ptr += cur_size;
574 compressed_size -= cur_size;
575 }
576 btrfs_set_file_extent_compression(leaf, ei,
577 compress_type);
578 } else {
579 page = find_get_page(inode->vfs_inode.i_mapping, 0);
580 btrfs_set_file_extent_compression(leaf, ei, 0);
581 kaddr = kmap_local_page(page);
582 write_extent_buffer(leaf, kaddr, ptr, size);
583 kunmap_local(kaddr);
584 put_page(page);
585 }
586 btrfs_mark_buffer_dirty(trans, leaf);
587 btrfs_release_path(path);
588
589 /*
590 * We align size to sectorsize for inline extents just for simplicity
591 * sake.
592 */
593 ret = btrfs_inode_set_file_extent_range(inode, 0,
594 ALIGN(size, root->fs_info->sectorsize));
595 if (ret)
596 goto fail;
597
598 /*
599 * We're an inline extent, so nobody can extend the file past i_size
600 * without locking a page we already have locked.
601 *
602 * We must do any i_size and inode updates before we unlock the pages.
603 * Otherwise we could end up racing with unlink.
604 */
605 i_size = i_size_read(&inode->vfs_inode);
606 if (update_i_size && size > i_size) {
607 i_size_write(&inode->vfs_inode, size);
608 i_size = size;
609 }
610 inode->disk_i_size = i_size;
611
612 fail:
613 return ret;
614 }
615
616
617 /*
618 * conditionally insert an inline extent into the file. This
619 * does the checks required to make sure the data is small enough
620 * to fit as an inline extent.
621 */
622 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
623 size_t compressed_size,
624 int compress_type,
625 struct page **compressed_pages,
626 bool update_i_size)
627 {
628 struct btrfs_drop_extents_args drop_args = { 0 };
629 struct btrfs_root *root = inode->root;
630 struct btrfs_fs_info *fs_info = root->fs_info;
631 struct btrfs_trans_handle *trans;
632 u64 data_len = (compressed_size ?: size);
633 int ret;
634 struct btrfs_path *path;
635
636 /*
637 * We can create an inline extent if it ends at or beyond the current
638 * i_size, is no larger than a sector (decompressed), and the (possibly
639 * compressed) data fits in a leaf and the configured maximum inline
640 * size.
641 */
642 if (size < i_size_read(&inode->vfs_inode) ||
643 size > fs_info->sectorsize ||
644 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
645 data_len > fs_info->max_inline)
646 return 1;
647
648 path = btrfs_alloc_path();
649 if (!path)
650 return -ENOMEM;
651
652 trans = btrfs_join_transaction(root);
653 if (IS_ERR(trans)) {
654 btrfs_free_path(path);
655 return PTR_ERR(trans);
656 }
657 trans->block_rsv = &inode->block_rsv;
658
659 drop_args.path = path;
660 drop_args.start = 0;
661 drop_args.end = fs_info->sectorsize;
662 drop_args.drop_cache = true;
663 drop_args.replace_extent = true;
664 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
665 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
666 if (ret) {
667 btrfs_abort_transaction(trans, ret);
668 goto out;
669 }
670
671 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
672 size, compressed_size, compress_type,
673 compressed_pages, update_i_size);
674 if (ret && ret != -ENOSPC) {
675 btrfs_abort_transaction(trans, ret);
676 goto out;
677 } else if (ret == -ENOSPC) {
678 ret = 1;
679 goto out;
680 }
681
682 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
683 ret = btrfs_update_inode(trans, inode);
684 if (ret && ret != -ENOSPC) {
685 btrfs_abort_transaction(trans, ret);
686 goto out;
687 } else if (ret == -ENOSPC) {
688 ret = 1;
689 goto out;
690 }
691
692 btrfs_set_inode_full_sync(inode);
693 out:
694 /*
695 * Don't forget to free the reserved space, as for inlined extent
696 * it won't count as data extent, free them directly here.
697 * And at reserve time, it's always aligned to page size, so
698 * just free one page here.
699 */
700 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
701 btrfs_free_path(path);
702 btrfs_end_transaction(trans);
703 return ret;
704 }
705
706 struct async_extent {
707 u64 start;
708 u64 ram_size;
709 u64 compressed_size;
710 struct page **pages;
711 unsigned long nr_pages;
712 int compress_type;
713 struct list_head list;
714 };
715
716 struct async_chunk {
717 struct btrfs_inode *inode;
718 struct page *locked_page;
719 u64 start;
720 u64 end;
721 blk_opf_t write_flags;
722 struct list_head extents;
723 struct cgroup_subsys_state *blkcg_css;
724 struct btrfs_work work;
725 struct async_cow *async_cow;
726 };
727
728 struct async_cow {
729 atomic_t num_chunks;
730 struct async_chunk chunks[];
731 };
732
733 static noinline int add_async_extent(struct async_chunk *cow,
734 u64 start, u64 ram_size,
735 u64 compressed_size,
736 struct page **pages,
737 unsigned long nr_pages,
738 int compress_type)
739 {
740 struct async_extent *async_extent;
741
742 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
743 BUG_ON(!async_extent); /* -ENOMEM */
744 async_extent->start = start;
745 async_extent->ram_size = ram_size;
746 async_extent->compressed_size = compressed_size;
747 async_extent->pages = pages;
748 async_extent->nr_pages = nr_pages;
749 async_extent->compress_type = compress_type;
750 list_add_tail(&async_extent->list, &cow->extents);
751 return 0;
752 }
753
754 /*
755 * Check if the inode needs to be submitted to compression, based on mount
756 * options, defragmentation, properties or heuristics.
757 */
758 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
759 u64 end)
760 {
761 struct btrfs_fs_info *fs_info = inode->root->fs_info;
762
763 if (!btrfs_inode_can_compress(inode)) {
764 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
765 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
766 btrfs_ino(inode));
767 return 0;
768 }
769 /*
770 * Special check for subpage.
771 *
772 * We lock the full page then run each delalloc range in the page, thus
773 * for the following case, we will hit some subpage specific corner case:
774 *
775 * 0 32K 64K
776 * | |///////| |///////|
777 * \- A \- B
778 *
779 * In above case, both range A and range B will try to unlock the full
780 * page [0, 64K), causing the one finished later will have page
781 * unlocked already, triggering various page lock requirement BUG_ON()s.
782 *
783 * So here we add an artificial limit that subpage compression can only
784 * if the range is fully page aligned.
785 *
786 * In theory we only need to ensure the first page is fully covered, but
787 * the tailing partial page will be locked until the full compression
788 * finishes, delaying the write of other range.
789 *
790 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
791 * first to prevent any submitted async extent to unlock the full page.
792 * By this, we can ensure for subpage case that only the last async_cow
793 * will unlock the full page.
794 */
795 if (fs_info->sectorsize < PAGE_SIZE) {
796 if (!PAGE_ALIGNED(start) ||
797 !PAGE_ALIGNED(end + 1))
798 return 0;
799 }
800
801 /* force compress */
802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
803 return 1;
804 /* defrag ioctl */
805 if (inode->defrag_compress)
806 return 1;
807 /* bad compression ratios */
808 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
809 return 0;
810 if (btrfs_test_opt(fs_info, COMPRESS) ||
811 inode->flags & BTRFS_INODE_COMPRESS ||
812 inode->prop_compress)
813 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
814 return 0;
815 }
816
817 static inline void inode_should_defrag(struct btrfs_inode *inode,
818 u64 start, u64 end, u64 num_bytes, u32 small_write)
819 {
820 /* If this is a small write inside eof, kick off a defrag */
821 if (num_bytes < small_write &&
822 (start > 0 || end + 1 < inode->disk_i_size))
823 btrfs_add_inode_defrag(NULL, inode, small_write);
824 }
825
826 /*
827 * Work queue call back to started compression on a file and pages.
828 *
829 * This is done inside an ordered work queue, and the compression is spread
830 * across many cpus. The actual IO submission is step two, and the ordered work
831 * queue takes care of making sure that happens in the same order things were
832 * put onto the queue by writepages and friends.
833 *
834 * If this code finds it can't get good compression, it puts an entry onto the
835 * work queue to write the uncompressed bytes. This makes sure that both
836 * compressed inodes and uncompressed inodes are written in the same order that
837 * the flusher thread sent them down.
838 */
839 static void compress_file_range(struct btrfs_work *work)
840 {
841 struct async_chunk *async_chunk =
842 container_of(work, struct async_chunk, work);
843 struct btrfs_inode *inode = async_chunk->inode;
844 struct btrfs_fs_info *fs_info = inode->root->fs_info;
845 struct address_space *mapping = inode->vfs_inode.i_mapping;
846 u64 blocksize = fs_info->sectorsize;
847 u64 start = async_chunk->start;
848 u64 end = async_chunk->end;
849 u64 actual_end;
850 u64 i_size;
851 int ret = 0;
852 struct page **pages;
853 unsigned long nr_pages;
854 unsigned long total_compressed = 0;
855 unsigned long total_in = 0;
856 unsigned int poff;
857 int i;
858 int compress_type = fs_info->compress_type;
859
860 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
861
862 /*
863 * We need to call clear_page_dirty_for_io on each page in the range.
864 * Otherwise applications with the file mmap'd can wander in and change
865 * the page contents while we are compressing them.
866 */
867 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
868
869 /*
870 * We need to save i_size before now because it could change in between
871 * us evaluating the size and assigning it. This is because we lock and
872 * unlock the page in truncate and fallocate, and then modify the i_size
873 * later on.
874 *
875 * The barriers are to emulate READ_ONCE, remove that once i_size_read
876 * does that for us.
877 */
878 barrier();
879 i_size = i_size_read(&inode->vfs_inode);
880 barrier();
881 actual_end = min_t(u64, i_size, end + 1);
882 again:
883 pages = NULL;
884 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
885 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
886
887 /*
888 * we don't want to send crud past the end of i_size through
889 * compression, that's just a waste of CPU time. So, if the
890 * end of the file is before the start of our current
891 * requested range of bytes, we bail out to the uncompressed
892 * cleanup code that can deal with all of this.
893 *
894 * It isn't really the fastest way to fix things, but this is a
895 * very uncommon corner.
896 */
897 if (actual_end <= start)
898 goto cleanup_and_bail_uncompressed;
899
900 total_compressed = actual_end - start;
901
902 /*
903 * Skip compression for a small file range(<=blocksize) that
904 * isn't an inline extent, since it doesn't save disk space at all.
905 */
906 if (total_compressed <= blocksize &&
907 (start > 0 || end + 1 < inode->disk_i_size))
908 goto cleanup_and_bail_uncompressed;
909
910 /*
911 * For subpage case, we require full page alignment for the sector
912 * aligned range.
913 * Thus we must also check against @actual_end, not just @end.
914 */
915 if (blocksize < PAGE_SIZE) {
916 if (!PAGE_ALIGNED(start) ||
917 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
918 goto cleanup_and_bail_uncompressed;
919 }
920
921 total_compressed = min_t(unsigned long, total_compressed,
922 BTRFS_MAX_UNCOMPRESSED);
923 total_in = 0;
924 ret = 0;
925
926 /*
927 * We do compression for mount -o compress and when the inode has not
928 * been flagged as NOCOMPRESS. This flag can change at any time if we
929 * discover bad compression ratios.
930 */
931 if (!inode_need_compress(inode, start, end))
932 goto cleanup_and_bail_uncompressed;
933
934 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
935 if (!pages) {
936 /*
937 * Memory allocation failure is not a fatal error, we can fall
938 * back to uncompressed code.
939 */
940 goto cleanup_and_bail_uncompressed;
941 }
942
943 if (inode->defrag_compress)
944 compress_type = inode->defrag_compress;
945 else if (inode->prop_compress)
946 compress_type = inode->prop_compress;
947
948 /* Compression level is applied here. */
949 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
950 mapping, start, pages, &nr_pages, &total_in,
951 &total_compressed);
952 if (ret)
953 goto mark_incompressible;
954
955 /*
956 * Zero the tail end of the last page, as we might be sending it down
957 * to disk.
958 */
959 poff = offset_in_page(total_compressed);
960 if (poff)
961 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
962
963 /*
964 * Try to create an inline extent.
965 *
966 * If we didn't compress the entire range, try to create an uncompressed
967 * inline extent, else a compressed one.
968 *
969 * Check cow_file_range() for why we don't even try to create inline
970 * extent for the subpage case.
971 */
972 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
973 if (total_in < actual_end) {
974 ret = cow_file_range_inline(inode, actual_end, 0,
975 BTRFS_COMPRESS_NONE, NULL,
976 false);
977 } else {
978 ret = cow_file_range_inline(inode, actual_end,
979 total_compressed,
980 compress_type, pages,
981 false);
982 }
983 if (ret <= 0) {
984 unsigned long clear_flags = EXTENT_DELALLOC |
985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 EXTENT_DO_ACCOUNTING;
987
988 if (ret < 0)
989 mapping_set_error(mapping, -EIO);
990
991 /*
992 * inline extent creation worked or returned error,
993 * we don't need to create any more async work items.
994 * Unlock and free up our temp pages.
995 *
996 * We use DO_ACCOUNTING here because we need the
997 * delalloc_release_metadata to be done _after_ we drop
998 * our outstanding extent for clearing delalloc for this
999 * range.
1000 */
1001 extent_clear_unlock_delalloc(inode, start, end,
1002 NULL,
1003 clear_flags,
1004 PAGE_UNLOCK |
1005 PAGE_START_WRITEBACK |
1006 PAGE_END_WRITEBACK);
1007 goto free_pages;
1008 }
1009 }
1010
1011 /*
1012 * We aren't doing an inline extent. Round the compressed size up to a
1013 * block size boundary so the allocator does sane things.
1014 */
1015 total_compressed = ALIGN(total_compressed, blocksize);
1016
1017 /*
1018 * One last check to make sure the compression is really a win, compare
1019 * the page count read with the blocks on disk, compression must free at
1020 * least one sector.
1021 */
1022 total_in = round_up(total_in, fs_info->sectorsize);
1023 if (total_compressed + blocksize > total_in)
1024 goto mark_incompressible;
1025
1026 /*
1027 * The async work queues will take care of doing actual allocation on
1028 * disk for these compressed pages, and will submit the bios.
1029 */
1030 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1031 nr_pages, compress_type);
1032 if (start + total_in < end) {
1033 start += total_in;
1034 cond_resched();
1035 goto again;
1036 }
1037 return;
1038
1039 mark_incompressible:
1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1042 cleanup_and_bail_uncompressed:
1043 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1044 BTRFS_COMPRESS_NONE);
1045 free_pages:
1046 if (pages) {
1047 for (i = 0; i < nr_pages; i++) {
1048 WARN_ON(pages[i]->mapping);
1049 btrfs_free_compr_page(pages[i]);
1050 }
1051 kfree(pages);
1052 }
1053 }
1054
1055 static void free_async_extent_pages(struct async_extent *async_extent)
1056 {
1057 int i;
1058
1059 if (!async_extent->pages)
1060 return;
1061
1062 for (i = 0; i < async_extent->nr_pages; i++) {
1063 WARN_ON(async_extent->pages[i]->mapping);
1064 btrfs_free_compr_page(async_extent->pages[i]);
1065 }
1066 kfree(async_extent->pages);
1067 async_extent->nr_pages = 0;
1068 async_extent->pages = NULL;
1069 }
1070
1071 static void submit_uncompressed_range(struct btrfs_inode *inode,
1072 struct async_extent *async_extent,
1073 struct page *locked_page)
1074 {
1075 u64 start = async_extent->start;
1076 u64 end = async_extent->start + async_extent->ram_size - 1;
1077 int ret;
1078 struct writeback_control wbc = {
1079 .sync_mode = WB_SYNC_ALL,
1080 .range_start = start,
1081 .range_end = end,
1082 .no_cgroup_owner = 1,
1083 };
1084
1085 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1086 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1087 wbc_detach_inode(&wbc);
1088 if (ret < 0) {
1089 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1090 if (locked_page) {
1091 const u64 page_start = page_offset(locked_page);
1092
1093 set_page_writeback(locked_page);
1094 end_page_writeback(locked_page);
1095 btrfs_mark_ordered_io_finished(inode, locked_page,
1096 page_start, PAGE_SIZE,
1097 !ret);
1098 mapping_set_error(locked_page->mapping, ret);
1099 unlock_page(locked_page);
1100 }
1101 }
1102 }
1103
1104 static void submit_one_async_extent(struct async_chunk *async_chunk,
1105 struct async_extent *async_extent,
1106 u64 *alloc_hint)
1107 {
1108 struct btrfs_inode *inode = async_chunk->inode;
1109 struct extent_io_tree *io_tree = &inode->io_tree;
1110 struct btrfs_root *root = inode->root;
1111 struct btrfs_fs_info *fs_info = root->fs_info;
1112 struct btrfs_ordered_extent *ordered;
1113 struct btrfs_key ins;
1114 struct page *locked_page = NULL;
1115 struct extent_map *em;
1116 int ret = 0;
1117 u64 start = async_extent->start;
1118 u64 end = async_extent->start + async_extent->ram_size - 1;
1119
1120 if (async_chunk->blkcg_css)
1121 kthread_associate_blkcg(async_chunk->blkcg_css);
1122
1123 /*
1124 * If async_chunk->locked_page is in the async_extent range, we need to
1125 * handle it.
1126 */
1127 if (async_chunk->locked_page) {
1128 u64 locked_page_start = page_offset(async_chunk->locked_page);
1129 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1130
1131 if (!(start >= locked_page_end || end <= locked_page_start))
1132 locked_page = async_chunk->locked_page;
1133 }
1134 lock_extent(io_tree, start, end, NULL);
1135
1136 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1137 submit_uncompressed_range(inode, async_extent, locked_page);
1138 goto done;
1139 }
1140
1141 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1142 async_extent->compressed_size,
1143 async_extent->compressed_size,
1144 0, *alloc_hint, &ins, 1, 1);
1145 if (ret) {
1146 /*
1147 * Here we used to try again by going back to non-compressed
1148 * path for ENOSPC. But we can't reserve space even for
1149 * compressed size, how could it work for uncompressed size
1150 * which requires larger size? So here we directly go error
1151 * path.
1152 */
1153 goto out_free;
1154 }
1155
1156 /* Here we're doing allocation and writeback of the compressed pages */
1157 em = create_io_em(inode, start,
1158 async_extent->ram_size, /* len */
1159 start, /* orig_start */
1160 ins.objectid, /* block_start */
1161 ins.offset, /* block_len */
1162 ins.offset, /* orig_block_len */
1163 async_extent->ram_size, /* ram_bytes */
1164 async_extent->compress_type,
1165 BTRFS_ORDERED_COMPRESSED);
1166 if (IS_ERR(em)) {
1167 ret = PTR_ERR(em);
1168 goto out_free_reserve;
1169 }
1170 free_extent_map(em);
1171
1172 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1173 async_extent->ram_size, /* num_bytes */
1174 async_extent->ram_size, /* ram_bytes */
1175 ins.objectid, /* disk_bytenr */
1176 ins.offset, /* disk_num_bytes */
1177 0, /* offset */
1178 1 << BTRFS_ORDERED_COMPRESSED,
1179 async_extent->compress_type);
1180 if (IS_ERR(ordered)) {
1181 btrfs_drop_extent_map_range(inode, start, end, false);
1182 ret = PTR_ERR(ordered);
1183 goto out_free_reserve;
1184 }
1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1186
1187 /* Clear dirty, set writeback and unlock the pages. */
1188 extent_clear_unlock_delalloc(inode, start, end,
1189 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1190 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1191 btrfs_submit_compressed_write(ordered,
1192 async_extent->pages, /* compressed_pages */
1193 async_extent->nr_pages,
1194 async_chunk->write_flags, true);
1195 *alloc_hint = ins.objectid + ins.offset;
1196 done:
1197 if (async_chunk->blkcg_css)
1198 kthread_associate_blkcg(NULL);
1199 kfree(async_extent);
1200 return;
1201
1202 out_free_reserve:
1203 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1204 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1205 out_free:
1206 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1207 extent_clear_unlock_delalloc(inode, start, end,
1208 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1209 EXTENT_DELALLOC_NEW |
1210 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1211 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1212 PAGE_END_WRITEBACK);
1213 free_async_extent_pages(async_extent);
1214 if (async_chunk->blkcg_css)
1215 kthread_associate_blkcg(NULL);
1216 btrfs_debug(fs_info,
1217 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1218 root->root_key.objectid, btrfs_ino(inode), start,
1219 async_extent->ram_size, ret);
1220 kfree(async_extent);
1221 }
1222
1223 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1224 u64 num_bytes)
1225 {
1226 struct extent_map_tree *em_tree = &inode->extent_tree;
1227 struct extent_map *em;
1228 u64 alloc_hint = 0;
1229
1230 read_lock(&em_tree->lock);
1231 em = search_extent_mapping(em_tree, start, num_bytes);
1232 if (em) {
1233 /*
1234 * if block start isn't an actual block number then find the
1235 * first block in this inode and use that as a hint. If that
1236 * block is also bogus then just don't worry about it.
1237 */
1238 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1239 free_extent_map(em);
1240 em = search_extent_mapping(em_tree, 0, 0);
1241 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1242 alloc_hint = em->block_start;
1243 if (em)
1244 free_extent_map(em);
1245 } else {
1246 alloc_hint = em->block_start;
1247 free_extent_map(em);
1248 }
1249 }
1250 read_unlock(&em_tree->lock);
1251
1252 return alloc_hint;
1253 }
1254
1255 /*
1256 * when extent_io.c finds a delayed allocation range in the file,
1257 * the call backs end up in this code. The basic idea is to
1258 * allocate extents on disk for the range, and create ordered data structs
1259 * in ram to track those extents.
1260 *
1261 * locked_page is the page that writepage had locked already. We use
1262 * it to make sure we don't do extra locks or unlocks.
1263 *
1264 * When this function fails, it unlocks all pages except @locked_page.
1265 *
1266 * When this function successfully creates an inline extent, it returns 1 and
1267 * unlocks all pages including locked_page and starts I/O on them.
1268 * (In reality inline extents are limited to a single page, so locked_page is
1269 * the only page handled anyway).
1270 *
1271 * When this function succeed and creates a normal extent, the page locking
1272 * status depends on the passed in flags:
1273 *
1274 * - If @keep_locked is set, all pages are kept locked.
1275 * - Else all pages except for @locked_page are unlocked.
1276 *
1277 * When a failure happens in the second or later iteration of the
1278 * while-loop, the ordered extents created in previous iterations are kept
1279 * intact. So, the caller must clean them up by calling
1280 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1281 * example.
1282 */
1283 static noinline int cow_file_range(struct btrfs_inode *inode,
1284 struct page *locked_page, u64 start, u64 end,
1285 u64 *done_offset,
1286 bool keep_locked, bool no_inline)
1287 {
1288 struct btrfs_root *root = inode->root;
1289 struct btrfs_fs_info *fs_info = root->fs_info;
1290 u64 alloc_hint = 0;
1291 u64 orig_start = start;
1292 u64 num_bytes;
1293 unsigned long ram_size;
1294 u64 cur_alloc_size = 0;
1295 u64 min_alloc_size;
1296 u64 blocksize = fs_info->sectorsize;
1297 struct btrfs_key ins;
1298 struct extent_map *em;
1299 unsigned clear_bits;
1300 unsigned long page_ops;
1301 bool extent_reserved = false;
1302 int ret = 0;
1303
1304 if (btrfs_is_free_space_inode(inode)) {
1305 ret = -EINVAL;
1306 goto out_unlock;
1307 }
1308
1309 num_bytes = ALIGN(end - start + 1, blocksize);
1310 num_bytes = max(blocksize, num_bytes);
1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1312
1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1314
1315 /*
1316 * Due to the page size limit, for subpage we can only trigger the
1317 * writeback for the dirty sectors of page, that means data writeback
1318 * is doing more writeback than what we want.
1319 *
1320 * This is especially unexpected for some call sites like fallocate,
1321 * where we only increase i_size after everything is done.
1322 * This means we can trigger inline extent even if we didn't want to.
1323 * So here we skip inline extent creation completely.
1324 */
1325 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1326 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1327 end + 1);
1328
1329 /* lets try to make an inline extent */
1330 ret = cow_file_range_inline(inode, actual_end, 0,
1331 BTRFS_COMPRESS_NONE, NULL, false);
1332 if (ret == 0) {
1333 /*
1334 * We use DO_ACCOUNTING here because we need the
1335 * delalloc_release_metadata to be run _after_ we drop
1336 * our outstanding extent for clearing delalloc for this
1337 * range.
1338 */
1339 extent_clear_unlock_delalloc(inode, start, end,
1340 locked_page,
1341 EXTENT_LOCKED | EXTENT_DELALLOC |
1342 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1343 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1344 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1345 /*
1346 * locked_page is locked by the caller of
1347 * writepage_delalloc(), not locked by
1348 * __process_pages_contig().
1349 *
1350 * We can't let __process_pages_contig() to unlock it,
1351 * as it doesn't have any subpage::writers recorded.
1352 *
1353 * Here we manually unlock the page, since the caller
1354 * can't determine if it's an inline extent or a
1355 * compressed extent.
1356 */
1357 unlock_page(locked_page);
1358 ret = 1;
1359 goto done;
1360 } else if (ret < 0) {
1361 goto out_unlock;
1362 }
1363 }
1364
1365 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1366
1367 /*
1368 * Relocation relies on the relocated extents to have exactly the same
1369 * size as the original extents. Normally writeback for relocation data
1370 * extents follows a NOCOW path because relocation preallocates the
1371 * extents. However, due to an operation such as scrub turning a block
1372 * group to RO mode, it may fallback to COW mode, so we must make sure
1373 * an extent allocated during COW has exactly the requested size and can
1374 * not be split into smaller extents, otherwise relocation breaks and
1375 * fails during the stage where it updates the bytenr of file extent
1376 * items.
1377 */
1378 if (btrfs_is_data_reloc_root(root))
1379 min_alloc_size = num_bytes;
1380 else
1381 min_alloc_size = fs_info->sectorsize;
1382
1383 while (num_bytes > 0) {
1384 struct btrfs_ordered_extent *ordered;
1385
1386 cur_alloc_size = num_bytes;
1387 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1388 min_alloc_size, 0, alloc_hint,
1389 &ins, 1, 1);
1390 if (ret == -EAGAIN) {
1391 /*
1392 * btrfs_reserve_extent only returns -EAGAIN for zoned
1393 * file systems, which is an indication that there are
1394 * no active zones to allocate from at the moment.
1395 *
1396 * If this is the first loop iteration, wait for at
1397 * least one zone to finish before retrying the
1398 * allocation. Otherwise ask the caller to write out
1399 * the already allocated blocks before coming back to
1400 * us, or return -ENOSPC if it can't handle retries.
1401 */
1402 ASSERT(btrfs_is_zoned(fs_info));
1403 if (start == orig_start) {
1404 wait_on_bit_io(&inode->root->fs_info->flags,
1405 BTRFS_FS_NEED_ZONE_FINISH,
1406 TASK_UNINTERRUPTIBLE);
1407 continue;
1408 }
1409 if (done_offset) {
1410 *done_offset = start - 1;
1411 return 0;
1412 }
1413 ret = -ENOSPC;
1414 }
1415 if (ret < 0)
1416 goto out_unlock;
1417 cur_alloc_size = ins.offset;
1418 extent_reserved = true;
1419
1420 ram_size = ins.offset;
1421 em = create_io_em(inode, start, ins.offset, /* len */
1422 start, /* orig_start */
1423 ins.objectid, /* block_start */
1424 ins.offset, /* block_len */
1425 ins.offset, /* orig_block_len */
1426 ram_size, /* ram_bytes */
1427 BTRFS_COMPRESS_NONE, /* compress_type */
1428 BTRFS_ORDERED_REGULAR /* type */);
1429 if (IS_ERR(em)) {
1430 ret = PTR_ERR(em);
1431 goto out_reserve;
1432 }
1433 free_extent_map(em);
1434
1435 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1436 ram_size, ins.objectid, cur_alloc_size,
1437 0, 1 << BTRFS_ORDERED_REGULAR,
1438 BTRFS_COMPRESS_NONE);
1439 if (IS_ERR(ordered)) {
1440 ret = PTR_ERR(ordered);
1441 goto out_drop_extent_cache;
1442 }
1443
1444 if (btrfs_is_data_reloc_root(root)) {
1445 ret = btrfs_reloc_clone_csums(ordered);
1446
1447 /*
1448 * Only drop cache here, and process as normal.
1449 *
1450 * We must not allow extent_clear_unlock_delalloc()
1451 * at out_unlock label to free meta of this ordered
1452 * extent, as its meta should be freed by
1453 * btrfs_finish_ordered_io().
1454 *
1455 * So we must continue until @start is increased to
1456 * skip current ordered extent.
1457 */
1458 if (ret)
1459 btrfs_drop_extent_map_range(inode, start,
1460 start + ram_size - 1,
1461 false);
1462 }
1463 btrfs_put_ordered_extent(ordered);
1464
1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1466
1467 /*
1468 * We're not doing compressed IO, don't unlock the first page
1469 * (which the caller expects to stay locked), don't clear any
1470 * dirty bits and don't set any writeback bits
1471 *
1472 * Do set the Ordered (Private2) bit so we know this page was
1473 * properly setup for writepage.
1474 */
1475 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1476 page_ops |= PAGE_SET_ORDERED;
1477
1478 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1479 locked_page,
1480 EXTENT_LOCKED | EXTENT_DELALLOC,
1481 page_ops);
1482 if (num_bytes < cur_alloc_size)
1483 num_bytes = 0;
1484 else
1485 num_bytes -= cur_alloc_size;
1486 alloc_hint = ins.objectid + ins.offset;
1487 start += cur_alloc_size;
1488 extent_reserved = false;
1489
1490 /*
1491 * btrfs_reloc_clone_csums() error, since start is increased
1492 * extent_clear_unlock_delalloc() at out_unlock label won't
1493 * free metadata of current ordered extent, we're OK to exit.
1494 */
1495 if (ret)
1496 goto out_unlock;
1497 }
1498 done:
1499 if (done_offset)
1500 *done_offset = end;
1501 return ret;
1502
1503 out_drop_extent_cache:
1504 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1505 out_reserve:
1506 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1508 out_unlock:
1509 /*
1510 * Now, we have three regions to clean up:
1511 *
1512 * |-------(1)----|---(2)---|-------------(3)----------|
1513 * `- orig_start `- start `- start + cur_alloc_size `- end
1514 *
1515 * We process each region below.
1516 */
1517
1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1521
1522 /*
1523 * For the range (1). We have already instantiated the ordered extents
1524 * for this region. They are cleaned up by
1525 * btrfs_cleanup_ordered_extents() in e.g,
1526 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1527 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1528 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1529 * function.
1530 *
1531 * However, in case of @keep_locked, we still need to unlock the pages
1532 * (except @locked_page) to ensure all the pages are unlocked.
1533 */
1534 if (keep_locked && orig_start < start) {
1535 if (!locked_page)
1536 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1537 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1538 locked_page, 0, page_ops);
1539 }
1540
1541 /*
1542 * For the range (2). If we reserved an extent for our delalloc range
1543 * (or a subrange) and failed to create the respective ordered extent,
1544 * then it means that when we reserved the extent we decremented the
1545 * extent's size from the data space_info's bytes_may_use counter and
1546 * incremented the space_info's bytes_reserved counter by the same
1547 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1548 * to decrement again the data space_info's bytes_may_use counter,
1549 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1550 */
1551 if (extent_reserved) {
1552 extent_clear_unlock_delalloc(inode, start,
1553 start + cur_alloc_size - 1,
1554 locked_page,
1555 clear_bits,
1556 page_ops);
1557 start += cur_alloc_size;
1558 }
1559
1560 /*
1561 * For the range (3). We never touched the region. In addition to the
1562 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1563 * space_info's bytes_may_use counter, reserved in
1564 * btrfs_check_data_free_space().
1565 */
1566 if (start < end) {
1567 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1568 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1569 clear_bits, page_ops);
1570 }
1571 return ret;
1572 }
1573
1574 /*
1575 * Phase two of compressed writeback. This is the ordered portion of the code,
1576 * which only gets called in the order the work was queued. We walk all the
1577 * async extents created by compress_file_range and send them down to the disk.
1578 *
1579 * If called with @do_free == true then it'll try to finish the work and free
1580 * the work struct eventually.
1581 */
1582 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1583 {
1584 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1585 work);
1586 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1587 struct async_extent *async_extent;
1588 unsigned long nr_pages;
1589 u64 alloc_hint = 0;
1590
1591 if (do_free) {
1592 struct async_chunk *async_chunk;
1593 struct async_cow *async_cow;
1594
1595 async_chunk = container_of(work, struct async_chunk, work);
1596 btrfs_add_delayed_iput(async_chunk->inode);
1597 if (async_chunk->blkcg_css)
1598 css_put(async_chunk->blkcg_css);
1599
1600 async_cow = async_chunk->async_cow;
1601 if (atomic_dec_and_test(&async_cow->num_chunks))
1602 kvfree(async_cow);
1603 return;
1604 }
1605
1606 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1607 PAGE_SHIFT;
1608
1609 while (!list_empty(&async_chunk->extents)) {
1610 async_extent = list_entry(async_chunk->extents.next,
1611 struct async_extent, list);
1612 list_del(&async_extent->list);
1613 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1614 }
1615
1616 /* atomic_sub_return implies a barrier */
1617 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1618 5 * SZ_1M)
1619 cond_wake_up_nomb(&fs_info->async_submit_wait);
1620 }
1621
1622 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1623 struct page *locked_page, u64 start,
1624 u64 end, struct writeback_control *wbc)
1625 {
1626 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1627 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1628 struct async_cow *ctx;
1629 struct async_chunk *async_chunk;
1630 unsigned long nr_pages;
1631 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1632 int i;
1633 unsigned nofs_flag;
1634 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1635
1636 nofs_flag = memalloc_nofs_save();
1637 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1638 memalloc_nofs_restore(nofs_flag);
1639 if (!ctx)
1640 return false;
1641
1642 unlock_extent(&inode->io_tree, start, end, NULL);
1643 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1644
1645 async_chunk = ctx->chunks;
1646 atomic_set(&ctx->num_chunks, num_chunks);
1647
1648 for (i = 0; i < num_chunks; i++) {
1649 u64 cur_end = min(end, start + SZ_512K - 1);
1650
1651 /*
1652 * igrab is called higher up in the call chain, take only the
1653 * lightweight reference for the callback lifetime
1654 */
1655 ihold(&inode->vfs_inode);
1656 async_chunk[i].async_cow = ctx;
1657 async_chunk[i].inode = inode;
1658 async_chunk[i].start = start;
1659 async_chunk[i].end = cur_end;
1660 async_chunk[i].write_flags = write_flags;
1661 INIT_LIST_HEAD(&async_chunk[i].extents);
1662
1663 /*
1664 * The locked_page comes all the way from writepage and its
1665 * the original page we were actually given. As we spread
1666 * this large delalloc region across multiple async_chunk
1667 * structs, only the first struct needs a pointer to locked_page
1668 *
1669 * This way we don't need racey decisions about who is supposed
1670 * to unlock it.
1671 */
1672 if (locked_page) {
1673 /*
1674 * Depending on the compressibility, the pages might or
1675 * might not go through async. We want all of them to
1676 * be accounted against wbc once. Let's do it here
1677 * before the paths diverge. wbc accounting is used
1678 * only for foreign writeback detection and doesn't
1679 * need full accuracy. Just account the whole thing
1680 * against the first page.
1681 */
1682 wbc_account_cgroup_owner(wbc, locked_page,
1683 cur_end - start);
1684 async_chunk[i].locked_page = locked_page;
1685 locked_page = NULL;
1686 } else {
1687 async_chunk[i].locked_page = NULL;
1688 }
1689
1690 if (blkcg_css != blkcg_root_css) {
1691 css_get(blkcg_css);
1692 async_chunk[i].blkcg_css = blkcg_css;
1693 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1694 } else {
1695 async_chunk[i].blkcg_css = NULL;
1696 }
1697
1698 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1699 submit_compressed_extents);
1700
1701 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1702 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1703
1704 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1705
1706 start = cur_end + 1;
1707 }
1708 return true;
1709 }
1710
1711 /*
1712 * Run the delalloc range from start to end, and write back any dirty pages
1713 * covered by the range.
1714 */
1715 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1716 struct page *locked_page, u64 start,
1717 u64 end, struct writeback_control *wbc,
1718 bool pages_dirty)
1719 {
1720 u64 done_offset = end;
1721 int ret;
1722
1723 while (start <= end) {
1724 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1725 true, false);
1726 if (ret)
1727 return ret;
1728 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1729 done_offset, wbc, pages_dirty);
1730 start = done_offset + 1;
1731 }
1732
1733 return 1;
1734 }
1735
1736 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1737 u64 bytenr, u64 num_bytes, bool nowait)
1738 {
1739 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1740 struct btrfs_ordered_sum *sums;
1741 int ret;
1742 LIST_HEAD(list);
1743
1744 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1745 &list, 0, nowait);
1746 if (ret == 0 && list_empty(&list))
1747 return 0;
1748
1749 while (!list_empty(&list)) {
1750 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1751 list_del(&sums->list);
1752 kfree(sums);
1753 }
1754 if (ret < 0)
1755 return ret;
1756 return 1;
1757 }
1758
1759 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1760 const u64 start, const u64 end)
1761 {
1762 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1763 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1764 const u64 range_bytes = end + 1 - start;
1765 struct extent_io_tree *io_tree = &inode->io_tree;
1766 u64 range_start = start;
1767 u64 count;
1768 int ret;
1769
1770 /*
1771 * If EXTENT_NORESERVE is set it means that when the buffered write was
1772 * made we had not enough available data space and therefore we did not
1773 * reserve data space for it, since we though we could do NOCOW for the
1774 * respective file range (either there is prealloc extent or the inode
1775 * has the NOCOW bit set).
1776 *
1777 * However when we need to fallback to COW mode (because for example the
1778 * block group for the corresponding extent was turned to RO mode by a
1779 * scrub or relocation) we need to do the following:
1780 *
1781 * 1) We increment the bytes_may_use counter of the data space info.
1782 * If COW succeeds, it allocates a new data extent and after doing
1783 * that it decrements the space info's bytes_may_use counter and
1784 * increments its bytes_reserved counter by the same amount (we do
1785 * this at btrfs_add_reserved_bytes()). So we need to increment the
1786 * bytes_may_use counter to compensate (when space is reserved at
1787 * buffered write time, the bytes_may_use counter is incremented);
1788 *
1789 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1790 * that if the COW path fails for any reason, it decrements (through
1791 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1792 * data space info, which we incremented in the step above.
1793 *
1794 * If we need to fallback to cow and the inode corresponds to a free
1795 * space cache inode or an inode of the data relocation tree, we must
1796 * also increment bytes_may_use of the data space_info for the same
1797 * reason. Space caches and relocated data extents always get a prealloc
1798 * extent for them, however scrub or balance may have set the block
1799 * group that contains that extent to RO mode and therefore force COW
1800 * when starting writeback.
1801 */
1802 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1803 EXTENT_NORESERVE, 0, NULL);
1804 if (count > 0 || is_space_ino || is_reloc_ino) {
1805 u64 bytes = count;
1806 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1807 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1808
1809 if (is_space_ino || is_reloc_ino)
1810 bytes = range_bytes;
1811
1812 spin_lock(&sinfo->lock);
1813 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1814 spin_unlock(&sinfo->lock);
1815
1816 if (count > 0)
1817 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1818 NULL);
1819 }
1820
1821 /*
1822 * Don't try to create inline extents, as a mix of inline extent that
1823 * is written out and unlocked directly and a normal NOCOW extent
1824 * doesn't work.
1825 */
1826 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1827 ASSERT(ret != 1);
1828 return ret;
1829 }
1830
1831 struct can_nocow_file_extent_args {
1832 /* Input fields. */
1833
1834 /* Start file offset of the range we want to NOCOW. */
1835 u64 start;
1836 /* End file offset (inclusive) of the range we want to NOCOW. */
1837 u64 end;
1838 bool writeback_path;
1839 bool strict;
1840 /*
1841 * Free the path passed to can_nocow_file_extent() once it's not needed
1842 * anymore.
1843 */
1844 bool free_path;
1845
1846 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1847
1848 u64 disk_bytenr;
1849 u64 disk_num_bytes;
1850 u64 extent_offset;
1851 /* Number of bytes that can be written to in NOCOW mode. */
1852 u64 num_bytes;
1853 };
1854
1855 /*
1856 * Check if we can NOCOW the file extent that the path points to.
1857 * This function may return with the path released, so the caller should check
1858 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1859 *
1860 * Returns: < 0 on error
1861 * 0 if we can not NOCOW
1862 * 1 if we can NOCOW
1863 */
1864 static int can_nocow_file_extent(struct btrfs_path *path,
1865 struct btrfs_key *key,
1866 struct btrfs_inode *inode,
1867 struct can_nocow_file_extent_args *args)
1868 {
1869 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1870 struct extent_buffer *leaf = path->nodes[0];
1871 struct btrfs_root *root = inode->root;
1872 struct btrfs_file_extent_item *fi;
1873 u64 extent_end;
1874 u8 extent_type;
1875 int can_nocow = 0;
1876 int ret = 0;
1877 bool nowait = path->nowait;
1878
1879 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1880 extent_type = btrfs_file_extent_type(leaf, fi);
1881
1882 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1883 goto out;
1884
1885 /* Can't access these fields unless we know it's not an inline extent. */
1886 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1887 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1888 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1889
1890 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1891 extent_type == BTRFS_FILE_EXTENT_REG)
1892 goto out;
1893
1894 /*
1895 * If the extent was created before the generation where the last snapshot
1896 * for its subvolume was created, then this implies the extent is shared,
1897 * hence we must COW.
1898 */
1899 if (!args->strict &&
1900 btrfs_file_extent_generation(leaf, fi) <=
1901 btrfs_root_last_snapshot(&root->root_item))
1902 goto out;
1903
1904 /* An explicit hole, must COW. */
1905 if (args->disk_bytenr == 0)
1906 goto out;
1907
1908 /* Compressed/encrypted/encoded extents must be COWed. */
1909 if (btrfs_file_extent_compression(leaf, fi) ||
1910 btrfs_file_extent_encryption(leaf, fi) ||
1911 btrfs_file_extent_other_encoding(leaf, fi))
1912 goto out;
1913
1914 extent_end = btrfs_file_extent_end(path);
1915
1916 /*
1917 * The following checks can be expensive, as they need to take other
1918 * locks and do btree or rbtree searches, so release the path to avoid
1919 * blocking other tasks for too long.
1920 */
1921 btrfs_release_path(path);
1922
1923 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1924 key->offset - args->extent_offset,
1925 args->disk_bytenr, args->strict, path);
1926 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1927 if (ret != 0)
1928 goto out;
1929
1930 if (args->free_path) {
1931 /*
1932 * We don't need the path anymore, plus through the
1933 * csum_exist_in_range() call below we will end up allocating
1934 * another path. So free the path to avoid unnecessary extra
1935 * memory usage.
1936 */
1937 btrfs_free_path(path);
1938 path = NULL;
1939 }
1940
1941 /* If there are pending snapshots for this root, we must COW. */
1942 if (args->writeback_path && !is_freespace_inode &&
1943 atomic_read(&root->snapshot_force_cow))
1944 goto out;
1945
1946 args->disk_bytenr += args->extent_offset;
1947 args->disk_bytenr += args->start - key->offset;
1948 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1949
1950 /*
1951 * Force COW if csums exist in the range. This ensures that csums for a
1952 * given extent are either valid or do not exist.
1953 */
1954 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1955 nowait);
1956 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1957 if (ret != 0)
1958 goto out;
1959
1960 can_nocow = 1;
1961 out:
1962 if (args->free_path && path)
1963 btrfs_free_path(path);
1964
1965 return ret < 0 ? ret : can_nocow;
1966 }
1967
1968 /*
1969 * when nowcow writeback call back. This checks for snapshots or COW copies
1970 * of the extents that exist in the file, and COWs the file as required.
1971 *
1972 * If no cow copies or snapshots exist, we write directly to the existing
1973 * blocks on disk
1974 */
1975 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1976 struct page *locked_page,
1977 const u64 start, const u64 end)
1978 {
1979 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1980 struct btrfs_root *root = inode->root;
1981 struct btrfs_path *path;
1982 u64 cow_start = (u64)-1;
1983 u64 cur_offset = start;
1984 int ret;
1985 bool check_prev = true;
1986 u64 ino = btrfs_ino(inode);
1987 struct can_nocow_file_extent_args nocow_args = { 0 };
1988
1989 /*
1990 * Normally on a zoned device we're only doing COW writes, but in case
1991 * of relocation on a zoned filesystem serializes I/O so that we're only
1992 * writing sequentially and can end up here as well.
1993 */
1994 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1995
1996 path = btrfs_alloc_path();
1997 if (!path) {
1998 ret = -ENOMEM;
1999 goto error;
2000 }
2001
2002 nocow_args.end = end;
2003 nocow_args.writeback_path = true;
2004
2005 while (1) {
2006 struct btrfs_block_group *nocow_bg = NULL;
2007 struct btrfs_ordered_extent *ordered;
2008 struct btrfs_key found_key;
2009 struct btrfs_file_extent_item *fi;
2010 struct extent_buffer *leaf;
2011 u64 extent_end;
2012 u64 ram_bytes;
2013 u64 nocow_end;
2014 int extent_type;
2015 bool is_prealloc;
2016
2017 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2018 cur_offset, 0);
2019 if (ret < 0)
2020 goto error;
2021
2022 /*
2023 * If there is no extent for our range when doing the initial
2024 * search, then go back to the previous slot as it will be the
2025 * one containing the search offset
2026 */
2027 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2028 leaf = path->nodes[0];
2029 btrfs_item_key_to_cpu(leaf, &found_key,
2030 path->slots[0] - 1);
2031 if (found_key.objectid == ino &&
2032 found_key.type == BTRFS_EXTENT_DATA_KEY)
2033 path->slots[0]--;
2034 }
2035 check_prev = false;
2036 next_slot:
2037 /* Go to next leaf if we have exhausted the current one */
2038 leaf = path->nodes[0];
2039 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2040 ret = btrfs_next_leaf(root, path);
2041 if (ret < 0)
2042 goto error;
2043 if (ret > 0)
2044 break;
2045 leaf = path->nodes[0];
2046 }
2047
2048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2049
2050 /* Didn't find anything for our INO */
2051 if (found_key.objectid > ino)
2052 break;
2053 /*
2054 * Keep searching until we find an EXTENT_ITEM or there are no
2055 * more extents for this inode
2056 */
2057 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2058 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2059 path->slots[0]++;
2060 goto next_slot;
2061 }
2062
2063 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2064 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2065 found_key.offset > end)
2066 break;
2067
2068 /*
2069 * If the found extent starts after requested offset, then
2070 * adjust extent_end to be right before this extent begins
2071 */
2072 if (found_key.offset > cur_offset) {
2073 extent_end = found_key.offset;
2074 extent_type = 0;
2075 goto must_cow;
2076 }
2077
2078 /*
2079 * Found extent which begins before our range and potentially
2080 * intersect it
2081 */
2082 fi = btrfs_item_ptr(leaf, path->slots[0],
2083 struct btrfs_file_extent_item);
2084 extent_type = btrfs_file_extent_type(leaf, fi);
2085 /* If this is triggered then we have a memory corruption. */
2086 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2087 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2088 ret = -EUCLEAN;
2089 goto error;
2090 }
2091 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2092 extent_end = btrfs_file_extent_end(path);
2093
2094 /*
2095 * If the extent we got ends before our current offset, skip to
2096 * the next extent.
2097 */
2098 if (extent_end <= cur_offset) {
2099 path->slots[0]++;
2100 goto next_slot;
2101 }
2102
2103 nocow_args.start = cur_offset;
2104 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2105 if (ret < 0)
2106 goto error;
2107 if (ret == 0)
2108 goto must_cow;
2109
2110 ret = 0;
2111 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2112 if (!nocow_bg) {
2113 must_cow:
2114 /*
2115 * If we can't perform NOCOW writeback for the range,
2116 * then record the beginning of the range that needs to
2117 * be COWed. It will be written out before the next
2118 * NOCOW range if we find one, or when exiting this
2119 * loop.
2120 */
2121 if (cow_start == (u64)-1)
2122 cow_start = cur_offset;
2123 cur_offset = extent_end;
2124 if (cur_offset > end)
2125 break;
2126 if (!path->nodes[0])
2127 continue;
2128 path->slots[0]++;
2129 goto next_slot;
2130 }
2131
2132 /*
2133 * COW range from cow_start to found_key.offset - 1. As the key
2134 * will contain the beginning of the first extent that can be
2135 * NOCOW, following one which needs to be COW'ed
2136 */
2137 if (cow_start != (u64)-1) {
2138 ret = fallback_to_cow(inode, locked_page,
2139 cow_start, found_key.offset - 1);
2140 cow_start = (u64)-1;
2141 if (ret) {
2142 btrfs_dec_nocow_writers(nocow_bg);
2143 goto error;
2144 }
2145 }
2146
2147 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2148 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2149 if (is_prealloc) {
2150 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2151 struct extent_map *em;
2152
2153 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2154 orig_start,
2155 nocow_args.disk_bytenr, /* block_start */
2156 nocow_args.num_bytes, /* block_len */
2157 nocow_args.disk_num_bytes, /* orig_block_len */
2158 ram_bytes, BTRFS_COMPRESS_NONE,
2159 BTRFS_ORDERED_PREALLOC);
2160 if (IS_ERR(em)) {
2161 btrfs_dec_nocow_writers(nocow_bg);
2162 ret = PTR_ERR(em);
2163 goto error;
2164 }
2165 free_extent_map(em);
2166 }
2167
2168 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2169 nocow_args.num_bytes, nocow_args.num_bytes,
2170 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2171 is_prealloc
2172 ? (1 << BTRFS_ORDERED_PREALLOC)
2173 : (1 << BTRFS_ORDERED_NOCOW),
2174 BTRFS_COMPRESS_NONE);
2175 btrfs_dec_nocow_writers(nocow_bg);
2176 if (IS_ERR(ordered)) {
2177 if (is_prealloc) {
2178 btrfs_drop_extent_map_range(inode, cur_offset,
2179 nocow_end, false);
2180 }
2181 ret = PTR_ERR(ordered);
2182 goto error;
2183 }
2184
2185 if (btrfs_is_data_reloc_root(root))
2186 /*
2187 * Error handled later, as we must prevent
2188 * extent_clear_unlock_delalloc() in error handler
2189 * from freeing metadata of created ordered extent.
2190 */
2191 ret = btrfs_reloc_clone_csums(ordered);
2192 btrfs_put_ordered_extent(ordered);
2193
2194 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2195 locked_page, EXTENT_LOCKED |
2196 EXTENT_DELALLOC |
2197 EXTENT_CLEAR_DATA_RESV,
2198 PAGE_UNLOCK | PAGE_SET_ORDERED);
2199
2200 cur_offset = extent_end;
2201
2202 /*
2203 * btrfs_reloc_clone_csums() error, now we're OK to call error
2204 * handler, as metadata for created ordered extent will only
2205 * be freed by btrfs_finish_ordered_io().
2206 */
2207 if (ret)
2208 goto error;
2209 if (cur_offset > end)
2210 break;
2211 }
2212 btrfs_release_path(path);
2213
2214 if (cur_offset <= end && cow_start == (u64)-1)
2215 cow_start = cur_offset;
2216
2217 if (cow_start != (u64)-1) {
2218 cur_offset = end;
2219 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2220 cow_start = (u64)-1;
2221 if (ret)
2222 goto error;
2223 }
2224
2225 btrfs_free_path(path);
2226 return 0;
2227
2228 error:
2229 /*
2230 * If an error happened while a COW region is outstanding, cur_offset
2231 * needs to be reset to cow_start to ensure the COW region is unlocked
2232 * as well.
2233 */
2234 if (cow_start != (u64)-1)
2235 cur_offset = cow_start;
2236 if (cur_offset < end)
2237 extent_clear_unlock_delalloc(inode, cur_offset, end,
2238 locked_page, EXTENT_LOCKED |
2239 EXTENT_DELALLOC | EXTENT_DEFRAG |
2240 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2241 PAGE_START_WRITEBACK |
2242 PAGE_END_WRITEBACK);
2243 btrfs_free_path(path);
2244 return ret;
2245 }
2246
2247 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2248 {
2249 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2250 if (inode->defrag_bytes &&
2251 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2252 return false;
2253 return true;
2254 }
2255 return false;
2256 }
2257
2258 /*
2259 * Function to process delayed allocation (create CoW) for ranges which are
2260 * being touched for the first time.
2261 */
2262 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2263 u64 start, u64 end, struct writeback_control *wbc)
2264 {
2265 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2266 int ret;
2267
2268 /*
2269 * The range must cover part of the @locked_page, or a return of 1
2270 * can confuse the caller.
2271 */
2272 ASSERT(!(end <= page_offset(locked_page) ||
2273 start >= page_offset(locked_page) + PAGE_SIZE));
2274
2275 if (should_nocow(inode, start, end)) {
2276 ret = run_delalloc_nocow(inode, locked_page, start, end);
2277 goto out;
2278 }
2279
2280 if (btrfs_inode_can_compress(inode) &&
2281 inode_need_compress(inode, start, end) &&
2282 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2283 return 1;
2284
2285 if (zoned)
2286 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2287 true);
2288 else
2289 ret = cow_file_range(inode, locked_page, start, end, NULL,
2290 false, false);
2291
2292 out:
2293 if (ret < 0)
2294 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2295 end - start + 1);
2296 return ret;
2297 }
2298
2299 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2300 struct extent_state *orig, u64 split)
2301 {
2302 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2303 u64 size;
2304
2305 /* not delalloc, ignore it */
2306 if (!(orig->state & EXTENT_DELALLOC))
2307 return;
2308
2309 size = orig->end - orig->start + 1;
2310 if (size > fs_info->max_extent_size) {
2311 u32 num_extents;
2312 u64 new_size;
2313
2314 /*
2315 * See the explanation in btrfs_merge_delalloc_extent, the same
2316 * applies here, just in reverse.
2317 */
2318 new_size = orig->end - split + 1;
2319 num_extents = count_max_extents(fs_info, new_size);
2320 new_size = split - orig->start;
2321 num_extents += count_max_extents(fs_info, new_size);
2322 if (count_max_extents(fs_info, size) >= num_extents)
2323 return;
2324 }
2325
2326 spin_lock(&inode->lock);
2327 btrfs_mod_outstanding_extents(inode, 1);
2328 spin_unlock(&inode->lock);
2329 }
2330
2331 /*
2332 * Handle merged delayed allocation extents so we can keep track of new extents
2333 * that are just merged onto old extents, such as when we are doing sequential
2334 * writes, so we can properly account for the metadata space we'll need.
2335 */
2336 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2337 struct extent_state *other)
2338 {
2339 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2340 u64 new_size, old_size;
2341 u32 num_extents;
2342
2343 /* not delalloc, ignore it */
2344 if (!(other->state & EXTENT_DELALLOC))
2345 return;
2346
2347 if (new->start > other->start)
2348 new_size = new->end - other->start + 1;
2349 else
2350 new_size = other->end - new->start + 1;
2351
2352 /* we're not bigger than the max, unreserve the space and go */
2353 if (new_size <= fs_info->max_extent_size) {
2354 spin_lock(&inode->lock);
2355 btrfs_mod_outstanding_extents(inode, -1);
2356 spin_unlock(&inode->lock);
2357 return;
2358 }
2359
2360 /*
2361 * We have to add up either side to figure out how many extents were
2362 * accounted for before we merged into one big extent. If the number of
2363 * extents we accounted for is <= the amount we need for the new range
2364 * then we can return, otherwise drop. Think of it like this
2365 *
2366 * [ 4k][MAX_SIZE]
2367 *
2368 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2369 * need 2 outstanding extents, on one side we have 1 and the other side
2370 * we have 1 so they are == and we can return. But in this case
2371 *
2372 * [MAX_SIZE+4k][MAX_SIZE+4k]
2373 *
2374 * Each range on their own accounts for 2 extents, but merged together
2375 * they are only 3 extents worth of accounting, so we need to drop in
2376 * this case.
2377 */
2378 old_size = other->end - other->start + 1;
2379 num_extents = count_max_extents(fs_info, old_size);
2380 old_size = new->end - new->start + 1;
2381 num_extents += count_max_extents(fs_info, old_size);
2382 if (count_max_extents(fs_info, new_size) >= num_extents)
2383 return;
2384
2385 spin_lock(&inode->lock);
2386 btrfs_mod_outstanding_extents(inode, -1);
2387 spin_unlock(&inode->lock);
2388 }
2389
2390 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2391 struct btrfs_inode *inode)
2392 {
2393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2394
2395 spin_lock(&root->delalloc_lock);
2396 if (list_empty(&inode->delalloc_inodes)) {
2397 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2398 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2399 root->nr_delalloc_inodes++;
2400 if (root->nr_delalloc_inodes == 1) {
2401 spin_lock(&fs_info->delalloc_root_lock);
2402 BUG_ON(!list_empty(&root->delalloc_root));
2403 list_add_tail(&root->delalloc_root,
2404 &fs_info->delalloc_roots);
2405 spin_unlock(&fs_info->delalloc_root_lock);
2406 }
2407 }
2408 spin_unlock(&root->delalloc_lock);
2409 }
2410
2411 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2412 struct btrfs_inode *inode)
2413 {
2414 struct btrfs_fs_info *fs_info = root->fs_info;
2415
2416 if (!list_empty(&inode->delalloc_inodes)) {
2417 list_del_init(&inode->delalloc_inodes);
2418 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2419 &inode->runtime_flags);
2420 root->nr_delalloc_inodes--;
2421 if (!root->nr_delalloc_inodes) {
2422 ASSERT(list_empty(&root->delalloc_inodes));
2423 spin_lock(&fs_info->delalloc_root_lock);
2424 BUG_ON(list_empty(&root->delalloc_root));
2425 list_del_init(&root->delalloc_root);
2426 spin_unlock(&fs_info->delalloc_root_lock);
2427 }
2428 }
2429 }
2430
2431 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2432 struct btrfs_inode *inode)
2433 {
2434 spin_lock(&root->delalloc_lock);
2435 __btrfs_del_delalloc_inode(root, inode);
2436 spin_unlock(&root->delalloc_lock);
2437 }
2438
2439 /*
2440 * Properly track delayed allocation bytes in the inode and to maintain the
2441 * list of inodes that have pending delalloc work to be done.
2442 */
2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2444 u32 bits)
2445 {
2446 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2447
2448 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2449 WARN_ON(1);
2450 /*
2451 * set_bit and clear bit hooks normally require _irqsave/restore
2452 * but in this case, we are only testing for the DELALLOC
2453 * bit, which is only set or cleared with irqs on
2454 */
2455 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2456 struct btrfs_root *root = inode->root;
2457 u64 len = state->end + 1 - state->start;
2458 u32 num_extents = count_max_extents(fs_info, len);
2459 bool do_list = !btrfs_is_free_space_inode(inode);
2460
2461 spin_lock(&inode->lock);
2462 btrfs_mod_outstanding_extents(inode, num_extents);
2463 spin_unlock(&inode->lock);
2464
2465 /* For sanity tests */
2466 if (btrfs_is_testing(fs_info))
2467 return;
2468
2469 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2470 fs_info->delalloc_batch);
2471 spin_lock(&inode->lock);
2472 inode->delalloc_bytes += len;
2473 if (bits & EXTENT_DEFRAG)
2474 inode->defrag_bytes += len;
2475 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2476 &inode->runtime_flags))
2477 btrfs_add_delalloc_inodes(root, inode);
2478 spin_unlock(&inode->lock);
2479 }
2480
2481 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2482 (bits & EXTENT_DELALLOC_NEW)) {
2483 spin_lock(&inode->lock);
2484 inode->new_delalloc_bytes += state->end + 1 - state->start;
2485 spin_unlock(&inode->lock);
2486 }
2487 }
2488
2489 /*
2490 * Once a range is no longer delalloc this function ensures that proper
2491 * accounting happens.
2492 */
2493 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2494 struct extent_state *state, u32 bits)
2495 {
2496 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2497 u64 len = state->end + 1 - state->start;
2498 u32 num_extents = count_max_extents(fs_info, len);
2499
2500 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2501 spin_lock(&inode->lock);
2502 inode->defrag_bytes -= len;
2503 spin_unlock(&inode->lock);
2504 }
2505
2506 /*
2507 * set_bit and clear bit hooks normally require _irqsave/restore
2508 * but in this case, we are only testing for the DELALLOC
2509 * bit, which is only set or cleared with irqs on
2510 */
2511 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2512 struct btrfs_root *root = inode->root;
2513 bool do_list = !btrfs_is_free_space_inode(inode);
2514
2515 spin_lock(&inode->lock);
2516 btrfs_mod_outstanding_extents(inode, -num_extents);
2517 spin_unlock(&inode->lock);
2518
2519 /*
2520 * We don't reserve metadata space for space cache inodes so we
2521 * don't need to call delalloc_release_metadata if there is an
2522 * error.
2523 */
2524 if (bits & EXTENT_CLEAR_META_RESV &&
2525 root != fs_info->tree_root)
2526 btrfs_delalloc_release_metadata(inode, len, false);
2527
2528 /* For sanity tests. */
2529 if (btrfs_is_testing(fs_info))
2530 return;
2531
2532 if (!btrfs_is_data_reloc_root(root) &&
2533 do_list && !(state->state & EXTENT_NORESERVE) &&
2534 (bits & EXTENT_CLEAR_DATA_RESV))
2535 btrfs_free_reserved_data_space_noquota(fs_info, len);
2536
2537 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2538 fs_info->delalloc_batch);
2539 spin_lock(&inode->lock);
2540 inode->delalloc_bytes -= len;
2541 if (do_list && inode->delalloc_bytes == 0 &&
2542 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2543 &inode->runtime_flags))
2544 btrfs_del_delalloc_inode(root, inode);
2545 spin_unlock(&inode->lock);
2546 }
2547
2548 if ((state->state & EXTENT_DELALLOC_NEW) &&
2549 (bits & EXTENT_DELALLOC_NEW)) {
2550 spin_lock(&inode->lock);
2551 ASSERT(inode->new_delalloc_bytes >= len);
2552 inode->new_delalloc_bytes -= len;
2553 if (bits & EXTENT_ADD_INODE_BYTES)
2554 inode_add_bytes(&inode->vfs_inode, len);
2555 spin_unlock(&inode->lock);
2556 }
2557 }
2558
2559 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2560 struct btrfs_ordered_extent *ordered)
2561 {
2562 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2563 u64 len = bbio->bio.bi_iter.bi_size;
2564 struct btrfs_ordered_extent *new;
2565 int ret;
2566
2567 /* Must always be called for the beginning of an ordered extent. */
2568 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2569 return -EINVAL;
2570
2571 /* No need to split if the ordered extent covers the entire bio. */
2572 if (ordered->disk_num_bytes == len) {
2573 refcount_inc(&ordered->refs);
2574 bbio->ordered = ordered;
2575 return 0;
2576 }
2577
2578 /*
2579 * Don't split the extent_map for NOCOW extents, as we're writing into
2580 * a pre-existing one.
2581 */
2582 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2583 ret = split_extent_map(bbio->inode, bbio->file_offset,
2584 ordered->num_bytes, len,
2585 ordered->disk_bytenr);
2586 if (ret)
2587 return ret;
2588 }
2589
2590 new = btrfs_split_ordered_extent(ordered, len);
2591 if (IS_ERR(new))
2592 return PTR_ERR(new);
2593 bbio->ordered = new;
2594 return 0;
2595 }
2596
2597 /*
2598 * given a list of ordered sums record them in the inode. This happens
2599 * at IO completion time based on sums calculated at bio submission time.
2600 */
2601 static int add_pending_csums(struct btrfs_trans_handle *trans,
2602 struct list_head *list)
2603 {
2604 struct btrfs_ordered_sum *sum;
2605 struct btrfs_root *csum_root = NULL;
2606 int ret;
2607
2608 list_for_each_entry(sum, list, list) {
2609 trans->adding_csums = true;
2610 if (!csum_root)
2611 csum_root = btrfs_csum_root(trans->fs_info,
2612 sum->logical);
2613 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2614 trans->adding_csums = false;
2615 if (ret)
2616 return ret;
2617 }
2618 return 0;
2619 }
2620
2621 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2622 const u64 start,
2623 const u64 len,
2624 struct extent_state **cached_state)
2625 {
2626 u64 search_start = start;
2627 const u64 end = start + len - 1;
2628
2629 while (search_start < end) {
2630 const u64 search_len = end - search_start + 1;
2631 struct extent_map *em;
2632 u64 em_len;
2633 int ret = 0;
2634
2635 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2636 if (IS_ERR(em))
2637 return PTR_ERR(em);
2638
2639 if (em->block_start != EXTENT_MAP_HOLE)
2640 goto next;
2641
2642 em_len = em->len;
2643 if (em->start < search_start)
2644 em_len -= search_start - em->start;
2645 if (em_len > search_len)
2646 em_len = search_len;
2647
2648 ret = set_extent_bit(&inode->io_tree, search_start,
2649 search_start + em_len - 1,
2650 EXTENT_DELALLOC_NEW, cached_state);
2651 next:
2652 search_start = extent_map_end(em);
2653 free_extent_map(em);
2654 if (ret)
2655 return ret;
2656 }
2657 return 0;
2658 }
2659
2660 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2661 unsigned int extra_bits,
2662 struct extent_state **cached_state)
2663 {
2664 WARN_ON(PAGE_ALIGNED(end));
2665
2666 if (start >= i_size_read(&inode->vfs_inode) &&
2667 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2668 /*
2669 * There can't be any extents following eof in this case so just
2670 * set the delalloc new bit for the range directly.
2671 */
2672 extra_bits |= EXTENT_DELALLOC_NEW;
2673 } else {
2674 int ret;
2675
2676 ret = btrfs_find_new_delalloc_bytes(inode, start,
2677 end + 1 - start,
2678 cached_state);
2679 if (ret)
2680 return ret;
2681 }
2682
2683 return set_extent_bit(&inode->io_tree, start, end,
2684 EXTENT_DELALLOC | extra_bits, cached_state);
2685 }
2686
2687 /* see btrfs_writepage_start_hook for details on why this is required */
2688 struct btrfs_writepage_fixup {
2689 struct page *page;
2690 struct btrfs_inode *inode;
2691 struct btrfs_work work;
2692 };
2693
2694 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2695 {
2696 struct btrfs_writepage_fixup *fixup =
2697 container_of(work, struct btrfs_writepage_fixup, work);
2698 struct btrfs_ordered_extent *ordered;
2699 struct extent_state *cached_state = NULL;
2700 struct extent_changeset *data_reserved = NULL;
2701 struct page *page = fixup->page;
2702 struct btrfs_inode *inode = fixup->inode;
2703 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2704 u64 page_start = page_offset(page);
2705 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2706 int ret = 0;
2707 bool free_delalloc_space = true;
2708
2709 /*
2710 * This is similar to page_mkwrite, we need to reserve the space before
2711 * we take the page lock.
2712 */
2713 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2714 PAGE_SIZE);
2715 again:
2716 lock_page(page);
2717
2718 /*
2719 * Before we queued this fixup, we took a reference on the page.
2720 * page->mapping may go NULL, but it shouldn't be moved to a different
2721 * address space.
2722 */
2723 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2724 /*
2725 * Unfortunately this is a little tricky, either
2726 *
2727 * 1) We got here and our page had already been dealt with and
2728 * we reserved our space, thus ret == 0, so we need to just
2729 * drop our space reservation and bail. This can happen the
2730 * first time we come into the fixup worker, or could happen
2731 * while waiting for the ordered extent.
2732 * 2) Our page was already dealt with, but we happened to get an
2733 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2734 * this case we obviously don't have anything to release, but
2735 * because the page was already dealt with we don't want to
2736 * mark the page with an error, so make sure we're resetting
2737 * ret to 0. This is why we have this check _before_ the ret
2738 * check, because we do not want to have a surprise ENOSPC
2739 * when the page was already properly dealt with.
2740 */
2741 if (!ret) {
2742 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2743 btrfs_delalloc_release_space(inode, data_reserved,
2744 page_start, PAGE_SIZE,
2745 true);
2746 }
2747 ret = 0;
2748 goto out_page;
2749 }
2750
2751 /*
2752 * We can't mess with the page state unless it is locked, so now that
2753 * it is locked bail if we failed to make our space reservation.
2754 */
2755 if (ret)
2756 goto out_page;
2757
2758 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2759
2760 /* already ordered? We're done */
2761 if (PageOrdered(page))
2762 goto out_reserved;
2763
2764 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2765 if (ordered) {
2766 unlock_extent(&inode->io_tree, page_start, page_end,
2767 &cached_state);
2768 unlock_page(page);
2769 btrfs_start_ordered_extent(ordered);
2770 btrfs_put_ordered_extent(ordered);
2771 goto again;
2772 }
2773
2774 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2775 &cached_state);
2776 if (ret)
2777 goto out_reserved;
2778
2779 /*
2780 * Everything went as planned, we're now the owner of a dirty page with
2781 * delayed allocation bits set and space reserved for our COW
2782 * destination.
2783 *
2784 * The page was dirty when we started, nothing should have cleaned it.
2785 */
2786 BUG_ON(!PageDirty(page));
2787 free_delalloc_space = false;
2788 out_reserved:
2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2790 if (free_delalloc_space)
2791 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2792 PAGE_SIZE, true);
2793 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2794 out_page:
2795 if (ret) {
2796 /*
2797 * We hit ENOSPC or other errors. Update the mapping and page
2798 * to reflect the errors and clean the page.
2799 */
2800 mapping_set_error(page->mapping, ret);
2801 btrfs_mark_ordered_io_finished(inode, page, page_start,
2802 PAGE_SIZE, !ret);
2803 clear_page_dirty_for_io(page);
2804 }
2805 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2806 unlock_page(page);
2807 put_page(page);
2808 kfree(fixup);
2809 extent_changeset_free(data_reserved);
2810 /*
2811 * As a precaution, do a delayed iput in case it would be the last iput
2812 * that could need flushing space. Recursing back to fixup worker would
2813 * deadlock.
2814 */
2815 btrfs_add_delayed_iput(inode);
2816 }
2817
2818 /*
2819 * There are a few paths in the higher layers of the kernel that directly
2820 * set the page dirty bit without asking the filesystem if it is a
2821 * good idea. This causes problems because we want to make sure COW
2822 * properly happens and the data=ordered rules are followed.
2823 *
2824 * In our case any range that doesn't have the ORDERED bit set
2825 * hasn't been properly setup for IO. We kick off an async process
2826 * to fix it up. The async helper will wait for ordered extents, set
2827 * the delalloc bit and make it safe to write the page.
2828 */
2829 int btrfs_writepage_cow_fixup(struct page *page)
2830 {
2831 struct inode *inode = page->mapping->host;
2832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2833 struct btrfs_writepage_fixup *fixup;
2834
2835 /* This page has ordered extent covering it already */
2836 if (PageOrdered(page))
2837 return 0;
2838
2839 /*
2840 * PageChecked is set below when we create a fixup worker for this page,
2841 * don't try to create another one if we're already PageChecked()
2842 *
2843 * The extent_io writepage code will redirty the page if we send back
2844 * EAGAIN.
2845 */
2846 if (PageChecked(page))
2847 return -EAGAIN;
2848
2849 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2850 if (!fixup)
2851 return -EAGAIN;
2852
2853 /*
2854 * We are already holding a reference to this inode from
2855 * write_cache_pages. We need to hold it because the space reservation
2856 * takes place outside of the page lock, and we can't trust
2857 * page->mapping outside of the page lock.
2858 */
2859 ihold(inode);
2860 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2861 get_page(page);
2862 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2863 fixup->page = page;
2864 fixup->inode = BTRFS_I(inode);
2865 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2866
2867 return -EAGAIN;
2868 }
2869
2870 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2871 struct btrfs_inode *inode, u64 file_pos,
2872 struct btrfs_file_extent_item *stack_fi,
2873 const bool update_inode_bytes,
2874 u64 qgroup_reserved)
2875 {
2876 struct btrfs_root *root = inode->root;
2877 const u64 sectorsize = root->fs_info->sectorsize;
2878 struct btrfs_path *path;
2879 struct extent_buffer *leaf;
2880 struct btrfs_key ins;
2881 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2882 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2883 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2884 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2885 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2886 struct btrfs_drop_extents_args drop_args = { 0 };
2887 int ret;
2888
2889 path = btrfs_alloc_path();
2890 if (!path)
2891 return -ENOMEM;
2892
2893 /*
2894 * we may be replacing one extent in the tree with another.
2895 * The new extent is pinned in the extent map, and we don't want
2896 * to drop it from the cache until it is completely in the btree.
2897 *
2898 * So, tell btrfs_drop_extents to leave this extent in the cache.
2899 * the caller is expected to unpin it and allow it to be merged
2900 * with the others.
2901 */
2902 drop_args.path = path;
2903 drop_args.start = file_pos;
2904 drop_args.end = file_pos + num_bytes;
2905 drop_args.replace_extent = true;
2906 drop_args.extent_item_size = sizeof(*stack_fi);
2907 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2908 if (ret)
2909 goto out;
2910
2911 if (!drop_args.extent_inserted) {
2912 ins.objectid = btrfs_ino(inode);
2913 ins.offset = file_pos;
2914 ins.type = BTRFS_EXTENT_DATA_KEY;
2915
2916 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2917 sizeof(*stack_fi));
2918 if (ret)
2919 goto out;
2920 }
2921 leaf = path->nodes[0];
2922 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2923 write_extent_buffer(leaf, stack_fi,
2924 btrfs_item_ptr_offset(leaf, path->slots[0]),
2925 sizeof(struct btrfs_file_extent_item));
2926
2927 btrfs_mark_buffer_dirty(trans, leaf);
2928 btrfs_release_path(path);
2929
2930 /*
2931 * If we dropped an inline extent here, we know the range where it is
2932 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2933 * number of bytes only for that range containing the inline extent.
2934 * The remaining of the range will be processed when clearning the
2935 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2936 */
2937 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2938 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2939
2940 inline_size = drop_args.bytes_found - inline_size;
2941 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2942 drop_args.bytes_found -= inline_size;
2943 num_bytes -= sectorsize;
2944 }
2945
2946 if (update_inode_bytes)
2947 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2948
2949 ins.objectid = disk_bytenr;
2950 ins.offset = disk_num_bytes;
2951 ins.type = BTRFS_EXTENT_ITEM_KEY;
2952
2953 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2954 if (ret)
2955 goto out;
2956
2957 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2958 file_pos - offset,
2959 qgroup_reserved, &ins);
2960 out:
2961 btrfs_free_path(path);
2962
2963 return ret;
2964 }
2965
2966 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2967 u64 start, u64 len)
2968 {
2969 struct btrfs_block_group *cache;
2970
2971 cache = btrfs_lookup_block_group(fs_info, start);
2972 ASSERT(cache);
2973
2974 spin_lock(&cache->lock);
2975 cache->delalloc_bytes -= len;
2976 spin_unlock(&cache->lock);
2977
2978 btrfs_put_block_group(cache);
2979 }
2980
2981 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2982 struct btrfs_ordered_extent *oe)
2983 {
2984 struct btrfs_file_extent_item stack_fi;
2985 bool update_inode_bytes;
2986 u64 num_bytes = oe->num_bytes;
2987 u64 ram_bytes = oe->ram_bytes;
2988
2989 memset(&stack_fi, 0, sizeof(stack_fi));
2990 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2991 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2992 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2993 oe->disk_num_bytes);
2994 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2995 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2996 num_bytes = oe->truncated_len;
2997 ram_bytes = num_bytes;
2998 }
2999 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3000 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3001 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3002 /* Encryption and other encoding is reserved and all 0 */
3003
3004 /*
3005 * For delalloc, when completing an ordered extent we update the inode's
3006 * bytes when clearing the range in the inode's io tree, so pass false
3007 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3008 * except if the ordered extent was truncated.
3009 */
3010 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3011 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3012 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3013
3014 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3015 oe->file_offset, &stack_fi,
3016 update_inode_bytes, oe->qgroup_rsv);
3017 }
3018
3019 /*
3020 * As ordered data IO finishes, this gets called so we can finish
3021 * an ordered extent if the range of bytes in the file it covers are
3022 * fully written.
3023 */
3024 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3025 {
3026 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3027 struct btrfs_root *root = inode->root;
3028 struct btrfs_fs_info *fs_info = root->fs_info;
3029 struct btrfs_trans_handle *trans = NULL;
3030 struct extent_io_tree *io_tree = &inode->io_tree;
3031 struct extent_state *cached_state = NULL;
3032 u64 start, end;
3033 int compress_type = 0;
3034 int ret = 0;
3035 u64 logical_len = ordered_extent->num_bytes;
3036 bool freespace_inode;
3037 bool truncated = false;
3038 bool clear_reserved_extent = true;
3039 unsigned int clear_bits = EXTENT_DEFRAG;
3040
3041 start = ordered_extent->file_offset;
3042 end = start + ordered_extent->num_bytes - 1;
3043
3044 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3045 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3046 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3047 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3048 clear_bits |= EXTENT_DELALLOC_NEW;
3049
3050 freespace_inode = btrfs_is_free_space_inode(inode);
3051 if (!freespace_inode)
3052 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3053
3054 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3055 ret = -EIO;
3056 goto out;
3057 }
3058
3059 if (btrfs_is_zoned(fs_info))
3060 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3061 ordered_extent->disk_num_bytes);
3062
3063 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3064 truncated = true;
3065 logical_len = ordered_extent->truncated_len;
3066 /* Truncated the entire extent, don't bother adding */
3067 if (!logical_len)
3068 goto out;
3069 }
3070
3071 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3072 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3073
3074 btrfs_inode_safe_disk_i_size_write(inode, 0);
3075 if (freespace_inode)
3076 trans = btrfs_join_transaction_spacecache(root);
3077 else
3078 trans = btrfs_join_transaction(root);
3079 if (IS_ERR(trans)) {
3080 ret = PTR_ERR(trans);
3081 trans = NULL;
3082 goto out;
3083 }
3084 trans->block_rsv = &inode->block_rsv;
3085 ret = btrfs_update_inode_fallback(trans, inode);
3086 if (ret) /* -ENOMEM or corruption */
3087 btrfs_abort_transaction(trans, ret);
3088 goto out;
3089 }
3090
3091 clear_bits |= EXTENT_LOCKED;
3092 lock_extent(io_tree, start, end, &cached_state);
3093
3094 if (freespace_inode)
3095 trans = btrfs_join_transaction_spacecache(root);
3096 else
3097 trans = btrfs_join_transaction(root);
3098 if (IS_ERR(trans)) {
3099 ret = PTR_ERR(trans);
3100 trans = NULL;
3101 goto out;
3102 }
3103
3104 trans->block_rsv = &inode->block_rsv;
3105
3106 ret = btrfs_insert_raid_extent(trans, ordered_extent);
3107 if (ret)
3108 goto out;
3109
3110 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3111 compress_type = ordered_extent->compress_type;
3112 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3113 BUG_ON(compress_type);
3114 ret = btrfs_mark_extent_written(trans, inode,
3115 ordered_extent->file_offset,
3116 ordered_extent->file_offset +
3117 logical_len);
3118 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3119 ordered_extent->disk_num_bytes);
3120 } else {
3121 BUG_ON(root == fs_info->tree_root);
3122 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3123 if (!ret) {
3124 clear_reserved_extent = false;
3125 btrfs_release_delalloc_bytes(fs_info,
3126 ordered_extent->disk_bytenr,
3127 ordered_extent->disk_num_bytes);
3128 }
3129 }
3130 unpin_extent_cache(inode, ordered_extent->file_offset,
3131 ordered_extent->num_bytes, trans->transid);
3132 if (ret < 0) {
3133 btrfs_abort_transaction(trans, ret);
3134 goto out;
3135 }
3136
3137 ret = add_pending_csums(trans, &ordered_extent->list);
3138 if (ret) {
3139 btrfs_abort_transaction(trans, ret);
3140 goto out;
3141 }
3142
3143 /*
3144 * If this is a new delalloc range, clear its new delalloc flag to
3145 * update the inode's number of bytes. This needs to be done first
3146 * before updating the inode item.
3147 */
3148 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3149 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3150 clear_extent_bit(&inode->io_tree, start, end,
3151 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3152 &cached_state);
3153
3154 btrfs_inode_safe_disk_i_size_write(inode, 0);
3155 ret = btrfs_update_inode_fallback(trans, inode);
3156 if (ret) { /* -ENOMEM or corruption */
3157 btrfs_abort_transaction(trans, ret);
3158 goto out;
3159 }
3160 ret = 0;
3161 out:
3162 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3163 &cached_state);
3164
3165 if (trans)
3166 btrfs_end_transaction(trans);
3167
3168 if (ret || truncated) {
3169 u64 unwritten_start = start;
3170
3171 /*
3172 * If we failed to finish this ordered extent for any reason we
3173 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3174 * extent, and mark the inode with the error if it wasn't
3175 * already set. Any error during writeback would have already
3176 * set the mapping error, so we need to set it if we're the ones
3177 * marking this ordered extent as failed.
3178 */
3179 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3180 &ordered_extent->flags))
3181 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3182
3183 if (truncated)
3184 unwritten_start += logical_len;
3185 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3186
3187 /* Drop extent maps for the part of the extent we didn't write. */
3188 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3189
3190 /*
3191 * If the ordered extent had an IOERR or something else went
3192 * wrong we need to return the space for this ordered extent
3193 * back to the allocator. We only free the extent in the
3194 * truncated case if we didn't write out the extent at all.
3195 *
3196 * If we made it past insert_reserved_file_extent before we
3197 * errored out then we don't need to do this as the accounting
3198 * has already been done.
3199 */
3200 if ((ret || !logical_len) &&
3201 clear_reserved_extent &&
3202 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3203 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3204 /*
3205 * Discard the range before returning it back to the
3206 * free space pool
3207 */
3208 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3209 btrfs_discard_extent(fs_info,
3210 ordered_extent->disk_bytenr,
3211 ordered_extent->disk_num_bytes,
3212 NULL);
3213 btrfs_free_reserved_extent(fs_info,
3214 ordered_extent->disk_bytenr,
3215 ordered_extent->disk_num_bytes, 1);
3216 /*
3217 * Actually free the qgroup rsv which was released when
3218 * the ordered extent was created.
3219 */
3220 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3221 ordered_extent->qgroup_rsv,
3222 BTRFS_QGROUP_RSV_DATA);
3223 }
3224 }
3225
3226 /*
3227 * This needs to be done to make sure anybody waiting knows we are done
3228 * updating everything for this ordered extent.
3229 */
3230 btrfs_remove_ordered_extent(inode, ordered_extent);
3231
3232 /* once for us */
3233 btrfs_put_ordered_extent(ordered_extent);
3234 /* once for the tree */
3235 btrfs_put_ordered_extent(ordered_extent);
3236
3237 return ret;
3238 }
3239
3240 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3241 {
3242 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3243 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3244 list_empty(&ordered->bioc_list))
3245 btrfs_finish_ordered_zoned(ordered);
3246 return btrfs_finish_one_ordered(ordered);
3247 }
3248
3249 /*
3250 * Verify the checksum for a single sector without any extra action that depend
3251 * on the type of I/O.
3252 */
3253 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3254 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3255 {
3256 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3257 char *kaddr;
3258
3259 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3260
3261 shash->tfm = fs_info->csum_shash;
3262
3263 kaddr = kmap_local_page(page) + pgoff;
3264 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3265 kunmap_local(kaddr);
3266
3267 if (memcmp(csum, csum_expected, fs_info->csum_size))
3268 return -EIO;
3269 return 0;
3270 }
3271
3272 /*
3273 * Verify the checksum of a single data sector.
3274 *
3275 * @bbio: btrfs_io_bio which contains the csum
3276 * @dev: device the sector is on
3277 * @bio_offset: offset to the beginning of the bio (in bytes)
3278 * @bv: bio_vec to check
3279 *
3280 * Check if the checksum on a data block is valid. When a checksum mismatch is
3281 * detected, report the error and fill the corrupted range with zero.
3282 *
3283 * Return %true if the sector is ok or had no checksum to start with, else %false.
3284 */
3285 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3286 u32 bio_offset, struct bio_vec *bv)
3287 {
3288 struct btrfs_inode *inode = bbio->inode;
3289 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3290 u64 file_offset = bbio->file_offset + bio_offset;
3291 u64 end = file_offset + bv->bv_len - 1;
3292 u8 *csum_expected;
3293 u8 csum[BTRFS_CSUM_SIZE];
3294
3295 ASSERT(bv->bv_len == fs_info->sectorsize);
3296
3297 if (!bbio->csum)
3298 return true;
3299
3300 if (btrfs_is_data_reloc_root(inode->root) &&
3301 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3302 NULL)) {
3303 /* Skip the range without csum for data reloc inode */
3304 clear_extent_bits(&inode->io_tree, file_offset, end,
3305 EXTENT_NODATASUM);
3306 return true;
3307 }
3308
3309 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3310 fs_info->csum_size;
3311 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3312 csum_expected))
3313 goto zeroit;
3314 return true;
3315
3316 zeroit:
3317 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3318 bbio->mirror_num);
3319 if (dev)
3320 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3321 memzero_bvec(bv);
3322 return false;
3323 }
3324
3325 /*
3326 * Perform a delayed iput on @inode.
3327 *
3328 * @inode: The inode we want to perform iput on
3329 *
3330 * This function uses the generic vfs_inode::i_count to track whether we should
3331 * just decrement it (in case it's > 1) or if this is the last iput then link
3332 * the inode to the delayed iput machinery. Delayed iputs are processed at
3333 * transaction commit time/superblock commit/cleaner kthread.
3334 */
3335 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3336 {
3337 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3338 unsigned long flags;
3339
3340 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3341 return;
3342
3343 atomic_inc(&fs_info->nr_delayed_iputs);
3344 /*
3345 * Need to be irq safe here because we can be called from either an irq
3346 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3347 * context.
3348 */
3349 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3350 ASSERT(list_empty(&inode->delayed_iput));
3351 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3352 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3353 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3354 wake_up_process(fs_info->cleaner_kthread);
3355 }
3356
3357 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3358 struct btrfs_inode *inode)
3359 {
3360 list_del_init(&inode->delayed_iput);
3361 spin_unlock_irq(&fs_info->delayed_iput_lock);
3362 iput(&inode->vfs_inode);
3363 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3364 wake_up(&fs_info->delayed_iputs_wait);
3365 spin_lock_irq(&fs_info->delayed_iput_lock);
3366 }
3367
3368 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3369 struct btrfs_inode *inode)
3370 {
3371 if (!list_empty(&inode->delayed_iput)) {
3372 spin_lock_irq(&fs_info->delayed_iput_lock);
3373 if (!list_empty(&inode->delayed_iput))
3374 run_delayed_iput_locked(fs_info, inode);
3375 spin_unlock_irq(&fs_info->delayed_iput_lock);
3376 }
3377 }
3378
3379 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3380 {
3381 /*
3382 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3383 * calls btrfs_add_delayed_iput() and that needs to lock
3384 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3385 * prevent a deadlock.
3386 */
3387 spin_lock_irq(&fs_info->delayed_iput_lock);
3388 while (!list_empty(&fs_info->delayed_iputs)) {
3389 struct btrfs_inode *inode;
3390
3391 inode = list_first_entry(&fs_info->delayed_iputs,
3392 struct btrfs_inode, delayed_iput);
3393 run_delayed_iput_locked(fs_info, inode);
3394 if (need_resched()) {
3395 spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 cond_resched();
3397 spin_lock_irq(&fs_info->delayed_iput_lock);
3398 }
3399 }
3400 spin_unlock_irq(&fs_info->delayed_iput_lock);
3401 }
3402
3403 /*
3404 * Wait for flushing all delayed iputs
3405 *
3406 * @fs_info: the filesystem
3407 *
3408 * This will wait on any delayed iputs that are currently running with KILLABLE
3409 * set. Once they are all done running we will return, unless we are killed in
3410 * which case we return EINTR. This helps in user operations like fallocate etc
3411 * that might get blocked on the iputs.
3412 *
3413 * Return EINTR if we were killed, 0 if nothing's pending
3414 */
3415 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3416 {
3417 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3418 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3419 if (ret)
3420 return -EINTR;
3421 return 0;
3422 }
3423
3424 /*
3425 * This creates an orphan entry for the given inode in case something goes wrong
3426 * in the middle of an unlink.
3427 */
3428 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3429 struct btrfs_inode *inode)
3430 {
3431 int ret;
3432
3433 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3434 if (ret && ret != -EEXIST) {
3435 btrfs_abort_transaction(trans, ret);
3436 return ret;
3437 }
3438
3439 return 0;
3440 }
3441
3442 /*
3443 * We have done the delete so we can go ahead and remove the orphan item for
3444 * this particular inode.
3445 */
3446 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3447 struct btrfs_inode *inode)
3448 {
3449 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3450 }
3451
3452 /*
3453 * this cleans up any orphans that may be left on the list from the last use
3454 * of this root.
3455 */
3456 int btrfs_orphan_cleanup(struct btrfs_root *root)
3457 {
3458 struct btrfs_fs_info *fs_info = root->fs_info;
3459 struct btrfs_path *path;
3460 struct extent_buffer *leaf;
3461 struct btrfs_key key, found_key;
3462 struct btrfs_trans_handle *trans;
3463 struct inode *inode;
3464 u64 last_objectid = 0;
3465 int ret = 0, nr_unlink = 0;
3466
3467 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3468 return 0;
3469
3470 path = btrfs_alloc_path();
3471 if (!path) {
3472 ret = -ENOMEM;
3473 goto out;
3474 }
3475 path->reada = READA_BACK;
3476
3477 key.objectid = BTRFS_ORPHAN_OBJECTID;
3478 key.type = BTRFS_ORPHAN_ITEM_KEY;
3479 key.offset = (u64)-1;
3480
3481 while (1) {
3482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3483 if (ret < 0)
3484 goto out;
3485
3486 /*
3487 * if ret == 0 means we found what we were searching for, which
3488 * is weird, but possible, so only screw with path if we didn't
3489 * find the key and see if we have stuff that matches
3490 */
3491 if (ret > 0) {
3492 ret = 0;
3493 if (path->slots[0] == 0)
3494 break;
3495 path->slots[0]--;
3496 }
3497
3498 /* pull out the item */
3499 leaf = path->nodes[0];
3500 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3501
3502 /* make sure the item matches what we want */
3503 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3504 break;
3505 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3506 break;
3507
3508 /* release the path since we're done with it */
3509 btrfs_release_path(path);
3510
3511 /*
3512 * this is where we are basically btrfs_lookup, without the
3513 * crossing root thing. we store the inode number in the
3514 * offset of the orphan item.
3515 */
3516
3517 if (found_key.offset == last_objectid) {
3518 /*
3519 * We found the same inode as before. This means we were
3520 * not able to remove its items via eviction triggered
3521 * by an iput(). A transaction abort may have happened,
3522 * due to -ENOSPC for example, so try to grab the error
3523 * that lead to a transaction abort, if any.
3524 */
3525 btrfs_err(fs_info,
3526 "Error removing orphan entry, stopping orphan cleanup");
3527 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3528 goto out;
3529 }
3530
3531 last_objectid = found_key.offset;
3532
3533 found_key.objectid = found_key.offset;
3534 found_key.type = BTRFS_INODE_ITEM_KEY;
3535 found_key.offset = 0;
3536 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3537 if (IS_ERR(inode)) {
3538 ret = PTR_ERR(inode);
3539 inode = NULL;
3540 if (ret != -ENOENT)
3541 goto out;
3542 }
3543
3544 if (!inode && root == fs_info->tree_root) {
3545 struct btrfs_root *dead_root;
3546 int is_dead_root = 0;
3547
3548 /*
3549 * This is an orphan in the tree root. Currently these
3550 * could come from 2 sources:
3551 * a) a root (snapshot/subvolume) deletion in progress
3552 * b) a free space cache inode
3553 * We need to distinguish those two, as the orphan item
3554 * for a root must not get deleted before the deletion
3555 * of the snapshot/subvolume's tree completes.
3556 *
3557 * btrfs_find_orphan_roots() ran before us, which has
3558 * found all deleted roots and loaded them into
3559 * fs_info->fs_roots_radix. So here we can find if an
3560 * orphan item corresponds to a deleted root by looking
3561 * up the root from that radix tree.
3562 */
3563
3564 spin_lock(&fs_info->fs_roots_radix_lock);
3565 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3566 (unsigned long)found_key.objectid);
3567 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3568 is_dead_root = 1;
3569 spin_unlock(&fs_info->fs_roots_radix_lock);
3570
3571 if (is_dead_root) {
3572 /* prevent this orphan from being found again */
3573 key.offset = found_key.objectid - 1;
3574 continue;
3575 }
3576
3577 }
3578
3579 /*
3580 * If we have an inode with links, there are a couple of
3581 * possibilities:
3582 *
3583 * 1. We were halfway through creating fsverity metadata for the
3584 * file. In that case, the orphan item represents incomplete
3585 * fsverity metadata which must be cleaned up with
3586 * btrfs_drop_verity_items and deleting the orphan item.
3587
3588 * 2. Old kernels (before v3.12) used to create an
3589 * orphan item for truncate indicating that there were possibly
3590 * extent items past i_size that needed to be deleted. In v3.12,
3591 * truncate was changed to update i_size in sync with the extent
3592 * items, but the (useless) orphan item was still created. Since
3593 * v4.18, we don't create the orphan item for truncate at all.
3594 *
3595 * So, this item could mean that we need to do a truncate, but
3596 * only if this filesystem was last used on a pre-v3.12 kernel
3597 * and was not cleanly unmounted. The odds of that are quite
3598 * slim, and it's a pain to do the truncate now, so just delete
3599 * the orphan item.
3600 *
3601 * It's also possible that this orphan item was supposed to be
3602 * deleted but wasn't. The inode number may have been reused,
3603 * but either way, we can delete the orphan item.
3604 */
3605 if (!inode || inode->i_nlink) {
3606 if (inode) {
3607 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3608 iput(inode);
3609 inode = NULL;
3610 if (ret)
3611 goto out;
3612 }
3613 trans = btrfs_start_transaction(root, 1);
3614 if (IS_ERR(trans)) {
3615 ret = PTR_ERR(trans);
3616 goto out;
3617 }
3618 btrfs_debug(fs_info, "auto deleting %Lu",
3619 found_key.objectid);
3620 ret = btrfs_del_orphan_item(trans, root,
3621 found_key.objectid);
3622 btrfs_end_transaction(trans);
3623 if (ret)
3624 goto out;
3625 continue;
3626 }
3627
3628 nr_unlink++;
3629
3630 /* this will do delete_inode and everything for us */
3631 iput(inode);
3632 }
3633 /* release the path since we're done with it */
3634 btrfs_release_path(path);
3635
3636 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3637 trans = btrfs_join_transaction(root);
3638 if (!IS_ERR(trans))
3639 btrfs_end_transaction(trans);
3640 }
3641
3642 if (nr_unlink)
3643 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3644
3645 out:
3646 if (ret)
3647 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3648 btrfs_free_path(path);
3649 return ret;
3650 }
3651
3652 /*
3653 * very simple check to peek ahead in the leaf looking for xattrs. If we
3654 * don't find any xattrs, we know there can't be any acls.
3655 *
3656 * slot is the slot the inode is in, objectid is the objectid of the inode
3657 */
3658 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3659 int slot, u64 objectid,
3660 int *first_xattr_slot)
3661 {
3662 u32 nritems = btrfs_header_nritems(leaf);
3663 struct btrfs_key found_key;
3664 static u64 xattr_access = 0;
3665 static u64 xattr_default = 0;
3666 int scanned = 0;
3667
3668 if (!xattr_access) {
3669 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3670 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3671 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3672 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3673 }
3674
3675 slot++;
3676 *first_xattr_slot = -1;
3677 while (slot < nritems) {
3678 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3679
3680 /* we found a different objectid, there must not be acls */
3681 if (found_key.objectid != objectid)
3682 return 0;
3683
3684 /* we found an xattr, assume we've got an acl */
3685 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3686 if (*first_xattr_slot == -1)
3687 *first_xattr_slot = slot;
3688 if (found_key.offset == xattr_access ||
3689 found_key.offset == xattr_default)
3690 return 1;
3691 }
3692
3693 /*
3694 * we found a key greater than an xattr key, there can't
3695 * be any acls later on
3696 */
3697 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3698 return 0;
3699
3700 slot++;
3701 scanned++;
3702
3703 /*
3704 * it goes inode, inode backrefs, xattrs, extents,
3705 * so if there are a ton of hard links to an inode there can
3706 * be a lot of backrefs. Don't waste time searching too hard,
3707 * this is just an optimization
3708 */
3709 if (scanned >= 8)
3710 break;
3711 }
3712 /* we hit the end of the leaf before we found an xattr or
3713 * something larger than an xattr. We have to assume the inode
3714 * has acls
3715 */
3716 if (*first_xattr_slot == -1)
3717 *first_xattr_slot = slot;
3718 return 1;
3719 }
3720
3721 /*
3722 * read an inode from the btree into the in-memory inode
3723 */
3724 static int btrfs_read_locked_inode(struct inode *inode,
3725 struct btrfs_path *in_path)
3726 {
3727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3728 struct btrfs_path *path = in_path;
3729 struct extent_buffer *leaf;
3730 struct btrfs_inode_item *inode_item;
3731 struct btrfs_root *root = BTRFS_I(inode)->root;
3732 struct btrfs_key location;
3733 unsigned long ptr;
3734 int maybe_acls;
3735 u32 rdev;
3736 int ret;
3737 bool filled = false;
3738 int first_xattr_slot;
3739
3740 ret = btrfs_fill_inode(inode, &rdev);
3741 if (!ret)
3742 filled = true;
3743
3744 if (!path) {
3745 path = btrfs_alloc_path();
3746 if (!path)
3747 return -ENOMEM;
3748 }
3749
3750 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3751
3752 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3753 if (ret) {
3754 if (path != in_path)
3755 btrfs_free_path(path);
3756 return ret;
3757 }
3758
3759 leaf = path->nodes[0];
3760
3761 if (filled)
3762 goto cache_index;
3763
3764 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3765 struct btrfs_inode_item);
3766 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3767 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3768 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3769 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3770 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3771 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3772 round_up(i_size_read(inode), fs_info->sectorsize));
3773
3774 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3775 btrfs_timespec_nsec(leaf, &inode_item->atime));
3776
3777 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3778 btrfs_timespec_nsec(leaf, &inode_item->mtime));
3779
3780 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3781 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3782
3783 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3784 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3785
3786 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3787 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3788 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3789
3790 inode_set_iversion_queried(inode,
3791 btrfs_inode_sequence(leaf, inode_item));
3792 inode->i_generation = BTRFS_I(inode)->generation;
3793 inode->i_rdev = 0;
3794 rdev = btrfs_inode_rdev(leaf, inode_item);
3795
3796 BTRFS_I(inode)->index_cnt = (u64)-1;
3797 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3798 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3799
3800 cache_index:
3801 /*
3802 * If we were modified in the current generation and evicted from memory
3803 * and then re-read we need to do a full sync since we don't have any
3804 * idea about which extents were modified before we were evicted from
3805 * cache.
3806 *
3807 * This is required for both inode re-read from disk and delayed inode
3808 * in the delayed_nodes xarray.
3809 */
3810 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3811 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3812 &BTRFS_I(inode)->runtime_flags);
3813
3814 /*
3815 * We don't persist the id of the transaction where an unlink operation
3816 * against the inode was last made. So here we assume the inode might
3817 * have been evicted, and therefore the exact value of last_unlink_trans
3818 * lost, and set it to last_trans to avoid metadata inconsistencies
3819 * between the inode and its parent if the inode is fsync'ed and the log
3820 * replayed. For example, in the scenario:
3821 *
3822 * touch mydir/foo
3823 * ln mydir/foo mydir/bar
3824 * sync
3825 * unlink mydir/bar
3826 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3827 * xfs_io -c fsync mydir/foo
3828 * <power failure>
3829 * mount fs, triggers fsync log replay
3830 *
3831 * We must make sure that when we fsync our inode foo we also log its
3832 * parent inode, otherwise after log replay the parent still has the
3833 * dentry with the "bar" name but our inode foo has a link count of 1
3834 * and doesn't have an inode ref with the name "bar" anymore.
3835 *
3836 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3837 * but it guarantees correctness at the expense of occasional full
3838 * transaction commits on fsync if our inode is a directory, or if our
3839 * inode is not a directory, logging its parent unnecessarily.
3840 */
3841 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3842
3843 /*
3844 * Same logic as for last_unlink_trans. We don't persist the generation
3845 * of the last transaction where this inode was used for a reflink
3846 * operation, so after eviction and reloading the inode we must be
3847 * pessimistic and assume the last transaction that modified the inode.
3848 */
3849 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3850
3851 path->slots[0]++;
3852 if (inode->i_nlink != 1 ||
3853 path->slots[0] >= btrfs_header_nritems(leaf))
3854 goto cache_acl;
3855
3856 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3857 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3858 goto cache_acl;
3859
3860 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3861 if (location.type == BTRFS_INODE_REF_KEY) {
3862 struct btrfs_inode_ref *ref;
3863
3864 ref = (struct btrfs_inode_ref *)ptr;
3865 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3866 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3867 struct btrfs_inode_extref *extref;
3868
3869 extref = (struct btrfs_inode_extref *)ptr;
3870 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3871 extref);
3872 }
3873 cache_acl:
3874 /*
3875 * try to precache a NULL acl entry for files that don't have
3876 * any xattrs or acls
3877 */
3878 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3879 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3880 if (first_xattr_slot != -1) {
3881 path->slots[0] = first_xattr_slot;
3882 ret = btrfs_load_inode_props(inode, path);
3883 if (ret)
3884 btrfs_err(fs_info,
3885 "error loading props for ino %llu (root %llu): %d",
3886 btrfs_ino(BTRFS_I(inode)),
3887 root->root_key.objectid, ret);
3888 }
3889 if (path != in_path)
3890 btrfs_free_path(path);
3891
3892 if (!maybe_acls)
3893 cache_no_acl(inode);
3894
3895 switch (inode->i_mode & S_IFMT) {
3896 case S_IFREG:
3897 inode->i_mapping->a_ops = &btrfs_aops;
3898 inode->i_fop = &btrfs_file_operations;
3899 inode->i_op = &btrfs_file_inode_operations;
3900 break;
3901 case S_IFDIR:
3902 inode->i_fop = &btrfs_dir_file_operations;
3903 inode->i_op = &btrfs_dir_inode_operations;
3904 break;
3905 case S_IFLNK:
3906 inode->i_op = &btrfs_symlink_inode_operations;
3907 inode_nohighmem(inode);
3908 inode->i_mapping->a_ops = &btrfs_aops;
3909 break;
3910 default:
3911 inode->i_op = &btrfs_special_inode_operations;
3912 init_special_inode(inode, inode->i_mode, rdev);
3913 break;
3914 }
3915
3916 btrfs_sync_inode_flags_to_i_flags(inode);
3917 return 0;
3918 }
3919
3920 /*
3921 * given a leaf and an inode, copy the inode fields into the leaf
3922 */
3923 static void fill_inode_item(struct btrfs_trans_handle *trans,
3924 struct extent_buffer *leaf,
3925 struct btrfs_inode_item *item,
3926 struct inode *inode)
3927 {
3928 struct btrfs_map_token token;
3929 u64 flags;
3930
3931 btrfs_init_map_token(&token, leaf);
3932
3933 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3934 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3935 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3936 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3937 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3938
3939 btrfs_set_token_timespec_sec(&token, &item->atime,
3940 inode_get_atime_sec(inode));
3941 btrfs_set_token_timespec_nsec(&token, &item->atime,
3942 inode_get_atime_nsec(inode));
3943
3944 btrfs_set_token_timespec_sec(&token, &item->mtime,
3945 inode_get_mtime_sec(inode));
3946 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3947 inode_get_mtime_nsec(inode));
3948
3949 btrfs_set_token_timespec_sec(&token, &item->ctime,
3950 inode_get_ctime_sec(inode));
3951 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3952 inode_get_ctime_nsec(inode));
3953
3954 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3955 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
3956
3957 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3958 btrfs_set_token_inode_generation(&token, item,
3959 BTRFS_I(inode)->generation);
3960 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3961 btrfs_set_token_inode_transid(&token, item, trans->transid);
3962 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3963 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3964 BTRFS_I(inode)->ro_flags);
3965 btrfs_set_token_inode_flags(&token, item, flags);
3966 btrfs_set_token_inode_block_group(&token, item, 0);
3967 }
3968
3969 /*
3970 * copy everything in the in-memory inode into the btree.
3971 */
3972 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3973 struct btrfs_inode *inode)
3974 {
3975 struct btrfs_inode_item *inode_item;
3976 struct btrfs_path *path;
3977 struct extent_buffer *leaf;
3978 int ret;
3979
3980 path = btrfs_alloc_path();
3981 if (!path)
3982 return -ENOMEM;
3983
3984 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
3985 if (ret) {
3986 if (ret > 0)
3987 ret = -ENOENT;
3988 goto failed;
3989 }
3990
3991 leaf = path->nodes[0];
3992 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3993 struct btrfs_inode_item);
3994
3995 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3996 btrfs_mark_buffer_dirty(trans, leaf);
3997 btrfs_set_inode_last_trans(trans, inode);
3998 ret = 0;
3999 failed:
4000 btrfs_free_path(path);
4001 return ret;
4002 }
4003
4004 /*
4005 * copy everything in the in-memory inode into the btree.
4006 */
4007 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4008 struct btrfs_inode *inode)
4009 {
4010 struct btrfs_root *root = inode->root;
4011 struct btrfs_fs_info *fs_info = root->fs_info;
4012 int ret;
4013
4014 /*
4015 * If the inode is a free space inode, we can deadlock during commit
4016 * if we put it into the delayed code.
4017 *
4018 * The data relocation inode should also be directly updated
4019 * without delay
4020 */
4021 if (!btrfs_is_free_space_inode(inode)
4022 && !btrfs_is_data_reloc_root(root)
4023 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4024 btrfs_update_root_times(trans, root);
4025
4026 ret = btrfs_delayed_update_inode(trans, inode);
4027 if (!ret)
4028 btrfs_set_inode_last_trans(trans, inode);
4029 return ret;
4030 }
4031
4032 return btrfs_update_inode_item(trans, inode);
4033 }
4034
4035 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4036 struct btrfs_inode *inode)
4037 {
4038 int ret;
4039
4040 ret = btrfs_update_inode(trans, inode);
4041 if (ret == -ENOSPC)
4042 return btrfs_update_inode_item(trans, inode);
4043 return ret;
4044 }
4045
4046 /*
4047 * unlink helper that gets used here in inode.c and in the tree logging
4048 * recovery code. It remove a link in a directory with a given name, and
4049 * also drops the back refs in the inode to the directory
4050 */
4051 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4052 struct btrfs_inode *dir,
4053 struct btrfs_inode *inode,
4054 const struct fscrypt_str *name,
4055 struct btrfs_rename_ctx *rename_ctx)
4056 {
4057 struct btrfs_root *root = dir->root;
4058 struct btrfs_fs_info *fs_info = root->fs_info;
4059 struct btrfs_path *path;
4060 int ret = 0;
4061 struct btrfs_dir_item *di;
4062 u64 index;
4063 u64 ino = btrfs_ino(inode);
4064 u64 dir_ino = btrfs_ino(dir);
4065
4066 path = btrfs_alloc_path();
4067 if (!path) {
4068 ret = -ENOMEM;
4069 goto out;
4070 }
4071
4072 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4073 if (IS_ERR_OR_NULL(di)) {
4074 ret = di ? PTR_ERR(di) : -ENOENT;
4075 goto err;
4076 }
4077 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4078 if (ret)
4079 goto err;
4080 btrfs_release_path(path);
4081
4082 /*
4083 * If we don't have dir index, we have to get it by looking up
4084 * the inode ref, since we get the inode ref, remove it directly,
4085 * it is unnecessary to do delayed deletion.
4086 *
4087 * But if we have dir index, needn't search inode ref to get it.
4088 * Since the inode ref is close to the inode item, it is better
4089 * that we delay to delete it, and just do this deletion when
4090 * we update the inode item.
4091 */
4092 if (inode->dir_index) {
4093 ret = btrfs_delayed_delete_inode_ref(inode);
4094 if (!ret) {
4095 index = inode->dir_index;
4096 goto skip_backref;
4097 }
4098 }
4099
4100 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4101 if (ret) {
4102 btrfs_info(fs_info,
4103 "failed to delete reference to %.*s, inode %llu parent %llu",
4104 name->len, name->name, ino, dir_ino);
4105 btrfs_abort_transaction(trans, ret);
4106 goto err;
4107 }
4108 skip_backref:
4109 if (rename_ctx)
4110 rename_ctx->index = index;
4111
4112 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4113 if (ret) {
4114 btrfs_abort_transaction(trans, ret);
4115 goto err;
4116 }
4117
4118 /*
4119 * If we are in a rename context, we don't need to update anything in the
4120 * log. That will be done later during the rename by btrfs_log_new_name().
4121 * Besides that, doing it here would only cause extra unnecessary btree
4122 * operations on the log tree, increasing latency for applications.
4123 */
4124 if (!rename_ctx) {
4125 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4126 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4127 }
4128
4129 /*
4130 * If we have a pending delayed iput we could end up with the final iput
4131 * being run in btrfs-cleaner context. If we have enough of these built
4132 * up we can end up burning a lot of time in btrfs-cleaner without any
4133 * way to throttle the unlinks. Since we're currently holding a ref on
4134 * the inode we can run the delayed iput here without any issues as the
4135 * final iput won't be done until after we drop the ref we're currently
4136 * holding.
4137 */
4138 btrfs_run_delayed_iput(fs_info, inode);
4139 err:
4140 btrfs_free_path(path);
4141 if (ret)
4142 goto out;
4143
4144 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4145 inode_inc_iversion(&inode->vfs_inode);
4146 inode_inc_iversion(&dir->vfs_inode);
4147 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4148 ret = btrfs_update_inode(trans, dir);
4149 out:
4150 return ret;
4151 }
4152
4153 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4154 struct btrfs_inode *dir, struct btrfs_inode *inode,
4155 const struct fscrypt_str *name)
4156 {
4157 int ret;
4158
4159 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4160 if (!ret) {
4161 drop_nlink(&inode->vfs_inode);
4162 ret = btrfs_update_inode(trans, inode);
4163 }
4164 return ret;
4165 }
4166
4167 /*
4168 * helper to start transaction for unlink and rmdir.
4169 *
4170 * unlink and rmdir are special in btrfs, they do not always free space, so
4171 * if we cannot make our reservations the normal way try and see if there is
4172 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4173 * allow the unlink to occur.
4174 */
4175 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4176 {
4177 struct btrfs_root *root = dir->root;
4178
4179 return btrfs_start_transaction_fallback_global_rsv(root,
4180 BTRFS_UNLINK_METADATA_UNITS);
4181 }
4182
4183 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4184 {
4185 struct btrfs_trans_handle *trans;
4186 struct inode *inode = d_inode(dentry);
4187 int ret;
4188 struct fscrypt_name fname;
4189
4190 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4191 if (ret)
4192 return ret;
4193
4194 /* This needs to handle no-key deletions later on */
4195
4196 trans = __unlink_start_trans(BTRFS_I(dir));
4197 if (IS_ERR(trans)) {
4198 ret = PTR_ERR(trans);
4199 goto fscrypt_free;
4200 }
4201
4202 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4203 false);
4204
4205 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4206 &fname.disk_name);
4207 if (ret)
4208 goto end_trans;
4209
4210 if (inode->i_nlink == 0) {
4211 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4212 if (ret)
4213 goto end_trans;
4214 }
4215
4216 end_trans:
4217 btrfs_end_transaction(trans);
4218 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4219 fscrypt_free:
4220 fscrypt_free_filename(&fname);
4221 return ret;
4222 }
4223
4224 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4225 struct btrfs_inode *dir, struct dentry *dentry)
4226 {
4227 struct btrfs_root *root = dir->root;
4228 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4229 struct btrfs_path *path;
4230 struct extent_buffer *leaf;
4231 struct btrfs_dir_item *di;
4232 struct btrfs_key key;
4233 u64 index;
4234 int ret;
4235 u64 objectid;
4236 u64 dir_ino = btrfs_ino(dir);
4237 struct fscrypt_name fname;
4238
4239 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4240 if (ret)
4241 return ret;
4242
4243 /* This needs to handle no-key deletions later on */
4244
4245 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4246 objectid = inode->root->root_key.objectid;
4247 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4248 objectid = inode->location.objectid;
4249 } else {
4250 WARN_ON(1);
4251 fscrypt_free_filename(&fname);
4252 return -EINVAL;
4253 }
4254
4255 path = btrfs_alloc_path();
4256 if (!path) {
4257 ret = -ENOMEM;
4258 goto out;
4259 }
4260
4261 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4262 &fname.disk_name, -1);
4263 if (IS_ERR_OR_NULL(di)) {
4264 ret = di ? PTR_ERR(di) : -ENOENT;
4265 goto out;
4266 }
4267
4268 leaf = path->nodes[0];
4269 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4270 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4271 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4272 if (ret) {
4273 btrfs_abort_transaction(trans, ret);
4274 goto out;
4275 }
4276 btrfs_release_path(path);
4277
4278 /*
4279 * This is a placeholder inode for a subvolume we didn't have a
4280 * reference to at the time of the snapshot creation. In the meantime
4281 * we could have renamed the real subvol link into our snapshot, so
4282 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4283 * Instead simply lookup the dir_index_item for this entry so we can
4284 * remove it. Otherwise we know we have a ref to the root and we can
4285 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4286 */
4287 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4288 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4289 if (IS_ERR_OR_NULL(di)) {
4290 if (!di)
4291 ret = -ENOENT;
4292 else
4293 ret = PTR_ERR(di);
4294 btrfs_abort_transaction(trans, ret);
4295 goto out;
4296 }
4297
4298 leaf = path->nodes[0];
4299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4300 index = key.offset;
4301 btrfs_release_path(path);
4302 } else {
4303 ret = btrfs_del_root_ref(trans, objectid,
4304 root->root_key.objectid, dir_ino,
4305 &index, &fname.disk_name);
4306 if (ret) {
4307 btrfs_abort_transaction(trans, ret);
4308 goto out;
4309 }
4310 }
4311
4312 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4313 if (ret) {
4314 btrfs_abort_transaction(trans, ret);
4315 goto out;
4316 }
4317
4318 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4319 inode_inc_iversion(&dir->vfs_inode);
4320 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4321 ret = btrfs_update_inode_fallback(trans, dir);
4322 if (ret)
4323 btrfs_abort_transaction(trans, ret);
4324 out:
4325 btrfs_free_path(path);
4326 fscrypt_free_filename(&fname);
4327 return ret;
4328 }
4329
4330 /*
4331 * Helper to check if the subvolume references other subvolumes or if it's
4332 * default.
4333 */
4334 static noinline int may_destroy_subvol(struct btrfs_root *root)
4335 {
4336 struct btrfs_fs_info *fs_info = root->fs_info;
4337 struct btrfs_path *path;
4338 struct btrfs_dir_item *di;
4339 struct btrfs_key key;
4340 struct fscrypt_str name = FSTR_INIT("default", 7);
4341 u64 dir_id;
4342 int ret;
4343
4344 path = btrfs_alloc_path();
4345 if (!path)
4346 return -ENOMEM;
4347
4348 /* Make sure this root isn't set as the default subvol */
4349 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4350 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4351 dir_id, &name, 0);
4352 if (di && !IS_ERR(di)) {
4353 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4354 if (key.objectid == root->root_key.objectid) {
4355 ret = -EPERM;
4356 btrfs_err(fs_info,
4357 "deleting default subvolume %llu is not allowed",
4358 key.objectid);
4359 goto out;
4360 }
4361 btrfs_release_path(path);
4362 }
4363
4364 key.objectid = root->root_key.objectid;
4365 key.type = BTRFS_ROOT_REF_KEY;
4366 key.offset = (u64)-1;
4367
4368 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4369 if (ret < 0)
4370 goto out;
4371 BUG_ON(ret == 0);
4372
4373 ret = 0;
4374 if (path->slots[0] > 0) {
4375 path->slots[0]--;
4376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4377 if (key.objectid == root->root_key.objectid &&
4378 key.type == BTRFS_ROOT_REF_KEY)
4379 ret = -ENOTEMPTY;
4380 }
4381 out:
4382 btrfs_free_path(path);
4383 return ret;
4384 }
4385
4386 /* Delete all dentries for inodes belonging to the root */
4387 static void btrfs_prune_dentries(struct btrfs_root *root)
4388 {
4389 struct btrfs_fs_info *fs_info = root->fs_info;
4390 struct rb_node *node;
4391 struct rb_node *prev;
4392 struct btrfs_inode *entry;
4393 struct inode *inode;
4394 u64 objectid = 0;
4395
4396 if (!BTRFS_FS_ERROR(fs_info))
4397 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4398
4399 spin_lock(&root->inode_lock);
4400 again:
4401 node = root->inode_tree.rb_node;
4402 prev = NULL;
4403 while (node) {
4404 prev = node;
4405 entry = rb_entry(node, struct btrfs_inode, rb_node);
4406
4407 if (objectid < btrfs_ino(entry))
4408 node = node->rb_left;
4409 else if (objectid > btrfs_ino(entry))
4410 node = node->rb_right;
4411 else
4412 break;
4413 }
4414 if (!node) {
4415 while (prev) {
4416 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4417 if (objectid <= btrfs_ino(entry)) {
4418 node = prev;
4419 break;
4420 }
4421 prev = rb_next(prev);
4422 }
4423 }
4424 while (node) {
4425 entry = rb_entry(node, struct btrfs_inode, rb_node);
4426 objectid = btrfs_ino(entry) + 1;
4427 inode = igrab(&entry->vfs_inode);
4428 if (inode) {
4429 spin_unlock(&root->inode_lock);
4430 if (atomic_read(&inode->i_count) > 1)
4431 d_prune_aliases(inode);
4432 /*
4433 * btrfs_drop_inode will have it removed from the inode
4434 * cache when its usage count hits zero.
4435 */
4436 iput(inode);
4437 cond_resched();
4438 spin_lock(&root->inode_lock);
4439 goto again;
4440 }
4441
4442 if (cond_resched_lock(&root->inode_lock))
4443 goto again;
4444
4445 node = rb_next(node);
4446 }
4447 spin_unlock(&root->inode_lock);
4448 }
4449
4450 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4451 {
4452 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4453 struct btrfs_root *root = dir->root;
4454 struct inode *inode = d_inode(dentry);
4455 struct btrfs_root *dest = BTRFS_I(inode)->root;
4456 struct btrfs_trans_handle *trans;
4457 struct btrfs_block_rsv block_rsv;
4458 u64 root_flags;
4459 int ret;
4460
4461 down_write(&fs_info->subvol_sem);
4462
4463 /*
4464 * Don't allow to delete a subvolume with send in progress. This is
4465 * inside the inode lock so the error handling that has to drop the bit
4466 * again is not run concurrently.
4467 */
4468 spin_lock(&dest->root_item_lock);
4469 if (dest->send_in_progress) {
4470 spin_unlock(&dest->root_item_lock);
4471 btrfs_warn(fs_info,
4472 "attempt to delete subvolume %llu during send",
4473 dest->root_key.objectid);
4474 ret = -EPERM;
4475 goto out_up_write;
4476 }
4477 if (atomic_read(&dest->nr_swapfiles)) {
4478 spin_unlock(&dest->root_item_lock);
4479 btrfs_warn(fs_info,
4480 "attempt to delete subvolume %llu with active swapfile",
4481 root->root_key.objectid);
4482 ret = -EPERM;
4483 goto out_up_write;
4484 }
4485 root_flags = btrfs_root_flags(&dest->root_item);
4486 btrfs_set_root_flags(&dest->root_item,
4487 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4488 spin_unlock(&dest->root_item_lock);
4489
4490 ret = may_destroy_subvol(dest);
4491 if (ret)
4492 goto out_undead;
4493
4494 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4495 /*
4496 * One for dir inode,
4497 * two for dir entries,
4498 * two for root ref/backref.
4499 */
4500 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4501 if (ret)
4502 goto out_undead;
4503
4504 trans = btrfs_start_transaction(root, 0);
4505 if (IS_ERR(trans)) {
4506 ret = PTR_ERR(trans);
4507 goto out_release;
4508 }
4509 trans->block_rsv = &block_rsv;
4510 trans->bytes_reserved = block_rsv.size;
4511
4512 btrfs_record_snapshot_destroy(trans, dir);
4513
4514 ret = btrfs_unlink_subvol(trans, dir, dentry);
4515 if (ret) {
4516 btrfs_abort_transaction(trans, ret);
4517 goto out_end_trans;
4518 }
4519
4520 ret = btrfs_record_root_in_trans(trans, dest);
4521 if (ret) {
4522 btrfs_abort_transaction(trans, ret);
4523 goto out_end_trans;
4524 }
4525
4526 memset(&dest->root_item.drop_progress, 0,
4527 sizeof(dest->root_item.drop_progress));
4528 btrfs_set_root_drop_level(&dest->root_item, 0);
4529 btrfs_set_root_refs(&dest->root_item, 0);
4530
4531 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4532 ret = btrfs_insert_orphan_item(trans,
4533 fs_info->tree_root,
4534 dest->root_key.objectid);
4535 if (ret) {
4536 btrfs_abort_transaction(trans, ret);
4537 goto out_end_trans;
4538 }
4539 }
4540
4541 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4542 BTRFS_UUID_KEY_SUBVOL,
4543 dest->root_key.objectid);
4544 if (ret && ret != -ENOENT) {
4545 btrfs_abort_transaction(trans, ret);
4546 goto out_end_trans;
4547 }
4548 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4549 ret = btrfs_uuid_tree_remove(trans,
4550 dest->root_item.received_uuid,
4551 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4552 dest->root_key.objectid);
4553 if (ret && ret != -ENOENT) {
4554 btrfs_abort_transaction(trans, ret);
4555 goto out_end_trans;
4556 }
4557 }
4558
4559 free_anon_bdev(dest->anon_dev);
4560 dest->anon_dev = 0;
4561 out_end_trans:
4562 trans->block_rsv = NULL;
4563 trans->bytes_reserved = 0;
4564 ret = btrfs_end_transaction(trans);
4565 inode->i_flags |= S_DEAD;
4566 out_release:
4567 btrfs_subvolume_release_metadata(root, &block_rsv);
4568 out_undead:
4569 if (ret) {
4570 spin_lock(&dest->root_item_lock);
4571 root_flags = btrfs_root_flags(&dest->root_item);
4572 btrfs_set_root_flags(&dest->root_item,
4573 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4574 spin_unlock(&dest->root_item_lock);
4575 }
4576 out_up_write:
4577 up_write(&fs_info->subvol_sem);
4578 if (!ret) {
4579 d_invalidate(dentry);
4580 btrfs_prune_dentries(dest);
4581 ASSERT(dest->send_in_progress == 0);
4582 }
4583
4584 return ret;
4585 }
4586
4587 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4588 {
4589 struct inode *inode = d_inode(dentry);
4590 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4591 int err = 0;
4592 struct btrfs_trans_handle *trans;
4593 u64 last_unlink_trans;
4594 struct fscrypt_name fname;
4595
4596 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4597 return -ENOTEMPTY;
4598 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4599 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4600 btrfs_err(fs_info,
4601 "extent tree v2 doesn't support snapshot deletion yet");
4602 return -EOPNOTSUPP;
4603 }
4604 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4605 }
4606
4607 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4608 if (err)
4609 return err;
4610
4611 /* This needs to handle no-key deletions later on */
4612
4613 trans = __unlink_start_trans(BTRFS_I(dir));
4614 if (IS_ERR(trans)) {
4615 err = PTR_ERR(trans);
4616 goto out_notrans;
4617 }
4618
4619 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4620 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4621 goto out;
4622 }
4623
4624 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4625 if (err)
4626 goto out;
4627
4628 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4629
4630 /* now the directory is empty */
4631 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4632 &fname.disk_name);
4633 if (!err) {
4634 btrfs_i_size_write(BTRFS_I(inode), 0);
4635 /*
4636 * Propagate the last_unlink_trans value of the deleted dir to
4637 * its parent directory. This is to prevent an unrecoverable
4638 * log tree in the case we do something like this:
4639 * 1) create dir foo
4640 * 2) create snapshot under dir foo
4641 * 3) delete the snapshot
4642 * 4) rmdir foo
4643 * 5) mkdir foo
4644 * 6) fsync foo or some file inside foo
4645 */
4646 if (last_unlink_trans >= trans->transid)
4647 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4648 }
4649 out:
4650 btrfs_end_transaction(trans);
4651 out_notrans:
4652 btrfs_btree_balance_dirty(fs_info);
4653 fscrypt_free_filename(&fname);
4654
4655 return err;
4656 }
4657
4658 /*
4659 * Read, zero a chunk and write a block.
4660 *
4661 * @inode - inode that we're zeroing
4662 * @from - the offset to start zeroing
4663 * @len - the length to zero, 0 to zero the entire range respective to the
4664 * offset
4665 * @front - zero up to the offset instead of from the offset on
4666 *
4667 * This will find the block for the "from" offset and cow the block and zero the
4668 * part we want to zero. This is used with truncate and hole punching.
4669 */
4670 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4671 int front)
4672 {
4673 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4674 struct address_space *mapping = inode->vfs_inode.i_mapping;
4675 struct extent_io_tree *io_tree = &inode->io_tree;
4676 struct btrfs_ordered_extent *ordered;
4677 struct extent_state *cached_state = NULL;
4678 struct extent_changeset *data_reserved = NULL;
4679 bool only_release_metadata = false;
4680 u32 blocksize = fs_info->sectorsize;
4681 pgoff_t index = from >> PAGE_SHIFT;
4682 unsigned offset = from & (blocksize - 1);
4683 struct page *page;
4684 gfp_t mask = btrfs_alloc_write_mask(mapping);
4685 size_t write_bytes = blocksize;
4686 int ret = 0;
4687 u64 block_start;
4688 u64 block_end;
4689
4690 if (IS_ALIGNED(offset, blocksize) &&
4691 (!len || IS_ALIGNED(len, blocksize)))
4692 goto out;
4693
4694 block_start = round_down(from, blocksize);
4695 block_end = block_start + blocksize - 1;
4696
4697 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4698 blocksize, false);
4699 if (ret < 0) {
4700 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4701 /* For nocow case, no need to reserve data space */
4702 only_release_metadata = true;
4703 } else {
4704 goto out;
4705 }
4706 }
4707 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4708 if (ret < 0) {
4709 if (!only_release_metadata)
4710 btrfs_free_reserved_data_space(inode, data_reserved,
4711 block_start, blocksize);
4712 goto out;
4713 }
4714 again:
4715 page = find_or_create_page(mapping, index, mask);
4716 if (!page) {
4717 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4718 blocksize, true);
4719 btrfs_delalloc_release_extents(inode, blocksize);
4720 ret = -ENOMEM;
4721 goto out;
4722 }
4723
4724 if (!PageUptodate(page)) {
4725 ret = btrfs_read_folio(NULL, page_folio(page));
4726 lock_page(page);
4727 if (page->mapping != mapping) {
4728 unlock_page(page);
4729 put_page(page);
4730 goto again;
4731 }
4732 if (!PageUptodate(page)) {
4733 ret = -EIO;
4734 goto out_unlock;
4735 }
4736 }
4737
4738 /*
4739 * We unlock the page after the io is completed and then re-lock it
4740 * above. release_folio() could have come in between that and cleared
4741 * folio private, but left the page in the mapping. Set the page mapped
4742 * here to make sure it's properly set for the subpage stuff.
4743 */
4744 ret = set_page_extent_mapped(page);
4745 if (ret < 0)
4746 goto out_unlock;
4747
4748 wait_on_page_writeback(page);
4749
4750 lock_extent(io_tree, block_start, block_end, &cached_state);
4751
4752 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4753 if (ordered) {
4754 unlock_extent(io_tree, block_start, block_end, &cached_state);
4755 unlock_page(page);
4756 put_page(page);
4757 btrfs_start_ordered_extent(ordered);
4758 btrfs_put_ordered_extent(ordered);
4759 goto again;
4760 }
4761
4762 clear_extent_bit(&inode->io_tree, block_start, block_end,
4763 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4764 &cached_state);
4765
4766 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4767 &cached_state);
4768 if (ret) {
4769 unlock_extent(io_tree, block_start, block_end, &cached_state);
4770 goto out_unlock;
4771 }
4772
4773 if (offset != blocksize) {
4774 if (!len)
4775 len = blocksize - offset;
4776 if (front)
4777 memzero_page(page, (block_start - page_offset(page)),
4778 offset);
4779 else
4780 memzero_page(page, (block_start - page_offset(page)) + offset,
4781 len);
4782 }
4783 btrfs_folio_clear_checked(fs_info, page_folio(page), block_start,
4784 block_end + 1 - block_start);
4785 btrfs_folio_set_dirty(fs_info, page_folio(page), block_start,
4786 block_end + 1 - block_start);
4787 unlock_extent(io_tree, block_start, block_end, &cached_state);
4788
4789 if (only_release_metadata)
4790 set_extent_bit(&inode->io_tree, block_start, block_end,
4791 EXTENT_NORESERVE, NULL);
4792
4793 out_unlock:
4794 if (ret) {
4795 if (only_release_metadata)
4796 btrfs_delalloc_release_metadata(inode, blocksize, true);
4797 else
4798 btrfs_delalloc_release_space(inode, data_reserved,
4799 block_start, blocksize, true);
4800 }
4801 btrfs_delalloc_release_extents(inode, blocksize);
4802 unlock_page(page);
4803 put_page(page);
4804 out:
4805 if (only_release_metadata)
4806 btrfs_check_nocow_unlock(inode);
4807 extent_changeset_free(data_reserved);
4808 return ret;
4809 }
4810
4811 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4812 {
4813 struct btrfs_root *root = inode->root;
4814 struct btrfs_fs_info *fs_info = root->fs_info;
4815 struct btrfs_trans_handle *trans;
4816 struct btrfs_drop_extents_args drop_args = { 0 };
4817 int ret;
4818
4819 /*
4820 * If NO_HOLES is enabled, we don't need to do anything.
4821 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4822 * or btrfs_update_inode() will be called, which guarantee that the next
4823 * fsync will know this inode was changed and needs to be logged.
4824 */
4825 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4826 return 0;
4827
4828 /*
4829 * 1 - for the one we're dropping
4830 * 1 - for the one we're adding
4831 * 1 - for updating the inode.
4832 */
4833 trans = btrfs_start_transaction(root, 3);
4834 if (IS_ERR(trans))
4835 return PTR_ERR(trans);
4836
4837 drop_args.start = offset;
4838 drop_args.end = offset + len;
4839 drop_args.drop_cache = true;
4840
4841 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4842 if (ret) {
4843 btrfs_abort_transaction(trans, ret);
4844 btrfs_end_transaction(trans);
4845 return ret;
4846 }
4847
4848 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4849 if (ret) {
4850 btrfs_abort_transaction(trans, ret);
4851 } else {
4852 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4853 btrfs_update_inode(trans, inode);
4854 }
4855 btrfs_end_transaction(trans);
4856 return ret;
4857 }
4858
4859 /*
4860 * This function puts in dummy file extents for the area we're creating a hole
4861 * for. So if we are truncating this file to a larger size we need to insert
4862 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4863 * the range between oldsize and size
4864 */
4865 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4866 {
4867 struct btrfs_root *root = inode->root;
4868 struct btrfs_fs_info *fs_info = root->fs_info;
4869 struct extent_io_tree *io_tree = &inode->io_tree;
4870 struct extent_map *em = NULL;
4871 struct extent_state *cached_state = NULL;
4872 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4873 u64 block_end = ALIGN(size, fs_info->sectorsize);
4874 u64 last_byte;
4875 u64 cur_offset;
4876 u64 hole_size;
4877 int err = 0;
4878
4879 /*
4880 * If our size started in the middle of a block we need to zero out the
4881 * rest of the block before we expand the i_size, otherwise we could
4882 * expose stale data.
4883 */
4884 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4885 if (err)
4886 return err;
4887
4888 if (size <= hole_start)
4889 return 0;
4890
4891 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4892 &cached_state);
4893 cur_offset = hole_start;
4894 while (1) {
4895 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4896 block_end - cur_offset);
4897 if (IS_ERR(em)) {
4898 err = PTR_ERR(em);
4899 em = NULL;
4900 break;
4901 }
4902 last_byte = min(extent_map_end(em), block_end);
4903 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4904 hole_size = last_byte - cur_offset;
4905
4906 if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4907 struct extent_map *hole_em;
4908
4909 err = maybe_insert_hole(inode, cur_offset, hole_size);
4910 if (err)
4911 break;
4912
4913 err = btrfs_inode_set_file_extent_range(inode,
4914 cur_offset, hole_size);
4915 if (err)
4916 break;
4917
4918 hole_em = alloc_extent_map();
4919 if (!hole_em) {
4920 btrfs_drop_extent_map_range(inode, cur_offset,
4921 cur_offset + hole_size - 1,
4922 false);
4923 btrfs_set_inode_full_sync(inode);
4924 goto next;
4925 }
4926 hole_em->start = cur_offset;
4927 hole_em->len = hole_size;
4928 hole_em->orig_start = cur_offset;
4929
4930 hole_em->block_start = EXTENT_MAP_HOLE;
4931 hole_em->block_len = 0;
4932 hole_em->orig_block_len = 0;
4933 hole_em->ram_bytes = hole_size;
4934 hole_em->generation = btrfs_get_fs_generation(fs_info);
4935
4936 err = btrfs_replace_extent_map_range(inode, hole_em, true);
4937 free_extent_map(hole_em);
4938 } else {
4939 err = btrfs_inode_set_file_extent_range(inode,
4940 cur_offset, hole_size);
4941 if (err)
4942 break;
4943 }
4944 next:
4945 free_extent_map(em);
4946 em = NULL;
4947 cur_offset = last_byte;
4948 if (cur_offset >= block_end)
4949 break;
4950 }
4951 free_extent_map(em);
4952 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4953 return err;
4954 }
4955
4956 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4957 {
4958 struct btrfs_root *root = BTRFS_I(inode)->root;
4959 struct btrfs_trans_handle *trans;
4960 loff_t oldsize = i_size_read(inode);
4961 loff_t newsize = attr->ia_size;
4962 int mask = attr->ia_valid;
4963 int ret;
4964
4965 /*
4966 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4967 * special case where we need to update the times despite not having
4968 * these flags set. For all other operations the VFS set these flags
4969 * explicitly if it wants a timestamp update.
4970 */
4971 if (newsize != oldsize) {
4972 inode_inc_iversion(inode);
4973 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4974 inode_set_mtime_to_ts(inode,
4975 inode_set_ctime_current(inode));
4976 }
4977 }
4978
4979 if (newsize > oldsize) {
4980 /*
4981 * Don't do an expanding truncate while snapshotting is ongoing.
4982 * This is to ensure the snapshot captures a fully consistent
4983 * state of this file - if the snapshot captures this expanding
4984 * truncation, it must capture all writes that happened before
4985 * this truncation.
4986 */
4987 btrfs_drew_write_lock(&root->snapshot_lock);
4988 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4989 if (ret) {
4990 btrfs_drew_write_unlock(&root->snapshot_lock);
4991 return ret;
4992 }
4993
4994 trans = btrfs_start_transaction(root, 1);
4995 if (IS_ERR(trans)) {
4996 btrfs_drew_write_unlock(&root->snapshot_lock);
4997 return PTR_ERR(trans);
4998 }
4999
5000 i_size_write(inode, newsize);
5001 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5002 pagecache_isize_extended(inode, oldsize, newsize);
5003 ret = btrfs_update_inode(trans, BTRFS_I(inode));
5004 btrfs_drew_write_unlock(&root->snapshot_lock);
5005 btrfs_end_transaction(trans);
5006 } else {
5007 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5008
5009 if (btrfs_is_zoned(fs_info)) {
5010 ret = btrfs_wait_ordered_range(inode,
5011 ALIGN(newsize, fs_info->sectorsize),
5012 (u64)-1);
5013 if (ret)
5014 return ret;
5015 }
5016
5017 /*
5018 * We're truncating a file that used to have good data down to
5019 * zero. Make sure any new writes to the file get on disk
5020 * on close.
5021 */
5022 if (newsize == 0)
5023 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5024 &BTRFS_I(inode)->runtime_flags);
5025
5026 truncate_setsize(inode, newsize);
5027
5028 inode_dio_wait(inode);
5029
5030 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5031 if (ret && inode->i_nlink) {
5032 int err;
5033
5034 /*
5035 * Truncate failed, so fix up the in-memory size. We
5036 * adjusted disk_i_size down as we removed extents, so
5037 * wait for disk_i_size to be stable and then update the
5038 * in-memory size to match.
5039 */
5040 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5041 if (err)
5042 return err;
5043 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5044 }
5045 }
5046
5047 return ret;
5048 }
5049
5050 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5051 struct iattr *attr)
5052 {
5053 struct inode *inode = d_inode(dentry);
5054 struct btrfs_root *root = BTRFS_I(inode)->root;
5055 int err;
5056
5057 if (btrfs_root_readonly(root))
5058 return -EROFS;
5059
5060 err = setattr_prepare(idmap, dentry, attr);
5061 if (err)
5062 return err;
5063
5064 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5065 err = btrfs_setsize(inode, attr);
5066 if (err)
5067 return err;
5068 }
5069
5070 if (attr->ia_valid) {
5071 setattr_copy(idmap, inode, attr);
5072 inode_inc_iversion(inode);
5073 err = btrfs_dirty_inode(BTRFS_I(inode));
5074
5075 if (!err && attr->ia_valid & ATTR_MODE)
5076 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5077 }
5078
5079 return err;
5080 }
5081
5082 /*
5083 * While truncating the inode pages during eviction, we get the VFS
5084 * calling btrfs_invalidate_folio() against each folio of the inode. This
5085 * is slow because the calls to btrfs_invalidate_folio() result in a
5086 * huge amount of calls to lock_extent() and clear_extent_bit(),
5087 * which keep merging and splitting extent_state structures over and over,
5088 * wasting lots of time.
5089 *
5090 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5091 * skip all those expensive operations on a per folio basis and do only
5092 * the ordered io finishing, while we release here the extent_map and
5093 * extent_state structures, without the excessive merging and splitting.
5094 */
5095 static void evict_inode_truncate_pages(struct inode *inode)
5096 {
5097 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5098 struct rb_node *node;
5099
5100 ASSERT(inode->i_state & I_FREEING);
5101 truncate_inode_pages_final(&inode->i_data);
5102
5103 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5104
5105 /*
5106 * Keep looping until we have no more ranges in the io tree.
5107 * We can have ongoing bios started by readahead that have
5108 * their endio callback (extent_io.c:end_bio_extent_readpage)
5109 * still in progress (unlocked the pages in the bio but did not yet
5110 * unlocked the ranges in the io tree). Therefore this means some
5111 * ranges can still be locked and eviction started because before
5112 * submitting those bios, which are executed by a separate task (work
5113 * queue kthread), inode references (inode->i_count) were not taken
5114 * (which would be dropped in the end io callback of each bio).
5115 * Therefore here we effectively end up waiting for those bios and
5116 * anyone else holding locked ranges without having bumped the inode's
5117 * reference count - if we don't do it, when they access the inode's
5118 * io_tree to unlock a range it may be too late, leading to an
5119 * use-after-free issue.
5120 */
5121 spin_lock(&io_tree->lock);
5122 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5123 struct extent_state *state;
5124 struct extent_state *cached_state = NULL;
5125 u64 start;
5126 u64 end;
5127 unsigned state_flags;
5128
5129 node = rb_first(&io_tree->state);
5130 state = rb_entry(node, struct extent_state, rb_node);
5131 start = state->start;
5132 end = state->end;
5133 state_flags = state->state;
5134 spin_unlock(&io_tree->lock);
5135
5136 lock_extent(io_tree, start, end, &cached_state);
5137
5138 /*
5139 * If still has DELALLOC flag, the extent didn't reach disk,
5140 * and its reserved space won't be freed by delayed_ref.
5141 * So we need to free its reserved space here.
5142 * (Refer to comment in btrfs_invalidate_folio, case 2)
5143 *
5144 * Note, end is the bytenr of last byte, so we need + 1 here.
5145 */
5146 if (state_flags & EXTENT_DELALLOC)
5147 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5148 end - start + 1, NULL);
5149
5150 clear_extent_bit(io_tree, start, end,
5151 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5152 &cached_state);
5153
5154 cond_resched();
5155 spin_lock(&io_tree->lock);
5156 }
5157 spin_unlock(&io_tree->lock);
5158 }
5159
5160 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5161 struct btrfs_block_rsv *rsv)
5162 {
5163 struct btrfs_fs_info *fs_info = root->fs_info;
5164 struct btrfs_trans_handle *trans;
5165 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5166 int ret;
5167
5168 /*
5169 * Eviction should be taking place at some place safe because of our
5170 * delayed iputs. However the normal flushing code will run delayed
5171 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5172 *
5173 * We reserve the delayed_refs_extra here again because we can't use
5174 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5175 * above. We reserve our extra bit here because we generate a ton of
5176 * delayed refs activity by truncating.
5177 *
5178 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5179 * if we fail to make this reservation we can re-try without the
5180 * delayed_refs_extra so we can make some forward progress.
5181 */
5182 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5183 BTRFS_RESERVE_FLUSH_EVICT);
5184 if (ret) {
5185 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5186 BTRFS_RESERVE_FLUSH_EVICT);
5187 if (ret) {
5188 btrfs_warn(fs_info,
5189 "could not allocate space for delete; will truncate on mount");
5190 return ERR_PTR(-ENOSPC);
5191 }
5192 delayed_refs_extra = 0;
5193 }
5194
5195 trans = btrfs_join_transaction(root);
5196 if (IS_ERR(trans))
5197 return trans;
5198
5199 if (delayed_refs_extra) {
5200 trans->block_rsv = &fs_info->trans_block_rsv;
5201 trans->bytes_reserved = delayed_refs_extra;
5202 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5203 delayed_refs_extra, true);
5204 }
5205 return trans;
5206 }
5207
5208 void btrfs_evict_inode(struct inode *inode)
5209 {
5210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5211 struct btrfs_trans_handle *trans;
5212 struct btrfs_root *root = BTRFS_I(inode)->root;
5213 struct btrfs_block_rsv *rsv = NULL;
5214 int ret;
5215
5216 trace_btrfs_inode_evict(inode);
5217
5218 if (!root) {
5219 fsverity_cleanup_inode(inode);
5220 clear_inode(inode);
5221 return;
5222 }
5223
5224 evict_inode_truncate_pages(inode);
5225
5226 if (inode->i_nlink &&
5227 ((btrfs_root_refs(&root->root_item) != 0 &&
5228 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5229 btrfs_is_free_space_inode(BTRFS_I(inode))))
5230 goto out;
5231
5232 if (is_bad_inode(inode))
5233 goto out;
5234
5235 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5236 goto out;
5237
5238 if (inode->i_nlink > 0) {
5239 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5240 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5241 goto out;
5242 }
5243
5244 /*
5245 * This makes sure the inode item in tree is uptodate and the space for
5246 * the inode update is released.
5247 */
5248 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5249 if (ret)
5250 goto out;
5251
5252 /*
5253 * This drops any pending insert or delete operations we have for this
5254 * inode. We could have a delayed dir index deletion queued up, but
5255 * we're removing the inode completely so that'll be taken care of in
5256 * the truncate.
5257 */
5258 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5259
5260 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5261 if (!rsv)
5262 goto out;
5263 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5264 rsv->failfast = true;
5265
5266 btrfs_i_size_write(BTRFS_I(inode), 0);
5267
5268 while (1) {
5269 struct btrfs_truncate_control control = {
5270 .inode = BTRFS_I(inode),
5271 .ino = btrfs_ino(BTRFS_I(inode)),
5272 .new_size = 0,
5273 .min_type = 0,
5274 };
5275
5276 trans = evict_refill_and_join(root, rsv);
5277 if (IS_ERR(trans))
5278 goto out;
5279
5280 trans->block_rsv = rsv;
5281
5282 ret = btrfs_truncate_inode_items(trans, root, &control);
5283 trans->block_rsv = &fs_info->trans_block_rsv;
5284 btrfs_end_transaction(trans);
5285 /*
5286 * We have not added new delayed items for our inode after we
5287 * have flushed its delayed items, so no need to throttle on
5288 * delayed items. However we have modified extent buffers.
5289 */
5290 btrfs_btree_balance_dirty_nodelay(fs_info);
5291 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5292 goto out;
5293 else if (!ret)
5294 break;
5295 }
5296
5297 /*
5298 * Errors here aren't a big deal, it just means we leave orphan items in
5299 * the tree. They will be cleaned up on the next mount. If the inode
5300 * number gets reused, cleanup deletes the orphan item without doing
5301 * anything, and unlink reuses the existing orphan item.
5302 *
5303 * If it turns out that we are dropping too many of these, we might want
5304 * to add a mechanism for retrying these after a commit.
5305 */
5306 trans = evict_refill_and_join(root, rsv);
5307 if (!IS_ERR(trans)) {
5308 trans->block_rsv = rsv;
5309 btrfs_orphan_del(trans, BTRFS_I(inode));
5310 trans->block_rsv = &fs_info->trans_block_rsv;
5311 btrfs_end_transaction(trans);
5312 }
5313
5314 out:
5315 btrfs_free_block_rsv(fs_info, rsv);
5316 /*
5317 * If we didn't successfully delete, the orphan item will still be in
5318 * the tree and we'll retry on the next mount. Again, we might also want
5319 * to retry these periodically in the future.
5320 */
5321 btrfs_remove_delayed_node(BTRFS_I(inode));
5322 fsverity_cleanup_inode(inode);
5323 clear_inode(inode);
5324 }
5325
5326 /*
5327 * Return the key found in the dir entry in the location pointer, fill @type
5328 * with BTRFS_FT_*, and return 0.
5329 *
5330 * If no dir entries were found, returns -ENOENT.
5331 * If found a corrupted location in dir entry, returns -EUCLEAN.
5332 */
5333 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5334 struct btrfs_key *location, u8 *type)
5335 {
5336 struct btrfs_dir_item *di;
5337 struct btrfs_path *path;
5338 struct btrfs_root *root = dir->root;
5339 int ret = 0;
5340 struct fscrypt_name fname;
5341
5342 path = btrfs_alloc_path();
5343 if (!path)
5344 return -ENOMEM;
5345
5346 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5347 if (ret < 0)
5348 goto out;
5349 /*
5350 * fscrypt_setup_filename() should never return a positive value, but
5351 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5352 */
5353 ASSERT(ret == 0);
5354
5355 /* This needs to handle no-key deletions later on */
5356
5357 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5358 &fname.disk_name, 0);
5359 if (IS_ERR_OR_NULL(di)) {
5360 ret = di ? PTR_ERR(di) : -ENOENT;
5361 goto out;
5362 }
5363
5364 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5365 if (location->type != BTRFS_INODE_ITEM_KEY &&
5366 location->type != BTRFS_ROOT_ITEM_KEY) {
5367 ret = -EUCLEAN;
5368 btrfs_warn(root->fs_info,
5369 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5370 __func__, fname.disk_name.name, btrfs_ino(dir),
5371 location->objectid, location->type, location->offset);
5372 }
5373 if (!ret)
5374 *type = btrfs_dir_ftype(path->nodes[0], di);
5375 out:
5376 fscrypt_free_filename(&fname);
5377 btrfs_free_path(path);
5378 return ret;
5379 }
5380
5381 /*
5382 * when we hit a tree root in a directory, the btrfs part of the inode
5383 * needs to be changed to reflect the root directory of the tree root. This
5384 * is kind of like crossing a mount point.
5385 */
5386 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5387 struct btrfs_inode *dir,
5388 struct dentry *dentry,
5389 struct btrfs_key *location,
5390 struct btrfs_root **sub_root)
5391 {
5392 struct btrfs_path *path;
5393 struct btrfs_root *new_root;
5394 struct btrfs_root_ref *ref;
5395 struct extent_buffer *leaf;
5396 struct btrfs_key key;
5397 int ret;
5398 int err = 0;
5399 struct fscrypt_name fname;
5400
5401 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5402 if (ret)
5403 return ret;
5404
5405 path = btrfs_alloc_path();
5406 if (!path) {
5407 err = -ENOMEM;
5408 goto out;
5409 }
5410
5411 err = -ENOENT;
5412 key.objectid = dir->root->root_key.objectid;
5413 key.type = BTRFS_ROOT_REF_KEY;
5414 key.offset = location->objectid;
5415
5416 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5417 if (ret) {
5418 if (ret < 0)
5419 err = ret;
5420 goto out;
5421 }
5422
5423 leaf = path->nodes[0];
5424 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5425 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5426 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5427 goto out;
5428
5429 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5430 (unsigned long)(ref + 1), fname.disk_name.len);
5431 if (ret)
5432 goto out;
5433
5434 btrfs_release_path(path);
5435
5436 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5437 if (IS_ERR(new_root)) {
5438 err = PTR_ERR(new_root);
5439 goto out;
5440 }
5441
5442 *sub_root = new_root;
5443 location->objectid = btrfs_root_dirid(&new_root->root_item);
5444 location->type = BTRFS_INODE_ITEM_KEY;
5445 location->offset = 0;
5446 err = 0;
5447 out:
5448 btrfs_free_path(path);
5449 fscrypt_free_filename(&fname);
5450 return err;
5451 }
5452
5453 static void inode_tree_add(struct btrfs_inode *inode)
5454 {
5455 struct btrfs_root *root = inode->root;
5456 struct btrfs_inode *entry;
5457 struct rb_node **p;
5458 struct rb_node *parent;
5459 struct rb_node *new = &inode->rb_node;
5460 u64 ino = btrfs_ino(inode);
5461
5462 if (inode_unhashed(&inode->vfs_inode))
5463 return;
5464 parent = NULL;
5465 spin_lock(&root->inode_lock);
5466 p = &root->inode_tree.rb_node;
5467 while (*p) {
5468 parent = *p;
5469 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5470
5471 if (ino < btrfs_ino(entry))
5472 p = &parent->rb_left;
5473 else if (ino > btrfs_ino(entry))
5474 p = &parent->rb_right;
5475 else {
5476 WARN_ON(!(entry->vfs_inode.i_state &
5477 (I_WILL_FREE | I_FREEING)));
5478 rb_replace_node(parent, new, &root->inode_tree);
5479 RB_CLEAR_NODE(parent);
5480 spin_unlock(&root->inode_lock);
5481 return;
5482 }
5483 }
5484 rb_link_node(new, parent, p);
5485 rb_insert_color(new, &root->inode_tree);
5486 spin_unlock(&root->inode_lock);
5487 }
5488
5489 static void inode_tree_del(struct btrfs_inode *inode)
5490 {
5491 struct btrfs_root *root = inode->root;
5492 int empty = 0;
5493
5494 spin_lock(&root->inode_lock);
5495 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5496 rb_erase(&inode->rb_node, &root->inode_tree);
5497 RB_CLEAR_NODE(&inode->rb_node);
5498 empty = RB_EMPTY_ROOT(&root->inode_tree);
5499 }
5500 spin_unlock(&root->inode_lock);
5501
5502 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5503 spin_lock(&root->inode_lock);
5504 empty = RB_EMPTY_ROOT(&root->inode_tree);
5505 spin_unlock(&root->inode_lock);
5506 if (empty)
5507 btrfs_add_dead_root(root);
5508 }
5509 }
5510
5511
5512 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5513 {
5514 struct btrfs_iget_args *args = p;
5515
5516 inode->i_ino = args->ino;
5517 BTRFS_I(inode)->location.objectid = args->ino;
5518 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5519 BTRFS_I(inode)->location.offset = 0;
5520 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5521 BUG_ON(args->root && !BTRFS_I(inode)->root);
5522
5523 if (args->root && args->root == args->root->fs_info->tree_root &&
5524 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5525 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5526 &BTRFS_I(inode)->runtime_flags);
5527 return 0;
5528 }
5529
5530 static int btrfs_find_actor(struct inode *inode, void *opaque)
5531 {
5532 struct btrfs_iget_args *args = opaque;
5533
5534 return args->ino == BTRFS_I(inode)->location.objectid &&
5535 args->root == BTRFS_I(inode)->root;
5536 }
5537
5538 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5539 struct btrfs_root *root)
5540 {
5541 struct inode *inode;
5542 struct btrfs_iget_args args;
5543 unsigned long hashval = btrfs_inode_hash(ino, root);
5544
5545 args.ino = ino;
5546 args.root = root;
5547
5548 inode = iget5_locked(s, hashval, btrfs_find_actor,
5549 btrfs_init_locked_inode,
5550 (void *)&args);
5551 return inode;
5552 }
5553
5554 /*
5555 * Get an inode object given its inode number and corresponding root.
5556 * Path can be preallocated to prevent recursing back to iget through
5557 * allocator. NULL is also valid but may require an additional allocation
5558 * later.
5559 */
5560 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5561 struct btrfs_root *root, struct btrfs_path *path)
5562 {
5563 struct inode *inode;
5564
5565 inode = btrfs_iget_locked(s, ino, root);
5566 if (!inode)
5567 return ERR_PTR(-ENOMEM);
5568
5569 if (inode->i_state & I_NEW) {
5570 int ret;
5571
5572 ret = btrfs_read_locked_inode(inode, path);
5573 if (!ret) {
5574 inode_tree_add(BTRFS_I(inode));
5575 unlock_new_inode(inode);
5576 } else {
5577 iget_failed(inode);
5578 /*
5579 * ret > 0 can come from btrfs_search_slot called by
5580 * btrfs_read_locked_inode, this means the inode item
5581 * was not found.
5582 */
5583 if (ret > 0)
5584 ret = -ENOENT;
5585 inode = ERR_PTR(ret);
5586 }
5587 }
5588
5589 return inode;
5590 }
5591
5592 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5593 {
5594 return btrfs_iget_path(s, ino, root, NULL);
5595 }
5596
5597 static struct inode *new_simple_dir(struct inode *dir,
5598 struct btrfs_key *key,
5599 struct btrfs_root *root)
5600 {
5601 struct timespec64 ts;
5602 struct inode *inode = new_inode(dir->i_sb);
5603
5604 if (!inode)
5605 return ERR_PTR(-ENOMEM);
5606
5607 BTRFS_I(inode)->root = btrfs_grab_root(root);
5608 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5609 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5610
5611 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5612 /*
5613 * We only need lookup, the rest is read-only and there's no inode
5614 * associated with the dentry
5615 */
5616 inode->i_op = &simple_dir_inode_operations;
5617 inode->i_opflags &= ~IOP_XATTR;
5618 inode->i_fop = &simple_dir_operations;
5619 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5620
5621 ts = inode_set_ctime_current(inode);
5622 inode_set_mtime_to_ts(inode, ts);
5623 inode_set_atime_to_ts(inode, inode_get_atime(dir));
5624 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5625 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5626
5627 inode->i_uid = dir->i_uid;
5628 inode->i_gid = dir->i_gid;
5629
5630 return inode;
5631 }
5632
5633 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5634 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5635 static_assert(BTRFS_FT_DIR == FT_DIR);
5636 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5637 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5638 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5639 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5640 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5641
5642 static inline u8 btrfs_inode_type(struct inode *inode)
5643 {
5644 return fs_umode_to_ftype(inode->i_mode);
5645 }
5646
5647 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5648 {
5649 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5650 struct inode *inode;
5651 struct btrfs_root *root = BTRFS_I(dir)->root;
5652 struct btrfs_root *sub_root = root;
5653 struct btrfs_key location;
5654 u8 di_type = 0;
5655 int ret = 0;
5656
5657 if (dentry->d_name.len > BTRFS_NAME_LEN)
5658 return ERR_PTR(-ENAMETOOLONG);
5659
5660 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5661 if (ret < 0)
5662 return ERR_PTR(ret);
5663
5664 if (location.type == BTRFS_INODE_ITEM_KEY) {
5665 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5666 if (IS_ERR(inode))
5667 return inode;
5668
5669 /* Do extra check against inode mode with di_type */
5670 if (btrfs_inode_type(inode) != di_type) {
5671 btrfs_crit(fs_info,
5672 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5673 inode->i_mode, btrfs_inode_type(inode),
5674 di_type);
5675 iput(inode);
5676 return ERR_PTR(-EUCLEAN);
5677 }
5678 return inode;
5679 }
5680
5681 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5682 &location, &sub_root);
5683 if (ret < 0) {
5684 if (ret != -ENOENT)
5685 inode = ERR_PTR(ret);
5686 else
5687 inode = new_simple_dir(dir, &location, root);
5688 } else {
5689 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5690 btrfs_put_root(sub_root);
5691
5692 if (IS_ERR(inode))
5693 return inode;
5694
5695 down_read(&fs_info->cleanup_work_sem);
5696 if (!sb_rdonly(inode->i_sb))
5697 ret = btrfs_orphan_cleanup(sub_root);
5698 up_read(&fs_info->cleanup_work_sem);
5699 if (ret) {
5700 iput(inode);
5701 inode = ERR_PTR(ret);
5702 }
5703 }
5704
5705 return inode;
5706 }
5707
5708 static int btrfs_dentry_delete(const struct dentry *dentry)
5709 {
5710 struct btrfs_root *root;
5711 struct inode *inode = d_inode(dentry);
5712
5713 if (!inode && !IS_ROOT(dentry))
5714 inode = d_inode(dentry->d_parent);
5715
5716 if (inode) {
5717 root = BTRFS_I(inode)->root;
5718 if (btrfs_root_refs(&root->root_item) == 0)
5719 return 1;
5720
5721 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5722 return 1;
5723 }
5724 return 0;
5725 }
5726
5727 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5728 unsigned int flags)
5729 {
5730 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5731
5732 if (inode == ERR_PTR(-ENOENT))
5733 inode = NULL;
5734 return d_splice_alias(inode, dentry);
5735 }
5736
5737 /*
5738 * Find the highest existing sequence number in a directory and then set the
5739 * in-memory index_cnt variable to the first free sequence number.
5740 */
5741 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5742 {
5743 struct btrfs_root *root = inode->root;
5744 struct btrfs_key key, found_key;
5745 struct btrfs_path *path;
5746 struct extent_buffer *leaf;
5747 int ret;
5748
5749 key.objectid = btrfs_ino(inode);
5750 key.type = BTRFS_DIR_INDEX_KEY;
5751 key.offset = (u64)-1;
5752
5753 path = btrfs_alloc_path();
5754 if (!path)
5755 return -ENOMEM;
5756
5757 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5758 if (ret < 0)
5759 goto out;
5760 /* FIXME: we should be able to handle this */
5761 if (ret == 0)
5762 goto out;
5763 ret = 0;
5764
5765 if (path->slots[0] == 0) {
5766 inode->index_cnt = BTRFS_DIR_START_INDEX;
5767 goto out;
5768 }
5769
5770 path->slots[0]--;
5771
5772 leaf = path->nodes[0];
5773 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5774
5775 if (found_key.objectid != btrfs_ino(inode) ||
5776 found_key.type != BTRFS_DIR_INDEX_KEY) {
5777 inode->index_cnt = BTRFS_DIR_START_INDEX;
5778 goto out;
5779 }
5780
5781 inode->index_cnt = found_key.offset + 1;
5782 out:
5783 btrfs_free_path(path);
5784 return ret;
5785 }
5786
5787 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5788 {
5789 int ret = 0;
5790
5791 btrfs_inode_lock(dir, 0);
5792 if (dir->index_cnt == (u64)-1) {
5793 ret = btrfs_inode_delayed_dir_index_count(dir);
5794 if (ret) {
5795 ret = btrfs_set_inode_index_count(dir);
5796 if (ret)
5797 goto out;
5798 }
5799 }
5800
5801 /* index_cnt is the index number of next new entry, so decrement it. */
5802 *index = dir->index_cnt - 1;
5803 out:
5804 btrfs_inode_unlock(dir, 0);
5805
5806 return ret;
5807 }
5808
5809 /*
5810 * All this infrastructure exists because dir_emit can fault, and we are holding
5811 * the tree lock when doing readdir. For now just allocate a buffer and copy
5812 * our information into that, and then dir_emit from the buffer. This is
5813 * similar to what NFS does, only we don't keep the buffer around in pagecache
5814 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5815 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5816 * tree lock.
5817 */
5818 static int btrfs_opendir(struct inode *inode, struct file *file)
5819 {
5820 struct btrfs_file_private *private;
5821 u64 last_index;
5822 int ret;
5823
5824 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5825 if (ret)
5826 return ret;
5827
5828 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5829 if (!private)
5830 return -ENOMEM;
5831 private->last_index = last_index;
5832 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5833 if (!private->filldir_buf) {
5834 kfree(private);
5835 return -ENOMEM;
5836 }
5837 file->private_data = private;
5838 return 0;
5839 }
5840
5841 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5842 {
5843 struct btrfs_file_private *private = file->private_data;
5844 int ret;
5845
5846 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5847 &private->last_index);
5848 if (ret)
5849 return ret;
5850
5851 return generic_file_llseek(file, offset, whence);
5852 }
5853
5854 struct dir_entry {
5855 u64 ino;
5856 u64 offset;
5857 unsigned type;
5858 int name_len;
5859 };
5860
5861 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5862 {
5863 while (entries--) {
5864 struct dir_entry *entry = addr;
5865 char *name = (char *)(entry + 1);
5866
5867 ctx->pos = get_unaligned(&entry->offset);
5868 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5869 get_unaligned(&entry->ino),
5870 get_unaligned(&entry->type)))
5871 return 1;
5872 addr += sizeof(struct dir_entry) +
5873 get_unaligned(&entry->name_len);
5874 ctx->pos++;
5875 }
5876 return 0;
5877 }
5878
5879 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5880 {
5881 struct inode *inode = file_inode(file);
5882 struct btrfs_root *root = BTRFS_I(inode)->root;
5883 struct btrfs_file_private *private = file->private_data;
5884 struct btrfs_dir_item *di;
5885 struct btrfs_key key;
5886 struct btrfs_key found_key;
5887 struct btrfs_path *path;
5888 void *addr;
5889 LIST_HEAD(ins_list);
5890 LIST_HEAD(del_list);
5891 int ret;
5892 char *name_ptr;
5893 int name_len;
5894 int entries = 0;
5895 int total_len = 0;
5896 bool put = false;
5897 struct btrfs_key location;
5898
5899 if (!dir_emit_dots(file, ctx))
5900 return 0;
5901
5902 path = btrfs_alloc_path();
5903 if (!path)
5904 return -ENOMEM;
5905
5906 addr = private->filldir_buf;
5907 path->reada = READA_FORWARD;
5908
5909 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5910 &ins_list, &del_list);
5911
5912 again:
5913 key.type = BTRFS_DIR_INDEX_KEY;
5914 key.offset = ctx->pos;
5915 key.objectid = btrfs_ino(BTRFS_I(inode));
5916
5917 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5918 struct dir_entry *entry;
5919 struct extent_buffer *leaf = path->nodes[0];
5920 u8 ftype;
5921
5922 if (found_key.objectid != key.objectid)
5923 break;
5924 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5925 break;
5926 if (found_key.offset < ctx->pos)
5927 continue;
5928 if (found_key.offset > private->last_index)
5929 break;
5930 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5931 continue;
5932 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5933 name_len = btrfs_dir_name_len(leaf, di);
5934 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5935 PAGE_SIZE) {
5936 btrfs_release_path(path);
5937 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5938 if (ret)
5939 goto nopos;
5940 addr = private->filldir_buf;
5941 entries = 0;
5942 total_len = 0;
5943 goto again;
5944 }
5945
5946 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5947 entry = addr;
5948 name_ptr = (char *)(entry + 1);
5949 read_extent_buffer(leaf, name_ptr,
5950 (unsigned long)(di + 1), name_len);
5951 put_unaligned(name_len, &entry->name_len);
5952 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5953 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5954 put_unaligned(location.objectid, &entry->ino);
5955 put_unaligned(found_key.offset, &entry->offset);
5956 entries++;
5957 addr += sizeof(struct dir_entry) + name_len;
5958 total_len += sizeof(struct dir_entry) + name_len;
5959 }
5960 /* Catch error encountered during iteration */
5961 if (ret < 0)
5962 goto err;
5963
5964 btrfs_release_path(path);
5965
5966 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5967 if (ret)
5968 goto nopos;
5969
5970 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5971 if (ret)
5972 goto nopos;
5973
5974 /*
5975 * Stop new entries from being returned after we return the last
5976 * entry.
5977 *
5978 * New directory entries are assigned a strictly increasing
5979 * offset. This means that new entries created during readdir
5980 * are *guaranteed* to be seen in the future by that readdir.
5981 * This has broken buggy programs which operate on names as
5982 * they're returned by readdir. Until we re-use freed offsets
5983 * we have this hack to stop new entries from being returned
5984 * under the assumption that they'll never reach this huge
5985 * offset.
5986 *
5987 * This is being careful not to overflow 32bit loff_t unless the
5988 * last entry requires it because doing so has broken 32bit apps
5989 * in the past.
5990 */
5991 if (ctx->pos >= INT_MAX)
5992 ctx->pos = LLONG_MAX;
5993 else
5994 ctx->pos = INT_MAX;
5995 nopos:
5996 ret = 0;
5997 err:
5998 if (put)
5999 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6000 btrfs_free_path(path);
6001 return ret;
6002 }
6003
6004 /*
6005 * This is somewhat expensive, updating the tree every time the
6006 * inode changes. But, it is most likely to find the inode in cache.
6007 * FIXME, needs more benchmarking...there are no reasons other than performance
6008 * to keep or drop this code.
6009 */
6010 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6011 {
6012 struct btrfs_root *root = inode->root;
6013 struct btrfs_fs_info *fs_info = root->fs_info;
6014 struct btrfs_trans_handle *trans;
6015 int ret;
6016
6017 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6018 return 0;
6019
6020 trans = btrfs_join_transaction(root);
6021 if (IS_ERR(trans))
6022 return PTR_ERR(trans);
6023
6024 ret = btrfs_update_inode(trans, inode);
6025 if (ret == -ENOSPC || ret == -EDQUOT) {
6026 /* whoops, lets try again with the full transaction */
6027 btrfs_end_transaction(trans);
6028 trans = btrfs_start_transaction(root, 1);
6029 if (IS_ERR(trans))
6030 return PTR_ERR(trans);
6031
6032 ret = btrfs_update_inode(trans, inode);
6033 }
6034 btrfs_end_transaction(trans);
6035 if (inode->delayed_node)
6036 btrfs_balance_delayed_items(fs_info);
6037
6038 return ret;
6039 }
6040
6041 /*
6042 * This is a copy of file_update_time. We need this so we can return error on
6043 * ENOSPC for updating the inode in the case of file write and mmap writes.
6044 */
6045 static int btrfs_update_time(struct inode *inode, int flags)
6046 {
6047 struct btrfs_root *root = BTRFS_I(inode)->root;
6048 bool dirty;
6049
6050 if (btrfs_root_readonly(root))
6051 return -EROFS;
6052
6053 dirty = inode_update_timestamps(inode, flags);
6054 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6055 }
6056
6057 /*
6058 * helper to find a free sequence number in a given directory. This current
6059 * code is very simple, later versions will do smarter things in the btree
6060 */
6061 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6062 {
6063 int ret = 0;
6064
6065 if (dir->index_cnt == (u64)-1) {
6066 ret = btrfs_inode_delayed_dir_index_count(dir);
6067 if (ret) {
6068 ret = btrfs_set_inode_index_count(dir);
6069 if (ret)
6070 return ret;
6071 }
6072 }
6073
6074 *index = dir->index_cnt;
6075 dir->index_cnt++;
6076
6077 return ret;
6078 }
6079
6080 static int btrfs_insert_inode_locked(struct inode *inode)
6081 {
6082 struct btrfs_iget_args args;
6083
6084 args.ino = BTRFS_I(inode)->location.objectid;
6085 args.root = BTRFS_I(inode)->root;
6086
6087 return insert_inode_locked4(inode,
6088 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6089 btrfs_find_actor, &args);
6090 }
6091
6092 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6093 unsigned int *trans_num_items)
6094 {
6095 struct inode *dir = args->dir;
6096 struct inode *inode = args->inode;
6097 int ret;
6098
6099 if (!args->orphan) {
6100 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6101 &args->fname);
6102 if (ret)
6103 return ret;
6104 }
6105
6106 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6107 if (ret) {
6108 fscrypt_free_filename(&args->fname);
6109 return ret;
6110 }
6111
6112 /* 1 to add inode item */
6113 *trans_num_items = 1;
6114 /* 1 to add compression property */
6115 if (BTRFS_I(dir)->prop_compress)
6116 (*trans_num_items)++;
6117 /* 1 to add default ACL xattr */
6118 if (args->default_acl)
6119 (*trans_num_items)++;
6120 /* 1 to add access ACL xattr */
6121 if (args->acl)
6122 (*trans_num_items)++;
6123 #ifdef CONFIG_SECURITY
6124 /* 1 to add LSM xattr */
6125 if (dir->i_security)
6126 (*trans_num_items)++;
6127 #endif
6128 if (args->orphan) {
6129 /* 1 to add orphan item */
6130 (*trans_num_items)++;
6131 } else {
6132 /*
6133 * 1 to add dir item
6134 * 1 to add dir index
6135 * 1 to update parent inode item
6136 *
6137 * No need for 1 unit for the inode ref item because it is
6138 * inserted in a batch together with the inode item at
6139 * btrfs_create_new_inode().
6140 */
6141 *trans_num_items += 3;
6142 }
6143 return 0;
6144 }
6145
6146 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6147 {
6148 posix_acl_release(args->acl);
6149 posix_acl_release(args->default_acl);
6150 fscrypt_free_filename(&args->fname);
6151 }
6152
6153 /*
6154 * Inherit flags from the parent inode.
6155 *
6156 * Currently only the compression flags and the cow flags are inherited.
6157 */
6158 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6159 {
6160 unsigned int flags;
6161
6162 flags = dir->flags;
6163
6164 if (flags & BTRFS_INODE_NOCOMPRESS) {
6165 inode->flags &= ~BTRFS_INODE_COMPRESS;
6166 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6167 } else if (flags & BTRFS_INODE_COMPRESS) {
6168 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6169 inode->flags |= BTRFS_INODE_COMPRESS;
6170 }
6171
6172 if (flags & BTRFS_INODE_NODATACOW) {
6173 inode->flags |= BTRFS_INODE_NODATACOW;
6174 if (S_ISREG(inode->vfs_inode.i_mode))
6175 inode->flags |= BTRFS_INODE_NODATASUM;
6176 }
6177
6178 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6179 }
6180
6181 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6182 struct btrfs_new_inode_args *args)
6183 {
6184 struct timespec64 ts;
6185 struct inode *dir = args->dir;
6186 struct inode *inode = args->inode;
6187 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6188 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6189 struct btrfs_root *root;
6190 struct btrfs_inode_item *inode_item;
6191 struct btrfs_key *location;
6192 struct btrfs_path *path;
6193 u64 objectid;
6194 struct btrfs_inode_ref *ref;
6195 struct btrfs_key key[2];
6196 u32 sizes[2];
6197 struct btrfs_item_batch batch;
6198 unsigned long ptr;
6199 int ret;
6200
6201 path = btrfs_alloc_path();
6202 if (!path)
6203 return -ENOMEM;
6204
6205 if (!args->subvol)
6206 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6207 root = BTRFS_I(inode)->root;
6208
6209 ret = btrfs_get_free_objectid(root, &objectid);
6210 if (ret)
6211 goto out;
6212 inode->i_ino = objectid;
6213
6214 if (args->orphan) {
6215 /*
6216 * O_TMPFILE, set link count to 0, so that after this point, we
6217 * fill in an inode item with the correct link count.
6218 */
6219 set_nlink(inode, 0);
6220 } else {
6221 trace_btrfs_inode_request(dir);
6222
6223 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6224 if (ret)
6225 goto out;
6226 }
6227 /* index_cnt is ignored for everything but a dir. */
6228 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6229 BTRFS_I(inode)->generation = trans->transid;
6230 inode->i_generation = BTRFS_I(inode)->generation;
6231
6232 /*
6233 * We don't have any capability xattrs set here yet, shortcut any
6234 * queries for the xattrs here. If we add them later via the inode
6235 * security init path or any other path this flag will be cleared.
6236 */
6237 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6238
6239 /*
6240 * Subvolumes don't inherit flags from their parent directory.
6241 * Originally this was probably by accident, but we probably can't
6242 * change it now without compatibility issues.
6243 */
6244 if (!args->subvol)
6245 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6246
6247 if (S_ISREG(inode->i_mode)) {
6248 if (btrfs_test_opt(fs_info, NODATASUM))
6249 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6250 if (btrfs_test_opt(fs_info, NODATACOW))
6251 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6252 BTRFS_INODE_NODATASUM;
6253 }
6254
6255 location = &BTRFS_I(inode)->location;
6256 location->objectid = objectid;
6257 location->offset = 0;
6258 location->type = BTRFS_INODE_ITEM_KEY;
6259
6260 ret = btrfs_insert_inode_locked(inode);
6261 if (ret < 0) {
6262 if (!args->orphan)
6263 BTRFS_I(dir)->index_cnt--;
6264 goto out;
6265 }
6266
6267 /*
6268 * We could have gotten an inode number from somebody who was fsynced
6269 * and then removed in this same transaction, so let's just set full
6270 * sync since it will be a full sync anyway and this will blow away the
6271 * old info in the log.
6272 */
6273 btrfs_set_inode_full_sync(BTRFS_I(inode));
6274
6275 key[0].objectid = objectid;
6276 key[0].type = BTRFS_INODE_ITEM_KEY;
6277 key[0].offset = 0;
6278
6279 sizes[0] = sizeof(struct btrfs_inode_item);
6280
6281 if (!args->orphan) {
6282 /*
6283 * Start new inodes with an inode_ref. This is slightly more
6284 * efficient for small numbers of hard links since they will
6285 * be packed into one item. Extended refs will kick in if we
6286 * add more hard links than can fit in the ref item.
6287 */
6288 key[1].objectid = objectid;
6289 key[1].type = BTRFS_INODE_REF_KEY;
6290 if (args->subvol) {
6291 key[1].offset = objectid;
6292 sizes[1] = 2 + sizeof(*ref);
6293 } else {
6294 key[1].offset = btrfs_ino(BTRFS_I(dir));
6295 sizes[1] = name->len + sizeof(*ref);
6296 }
6297 }
6298
6299 batch.keys = &key[0];
6300 batch.data_sizes = &sizes[0];
6301 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6302 batch.nr = args->orphan ? 1 : 2;
6303 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6304 if (ret != 0) {
6305 btrfs_abort_transaction(trans, ret);
6306 goto discard;
6307 }
6308
6309 ts = simple_inode_init_ts(inode);
6310 BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6311 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6312
6313 /*
6314 * We're going to fill the inode item now, so at this point the inode
6315 * must be fully initialized.
6316 */
6317
6318 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6319 struct btrfs_inode_item);
6320 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6321 sizeof(*inode_item));
6322 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6323
6324 if (!args->orphan) {
6325 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6326 struct btrfs_inode_ref);
6327 ptr = (unsigned long)(ref + 1);
6328 if (args->subvol) {
6329 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6330 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6331 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6332 } else {
6333 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6334 name->len);
6335 btrfs_set_inode_ref_index(path->nodes[0], ref,
6336 BTRFS_I(inode)->dir_index);
6337 write_extent_buffer(path->nodes[0], name->name, ptr,
6338 name->len);
6339 }
6340 }
6341
6342 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6343 /*
6344 * We don't need the path anymore, plus inheriting properties, adding
6345 * ACLs, security xattrs, orphan item or adding the link, will result in
6346 * allocating yet another path. So just free our path.
6347 */
6348 btrfs_free_path(path);
6349 path = NULL;
6350
6351 if (args->subvol) {
6352 struct inode *parent;
6353
6354 /*
6355 * Subvolumes inherit properties from their parent subvolume,
6356 * not the directory they were created in.
6357 */
6358 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6359 BTRFS_I(dir)->root);
6360 if (IS_ERR(parent)) {
6361 ret = PTR_ERR(parent);
6362 } else {
6363 ret = btrfs_inode_inherit_props(trans, inode, parent);
6364 iput(parent);
6365 }
6366 } else {
6367 ret = btrfs_inode_inherit_props(trans, inode, dir);
6368 }
6369 if (ret) {
6370 btrfs_err(fs_info,
6371 "error inheriting props for ino %llu (root %llu): %d",
6372 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6373 ret);
6374 }
6375
6376 /*
6377 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6378 * probably a bug.
6379 */
6380 if (!args->subvol) {
6381 ret = btrfs_init_inode_security(trans, args);
6382 if (ret) {
6383 btrfs_abort_transaction(trans, ret);
6384 goto discard;
6385 }
6386 }
6387
6388 inode_tree_add(BTRFS_I(inode));
6389
6390 trace_btrfs_inode_new(inode);
6391 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6392
6393 btrfs_update_root_times(trans, root);
6394
6395 if (args->orphan) {
6396 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6397 } else {
6398 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6399 0, BTRFS_I(inode)->dir_index);
6400 }
6401 if (ret) {
6402 btrfs_abort_transaction(trans, ret);
6403 goto discard;
6404 }
6405
6406 return 0;
6407
6408 discard:
6409 /*
6410 * discard_new_inode() calls iput(), but the caller owns the reference
6411 * to the inode.
6412 */
6413 ihold(inode);
6414 discard_new_inode(inode);
6415 out:
6416 btrfs_free_path(path);
6417 return ret;
6418 }
6419
6420 /*
6421 * utility function to add 'inode' into 'parent_inode' with
6422 * a give name and a given sequence number.
6423 * if 'add_backref' is true, also insert a backref from the
6424 * inode to the parent directory.
6425 */
6426 int btrfs_add_link(struct btrfs_trans_handle *trans,
6427 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6428 const struct fscrypt_str *name, int add_backref, u64 index)
6429 {
6430 int ret = 0;
6431 struct btrfs_key key;
6432 struct btrfs_root *root = parent_inode->root;
6433 u64 ino = btrfs_ino(inode);
6434 u64 parent_ino = btrfs_ino(parent_inode);
6435
6436 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6437 memcpy(&key, &inode->root->root_key, sizeof(key));
6438 } else {
6439 key.objectid = ino;
6440 key.type = BTRFS_INODE_ITEM_KEY;
6441 key.offset = 0;
6442 }
6443
6444 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6445 ret = btrfs_add_root_ref(trans, key.objectid,
6446 root->root_key.objectid, parent_ino,
6447 index, name);
6448 } else if (add_backref) {
6449 ret = btrfs_insert_inode_ref(trans, root, name,
6450 ino, parent_ino, index);
6451 }
6452
6453 /* Nothing to clean up yet */
6454 if (ret)
6455 return ret;
6456
6457 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6458 btrfs_inode_type(&inode->vfs_inode), index);
6459 if (ret == -EEXIST || ret == -EOVERFLOW)
6460 goto fail_dir_item;
6461 else if (ret) {
6462 btrfs_abort_transaction(trans, ret);
6463 return ret;
6464 }
6465
6466 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6467 name->len * 2);
6468 inode_inc_iversion(&parent_inode->vfs_inode);
6469 /*
6470 * If we are replaying a log tree, we do not want to update the mtime
6471 * and ctime of the parent directory with the current time, since the
6472 * log replay procedure is responsible for setting them to their correct
6473 * values (the ones it had when the fsync was done).
6474 */
6475 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6476 inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6477 inode_set_ctime_current(&parent_inode->vfs_inode));
6478
6479 ret = btrfs_update_inode(trans, parent_inode);
6480 if (ret)
6481 btrfs_abort_transaction(trans, ret);
6482 return ret;
6483
6484 fail_dir_item:
6485 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6486 u64 local_index;
6487 int err;
6488 err = btrfs_del_root_ref(trans, key.objectid,
6489 root->root_key.objectid, parent_ino,
6490 &local_index, name);
6491 if (err)
6492 btrfs_abort_transaction(trans, err);
6493 } else if (add_backref) {
6494 u64 local_index;
6495 int err;
6496
6497 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6498 &local_index);
6499 if (err)
6500 btrfs_abort_transaction(trans, err);
6501 }
6502
6503 /* Return the original error code */
6504 return ret;
6505 }
6506
6507 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6508 struct inode *inode)
6509 {
6510 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6511 struct btrfs_root *root = BTRFS_I(dir)->root;
6512 struct btrfs_new_inode_args new_inode_args = {
6513 .dir = dir,
6514 .dentry = dentry,
6515 .inode = inode,
6516 };
6517 unsigned int trans_num_items;
6518 struct btrfs_trans_handle *trans;
6519 int err;
6520
6521 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6522 if (err)
6523 goto out_inode;
6524
6525 trans = btrfs_start_transaction(root, trans_num_items);
6526 if (IS_ERR(trans)) {
6527 err = PTR_ERR(trans);
6528 goto out_new_inode_args;
6529 }
6530
6531 err = btrfs_create_new_inode(trans, &new_inode_args);
6532 if (!err)
6533 d_instantiate_new(dentry, inode);
6534
6535 btrfs_end_transaction(trans);
6536 btrfs_btree_balance_dirty(fs_info);
6537 out_new_inode_args:
6538 btrfs_new_inode_args_destroy(&new_inode_args);
6539 out_inode:
6540 if (err)
6541 iput(inode);
6542 return err;
6543 }
6544
6545 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6546 struct dentry *dentry, umode_t mode, dev_t rdev)
6547 {
6548 struct inode *inode;
6549
6550 inode = new_inode(dir->i_sb);
6551 if (!inode)
6552 return -ENOMEM;
6553 inode_init_owner(idmap, inode, dir, mode);
6554 inode->i_op = &btrfs_special_inode_operations;
6555 init_special_inode(inode, inode->i_mode, rdev);
6556 return btrfs_create_common(dir, dentry, inode);
6557 }
6558
6559 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6560 struct dentry *dentry, umode_t mode, bool excl)
6561 {
6562 struct inode *inode;
6563
6564 inode = new_inode(dir->i_sb);
6565 if (!inode)
6566 return -ENOMEM;
6567 inode_init_owner(idmap, inode, dir, mode);
6568 inode->i_fop = &btrfs_file_operations;
6569 inode->i_op = &btrfs_file_inode_operations;
6570 inode->i_mapping->a_ops = &btrfs_aops;
6571 return btrfs_create_common(dir, dentry, inode);
6572 }
6573
6574 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6575 struct dentry *dentry)
6576 {
6577 struct btrfs_trans_handle *trans = NULL;
6578 struct btrfs_root *root = BTRFS_I(dir)->root;
6579 struct inode *inode = d_inode(old_dentry);
6580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6581 struct fscrypt_name fname;
6582 u64 index;
6583 int err;
6584 int drop_inode = 0;
6585
6586 /* do not allow sys_link's with other subvols of the same device */
6587 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6588 return -EXDEV;
6589
6590 if (inode->i_nlink >= BTRFS_LINK_MAX)
6591 return -EMLINK;
6592
6593 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6594 if (err)
6595 goto fail;
6596
6597 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6598 if (err)
6599 goto fail;
6600
6601 /*
6602 * 2 items for inode and inode ref
6603 * 2 items for dir items
6604 * 1 item for parent inode
6605 * 1 item for orphan item deletion if O_TMPFILE
6606 */
6607 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6608 if (IS_ERR(trans)) {
6609 err = PTR_ERR(trans);
6610 trans = NULL;
6611 goto fail;
6612 }
6613
6614 /* There are several dir indexes for this inode, clear the cache. */
6615 BTRFS_I(inode)->dir_index = 0ULL;
6616 inc_nlink(inode);
6617 inode_inc_iversion(inode);
6618 inode_set_ctime_current(inode);
6619 ihold(inode);
6620 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6621
6622 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6623 &fname.disk_name, 1, index);
6624
6625 if (err) {
6626 drop_inode = 1;
6627 } else {
6628 struct dentry *parent = dentry->d_parent;
6629
6630 err = btrfs_update_inode(trans, BTRFS_I(inode));
6631 if (err)
6632 goto fail;
6633 if (inode->i_nlink == 1) {
6634 /*
6635 * If new hard link count is 1, it's a file created
6636 * with open(2) O_TMPFILE flag.
6637 */
6638 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6639 if (err)
6640 goto fail;
6641 }
6642 d_instantiate(dentry, inode);
6643 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6644 }
6645
6646 fail:
6647 fscrypt_free_filename(&fname);
6648 if (trans)
6649 btrfs_end_transaction(trans);
6650 if (drop_inode) {
6651 inode_dec_link_count(inode);
6652 iput(inode);
6653 }
6654 btrfs_btree_balance_dirty(fs_info);
6655 return err;
6656 }
6657
6658 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6659 struct dentry *dentry, umode_t mode)
6660 {
6661 struct inode *inode;
6662
6663 inode = new_inode(dir->i_sb);
6664 if (!inode)
6665 return -ENOMEM;
6666 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6667 inode->i_op = &btrfs_dir_inode_operations;
6668 inode->i_fop = &btrfs_dir_file_operations;
6669 return btrfs_create_common(dir, dentry, inode);
6670 }
6671
6672 static noinline int uncompress_inline(struct btrfs_path *path,
6673 struct page *page,
6674 struct btrfs_file_extent_item *item)
6675 {
6676 int ret;
6677 struct extent_buffer *leaf = path->nodes[0];
6678 char *tmp;
6679 size_t max_size;
6680 unsigned long inline_size;
6681 unsigned long ptr;
6682 int compress_type;
6683
6684 compress_type = btrfs_file_extent_compression(leaf, item);
6685 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6686 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6687 tmp = kmalloc(inline_size, GFP_NOFS);
6688 if (!tmp)
6689 return -ENOMEM;
6690 ptr = btrfs_file_extent_inline_start(item);
6691
6692 read_extent_buffer(leaf, tmp, ptr, inline_size);
6693
6694 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6695 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6696
6697 /*
6698 * decompression code contains a memset to fill in any space between the end
6699 * of the uncompressed data and the end of max_size in case the decompressed
6700 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6701 * the end of an inline extent and the beginning of the next block, so we
6702 * cover that region here.
6703 */
6704
6705 if (max_size < PAGE_SIZE)
6706 memzero_page(page, max_size, PAGE_SIZE - max_size);
6707 kfree(tmp);
6708 return ret;
6709 }
6710
6711 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6712 struct page *page)
6713 {
6714 struct btrfs_file_extent_item *fi;
6715 void *kaddr;
6716 size_t copy_size;
6717
6718 if (!page || PageUptodate(page))
6719 return 0;
6720
6721 ASSERT(page_offset(page) == 0);
6722
6723 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6724 struct btrfs_file_extent_item);
6725 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6726 return uncompress_inline(path, page, fi);
6727
6728 copy_size = min_t(u64, PAGE_SIZE,
6729 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6730 kaddr = kmap_local_page(page);
6731 read_extent_buffer(path->nodes[0], kaddr,
6732 btrfs_file_extent_inline_start(fi), copy_size);
6733 kunmap_local(kaddr);
6734 if (copy_size < PAGE_SIZE)
6735 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6736 return 0;
6737 }
6738
6739 /*
6740 * Lookup the first extent overlapping a range in a file.
6741 *
6742 * @inode: file to search in
6743 * @page: page to read extent data into if the extent is inline
6744 * @pg_offset: offset into @page to copy to
6745 * @start: file offset
6746 * @len: length of range starting at @start
6747 *
6748 * Return the first &struct extent_map which overlaps the given range, reading
6749 * it from the B-tree and caching it if necessary. Note that there may be more
6750 * extents which overlap the given range after the returned extent_map.
6751 *
6752 * If @page is not NULL and the extent is inline, this also reads the extent
6753 * data directly into the page and marks the extent up to date in the io_tree.
6754 *
6755 * Return: ERR_PTR on error, non-NULL extent_map on success.
6756 */
6757 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6758 struct page *page, size_t pg_offset,
6759 u64 start, u64 len)
6760 {
6761 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6762 int ret = 0;
6763 u64 extent_start = 0;
6764 u64 extent_end = 0;
6765 u64 objectid = btrfs_ino(inode);
6766 int extent_type = -1;
6767 struct btrfs_path *path = NULL;
6768 struct btrfs_root *root = inode->root;
6769 struct btrfs_file_extent_item *item;
6770 struct extent_buffer *leaf;
6771 struct btrfs_key found_key;
6772 struct extent_map *em = NULL;
6773 struct extent_map_tree *em_tree = &inode->extent_tree;
6774
6775 read_lock(&em_tree->lock);
6776 em = lookup_extent_mapping(em_tree, start, len);
6777 read_unlock(&em_tree->lock);
6778
6779 if (em) {
6780 if (em->start > start || em->start + em->len <= start)
6781 free_extent_map(em);
6782 else if (em->block_start == EXTENT_MAP_INLINE && page)
6783 free_extent_map(em);
6784 else
6785 goto out;
6786 }
6787 em = alloc_extent_map();
6788 if (!em) {
6789 ret = -ENOMEM;
6790 goto out;
6791 }
6792 em->start = EXTENT_MAP_HOLE;
6793 em->orig_start = EXTENT_MAP_HOLE;
6794 em->len = (u64)-1;
6795 em->block_len = (u64)-1;
6796
6797 path = btrfs_alloc_path();
6798 if (!path) {
6799 ret = -ENOMEM;
6800 goto out;
6801 }
6802
6803 /* Chances are we'll be called again, so go ahead and do readahead */
6804 path->reada = READA_FORWARD;
6805
6806 /*
6807 * The same explanation in load_free_space_cache applies here as well,
6808 * we only read when we're loading the free space cache, and at that
6809 * point the commit_root has everything we need.
6810 */
6811 if (btrfs_is_free_space_inode(inode)) {
6812 path->search_commit_root = 1;
6813 path->skip_locking = 1;
6814 }
6815
6816 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6817 if (ret < 0) {
6818 goto out;
6819 } else if (ret > 0) {
6820 if (path->slots[0] == 0)
6821 goto not_found;
6822 path->slots[0]--;
6823 ret = 0;
6824 }
6825
6826 leaf = path->nodes[0];
6827 item = btrfs_item_ptr(leaf, path->slots[0],
6828 struct btrfs_file_extent_item);
6829 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6830 if (found_key.objectid != objectid ||
6831 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6832 /*
6833 * If we backup past the first extent we want to move forward
6834 * and see if there is an extent in front of us, otherwise we'll
6835 * say there is a hole for our whole search range which can
6836 * cause problems.
6837 */
6838 extent_end = start;
6839 goto next;
6840 }
6841
6842 extent_type = btrfs_file_extent_type(leaf, item);
6843 extent_start = found_key.offset;
6844 extent_end = btrfs_file_extent_end(path);
6845 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6846 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6847 /* Only regular file could have regular/prealloc extent */
6848 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6849 ret = -EUCLEAN;
6850 btrfs_crit(fs_info,
6851 "regular/prealloc extent found for non-regular inode %llu",
6852 btrfs_ino(inode));
6853 goto out;
6854 }
6855 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6856 extent_start);
6857 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6858 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6859 path->slots[0],
6860 extent_start);
6861 }
6862 next:
6863 if (start >= extent_end) {
6864 path->slots[0]++;
6865 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6866 ret = btrfs_next_leaf(root, path);
6867 if (ret < 0)
6868 goto out;
6869 else if (ret > 0)
6870 goto not_found;
6871
6872 leaf = path->nodes[0];
6873 }
6874 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6875 if (found_key.objectid != objectid ||
6876 found_key.type != BTRFS_EXTENT_DATA_KEY)
6877 goto not_found;
6878 if (start + len <= found_key.offset)
6879 goto not_found;
6880 if (start > found_key.offset)
6881 goto next;
6882
6883 /* New extent overlaps with existing one */
6884 em->start = start;
6885 em->orig_start = start;
6886 em->len = found_key.offset - start;
6887 em->block_start = EXTENT_MAP_HOLE;
6888 goto insert;
6889 }
6890
6891 btrfs_extent_item_to_extent_map(inode, path, item, em);
6892
6893 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6894 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6895 goto insert;
6896 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6897 /*
6898 * Inline extent can only exist at file offset 0. This is
6899 * ensured by tree-checker and inline extent creation path.
6900 * Thus all members representing file offsets should be zero.
6901 */
6902 ASSERT(pg_offset == 0);
6903 ASSERT(extent_start == 0);
6904 ASSERT(em->start == 0);
6905
6906 /*
6907 * btrfs_extent_item_to_extent_map() should have properly
6908 * initialized em members already.
6909 *
6910 * Other members are not utilized for inline extents.
6911 */
6912 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6913 ASSERT(em->len == fs_info->sectorsize);
6914
6915 ret = read_inline_extent(inode, path, page);
6916 if (ret < 0)
6917 goto out;
6918 goto insert;
6919 }
6920 not_found:
6921 em->start = start;
6922 em->orig_start = start;
6923 em->len = len;
6924 em->block_start = EXTENT_MAP_HOLE;
6925 insert:
6926 ret = 0;
6927 btrfs_release_path(path);
6928 if (em->start > start || extent_map_end(em) <= start) {
6929 btrfs_err(fs_info,
6930 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6931 em->start, em->len, start, len);
6932 ret = -EIO;
6933 goto out;
6934 }
6935
6936 write_lock(&em_tree->lock);
6937 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6938 write_unlock(&em_tree->lock);
6939 out:
6940 btrfs_free_path(path);
6941
6942 trace_btrfs_get_extent(root, inode, em);
6943
6944 if (ret) {
6945 free_extent_map(em);
6946 return ERR_PTR(ret);
6947 }
6948 return em;
6949 }
6950
6951 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6952 struct btrfs_dio_data *dio_data,
6953 const u64 start,
6954 const u64 len,
6955 const u64 orig_start,
6956 const u64 block_start,
6957 const u64 block_len,
6958 const u64 orig_block_len,
6959 const u64 ram_bytes,
6960 const int type)
6961 {
6962 struct extent_map *em = NULL;
6963 struct btrfs_ordered_extent *ordered;
6964
6965 if (type != BTRFS_ORDERED_NOCOW) {
6966 em = create_io_em(inode, start, len, orig_start, block_start,
6967 block_len, orig_block_len, ram_bytes,
6968 BTRFS_COMPRESS_NONE, /* compress_type */
6969 type);
6970 if (IS_ERR(em))
6971 goto out;
6972 }
6973 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6974 block_start, block_len, 0,
6975 (1 << type) |
6976 (1 << BTRFS_ORDERED_DIRECT),
6977 BTRFS_COMPRESS_NONE);
6978 if (IS_ERR(ordered)) {
6979 if (em) {
6980 free_extent_map(em);
6981 btrfs_drop_extent_map_range(inode, start,
6982 start + len - 1, false);
6983 }
6984 em = ERR_CAST(ordered);
6985 } else {
6986 ASSERT(!dio_data->ordered);
6987 dio_data->ordered = ordered;
6988 }
6989 out:
6990
6991 return em;
6992 }
6993
6994 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6995 struct btrfs_dio_data *dio_data,
6996 u64 start, u64 len)
6997 {
6998 struct btrfs_root *root = inode->root;
6999 struct btrfs_fs_info *fs_info = root->fs_info;
7000 struct extent_map *em;
7001 struct btrfs_key ins;
7002 u64 alloc_hint;
7003 int ret;
7004
7005 alloc_hint = get_extent_allocation_hint(inode, start, len);
7006 again:
7007 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7008 0, alloc_hint, &ins, 1, 1);
7009 if (ret == -EAGAIN) {
7010 ASSERT(btrfs_is_zoned(fs_info));
7011 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7012 TASK_UNINTERRUPTIBLE);
7013 goto again;
7014 }
7015 if (ret)
7016 return ERR_PTR(ret);
7017
7018 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7019 ins.objectid, ins.offset, ins.offset,
7020 ins.offset, BTRFS_ORDERED_REGULAR);
7021 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7022 if (IS_ERR(em))
7023 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7024 1);
7025
7026 return em;
7027 }
7028
7029 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7030 {
7031 struct btrfs_block_group *block_group;
7032 bool readonly = false;
7033
7034 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7035 if (!block_group || block_group->ro)
7036 readonly = true;
7037 if (block_group)
7038 btrfs_put_block_group(block_group);
7039 return readonly;
7040 }
7041
7042 /*
7043 * Check if we can do nocow write into the range [@offset, @offset + @len)
7044 *
7045 * @offset: File offset
7046 * @len: The length to write, will be updated to the nocow writeable
7047 * range
7048 * @orig_start: (optional) Return the original file offset of the file extent
7049 * @orig_len: (optional) Return the original on-disk length of the file extent
7050 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7051 * @strict: if true, omit optimizations that might force us into unnecessary
7052 * cow. e.g., don't trust generation number.
7053 *
7054 * Return:
7055 * >0 and update @len if we can do nocow write
7056 * 0 if we can't do nocow write
7057 * <0 if error happened
7058 *
7059 * NOTE: This only checks the file extents, caller is responsible to wait for
7060 * any ordered extents.
7061 */
7062 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7063 u64 *orig_start, u64 *orig_block_len,
7064 u64 *ram_bytes, bool nowait, bool strict)
7065 {
7066 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7067 struct can_nocow_file_extent_args nocow_args = { 0 };
7068 struct btrfs_path *path;
7069 int ret;
7070 struct extent_buffer *leaf;
7071 struct btrfs_root *root = BTRFS_I(inode)->root;
7072 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7073 struct btrfs_file_extent_item *fi;
7074 struct btrfs_key key;
7075 int found_type;
7076
7077 path = btrfs_alloc_path();
7078 if (!path)
7079 return -ENOMEM;
7080 path->nowait = nowait;
7081
7082 ret = btrfs_lookup_file_extent(NULL, root, path,
7083 btrfs_ino(BTRFS_I(inode)), offset, 0);
7084 if (ret < 0)
7085 goto out;
7086
7087 if (ret == 1) {
7088 if (path->slots[0] == 0) {
7089 /* can't find the item, must cow */
7090 ret = 0;
7091 goto out;
7092 }
7093 path->slots[0]--;
7094 }
7095 ret = 0;
7096 leaf = path->nodes[0];
7097 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7098 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7099 key.type != BTRFS_EXTENT_DATA_KEY) {
7100 /* not our file or wrong item type, must cow */
7101 goto out;
7102 }
7103
7104 if (key.offset > offset) {
7105 /* Wrong offset, must cow */
7106 goto out;
7107 }
7108
7109 if (btrfs_file_extent_end(path) <= offset)
7110 goto out;
7111
7112 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7113 found_type = btrfs_file_extent_type(leaf, fi);
7114 if (ram_bytes)
7115 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7116
7117 nocow_args.start = offset;
7118 nocow_args.end = offset + *len - 1;
7119 nocow_args.strict = strict;
7120 nocow_args.free_path = true;
7121
7122 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7123 /* can_nocow_file_extent() has freed the path. */
7124 path = NULL;
7125
7126 if (ret != 1) {
7127 /* Treat errors as not being able to NOCOW. */
7128 ret = 0;
7129 goto out;
7130 }
7131
7132 ret = 0;
7133 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7134 goto out;
7135
7136 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7137 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7138 u64 range_end;
7139
7140 range_end = round_up(offset + nocow_args.num_bytes,
7141 root->fs_info->sectorsize) - 1;
7142 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7143 if (ret) {
7144 ret = -EAGAIN;
7145 goto out;
7146 }
7147 }
7148
7149 if (orig_start)
7150 *orig_start = key.offset - nocow_args.extent_offset;
7151 if (orig_block_len)
7152 *orig_block_len = nocow_args.disk_num_bytes;
7153
7154 *len = nocow_args.num_bytes;
7155 ret = 1;
7156 out:
7157 btrfs_free_path(path);
7158 return ret;
7159 }
7160
7161 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7162 struct extent_state **cached_state,
7163 unsigned int iomap_flags)
7164 {
7165 const bool writing = (iomap_flags & IOMAP_WRITE);
7166 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7167 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7168 struct btrfs_ordered_extent *ordered;
7169 int ret = 0;
7170
7171 while (1) {
7172 if (nowait) {
7173 if (!try_lock_extent(io_tree, lockstart, lockend,
7174 cached_state))
7175 return -EAGAIN;
7176 } else {
7177 lock_extent(io_tree, lockstart, lockend, cached_state);
7178 }
7179 /*
7180 * We're concerned with the entire range that we're going to be
7181 * doing DIO to, so we need to make sure there's no ordered
7182 * extents in this range.
7183 */
7184 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7185 lockend - lockstart + 1);
7186
7187 /*
7188 * We need to make sure there are no buffered pages in this
7189 * range either, we could have raced between the invalidate in
7190 * generic_file_direct_write and locking the extent. The
7191 * invalidate needs to happen so that reads after a write do not
7192 * get stale data.
7193 */
7194 if (!ordered &&
7195 (!writing || !filemap_range_has_page(inode->i_mapping,
7196 lockstart, lockend)))
7197 break;
7198
7199 unlock_extent(io_tree, lockstart, lockend, cached_state);
7200
7201 if (ordered) {
7202 if (nowait) {
7203 btrfs_put_ordered_extent(ordered);
7204 ret = -EAGAIN;
7205 break;
7206 }
7207 /*
7208 * If we are doing a DIO read and the ordered extent we
7209 * found is for a buffered write, we can not wait for it
7210 * to complete and retry, because if we do so we can
7211 * deadlock with concurrent buffered writes on page
7212 * locks. This happens only if our DIO read covers more
7213 * than one extent map, if at this point has already
7214 * created an ordered extent for a previous extent map
7215 * and locked its range in the inode's io tree, and a
7216 * concurrent write against that previous extent map's
7217 * range and this range started (we unlock the ranges
7218 * in the io tree only when the bios complete and
7219 * buffered writes always lock pages before attempting
7220 * to lock range in the io tree).
7221 */
7222 if (writing ||
7223 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7224 btrfs_start_ordered_extent(ordered);
7225 else
7226 ret = nowait ? -EAGAIN : -ENOTBLK;
7227 btrfs_put_ordered_extent(ordered);
7228 } else {
7229 /*
7230 * We could trigger writeback for this range (and wait
7231 * for it to complete) and then invalidate the pages for
7232 * this range (through invalidate_inode_pages2_range()),
7233 * but that can lead us to a deadlock with a concurrent
7234 * call to readahead (a buffered read or a defrag call
7235 * triggered a readahead) on a page lock due to an
7236 * ordered dio extent we created before but did not have
7237 * yet a corresponding bio submitted (whence it can not
7238 * complete), which makes readahead wait for that
7239 * ordered extent to complete while holding a lock on
7240 * that page.
7241 */
7242 ret = nowait ? -EAGAIN : -ENOTBLK;
7243 }
7244
7245 if (ret)
7246 break;
7247
7248 cond_resched();
7249 }
7250
7251 return ret;
7252 }
7253
7254 /* The callers of this must take lock_extent() */
7255 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7256 u64 len, u64 orig_start, u64 block_start,
7257 u64 block_len, u64 orig_block_len,
7258 u64 ram_bytes, int compress_type,
7259 int type)
7260 {
7261 struct extent_map *em;
7262 int ret;
7263
7264 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7265 type == BTRFS_ORDERED_COMPRESSED ||
7266 type == BTRFS_ORDERED_NOCOW ||
7267 type == BTRFS_ORDERED_REGULAR);
7268
7269 em = alloc_extent_map();
7270 if (!em)
7271 return ERR_PTR(-ENOMEM);
7272
7273 em->start = start;
7274 em->orig_start = orig_start;
7275 em->len = len;
7276 em->block_len = block_len;
7277 em->block_start = block_start;
7278 em->orig_block_len = orig_block_len;
7279 em->ram_bytes = ram_bytes;
7280 em->generation = -1;
7281 em->flags |= EXTENT_FLAG_PINNED;
7282 if (type == BTRFS_ORDERED_PREALLOC)
7283 em->flags |= EXTENT_FLAG_FILLING;
7284 else if (type == BTRFS_ORDERED_COMPRESSED)
7285 extent_map_set_compression(em, compress_type);
7286
7287 ret = btrfs_replace_extent_map_range(inode, em, true);
7288 if (ret) {
7289 free_extent_map(em);
7290 return ERR_PTR(ret);
7291 }
7292
7293 /* em got 2 refs now, callers needs to do free_extent_map once. */
7294 return em;
7295 }
7296
7297
7298 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7299 struct inode *inode,
7300 struct btrfs_dio_data *dio_data,
7301 u64 start, u64 *lenp,
7302 unsigned int iomap_flags)
7303 {
7304 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7305 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7306 struct extent_map *em = *map;
7307 int type;
7308 u64 block_start, orig_start, orig_block_len, ram_bytes;
7309 struct btrfs_block_group *bg;
7310 bool can_nocow = false;
7311 bool space_reserved = false;
7312 u64 len = *lenp;
7313 u64 prev_len;
7314 int ret = 0;
7315
7316 /*
7317 * We don't allocate a new extent in the following cases
7318 *
7319 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7320 * existing extent.
7321 * 2) The extent is marked as PREALLOC. We're good to go here and can
7322 * just use the extent.
7323 *
7324 */
7325 if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7326 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7327 em->block_start != EXTENT_MAP_HOLE)) {
7328 if (em->flags & EXTENT_FLAG_PREALLOC)
7329 type = BTRFS_ORDERED_PREALLOC;
7330 else
7331 type = BTRFS_ORDERED_NOCOW;
7332 len = min(len, em->len - (start - em->start));
7333 block_start = em->block_start + (start - em->start);
7334
7335 if (can_nocow_extent(inode, start, &len, &orig_start,
7336 &orig_block_len, &ram_bytes, false, false) == 1) {
7337 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7338 if (bg)
7339 can_nocow = true;
7340 }
7341 }
7342
7343 prev_len = len;
7344 if (can_nocow) {
7345 struct extent_map *em2;
7346
7347 /* We can NOCOW, so only need to reserve metadata space. */
7348 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7349 nowait);
7350 if (ret < 0) {
7351 /* Our caller expects us to free the input extent map. */
7352 free_extent_map(em);
7353 *map = NULL;
7354 btrfs_dec_nocow_writers(bg);
7355 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7356 ret = -EAGAIN;
7357 goto out;
7358 }
7359 space_reserved = true;
7360
7361 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7362 orig_start, block_start,
7363 len, orig_block_len,
7364 ram_bytes, type);
7365 btrfs_dec_nocow_writers(bg);
7366 if (type == BTRFS_ORDERED_PREALLOC) {
7367 free_extent_map(em);
7368 *map = em2;
7369 em = em2;
7370 }
7371
7372 if (IS_ERR(em2)) {
7373 ret = PTR_ERR(em2);
7374 goto out;
7375 }
7376
7377 dio_data->nocow_done = true;
7378 } else {
7379 /* Our caller expects us to free the input extent map. */
7380 free_extent_map(em);
7381 *map = NULL;
7382
7383 if (nowait) {
7384 ret = -EAGAIN;
7385 goto out;
7386 }
7387
7388 /*
7389 * If we could not allocate data space before locking the file
7390 * range and we can't do a NOCOW write, then we have to fail.
7391 */
7392 if (!dio_data->data_space_reserved) {
7393 ret = -ENOSPC;
7394 goto out;
7395 }
7396
7397 /*
7398 * We have to COW and we have already reserved data space before,
7399 * so now we reserve only metadata.
7400 */
7401 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7402 false);
7403 if (ret < 0)
7404 goto out;
7405 space_reserved = true;
7406
7407 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7408 if (IS_ERR(em)) {
7409 ret = PTR_ERR(em);
7410 goto out;
7411 }
7412 *map = em;
7413 len = min(len, em->len - (start - em->start));
7414 if (len < prev_len)
7415 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7416 prev_len - len, true);
7417 }
7418
7419 /*
7420 * We have created our ordered extent, so we can now release our reservation
7421 * for an outstanding extent.
7422 */
7423 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7424
7425 /*
7426 * Need to update the i_size under the extent lock so buffered
7427 * readers will get the updated i_size when we unlock.
7428 */
7429 if (start + len > i_size_read(inode))
7430 i_size_write(inode, start + len);
7431 out:
7432 if (ret && space_reserved) {
7433 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7434 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7435 }
7436 *lenp = len;
7437 return ret;
7438 }
7439
7440 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7441 loff_t length, unsigned int flags, struct iomap *iomap,
7442 struct iomap *srcmap)
7443 {
7444 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7445 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7446 struct extent_map *em;
7447 struct extent_state *cached_state = NULL;
7448 struct btrfs_dio_data *dio_data = iter->private;
7449 u64 lockstart, lockend;
7450 const bool write = !!(flags & IOMAP_WRITE);
7451 int ret = 0;
7452 u64 len = length;
7453 const u64 data_alloc_len = length;
7454 bool unlock_extents = false;
7455
7456 /*
7457 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7458 * we're NOWAIT we may submit a bio for a partial range and return
7459 * EIOCBQUEUED, which would result in an errant short read.
7460 *
7461 * The best way to handle this would be to allow for partial completions
7462 * of iocb's, so we could submit the partial bio, return and fault in
7463 * the rest of the pages, and then submit the io for the rest of the
7464 * range. However we don't have that currently, so simply return
7465 * -EAGAIN at this point so that the normal path is used.
7466 */
7467 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7468 return -EAGAIN;
7469
7470 /*
7471 * Cap the size of reads to that usually seen in buffered I/O as we need
7472 * to allocate a contiguous array for the checksums.
7473 */
7474 if (!write)
7475 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7476
7477 lockstart = start;
7478 lockend = start + len - 1;
7479
7480 /*
7481 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7482 * enough if we've written compressed pages to this area, so we need to
7483 * flush the dirty pages again to make absolutely sure that any
7484 * outstanding dirty pages are on disk - the first flush only starts
7485 * compression on the data, while keeping the pages locked, so by the
7486 * time the second flush returns we know bios for the compressed pages
7487 * were submitted and finished, and the pages no longer under writeback.
7488 *
7489 * If we have a NOWAIT request and we have any pages in the range that
7490 * are locked, likely due to compression still in progress, we don't want
7491 * to block on page locks. We also don't want to block on pages marked as
7492 * dirty or under writeback (same as for the non-compression case).
7493 * iomap_dio_rw() did the same check, but after that and before we got
7494 * here, mmap'ed writes may have happened or buffered reads started
7495 * (readpage() and readahead(), which lock pages), as we haven't locked
7496 * the file range yet.
7497 */
7498 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7499 &BTRFS_I(inode)->runtime_flags)) {
7500 if (flags & IOMAP_NOWAIT) {
7501 if (filemap_range_needs_writeback(inode->i_mapping,
7502 lockstart, lockend))
7503 return -EAGAIN;
7504 } else {
7505 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7506 start + length - 1);
7507 if (ret)
7508 return ret;
7509 }
7510 }
7511
7512 memset(dio_data, 0, sizeof(*dio_data));
7513
7514 /*
7515 * We always try to allocate data space and must do it before locking
7516 * the file range, to avoid deadlocks with concurrent writes to the same
7517 * range if the range has several extents and the writes don't expand the
7518 * current i_size (the inode lock is taken in shared mode). If we fail to
7519 * allocate data space here we continue and later, after locking the
7520 * file range, we fail with ENOSPC only if we figure out we can not do a
7521 * NOCOW write.
7522 */
7523 if (write && !(flags & IOMAP_NOWAIT)) {
7524 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7525 &dio_data->data_reserved,
7526 start, data_alloc_len, false);
7527 if (!ret)
7528 dio_data->data_space_reserved = true;
7529 else if (ret && !(BTRFS_I(inode)->flags &
7530 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7531 goto err;
7532 }
7533
7534 /*
7535 * If this errors out it's because we couldn't invalidate pagecache for
7536 * this range and we need to fallback to buffered IO, or we are doing a
7537 * NOWAIT read/write and we need to block.
7538 */
7539 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7540 if (ret < 0)
7541 goto err;
7542
7543 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7544 if (IS_ERR(em)) {
7545 ret = PTR_ERR(em);
7546 goto unlock_err;
7547 }
7548
7549 /*
7550 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7551 * io. INLINE is special, and we could probably kludge it in here, but
7552 * it's still buffered so for safety lets just fall back to the generic
7553 * buffered path.
7554 *
7555 * For COMPRESSED we _have_ to read the entire extent in so we can
7556 * decompress it, so there will be buffering required no matter what we
7557 * do, so go ahead and fallback to buffered.
7558 *
7559 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7560 * to buffered IO. Don't blame me, this is the price we pay for using
7561 * the generic code.
7562 */
7563 if (extent_map_is_compressed(em) ||
7564 em->block_start == EXTENT_MAP_INLINE) {
7565 free_extent_map(em);
7566 /*
7567 * If we are in a NOWAIT context, return -EAGAIN in order to
7568 * fallback to buffered IO. This is not only because we can
7569 * block with buffered IO (no support for NOWAIT semantics at
7570 * the moment) but also to avoid returning short reads to user
7571 * space - this happens if we were able to read some data from
7572 * previous non-compressed extents and then when we fallback to
7573 * buffered IO, at btrfs_file_read_iter() by calling
7574 * filemap_read(), we fail to fault in pages for the read buffer,
7575 * in which case filemap_read() returns a short read (the number
7576 * of bytes previously read is > 0, so it does not return -EFAULT).
7577 */
7578 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7579 goto unlock_err;
7580 }
7581
7582 len = min(len, em->len - (start - em->start));
7583
7584 /*
7585 * If we have a NOWAIT request and the range contains multiple extents
7586 * (or a mix of extents and holes), then we return -EAGAIN to make the
7587 * caller fallback to a context where it can do a blocking (without
7588 * NOWAIT) request. This way we avoid doing partial IO and returning
7589 * success to the caller, which is not optimal for writes and for reads
7590 * it can result in unexpected behaviour for an application.
7591 *
7592 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7593 * iomap_dio_rw(), we can end up returning less data then what the caller
7594 * asked for, resulting in an unexpected, and incorrect, short read.
7595 * That is, the caller asked to read N bytes and we return less than that,
7596 * which is wrong unless we are crossing EOF. This happens if we get a
7597 * page fault error when trying to fault in pages for the buffer that is
7598 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7599 * have previously submitted bios for other extents in the range, in
7600 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7601 * those bios have completed by the time we get the page fault error,
7602 * which we return back to our caller - we should only return EIOCBQUEUED
7603 * after we have submitted bios for all the extents in the range.
7604 */
7605 if ((flags & IOMAP_NOWAIT) && len < length) {
7606 free_extent_map(em);
7607 ret = -EAGAIN;
7608 goto unlock_err;
7609 }
7610
7611 if (write) {
7612 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7613 start, &len, flags);
7614 if (ret < 0)
7615 goto unlock_err;
7616 unlock_extents = true;
7617 /* Recalc len in case the new em is smaller than requested */
7618 len = min(len, em->len - (start - em->start));
7619 if (dio_data->data_space_reserved) {
7620 u64 release_offset;
7621 u64 release_len = 0;
7622
7623 if (dio_data->nocow_done) {
7624 release_offset = start;
7625 release_len = data_alloc_len;
7626 } else if (len < data_alloc_len) {
7627 release_offset = start + len;
7628 release_len = data_alloc_len - len;
7629 }
7630
7631 if (release_len > 0)
7632 btrfs_free_reserved_data_space(BTRFS_I(inode),
7633 dio_data->data_reserved,
7634 release_offset,
7635 release_len);
7636 }
7637 } else {
7638 /*
7639 * We need to unlock only the end area that we aren't using.
7640 * The rest is going to be unlocked by the endio routine.
7641 */
7642 lockstart = start + len;
7643 if (lockstart < lockend)
7644 unlock_extents = true;
7645 }
7646
7647 if (unlock_extents)
7648 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7649 &cached_state);
7650 else
7651 free_extent_state(cached_state);
7652
7653 /*
7654 * Translate extent map information to iomap.
7655 * We trim the extents (and move the addr) even though iomap code does
7656 * that, since we have locked only the parts we are performing I/O in.
7657 */
7658 if ((em->block_start == EXTENT_MAP_HOLE) ||
7659 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7660 iomap->addr = IOMAP_NULL_ADDR;
7661 iomap->type = IOMAP_HOLE;
7662 } else {
7663 iomap->addr = em->block_start + (start - em->start);
7664 iomap->type = IOMAP_MAPPED;
7665 }
7666 iomap->offset = start;
7667 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7668 iomap->length = len;
7669 free_extent_map(em);
7670
7671 return 0;
7672
7673 unlock_err:
7674 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7675 &cached_state);
7676 err:
7677 if (dio_data->data_space_reserved) {
7678 btrfs_free_reserved_data_space(BTRFS_I(inode),
7679 dio_data->data_reserved,
7680 start, data_alloc_len);
7681 extent_changeset_free(dio_data->data_reserved);
7682 }
7683
7684 return ret;
7685 }
7686
7687 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7688 ssize_t written, unsigned int flags, struct iomap *iomap)
7689 {
7690 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7691 struct btrfs_dio_data *dio_data = iter->private;
7692 size_t submitted = dio_data->submitted;
7693 const bool write = !!(flags & IOMAP_WRITE);
7694 int ret = 0;
7695
7696 if (!write && (iomap->type == IOMAP_HOLE)) {
7697 /* If reading from a hole, unlock and return */
7698 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7699 NULL);
7700 return 0;
7701 }
7702
7703 if (submitted < length) {
7704 pos += submitted;
7705 length -= submitted;
7706 if (write)
7707 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7708 pos, length, false);
7709 else
7710 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7711 pos + length - 1, NULL);
7712 ret = -ENOTBLK;
7713 }
7714 if (write) {
7715 btrfs_put_ordered_extent(dio_data->ordered);
7716 dio_data->ordered = NULL;
7717 }
7718
7719 if (write)
7720 extent_changeset_free(dio_data->data_reserved);
7721 return ret;
7722 }
7723
7724 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7725 {
7726 struct btrfs_dio_private *dip =
7727 container_of(bbio, struct btrfs_dio_private, bbio);
7728 struct btrfs_inode *inode = bbio->inode;
7729 struct bio *bio = &bbio->bio;
7730
7731 if (bio->bi_status) {
7732 btrfs_warn(inode->root->fs_info,
7733 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7734 btrfs_ino(inode), bio->bi_opf,
7735 dip->file_offset, dip->bytes, bio->bi_status);
7736 }
7737
7738 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7739 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7740 dip->file_offset, dip->bytes,
7741 !bio->bi_status);
7742 } else {
7743 unlock_extent(&inode->io_tree, dip->file_offset,
7744 dip->file_offset + dip->bytes - 1, NULL);
7745 }
7746
7747 bbio->bio.bi_private = bbio->private;
7748 iomap_dio_bio_end_io(bio);
7749 }
7750
7751 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7752 loff_t file_offset)
7753 {
7754 struct btrfs_bio *bbio = btrfs_bio(bio);
7755 struct btrfs_dio_private *dip =
7756 container_of(bbio, struct btrfs_dio_private, bbio);
7757 struct btrfs_dio_data *dio_data = iter->private;
7758
7759 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7760 btrfs_dio_end_io, bio->bi_private);
7761 bbio->inode = BTRFS_I(iter->inode);
7762 bbio->file_offset = file_offset;
7763
7764 dip->file_offset = file_offset;
7765 dip->bytes = bio->bi_iter.bi_size;
7766
7767 dio_data->submitted += bio->bi_iter.bi_size;
7768
7769 /*
7770 * Check if we are doing a partial write. If we are, we need to split
7771 * the ordered extent to match the submitted bio. Hang on to the
7772 * remaining unfinishable ordered_extent in dio_data so that it can be
7773 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7774 * remaining pages is blocked on the outstanding ordered extent.
7775 */
7776 if (iter->flags & IOMAP_WRITE) {
7777 int ret;
7778
7779 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7780 if (ret) {
7781 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7782 file_offset, dip->bytes,
7783 !ret);
7784 bio->bi_status = errno_to_blk_status(ret);
7785 iomap_dio_bio_end_io(bio);
7786 return;
7787 }
7788 }
7789
7790 btrfs_submit_bio(bbio, 0);
7791 }
7792
7793 static const struct iomap_ops btrfs_dio_iomap_ops = {
7794 .iomap_begin = btrfs_dio_iomap_begin,
7795 .iomap_end = btrfs_dio_iomap_end,
7796 };
7797
7798 static const struct iomap_dio_ops btrfs_dio_ops = {
7799 .submit_io = btrfs_dio_submit_io,
7800 .bio_set = &btrfs_dio_bioset,
7801 };
7802
7803 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7804 {
7805 struct btrfs_dio_data data = { 0 };
7806
7807 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7808 IOMAP_DIO_PARTIAL, &data, done_before);
7809 }
7810
7811 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7812 size_t done_before)
7813 {
7814 struct btrfs_dio_data data = { 0 };
7815
7816 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7817 IOMAP_DIO_PARTIAL, &data, done_before);
7818 }
7819
7820 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7821 u64 start, u64 len)
7822 {
7823 int ret;
7824
7825 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7826 if (ret)
7827 return ret;
7828
7829 /*
7830 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7831 * file range (0 to LLONG_MAX), but that is not enough if we have
7832 * compression enabled. The first filemap_fdatawrite_range() only kicks
7833 * in the compression of data (in an async thread) and will return
7834 * before the compression is done and writeback is started. A second
7835 * filemap_fdatawrite_range() is needed to wait for the compression to
7836 * complete and writeback to start. We also need to wait for ordered
7837 * extents to complete, because our fiemap implementation uses mainly
7838 * file extent items to list the extents, searching for extent maps
7839 * only for file ranges with holes or prealloc extents to figure out
7840 * if we have delalloc in those ranges.
7841 */
7842 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7843 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7844 if (ret)
7845 return ret;
7846 }
7847
7848 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7849 }
7850
7851 static int btrfs_writepages(struct address_space *mapping,
7852 struct writeback_control *wbc)
7853 {
7854 return extent_writepages(mapping, wbc);
7855 }
7856
7857 static void btrfs_readahead(struct readahead_control *rac)
7858 {
7859 extent_readahead(rac);
7860 }
7861
7862 /*
7863 * For release_folio() and invalidate_folio() we have a race window where
7864 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7865 * If we continue to release/invalidate the page, we could cause use-after-free
7866 * for subpage spinlock. So this function is to spin and wait for subpage
7867 * spinlock.
7868 */
7869 static void wait_subpage_spinlock(struct page *page)
7870 {
7871 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7872 struct folio *folio = page_folio(page);
7873 struct btrfs_subpage *subpage;
7874
7875 if (!btrfs_is_subpage(fs_info, page->mapping))
7876 return;
7877
7878 ASSERT(folio_test_private(folio) && folio_get_private(folio));
7879 subpage = folio_get_private(folio);
7880
7881 /*
7882 * This may look insane as we just acquire the spinlock and release it,
7883 * without doing anything. But we just want to make sure no one is
7884 * still holding the subpage spinlock.
7885 * And since the page is not dirty nor writeback, and we have page
7886 * locked, the only possible way to hold a spinlock is from the endio
7887 * function to clear page writeback.
7888 *
7889 * Here we just acquire the spinlock so that all existing callers
7890 * should exit and we're safe to release/invalidate the page.
7891 */
7892 spin_lock_irq(&subpage->lock);
7893 spin_unlock_irq(&subpage->lock);
7894 }
7895
7896 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7897 {
7898 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7899
7900 if (ret == 1) {
7901 wait_subpage_spinlock(&folio->page);
7902 clear_page_extent_mapped(&folio->page);
7903 }
7904 return ret;
7905 }
7906
7907 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7908 {
7909 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7910 return false;
7911 return __btrfs_release_folio(folio, gfp_flags);
7912 }
7913
7914 #ifdef CONFIG_MIGRATION
7915 static int btrfs_migrate_folio(struct address_space *mapping,
7916 struct folio *dst, struct folio *src,
7917 enum migrate_mode mode)
7918 {
7919 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7920
7921 if (ret != MIGRATEPAGE_SUCCESS)
7922 return ret;
7923
7924 if (folio_test_ordered(src)) {
7925 folio_clear_ordered(src);
7926 folio_set_ordered(dst);
7927 }
7928
7929 return MIGRATEPAGE_SUCCESS;
7930 }
7931 #else
7932 #define btrfs_migrate_folio NULL
7933 #endif
7934
7935 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7936 size_t length)
7937 {
7938 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7939 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7940 struct extent_io_tree *tree = &inode->io_tree;
7941 struct extent_state *cached_state = NULL;
7942 u64 page_start = folio_pos(folio);
7943 u64 page_end = page_start + folio_size(folio) - 1;
7944 u64 cur;
7945 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7946
7947 /*
7948 * We have folio locked so no new ordered extent can be created on this
7949 * page, nor bio can be submitted for this folio.
7950 *
7951 * But already submitted bio can still be finished on this folio.
7952 * Furthermore, endio function won't skip folio which has Ordered
7953 * (Private2) already cleared, so it's possible for endio and
7954 * invalidate_folio to do the same ordered extent accounting twice
7955 * on one folio.
7956 *
7957 * So here we wait for any submitted bios to finish, so that we won't
7958 * do double ordered extent accounting on the same folio.
7959 */
7960 folio_wait_writeback(folio);
7961 wait_subpage_spinlock(&folio->page);
7962
7963 /*
7964 * For subpage case, we have call sites like
7965 * btrfs_punch_hole_lock_range() which passes range not aligned to
7966 * sectorsize.
7967 * If the range doesn't cover the full folio, we don't need to and
7968 * shouldn't clear page extent mapped, as folio->private can still
7969 * record subpage dirty bits for other part of the range.
7970 *
7971 * For cases that invalidate the full folio even the range doesn't
7972 * cover the full folio, like invalidating the last folio, we're
7973 * still safe to wait for ordered extent to finish.
7974 */
7975 if (!(offset == 0 && length == folio_size(folio))) {
7976 btrfs_release_folio(folio, GFP_NOFS);
7977 return;
7978 }
7979
7980 if (!inode_evicting)
7981 lock_extent(tree, page_start, page_end, &cached_state);
7982
7983 cur = page_start;
7984 while (cur < page_end) {
7985 struct btrfs_ordered_extent *ordered;
7986 u64 range_end;
7987 u32 range_len;
7988 u32 extra_flags = 0;
7989
7990 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7991 page_end + 1 - cur);
7992 if (!ordered) {
7993 range_end = page_end;
7994 /*
7995 * No ordered extent covering this range, we are safe
7996 * to delete all extent states in the range.
7997 */
7998 extra_flags = EXTENT_CLEAR_ALL_BITS;
7999 goto next;
8000 }
8001 if (ordered->file_offset > cur) {
8002 /*
8003 * There is a range between [cur, oe->file_offset) not
8004 * covered by any ordered extent.
8005 * We are safe to delete all extent states, and handle
8006 * the ordered extent in the next iteration.
8007 */
8008 range_end = ordered->file_offset - 1;
8009 extra_flags = EXTENT_CLEAR_ALL_BITS;
8010 goto next;
8011 }
8012
8013 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8014 page_end);
8015 ASSERT(range_end + 1 - cur < U32_MAX);
8016 range_len = range_end + 1 - cur;
8017 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
8018 /*
8019 * If Ordered (Private2) is cleared, it means endio has
8020 * already been executed for the range.
8021 * We can't delete the extent states as
8022 * btrfs_finish_ordered_io() may still use some of them.
8023 */
8024 goto next;
8025 }
8026 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
8027
8028 /*
8029 * IO on this page will never be started, so we need to account
8030 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8031 * here, must leave that up for the ordered extent completion.
8032 *
8033 * This will also unlock the range for incoming
8034 * btrfs_finish_ordered_io().
8035 */
8036 if (!inode_evicting)
8037 clear_extent_bit(tree, cur, range_end,
8038 EXTENT_DELALLOC |
8039 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8040 EXTENT_DEFRAG, &cached_state);
8041
8042 spin_lock_irq(&inode->ordered_tree_lock);
8043 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8044 ordered->truncated_len = min(ordered->truncated_len,
8045 cur - ordered->file_offset);
8046 spin_unlock_irq(&inode->ordered_tree_lock);
8047
8048 /*
8049 * If the ordered extent has finished, we're safe to delete all
8050 * the extent states of the range, otherwise
8051 * btrfs_finish_ordered_io() will get executed by endio for
8052 * other pages, so we can't delete extent states.
8053 */
8054 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8055 cur, range_end + 1 - cur)) {
8056 btrfs_finish_ordered_io(ordered);
8057 /*
8058 * The ordered extent has finished, now we're again
8059 * safe to delete all extent states of the range.
8060 */
8061 extra_flags = EXTENT_CLEAR_ALL_BITS;
8062 }
8063 next:
8064 if (ordered)
8065 btrfs_put_ordered_extent(ordered);
8066 /*
8067 * Qgroup reserved space handler
8068 * Sector(s) here will be either:
8069 *
8070 * 1) Already written to disk or bio already finished
8071 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8072 * Qgroup will be handled by its qgroup_record then.
8073 * btrfs_qgroup_free_data() call will do nothing here.
8074 *
8075 * 2) Not written to disk yet
8076 * Then btrfs_qgroup_free_data() call will clear the
8077 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8078 * reserved data space.
8079 * Since the IO will never happen for this page.
8080 */
8081 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8082 if (!inode_evicting) {
8083 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8084 EXTENT_DELALLOC | EXTENT_UPTODATE |
8085 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8086 extra_flags, &cached_state);
8087 }
8088 cur = range_end + 1;
8089 }
8090 /*
8091 * We have iterated through all ordered extents of the page, the page
8092 * should not have Ordered (Private2) anymore, or the above iteration
8093 * did something wrong.
8094 */
8095 ASSERT(!folio_test_ordered(folio));
8096 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
8097 if (!inode_evicting)
8098 __btrfs_release_folio(folio, GFP_NOFS);
8099 clear_page_extent_mapped(&folio->page);
8100 }
8101
8102 /*
8103 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8104 * called from a page fault handler when a page is first dirtied. Hence we must
8105 * be careful to check for EOF conditions here. We set the page up correctly
8106 * for a written page which means we get ENOSPC checking when writing into
8107 * holes and correct delalloc and unwritten extent mapping on filesystems that
8108 * support these features.
8109 *
8110 * We are not allowed to take the i_mutex here so we have to play games to
8111 * protect against truncate races as the page could now be beyond EOF. Because
8112 * truncate_setsize() writes the inode size before removing pages, once we have
8113 * the page lock we can determine safely if the page is beyond EOF. If it is not
8114 * beyond EOF, then the page is guaranteed safe against truncation until we
8115 * unlock the page.
8116 */
8117 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8118 {
8119 struct page *page = vmf->page;
8120 struct folio *folio = page_folio(page);
8121 struct inode *inode = file_inode(vmf->vma->vm_file);
8122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8123 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8124 struct btrfs_ordered_extent *ordered;
8125 struct extent_state *cached_state = NULL;
8126 struct extent_changeset *data_reserved = NULL;
8127 unsigned long zero_start;
8128 loff_t size;
8129 vm_fault_t ret;
8130 int ret2;
8131 int reserved = 0;
8132 u64 reserved_space;
8133 u64 page_start;
8134 u64 page_end;
8135 u64 end;
8136
8137 ASSERT(folio_order(folio) == 0);
8138
8139 reserved_space = PAGE_SIZE;
8140
8141 sb_start_pagefault(inode->i_sb);
8142 page_start = page_offset(page);
8143 page_end = page_start + PAGE_SIZE - 1;
8144 end = page_end;
8145
8146 /*
8147 * Reserving delalloc space after obtaining the page lock can lead to
8148 * deadlock. For example, if a dirty page is locked by this function
8149 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8150 * dirty page write out, then the btrfs_writepages() function could
8151 * end up waiting indefinitely to get a lock on the page currently
8152 * being processed by btrfs_page_mkwrite() function.
8153 */
8154 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8155 page_start, reserved_space);
8156 if (!ret2) {
8157 ret2 = file_update_time(vmf->vma->vm_file);
8158 reserved = 1;
8159 }
8160 if (ret2) {
8161 ret = vmf_error(ret2);
8162 if (reserved)
8163 goto out;
8164 goto out_noreserve;
8165 }
8166
8167 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8168 again:
8169 down_read(&BTRFS_I(inode)->i_mmap_lock);
8170 lock_page(page);
8171 size = i_size_read(inode);
8172
8173 if ((page->mapping != inode->i_mapping) ||
8174 (page_start >= size)) {
8175 /* page got truncated out from underneath us */
8176 goto out_unlock;
8177 }
8178 wait_on_page_writeback(page);
8179
8180 lock_extent(io_tree, page_start, page_end, &cached_state);
8181 ret2 = set_page_extent_mapped(page);
8182 if (ret2 < 0) {
8183 ret = vmf_error(ret2);
8184 unlock_extent(io_tree, page_start, page_end, &cached_state);
8185 goto out_unlock;
8186 }
8187
8188 /*
8189 * we can't set the delalloc bits if there are pending ordered
8190 * extents. Drop our locks and wait for them to finish
8191 */
8192 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8193 PAGE_SIZE);
8194 if (ordered) {
8195 unlock_extent(io_tree, page_start, page_end, &cached_state);
8196 unlock_page(page);
8197 up_read(&BTRFS_I(inode)->i_mmap_lock);
8198 btrfs_start_ordered_extent(ordered);
8199 btrfs_put_ordered_extent(ordered);
8200 goto again;
8201 }
8202
8203 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8204 reserved_space = round_up(size - page_start,
8205 fs_info->sectorsize);
8206 if (reserved_space < PAGE_SIZE) {
8207 end = page_start + reserved_space - 1;
8208 btrfs_delalloc_release_space(BTRFS_I(inode),
8209 data_reserved, page_start,
8210 PAGE_SIZE - reserved_space, true);
8211 }
8212 }
8213
8214 /*
8215 * page_mkwrite gets called when the page is firstly dirtied after it's
8216 * faulted in, but write(2) could also dirty a page and set delalloc
8217 * bits, thus in this case for space account reason, we still need to
8218 * clear any delalloc bits within this page range since we have to
8219 * reserve data&meta space before lock_page() (see above comments).
8220 */
8221 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8222 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8223 EXTENT_DEFRAG, &cached_state);
8224
8225 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8226 &cached_state);
8227 if (ret2) {
8228 unlock_extent(io_tree, page_start, page_end, &cached_state);
8229 ret = VM_FAULT_SIGBUS;
8230 goto out_unlock;
8231 }
8232
8233 /* page is wholly or partially inside EOF */
8234 if (page_start + PAGE_SIZE > size)
8235 zero_start = offset_in_page(size);
8236 else
8237 zero_start = PAGE_SIZE;
8238
8239 if (zero_start != PAGE_SIZE)
8240 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8241
8242 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8243 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8244 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
8245
8246 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8247
8248 unlock_extent(io_tree, page_start, page_end, &cached_state);
8249 up_read(&BTRFS_I(inode)->i_mmap_lock);
8250
8251 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8252 sb_end_pagefault(inode->i_sb);
8253 extent_changeset_free(data_reserved);
8254 return VM_FAULT_LOCKED;
8255
8256 out_unlock:
8257 unlock_page(page);
8258 up_read(&BTRFS_I(inode)->i_mmap_lock);
8259 out:
8260 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8261 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8262 reserved_space, (ret != 0));
8263 out_noreserve:
8264 sb_end_pagefault(inode->i_sb);
8265 extent_changeset_free(data_reserved);
8266 return ret;
8267 }
8268
8269 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8270 {
8271 struct btrfs_truncate_control control = {
8272 .inode = inode,
8273 .ino = btrfs_ino(inode),
8274 .min_type = BTRFS_EXTENT_DATA_KEY,
8275 .clear_extent_range = true,
8276 };
8277 struct btrfs_root *root = inode->root;
8278 struct btrfs_fs_info *fs_info = root->fs_info;
8279 struct btrfs_block_rsv *rsv;
8280 int ret;
8281 struct btrfs_trans_handle *trans;
8282 u64 mask = fs_info->sectorsize - 1;
8283 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8284
8285 if (!skip_writeback) {
8286 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8287 inode->vfs_inode.i_size & (~mask),
8288 (u64)-1);
8289 if (ret)
8290 return ret;
8291 }
8292
8293 /*
8294 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8295 * things going on here:
8296 *
8297 * 1) We need to reserve space to update our inode.
8298 *
8299 * 2) We need to have something to cache all the space that is going to
8300 * be free'd up by the truncate operation, but also have some slack
8301 * space reserved in case it uses space during the truncate (thank you
8302 * very much snapshotting).
8303 *
8304 * And we need these to be separate. The fact is we can use a lot of
8305 * space doing the truncate, and we have no earthly idea how much space
8306 * we will use, so we need the truncate reservation to be separate so it
8307 * doesn't end up using space reserved for updating the inode. We also
8308 * need to be able to stop the transaction and start a new one, which
8309 * means we need to be able to update the inode several times, and we
8310 * have no idea of knowing how many times that will be, so we can't just
8311 * reserve 1 item for the entirety of the operation, so that has to be
8312 * done separately as well.
8313 *
8314 * So that leaves us with
8315 *
8316 * 1) rsv - for the truncate reservation, which we will steal from the
8317 * transaction reservation.
8318 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8319 * updating the inode.
8320 */
8321 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8322 if (!rsv)
8323 return -ENOMEM;
8324 rsv->size = min_size;
8325 rsv->failfast = true;
8326
8327 /*
8328 * 1 for the truncate slack space
8329 * 1 for updating the inode.
8330 */
8331 trans = btrfs_start_transaction(root, 2);
8332 if (IS_ERR(trans)) {
8333 ret = PTR_ERR(trans);
8334 goto out;
8335 }
8336
8337 /* Migrate the slack space for the truncate to our reserve */
8338 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8339 min_size, false);
8340 /*
8341 * We have reserved 2 metadata units when we started the transaction and
8342 * min_size matches 1 unit, so this should never fail, but if it does,
8343 * it's not critical we just fail truncation.
8344 */
8345 if (WARN_ON(ret)) {
8346 btrfs_end_transaction(trans);
8347 goto out;
8348 }
8349
8350 trans->block_rsv = rsv;
8351
8352 while (1) {
8353 struct extent_state *cached_state = NULL;
8354 const u64 new_size = inode->vfs_inode.i_size;
8355 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8356
8357 control.new_size = new_size;
8358 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8359 /*
8360 * We want to drop from the next block forward in case this new
8361 * size is not block aligned since we will be keeping the last
8362 * block of the extent just the way it is.
8363 */
8364 btrfs_drop_extent_map_range(inode,
8365 ALIGN(new_size, fs_info->sectorsize),
8366 (u64)-1, false);
8367
8368 ret = btrfs_truncate_inode_items(trans, root, &control);
8369
8370 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8371 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8372
8373 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8374
8375 trans->block_rsv = &fs_info->trans_block_rsv;
8376 if (ret != -ENOSPC && ret != -EAGAIN)
8377 break;
8378
8379 ret = btrfs_update_inode(trans, inode);
8380 if (ret)
8381 break;
8382
8383 btrfs_end_transaction(trans);
8384 btrfs_btree_balance_dirty(fs_info);
8385
8386 trans = btrfs_start_transaction(root, 2);
8387 if (IS_ERR(trans)) {
8388 ret = PTR_ERR(trans);
8389 trans = NULL;
8390 break;
8391 }
8392
8393 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8394 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8395 rsv, min_size, false);
8396 /*
8397 * We have reserved 2 metadata units when we started the
8398 * transaction and min_size matches 1 unit, so this should never
8399 * fail, but if it does, it's not critical we just fail truncation.
8400 */
8401 if (WARN_ON(ret))
8402 break;
8403
8404 trans->block_rsv = rsv;
8405 }
8406
8407 /*
8408 * We can't call btrfs_truncate_block inside a trans handle as we could
8409 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8410 * know we've truncated everything except the last little bit, and can
8411 * do btrfs_truncate_block and then update the disk_i_size.
8412 */
8413 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8414 btrfs_end_transaction(trans);
8415 btrfs_btree_balance_dirty(fs_info);
8416
8417 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8418 if (ret)
8419 goto out;
8420 trans = btrfs_start_transaction(root, 1);
8421 if (IS_ERR(trans)) {
8422 ret = PTR_ERR(trans);
8423 goto out;
8424 }
8425 btrfs_inode_safe_disk_i_size_write(inode, 0);
8426 }
8427
8428 if (trans) {
8429 int ret2;
8430
8431 trans->block_rsv = &fs_info->trans_block_rsv;
8432 ret2 = btrfs_update_inode(trans, inode);
8433 if (ret2 && !ret)
8434 ret = ret2;
8435
8436 ret2 = btrfs_end_transaction(trans);
8437 if (ret2 && !ret)
8438 ret = ret2;
8439 btrfs_btree_balance_dirty(fs_info);
8440 }
8441 out:
8442 btrfs_free_block_rsv(fs_info, rsv);
8443 /*
8444 * So if we truncate and then write and fsync we normally would just
8445 * write the extents that changed, which is a problem if we need to
8446 * first truncate that entire inode. So set this flag so we write out
8447 * all of the extents in the inode to the sync log so we're completely
8448 * safe.
8449 *
8450 * If no extents were dropped or trimmed we don't need to force the next
8451 * fsync to truncate all the inode's items from the log and re-log them
8452 * all. This means the truncate operation did not change the file size,
8453 * or changed it to a smaller size but there was only an implicit hole
8454 * between the old i_size and the new i_size, and there were no prealloc
8455 * extents beyond i_size to drop.
8456 */
8457 if (control.extents_found > 0)
8458 btrfs_set_inode_full_sync(inode);
8459
8460 return ret;
8461 }
8462
8463 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8464 struct inode *dir)
8465 {
8466 struct inode *inode;
8467
8468 inode = new_inode(dir->i_sb);
8469 if (inode) {
8470 /*
8471 * Subvolumes don't inherit the sgid bit or the parent's gid if
8472 * the parent's sgid bit is set. This is probably a bug.
8473 */
8474 inode_init_owner(idmap, inode, NULL,
8475 S_IFDIR | (~current_umask() & S_IRWXUGO));
8476 inode->i_op = &btrfs_dir_inode_operations;
8477 inode->i_fop = &btrfs_dir_file_operations;
8478 }
8479 return inode;
8480 }
8481
8482 struct inode *btrfs_alloc_inode(struct super_block *sb)
8483 {
8484 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8485 struct btrfs_inode *ei;
8486 struct inode *inode;
8487 struct extent_io_tree *file_extent_tree = NULL;
8488
8489 /* Self tests may pass a NULL fs_info. */
8490 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8491 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8492 if (!file_extent_tree)
8493 return NULL;
8494 }
8495
8496 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8497 if (!ei) {
8498 kfree(file_extent_tree);
8499 return NULL;
8500 }
8501
8502 ei->root = NULL;
8503 ei->generation = 0;
8504 ei->last_trans = 0;
8505 ei->last_sub_trans = 0;
8506 ei->logged_trans = 0;
8507 ei->delalloc_bytes = 0;
8508 ei->new_delalloc_bytes = 0;
8509 ei->defrag_bytes = 0;
8510 ei->disk_i_size = 0;
8511 ei->flags = 0;
8512 ei->ro_flags = 0;
8513 ei->csum_bytes = 0;
8514 ei->index_cnt = (u64)-1;
8515 ei->dir_index = 0;
8516 ei->last_unlink_trans = 0;
8517 ei->last_reflink_trans = 0;
8518 ei->last_log_commit = 0;
8519
8520 spin_lock_init(&ei->lock);
8521 ei->outstanding_extents = 0;
8522 if (sb->s_magic != BTRFS_TEST_MAGIC)
8523 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8524 BTRFS_BLOCK_RSV_DELALLOC);
8525 ei->runtime_flags = 0;
8526 ei->prop_compress = BTRFS_COMPRESS_NONE;
8527 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8528
8529 ei->delayed_node = NULL;
8530
8531 ei->i_otime_sec = 0;
8532 ei->i_otime_nsec = 0;
8533
8534 inode = &ei->vfs_inode;
8535 extent_map_tree_init(&ei->extent_tree);
8536
8537 /* This io tree sets the valid inode. */
8538 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8539 ei->io_tree.inode = ei;
8540
8541 ei->file_extent_tree = file_extent_tree;
8542 if (file_extent_tree) {
8543 extent_io_tree_init(fs_info, ei->file_extent_tree,
8544 IO_TREE_INODE_FILE_EXTENT);
8545 /* Lockdep class is set only for the file extent tree. */
8546 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8547 }
8548 mutex_init(&ei->log_mutex);
8549 spin_lock_init(&ei->ordered_tree_lock);
8550 ei->ordered_tree = RB_ROOT;
8551 ei->ordered_tree_last = NULL;
8552 INIT_LIST_HEAD(&ei->delalloc_inodes);
8553 INIT_LIST_HEAD(&ei->delayed_iput);
8554 RB_CLEAR_NODE(&ei->rb_node);
8555 init_rwsem(&ei->i_mmap_lock);
8556
8557 return inode;
8558 }
8559
8560 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8561 void btrfs_test_destroy_inode(struct inode *inode)
8562 {
8563 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8564 kfree(BTRFS_I(inode)->file_extent_tree);
8565 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8566 }
8567 #endif
8568
8569 void btrfs_free_inode(struct inode *inode)
8570 {
8571 kfree(BTRFS_I(inode)->file_extent_tree);
8572 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8573 }
8574
8575 void btrfs_destroy_inode(struct inode *vfs_inode)
8576 {
8577 struct btrfs_ordered_extent *ordered;
8578 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8579 struct btrfs_root *root = inode->root;
8580 bool freespace_inode;
8581
8582 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8583 WARN_ON(vfs_inode->i_data.nrpages);
8584 WARN_ON(inode->block_rsv.reserved);
8585 WARN_ON(inode->block_rsv.size);
8586 WARN_ON(inode->outstanding_extents);
8587 if (!S_ISDIR(vfs_inode->i_mode)) {
8588 WARN_ON(inode->delalloc_bytes);
8589 WARN_ON(inode->new_delalloc_bytes);
8590 }
8591 WARN_ON(inode->csum_bytes);
8592 WARN_ON(inode->defrag_bytes);
8593
8594 /*
8595 * This can happen where we create an inode, but somebody else also
8596 * created the same inode and we need to destroy the one we already
8597 * created.
8598 */
8599 if (!root)
8600 return;
8601
8602 /*
8603 * If this is a free space inode do not take the ordered extents lockdep
8604 * map.
8605 */
8606 freespace_inode = btrfs_is_free_space_inode(inode);
8607
8608 while (1) {
8609 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8610 if (!ordered)
8611 break;
8612 else {
8613 btrfs_err(root->fs_info,
8614 "found ordered extent %llu %llu on inode cleanup",
8615 ordered->file_offset, ordered->num_bytes);
8616
8617 if (!freespace_inode)
8618 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8619
8620 btrfs_remove_ordered_extent(inode, ordered);
8621 btrfs_put_ordered_extent(ordered);
8622 btrfs_put_ordered_extent(ordered);
8623 }
8624 }
8625 btrfs_qgroup_check_reserved_leak(inode);
8626 inode_tree_del(inode);
8627 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8628 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8629 btrfs_put_root(inode->root);
8630 }
8631
8632 int btrfs_drop_inode(struct inode *inode)
8633 {
8634 struct btrfs_root *root = BTRFS_I(inode)->root;
8635
8636 if (root == NULL)
8637 return 1;
8638
8639 /* the snap/subvol tree is on deleting */
8640 if (btrfs_root_refs(&root->root_item) == 0)
8641 return 1;
8642 else
8643 return generic_drop_inode(inode);
8644 }
8645
8646 static void init_once(void *foo)
8647 {
8648 struct btrfs_inode *ei = foo;
8649
8650 inode_init_once(&ei->vfs_inode);
8651 }
8652
8653 void __cold btrfs_destroy_cachep(void)
8654 {
8655 /*
8656 * Make sure all delayed rcu free inodes are flushed before we
8657 * destroy cache.
8658 */
8659 rcu_barrier();
8660 bioset_exit(&btrfs_dio_bioset);
8661 kmem_cache_destroy(btrfs_inode_cachep);
8662 }
8663
8664 int __init btrfs_init_cachep(void)
8665 {
8666 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8667 sizeof(struct btrfs_inode), 0,
8668 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8669 init_once);
8670 if (!btrfs_inode_cachep)
8671 goto fail;
8672
8673 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8674 offsetof(struct btrfs_dio_private, bbio.bio),
8675 BIOSET_NEED_BVECS))
8676 goto fail;
8677
8678 return 0;
8679 fail:
8680 btrfs_destroy_cachep();
8681 return -ENOMEM;
8682 }
8683
8684 static int btrfs_getattr(struct mnt_idmap *idmap,
8685 const struct path *path, struct kstat *stat,
8686 u32 request_mask, unsigned int flags)
8687 {
8688 u64 delalloc_bytes;
8689 u64 inode_bytes;
8690 struct inode *inode = d_inode(path->dentry);
8691 u32 blocksize = inode->i_sb->s_blocksize;
8692 u32 bi_flags = BTRFS_I(inode)->flags;
8693 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8694
8695 stat->result_mask |= STATX_BTIME;
8696 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8697 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8698 if (bi_flags & BTRFS_INODE_APPEND)
8699 stat->attributes |= STATX_ATTR_APPEND;
8700 if (bi_flags & BTRFS_INODE_COMPRESS)
8701 stat->attributes |= STATX_ATTR_COMPRESSED;
8702 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8703 stat->attributes |= STATX_ATTR_IMMUTABLE;
8704 if (bi_flags & BTRFS_INODE_NODUMP)
8705 stat->attributes |= STATX_ATTR_NODUMP;
8706 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8707 stat->attributes |= STATX_ATTR_VERITY;
8708
8709 stat->attributes_mask |= (STATX_ATTR_APPEND |
8710 STATX_ATTR_COMPRESSED |
8711 STATX_ATTR_IMMUTABLE |
8712 STATX_ATTR_NODUMP);
8713
8714 generic_fillattr(idmap, request_mask, inode, stat);
8715 stat->dev = BTRFS_I(inode)->root->anon_dev;
8716
8717 spin_lock(&BTRFS_I(inode)->lock);
8718 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8719 inode_bytes = inode_get_bytes(inode);
8720 spin_unlock(&BTRFS_I(inode)->lock);
8721 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8722 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8723 return 0;
8724 }
8725
8726 static int btrfs_rename_exchange(struct inode *old_dir,
8727 struct dentry *old_dentry,
8728 struct inode *new_dir,
8729 struct dentry *new_dentry)
8730 {
8731 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8732 struct btrfs_trans_handle *trans;
8733 unsigned int trans_num_items;
8734 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8735 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8736 struct inode *new_inode = new_dentry->d_inode;
8737 struct inode *old_inode = old_dentry->d_inode;
8738 struct btrfs_rename_ctx old_rename_ctx;
8739 struct btrfs_rename_ctx new_rename_ctx;
8740 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8741 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8742 u64 old_idx = 0;
8743 u64 new_idx = 0;
8744 int ret;
8745 int ret2;
8746 bool need_abort = false;
8747 struct fscrypt_name old_fname, new_fname;
8748 struct fscrypt_str *old_name, *new_name;
8749
8750 /*
8751 * For non-subvolumes allow exchange only within one subvolume, in the
8752 * same inode namespace. Two subvolumes (represented as directory) can
8753 * be exchanged as they're a logical link and have a fixed inode number.
8754 */
8755 if (root != dest &&
8756 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8757 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8758 return -EXDEV;
8759
8760 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8761 if (ret)
8762 return ret;
8763
8764 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8765 if (ret) {
8766 fscrypt_free_filename(&old_fname);
8767 return ret;
8768 }
8769
8770 old_name = &old_fname.disk_name;
8771 new_name = &new_fname.disk_name;
8772
8773 /* close the race window with snapshot create/destroy ioctl */
8774 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8775 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8776 down_read(&fs_info->subvol_sem);
8777
8778 /*
8779 * For each inode:
8780 * 1 to remove old dir item
8781 * 1 to remove old dir index
8782 * 1 to add new dir item
8783 * 1 to add new dir index
8784 * 1 to update parent inode
8785 *
8786 * If the parents are the same, we only need to account for one
8787 */
8788 trans_num_items = (old_dir == new_dir ? 9 : 10);
8789 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8790 /*
8791 * 1 to remove old root ref
8792 * 1 to remove old root backref
8793 * 1 to add new root ref
8794 * 1 to add new root backref
8795 */
8796 trans_num_items += 4;
8797 } else {
8798 /*
8799 * 1 to update inode item
8800 * 1 to remove old inode ref
8801 * 1 to add new inode ref
8802 */
8803 trans_num_items += 3;
8804 }
8805 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8806 trans_num_items += 4;
8807 else
8808 trans_num_items += 3;
8809 trans = btrfs_start_transaction(root, trans_num_items);
8810 if (IS_ERR(trans)) {
8811 ret = PTR_ERR(trans);
8812 goto out_notrans;
8813 }
8814
8815 if (dest != root) {
8816 ret = btrfs_record_root_in_trans(trans, dest);
8817 if (ret)
8818 goto out_fail;
8819 }
8820
8821 /*
8822 * We need to find a free sequence number both in the source and
8823 * in the destination directory for the exchange.
8824 */
8825 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8826 if (ret)
8827 goto out_fail;
8828 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8829 if (ret)
8830 goto out_fail;
8831
8832 BTRFS_I(old_inode)->dir_index = 0ULL;
8833 BTRFS_I(new_inode)->dir_index = 0ULL;
8834
8835 /* Reference for the source. */
8836 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8837 /* force full log commit if subvolume involved. */
8838 btrfs_set_log_full_commit(trans);
8839 } else {
8840 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8841 btrfs_ino(BTRFS_I(new_dir)),
8842 old_idx);
8843 if (ret)
8844 goto out_fail;
8845 need_abort = true;
8846 }
8847
8848 /* And now for the dest. */
8849 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8850 /* force full log commit if subvolume involved. */
8851 btrfs_set_log_full_commit(trans);
8852 } else {
8853 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8854 btrfs_ino(BTRFS_I(old_dir)),
8855 new_idx);
8856 if (ret) {
8857 if (need_abort)
8858 btrfs_abort_transaction(trans, ret);
8859 goto out_fail;
8860 }
8861 }
8862
8863 /* Update inode version and ctime/mtime. */
8864 inode_inc_iversion(old_dir);
8865 inode_inc_iversion(new_dir);
8866 inode_inc_iversion(old_inode);
8867 inode_inc_iversion(new_inode);
8868 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8869
8870 if (old_dentry->d_parent != new_dentry->d_parent) {
8871 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8872 BTRFS_I(old_inode), true);
8873 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8874 BTRFS_I(new_inode), true);
8875 }
8876
8877 /* src is a subvolume */
8878 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8879 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8880 } else { /* src is an inode */
8881 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8882 BTRFS_I(old_dentry->d_inode),
8883 old_name, &old_rename_ctx);
8884 if (!ret)
8885 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8886 }
8887 if (ret) {
8888 btrfs_abort_transaction(trans, ret);
8889 goto out_fail;
8890 }
8891
8892 /* dest is a subvolume */
8893 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8894 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8895 } else { /* dest is an inode */
8896 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8897 BTRFS_I(new_dentry->d_inode),
8898 new_name, &new_rename_ctx);
8899 if (!ret)
8900 ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8901 }
8902 if (ret) {
8903 btrfs_abort_transaction(trans, ret);
8904 goto out_fail;
8905 }
8906
8907 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8908 new_name, 0, old_idx);
8909 if (ret) {
8910 btrfs_abort_transaction(trans, ret);
8911 goto out_fail;
8912 }
8913
8914 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8915 old_name, 0, new_idx);
8916 if (ret) {
8917 btrfs_abort_transaction(trans, ret);
8918 goto out_fail;
8919 }
8920
8921 if (old_inode->i_nlink == 1)
8922 BTRFS_I(old_inode)->dir_index = old_idx;
8923 if (new_inode->i_nlink == 1)
8924 BTRFS_I(new_inode)->dir_index = new_idx;
8925
8926 /*
8927 * Now pin the logs of the roots. We do it to ensure that no other task
8928 * can sync the logs while we are in progress with the rename, because
8929 * that could result in an inconsistency in case any of the inodes that
8930 * are part of this rename operation were logged before.
8931 */
8932 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8933 btrfs_pin_log_trans(root);
8934 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8935 btrfs_pin_log_trans(dest);
8936
8937 /* Do the log updates for all inodes. */
8938 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8939 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8940 old_rename_ctx.index, new_dentry->d_parent);
8941 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8942 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8943 new_rename_ctx.index, old_dentry->d_parent);
8944
8945 /* Now unpin the logs. */
8946 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8947 btrfs_end_log_trans(root);
8948 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8949 btrfs_end_log_trans(dest);
8950 out_fail:
8951 ret2 = btrfs_end_transaction(trans);
8952 ret = ret ? ret : ret2;
8953 out_notrans:
8954 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8955 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8956 up_read(&fs_info->subvol_sem);
8957
8958 fscrypt_free_filename(&new_fname);
8959 fscrypt_free_filename(&old_fname);
8960 return ret;
8961 }
8962
8963 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8964 struct inode *dir)
8965 {
8966 struct inode *inode;
8967
8968 inode = new_inode(dir->i_sb);
8969 if (inode) {
8970 inode_init_owner(idmap, inode, dir,
8971 S_IFCHR | WHITEOUT_MODE);
8972 inode->i_op = &btrfs_special_inode_operations;
8973 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8974 }
8975 return inode;
8976 }
8977
8978 static int btrfs_rename(struct mnt_idmap *idmap,
8979 struct inode *old_dir, struct dentry *old_dentry,
8980 struct inode *new_dir, struct dentry *new_dentry,
8981 unsigned int flags)
8982 {
8983 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8984 struct btrfs_new_inode_args whiteout_args = {
8985 .dir = old_dir,
8986 .dentry = old_dentry,
8987 };
8988 struct btrfs_trans_handle *trans;
8989 unsigned int trans_num_items;
8990 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8991 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8992 struct inode *new_inode = d_inode(new_dentry);
8993 struct inode *old_inode = d_inode(old_dentry);
8994 struct btrfs_rename_ctx rename_ctx;
8995 u64 index = 0;
8996 int ret;
8997 int ret2;
8998 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8999 struct fscrypt_name old_fname, new_fname;
9000
9001 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9002 return -EPERM;
9003
9004 /* we only allow rename subvolume link between subvolumes */
9005 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9006 return -EXDEV;
9007
9008 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9009 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9010 return -ENOTEMPTY;
9011
9012 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9013 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9014 return -ENOTEMPTY;
9015
9016 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9017 if (ret)
9018 return ret;
9019
9020 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9021 if (ret) {
9022 fscrypt_free_filename(&old_fname);
9023 return ret;
9024 }
9025
9026 /* check for collisions, even if the name isn't there */
9027 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9028 if (ret) {
9029 if (ret == -EEXIST) {
9030 /* we shouldn't get
9031 * eexist without a new_inode */
9032 if (WARN_ON(!new_inode)) {
9033 goto out_fscrypt_names;
9034 }
9035 } else {
9036 /* maybe -EOVERFLOW */
9037 goto out_fscrypt_names;
9038 }
9039 }
9040 ret = 0;
9041
9042 /*
9043 * we're using rename to replace one file with another. Start IO on it
9044 * now so we don't add too much work to the end of the transaction
9045 */
9046 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9047 filemap_flush(old_inode->i_mapping);
9048
9049 if (flags & RENAME_WHITEOUT) {
9050 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9051 if (!whiteout_args.inode) {
9052 ret = -ENOMEM;
9053 goto out_fscrypt_names;
9054 }
9055 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9056 if (ret)
9057 goto out_whiteout_inode;
9058 } else {
9059 /* 1 to update the old parent inode. */
9060 trans_num_items = 1;
9061 }
9062
9063 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9064 /* Close the race window with snapshot create/destroy ioctl */
9065 down_read(&fs_info->subvol_sem);
9066 /*
9067 * 1 to remove old root ref
9068 * 1 to remove old root backref
9069 * 1 to add new root ref
9070 * 1 to add new root backref
9071 */
9072 trans_num_items += 4;
9073 } else {
9074 /*
9075 * 1 to update inode
9076 * 1 to remove old inode ref
9077 * 1 to add new inode ref
9078 */
9079 trans_num_items += 3;
9080 }
9081 /*
9082 * 1 to remove old dir item
9083 * 1 to remove old dir index
9084 * 1 to add new dir item
9085 * 1 to add new dir index
9086 */
9087 trans_num_items += 4;
9088 /* 1 to update new parent inode if it's not the same as the old parent */
9089 if (new_dir != old_dir)
9090 trans_num_items++;
9091 if (new_inode) {
9092 /*
9093 * 1 to update inode
9094 * 1 to remove inode ref
9095 * 1 to remove dir item
9096 * 1 to remove dir index
9097 * 1 to possibly add orphan item
9098 */
9099 trans_num_items += 5;
9100 }
9101 trans = btrfs_start_transaction(root, trans_num_items);
9102 if (IS_ERR(trans)) {
9103 ret = PTR_ERR(trans);
9104 goto out_notrans;
9105 }
9106
9107 if (dest != root) {
9108 ret = btrfs_record_root_in_trans(trans, dest);
9109 if (ret)
9110 goto out_fail;
9111 }
9112
9113 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9114 if (ret)
9115 goto out_fail;
9116
9117 BTRFS_I(old_inode)->dir_index = 0ULL;
9118 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9119 /* force full log commit if subvolume involved. */
9120 btrfs_set_log_full_commit(trans);
9121 } else {
9122 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9123 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9124 index);
9125 if (ret)
9126 goto out_fail;
9127 }
9128
9129 inode_inc_iversion(old_dir);
9130 inode_inc_iversion(new_dir);
9131 inode_inc_iversion(old_inode);
9132 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9133
9134 if (old_dentry->d_parent != new_dentry->d_parent)
9135 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9136 BTRFS_I(old_inode), true);
9137
9138 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9139 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9140 } else {
9141 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9142 BTRFS_I(d_inode(old_dentry)),
9143 &old_fname.disk_name, &rename_ctx);
9144 if (!ret)
9145 ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9146 }
9147 if (ret) {
9148 btrfs_abort_transaction(trans, ret);
9149 goto out_fail;
9150 }
9151
9152 if (new_inode) {
9153 inode_inc_iversion(new_inode);
9154 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9155 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9156 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9157 BUG_ON(new_inode->i_nlink == 0);
9158 } else {
9159 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9160 BTRFS_I(d_inode(new_dentry)),
9161 &new_fname.disk_name);
9162 }
9163 if (!ret && new_inode->i_nlink == 0)
9164 ret = btrfs_orphan_add(trans,
9165 BTRFS_I(d_inode(new_dentry)));
9166 if (ret) {
9167 btrfs_abort_transaction(trans, ret);
9168 goto out_fail;
9169 }
9170 }
9171
9172 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9173 &new_fname.disk_name, 0, index);
9174 if (ret) {
9175 btrfs_abort_transaction(trans, ret);
9176 goto out_fail;
9177 }
9178
9179 if (old_inode->i_nlink == 1)
9180 BTRFS_I(old_inode)->dir_index = index;
9181
9182 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9183 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9184 rename_ctx.index, new_dentry->d_parent);
9185
9186 if (flags & RENAME_WHITEOUT) {
9187 ret = btrfs_create_new_inode(trans, &whiteout_args);
9188 if (ret) {
9189 btrfs_abort_transaction(trans, ret);
9190 goto out_fail;
9191 } else {
9192 unlock_new_inode(whiteout_args.inode);
9193 iput(whiteout_args.inode);
9194 whiteout_args.inode = NULL;
9195 }
9196 }
9197 out_fail:
9198 ret2 = btrfs_end_transaction(trans);
9199 ret = ret ? ret : ret2;
9200 out_notrans:
9201 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9202 up_read(&fs_info->subvol_sem);
9203 if (flags & RENAME_WHITEOUT)
9204 btrfs_new_inode_args_destroy(&whiteout_args);
9205 out_whiteout_inode:
9206 if (flags & RENAME_WHITEOUT)
9207 iput(whiteout_args.inode);
9208 out_fscrypt_names:
9209 fscrypt_free_filename(&old_fname);
9210 fscrypt_free_filename(&new_fname);
9211 return ret;
9212 }
9213
9214 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9215 struct dentry *old_dentry, struct inode *new_dir,
9216 struct dentry *new_dentry, unsigned int flags)
9217 {
9218 int ret;
9219
9220 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9221 return -EINVAL;
9222
9223 if (flags & RENAME_EXCHANGE)
9224 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9225 new_dentry);
9226 else
9227 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9228 new_dentry, flags);
9229
9230 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9231
9232 return ret;
9233 }
9234
9235 struct btrfs_delalloc_work {
9236 struct inode *inode;
9237 struct completion completion;
9238 struct list_head list;
9239 struct btrfs_work work;
9240 };
9241
9242 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9243 {
9244 struct btrfs_delalloc_work *delalloc_work;
9245 struct inode *inode;
9246
9247 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9248 work);
9249 inode = delalloc_work->inode;
9250 filemap_flush(inode->i_mapping);
9251 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9252 &BTRFS_I(inode)->runtime_flags))
9253 filemap_flush(inode->i_mapping);
9254
9255 iput(inode);
9256 complete(&delalloc_work->completion);
9257 }
9258
9259 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9260 {
9261 struct btrfs_delalloc_work *work;
9262
9263 work = kmalloc(sizeof(*work), GFP_NOFS);
9264 if (!work)
9265 return NULL;
9266
9267 init_completion(&work->completion);
9268 INIT_LIST_HEAD(&work->list);
9269 work->inode = inode;
9270 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9271
9272 return work;
9273 }
9274
9275 /*
9276 * some fairly slow code that needs optimization. This walks the list
9277 * of all the inodes with pending delalloc and forces them to disk.
9278 */
9279 static int start_delalloc_inodes(struct btrfs_root *root,
9280 struct writeback_control *wbc, bool snapshot,
9281 bool in_reclaim_context)
9282 {
9283 struct btrfs_inode *binode;
9284 struct inode *inode;
9285 struct btrfs_delalloc_work *work, *next;
9286 LIST_HEAD(works);
9287 LIST_HEAD(splice);
9288 int ret = 0;
9289 bool full_flush = wbc->nr_to_write == LONG_MAX;
9290
9291 mutex_lock(&root->delalloc_mutex);
9292 spin_lock(&root->delalloc_lock);
9293 list_splice_init(&root->delalloc_inodes, &splice);
9294 while (!list_empty(&splice)) {
9295 binode = list_entry(splice.next, struct btrfs_inode,
9296 delalloc_inodes);
9297
9298 list_move_tail(&binode->delalloc_inodes,
9299 &root->delalloc_inodes);
9300
9301 if (in_reclaim_context &&
9302 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9303 continue;
9304
9305 inode = igrab(&binode->vfs_inode);
9306 if (!inode) {
9307 cond_resched_lock(&root->delalloc_lock);
9308 continue;
9309 }
9310 spin_unlock(&root->delalloc_lock);
9311
9312 if (snapshot)
9313 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9314 &binode->runtime_flags);
9315 if (full_flush) {
9316 work = btrfs_alloc_delalloc_work(inode);
9317 if (!work) {
9318 iput(inode);
9319 ret = -ENOMEM;
9320 goto out;
9321 }
9322 list_add_tail(&work->list, &works);
9323 btrfs_queue_work(root->fs_info->flush_workers,
9324 &work->work);
9325 } else {
9326 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9327 btrfs_add_delayed_iput(BTRFS_I(inode));
9328 if (ret || wbc->nr_to_write <= 0)
9329 goto out;
9330 }
9331 cond_resched();
9332 spin_lock(&root->delalloc_lock);
9333 }
9334 spin_unlock(&root->delalloc_lock);
9335
9336 out:
9337 list_for_each_entry_safe(work, next, &works, list) {
9338 list_del_init(&work->list);
9339 wait_for_completion(&work->completion);
9340 kfree(work);
9341 }
9342
9343 if (!list_empty(&splice)) {
9344 spin_lock(&root->delalloc_lock);
9345 list_splice_tail(&splice, &root->delalloc_inodes);
9346 spin_unlock(&root->delalloc_lock);
9347 }
9348 mutex_unlock(&root->delalloc_mutex);
9349 return ret;
9350 }
9351
9352 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9353 {
9354 struct writeback_control wbc = {
9355 .nr_to_write = LONG_MAX,
9356 .sync_mode = WB_SYNC_NONE,
9357 .range_start = 0,
9358 .range_end = LLONG_MAX,
9359 };
9360 struct btrfs_fs_info *fs_info = root->fs_info;
9361
9362 if (BTRFS_FS_ERROR(fs_info))
9363 return -EROFS;
9364
9365 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9366 }
9367
9368 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9369 bool in_reclaim_context)
9370 {
9371 struct writeback_control wbc = {
9372 .nr_to_write = nr,
9373 .sync_mode = WB_SYNC_NONE,
9374 .range_start = 0,
9375 .range_end = LLONG_MAX,
9376 };
9377 struct btrfs_root *root;
9378 LIST_HEAD(splice);
9379 int ret;
9380
9381 if (BTRFS_FS_ERROR(fs_info))
9382 return -EROFS;
9383
9384 mutex_lock(&fs_info->delalloc_root_mutex);
9385 spin_lock(&fs_info->delalloc_root_lock);
9386 list_splice_init(&fs_info->delalloc_roots, &splice);
9387 while (!list_empty(&splice)) {
9388 /*
9389 * Reset nr_to_write here so we know that we're doing a full
9390 * flush.
9391 */
9392 if (nr == LONG_MAX)
9393 wbc.nr_to_write = LONG_MAX;
9394
9395 root = list_first_entry(&splice, struct btrfs_root,
9396 delalloc_root);
9397 root = btrfs_grab_root(root);
9398 BUG_ON(!root);
9399 list_move_tail(&root->delalloc_root,
9400 &fs_info->delalloc_roots);
9401 spin_unlock(&fs_info->delalloc_root_lock);
9402
9403 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9404 btrfs_put_root(root);
9405 if (ret < 0 || wbc.nr_to_write <= 0)
9406 goto out;
9407 spin_lock(&fs_info->delalloc_root_lock);
9408 }
9409 spin_unlock(&fs_info->delalloc_root_lock);
9410
9411 ret = 0;
9412 out:
9413 if (!list_empty(&splice)) {
9414 spin_lock(&fs_info->delalloc_root_lock);
9415 list_splice_tail(&splice, &fs_info->delalloc_roots);
9416 spin_unlock(&fs_info->delalloc_root_lock);
9417 }
9418 mutex_unlock(&fs_info->delalloc_root_mutex);
9419 return ret;
9420 }
9421
9422 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9423 struct dentry *dentry, const char *symname)
9424 {
9425 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9426 struct btrfs_trans_handle *trans;
9427 struct btrfs_root *root = BTRFS_I(dir)->root;
9428 struct btrfs_path *path;
9429 struct btrfs_key key;
9430 struct inode *inode;
9431 struct btrfs_new_inode_args new_inode_args = {
9432 .dir = dir,
9433 .dentry = dentry,
9434 };
9435 unsigned int trans_num_items;
9436 int err;
9437 int name_len;
9438 int datasize;
9439 unsigned long ptr;
9440 struct btrfs_file_extent_item *ei;
9441 struct extent_buffer *leaf;
9442
9443 name_len = strlen(symname);
9444 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9445 return -ENAMETOOLONG;
9446
9447 inode = new_inode(dir->i_sb);
9448 if (!inode)
9449 return -ENOMEM;
9450 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9451 inode->i_op = &btrfs_symlink_inode_operations;
9452 inode_nohighmem(inode);
9453 inode->i_mapping->a_ops = &btrfs_aops;
9454 btrfs_i_size_write(BTRFS_I(inode), name_len);
9455 inode_set_bytes(inode, name_len);
9456
9457 new_inode_args.inode = inode;
9458 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9459 if (err)
9460 goto out_inode;
9461 /* 1 additional item for the inline extent */
9462 trans_num_items++;
9463
9464 trans = btrfs_start_transaction(root, trans_num_items);
9465 if (IS_ERR(trans)) {
9466 err = PTR_ERR(trans);
9467 goto out_new_inode_args;
9468 }
9469
9470 err = btrfs_create_new_inode(trans, &new_inode_args);
9471 if (err)
9472 goto out;
9473
9474 path = btrfs_alloc_path();
9475 if (!path) {
9476 err = -ENOMEM;
9477 btrfs_abort_transaction(trans, err);
9478 discard_new_inode(inode);
9479 inode = NULL;
9480 goto out;
9481 }
9482 key.objectid = btrfs_ino(BTRFS_I(inode));
9483 key.offset = 0;
9484 key.type = BTRFS_EXTENT_DATA_KEY;
9485 datasize = btrfs_file_extent_calc_inline_size(name_len);
9486 err = btrfs_insert_empty_item(trans, root, path, &key,
9487 datasize);
9488 if (err) {
9489 btrfs_abort_transaction(trans, err);
9490 btrfs_free_path(path);
9491 discard_new_inode(inode);
9492 inode = NULL;
9493 goto out;
9494 }
9495 leaf = path->nodes[0];
9496 ei = btrfs_item_ptr(leaf, path->slots[0],
9497 struct btrfs_file_extent_item);
9498 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9499 btrfs_set_file_extent_type(leaf, ei,
9500 BTRFS_FILE_EXTENT_INLINE);
9501 btrfs_set_file_extent_encryption(leaf, ei, 0);
9502 btrfs_set_file_extent_compression(leaf, ei, 0);
9503 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9504 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9505
9506 ptr = btrfs_file_extent_inline_start(ei);
9507 write_extent_buffer(leaf, symname, ptr, name_len);
9508 btrfs_mark_buffer_dirty(trans, leaf);
9509 btrfs_free_path(path);
9510
9511 d_instantiate_new(dentry, inode);
9512 err = 0;
9513 out:
9514 btrfs_end_transaction(trans);
9515 btrfs_btree_balance_dirty(fs_info);
9516 out_new_inode_args:
9517 btrfs_new_inode_args_destroy(&new_inode_args);
9518 out_inode:
9519 if (err)
9520 iput(inode);
9521 return err;
9522 }
9523
9524 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9525 struct btrfs_trans_handle *trans_in,
9526 struct btrfs_inode *inode,
9527 struct btrfs_key *ins,
9528 u64 file_offset)
9529 {
9530 struct btrfs_file_extent_item stack_fi;
9531 struct btrfs_replace_extent_info extent_info;
9532 struct btrfs_trans_handle *trans = trans_in;
9533 struct btrfs_path *path;
9534 u64 start = ins->objectid;
9535 u64 len = ins->offset;
9536 u64 qgroup_released = 0;
9537 int ret;
9538
9539 memset(&stack_fi, 0, sizeof(stack_fi));
9540
9541 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9542 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9543 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9544 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9545 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9546 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9547 /* Encryption and other encoding is reserved and all 0 */
9548
9549 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9550 if (ret < 0)
9551 return ERR_PTR(ret);
9552
9553 if (trans) {
9554 ret = insert_reserved_file_extent(trans, inode,
9555 file_offset, &stack_fi,
9556 true, qgroup_released);
9557 if (ret)
9558 goto free_qgroup;
9559 return trans;
9560 }
9561
9562 extent_info.disk_offset = start;
9563 extent_info.disk_len = len;
9564 extent_info.data_offset = 0;
9565 extent_info.data_len = len;
9566 extent_info.file_offset = file_offset;
9567 extent_info.extent_buf = (char *)&stack_fi;
9568 extent_info.is_new_extent = true;
9569 extent_info.update_times = true;
9570 extent_info.qgroup_reserved = qgroup_released;
9571 extent_info.insertions = 0;
9572
9573 path = btrfs_alloc_path();
9574 if (!path) {
9575 ret = -ENOMEM;
9576 goto free_qgroup;
9577 }
9578
9579 ret = btrfs_replace_file_extents(inode, path, file_offset,
9580 file_offset + len - 1, &extent_info,
9581 &trans);
9582 btrfs_free_path(path);
9583 if (ret)
9584 goto free_qgroup;
9585 return trans;
9586
9587 free_qgroup:
9588 /*
9589 * We have released qgroup data range at the beginning of the function,
9590 * and normally qgroup_released bytes will be freed when committing
9591 * transaction.
9592 * But if we error out early, we have to free what we have released
9593 * or we leak qgroup data reservation.
9594 */
9595 btrfs_qgroup_free_refroot(inode->root->fs_info,
9596 inode->root->root_key.objectid, qgroup_released,
9597 BTRFS_QGROUP_RSV_DATA);
9598 return ERR_PTR(ret);
9599 }
9600
9601 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9602 u64 start, u64 num_bytes, u64 min_size,
9603 loff_t actual_len, u64 *alloc_hint,
9604 struct btrfs_trans_handle *trans)
9605 {
9606 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9607 struct extent_map *em;
9608 struct btrfs_root *root = BTRFS_I(inode)->root;
9609 struct btrfs_key ins;
9610 u64 cur_offset = start;
9611 u64 clear_offset = start;
9612 u64 i_size;
9613 u64 cur_bytes;
9614 u64 last_alloc = (u64)-1;
9615 int ret = 0;
9616 bool own_trans = true;
9617 u64 end = start + num_bytes - 1;
9618
9619 if (trans)
9620 own_trans = false;
9621 while (num_bytes > 0) {
9622 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9623 cur_bytes = max(cur_bytes, min_size);
9624 /*
9625 * If we are severely fragmented we could end up with really
9626 * small allocations, so if the allocator is returning small
9627 * chunks lets make its job easier by only searching for those
9628 * sized chunks.
9629 */
9630 cur_bytes = min(cur_bytes, last_alloc);
9631 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9632 min_size, 0, *alloc_hint, &ins, 1, 0);
9633 if (ret)
9634 break;
9635
9636 /*
9637 * We've reserved this space, and thus converted it from
9638 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9639 * from here on out we will only need to clear our reservation
9640 * for the remaining unreserved area, so advance our
9641 * clear_offset by our extent size.
9642 */
9643 clear_offset += ins.offset;
9644
9645 last_alloc = ins.offset;
9646 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9647 &ins, cur_offset);
9648 /*
9649 * Now that we inserted the prealloc extent we can finally
9650 * decrement the number of reservations in the block group.
9651 * If we did it before, we could race with relocation and have
9652 * relocation miss the reserved extent, making it fail later.
9653 */
9654 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9655 if (IS_ERR(trans)) {
9656 ret = PTR_ERR(trans);
9657 btrfs_free_reserved_extent(fs_info, ins.objectid,
9658 ins.offset, 0);
9659 break;
9660 }
9661
9662 em = alloc_extent_map();
9663 if (!em) {
9664 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9665 cur_offset + ins.offset - 1, false);
9666 btrfs_set_inode_full_sync(BTRFS_I(inode));
9667 goto next;
9668 }
9669
9670 em->start = cur_offset;
9671 em->orig_start = cur_offset;
9672 em->len = ins.offset;
9673 em->block_start = ins.objectid;
9674 em->block_len = ins.offset;
9675 em->orig_block_len = ins.offset;
9676 em->ram_bytes = ins.offset;
9677 em->flags |= EXTENT_FLAG_PREALLOC;
9678 em->generation = trans->transid;
9679
9680 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9681 free_extent_map(em);
9682 next:
9683 num_bytes -= ins.offset;
9684 cur_offset += ins.offset;
9685 *alloc_hint = ins.objectid + ins.offset;
9686
9687 inode_inc_iversion(inode);
9688 inode_set_ctime_current(inode);
9689 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9690 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9691 (actual_len > inode->i_size) &&
9692 (cur_offset > inode->i_size)) {
9693 if (cur_offset > actual_len)
9694 i_size = actual_len;
9695 else
9696 i_size = cur_offset;
9697 i_size_write(inode, i_size);
9698 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9699 }
9700
9701 ret = btrfs_update_inode(trans, BTRFS_I(inode));
9702
9703 if (ret) {
9704 btrfs_abort_transaction(trans, ret);
9705 if (own_trans)
9706 btrfs_end_transaction(trans);
9707 break;
9708 }
9709
9710 if (own_trans) {
9711 btrfs_end_transaction(trans);
9712 trans = NULL;
9713 }
9714 }
9715 if (clear_offset < end)
9716 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9717 end - clear_offset + 1);
9718 return ret;
9719 }
9720
9721 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9722 u64 start, u64 num_bytes, u64 min_size,
9723 loff_t actual_len, u64 *alloc_hint)
9724 {
9725 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9726 min_size, actual_len, alloc_hint,
9727 NULL);
9728 }
9729
9730 int btrfs_prealloc_file_range_trans(struct inode *inode,
9731 struct btrfs_trans_handle *trans, int mode,
9732 u64 start, u64 num_bytes, u64 min_size,
9733 loff_t actual_len, u64 *alloc_hint)
9734 {
9735 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9736 min_size, actual_len, alloc_hint, trans);
9737 }
9738
9739 static int btrfs_permission(struct mnt_idmap *idmap,
9740 struct inode *inode, int mask)
9741 {
9742 struct btrfs_root *root = BTRFS_I(inode)->root;
9743 umode_t mode = inode->i_mode;
9744
9745 if (mask & MAY_WRITE &&
9746 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9747 if (btrfs_root_readonly(root))
9748 return -EROFS;
9749 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9750 return -EACCES;
9751 }
9752 return generic_permission(idmap, inode, mask);
9753 }
9754
9755 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9756 struct file *file, umode_t mode)
9757 {
9758 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9759 struct btrfs_trans_handle *trans;
9760 struct btrfs_root *root = BTRFS_I(dir)->root;
9761 struct inode *inode;
9762 struct btrfs_new_inode_args new_inode_args = {
9763 .dir = dir,
9764 .dentry = file->f_path.dentry,
9765 .orphan = true,
9766 };
9767 unsigned int trans_num_items;
9768 int ret;
9769
9770 inode = new_inode(dir->i_sb);
9771 if (!inode)
9772 return -ENOMEM;
9773 inode_init_owner(idmap, inode, dir, mode);
9774 inode->i_fop = &btrfs_file_operations;
9775 inode->i_op = &btrfs_file_inode_operations;
9776 inode->i_mapping->a_ops = &btrfs_aops;
9777
9778 new_inode_args.inode = inode;
9779 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9780 if (ret)
9781 goto out_inode;
9782
9783 trans = btrfs_start_transaction(root, trans_num_items);
9784 if (IS_ERR(trans)) {
9785 ret = PTR_ERR(trans);
9786 goto out_new_inode_args;
9787 }
9788
9789 ret = btrfs_create_new_inode(trans, &new_inode_args);
9790
9791 /*
9792 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9793 * set it to 1 because d_tmpfile() will issue a warning if the count is
9794 * 0, through:
9795 *
9796 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9797 */
9798 set_nlink(inode, 1);
9799
9800 if (!ret) {
9801 d_tmpfile(file, inode);
9802 unlock_new_inode(inode);
9803 mark_inode_dirty(inode);
9804 }
9805
9806 btrfs_end_transaction(trans);
9807 btrfs_btree_balance_dirty(fs_info);
9808 out_new_inode_args:
9809 btrfs_new_inode_args_destroy(&new_inode_args);
9810 out_inode:
9811 if (ret)
9812 iput(inode);
9813 return finish_open_simple(file, ret);
9814 }
9815
9816 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9817 {
9818 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9819 unsigned long index = start >> PAGE_SHIFT;
9820 unsigned long end_index = end >> PAGE_SHIFT;
9821 struct page *page;
9822 u32 len;
9823
9824 ASSERT(end + 1 - start <= U32_MAX);
9825 len = end + 1 - start;
9826 while (index <= end_index) {
9827 page = find_get_page(inode->vfs_inode.i_mapping, index);
9828 ASSERT(page); /* Pages should be in the extent_io_tree */
9829
9830 /* This is for data, which doesn't yet support larger folio. */
9831 ASSERT(folio_order(page_folio(page)) == 0);
9832 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9833 put_page(page);
9834 index++;
9835 }
9836 }
9837
9838 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9839 int compress_type)
9840 {
9841 switch (compress_type) {
9842 case BTRFS_COMPRESS_NONE:
9843 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9844 case BTRFS_COMPRESS_ZLIB:
9845 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9846 case BTRFS_COMPRESS_LZO:
9847 /*
9848 * The LZO format depends on the sector size. 64K is the maximum
9849 * sector size that we support.
9850 */
9851 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9852 return -EINVAL;
9853 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9854 (fs_info->sectorsize_bits - 12);
9855 case BTRFS_COMPRESS_ZSTD:
9856 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9857 default:
9858 return -EUCLEAN;
9859 }
9860 }
9861
9862 static ssize_t btrfs_encoded_read_inline(
9863 struct kiocb *iocb,
9864 struct iov_iter *iter, u64 start,
9865 u64 lockend,
9866 struct extent_state **cached_state,
9867 u64 extent_start, size_t count,
9868 struct btrfs_ioctl_encoded_io_args *encoded,
9869 bool *unlocked)
9870 {
9871 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9872 struct btrfs_root *root = inode->root;
9873 struct btrfs_fs_info *fs_info = root->fs_info;
9874 struct extent_io_tree *io_tree = &inode->io_tree;
9875 struct btrfs_path *path;
9876 struct extent_buffer *leaf;
9877 struct btrfs_file_extent_item *item;
9878 u64 ram_bytes;
9879 unsigned long ptr;
9880 void *tmp;
9881 ssize_t ret;
9882
9883 path = btrfs_alloc_path();
9884 if (!path) {
9885 ret = -ENOMEM;
9886 goto out;
9887 }
9888 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9889 extent_start, 0);
9890 if (ret) {
9891 if (ret > 0) {
9892 /* The extent item disappeared? */
9893 ret = -EIO;
9894 }
9895 goto out;
9896 }
9897 leaf = path->nodes[0];
9898 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9899
9900 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9901 ptr = btrfs_file_extent_inline_start(item);
9902
9903 encoded->len = min_t(u64, extent_start + ram_bytes,
9904 inode->vfs_inode.i_size) - iocb->ki_pos;
9905 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9906 btrfs_file_extent_compression(leaf, item));
9907 if (ret < 0)
9908 goto out;
9909 encoded->compression = ret;
9910 if (encoded->compression) {
9911 size_t inline_size;
9912
9913 inline_size = btrfs_file_extent_inline_item_len(leaf,
9914 path->slots[0]);
9915 if (inline_size > count) {
9916 ret = -ENOBUFS;
9917 goto out;
9918 }
9919 count = inline_size;
9920 encoded->unencoded_len = ram_bytes;
9921 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9922 } else {
9923 count = min_t(u64, count, encoded->len);
9924 encoded->len = count;
9925 encoded->unencoded_len = count;
9926 ptr += iocb->ki_pos - extent_start;
9927 }
9928
9929 tmp = kmalloc(count, GFP_NOFS);
9930 if (!tmp) {
9931 ret = -ENOMEM;
9932 goto out;
9933 }
9934 read_extent_buffer(leaf, tmp, ptr, count);
9935 btrfs_release_path(path);
9936 unlock_extent(io_tree, start, lockend, cached_state);
9937 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9938 *unlocked = true;
9939
9940 ret = copy_to_iter(tmp, count, iter);
9941 if (ret != count)
9942 ret = -EFAULT;
9943 kfree(tmp);
9944 out:
9945 btrfs_free_path(path);
9946 return ret;
9947 }
9948
9949 struct btrfs_encoded_read_private {
9950 wait_queue_head_t wait;
9951 atomic_t pending;
9952 blk_status_t status;
9953 };
9954
9955 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9956 {
9957 struct btrfs_encoded_read_private *priv = bbio->private;
9958
9959 if (bbio->bio.bi_status) {
9960 /*
9961 * The memory barrier implied by the atomic_dec_return() here
9962 * pairs with the memory barrier implied by the
9963 * atomic_dec_return() or io_wait_event() in
9964 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9965 * write is observed before the load of status in
9966 * btrfs_encoded_read_regular_fill_pages().
9967 */
9968 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9969 }
9970 if (!atomic_dec_return(&priv->pending))
9971 wake_up(&priv->wait);
9972 bio_put(&bbio->bio);
9973 }
9974
9975 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9976 u64 file_offset, u64 disk_bytenr,
9977 u64 disk_io_size, struct page **pages)
9978 {
9979 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9980 struct btrfs_encoded_read_private priv = {
9981 .pending = ATOMIC_INIT(1),
9982 };
9983 unsigned long i = 0;
9984 struct btrfs_bio *bbio;
9985
9986 init_waitqueue_head(&priv.wait);
9987
9988 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9989 btrfs_encoded_read_endio, &priv);
9990 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9991 bbio->inode = inode;
9992
9993 do {
9994 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9995
9996 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9997 atomic_inc(&priv.pending);
9998 btrfs_submit_bio(bbio, 0);
9999
10000 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10001 btrfs_encoded_read_endio, &priv);
10002 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10003 bbio->inode = inode;
10004 continue;
10005 }
10006
10007 i++;
10008 disk_bytenr += bytes;
10009 disk_io_size -= bytes;
10010 } while (disk_io_size);
10011
10012 atomic_inc(&priv.pending);
10013 btrfs_submit_bio(bbio, 0);
10014
10015 if (atomic_dec_return(&priv.pending))
10016 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10017 /* See btrfs_encoded_read_endio() for ordering. */
10018 return blk_status_to_errno(READ_ONCE(priv.status));
10019 }
10020
10021 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10022 struct iov_iter *iter,
10023 u64 start, u64 lockend,
10024 struct extent_state **cached_state,
10025 u64 disk_bytenr, u64 disk_io_size,
10026 size_t count, bool compressed,
10027 bool *unlocked)
10028 {
10029 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10030 struct extent_io_tree *io_tree = &inode->io_tree;
10031 struct page **pages;
10032 unsigned long nr_pages, i;
10033 u64 cur;
10034 size_t page_offset;
10035 ssize_t ret;
10036
10037 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10038 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10039 if (!pages)
10040 return -ENOMEM;
10041 ret = btrfs_alloc_page_array(nr_pages, pages, 0);
10042 if (ret) {
10043 ret = -ENOMEM;
10044 goto out;
10045 }
10046
10047 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10048 disk_io_size, pages);
10049 if (ret)
10050 goto out;
10051
10052 unlock_extent(io_tree, start, lockend, cached_state);
10053 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10054 *unlocked = true;
10055
10056 if (compressed) {
10057 i = 0;
10058 page_offset = 0;
10059 } else {
10060 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10061 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10062 }
10063 cur = 0;
10064 while (cur < count) {
10065 size_t bytes = min_t(size_t, count - cur,
10066 PAGE_SIZE - page_offset);
10067
10068 if (copy_page_to_iter(pages[i], page_offset, bytes,
10069 iter) != bytes) {
10070 ret = -EFAULT;
10071 goto out;
10072 }
10073 i++;
10074 cur += bytes;
10075 page_offset = 0;
10076 }
10077 ret = count;
10078 out:
10079 for (i = 0; i < nr_pages; i++) {
10080 if (pages[i])
10081 __free_page(pages[i]);
10082 }
10083 kfree(pages);
10084 return ret;
10085 }
10086
10087 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10088 struct btrfs_ioctl_encoded_io_args *encoded)
10089 {
10090 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10091 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10092 struct extent_io_tree *io_tree = &inode->io_tree;
10093 ssize_t ret;
10094 size_t count = iov_iter_count(iter);
10095 u64 start, lockend, disk_bytenr, disk_io_size;
10096 struct extent_state *cached_state = NULL;
10097 struct extent_map *em;
10098 bool unlocked = false;
10099
10100 file_accessed(iocb->ki_filp);
10101
10102 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10103
10104 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10105 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10106 return 0;
10107 }
10108 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10109 /*
10110 * We don't know how long the extent containing iocb->ki_pos is, but if
10111 * it's compressed we know that it won't be longer than this.
10112 */
10113 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10114
10115 for (;;) {
10116 struct btrfs_ordered_extent *ordered;
10117
10118 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10119 lockend - start + 1);
10120 if (ret)
10121 goto out_unlock_inode;
10122 lock_extent(io_tree, start, lockend, &cached_state);
10123 ordered = btrfs_lookup_ordered_range(inode, start,
10124 lockend - start + 1);
10125 if (!ordered)
10126 break;
10127 btrfs_put_ordered_extent(ordered);
10128 unlock_extent(io_tree, start, lockend, &cached_state);
10129 cond_resched();
10130 }
10131
10132 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10133 if (IS_ERR(em)) {
10134 ret = PTR_ERR(em);
10135 goto out_unlock_extent;
10136 }
10137
10138 if (em->block_start == EXTENT_MAP_INLINE) {
10139 u64 extent_start = em->start;
10140
10141 /*
10142 * For inline extents we get everything we need out of the
10143 * extent item.
10144 */
10145 free_extent_map(em);
10146 em = NULL;
10147 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10148 &cached_state, extent_start,
10149 count, encoded, &unlocked);
10150 goto out;
10151 }
10152
10153 /*
10154 * We only want to return up to EOF even if the extent extends beyond
10155 * that.
10156 */
10157 encoded->len = min_t(u64, extent_map_end(em),
10158 inode->vfs_inode.i_size) - iocb->ki_pos;
10159 if (em->block_start == EXTENT_MAP_HOLE ||
10160 (em->flags & EXTENT_FLAG_PREALLOC)) {
10161 disk_bytenr = EXTENT_MAP_HOLE;
10162 count = min_t(u64, count, encoded->len);
10163 encoded->len = count;
10164 encoded->unencoded_len = count;
10165 } else if (extent_map_is_compressed(em)) {
10166 disk_bytenr = em->block_start;
10167 /*
10168 * Bail if the buffer isn't large enough to return the whole
10169 * compressed extent.
10170 */
10171 if (em->block_len > count) {
10172 ret = -ENOBUFS;
10173 goto out_em;
10174 }
10175 disk_io_size = em->block_len;
10176 count = em->block_len;
10177 encoded->unencoded_len = em->ram_bytes;
10178 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10179 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10180 extent_map_compression(em));
10181 if (ret < 0)
10182 goto out_em;
10183 encoded->compression = ret;
10184 } else {
10185 disk_bytenr = em->block_start + (start - em->start);
10186 if (encoded->len > count)
10187 encoded->len = count;
10188 /*
10189 * Don't read beyond what we locked. This also limits the page
10190 * allocations that we'll do.
10191 */
10192 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10193 count = start + disk_io_size - iocb->ki_pos;
10194 encoded->len = count;
10195 encoded->unencoded_len = count;
10196 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10197 }
10198 free_extent_map(em);
10199 em = NULL;
10200
10201 if (disk_bytenr == EXTENT_MAP_HOLE) {
10202 unlock_extent(io_tree, start, lockend, &cached_state);
10203 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10204 unlocked = true;
10205 ret = iov_iter_zero(count, iter);
10206 if (ret != count)
10207 ret = -EFAULT;
10208 } else {
10209 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10210 &cached_state, disk_bytenr,
10211 disk_io_size, count,
10212 encoded->compression,
10213 &unlocked);
10214 }
10215
10216 out:
10217 if (ret >= 0)
10218 iocb->ki_pos += encoded->len;
10219 out_em:
10220 free_extent_map(em);
10221 out_unlock_extent:
10222 if (!unlocked)
10223 unlock_extent(io_tree, start, lockend, &cached_state);
10224 out_unlock_inode:
10225 if (!unlocked)
10226 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10227 return ret;
10228 }
10229
10230 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10231 const struct btrfs_ioctl_encoded_io_args *encoded)
10232 {
10233 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10234 struct btrfs_root *root = inode->root;
10235 struct btrfs_fs_info *fs_info = root->fs_info;
10236 struct extent_io_tree *io_tree = &inode->io_tree;
10237 struct extent_changeset *data_reserved = NULL;
10238 struct extent_state *cached_state = NULL;
10239 struct btrfs_ordered_extent *ordered;
10240 int compression;
10241 size_t orig_count;
10242 u64 start, end;
10243 u64 num_bytes, ram_bytes, disk_num_bytes;
10244 unsigned long nr_pages, i;
10245 struct page **pages;
10246 struct btrfs_key ins;
10247 bool extent_reserved = false;
10248 struct extent_map *em;
10249 ssize_t ret;
10250
10251 switch (encoded->compression) {
10252 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10253 compression = BTRFS_COMPRESS_ZLIB;
10254 break;
10255 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10256 compression = BTRFS_COMPRESS_ZSTD;
10257 break;
10258 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10259 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10260 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10261 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10262 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10263 /* The sector size must match for LZO. */
10264 if (encoded->compression -
10265 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10266 fs_info->sectorsize_bits)
10267 return -EINVAL;
10268 compression = BTRFS_COMPRESS_LZO;
10269 break;
10270 default:
10271 return -EINVAL;
10272 }
10273 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10274 return -EINVAL;
10275
10276 orig_count = iov_iter_count(from);
10277
10278 /* The extent size must be sane. */
10279 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10280 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10281 return -EINVAL;
10282
10283 /*
10284 * The compressed data must be smaller than the decompressed data.
10285 *
10286 * It's of course possible for data to compress to larger or the same
10287 * size, but the buffered I/O path falls back to no compression for such
10288 * data, and we don't want to break any assumptions by creating these
10289 * extents.
10290 *
10291 * Note that this is less strict than the current check we have that the
10292 * compressed data must be at least one sector smaller than the
10293 * decompressed data. We only want to enforce the weaker requirement
10294 * from old kernels that it is at least one byte smaller.
10295 */
10296 if (orig_count >= encoded->unencoded_len)
10297 return -EINVAL;
10298
10299 /* The extent must start on a sector boundary. */
10300 start = iocb->ki_pos;
10301 if (!IS_ALIGNED(start, fs_info->sectorsize))
10302 return -EINVAL;
10303
10304 /*
10305 * The extent must end on a sector boundary. However, we allow a write
10306 * which ends at or extends i_size to have an unaligned length; we round
10307 * up the extent size and set i_size to the unaligned end.
10308 */
10309 if (start + encoded->len < inode->vfs_inode.i_size &&
10310 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10311 return -EINVAL;
10312
10313 /* Finally, the offset in the unencoded data must be sector-aligned. */
10314 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10315 return -EINVAL;
10316
10317 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10318 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10319 end = start + num_bytes - 1;
10320
10321 /*
10322 * If the extent cannot be inline, the compressed data on disk must be
10323 * sector-aligned. For convenience, we extend it with zeroes if it
10324 * isn't.
10325 */
10326 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10327 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10328 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10329 if (!pages)
10330 return -ENOMEM;
10331 for (i = 0; i < nr_pages; i++) {
10332 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10333 char *kaddr;
10334
10335 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10336 if (!pages[i]) {
10337 ret = -ENOMEM;
10338 goto out_pages;
10339 }
10340 kaddr = kmap_local_page(pages[i]);
10341 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10342 kunmap_local(kaddr);
10343 ret = -EFAULT;
10344 goto out_pages;
10345 }
10346 if (bytes < PAGE_SIZE)
10347 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10348 kunmap_local(kaddr);
10349 }
10350
10351 for (;;) {
10352 struct btrfs_ordered_extent *ordered;
10353
10354 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10355 if (ret)
10356 goto out_pages;
10357 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10358 start >> PAGE_SHIFT,
10359 end >> PAGE_SHIFT);
10360 if (ret)
10361 goto out_pages;
10362 lock_extent(io_tree, start, end, &cached_state);
10363 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10364 if (!ordered &&
10365 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10366 break;
10367 if (ordered)
10368 btrfs_put_ordered_extent(ordered);
10369 unlock_extent(io_tree, start, end, &cached_state);
10370 cond_resched();
10371 }
10372
10373 /*
10374 * We don't use the higher-level delalloc space functions because our
10375 * num_bytes and disk_num_bytes are different.
10376 */
10377 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10378 if (ret)
10379 goto out_unlock;
10380 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10381 if (ret)
10382 goto out_free_data_space;
10383 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10384 false);
10385 if (ret)
10386 goto out_qgroup_free_data;
10387
10388 /* Try an inline extent first. */
10389 if (start == 0 && encoded->unencoded_len == encoded->len &&
10390 encoded->unencoded_offset == 0) {
10391 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10392 compression, pages, true);
10393 if (ret <= 0) {
10394 if (ret == 0)
10395 ret = orig_count;
10396 goto out_delalloc_release;
10397 }
10398 }
10399
10400 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10401 disk_num_bytes, 0, 0, &ins, 1, 1);
10402 if (ret)
10403 goto out_delalloc_release;
10404 extent_reserved = true;
10405
10406 em = create_io_em(inode, start, num_bytes,
10407 start - encoded->unencoded_offset, ins.objectid,
10408 ins.offset, ins.offset, ram_bytes, compression,
10409 BTRFS_ORDERED_COMPRESSED);
10410 if (IS_ERR(em)) {
10411 ret = PTR_ERR(em);
10412 goto out_free_reserved;
10413 }
10414 free_extent_map(em);
10415
10416 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10417 ins.objectid, ins.offset,
10418 encoded->unencoded_offset,
10419 (1 << BTRFS_ORDERED_ENCODED) |
10420 (1 << BTRFS_ORDERED_COMPRESSED),
10421 compression);
10422 if (IS_ERR(ordered)) {
10423 btrfs_drop_extent_map_range(inode, start, end, false);
10424 ret = PTR_ERR(ordered);
10425 goto out_free_reserved;
10426 }
10427 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10428
10429 if (start + encoded->len > inode->vfs_inode.i_size)
10430 i_size_write(&inode->vfs_inode, start + encoded->len);
10431
10432 unlock_extent(io_tree, start, end, &cached_state);
10433
10434 btrfs_delalloc_release_extents(inode, num_bytes);
10435
10436 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10437 ret = orig_count;
10438 goto out;
10439
10440 out_free_reserved:
10441 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10442 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10443 out_delalloc_release:
10444 btrfs_delalloc_release_extents(inode, num_bytes);
10445 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10446 out_qgroup_free_data:
10447 if (ret < 0)
10448 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10449 out_free_data_space:
10450 /*
10451 * If btrfs_reserve_extent() succeeded, then we already decremented
10452 * bytes_may_use.
10453 */
10454 if (!extent_reserved)
10455 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10456 out_unlock:
10457 unlock_extent(io_tree, start, end, &cached_state);
10458 out_pages:
10459 for (i = 0; i < nr_pages; i++) {
10460 if (pages[i])
10461 __free_page(pages[i]);
10462 }
10463 kvfree(pages);
10464 out:
10465 if (ret >= 0)
10466 iocb->ki_pos += encoded->len;
10467 return ret;
10468 }
10469
10470 #ifdef CONFIG_SWAP
10471 /*
10472 * Add an entry indicating a block group or device which is pinned by a
10473 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10474 * negative errno on failure.
10475 */
10476 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10477 bool is_block_group)
10478 {
10479 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10480 struct btrfs_swapfile_pin *sp, *entry;
10481 struct rb_node **p;
10482 struct rb_node *parent = NULL;
10483
10484 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10485 if (!sp)
10486 return -ENOMEM;
10487 sp->ptr = ptr;
10488 sp->inode = inode;
10489 sp->is_block_group = is_block_group;
10490 sp->bg_extent_count = 1;
10491
10492 spin_lock(&fs_info->swapfile_pins_lock);
10493 p = &fs_info->swapfile_pins.rb_node;
10494 while (*p) {
10495 parent = *p;
10496 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10497 if (sp->ptr < entry->ptr ||
10498 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10499 p = &(*p)->rb_left;
10500 } else if (sp->ptr > entry->ptr ||
10501 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10502 p = &(*p)->rb_right;
10503 } else {
10504 if (is_block_group)
10505 entry->bg_extent_count++;
10506 spin_unlock(&fs_info->swapfile_pins_lock);
10507 kfree(sp);
10508 return 1;
10509 }
10510 }
10511 rb_link_node(&sp->node, parent, p);
10512 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10513 spin_unlock(&fs_info->swapfile_pins_lock);
10514 return 0;
10515 }
10516
10517 /* Free all of the entries pinned by this swapfile. */
10518 static void btrfs_free_swapfile_pins(struct inode *inode)
10519 {
10520 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10521 struct btrfs_swapfile_pin *sp;
10522 struct rb_node *node, *next;
10523
10524 spin_lock(&fs_info->swapfile_pins_lock);
10525 node = rb_first(&fs_info->swapfile_pins);
10526 while (node) {
10527 next = rb_next(node);
10528 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10529 if (sp->inode == inode) {
10530 rb_erase(&sp->node, &fs_info->swapfile_pins);
10531 if (sp->is_block_group) {
10532 btrfs_dec_block_group_swap_extents(sp->ptr,
10533 sp->bg_extent_count);
10534 btrfs_put_block_group(sp->ptr);
10535 }
10536 kfree(sp);
10537 }
10538 node = next;
10539 }
10540 spin_unlock(&fs_info->swapfile_pins_lock);
10541 }
10542
10543 struct btrfs_swap_info {
10544 u64 start;
10545 u64 block_start;
10546 u64 block_len;
10547 u64 lowest_ppage;
10548 u64 highest_ppage;
10549 unsigned long nr_pages;
10550 int nr_extents;
10551 };
10552
10553 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10554 struct btrfs_swap_info *bsi)
10555 {
10556 unsigned long nr_pages;
10557 unsigned long max_pages;
10558 u64 first_ppage, first_ppage_reported, next_ppage;
10559 int ret;
10560
10561 /*
10562 * Our swapfile may have had its size extended after the swap header was
10563 * written. In that case activating the swapfile should not go beyond
10564 * the max size set in the swap header.
10565 */
10566 if (bsi->nr_pages >= sis->max)
10567 return 0;
10568
10569 max_pages = sis->max - bsi->nr_pages;
10570 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10571 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10572
10573 if (first_ppage >= next_ppage)
10574 return 0;
10575 nr_pages = next_ppage - first_ppage;
10576 nr_pages = min(nr_pages, max_pages);
10577
10578 first_ppage_reported = first_ppage;
10579 if (bsi->start == 0)
10580 first_ppage_reported++;
10581 if (bsi->lowest_ppage > first_ppage_reported)
10582 bsi->lowest_ppage = first_ppage_reported;
10583 if (bsi->highest_ppage < (next_ppage - 1))
10584 bsi->highest_ppage = next_ppage - 1;
10585
10586 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10587 if (ret < 0)
10588 return ret;
10589 bsi->nr_extents += ret;
10590 bsi->nr_pages += nr_pages;
10591 return 0;
10592 }
10593
10594 static void btrfs_swap_deactivate(struct file *file)
10595 {
10596 struct inode *inode = file_inode(file);
10597
10598 btrfs_free_swapfile_pins(inode);
10599 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10600 }
10601
10602 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10603 sector_t *span)
10604 {
10605 struct inode *inode = file_inode(file);
10606 struct btrfs_root *root = BTRFS_I(inode)->root;
10607 struct btrfs_fs_info *fs_info = root->fs_info;
10608 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10609 struct extent_state *cached_state = NULL;
10610 struct extent_map *em = NULL;
10611 struct btrfs_chunk_map *map = NULL;
10612 struct btrfs_device *device = NULL;
10613 struct btrfs_swap_info bsi = {
10614 .lowest_ppage = (sector_t)-1ULL,
10615 };
10616 int ret = 0;
10617 u64 isize;
10618 u64 start;
10619
10620 /*
10621 * If the swap file was just created, make sure delalloc is done. If the
10622 * file changes again after this, the user is doing something stupid and
10623 * we don't really care.
10624 */
10625 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10626 if (ret)
10627 return ret;
10628
10629 /*
10630 * The inode is locked, so these flags won't change after we check them.
10631 */
10632 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10633 btrfs_warn(fs_info, "swapfile must not be compressed");
10634 return -EINVAL;
10635 }
10636 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10637 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10638 return -EINVAL;
10639 }
10640 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10641 btrfs_warn(fs_info, "swapfile must not be checksummed");
10642 return -EINVAL;
10643 }
10644
10645 /*
10646 * Balance or device remove/replace/resize can move stuff around from
10647 * under us. The exclop protection makes sure they aren't running/won't
10648 * run concurrently while we are mapping the swap extents, and
10649 * fs_info->swapfile_pins prevents them from running while the swap
10650 * file is active and moving the extents. Note that this also prevents
10651 * a concurrent device add which isn't actually necessary, but it's not
10652 * really worth the trouble to allow it.
10653 */
10654 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10655 btrfs_warn(fs_info,
10656 "cannot activate swapfile while exclusive operation is running");
10657 return -EBUSY;
10658 }
10659
10660 /*
10661 * Prevent snapshot creation while we are activating the swap file.
10662 * We do not want to race with snapshot creation. If snapshot creation
10663 * already started before we bumped nr_swapfiles from 0 to 1 and
10664 * completes before the first write into the swap file after it is
10665 * activated, than that write would fallback to COW.
10666 */
10667 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10668 btrfs_exclop_finish(fs_info);
10669 btrfs_warn(fs_info,
10670 "cannot activate swapfile because snapshot creation is in progress");
10671 return -EINVAL;
10672 }
10673 /*
10674 * Snapshots can create extents which require COW even if NODATACOW is
10675 * set. We use this counter to prevent snapshots. We must increment it
10676 * before walking the extents because we don't want a concurrent
10677 * snapshot to run after we've already checked the extents.
10678 *
10679 * It is possible that subvolume is marked for deletion but still not
10680 * removed yet. To prevent this race, we check the root status before
10681 * activating the swapfile.
10682 */
10683 spin_lock(&root->root_item_lock);
10684 if (btrfs_root_dead(root)) {
10685 spin_unlock(&root->root_item_lock);
10686
10687 btrfs_exclop_finish(fs_info);
10688 btrfs_warn(fs_info,
10689 "cannot activate swapfile because subvolume %llu is being deleted",
10690 root->root_key.objectid);
10691 return -EPERM;
10692 }
10693 atomic_inc(&root->nr_swapfiles);
10694 spin_unlock(&root->root_item_lock);
10695
10696 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10697
10698 lock_extent(io_tree, 0, isize - 1, &cached_state);
10699 start = 0;
10700 while (start < isize) {
10701 u64 logical_block_start, physical_block_start;
10702 struct btrfs_block_group *bg;
10703 u64 len = isize - start;
10704
10705 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10706 if (IS_ERR(em)) {
10707 ret = PTR_ERR(em);
10708 goto out;
10709 }
10710
10711 if (em->block_start == EXTENT_MAP_HOLE) {
10712 btrfs_warn(fs_info, "swapfile must not have holes");
10713 ret = -EINVAL;
10714 goto out;
10715 }
10716 if (em->block_start == EXTENT_MAP_INLINE) {
10717 /*
10718 * It's unlikely we'll ever actually find ourselves
10719 * here, as a file small enough to fit inline won't be
10720 * big enough to store more than the swap header, but in
10721 * case something changes in the future, let's catch it
10722 * here rather than later.
10723 */
10724 btrfs_warn(fs_info, "swapfile must not be inline");
10725 ret = -EINVAL;
10726 goto out;
10727 }
10728 if (extent_map_is_compressed(em)) {
10729 btrfs_warn(fs_info, "swapfile must not be compressed");
10730 ret = -EINVAL;
10731 goto out;
10732 }
10733
10734 logical_block_start = em->block_start + (start - em->start);
10735 len = min(len, em->len - (start - em->start));
10736 free_extent_map(em);
10737 em = NULL;
10738
10739 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10740 if (ret < 0) {
10741 goto out;
10742 } else if (ret) {
10743 ret = 0;
10744 } else {
10745 btrfs_warn(fs_info,
10746 "swapfile must not be copy-on-write");
10747 ret = -EINVAL;
10748 goto out;
10749 }
10750
10751 map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10752 if (IS_ERR(map)) {
10753 ret = PTR_ERR(map);
10754 goto out;
10755 }
10756
10757 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10758 btrfs_warn(fs_info,
10759 "swapfile must have single data profile");
10760 ret = -EINVAL;
10761 goto out;
10762 }
10763
10764 if (device == NULL) {
10765 device = map->stripes[0].dev;
10766 ret = btrfs_add_swapfile_pin(inode, device, false);
10767 if (ret == 1)
10768 ret = 0;
10769 else if (ret)
10770 goto out;
10771 } else if (device != map->stripes[0].dev) {
10772 btrfs_warn(fs_info, "swapfile must be on one device");
10773 ret = -EINVAL;
10774 goto out;
10775 }
10776
10777 physical_block_start = (map->stripes[0].physical +
10778 (logical_block_start - map->start));
10779 len = min(len, map->chunk_len - (logical_block_start - map->start));
10780 btrfs_free_chunk_map(map);
10781 map = NULL;
10782
10783 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10784 if (!bg) {
10785 btrfs_warn(fs_info,
10786 "could not find block group containing swapfile");
10787 ret = -EINVAL;
10788 goto out;
10789 }
10790
10791 if (!btrfs_inc_block_group_swap_extents(bg)) {
10792 btrfs_warn(fs_info,
10793 "block group for swapfile at %llu is read-only%s",
10794 bg->start,
10795 atomic_read(&fs_info->scrubs_running) ?
10796 " (scrub running)" : "");
10797 btrfs_put_block_group(bg);
10798 ret = -EINVAL;
10799 goto out;
10800 }
10801
10802 ret = btrfs_add_swapfile_pin(inode, bg, true);
10803 if (ret) {
10804 btrfs_put_block_group(bg);
10805 if (ret == 1)
10806 ret = 0;
10807 else
10808 goto out;
10809 }
10810
10811 if (bsi.block_len &&
10812 bsi.block_start + bsi.block_len == physical_block_start) {
10813 bsi.block_len += len;
10814 } else {
10815 if (bsi.block_len) {
10816 ret = btrfs_add_swap_extent(sis, &bsi);
10817 if (ret)
10818 goto out;
10819 }
10820 bsi.start = start;
10821 bsi.block_start = physical_block_start;
10822 bsi.block_len = len;
10823 }
10824
10825 start += len;
10826 }
10827
10828 if (bsi.block_len)
10829 ret = btrfs_add_swap_extent(sis, &bsi);
10830
10831 out:
10832 if (!IS_ERR_OR_NULL(em))
10833 free_extent_map(em);
10834 if (!IS_ERR_OR_NULL(map))
10835 btrfs_free_chunk_map(map);
10836
10837 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10838
10839 if (ret)
10840 btrfs_swap_deactivate(file);
10841
10842 btrfs_drew_write_unlock(&root->snapshot_lock);
10843
10844 btrfs_exclop_finish(fs_info);
10845
10846 if (ret)
10847 return ret;
10848
10849 if (device)
10850 sis->bdev = device->bdev;
10851 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10852 sis->max = bsi.nr_pages;
10853 sis->pages = bsi.nr_pages - 1;
10854 sis->highest_bit = bsi.nr_pages - 1;
10855 return bsi.nr_extents;
10856 }
10857 #else
10858 static void btrfs_swap_deactivate(struct file *file)
10859 {
10860 }
10861
10862 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10863 sector_t *span)
10864 {
10865 return -EOPNOTSUPP;
10866 }
10867 #endif
10868
10869 /*
10870 * Update the number of bytes used in the VFS' inode. When we replace extents in
10871 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10872 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10873 * always get a correct value.
10874 */
10875 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10876 const u64 add_bytes,
10877 const u64 del_bytes)
10878 {
10879 if (add_bytes == del_bytes)
10880 return;
10881
10882 spin_lock(&inode->lock);
10883 if (del_bytes > 0)
10884 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10885 if (add_bytes > 0)
10886 inode_add_bytes(&inode->vfs_inode, add_bytes);
10887 spin_unlock(&inode->lock);
10888 }
10889
10890 /*
10891 * Verify that there are no ordered extents for a given file range.
10892 *
10893 * @inode: The target inode.
10894 * @start: Start offset of the file range, should be sector size aligned.
10895 * @end: End offset (inclusive) of the file range, its value +1 should be
10896 * sector size aligned.
10897 *
10898 * This should typically be used for cases where we locked an inode's VFS lock in
10899 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10900 * we have flushed all delalloc in the range, we have waited for all ordered
10901 * extents in the range to complete and finally we have locked the file range in
10902 * the inode's io_tree.
10903 */
10904 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10905 {
10906 struct btrfs_root *root = inode->root;
10907 struct btrfs_ordered_extent *ordered;
10908
10909 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10910 return;
10911
10912 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10913 if (ordered) {
10914 btrfs_err(root->fs_info,
10915 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10916 start, end, btrfs_ino(inode), root->root_key.objectid,
10917 ordered->file_offset,
10918 ordered->file_offset + ordered->num_bytes - 1);
10919 btrfs_put_ordered_extent(ordered);
10920 }
10921
10922 ASSERT(ordered == NULL);
10923 }
10924
10925 static const struct inode_operations btrfs_dir_inode_operations = {
10926 .getattr = btrfs_getattr,
10927 .lookup = btrfs_lookup,
10928 .create = btrfs_create,
10929 .unlink = btrfs_unlink,
10930 .link = btrfs_link,
10931 .mkdir = btrfs_mkdir,
10932 .rmdir = btrfs_rmdir,
10933 .rename = btrfs_rename2,
10934 .symlink = btrfs_symlink,
10935 .setattr = btrfs_setattr,
10936 .mknod = btrfs_mknod,
10937 .listxattr = btrfs_listxattr,
10938 .permission = btrfs_permission,
10939 .get_inode_acl = btrfs_get_acl,
10940 .set_acl = btrfs_set_acl,
10941 .update_time = btrfs_update_time,
10942 .tmpfile = btrfs_tmpfile,
10943 .fileattr_get = btrfs_fileattr_get,
10944 .fileattr_set = btrfs_fileattr_set,
10945 };
10946
10947 static const struct file_operations btrfs_dir_file_operations = {
10948 .llseek = btrfs_dir_llseek,
10949 .read = generic_read_dir,
10950 .iterate_shared = btrfs_real_readdir,
10951 .open = btrfs_opendir,
10952 .unlocked_ioctl = btrfs_ioctl,
10953 #ifdef CONFIG_COMPAT
10954 .compat_ioctl = btrfs_compat_ioctl,
10955 #endif
10956 .release = btrfs_release_file,
10957 .fsync = btrfs_sync_file,
10958 };
10959
10960 /*
10961 * btrfs doesn't support the bmap operation because swapfiles
10962 * use bmap to make a mapping of extents in the file. They assume
10963 * these extents won't change over the life of the file and they
10964 * use the bmap result to do IO directly to the drive.
10965 *
10966 * the btrfs bmap call would return logical addresses that aren't
10967 * suitable for IO and they also will change frequently as COW
10968 * operations happen. So, swapfile + btrfs == corruption.
10969 *
10970 * For now we're avoiding this by dropping bmap.
10971 */
10972 static const struct address_space_operations btrfs_aops = {
10973 .read_folio = btrfs_read_folio,
10974 .writepages = btrfs_writepages,
10975 .readahead = btrfs_readahead,
10976 .invalidate_folio = btrfs_invalidate_folio,
10977 .release_folio = btrfs_release_folio,
10978 .migrate_folio = btrfs_migrate_folio,
10979 .dirty_folio = filemap_dirty_folio,
10980 .error_remove_folio = generic_error_remove_folio,
10981 .swap_activate = btrfs_swap_activate,
10982 .swap_deactivate = btrfs_swap_deactivate,
10983 };
10984
10985 static const struct inode_operations btrfs_file_inode_operations = {
10986 .getattr = btrfs_getattr,
10987 .setattr = btrfs_setattr,
10988 .listxattr = btrfs_listxattr,
10989 .permission = btrfs_permission,
10990 .fiemap = btrfs_fiemap,
10991 .get_inode_acl = btrfs_get_acl,
10992 .set_acl = btrfs_set_acl,
10993 .update_time = btrfs_update_time,
10994 .fileattr_get = btrfs_fileattr_get,
10995 .fileattr_set = btrfs_fileattr_set,
10996 };
10997 static const struct inode_operations btrfs_special_inode_operations = {
10998 .getattr = btrfs_getattr,
10999 .setattr = btrfs_setattr,
11000 .permission = btrfs_permission,
11001 .listxattr = btrfs_listxattr,
11002 .get_inode_acl = btrfs_get_acl,
11003 .set_acl = btrfs_set_acl,
11004 .update_time = btrfs_update_time,
11005 };
11006 static const struct inode_operations btrfs_symlink_inode_operations = {
11007 .get_link = page_get_link,
11008 .getattr = btrfs_getattr,
11009 .setattr = btrfs_setattr,
11010 .permission = btrfs_permission,
11011 .listxattr = btrfs_listxattr,
11012 .update_time = btrfs_update_time,
11013 };
11014
11015 const struct dentry_operations btrfs_dentry_operations = {
11016 .d_delete = btrfs_dentry_delete,
11017 };