]> git.ipfire.org Git - people/ms/linux.git/blob - fs/btrfs/inode.c
ARM: dts: lan966x: Fix the interrupt number for internal PHYs
[people/ms/linux.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58
59 struct btrfs_iget_args {
60 u64 ino;
61 struct btrfs_root *root;
62 };
63
64 struct btrfs_dio_data {
65 ssize_t submitted;
66 struct extent_changeset *data_reserved;
67 bool data_space_reserved;
68 bool nocow_done;
69 };
70
71 struct btrfs_dio_private {
72 struct inode *inode;
73
74 /*
75 * Since DIO can use anonymous page, we cannot use page_offset() to
76 * grab the file offset, thus need a dedicated member for file offset.
77 */
78 u64 file_offset;
79 /* Used for bio::bi_size */
80 u32 bytes;
81
82 /*
83 * References to this structure. There is one reference per in-flight
84 * bio plus one while we're still setting up.
85 */
86 refcount_t refs;
87
88 /* Array of checksums */
89 u8 *csums;
90
91 /* This must be last */
92 struct bio bio;
93 };
94
95 static struct bio_set btrfs_dio_bioset;
96
97 struct btrfs_rename_ctx {
98 /* Output field. Stores the index number of the old directory entry. */
99 u64 index;
100 };
101
102 static const struct inode_operations btrfs_dir_inode_operations;
103 static const struct inode_operations btrfs_symlink_inode_operations;
104 static const struct inode_operations btrfs_special_inode_operations;
105 static const struct inode_operations btrfs_file_inode_operations;
106 static const struct address_space_operations btrfs_aops;
107 static const struct file_operations btrfs_dir_file_operations;
108
109 static struct kmem_cache *btrfs_inode_cachep;
110 struct kmem_cache *btrfs_trans_handle_cachep;
111 struct kmem_cache *btrfs_path_cachep;
112 struct kmem_cache *btrfs_free_space_cachep;
113 struct kmem_cache *btrfs_free_space_bitmap_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
117 static noinline int cow_file_range(struct btrfs_inode *inode,
118 struct page *locked_page,
119 u64 start, u64 end, int *page_started,
120 unsigned long *nr_written, int unlock,
121 u64 *done_offset);
122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
123 u64 len, u64 orig_start, u64 block_start,
124 u64 block_len, u64 orig_block_len,
125 u64 ram_bytes, int compress_type,
126 int type);
127
128 /*
129 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
130 *
131 * ilock_flags can have the following bit set:
132 *
133 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
134 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
135 * return -EAGAIN
136 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
137 */
138 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
139 {
140 if (ilock_flags & BTRFS_ILOCK_SHARED) {
141 if (ilock_flags & BTRFS_ILOCK_TRY) {
142 if (!inode_trylock_shared(inode))
143 return -EAGAIN;
144 else
145 return 0;
146 }
147 inode_lock_shared(inode);
148 } else {
149 if (ilock_flags & BTRFS_ILOCK_TRY) {
150 if (!inode_trylock(inode))
151 return -EAGAIN;
152 else
153 return 0;
154 }
155 inode_lock(inode);
156 }
157 if (ilock_flags & BTRFS_ILOCK_MMAP)
158 down_write(&BTRFS_I(inode)->i_mmap_lock);
159 return 0;
160 }
161
162 /*
163 * btrfs_inode_unlock - unock inode i_rwsem
164 *
165 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
166 * to decide whether the lock acquired is shared or exclusive.
167 */
168 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
169 {
170 if (ilock_flags & BTRFS_ILOCK_MMAP)
171 up_write(&BTRFS_I(inode)->i_mmap_lock);
172 if (ilock_flags & BTRFS_ILOCK_SHARED)
173 inode_unlock_shared(inode);
174 else
175 inode_unlock(inode);
176 }
177
178 /*
179 * Cleanup all submitted ordered extents in specified range to handle errors
180 * from the btrfs_run_delalloc_range() callback.
181 *
182 * NOTE: caller must ensure that when an error happens, it can not call
183 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
184 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
185 * to be released, which we want to happen only when finishing the ordered
186 * extent (btrfs_finish_ordered_io()).
187 */
188 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
189 struct page *locked_page,
190 u64 offset, u64 bytes)
191 {
192 unsigned long index = offset >> PAGE_SHIFT;
193 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
194 u64 page_start, page_end;
195 struct page *page;
196
197 if (locked_page) {
198 page_start = page_offset(locked_page);
199 page_end = page_start + PAGE_SIZE - 1;
200 }
201
202 while (index <= end_index) {
203 /*
204 * For locked page, we will call end_extent_writepage() on it
205 * in run_delalloc_range() for the error handling. That
206 * end_extent_writepage() function will call
207 * btrfs_mark_ordered_io_finished() to clear page Ordered and
208 * run the ordered extent accounting.
209 *
210 * Here we can't just clear the Ordered bit, or
211 * btrfs_mark_ordered_io_finished() would skip the accounting
212 * for the page range, and the ordered extent will never finish.
213 */
214 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
215 index++;
216 continue;
217 }
218 page = find_get_page(inode->vfs_inode.i_mapping, index);
219 index++;
220 if (!page)
221 continue;
222
223 /*
224 * Here we just clear all Ordered bits for every page in the
225 * range, then btrfs_mark_ordered_io_finished() will handle
226 * the ordered extent accounting for the range.
227 */
228 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
229 offset, bytes);
230 put_page(page);
231 }
232
233 if (locked_page) {
234 /* The locked page covers the full range, nothing needs to be done */
235 if (bytes + offset <= page_start + PAGE_SIZE)
236 return;
237 /*
238 * In case this page belongs to the delalloc range being
239 * instantiated then skip it, since the first page of a range is
240 * going to be properly cleaned up by the caller of
241 * run_delalloc_range
242 */
243 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
244 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
245 offset = page_offset(locked_page) + PAGE_SIZE;
246 }
247 }
248
249 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
250 }
251
252 static int btrfs_dirty_inode(struct inode *inode);
253
254 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
255 struct btrfs_new_inode_args *args)
256 {
257 int err;
258
259 if (args->default_acl) {
260 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
261 ACL_TYPE_DEFAULT);
262 if (err)
263 return err;
264 }
265 if (args->acl) {
266 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
267 if (err)
268 return err;
269 }
270 if (!args->default_acl && !args->acl)
271 cache_no_acl(args->inode);
272 return btrfs_xattr_security_init(trans, args->inode, args->dir,
273 &args->dentry->d_name);
274 }
275
276 /*
277 * this does all the hard work for inserting an inline extent into
278 * the btree. The caller should have done a btrfs_drop_extents so that
279 * no overlapping inline items exist in the btree
280 */
281 static int insert_inline_extent(struct btrfs_trans_handle *trans,
282 struct btrfs_path *path,
283 struct btrfs_inode *inode, bool extent_inserted,
284 size_t size, size_t compressed_size,
285 int compress_type,
286 struct page **compressed_pages,
287 bool update_i_size)
288 {
289 struct btrfs_root *root = inode->root;
290 struct extent_buffer *leaf;
291 struct page *page = NULL;
292 char *kaddr;
293 unsigned long ptr;
294 struct btrfs_file_extent_item *ei;
295 int ret;
296 size_t cur_size = size;
297 u64 i_size;
298
299 ASSERT((compressed_size > 0 && compressed_pages) ||
300 (compressed_size == 0 && !compressed_pages));
301
302 if (compressed_size && compressed_pages)
303 cur_size = compressed_size;
304
305 if (!extent_inserted) {
306 struct btrfs_key key;
307 size_t datasize;
308
309 key.objectid = btrfs_ino(inode);
310 key.offset = 0;
311 key.type = BTRFS_EXTENT_DATA_KEY;
312
313 datasize = btrfs_file_extent_calc_inline_size(cur_size);
314 ret = btrfs_insert_empty_item(trans, root, path, &key,
315 datasize);
316 if (ret)
317 goto fail;
318 }
319 leaf = path->nodes[0];
320 ei = btrfs_item_ptr(leaf, path->slots[0],
321 struct btrfs_file_extent_item);
322 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
323 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
324 btrfs_set_file_extent_encryption(leaf, ei, 0);
325 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
326 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
327 ptr = btrfs_file_extent_inline_start(ei);
328
329 if (compress_type != BTRFS_COMPRESS_NONE) {
330 struct page *cpage;
331 int i = 0;
332 while (compressed_size > 0) {
333 cpage = compressed_pages[i];
334 cur_size = min_t(unsigned long, compressed_size,
335 PAGE_SIZE);
336
337 kaddr = kmap_local_page(cpage);
338 write_extent_buffer(leaf, kaddr, ptr, cur_size);
339 kunmap_local(kaddr);
340
341 i++;
342 ptr += cur_size;
343 compressed_size -= cur_size;
344 }
345 btrfs_set_file_extent_compression(leaf, ei,
346 compress_type);
347 } else {
348 page = find_get_page(inode->vfs_inode.i_mapping, 0);
349 btrfs_set_file_extent_compression(leaf, ei, 0);
350 kaddr = kmap_local_page(page);
351 write_extent_buffer(leaf, kaddr, ptr, size);
352 kunmap_local(kaddr);
353 put_page(page);
354 }
355 btrfs_mark_buffer_dirty(leaf);
356 btrfs_release_path(path);
357
358 /*
359 * We align size to sectorsize for inline extents just for simplicity
360 * sake.
361 */
362 ret = btrfs_inode_set_file_extent_range(inode, 0,
363 ALIGN(size, root->fs_info->sectorsize));
364 if (ret)
365 goto fail;
366
367 /*
368 * We're an inline extent, so nobody can extend the file past i_size
369 * without locking a page we already have locked.
370 *
371 * We must do any i_size and inode updates before we unlock the pages.
372 * Otherwise we could end up racing with unlink.
373 */
374 i_size = i_size_read(&inode->vfs_inode);
375 if (update_i_size && size > i_size) {
376 i_size_write(&inode->vfs_inode, size);
377 i_size = size;
378 }
379 inode->disk_i_size = i_size;
380
381 fail:
382 return ret;
383 }
384
385
386 /*
387 * conditionally insert an inline extent into the file. This
388 * does the checks required to make sure the data is small enough
389 * to fit as an inline extent.
390 */
391 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
392 size_t compressed_size,
393 int compress_type,
394 struct page **compressed_pages,
395 bool update_i_size)
396 {
397 struct btrfs_drop_extents_args drop_args = { 0 };
398 struct btrfs_root *root = inode->root;
399 struct btrfs_fs_info *fs_info = root->fs_info;
400 struct btrfs_trans_handle *trans;
401 u64 data_len = (compressed_size ?: size);
402 int ret;
403 struct btrfs_path *path;
404
405 /*
406 * We can create an inline extent if it ends at or beyond the current
407 * i_size, is no larger than a sector (decompressed), and the (possibly
408 * compressed) data fits in a leaf and the configured maximum inline
409 * size.
410 */
411 if (size < i_size_read(&inode->vfs_inode) ||
412 size > fs_info->sectorsize ||
413 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
414 data_len > fs_info->max_inline)
415 return 1;
416
417 path = btrfs_alloc_path();
418 if (!path)
419 return -ENOMEM;
420
421 trans = btrfs_join_transaction(root);
422 if (IS_ERR(trans)) {
423 btrfs_free_path(path);
424 return PTR_ERR(trans);
425 }
426 trans->block_rsv = &inode->block_rsv;
427
428 drop_args.path = path;
429 drop_args.start = 0;
430 drop_args.end = fs_info->sectorsize;
431 drop_args.drop_cache = true;
432 drop_args.replace_extent = true;
433 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
434 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
435 if (ret) {
436 btrfs_abort_transaction(trans, ret);
437 goto out;
438 }
439
440 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
441 size, compressed_size, compress_type,
442 compressed_pages, update_i_size);
443 if (ret && ret != -ENOSPC) {
444 btrfs_abort_transaction(trans, ret);
445 goto out;
446 } else if (ret == -ENOSPC) {
447 ret = 1;
448 goto out;
449 }
450
451 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
452 ret = btrfs_update_inode(trans, root, inode);
453 if (ret && ret != -ENOSPC) {
454 btrfs_abort_transaction(trans, ret);
455 goto out;
456 } else if (ret == -ENOSPC) {
457 ret = 1;
458 goto out;
459 }
460
461 btrfs_set_inode_full_sync(inode);
462 out:
463 /*
464 * Don't forget to free the reserved space, as for inlined extent
465 * it won't count as data extent, free them directly here.
466 * And at reserve time, it's always aligned to page size, so
467 * just free one page here.
468 */
469 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
470 btrfs_free_path(path);
471 btrfs_end_transaction(trans);
472 return ret;
473 }
474
475 struct async_extent {
476 u64 start;
477 u64 ram_size;
478 u64 compressed_size;
479 struct page **pages;
480 unsigned long nr_pages;
481 int compress_type;
482 struct list_head list;
483 };
484
485 struct async_chunk {
486 struct inode *inode;
487 struct page *locked_page;
488 u64 start;
489 u64 end;
490 blk_opf_t write_flags;
491 struct list_head extents;
492 struct cgroup_subsys_state *blkcg_css;
493 struct btrfs_work work;
494 struct async_cow *async_cow;
495 };
496
497 struct async_cow {
498 atomic_t num_chunks;
499 struct async_chunk chunks[];
500 };
501
502 static noinline int add_async_extent(struct async_chunk *cow,
503 u64 start, u64 ram_size,
504 u64 compressed_size,
505 struct page **pages,
506 unsigned long nr_pages,
507 int compress_type)
508 {
509 struct async_extent *async_extent;
510
511 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
512 BUG_ON(!async_extent); /* -ENOMEM */
513 async_extent->start = start;
514 async_extent->ram_size = ram_size;
515 async_extent->compressed_size = compressed_size;
516 async_extent->pages = pages;
517 async_extent->nr_pages = nr_pages;
518 async_extent->compress_type = compress_type;
519 list_add_tail(&async_extent->list, &cow->extents);
520 return 0;
521 }
522
523 /*
524 * Check if the inode needs to be submitted to compression, based on mount
525 * options, defragmentation, properties or heuristics.
526 */
527 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
528 u64 end)
529 {
530 struct btrfs_fs_info *fs_info = inode->root->fs_info;
531
532 if (!btrfs_inode_can_compress(inode)) {
533 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
534 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
535 btrfs_ino(inode));
536 return 0;
537 }
538 /*
539 * Special check for subpage.
540 *
541 * We lock the full page then run each delalloc range in the page, thus
542 * for the following case, we will hit some subpage specific corner case:
543 *
544 * 0 32K 64K
545 * | |///////| |///////|
546 * \- A \- B
547 *
548 * In above case, both range A and range B will try to unlock the full
549 * page [0, 64K), causing the one finished later will have page
550 * unlocked already, triggering various page lock requirement BUG_ON()s.
551 *
552 * So here we add an artificial limit that subpage compression can only
553 * if the range is fully page aligned.
554 *
555 * In theory we only need to ensure the first page is fully covered, but
556 * the tailing partial page will be locked until the full compression
557 * finishes, delaying the write of other range.
558 *
559 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
560 * first to prevent any submitted async extent to unlock the full page.
561 * By this, we can ensure for subpage case that only the last async_cow
562 * will unlock the full page.
563 */
564 if (fs_info->sectorsize < PAGE_SIZE) {
565 if (!PAGE_ALIGNED(start) ||
566 !PAGE_ALIGNED(end + 1))
567 return 0;
568 }
569
570 /* force compress */
571 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
572 return 1;
573 /* defrag ioctl */
574 if (inode->defrag_compress)
575 return 1;
576 /* bad compression ratios */
577 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
578 return 0;
579 if (btrfs_test_opt(fs_info, COMPRESS) ||
580 inode->flags & BTRFS_INODE_COMPRESS ||
581 inode->prop_compress)
582 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
583 return 0;
584 }
585
586 static inline void inode_should_defrag(struct btrfs_inode *inode,
587 u64 start, u64 end, u64 num_bytes, u32 small_write)
588 {
589 /* If this is a small write inside eof, kick off a defrag */
590 if (num_bytes < small_write &&
591 (start > 0 || end + 1 < inode->disk_i_size))
592 btrfs_add_inode_defrag(NULL, inode, small_write);
593 }
594
595 /*
596 * we create compressed extents in two phases. The first
597 * phase compresses a range of pages that have already been
598 * locked (both pages and state bits are locked).
599 *
600 * This is done inside an ordered work queue, and the compression
601 * is spread across many cpus. The actual IO submission is step
602 * two, and the ordered work queue takes care of making sure that
603 * happens in the same order things were put onto the queue by
604 * writepages and friends.
605 *
606 * If this code finds it can't get good compression, it puts an
607 * entry onto the work queue to write the uncompressed bytes. This
608 * makes sure that both compressed inodes and uncompressed inodes
609 * are written in the same order that the flusher thread sent them
610 * down.
611 */
612 static noinline int compress_file_range(struct async_chunk *async_chunk)
613 {
614 struct inode *inode = async_chunk->inode;
615 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
616 u64 blocksize = fs_info->sectorsize;
617 u64 start = async_chunk->start;
618 u64 end = async_chunk->end;
619 u64 actual_end;
620 u64 i_size;
621 int ret = 0;
622 struct page **pages = NULL;
623 unsigned long nr_pages;
624 unsigned long total_compressed = 0;
625 unsigned long total_in = 0;
626 int i;
627 int will_compress;
628 int compress_type = fs_info->compress_type;
629 int compressed_extents = 0;
630 int redirty = 0;
631
632 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
633 SZ_16K);
634
635 /*
636 * We need to save i_size before now because it could change in between
637 * us evaluating the size and assigning it. This is because we lock and
638 * unlock the page in truncate and fallocate, and then modify the i_size
639 * later on.
640 *
641 * The barriers are to emulate READ_ONCE, remove that once i_size_read
642 * does that for us.
643 */
644 barrier();
645 i_size = i_size_read(inode);
646 barrier();
647 actual_end = min_t(u64, i_size, end + 1);
648 again:
649 will_compress = 0;
650 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
651 nr_pages = min_t(unsigned long, nr_pages,
652 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
653
654 /*
655 * we don't want to send crud past the end of i_size through
656 * compression, that's just a waste of CPU time. So, if the
657 * end of the file is before the start of our current
658 * requested range of bytes, we bail out to the uncompressed
659 * cleanup code that can deal with all of this.
660 *
661 * It isn't really the fastest way to fix things, but this is a
662 * very uncommon corner.
663 */
664 if (actual_end <= start)
665 goto cleanup_and_bail_uncompressed;
666
667 total_compressed = actual_end - start;
668
669 /*
670 * Skip compression for a small file range(<=blocksize) that
671 * isn't an inline extent, since it doesn't save disk space at all.
672 */
673 if (total_compressed <= blocksize &&
674 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
675 goto cleanup_and_bail_uncompressed;
676
677 /*
678 * For subpage case, we require full page alignment for the sector
679 * aligned range.
680 * Thus we must also check against @actual_end, not just @end.
681 */
682 if (blocksize < PAGE_SIZE) {
683 if (!PAGE_ALIGNED(start) ||
684 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
685 goto cleanup_and_bail_uncompressed;
686 }
687
688 total_compressed = min_t(unsigned long, total_compressed,
689 BTRFS_MAX_UNCOMPRESSED);
690 total_in = 0;
691 ret = 0;
692
693 /*
694 * we do compression for mount -o compress and when the
695 * inode has not been flagged as nocompress. This flag can
696 * change at any time if we discover bad compression ratios.
697 */
698 if (inode_need_compress(BTRFS_I(inode), start, end)) {
699 WARN_ON(pages);
700 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
701 if (!pages) {
702 /* just bail out to the uncompressed code */
703 nr_pages = 0;
704 goto cont;
705 }
706
707 if (BTRFS_I(inode)->defrag_compress)
708 compress_type = BTRFS_I(inode)->defrag_compress;
709 else if (BTRFS_I(inode)->prop_compress)
710 compress_type = BTRFS_I(inode)->prop_compress;
711
712 /*
713 * we need to call clear_page_dirty_for_io on each
714 * page in the range. Otherwise applications with the file
715 * mmap'd can wander in and change the page contents while
716 * we are compressing them.
717 *
718 * If the compression fails for any reason, we set the pages
719 * dirty again later on.
720 *
721 * Note that the remaining part is redirtied, the start pointer
722 * has moved, the end is the original one.
723 */
724 if (!redirty) {
725 extent_range_clear_dirty_for_io(inode, start, end);
726 redirty = 1;
727 }
728
729 /* Compression level is applied here and only here */
730 ret = btrfs_compress_pages(
731 compress_type | (fs_info->compress_level << 4),
732 inode->i_mapping, start,
733 pages,
734 &nr_pages,
735 &total_in,
736 &total_compressed);
737
738 if (!ret) {
739 unsigned long offset = offset_in_page(total_compressed);
740 struct page *page = pages[nr_pages - 1];
741
742 /* zero the tail end of the last page, we might be
743 * sending it down to disk
744 */
745 if (offset)
746 memzero_page(page, offset, PAGE_SIZE - offset);
747 will_compress = 1;
748 }
749 }
750 cont:
751 /*
752 * Check cow_file_range() for why we don't even try to create inline
753 * extent for subpage case.
754 */
755 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
756 /* lets try to make an inline extent */
757 if (ret || total_in < actual_end) {
758 /* we didn't compress the entire range, try
759 * to make an uncompressed inline extent.
760 */
761 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
762 0, BTRFS_COMPRESS_NONE,
763 NULL, false);
764 } else {
765 /* try making a compressed inline extent */
766 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
767 total_compressed,
768 compress_type, pages,
769 false);
770 }
771 if (ret <= 0) {
772 unsigned long clear_flags = EXTENT_DELALLOC |
773 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
774 EXTENT_DO_ACCOUNTING;
775 unsigned long page_error_op;
776
777 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
778
779 /*
780 * inline extent creation worked or returned error,
781 * we don't need to create any more async work items.
782 * Unlock and free up our temp pages.
783 *
784 * We use DO_ACCOUNTING here because we need the
785 * delalloc_release_metadata to be done _after_ we drop
786 * our outstanding extent for clearing delalloc for this
787 * range.
788 */
789 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
790 NULL,
791 clear_flags,
792 PAGE_UNLOCK |
793 PAGE_START_WRITEBACK |
794 page_error_op |
795 PAGE_END_WRITEBACK);
796
797 /*
798 * Ensure we only free the compressed pages if we have
799 * them allocated, as we can still reach here with
800 * inode_need_compress() == false.
801 */
802 if (pages) {
803 for (i = 0; i < nr_pages; i++) {
804 WARN_ON(pages[i]->mapping);
805 put_page(pages[i]);
806 }
807 kfree(pages);
808 }
809 return 0;
810 }
811 }
812
813 if (will_compress) {
814 /*
815 * we aren't doing an inline extent round the compressed size
816 * up to a block size boundary so the allocator does sane
817 * things
818 */
819 total_compressed = ALIGN(total_compressed, blocksize);
820
821 /*
822 * one last check to make sure the compression is really a
823 * win, compare the page count read with the blocks on disk,
824 * compression must free at least one sector size
825 */
826 total_in = round_up(total_in, fs_info->sectorsize);
827 if (total_compressed + blocksize <= total_in) {
828 compressed_extents++;
829
830 /*
831 * The async work queues will take care of doing actual
832 * allocation on disk for these compressed pages, and
833 * will submit them to the elevator.
834 */
835 add_async_extent(async_chunk, start, total_in,
836 total_compressed, pages, nr_pages,
837 compress_type);
838
839 if (start + total_in < end) {
840 start += total_in;
841 pages = NULL;
842 cond_resched();
843 goto again;
844 }
845 return compressed_extents;
846 }
847 }
848 if (pages) {
849 /*
850 * the compression code ran but failed to make things smaller,
851 * free any pages it allocated and our page pointer array
852 */
853 for (i = 0; i < nr_pages; i++) {
854 WARN_ON(pages[i]->mapping);
855 put_page(pages[i]);
856 }
857 kfree(pages);
858 pages = NULL;
859 total_compressed = 0;
860 nr_pages = 0;
861
862 /* flag the file so we don't compress in the future */
863 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
864 !(BTRFS_I(inode)->prop_compress)) {
865 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
866 }
867 }
868 cleanup_and_bail_uncompressed:
869 /*
870 * No compression, but we still need to write the pages in the file
871 * we've been given so far. redirty the locked page if it corresponds
872 * to our extent and set things up for the async work queue to run
873 * cow_file_range to do the normal delalloc dance.
874 */
875 if (async_chunk->locked_page &&
876 (page_offset(async_chunk->locked_page) >= start &&
877 page_offset(async_chunk->locked_page)) <= end) {
878 __set_page_dirty_nobuffers(async_chunk->locked_page);
879 /* unlocked later on in the async handlers */
880 }
881
882 if (redirty)
883 extent_range_redirty_for_io(inode, start, end);
884 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
885 BTRFS_COMPRESS_NONE);
886 compressed_extents++;
887
888 return compressed_extents;
889 }
890
891 static void free_async_extent_pages(struct async_extent *async_extent)
892 {
893 int i;
894
895 if (!async_extent->pages)
896 return;
897
898 for (i = 0; i < async_extent->nr_pages; i++) {
899 WARN_ON(async_extent->pages[i]->mapping);
900 put_page(async_extent->pages[i]);
901 }
902 kfree(async_extent->pages);
903 async_extent->nr_pages = 0;
904 async_extent->pages = NULL;
905 }
906
907 static int submit_uncompressed_range(struct btrfs_inode *inode,
908 struct async_extent *async_extent,
909 struct page *locked_page)
910 {
911 u64 start = async_extent->start;
912 u64 end = async_extent->start + async_extent->ram_size - 1;
913 unsigned long nr_written = 0;
914 int page_started = 0;
915 int ret;
916
917 /*
918 * Call cow_file_range() to run the delalloc range directly, since we
919 * won't go to NOCOW or async path again.
920 *
921 * Also we call cow_file_range() with @unlock_page == 0, so that we
922 * can directly submit them without interruption.
923 */
924 ret = cow_file_range(inode, locked_page, start, end, &page_started,
925 &nr_written, 0, NULL);
926 /* Inline extent inserted, page gets unlocked and everything is done */
927 if (page_started) {
928 ret = 0;
929 goto out;
930 }
931 if (ret < 0) {
932 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
933 if (locked_page) {
934 const u64 page_start = page_offset(locked_page);
935 const u64 page_end = page_start + PAGE_SIZE - 1;
936
937 btrfs_page_set_error(inode->root->fs_info, locked_page,
938 page_start, PAGE_SIZE);
939 set_page_writeback(locked_page);
940 end_page_writeback(locked_page);
941 end_extent_writepage(locked_page, ret, page_start, page_end);
942 unlock_page(locked_page);
943 }
944 goto out;
945 }
946
947 ret = extent_write_locked_range(&inode->vfs_inode, start, end);
948 /* All pages will be unlocked, including @locked_page */
949 out:
950 kfree(async_extent);
951 return ret;
952 }
953
954 static int submit_one_async_extent(struct btrfs_inode *inode,
955 struct async_chunk *async_chunk,
956 struct async_extent *async_extent,
957 u64 *alloc_hint)
958 {
959 struct extent_io_tree *io_tree = &inode->io_tree;
960 struct btrfs_root *root = inode->root;
961 struct btrfs_fs_info *fs_info = root->fs_info;
962 struct btrfs_key ins;
963 struct page *locked_page = NULL;
964 struct extent_map *em;
965 int ret = 0;
966 u64 start = async_extent->start;
967 u64 end = async_extent->start + async_extent->ram_size - 1;
968
969 /*
970 * If async_chunk->locked_page is in the async_extent range, we need to
971 * handle it.
972 */
973 if (async_chunk->locked_page) {
974 u64 locked_page_start = page_offset(async_chunk->locked_page);
975 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
976
977 if (!(start >= locked_page_end || end <= locked_page_start))
978 locked_page = async_chunk->locked_page;
979 }
980 lock_extent(io_tree, start, end);
981
982 /* We have fall back to uncompressed write */
983 if (!async_extent->pages)
984 return submit_uncompressed_range(inode, async_extent, locked_page);
985
986 ret = btrfs_reserve_extent(root, async_extent->ram_size,
987 async_extent->compressed_size,
988 async_extent->compressed_size,
989 0, *alloc_hint, &ins, 1, 1);
990 if (ret) {
991 free_async_extent_pages(async_extent);
992 /*
993 * Here we used to try again by going back to non-compressed
994 * path for ENOSPC. But we can't reserve space even for
995 * compressed size, how could it work for uncompressed size
996 * which requires larger size? So here we directly go error
997 * path.
998 */
999 goto out_free;
1000 }
1001
1002 /* Here we're doing allocation and writeback of the compressed pages */
1003 em = create_io_em(inode, start,
1004 async_extent->ram_size, /* len */
1005 start, /* orig_start */
1006 ins.objectid, /* block_start */
1007 ins.offset, /* block_len */
1008 ins.offset, /* orig_block_len */
1009 async_extent->ram_size, /* ram_bytes */
1010 async_extent->compress_type,
1011 BTRFS_ORDERED_COMPRESSED);
1012 if (IS_ERR(em)) {
1013 ret = PTR_ERR(em);
1014 goto out_free_reserve;
1015 }
1016 free_extent_map(em);
1017
1018 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */
1019 async_extent->ram_size, /* num_bytes */
1020 async_extent->ram_size, /* ram_bytes */
1021 ins.objectid, /* disk_bytenr */
1022 ins.offset, /* disk_num_bytes */
1023 0, /* offset */
1024 1 << BTRFS_ORDERED_COMPRESSED,
1025 async_extent->compress_type);
1026 if (ret) {
1027 btrfs_drop_extent_cache(inode, start, end, 0);
1028 goto out_free_reserve;
1029 }
1030 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1031
1032 /* Clear dirty, set writeback and unlock the pages. */
1033 extent_clear_unlock_delalloc(inode, start, end,
1034 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1035 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1036 if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1037 async_extent->ram_size, /* num_bytes */
1038 ins.objectid, /* disk_bytenr */
1039 ins.offset, /* compressed_len */
1040 async_extent->pages, /* compressed_pages */
1041 async_extent->nr_pages,
1042 async_chunk->write_flags,
1043 async_chunk->blkcg_css, true)) {
1044 const u64 start = async_extent->start;
1045 const u64 end = start + async_extent->ram_size - 1;
1046
1047 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1048
1049 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1050 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1051 free_async_extent_pages(async_extent);
1052 }
1053 *alloc_hint = ins.objectid + ins.offset;
1054 kfree(async_extent);
1055 return ret;
1056
1057 out_free_reserve:
1058 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1059 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1060 out_free:
1061 extent_clear_unlock_delalloc(inode, start, end,
1062 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1063 EXTENT_DELALLOC_NEW |
1064 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1065 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1066 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1067 free_async_extent_pages(async_extent);
1068 kfree(async_extent);
1069 return ret;
1070 }
1071
1072 /*
1073 * Phase two of compressed writeback. This is the ordered portion of the code,
1074 * which only gets called in the order the work was queued. We walk all the
1075 * async extents created by compress_file_range and send them down to the disk.
1076 */
1077 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1078 {
1079 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1080 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1081 struct async_extent *async_extent;
1082 u64 alloc_hint = 0;
1083 int ret = 0;
1084
1085 while (!list_empty(&async_chunk->extents)) {
1086 u64 extent_start;
1087 u64 ram_size;
1088
1089 async_extent = list_entry(async_chunk->extents.next,
1090 struct async_extent, list);
1091 list_del(&async_extent->list);
1092 extent_start = async_extent->start;
1093 ram_size = async_extent->ram_size;
1094
1095 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1096 &alloc_hint);
1097 btrfs_debug(fs_info,
1098 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1099 inode->root->root_key.objectid,
1100 btrfs_ino(inode), extent_start, ram_size, ret);
1101 }
1102 }
1103
1104 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1105 u64 num_bytes)
1106 {
1107 struct extent_map_tree *em_tree = &inode->extent_tree;
1108 struct extent_map *em;
1109 u64 alloc_hint = 0;
1110
1111 read_lock(&em_tree->lock);
1112 em = search_extent_mapping(em_tree, start, num_bytes);
1113 if (em) {
1114 /*
1115 * if block start isn't an actual block number then find the
1116 * first block in this inode and use that as a hint. If that
1117 * block is also bogus then just don't worry about it.
1118 */
1119 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1120 free_extent_map(em);
1121 em = search_extent_mapping(em_tree, 0, 0);
1122 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1123 alloc_hint = em->block_start;
1124 if (em)
1125 free_extent_map(em);
1126 } else {
1127 alloc_hint = em->block_start;
1128 free_extent_map(em);
1129 }
1130 }
1131 read_unlock(&em_tree->lock);
1132
1133 return alloc_hint;
1134 }
1135
1136 /*
1137 * when extent_io.c finds a delayed allocation range in the file,
1138 * the call backs end up in this code. The basic idea is to
1139 * allocate extents on disk for the range, and create ordered data structs
1140 * in ram to track those extents.
1141 *
1142 * locked_page is the page that writepage had locked already. We use
1143 * it to make sure we don't do extra locks or unlocks.
1144 *
1145 * *page_started is set to one if we unlock locked_page and do everything
1146 * required to start IO on it. It may be clean and already done with
1147 * IO when we return.
1148 *
1149 * When unlock == 1, we unlock the pages in successfully allocated regions.
1150 * When unlock == 0, we leave them locked for writing them out.
1151 *
1152 * However, we unlock all the pages except @locked_page in case of failure.
1153 *
1154 * In summary, page locking state will be as follow:
1155 *
1156 * - page_started == 1 (return value)
1157 * - All the pages are unlocked. IO is started.
1158 * - Note that this can happen only on success
1159 * - unlock == 1
1160 * - All the pages except @locked_page are unlocked in any case
1161 * - unlock == 0
1162 * - On success, all the pages are locked for writing out them
1163 * - On failure, all the pages except @locked_page are unlocked
1164 *
1165 * When a failure happens in the second or later iteration of the
1166 * while-loop, the ordered extents created in previous iterations are kept
1167 * intact. So, the caller must clean them up by calling
1168 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1169 * example.
1170 */
1171 static noinline int cow_file_range(struct btrfs_inode *inode,
1172 struct page *locked_page,
1173 u64 start, u64 end, int *page_started,
1174 unsigned long *nr_written, int unlock,
1175 u64 *done_offset)
1176 {
1177 struct btrfs_root *root = inode->root;
1178 struct btrfs_fs_info *fs_info = root->fs_info;
1179 u64 alloc_hint = 0;
1180 u64 orig_start = start;
1181 u64 num_bytes;
1182 unsigned long ram_size;
1183 u64 cur_alloc_size = 0;
1184 u64 min_alloc_size;
1185 u64 blocksize = fs_info->sectorsize;
1186 struct btrfs_key ins;
1187 struct extent_map *em;
1188 unsigned clear_bits;
1189 unsigned long page_ops;
1190 bool extent_reserved = false;
1191 int ret = 0;
1192
1193 if (btrfs_is_free_space_inode(inode)) {
1194 ret = -EINVAL;
1195 goto out_unlock;
1196 }
1197
1198 num_bytes = ALIGN(end - start + 1, blocksize);
1199 num_bytes = max(blocksize, num_bytes);
1200 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1201
1202 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1203
1204 /*
1205 * Due to the page size limit, for subpage we can only trigger the
1206 * writeback for the dirty sectors of page, that means data writeback
1207 * is doing more writeback than what we want.
1208 *
1209 * This is especially unexpected for some call sites like fallocate,
1210 * where we only increase i_size after everything is done.
1211 * This means we can trigger inline extent even if we didn't want to.
1212 * So here we skip inline extent creation completely.
1213 */
1214 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1215 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1216 end + 1);
1217
1218 /* lets try to make an inline extent */
1219 ret = cow_file_range_inline(inode, actual_end, 0,
1220 BTRFS_COMPRESS_NONE, NULL, false);
1221 if (ret == 0) {
1222 /*
1223 * We use DO_ACCOUNTING here because we need the
1224 * delalloc_release_metadata to be run _after_ we drop
1225 * our outstanding extent for clearing delalloc for this
1226 * range.
1227 */
1228 extent_clear_unlock_delalloc(inode, start, end,
1229 locked_page,
1230 EXTENT_LOCKED | EXTENT_DELALLOC |
1231 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1232 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1233 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1234 *nr_written = *nr_written +
1235 (end - start + PAGE_SIZE) / PAGE_SIZE;
1236 *page_started = 1;
1237 /*
1238 * locked_page is locked by the caller of
1239 * writepage_delalloc(), not locked by
1240 * __process_pages_contig().
1241 *
1242 * We can't let __process_pages_contig() to unlock it,
1243 * as it doesn't have any subpage::writers recorded.
1244 *
1245 * Here we manually unlock the page, since the caller
1246 * can't use page_started to determine if it's an
1247 * inline extent or a compressed extent.
1248 */
1249 unlock_page(locked_page);
1250 goto out;
1251 } else if (ret < 0) {
1252 goto out_unlock;
1253 }
1254 }
1255
1256 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1257 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1258
1259 /*
1260 * Relocation relies on the relocated extents to have exactly the same
1261 * size as the original extents. Normally writeback for relocation data
1262 * extents follows a NOCOW path because relocation preallocates the
1263 * extents. However, due to an operation such as scrub turning a block
1264 * group to RO mode, it may fallback to COW mode, so we must make sure
1265 * an extent allocated during COW has exactly the requested size and can
1266 * not be split into smaller extents, otherwise relocation breaks and
1267 * fails during the stage where it updates the bytenr of file extent
1268 * items.
1269 */
1270 if (btrfs_is_data_reloc_root(root))
1271 min_alloc_size = num_bytes;
1272 else
1273 min_alloc_size = fs_info->sectorsize;
1274
1275 while (num_bytes > 0) {
1276 cur_alloc_size = num_bytes;
1277 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1278 min_alloc_size, 0, alloc_hint,
1279 &ins, 1, 1);
1280 if (ret < 0)
1281 goto out_unlock;
1282 cur_alloc_size = ins.offset;
1283 extent_reserved = true;
1284
1285 ram_size = ins.offset;
1286 em = create_io_em(inode, start, ins.offset, /* len */
1287 start, /* orig_start */
1288 ins.objectid, /* block_start */
1289 ins.offset, /* block_len */
1290 ins.offset, /* orig_block_len */
1291 ram_size, /* ram_bytes */
1292 BTRFS_COMPRESS_NONE, /* compress_type */
1293 BTRFS_ORDERED_REGULAR /* type */);
1294 if (IS_ERR(em)) {
1295 ret = PTR_ERR(em);
1296 goto out_reserve;
1297 }
1298 free_extent_map(em);
1299
1300 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1301 ins.objectid, cur_alloc_size, 0,
1302 1 << BTRFS_ORDERED_REGULAR,
1303 BTRFS_COMPRESS_NONE);
1304 if (ret)
1305 goto out_drop_extent_cache;
1306
1307 if (btrfs_is_data_reloc_root(root)) {
1308 ret = btrfs_reloc_clone_csums(inode, start,
1309 cur_alloc_size);
1310 /*
1311 * Only drop cache here, and process as normal.
1312 *
1313 * We must not allow extent_clear_unlock_delalloc()
1314 * at out_unlock label to free meta of this ordered
1315 * extent, as its meta should be freed by
1316 * btrfs_finish_ordered_io().
1317 *
1318 * So we must continue until @start is increased to
1319 * skip current ordered extent.
1320 */
1321 if (ret)
1322 btrfs_drop_extent_cache(inode, start,
1323 start + ram_size - 1, 0);
1324 }
1325
1326 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1327
1328 /*
1329 * We're not doing compressed IO, don't unlock the first page
1330 * (which the caller expects to stay locked), don't clear any
1331 * dirty bits and don't set any writeback bits
1332 *
1333 * Do set the Ordered (Private2) bit so we know this page was
1334 * properly setup for writepage.
1335 */
1336 page_ops = unlock ? PAGE_UNLOCK : 0;
1337 page_ops |= PAGE_SET_ORDERED;
1338
1339 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1340 locked_page,
1341 EXTENT_LOCKED | EXTENT_DELALLOC,
1342 page_ops);
1343 if (num_bytes < cur_alloc_size)
1344 num_bytes = 0;
1345 else
1346 num_bytes -= cur_alloc_size;
1347 alloc_hint = ins.objectid + ins.offset;
1348 start += cur_alloc_size;
1349 extent_reserved = false;
1350
1351 /*
1352 * btrfs_reloc_clone_csums() error, since start is increased
1353 * extent_clear_unlock_delalloc() at out_unlock label won't
1354 * free metadata of current ordered extent, we're OK to exit.
1355 */
1356 if (ret)
1357 goto out_unlock;
1358 }
1359 out:
1360 return ret;
1361
1362 out_drop_extent_cache:
1363 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1364 out_reserve:
1365 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1366 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1367 out_unlock:
1368 /*
1369 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1370 * caller to write out the successfully allocated region and retry.
1371 */
1372 if (done_offset && ret == -EAGAIN) {
1373 if (orig_start < start)
1374 *done_offset = start - 1;
1375 else
1376 *done_offset = start;
1377 return ret;
1378 } else if (ret == -EAGAIN) {
1379 /* Convert to -ENOSPC since the caller cannot retry. */
1380 ret = -ENOSPC;
1381 }
1382
1383 /*
1384 * Now, we have three regions to clean up:
1385 *
1386 * |-------(1)----|---(2)---|-------------(3)----------|
1387 * `- orig_start `- start `- start + cur_alloc_size `- end
1388 *
1389 * We process each region below.
1390 */
1391
1392 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1393 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1394 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1395
1396 /*
1397 * For the range (1). We have already instantiated the ordered extents
1398 * for this region. They are cleaned up by
1399 * btrfs_cleanup_ordered_extents() in e.g,
1400 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1401 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1402 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1403 * function.
1404 *
1405 * However, in case of unlock == 0, we still need to unlock the pages
1406 * (except @locked_page) to ensure all the pages are unlocked.
1407 */
1408 if (!unlock && orig_start < start) {
1409 if (!locked_page)
1410 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1411 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1412 locked_page, 0, page_ops);
1413 }
1414
1415 /*
1416 * For the range (2). If we reserved an extent for our delalloc range
1417 * (or a subrange) and failed to create the respective ordered extent,
1418 * then it means that when we reserved the extent we decremented the
1419 * extent's size from the data space_info's bytes_may_use counter and
1420 * incremented the space_info's bytes_reserved counter by the same
1421 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1422 * to decrement again the data space_info's bytes_may_use counter,
1423 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1424 */
1425 if (extent_reserved) {
1426 extent_clear_unlock_delalloc(inode, start,
1427 start + cur_alloc_size - 1,
1428 locked_page,
1429 clear_bits,
1430 page_ops);
1431 start += cur_alloc_size;
1432 if (start >= end)
1433 return ret;
1434 }
1435
1436 /*
1437 * For the range (3). We never touched the region. In addition to the
1438 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1439 * space_info's bytes_may_use counter, reserved in
1440 * btrfs_check_data_free_space().
1441 */
1442 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1443 clear_bits | EXTENT_CLEAR_DATA_RESV,
1444 page_ops);
1445 return ret;
1446 }
1447
1448 /*
1449 * work queue call back to started compression on a file and pages
1450 */
1451 static noinline void async_cow_start(struct btrfs_work *work)
1452 {
1453 struct async_chunk *async_chunk;
1454 int compressed_extents;
1455
1456 async_chunk = container_of(work, struct async_chunk, work);
1457
1458 compressed_extents = compress_file_range(async_chunk);
1459 if (compressed_extents == 0) {
1460 btrfs_add_delayed_iput(async_chunk->inode);
1461 async_chunk->inode = NULL;
1462 }
1463 }
1464
1465 /*
1466 * work queue call back to submit previously compressed pages
1467 */
1468 static noinline void async_cow_submit(struct btrfs_work *work)
1469 {
1470 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1471 work);
1472 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1473 unsigned long nr_pages;
1474
1475 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1476 PAGE_SHIFT;
1477
1478 /*
1479 * ->inode could be NULL if async_chunk_start has failed to compress,
1480 * in which case we don't have anything to submit, yet we need to
1481 * always adjust ->async_delalloc_pages as its paired with the init
1482 * happening in cow_file_range_async
1483 */
1484 if (async_chunk->inode)
1485 submit_compressed_extents(async_chunk);
1486
1487 /* atomic_sub_return implies a barrier */
1488 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1489 5 * SZ_1M)
1490 cond_wake_up_nomb(&fs_info->async_submit_wait);
1491 }
1492
1493 static noinline void async_cow_free(struct btrfs_work *work)
1494 {
1495 struct async_chunk *async_chunk;
1496 struct async_cow *async_cow;
1497
1498 async_chunk = container_of(work, struct async_chunk, work);
1499 if (async_chunk->inode)
1500 btrfs_add_delayed_iput(async_chunk->inode);
1501 if (async_chunk->blkcg_css)
1502 css_put(async_chunk->blkcg_css);
1503
1504 async_cow = async_chunk->async_cow;
1505 if (atomic_dec_and_test(&async_cow->num_chunks))
1506 kvfree(async_cow);
1507 }
1508
1509 static int cow_file_range_async(struct btrfs_inode *inode,
1510 struct writeback_control *wbc,
1511 struct page *locked_page,
1512 u64 start, u64 end, int *page_started,
1513 unsigned long *nr_written)
1514 {
1515 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1516 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1517 struct async_cow *ctx;
1518 struct async_chunk *async_chunk;
1519 unsigned long nr_pages;
1520 u64 cur_end;
1521 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1522 int i;
1523 bool should_compress;
1524 unsigned nofs_flag;
1525 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1526
1527 unlock_extent(&inode->io_tree, start, end);
1528
1529 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1530 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1531 num_chunks = 1;
1532 should_compress = false;
1533 } else {
1534 should_compress = true;
1535 }
1536
1537 nofs_flag = memalloc_nofs_save();
1538 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1539 memalloc_nofs_restore(nofs_flag);
1540
1541 if (!ctx) {
1542 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1543 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1544 EXTENT_DO_ACCOUNTING;
1545 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1546 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1547
1548 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1549 clear_bits, page_ops);
1550 return -ENOMEM;
1551 }
1552
1553 async_chunk = ctx->chunks;
1554 atomic_set(&ctx->num_chunks, num_chunks);
1555
1556 for (i = 0; i < num_chunks; i++) {
1557 if (should_compress)
1558 cur_end = min(end, start + SZ_512K - 1);
1559 else
1560 cur_end = end;
1561
1562 /*
1563 * igrab is called higher up in the call chain, take only the
1564 * lightweight reference for the callback lifetime
1565 */
1566 ihold(&inode->vfs_inode);
1567 async_chunk[i].async_cow = ctx;
1568 async_chunk[i].inode = &inode->vfs_inode;
1569 async_chunk[i].start = start;
1570 async_chunk[i].end = cur_end;
1571 async_chunk[i].write_flags = write_flags;
1572 INIT_LIST_HEAD(&async_chunk[i].extents);
1573
1574 /*
1575 * The locked_page comes all the way from writepage and its
1576 * the original page we were actually given. As we spread
1577 * this large delalloc region across multiple async_chunk
1578 * structs, only the first struct needs a pointer to locked_page
1579 *
1580 * This way we don't need racey decisions about who is supposed
1581 * to unlock it.
1582 */
1583 if (locked_page) {
1584 /*
1585 * Depending on the compressibility, the pages might or
1586 * might not go through async. We want all of them to
1587 * be accounted against wbc once. Let's do it here
1588 * before the paths diverge. wbc accounting is used
1589 * only for foreign writeback detection and doesn't
1590 * need full accuracy. Just account the whole thing
1591 * against the first page.
1592 */
1593 wbc_account_cgroup_owner(wbc, locked_page,
1594 cur_end - start);
1595 async_chunk[i].locked_page = locked_page;
1596 locked_page = NULL;
1597 } else {
1598 async_chunk[i].locked_page = NULL;
1599 }
1600
1601 if (blkcg_css != blkcg_root_css) {
1602 css_get(blkcg_css);
1603 async_chunk[i].blkcg_css = blkcg_css;
1604 } else {
1605 async_chunk[i].blkcg_css = NULL;
1606 }
1607
1608 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1609 async_cow_submit, async_cow_free);
1610
1611 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1612 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1613
1614 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1615
1616 *nr_written += nr_pages;
1617 start = cur_end + 1;
1618 }
1619 *page_started = 1;
1620 return 0;
1621 }
1622
1623 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1624 struct page *locked_page, u64 start,
1625 u64 end, int *page_started,
1626 unsigned long *nr_written)
1627 {
1628 u64 done_offset = end;
1629 int ret;
1630 bool locked_page_done = false;
1631
1632 while (start <= end) {
1633 ret = cow_file_range(inode, locked_page, start, end, page_started,
1634 nr_written, 0, &done_offset);
1635 if (ret && ret != -EAGAIN)
1636 return ret;
1637
1638 if (*page_started) {
1639 ASSERT(ret == 0);
1640 return 0;
1641 }
1642
1643 if (ret == 0)
1644 done_offset = end;
1645
1646 if (done_offset == start) {
1647 struct btrfs_fs_info *info = inode->root->fs_info;
1648
1649 wait_var_event(&info->zone_finish_wait,
1650 !test_bit(BTRFS_FS_NEED_ZONE_FINISH, &info->flags));
1651 continue;
1652 }
1653
1654 if (!locked_page_done) {
1655 __set_page_dirty_nobuffers(locked_page);
1656 account_page_redirty(locked_page);
1657 }
1658 locked_page_done = true;
1659 extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1660
1661 start = done_offset + 1;
1662 }
1663
1664 *page_started = 1;
1665
1666 return 0;
1667 }
1668
1669 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1670 u64 bytenr, u64 num_bytes)
1671 {
1672 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1673 struct btrfs_ordered_sum *sums;
1674 int ret;
1675 LIST_HEAD(list);
1676
1677 ret = btrfs_lookup_csums_range(csum_root, bytenr,
1678 bytenr + num_bytes - 1, &list, 0);
1679 if (ret == 0 && list_empty(&list))
1680 return 0;
1681
1682 while (!list_empty(&list)) {
1683 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1684 list_del(&sums->list);
1685 kfree(sums);
1686 }
1687 if (ret < 0)
1688 return ret;
1689 return 1;
1690 }
1691
1692 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1693 const u64 start, const u64 end,
1694 int *page_started, unsigned long *nr_written)
1695 {
1696 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1697 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1698 const u64 range_bytes = end + 1 - start;
1699 struct extent_io_tree *io_tree = &inode->io_tree;
1700 u64 range_start = start;
1701 u64 count;
1702
1703 /*
1704 * If EXTENT_NORESERVE is set it means that when the buffered write was
1705 * made we had not enough available data space and therefore we did not
1706 * reserve data space for it, since we though we could do NOCOW for the
1707 * respective file range (either there is prealloc extent or the inode
1708 * has the NOCOW bit set).
1709 *
1710 * However when we need to fallback to COW mode (because for example the
1711 * block group for the corresponding extent was turned to RO mode by a
1712 * scrub or relocation) we need to do the following:
1713 *
1714 * 1) We increment the bytes_may_use counter of the data space info.
1715 * If COW succeeds, it allocates a new data extent and after doing
1716 * that it decrements the space info's bytes_may_use counter and
1717 * increments its bytes_reserved counter by the same amount (we do
1718 * this at btrfs_add_reserved_bytes()). So we need to increment the
1719 * bytes_may_use counter to compensate (when space is reserved at
1720 * buffered write time, the bytes_may_use counter is incremented);
1721 *
1722 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1723 * that if the COW path fails for any reason, it decrements (through
1724 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1725 * data space info, which we incremented in the step above.
1726 *
1727 * If we need to fallback to cow and the inode corresponds to a free
1728 * space cache inode or an inode of the data relocation tree, we must
1729 * also increment bytes_may_use of the data space_info for the same
1730 * reason. Space caches and relocated data extents always get a prealloc
1731 * extent for them, however scrub or balance may have set the block
1732 * group that contains that extent to RO mode and therefore force COW
1733 * when starting writeback.
1734 */
1735 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1736 EXTENT_NORESERVE, 0);
1737 if (count > 0 || is_space_ino || is_reloc_ino) {
1738 u64 bytes = count;
1739 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1740 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1741
1742 if (is_space_ino || is_reloc_ino)
1743 bytes = range_bytes;
1744
1745 spin_lock(&sinfo->lock);
1746 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1747 spin_unlock(&sinfo->lock);
1748
1749 if (count > 0)
1750 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1751 0, 0, NULL);
1752 }
1753
1754 return cow_file_range(inode, locked_page, start, end, page_started,
1755 nr_written, 1, NULL);
1756 }
1757
1758 struct can_nocow_file_extent_args {
1759 /* Input fields. */
1760
1761 /* Start file offset of the range we want to NOCOW. */
1762 u64 start;
1763 /* End file offset (inclusive) of the range we want to NOCOW. */
1764 u64 end;
1765 bool writeback_path;
1766 bool strict;
1767 /*
1768 * Free the path passed to can_nocow_file_extent() once it's not needed
1769 * anymore.
1770 */
1771 bool free_path;
1772
1773 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1774
1775 u64 disk_bytenr;
1776 u64 disk_num_bytes;
1777 u64 extent_offset;
1778 /* Number of bytes that can be written to in NOCOW mode. */
1779 u64 num_bytes;
1780 };
1781
1782 /*
1783 * Check if we can NOCOW the file extent that the path points to.
1784 * This function may return with the path released, so the caller should check
1785 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1786 *
1787 * Returns: < 0 on error
1788 * 0 if we can not NOCOW
1789 * 1 if we can NOCOW
1790 */
1791 static int can_nocow_file_extent(struct btrfs_path *path,
1792 struct btrfs_key *key,
1793 struct btrfs_inode *inode,
1794 struct can_nocow_file_extent_args *args)
1795 {
1796 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1797 struct extent_buffer *leaf = path->nodes[0];
1798 struct btrfs_root *root = inode->root;
1799 struct btrfs_file_extent_item *fi;
1800 u64 extent_end;
1801 u8 extent_type;
1802 int can_nocow = 0;
1803 int ret = 0;
1804
1805 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1806 extent_type = btrfs_file_extent_type(leaf, fi);
1807
1808 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1809 goto out;
1810
1811 /* Can't access these fields unless we know it's not an inline extent. */
1812 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1813 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1814 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1815
1816 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1817 extent_type == BTRFS_FILE_EXTENT_REG)
1818 goto out;
1819
1820 /*
1821 * If the extent was created before the generation where the last snapshot
1822 * for its subvolume was created, then this implies the extent is shared,
1823 * hence we must COW.
1824 */
1825 if (!args->strict &&
1826 btrfs_file_extent_generation(leaf, fi) <=
1827 btrfs_root_last_snapshot(&root->root_item))
1828 goto out;
1829
1830 /* An explicit hole, must COW. */
1831 if (args->disk_bytenr == 0)
1832 goto out;
1833
1834 /* Compressed/encrypted/encoded extents must be COWed. */
1835 if (btrfs_file_extent_compression(leaf, fi) ||
1836 btrfs_file_extent_encryption(leaf, fi) ||
1837 btrfs_file_extent_other_encoding(leaf, fi))
1838 goto out;
1839
1840 extent_end = btrfs_file_extent_end(path);
1841
1842 /*
1843 * The following checks can be expensive, as they need to take other
1844 * locks and do btree or rbtree searches, so release the path to avoid
1845 * blocking other tasks for too long.
1846 */
1847 btrfs_release_path(path);
1848
1849 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1850 key->offset - args->extent_offset,
1851 args->disk_bytenr, false, path);
1852 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1853 if (ret != 0)
1854 goto out;
1855
1856 if (args->free_path) {
1857 /*
1858 * We don't need the path anymore, plus through the
1859 * csum_exist_in_range() call below we will end up allocating
1860 * another path. So free the path to avoid unnecessary extra
1861 * memory usage.
1862 */
1863 btrfs_free_path(path);
1864 path = NULL;
1865 }
1866
1867 /* If there are pending snapshots for this root, we must COW. */
1868 if (args->writeback_path && !is_freespace_inode &&
1869 atomic_read(&root->snapshot_force_cow))
1870 goto out;
1871
1872 args->disk_bytenr += args->extent_offset;
1873 args->disk_bytenr += args->start - key->offset;
1874 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1875
1876 /*
1877 * Force COW if csums exist in the range. This ensures that csums for a
1878 * given extent are either valid or do not exist.
1879 */
1880 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes);
1881 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1882 if (ret != 0)
1883 goto out;
1884
1885 can_nocow = 1;
1886 out:
1887 if (args->free_path && path)
1888 btrfs_free_path(path);
1889
1890 return ret < 0 ? ret : can_nocow;
1891 }
1892
1893 /*
1894 * when nowcow writeback call back. This checks for snapshots or COW copies
1895 * of the extents that exist in the file, and COWs the file as required.
1896 *
1897 * If no cow copies or snapshots exist, we write directly to the existing
1898 * blocks on disk
1899 */
1900 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1901 struct page *locked_page,
1902 const u64 start, const u64 end,
1903 int *page_started,
1904 unsigned long *nr_written)
1905 {
1906 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1907 struct btrfs_root *root = inode->root;
1908 struct btrfs_path *path;
1909 u64 cow_start = (u64)-1;
1910 u64 cur_offset = start;
1911 int ret;
1912 bool check_prev = true;
1913 u64 ino = btrfs_ino(inode);
1914 struct btrfs_block_group *bg;
1915 bool nocow = false;
1916 struct can_nocow_file_extent_args nocow_args = { 0 };
1917
1918 path = btrfs_alloc_path();
1919 if (!path) {
1920 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1921 EXTENT_LOCKED | EXTENT_DELALLOC |
1922 EXTENT_DO_ACCOUNTING |
1923 EXTENT_DEFRAG, PAGE_UNLOCK |
1924 PAGE_START_WRITEBACK |
1925 PAGE_END_WRITEBACK);
1926 return -ENOMEM;
1927 }
1928
1929 nocow_args.end = end;
1930 nocow_args.writeback_path = true;
1931
1932 while (1) {
1933 struct btrfs_key found_key;
1934 struct btrfs_file_extent_item *fi;
1935 struct extent_buffer *leaf;
1936 u64 extent_end;
1937 u64 ram_bytes;
1938 u64 nocow_end;
1939 int extent_type;
1940
1941 nocow = false;
1942
1943 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1944 cur_offset, 0);
1945 if (ret < 0)
1946 goto error;
1947
1948 /*
1949 * If there is no extent for our range when doing the initial
1950 * search, then go back to the previous slot as it will be the
1951 * one containing the search offset
1952 */
1953 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1954 leaf = path->nodes[0];
1955 btrfs_item_key_to_cpu(leaf, &found_key,
1956 path->slots[0] - 1);
1957 if (found_key.objectid == ino &&
1958 found_key.type == BTRFS_EXTENT_DATA_KEY)
1959 path->slots[0]--;
1960 }
1961 check_prev = false;
1962 next_slot:
1963 /* Go to next leaf if we have exhausted the current one */
1964 leaf = path->nodes[0];
1965 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1966 ret = btrfs_next_leaf(root, path);
1967 if (ret < 0) {
1968 if (cow_start != (u64)-1)
1969 cur_offset = cow_start;
1970 goto error;
1971 }
1972 if (ret > 0)
1973 break;
1974 leaf = path->nodes[0];
1975 }
1976
1977 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1978
1979 /* Didn't find anything for our INO */
1980 if (found_key.objectid > ino)
1981 break;
1982 /*
1983 * Keep searching until we find an EXTENT_ITEM or there are no
1984 * more extents for this inode
1985 */
1986 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1987 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1988 path->slots[0]++;
1989 goto next_slot;
1990 }
1991
1992 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1993 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1994 found_key.offset > end)
1995 break;
1996
1997 /*
1998 * If the found extent starts after requested offset, then
1999 * adjust extent_end to be right before this extent begins
2000 */
2001 if (found_key.offset > cur_offset) {
2002 extent_end = found_key.offset;
2003 extent_type = 0;
2004 goto out_check;
2005 }
2006
2007 /*
2008 * Found extent which begins before our range and potentially
2009 * intersect it
2010 */
2011 fi = btrfs_item_ptr(leaf, path->slots[0],
2012 struct btrfs_file_extent_item);
2013 extent_type = btrfs_file_extent_type(leaf, fi);
2014 /* If this is triggered then we have a memory corruption. */
2015 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2016 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2017 ret = -EUCLEAN;
2018 goto error;
2019 }
2020 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2021 extent_end = btrfs_file_extent_end(path);
2022
2023 /*
2024 * If the extent we got ends before our current offset, skip to
2025 * the next extent.
2026 */
2027 if (extent_end <= cur_offset) {
2028 path->slots[0]++;
2029 goto next_slot;
2030 }
2031
2032 nocow_args.start = cur_offset;
2033 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2034 if (ret < 0) {
2035 if (cow_start != (u64)-1)
2036 cur_offset = cow_start;
2037 goto error;
2038 } else if (ret == 0) {
2039 goto out_check;
2040 }
2041
2042 ret = 0;
2043 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2044 if (bg)
2045 nocow = true;
2046 out_check:
2047 /*
2048 * If nocow is false then record the beginning of the range
2049 * that needs to be COWed
2050 */
2051 if (!nocow) {
2052 if (cow_start == (u64)-1)
2053 cow_start = cur_offset;
2054 cur_offset = extent_end;
2055 if (cur_offset > end)
2056 break;
2057 if (!path->nodes[0])
2058 continue;
2059 path->slots[0]++;
2060 goto next_slot;
2061 }
2062
2063 /*
2064 * COW range from cow_start to found_key.offset - 1. As the key
2065 * will contain the beginning of the first extent that can be
2066 * NOCOW, following one which needs to be COW'ed
2067 */
2068 if (cow_start != (u64)-1) {
2069 ret = fallback_to_cow(inode, locked_page,
2070 cow_start, found_key.offset - 1,
2071 page_started, nr_written);
2072 if (ret)
2073 goto error;
2074 cow_start = (u64)-1;
2075 }
2076
2077 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2078
2079 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
2080 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2081 struct extent_map *em;
2082
2083 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2084 orig_start,
2085 nocow_args.disk_bytenr, /* block_start */
2086 nocow_args.num_bytes, /* block_len */
2087 nocow_args.disk_num_bytes, /* orig_block_len */
2088 ram_bytes, BTRFS_COMPRESS_NONE,
2089 BTRFS_ORDERED_PREALLOC);
2090 if (IS_ERR(em)) {
2091 ret = PTR_ERR(em);
2092 goto error;
2093 }
2094 free_extent_map(em);
2095 ret = btrfs_add_ordered_extent(inode,
2096 cur_offset, nocow_args.num_bytes,
2097 nocow_args.num_bytes,
2098 nocow_args.disk_bytenr,
2099 nocow_args.num_bytes, 0,
2100 1 << BTRFS_ORDERED_PREALLOC,
2101 BTRFS_COMPRESS_NONE);
2102 if (ret) {
2103 btrfs_drop_extent_cache(inode, cur_offset,
2104 nocow_end, 0);
2105 goto error;
2106 }
2107 } else {
2108 ret = btrfs_add_ordered_extent(inode, cur_offset,
2109 nocow_args.num_bytes,
2110 nocow_args.num_bytes,
2111 nocow_args.disk_bytenr,
2112 nocow_args.num_bytes,
2113 0,
2114 1 << BTRFS_ORDERED_NOCOW,
2115 BTRFS_COMPRESS_NONE);
2116 if (ret)
2117 goto error;
2118 }
2119
2120 if (nocow) {
2121 btrfs_dec_nocow_writers(bg);
2122 nocow = false;
2123 }
2124
2125 if (btrfs_is_data_reloc_root(root))
2126 /*
2127 * Error handled later, as we must prevent
2128 * extent_clear_unlock_delalloc() in error handler
2129 * from freeing metadata of created ordered extent.
2130 */
2131 ret = btrfs_reloc_clone_csums(inode, cur_offset,
2132 nocow_args.num_bytes);
2133
2134 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2135 locked_page, EXTENT_LOCKED |
2136 EXTENT_DELALLOC |
2137 EXTENT_CLEAR_DATA_RESV,
2138 PAGE_UNLOCK | PAGE_SET_ORDERED);
2139
2140 cur_offset = extent_end;
2141
2142 /*
2143 * btrfs_reloc_clone_csums() error, now we're OK to call error
2144 * handler, as metadata for created ordered extent will only
2145 * be freed by btrfs_finish_ordered_io().
2146 */
2147 if (ret)
2148 goto error;
2149 if (cur_offset > end)
2150 break;
2151 }
2152 btrfs_release_path(path);
2153
2154 if (cur_offset <= end && cow_start == (u64)-1)
2155 cow_start = cur_offset;
2156
2157 if (cow_start != (u64)-1) {
2158 cur_offset = end;
2159 ret = fallback_to_cow(inode, locked_page, cow_start, end,
2160 page_started, nr_written);
2161 if (ret)
2162 goto error;
2163 }
2164
2165 error:
2166 if (nocow)
2167 btrfs_dec_nocow_writers(bg);
2168
2169 if (ret && cur_offset < end)
2170 extent_clear_unlock_delalloc(inode, cur_offset, end,
2171 locked_page, EXTENT_LOCKED |
2172 EXTENT_DELALLOC | EXTENT_DEFRAG |
2173 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2174 PAGE_START_WRITEBACK |
2175 PAGE_END_WRITEBACK);
2176 btrfs_free_path(path);
2177 return ret;
2178 }
2179
2180 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2181 {
2182 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2183 if (inode->defrag_bytes &&
2184 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2185 0, NULL))
2186 return false;
2187 return true;
2188 }
2189 return false;
2190 }
2191
2192 /*
2193 * Function to process delayed allocation (create CoW) for ranges which are
2194 * being touched for the first time.
2195 */
2196 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2197 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2198 struct writeback_control *wbc)
2199 {
2200 int ret;
2201 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2202
2203 /*
2204 * The range must cover part of the @locked_page, or the returned
2205 * @page_started can confuse the caller.
2206 */
2207 ASSERT(!(end <= page_offset(locked_page) ||
2208 start >= page_offset(locked_page) + PAGE_SIZE));
2209
2210 if (should_nocow(inode, start, end)) {
2211 /*
2212 * Normally on a zoned device we're only doing COW writes, but
2213 * in case of relocation on a zoned filesystem we have taken
2214 * precaution, that we're only writing sequentially. It's safe
2215 * to use run_delalloc_nocow() here, like for regular
2216 * preallocated inodes.
2217 */
2218 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2219 ret = run_delalloc_nocow(inode, locked_page, start, end,
2220 page_started, nr_written);
2221 } else if (!btrfs_inode_can_compress(inode) ||
2222 !inode_need_compress(inode, start, end)) {
2223 if (zoned)
2224 ret = run_delalloc_zoned(inode, locked_page, start, end,
2225 page_started, nr_written);
2226 else
2227 ret = cow_file_range(inode, locked_page, start, end,
2228 page_started, nr_written, 1, NULL);
2229 } else {
2230 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2231 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2232 page_started, nr_written);
2233 }
2234 ASSERT(ret <= 0);
2235 if (ret)
2236 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2237 end - start + 1);
2238 return ret;
2239 }
2240
2241 void btrfs_split_delalloc_extent(struct inode *inode,
2242 struct extent_state *orig, u64 split)
2243 {
2244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2245 u64 size;
2246
2247 /* not delalloc, ignore it */
2248 if (!(orig->state & EXTENT_DELALLOC))
2249 return;
2250
2251 size = orig->end - orig->start + 1;
2252 if (size > fs_info->max_extent_size) {
2253 u32 num_extents;
2254 u64 new_size;
2255
2256 /*
2257 * See the explanation in btrfs_merge_delalloc_extent, the same
2258 * applies here, just in reverse.
2259 */
2260 new_size = orig->end - split + 1;
2261 num_extents = count_max_extents(fs_info, new_size);
2262 new_size = split - orig->start;
2263 num_extents += count_max_extents(fs_info, new_size);
2264 if (count_max_extents(fs_info, size) >= num_extents)
2265 return;
2266 }
2267
2268 spin_lock(&BTRFS_I(inode)->lock);
2269 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2270 spin_unlock(&BTRFS_I(inode)->lock);
2271 }
2272
2273 /*
2274 * Handle merged delayed allocation extents so we can keep track of new extents
2275 * that are just merged onto old extents, such as when we are doing sequential
2276 * writes, so we can properly account for the metadata space we'll need.
2277 */
2278 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2279 struct extent_state *other)
2280 {
2281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2282 u64 new_size, old_size;
2283 u32 num_extents;
2284
2285 /* not delalloc, ignore it */
2286 if (!(other->state & EXTENT_DELALLOC))
2287 return;
2288
2289 if (new->start > other->start)
2290 new_size = new->end - other->start + 1;
2291 else
2292 new_size = other->end - new->start + 1;
2293
2294 /* we're not bigger than the max, unreserve the space and go */
2295 if (new_size <= fs_info->max_extent_size) {
2296 spin_lock(&BTRFS_I(inode)->lock);
2297 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2298 spin_unlock(&BTRFS_I(inode)->lock);
2299 return;
2300 }
2301
2302 /*
2303 * We have to add up either side to figure out how many extents were
2304 * accounted for before we merged into one big extent. If the number of
2305 * extents we accounted for is <= the amount we need for the new range
2306 * then we can return, otherwise drop. Think of it like this
2307 *
2308 * [ 4k][MAX_SIZE]
2309 *
2310 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2311 * need 2 outstanding extents, on one side we have 1 and the other side
2312 * we have 1 so they are == and we can return. But in this case
2313 *
2314 * [MAX_SIZE+4k][MAX_SIZE+4k]
2315 *
2316 * Each range on their own accounts for 2 extents, but merged together
2317 * they are only 3 extents worth of accounting, so we need to drop in
2318 * this case.
2319 */
2320 old_size = other->end - other->start + 1;
2321 num_extents = count_max_extents(fs_info, old_size);
2322 old_size = new->end - new->start + 1;
2323 num_extents += count_max_extents(fs_info, old_size);
2324 if (count_max_extents(fs_info, new_size) >= num_extents)
2325 return;
2326
2327 spin_lock(&BTRFS_I(inode)->lock);
2328 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2329 spin_unlock(&BTRFS_I(inode)->lock);
2330 }
2331
2332 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2333 struct inode *inode)
2334 {
2335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2336
2337 spin_lock(&root->delalloc_lock);
2338 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2339 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2340 &root->delalloc_inodes);
2341 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2342 &BTRFS_I(inode)->runtime_flags);
2343 root->nr_delalloc_inodes++;
2344 if (root->nr_delalloc_inodes == 1) {
2345 spin_lock(&fs_info->delalloc_root_lock);
2346 BUG_ON(!list_empty(&root->delalloc_root));
2347 list_add_tail(&root->delalloc_root,
2348 &fs_info->delalloc_roots);
2349 spin_unlock(&fs_info->delalloc_root_lock);
2350 }
2351 }
2352 spin_unlock(&root->delalloc_lock);
2353 }
2354
2355
2356 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2357 struct btrfs_inode *inode)
2358 {
2359 struct btrfs_fs_info *fs_info = root->fs_info;
2360
2361 if (!list_empty(&inode->delalloc_inodes)) {
2362 list_del_init(&inode->delalloc_inodes);
2363 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2364 &inode->runtime_flags);
2365 root->nr_delalloc_inodes--;
2366 if (!root->nr_delalloc_inodes) {
2367 ASSERT(list_empty(&root->delalloc_inodes));
2368 spin_lock(&fs_info->delalloc_root_lock);
2369 BUG_ON(list_empty(&root->delalloc_root));
2370 list_del_init(&root->delalloc_root);
2371 spin_unlock(&fs_info->delalloc_root_lock);
2372 }
2373 }
2374 }
2375
2376 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2377 struct btrfs_inode *inode)
2378 {
2379 spin_lock(&root->delalloc_lock);
2380 __btrfs_del_delalloc_inode(root, inode);
2381 spin_unlock(&root->delalloc_lock);
2382 }
2383
2384 /*
2385 * Properly track delayed allocation bytes in the inode and to maintain the
2386 * list of inodes that have pending delalloc work to be done.
2387 */
2388 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2389 u32 bits)
2390 {
2391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2392
2393 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2394 WARN_ON(1);
2395 /*
2396 * set_bit and clear bit hooks normally require _irqsave/restore
2397 * but in this case, we are only testing for the DELALLOC
2398 * bit, which is only set or cleared with irqs on
2399 */
2400 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2401 struct btrfs_root *root = BTRFS_I(inode)->root;
2402 u64 len = state->end + 1 - state->start;
2403 u32 num_extents = count_max_extents(fs_info, len);
2404 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2405
2406 spin_lock(&BTRFS_I(inode)->lock);
2407 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2408 spin_unlock(&BTRFS_I(inode)->lock);
2409
2410 /* For sanity tests */
2411 if (btrfs_is_testing(fs_info))
2412 return;
2413
2414 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2415 fs_info->delalloc_batch);
2416 spin_lock(&BTRFS_I(inode)->lock);
2417 BTRFS_I(inode)->delalloc_bytes += len;
2418 if (bits & EXTENT_DEFRAG)
2419 BTRFS_I(inode)->defrag_bytes += len;
2420 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2421 &BTRFS_I(inode)->runtime_flags))
2422 btrfs_add_delalloc_inodes(root, inode);
2423 spin_unlock(&BTRFS_I(inode)->lock);
2424 }
2425
2426 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2427 (bits & EXTENT_DELALLOC_NEW)) {
2428 spin_lock(&BTRFS_I(inode)->lock);
2429 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2430 state->start;
2431 spin_unlock(&BTRFS_I(inode)->lock);
2432 }
2433 }
2434
2435 /*
2436 * Once a range is no longer delalloc this function ensures that proper
2437 * accounting happens.
2438 */
2439 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2440 struct extent_state *state, u32 bits)
2441 {
2442 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2443 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2444 u64 len = state->end + 1 - state->start;
2445 u32 num_extents = count_max_extents(fs_info, len);
2446
2447 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2448 spin_lock(&inode->lock);
2449 inode->defrag_bytes -= len;
2450 spin_unlock(&inode->lock);
2451 }
2452
2453 /*
2454 * set_bit and clear bit hooks normally require _irqsave/restore
2455 * but in this case, we are only testing for the DELALLOC
2456 * bit, which is only set or cleared with irqs on
2457 */
2458 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2459 struct btrfs_root *root = inode->root;
2460 bool do_list = !btrfs_is_free_space_inode(inode);
2461
2462 spin_lock(&inode->lock);
2463 btrfs_mod_outstanding_extents(inode, -num_extents);
2464 spin_unlock(&inode->lock);
2465
2466 /*
2467 * We don't reserve metadata space for space cache inodes so we
2468 * don't need to call delalloc_release_metadata if there is an
2469 * error.
2470 */
2471 if (bits & EXTENT_CLEAR_META_RESV &&
2472 root != fs_info->tree_root)
2473 btrfs_delalloc_release_metadata(inode, len, false);
2474
2475 /* For sanity tests. */
2476 if (btrfs_is_testing(fs_info))
2477 return;
2478
2479 if (!btrfs_is_data_reloc_root(root) &&
2480 do_list && !(state->state & EXTENT_NORESERVE) &&
2481 (bits & EXTENT_CLEAR_DATA_RESV))
2482 btrfs_free_reserved_data_space_noquota(fs_info, len);
2483
2484 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2485 fs_info->delalloc_batch);
2486 spin_lock(&inode->lock);
2487 inode->delalloc_bytes -= len;
2488 if (do_list && inode->delalloc_bytes == 0 &&
2489 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2490 &inode->runtime_flags))
2491 btrfs_del_delalloc_inode(root, inode);
2492 spin_unlock(&inode->lock);
2493 }
2494
2495 if ((state->state & EXTENT_DELALLOC_NEW) &&
2496 (bits & EXTENT_DELALLOC_NEW)) {
2497 spin_lock(&inode->lock);
2498 ASSERT(inode->new_delalloc_bytes >= len);
2499 inode->new_delalloc_bytes -= len;
2500 if (bits & EXTENT_ADD_INODE_BYTES)
2501 inode_add_bytes(&inode->vfs_inode, len);
2502 spin_unlock(&inode->lock);
2503 }
2504 }
2505
2506 /*
2507 * in order to insert checksums into the metadata in large chunks,
2508 * we wait until bio submission time. All the pages in the bio are
2509 * checksummed and sums are attached onto the ordered extent record.
2510 *
2511 * At IO completion time the cums attached on the ordered extent record
2512 * are inserted into the btree
2513 */
2514 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2515 u64 dio_file_offset)
2516 {
2517 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2518 }
2519
2520 /*
2521 * Split an extent_map at [start, start + len]
2522 *
2523 * This function is intended to be used only for extract_ordered_extent().
2524 */
2525 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2526 u64 pre, u64 post)
2527 {
2528 struct extent_map_tree *em_tree = &inode->extent_tree;
2529 struct extent_map *em;
2530 struct extent_map *split_pre = NULL;
2531 struct extent_map *split_mid = NULL;
2532 struct extent_map *split_post = NULL;
2533 int ret = 0;
2534 unsigned long flags;
2535
2536 /* Sanity check */
2537 if (pre == 0 && post == 0)
2538 return 0;
2539
2540 split_pre = alloc_extent_map();
2541 if (pre)
2542 split_mid = alloc_extent_map();
2543 if (post)
2544 split_post = alloc_extent_map();
2545 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2546 ret = -ENOMEM;
2547 goto out;
2548 }
2549
2550 ASSERT(pre + post < len);
2551
2552 lock_extent(&inode->io_tree, start, start + len - 1);
2553 write_lock(&em_tree->lock);
2554 em = lookup_extent_mapping(em_tree, start, len);
2555 if (!em) {
2556 ret = -EIO;
2557 goto out_unlock;
2558 }
2559
2560 ASSERT(em->len == len);
2561 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2562 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2563 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2564 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2565 ASSERT(!list_empty(&em->list));
2566
2567 flags = em->flags;
2568 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2569
2570 /* First, replace the em with a new extent_map starting from * em->start */
2571 split_pre->start = em->start;
2572 split_pre->len = (pre ? pre : em->len - post);
2573 split_pre->orig_start = split_pre->start;
2574 split_pre->block_start = em->block_start;
2575 split_pre->block_len = split_pre->len;
2576 split_pre->orig_block_len = split_pre->block_len;
2577 split_pre->ram_bytes = split_pre->len;
2578 split_pre->flags = flags;
2579 split_pre->compress_type = em->compress_type;
2580 split_pre->generation = em->generation;
2581
2582 replace_extent_mapping(em_tree, em, split_pre, 1);
2583
2584 /*
2585 * Now we only have an extent_map at:
2586 * [em->start, em->start + pre] if pre != 0
2587 * [em->start, em->start + em->len - post] if pre == 0
2588 */
2589
2590 if (pre) {
2591 /* Insert the middle extent_map */
2592 split_mid->start = em->start + pre;
2593 split_mid->len = em->len - pre - post;
2594 split_mid->orig_start = split_mid->start;
2595 split_mid->block_start = em->block_start + pre;
2596 split_mid->block_len = split_mid->len;
2597 split_mid->orig_block_len = split_mid->block_len;
2598 split_mid->ram_bytes = split_mid->len;
2599 split_mid->flags = flags;
2600 split_mid->compress_type = em->compress_type;
2601 split_mid->generation = em->generation;
2602 add_extent_mapping(em_tree, split_mid, 1);
2603 }
2604
2605 if (post) {
2606 split_post->start = em->start + em->len - post;
2607 split_post->len = post;
2608 split_post->orig_start = split_post->start;
2609 split_post->block_start = em->block_start + em->len - post;
2610 split_post->block_len = split_post->len;
2611 split_post->orig_block_len = split_post->block_len;
2612 split_post->ram_bytes = split_post->len;
2613 split_post->flags = flags;
2614 split_post->compress_type = em->compress_type;
2615 split_post->generation = em->generation;
2616 add_extent_mapping(em_tree, split_post, 1);
2617 }
2618
2619 /* Once for us */
2620 free_extent_map(em);
2621 /* Once for the tree */
2622 free_extent_map(em);
2623
2624 out_unlock:
2625 write_unlock(&em_tree->lock);
2626 unlock_extent(&inode->io_tree, start, start + len - 1);
2627 out:
2628 free_extent_map(split_pre);
2629 free_extent_map(split_mid);
2630 free_extent_map(split_post);
2631
2632 return ret;
2633 }
2634
2635 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2636 struct bio *bio, loff_t file_offset)
2637 {
2638 struct btrfs_ordered_extent *ordered;
2639 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2640 u64 file_len;
2641 u64 len = bio->bi_iter.bi_size;
2642 u64 end = start + len;
2643 u64 ordered_end;
2644 u64 pre, post;
2645 int ret = 0;
2646
2647 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2648 if (WARN_ON_ONCE(!ordered))
2649 return BLK_STS_IOERR;
2650
2651 /* No need to split */
2652 if (ordered->disk_num_bytes == len)
2653 goto out;
2654
2655 /* We cannot split once end_bio'd ordered extent */
2656 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2657 ret = -EINVAL;
2658 goto out;
2659 }
2660
2661 /* We cannot split a compressed ordered extent */
2662 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2663 ret = -EINVAL;
2664 goto out;
2665 }
2666
2667 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2668 /* bio must be in one ordered extent */
2669 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2670 ret = -EINVAL;
2671 goto out;
2672 }
2673
2674 /* Checksum list should be empty */
2675 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2676 ret = -EINVAL;
2677 goto out;
2678 }
2679
2680 file_len = ordered->num_bytes;
2681 pre = start - ordered->disk_bytenr;
2682 post = ordered_end - end;
2683
2684 ret = btrfs_split_ordered_extent(ordered, pre, post);
2685 if (ret)
2686 goto out;
2687 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2688
2689 out:
2690 btrfs_put_ordered_extent(ordered);
2691
2692 return errno_to_blk_status(ret);
2693 }
2694
2695 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num)
2696 {
2697 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2698 struct btrfs_inode *bi = BTRFS_I(inode);
2699 blk_status_t ret;
2700
2701 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2702 ret = extract_ordered_extent(bi, bio,
2703 page_offset(bio_first_bvec_all(bio)->bv_page));
2704 if (ret)
2705 goto out;
2706 }
2707
2708 /*
2709 * If we need to checksum, and the I/O is not issued by fsync and
2710 * friends, that is ->sync_writers != 0, defer the submission to a
2711 * workqueue to parallelize it.
2712 *
2713 * Csum items for reloc roots have already been cloned at this point,
2714 * so they are handled as part of the no-checksum case.
2715 */
2716 if (!(bi->flags & BTRFS_INODE_NODATASUM) &&
2717 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
2718 !btrfs_is_data_reloc_root(bi->root)) {
2719 if (!atomic_read(&bi->sync_writers) &&
2720 btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
2721 btrfs_submit_bio_start))
2722 return;
2723
2724 ret = btrfs_csum_one_bio(bi, bio, (u64)-1, false);
2725 if (ret)
2726 goto out;
2727 }
2728 btrfs_submit_bio(fs_info, bio, mirror_num);
2729 return;
2730 out:
2731 if (ret) {
2732 bio->bi_status = ret;
2733 bio_endio(bio);
2734 }
2735 }
2736
2737 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
2738 int mirror_num, enum btrfs_compression_type compress_type)
2739 {
2740 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2741 blk_status_t ret;
2742
2743 if (compress_type != BTRFS_COMPRESS_NONE) {
2744 /*
2745 * btrfs_submit_compressed_read will handle completing the bio
2746 * if there were any errors, so just return here.
2747 */
2748 btrfs_submit_compressed_read(inode, bio, mirror_num);
2749 return;
2750 }
2751
2752 /* Save the original iter for read repair */
2753 btrfs_bio(bio)->iter = bio->bi_iter;
2754
2755 /*
2756 * Lookup bio sums does extra checks around whether we need to csum or
2757 * not, which is why we ignore skip_sum here.
2758 */
2759 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2760 if (ret) {
2761 bio->bi_status = ret;
2762 bio_endio(bio);
2763 return;
2764 }
2765
2766 btrfs_submit_bio(fs_info, bio, mirror_num);
2767 }
2768
2769 /*
2770 * given a list of ordered sums record them in the inode. This happens
2771 * at IO completion time based on sums calculated at bio submission time.
2772 */
2773 static int add_pending_csums(struct btrfs_trans_handle *trans,
2774 struct list_head *list)
2775 {
2776 struct btrfs_ordered_sum *sum;
2777 struct btrfs_root *csum_root = NULL;
2778 int ret;
2779
2780 list_for_each_entry(sum, list, list) {
2781 trans->adding_csums = true;
2782 if (!csum_root)
2783 csum_root = btrfs_csum_root(trans->fs_info,
2784 sum->bytenr);
2785 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2786 trans->adding_csums = false;
2787 if (ret)
2788 return ret;
2789 }
2790 return 0;
2791 }
2792
2793 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2794 const u64 start,
2795 const u64 len,
2796 struct extent_state **cached_state)
2797 {
2798 u64 search_start = start;
2799 const u64 end = start + len - 1;
2800
2801 while (search_start < end) {
2802 const u64 search_len = end - search_start + 1;
2803 struct extent_map *em;
2804 u64 em_len;
2805 int ret = 0;
2806
2807 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2808 if (IS_ERR(em))
2809 return PTR_ERR(em);
2810
2811 if (em->block_start != EXTENT_MAP_HOLE)
2812 goto next;
2813
2814 em_len = em->len;
2815 if (em->start < search_start)
2816 em_len -= search_start - em->start;
2817 if (em_len > search_len)
2818 em_len = search_len;
2819
2820 ret = set_extent_bit(&inode->io_tree, search_start,
2821 search_start + em_len - 1,
2822 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2823 GFP_NOFS, NULL);
2824 next:
2825 search_start = extent_map_end(em);
2826 free_extent_map(em);
2827 if (ret)
2828 return ret;
2829 }
2830 return 0;
2831 }
2832
2833 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2834 unsigned int extra_bits,
2835 struct extent_state **cached_state)
2836 {
2837 WARN_ON(PAGE_ALIGNED(end));
2838
2839 if (start >= i_size_read(&inode->vfs_inode) &&
2840 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2841 /*
2842 * There can't be any extents following eof in this case so just
2843 * set the delalloc new bit for the range directly.
2844 */
2845 extra_bits |= EXTENT_DELALLOC_NEW;
2846 } else {
2847 int ret;
2848
2849 ret = btrfs_find_new_delalloc_bytes(inode, start,
2850 end + 1 - start,
2851 cached_state);
2852 if (ret)
2853 return ret;
2854 }
2855
2856 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2857 cached_state);
2858 }
2859
2860 /* see btrfs_writepage_start_hook for details on why this is required */
2861 struct btrfs_writepage_fixup {
2862 struct page *page;
2863 struct inode *inode;
2864 struct btrfs_work work;
2865 };
2866
2867 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2868 {
2869 struct btrfs_writepage_fixup *fixup;
2870 struct btrfs_ordered_extent *ordered;
2871 struct extent_state *cached_state = NULL;
2872 struct extent_changeset *data_reserved = NULL;
2873 struct page *page;
2874 struct btrfs_inode *inode;
2875 u64 page_start;
2876 u64 page_end;
2877 int ret = 0;
2878 bool free_delalloc_space = true;
2879
2880 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2881 page = fixup->page;
2882 inode = BTRFS_I(fixup->inode);
2883 page_start = page_offset(page);
2884 page_end = page_offset(page) + PAGE_SIZE - 1;
2885
2886 /*
2887 * This is similar to page_mkwrite, we need to reserve the space before
2888 * we take the page lock.
2889 */
2890 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2891 PAGE_SIZE);
2892 again:
2893 lock_page(page);
2894
2895 /*
2896 * Before we queued this fixup, we took a reference on the page.
2897 * page->mapping may go NULL, but it shouldn't be moved to a different
2898 * address space.
2899 */
2900 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2901 /*
2902 * Unfortunately this is a little tricky, either
2903 *
2904 * 1) We got here and our page had already been dealt with and
2905 * we reserved our space, thus ret == 0, so we need to just
2906 * drop our space reservation and bail. This can happen the
2907 * first time we come into the fixup worker, or could happen
2908 * while waiting for the ordered extent.
2909 * 2) Our page was already dealt with, but we happened to get an
2910 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2911 * this case we obviously don't have anything to release, but
2912 * because the page was already dealt with we don't want to
2913 * mark the page with an error, so make sure we're resetting
2914 * ret to 0. This is why we have this check _before_ the ret
2915 * check, because we do not want to have a surprise ENOSPC
2916 * when the page was already properly dealt with.
2917 */
2918 if (!ret) {
2919 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2920 btrfs_delalloc_release_space(inode, data_reserved,
2921 page_start, PAGE_SIZE,
2922 true);
2923 }
2924 ret = 0;
2925 goto out_page;
2926 }
2927
2928 /*
2929 * We can't mess with the page state unless it is locked, so now that
2930 * it is locked bail if we failed to make our space reservation.
2931 */
2932 if (ret)
2933 goto out_page;
2934
2935 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2936
2937 /* already ordered? We're done */
2938 if (PageOrdered(page))
2939 goto out_reserved;
2940
2941 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2942 if (ordered) {
2943 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2944 &cached_state);
2945 unlock_page(page);
2946 btrfs_start_ordered_extent(ordered, 1);
2947 btrfs_put_ordered_extent(ordered);
2948 goto again;
2949 }
2950
2951 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2952 &cached_state);
2953 if (ret)
2954 goto out_reserved;
2955
2956 /*
2957 * Everything went as planned, we're now the owner of a dirty page with
2958 * delayed allocation bits set and space reserved for our COW
2959 * destination.
2960 *
2961 * The page was dirty when we started, nothing should have cleaned it.
2962 */
2963 BUG_ON(!PageDirty(page));
2964 free_delalloc_space = false;
2965 out_reserved:
2966 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2967 if (free_delalloc_space)
2968 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2969 PAGE_SIZE, true);
2970 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2971 &cached_state);
2972 out_page:
2973 if (ret) {
2974 /*
2975 * We hit ENOSPC or other errors. Update the mapping and page
2976 * to reflect the errors and clean the page.
2977 */
2978 mapping_set_error(page->mapping, ret);
2979 end_extent_writepage(page, ret, page_start, page_end);
2980 clear_page_dirty_for_io(page);
2981 SetPageError(page);
2982 }
2983 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2984 unlock_page(page);
2985 put_page(page);
2986 kfree(fixup);
2987 extent_changeset_free(data_reserved);
2988 /*
2989 * As a precaution, do a delayed iput in case it would be the last iput
2990 * that could need flushing space. Recursing back to fixup worker would
2991 * deadlock.
2992 */
2993 btrfs_add_delayed_iput(&inode->vfs_inode);
2994 }
2995
2996 /*
2997 * There are a few paths in the higher layers of the kernel that directly
2998 * set the page dirty bit without asking the filesystem if it is a
2999 * good idea. This causes problems because we want to make sure COW
3000 * properly happens and the data=ordered rules are followed.
3001 *
3002 * In our case any range that doesn't have the ORDERED bit set
3003 * hasn't been properly setup for IO. We kick off an async process
3004 * to fix it up. The async helper will wait for ordered extents, set
3005 * the delalloc bit and make it safe to write the page.
3006 */
3007 int btrfs_writepage_cow_fixup(struct page *page)
3008 {
3009 struct inode *inode = page->mapping->host;
3010 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3011 struct btrfs_writepage_fixup *fixup;
3012
3013 /* This page has ordered extent covering it already */
3014 if (PageOrdered(page))
3015 return 0;
3016
3017 /*
3018 * PageChecked is set below when we create a fixup worker for this page,
3019 * don't try to create another one if we're already PageChecked()
3020 *
3021 * The extent_io writepage code will redirty the page if we send back
3022 * EAGAIN.
3023 */
3024 if (PageChecked(page))
3025 return -EAGAIN;
3026
3027 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3028 if (!fixup)
3029 return -EAGAIN;
3030
3031 /*
3032 * We are already holding a reference to this inode from
3033 * write_cache_pages. We need to hold it because the space reservation
3034 * takes place outside of the page lock, and we can't trust
3035 * page->mapping outside of the page lock.
3036 */
3037 ihold(inode);
3038 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3039 get_page(page);
3040 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3041 fixup->page = page;
3042 fixup->inode = inode;
3043 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3044
3045 return -EAGAIN;
3046 }
3047
3048 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3049 struct btrfs_inode *inode, u64 file_pos,
3050 struct btrfs_file_extent_item *stack_fi,
3051 const bool update_inode_bytes,
3052 u64 qgroup_reserved)
3053 {
3054 struct btrfs_root *root = inode->root;
3055 const u64 sectorsize = root->fs_info->sectorsize;
3056 struct btrfs_path *path;
3057 struct extent_buffer *leaf;
3058 struct btrfs_key ins;
3059 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3060 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3061 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3062 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3063 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3064 struct btrfs_drop_extents_args drop_args = { 0 };
3065 int ret;
3066
3067 path = btrfs_alloc_path();
3068 if (!path)
3069 return -ENOMEM;
3070
3071 /*
3072 * we may be replacing one extent in the tree with another.
3073 * The new extent is pinned in the extent map, and we don't want
3074 * to drop it from the cache until it is completely in the btree.
3075 *
3076 * So, tell btrfs_drop_extents to leave this extent in the cache.
3077 * the caller is expected to unpin it and allow it to be merged
3078 * with the others.
3079 */
3080 drop_args.path = path;
3081 drop_args.start = file_pos;
3082 drop_args.end = file_pos + num_bytes;
3083 drop_args.replace_extent = true;
3084 drop_args.extent_item_size = sizeof(*stack_fi);
3085 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3086 if (ret)
3087 goto out;
3088
3089 if (!drop_args.extent_inserted) {
3090 ins.objectid = btrfs_ino(inode);
3091 ins.offset = file_pos;
3092 ins.type = BTRFS_EXTENT_DATA_KEY;
3093
3094 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3095 sizeof(*stack_fi));
3096 if (ret)
3097 goto out;
3098 }
3099 leaf = path->nodes[0];
3100 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3101 write_extent_buffer(leaf, stack_fi,
3102 btrfs_item_ptr_offset(leaf, path->slots[0]),
3103 sizeof(struct btrfs_file_extent_item));
3104
3105 btrfs_mark_buffer_dirty(leaf);
3106 btrfs_release_path(path);
3107
3108 /*
3109 * If we dropped an inline extent here, we know the range where it is
3110 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3111 * number of bytes only for that range containing the inline extent.
3112 * The remaining of the range will be processed when clearning the
3113 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3114 */
3115 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3116 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3117
3118 inline_size = drop_args.bytes_found - inline_size;
3119 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3120 drop_args.bytes_found -= inline_size;
3121 num_bytes -= sectorsize;
3122 }
3123
3124 if (update_inode_bytes)
3125 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3126
3127 ins.objectid = disk_bytenr;
3128 ins.offset = disk_num_bytes;
3129 ins.type = BTRFS_EXTENT_ITEM_KEY;
3130
3131 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3132 if (ret)
3133 goto out;
3134
3135 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3136 file_pos - offset,
3137 qgroup_reserved, &ins);
3138 out:
3139 btrfs_free_path(path);
3140
3141 return ret;
3142 }
3143
3144 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3145 u64 start, u64 len)
3146 {
3147 struct btrfs_block_group *cache;
3148
3149 cache = btrfs_lookup_block_group(fs_info, start);
3150 ASSERT(cache);
3151
3152 spin_lock(&cache->lock);
3153 cache->delalloc_bytes -= len;
3154 spin_unlock(&cache->lock);
3155
3156 btrfs_put_block_group(cache);
3157 }
3158
3159 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3160 struct btrfs_ordered_extent *oe)
3161 {
3162 struct btrfs_file_extent_item stack_fi;
3163 bool update_inode_bytes;
3164 u64 num_bytes = oe->num_bytes;
3165 u64 ram_bytes = oe->ram_bytes;
3166
3167 memset(&stack_fi, 0, sizeof(stack_fi));
3168 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3169 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3170 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3171 oe->disk_num_bytes);
3172 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3173 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3174 num_bytes = oe->truncated_len;
3175 ram_bytes = num_bytes;
3176 }
3177 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3178 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3179 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3180 /* Encryption and other encoding is reserved and all 0 */
3181
3182 /*
3183 * For delalloc, when completing an ordered extent we update the inode's
3184 * bytes when clearing the range in the inode's io tree, so pass false
3185 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3186 * except if the ordered extent was truncated.
3187 */
3188 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3189 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3190 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3191
3192 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3193 oe->file_offset, &stack_fi,
3194 update_inode_bytes, oe->qgroup_rsv);
3195 }
3196
3197 /*
3198 * As ordered data IO finishes, this gets called so we can finish
3199 * an ordered extent if the range of bytes in the file it covers are
3200 * fully written.
3201 */
3202 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3203 {
3204 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3205 struct btrfs_root *root = inode->root;
3206 struct btrfs_fs_info *fs_info = root->fs_info;
3207 struct btrfs_trans_handle *trans = NULL;
3208 struct extent_io_tree *io_tree = &inode->io_tree;
3209 struct extent_state *cached_state = NULL;
3210 u64 start, end;
3211 int compress_type = 0;
3212 int ret = 0;
3213 u64 logical_len = ordered_extent->num_bytes;
3214 bool freespace_inode;
3215 bool truncated = false;
3216 bool clear_reserved_extent = true;
3217 unsigned int clear_bits = EXTENT_DEFRAG;
3218
3219 start = ordered_extent->file_offset;
3220 end = start + ordered_extent->num_bytes - 1;
3221
3222 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3223 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3224 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3225 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3226 clear_bits |= EXTENT_DELALLOC_NEW;
3227
3228 freespace_inode = btrfs_is_free_space_inode(inode);
3229
3230 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3231 ret = -EIO;
3232 goto out;
3233 }
3234
3235 /* A valid bdev implies a write on a sequential zone */
3236 if (ordered_extent->bdev) {
3237 btrfs_rewrite_logical_zoned(ordered_extent);
3238 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3239 ordered_extent->disk_num_bytes);
3240 }
3241
3242 btrfs_free_io_failure_record(inode, start, end);
3243
3244 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3245 truncated = true;
3246 logical_len = ordered_extent->truncated_len;
3247 /* Truncated the entire extent, don't bother adding */
3248 if (!logical_len)
3249 goto out;
3250 }
3251
3252 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3253 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3254
3255 btrfs_inode_safe_disk_i_size_write(inode, 0);
3256 if (freespace_inode)
3257 trans = btrfs_join_transaction_spacecache(root);
3258 else
3259 trans = btrfs_join_transaction(root);
3260 if (IS_ERR(trans)) {
3261 ret = PTR_ERR(trans);
3262 trans = NULL;
3263 goto out;
3264 }
3265 trans->block_rsv = &inode->block_rsv;
3266 ret = btrfs_update_inode_fallback(trans, root, inode);
3267 if (ret) /* -ENOMEM or corruption */
3268 btrfs_abort_transaction(trans, ret);
3269 goto out;
3270 }
3271
3272 clear_bits |= EXTENT_LOCKED;
3273 lock_extent_bits(io_tree, start, end, &cached_state);
3274
3275 if (freespace_inode)
3276 trans = btrfs_join_transaction_spacecache(root);
3277 else
3278 trans = btrfs_join_transaction(root);
3279 if (IS_ERR(trans)) {
3280 ret = PTR_ERR(trans);
3281 trans = NULL;
3282 goto out;
3283 }
3284
3285 trans->block_rsv = &inode->block_rsv;
3286
3287 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3288 compress_type = ordered_extent->compress_type;
3289 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3290 BUG_ON(compress_type);
3291 ret = btrfs_mark_extent_written(trans, inode,
3292 ordered_extent->file_offset,
3293 ordered_extent->file_offset +
3294 logical_len);
3295 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3296 ordered_extent->disk_num_bytes);
3297 } else {
3298 BUG_ON(root == fs_info->tree_root);
3299 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3300 if (!ret) {
3301 clear_reserved_extent = false;
3302 btrfs_release_delalloc_bytes(fs_info,
3303 ordered_extent->disk_bytenr,
3304 ordered_extent->disk_num_bytes);
3305 }
3306 }
3307 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3308 ordered_extent->num_bytes, trans->transid);
3309 if (ret < 0) {
3310 btrfs_abort_transaction(trans, ret);
3311 goto out;
3312 }
3313
3314 ret = add_pending_csums(trans, &ordered_extent->list);
3315 if (ret) {
3316 btrfs_abort_transaction(trans, ret);
3317 goto out;
3318 }
3319
3320 /*
3321 * If this is a new delalloc range, clear its new delalloc flag to
3322 * update the inode's number of bytes. This needs to be done first
3323 * before updating the inode item.
3324 */
3325 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3326 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3327 clear_extent_bit(&inode->io_tree, start, end,
3328 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3329 0, 0, &cached_state);
3330
3331 btrfs_inode_safe_disk_i_size_write(inode, 0);
3332 ret = btrfs_update_inode_fallback(trans, root, inode);
3333 if (ret) { /* -ENOMEM or corruption */
3334 btrfs_abort_transaction(trans, ret);
3335 goto out;
3336 }
3337 ret = 0;
3338 out:
3339 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3340 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3341 &cached_state);
3342
3343 if (trans)
3344 btrfs_end_transaction(trans);
3345
3346 if (ret || truncated) {
3347 u64 unwritten_start = start;
3348
3349 /*
3350 * If we failed to finish this ordered extent for any reason we
3351 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3352 * extent, and mark the inode with the error if it wasn't
3353 * already set. Any error during writeback would have already
3354 * set the mapping error, so we need to set it if we're the ones
3355 * marking this ordered extent as failed.
3356 */
3357 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3358 &ordered_extent->flags))
3359 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3360
3361 if (truncated)
3362 unwritten_start += logical_len;
3363 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3364
3365 /* Drop the cache for the part of the extent we didn't write. */
3366 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3367
3368 /*
3369 * If the ordered extent had an IOERR or something else went
3370 * wrong we need to return the space for this ordered extent
3371 * back to the allocator. We only free the extent in the
3372 * truncated case if we didn't write out the extent at all.
3373 *
3374 * If we made it past insert_reserved_file_extent before we
3375 * errored out then we don't need to do this as the accounting
3376 * has already been done.
3377 */
3378 if ((ret || !logical_len) &&
3379 clear_reserved_extent &&
3380 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3381 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3382 /*
3383 * Discard the range before returning it back to the
3384 * free space pool
3385 */
3386 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3387 btrfs_discard_extent(fs_info,
3388 ordered_extent->disk_bytenr,
3389 ordered_extent->disk_num_bytes,
3390 NULL);
3391 btrfs_free_reserved_extent(fs_info,
3392 ordered_extent->disk_bytenr,
3393 ordered_extent->disk_num_bytes, 1);
3394 }
3395 }
3396
3397 /*
3398 * This needs to be done to make sure anybody waiting knows we are done
3399 * updating everything for this ordered extent.
3400 */
3401 btrfs_remove_ordered_extent(inode, ordered_extent);
3402
3403 /* once for us */
3404 btrfs_put_ordered_extent(ordered_extent);
3405 /* once for the tree */
3406 btrfs_put_ordered_extent(ordered_extent);
3407
3408 return ret;
3409 }
3410
3411 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3412 struct page *page, u64 start,
3413 u64 end, bool uptodate)
3414 {
3415 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3416
3417 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3418 }
3419
3420 /*
3421 * Verify the checksum for a single sector without any extra action that depend
3422 * on the type of I/O.
3423 */
3424 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3425 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3426 {
3427 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3428 char *kaddr;
3429
3430 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3431
3432 shash->tfm = fs_info->csum_shash;
3433
3434 kaddr = kmap_local_page(page) + pgoff;
3435 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3436 kunmap_local(kaddr);
3437
3438 if (memcmp(csum, csum_expected, fs_info->csum_size))
3439 return -EIO;
3440 return 0;
3441 }
3442
3443 /*
3444 * check_data_csum - verify checksum of one sector of uncompressed data
3445 * @inode: inode
3446 * @bbio: btrfs_bio which contains the csum
3447 * @bio_offset: offset to the beginning of the bio (in bytes)
3448 * @page: page where is the data to be verified
3449 * @pgoff: offset inside the page
3450 *
3451 * The length of such check is always one sector size.
3452 *
3453 * When csum mismatch is detected, we will also report the error and fill the
3454 * corrupted range with zero. (Thus it needs the extra parameters)
3455 */
3456 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3457 u32 bio_offset, struct page *page, u32 pgoff)
3458 {
3459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3460 u32 len = fs_info->sectorsize;
3461 u8 *csum_expected;
3462 u8 csum[BTRFS_CSUM_SIZE];
3463
3464 ASSERT(pgoff + len <= PAGE_SIZE);
3465
3466 csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset);
3467
3468 if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected))
3469 goto zeroit;
3470 return 0;
3471
3472 zeroit:
3473 btrfs_print_data_csum_error(BTRFS_I(inode),
3474 bbio->file_offset + bio_offset,
3475 csum, csum_expected, bbio->mirror_num);
3476 if (bbio->device)
3477 btrfs_dev_stat_inc_and_print(bbio->device,
3478 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3479 memzero_page(page, pgoff, len);
3480 return -EIO;
3481 }
3482
3483 /*
3484 * When reads are done, we need to check csums to verify the data is correct.
3485 * if there's a match, we allow the bio to finish. If not, the code in
3486 * extent_io.c will try to find good copies for us.
3487 *
3488 * @bio_offset: offset to the beginning of the bio (in bytes)
3489 * @start: file offset of the range start
3490 * @end: file offset of the range end (inclusive)
3491 *
3492 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3493 * csum match.
3494 */
3495 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3496 u32 bio_offset, struct page *page,
3497 u64 start, u64 end)
3498 {
3499 struct inode *inode = page->mapping->host;
3500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3501 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3502 struct btrfs_root *root = BTRFS_I(inode)->root;
3503 const u32 sectorsize = root->fs_info->sectorsize;
3504 u32 pg_off;
3505 unsigned int result = 0;
3506
3507 /*
3508 * This only happens for NODATASUM or compressed read.
3509 * Normally this should be covered by above check for compressed read
3510 * or the next check for NODATASUM. Just do a quicker exit here.
3511 */
3512 if (bbio->csum == NULL)
3513 return 0;
3514
3515 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3516 return 0;
3517
3518 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3519 return 0;
3520
3521 ASSERT(page_offset(page) <= start &&
3522 end <= page_offset(page) + PAGE_SIZE - 1);
3523 for (pg_off = offset_in_page(start);
3524 pg_off < offset_in_page(end);
3525 pg_off += sectorsize, bio_offset += sectorsize) {
3526 u64 file_offset = pg_off + page_offset(page);
3527 int ret;
3528
3529 if (btrfs_is_data_reloc_root(root) &&
3530 test_range_bit(io_tree, file_offset,
3531 file_offset + sectorsize - 1,
3532 EXTENT_NODATASUM, 1, NULL)) {
3533 /* Skip the range without csum for data reloc inode */
3534 clear_extent_bits(io_tree, file_offset,
3535 file_offset + sectorsize - 1,
3536 EXTENT_NODATASUM);
3537 continue;
3538 }
3539 ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off);
3540 if (ret < 0) {
3541 const int nr_bit = (pg_off - offset_in_page(start)) >>
3542 root->fs_info->sectorsize_bits;
3543
3544 result |= (1U << nr_bit);
3545 }
3546 }
3547 return result;
3548 }
3549
3550 /*
3551 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3552 *
3553 * @inode: The inode we want to perform iput on
3554 *
3555 * This function uses the generic vfs_inode::i_count to track whether we should
3556 * just decrement it (in case it's > 1) or if this is the last iput then link
3557 * the inode to the delayed iput machinery. Delayed iputs are processed at
3558 * transaction commit time/superblock commit/cleaner kthread.
3559 */
3560 void btrfs_add_delayed_iput(struct inode *inode)
3561 {
3562 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3563 struct btrfs_inode *binode = BTRFS_I(inode);
3564
3565 if (atomic_add_unless(&inode->i_count, -1, 1))
3566 return;
3567
3568 atomic_inc(&fs_info->nr_delayed_iputs);
3569 spin_lock(&fs_info->delayed_iput_lock);
3570 ASSERT(list_empty(&binode->delayed_iput));
3571 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3572 spin_unlock(&fs_info->delayed_iput_lock);
3573 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3574 wake_up_process(fs_info->cleaner_kthread);
3575 }
3576
3577 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3578 struct btrfs_inode *inode)
3579 {
3580 list_del_init(&inode->delayed_iput);
3581 spin_unlock(&fs_info->delayed_iput_lock);
3582 iput(&inode->vfs_inode);
3583 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3584 wake_up(&fs_info->delayed_iputs_wait);
3585 spin_lock(&fs_info->delayed_iput_lock);
3586 }
3587
3588 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3589 struct btrfs_inode *inode)
3590 {
3591 if (!list_empty(&inode->delayed_iput)) {
3592 spin_lock(&fs_info->delayed_iput_lock);
3593 if (!list_empty(&inode->delayed_iput))
3594 run_delayed_iput_locked(fs_info, inode);
3595 spin_unlock(&fs_info->delayed_iput_lock);
3596 }
3597 }
3598
3599 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3600 {
3601
3602 spin_lock(&fs_info->delayed_iput_lock);
3603 while (!list_empty(&fs_info->delayed_iputs)) {
3604 struct btrfs_inode *inode;
3605
3606 inode = list_first_entry(&fs_info->delayed_iputs,
3607 struct btrfs_inode, delayed_iput);
3608 run_delayed_iput_locked(fs_info, inode);
3609 cond_resched_lock(&fs_info->delayed_iput_lock);
3610 }
3611 spin_unlock(&fs_info->delayed_iput_lock);
3612 }
3613
3614 /**
3615 * Wait for flushing all delayed iputs
3616 *
3617 * @fs_info: the filesystem
3618 *
3619 * This will wait on any delayed iputs that are currently running with KILLABLE
3620 * set. Once they are all done running we will return, unless we are killed in
3621 * which case we return EINTR. This helps in user operations like fallocate etc
3622 * that might get blocked on the iputs.
3623 *
3624 * Return EINTR if we were killed, 0 if nothing's pending
3625 */
3626 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3627 {
3628 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3629 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3630 if (ret)
3631 return -EINTR;
3632 return 0;
3633 }
3634
3635 /*
3636 * This creates an orphan entry for the given inode in case something goes wrong
3637 * in the middle of an unlink.
3638 */
3639 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3640 struct btrfs_inode *inode)
3641 {
3642 int ret;
3643
3644 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3645 if (ret && ret != -EEXIST) {
3646 btrfs_abort_transaction(trans, ret);
3647 return ret;
3648 }
3649
3650 return 0;
3651 }
3652
3653 /*
3654 * We have done the delete so we can go ahead and remove the orphan item for
3655 * this particular inode.
3656 */
3657 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3658 struct btrfs_inode *inode)
3659 {
3660 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3661 }
3662
3663 /*
3664 * this cleans up any orphans that may be left on the list from the last use
3665 * of this root.
3666 */
3667 int btrfs_orphan_cleanup(struct btrfs_root *root)
3668 {
3669 struct btrfs_fs_info *fs_info = root->fs_info;
3670 struct btrfs_path *path;
3671 struct extent_buffer *leaf;
3672 struct btrfs_key key, found_key;
3673 struct btrfs_trans_handle *trans;
3674 struct inode *inode;
3675 u64 last_objectid = 0;
3676 int ret = 0, nr_unlink = 0;
3677
3678 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3679 return 0;
3680
3681 path = btrfs_alloc_path();
3682 if (!path) {
3683 ret = -ENOMEM;
3684 goto out;
3685 }
3686 path->reada = READA_BACK;
3687
3688 key.objectid = BTRFS_ORPHAN_OBJECTID;
3689 key.type = BTRFS_ORPHAN_ITEM_KEY;
3690 key.offset = (u64)-1;
3691
3692 while (1) {
3693 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3694 if (ret < 0)
3695 goto out;
3696
3697 /*
3698 * if ret == 0 means we found what we were searching for, which
3699 * is weird, but possible, so only screw with path if we didn't
3700 * find the key and see if we have stuff that matches
3701 */
3702 if (ret > 0) {
3703 ret = 0;
3704 if (path->slots[0] == 0)
3705 break;
3706 path->slots[0]--;
3707 }
3708
3709 /* pull out the item */
3710 leaf = path->nodes[0];
3711 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3712
3713 /* make sure the item matches what we want */
3714 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3715 break;
3716 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3717 break;
3718
3719 /* release the path since we're done with it */
3720 btrfs_release_path(path);
3721
3722 /*
3723 * this is where we are basically btrfs_lookup, without the
3724 * crossing root thing. we store the inode number in the
3725 * offset of the orphan item.
3726 */
3727
3728 if (found_key.offset == last_objectid) {
3729 btrfs_err(fs_info,
3730 "Error removing orphan entry, stopping orphan cleanup");
3731 ret = -EINVAL;
3732 goto out;
3733 }
3734
3735 last_objectid = found_key.offset;
3736
3737 found_key.objectid = found_key.offset;
3738 found_key.type = BTRFS_INODE_ITEM_KEY;
3739 found_key.offset = 0;
3740 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3741 ret = PTR_ERR_OR_ZERO(inode);
3742 if (ret && ret != -ENOENT)
3743 goto out;
3744
3745 if (ret == -ENOENT && root == fs_info->tree_root) {
3746 struct btrfs_root *dead_root;
3747 int is_dead_root = 0;
3748
3749 /*
3750 * This is an orphan in the tree root. Currently these
3751 * could come from 2 sources:
3752 * a) a root (snapshot/subvolume) deletion in progress
3753 * b) a free space cache inode
3754 * We need to distinguish those two, as the orphan item
3755 * for a root must not get deleted before the deletion
3756 * of the snapshot/subvolume's tree completes.
3757 *
3758 * btrfs_find_orphan_roots() ran before us, which has
3759 * found all deleted roots and loaded them into
3760 * fs_info->fs_roots_radix. So here we can find if an
3761 * orphan item corresponds to a deleted root by looking
3762 * up the root from that radix tree.
3763 */
3764
3765 spin_lock(&fs_info->fs_roots_radix_lock);
3766 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3767 (unsigned long)found_key.objectid);
3768 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3769 is_dead_root = 1;
3770 spin_unlock(&fs_info->fs_roots_radix_lock);
3771
3772 if (is_dead_root) {
3773 /* prevent this orphan from being found again */
3774 key.offset = found_key.objectid - 1;
3775 continue;
3776 }
3777
3778 }
3779
3780 /*
3781 * If we have an inode with links, there are a couple of
3782 * possibilities:
3783 *
3784 * 1. We were halfway through creating fsverity metadata for the
3785 * file. In that case, the orphan item represents incomplete
3786 * fsverity metadata which must be cleaned up with
3787 * btrfs_drop_verity_items and deleting the orphan item.
3788
3789 * 2. Old kernels (before v3.12) used to create an
3790 * orphan item for truncate indicating that there were possibly
3791 * extent items past i_size that needed to be deleted. In v3.12,
3792 * truncate was changed to update i_size in sync with the extent
3793 * items, but the (useless) orphan item was still created. Since
3794 * v4.18, we don't create the orphan item for truncate at all.
3795 *
3796 * So, this item could mean that we need to do a truncate, but
3797 * only if this filesystem was last used on a pre-v3.12 kernel
3798 * and was not cleanly unmounted. The odds of that are quite
3799 * slim, and it's a pain to do the truncate now, so just delete
3800 * the orphan item.
3801 *
3802 * It's also possible that this orphan item was supposed to be
3803 * deleted but wasn't. The inode number may have been reused,
3804 * but either way, we can delete the orphan item.
3805 */
3806 if (ret == -ENOENT || inode->i_nlink) {
3807 if (!ret) {
3808 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3809 iput(inode);
3810 if (ret)
3811 goto out;
3812 }
3813 trans = btrfs_start_transaction(root, 1);
3814 if (IS_ERR(trans)) {
3815 ret = PTR_ERR(trans);
3816 goto out;
3817 }
3818 btrfs_debug(fs_info, "auto deleting %Lu",
3819 found_key.objectid);
3820 ret = btrfs_del_orphan_item(trans, root,
3821 found_key.objectid);
3822 btrfs_end_transaction(trans);
3823 if (ret)
3824 goto out;
3825 continue;
3826 }
3827
3828 nr_unlink++;
3829
3830 /* this will do delete_inode and everything for us */
3831 iput(inode);
3832 }
3833 /* release the path since we're done with it */
3834 btrfs_release_path(path);
3835
3836 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3837 trans = btrfs_join_transaction(root);
3838 if (!IS_ERR(trans))
3839 btrfs_end_transaction(trans);
3840 }
3841
3842 if (nr_unlink)
3843 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3844
3845 out:
3846 if (ret)
3847 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3848 btrfs_free_path(path);
3849 return ret;
3850 }
3851
3852 /*
3853 * very simple check to peek ahead in the leaf looking for xattrs. If we
3854 * don't find any xattrs, we know there can't be any acls.
3855 *
3856 * slot is the slot the inode is in, objectid is the objectid of the inode
3857 */
3858 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3859 int slot, u64 objectid,
3860 int *first_xattr_slot)
3861 {
3862 u32 nritems = btrfs_header_nritems(leaf);
3863 struct btrfs_key found_key;
3864 static u64 xattr_access = 0;
3865 static u64 xattr_default = 0;
3866 int scanned = 0;
3867
3868 if (!xattr_access) {
3869 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3870 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3871 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3872 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3873 }
3874
3875 slot++;
3876 *first_xattr_slot = -1;
3877 while (slot < nritems) {
3878 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3879
3880 /* we found a different objectid, there must not be acls */
3881 if (found_key.objectid != objectid)
3882 return 0;
3883
3884 /* we found an xattr, assume we've got an acl */
3885 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3886 if (*first_xattr_slot == -1)
3887 *first_xattr_slot = slot;
3888 if (found_key.offset == xattr_access ||
3889 found_key.offset == xattr_default)
3890 return 1;
3891 }
3892
3893 /*
3894 * we found a key greater than an xattr key, there can't
3895 * be any acls later on
3896 */
3897 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3898 return 0;
3899
3900 slot++;
3901 scanned++;
3902
3903 /*
3904 * it goes inode, inode backrefs, xattrs, extents,
3905 * so if there are a ton of hard links to an inode there can
3906 * be a lot of backrefs. Don't waste time searching too hard,
3907 * this is just an optimization
3908 */
3909 if (scanned >= 8)
3910 break;
3911 }
3912 /* we hit the end of the leaf before we found an xattr or
3913 * something larger than an xattr. We have to assume the inode
3914 * has acls
3915 */
3916 if (*first_xattr_slot == -1)
3917 *first_xattr_slot = slot;
3918 return 1;
3919 }
3920
3921 /*
3922 * read an inode from the btree into the in-memory inode
3923 */
3924 static int btrfs_read_locked_inode(struct inode *inode,
3925 struct btrfs_path *in_path)
3926 {
3927 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3928 struct btrfs_path *path = in_path;
3929 struct extent_buffer *leaf;
3930 struct btrfs_inode_item *inode_item;
3931 struct btrfs_root *root = BTRFS_I(inode)->root;
3932 struct btrfs_key location;
3933 unsigned long ptr;
3934 int maybe_acls;
3935 u32 rdev;
3936 int ret;
3937 bool filled = false;
3938 int first_xattr_slot;
3939
3940 ret = btrfs_fill_inode(inode, &rdev);
3941 if (!ret)
3942 filled = true;
3943
3944 if (!path) {
3945 path = btrfs_alloc_path();
3946 if (!path)
3947 return -ENOMEM;
3948 }
3949
3950 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3951
3952 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3953 if (ret) {
3954 if (path != in_path)
3955 btrfs_free_path(path);
3956 return ret;
3957 }
3958
3959 leaf = path->nodes[0];
3960
3961 if (filled)
3962 goto cache_index;
3963
3964 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3965 struct btrfs_inode_item);
3966 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3967 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3968 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3969 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3970 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3971 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3972 round_up(i_size_read(inode), fs_info->sectorsize));
3973
3974 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3975 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3976
3977 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3978 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3979
3980 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3981 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3982
3983 BTRFS_I(inode)->i_otime.tv_sec =
3984 btrfs_timespec_sec(leaf, &inode_item->otime);
3985 BTRFS_I(inode)->i_otime.tv_nsec =
3986 btrfs_timespec_nsec(leaf, &inode_item->otime);
3987
3988 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3989 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3990 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3991
3992 inode_set_iversion_queried(inode,
3993 btrfs_inode_sequence(leaf, inode_item));
3994 inode->i_generation = BTRFS_I(inode)->generation;
3995 inode->i_rdev = 0;
3996 rdev = btrfs_inode_rdev(leaf, inode_item);
3997
3998 BTRFS_I(inode)->index_cnt = (u64)-1;
3999 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4000 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
4001
4002 cache_index:
4003 /*
4004 * If we were modified in the current generation and evicted from memory
4005 * and then re-read we need to do a full sync since we don't have any
4006 * idea about which extents were modified before we were evicted from
4007 * cache.
4008 *
4009 * This is required for both inode re-read from disk and delayed inode
4010 * in delayed_nodes_tree.
4011 */
4012 if (BTRFS_I(inode)->last_trans == fs_info->generation)
4013 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4014 &BTRFS_I(inode)->runtime_flags);
4015
4016 /*
4017 * We don't persist the id of the transaction where an unlink operation
4018 * against the inode was last made. So here we assume the inode might
4019 * have been evicted, and therefore the exact value of last_unlink_trans
4020 * lost, and set it to last_trans to avoid metadata inconsistencies
4021 * between the inode and its parent if the inode is fsync'ed and the log
4022 * replayed. For example, in the scenario:
4023 *
4024 * touch mydir/foo
4025 * ln mydir/foo mydir/bar
4026 * sync
4027 * unlink mydir/bar
4028 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4029 * xfs_io -c fsync mydir/foo
4030 * <power failure>
4031 * mount fs, triggers fsync log replay
4032 *
4033 * We must make sure that when we fsync our inode foo we also log its
4034 * parent inode, otherwise after log replay the parent still has the
4035 * dentry with the "bar" name but our inode foo has a link count of 1
4036 * and doesn't have an inode ref with the name "bar" anymore.
4037 *
4038 * Setting last_unlink_trans to last_trans is a pessimistic approach,
4039 * but it guarantees correctness at the expense of occasional full
4040 * transaction commits on fsync if our inode is a directory, or if our
4041 * inode is not a directory, logging its parent unnecessarily.
4042 */
4043 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4044
4045 /*
4046 * Same logic as for last_unlink_trans. We don't persist the generation
4047 * of the last transaction where this inode was used for a reflink
4048 * operation, so after eviction and reloading the inode we must be
4049 * pessimistic and assume the last transaction that modified the inode.
4050 */
4051 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4052
4053 path->slots[0]++;
4054 if (inode->i_nlink != 1 ||
4055 path->slots[0] >= btrfs_header_nritems(leaf))
4056 goto cache_acl;
4057
4058 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4059 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4060 goto cache_acl;
4061
4062 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4063 if (location.type == BTRFS_INODE_REF_KEY) {
4064 struct btrfs_inode_ref *ref;
4065
4066 ref = (struct btrfs_inode_ref *)ptr;
4067 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4068 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4069 struct btrfs_inode_extref *extref;
4070
4071 extref = (struct btrfs_inode_extref *)ptr;
4072 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4073 extref);
4074 }
4075 cache_acl:
4076 /*
4077 * try to precache a NULL acl entry for files that don't have
4078 * any xattrs or acls
4079 */
4080 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4081 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4082 if (first_xattr_slot != -1) {
4083 path->slots[0] = first_xattr_slot;
4084 ret = btrfs_load_inode_props(inode, path);
4085 if (ret)
4086 btrfs_err(fs_info,
4087 "error loading props for ino %llu (root %llu): %d",
4088 btrfs_ino(BTRFS_I(inode)),
4089 root->root_key.objectid, ret);
4090 }
4091 if (path != in_path)
4092 btrfs_free_path(path);
4093
4094 if (!maybe_acls)
4095 cache_no_acl(inode);
4096
4097 switch (inode->i_mode & S_IFMT) {
4098 case S_IFREG:
4099 inode->i_mapping->a_ops = &btrfs_aops;
4100 inode->i_fop = &btrfs_file_operations;
4101 inode->i_op = &btrfs_file_inode_operations;
4102 break;
4103 case S_IFDIR:
4104 inode->i_fop = &btrfs_dir_file_operations;
4105 inode->i_op = &btrfs_dir_inode_operations;
4106 break;
4107 case S_IFLNK:
4108 inode->i_op = &btrfs_symlink_inode_operations;
4109 inode_nohighmem(inode);
4110 inode->i_mapping->a_ops = &btrfs_aops;
4111 break;
4112 default:
4113 inode->i_op = &btrfs_special_inode_operations;
4114 init_special_inode(inode, inode->i_mode, rdev);
4115 break;
4116 }
4117
4118 btrfs_sync_inode_flags_to_i_flags(inode);
4119 return 0;
4120 }
4121
4122 /*
4123 * given a leaf and an inode, copy the inode fields into the leaf
4124 */
4125 static void fill_inode_item(struct btrfs_trans_handle *trans,
4126 struct extent_buffer *leaf,
4127 struct btrfs_inode_item *item,
4128 struct inode *inode)
4129 {
4130 struct btrfs_map_token token;
4131 u64 flags;
4132
4133 btrfs_init_map_token(&token, leaf);
4134
4135 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4136 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4137 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4138 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4139 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4140
4141 btrfs_set_token_timespec_sec(&token, &item->atime,
4142 inode->i_atime.tv_sec);
4143 btrfs_set_token_timespec_nsec(&token, &item->atime,
4144 inode->i_atime.tv_nsec);
4145
4146 btrfs_set_token_timespec_sec(&token, &item->mtime,
4147 inode->i_mtime.tv_sec);
4148 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4149 inode->i_mtime.tv_nsec);
4150
4151 btrfs_set_token_timespec_sec(&token, &item->ctime,
4152 inode->i_ctime.tv_sec);
4153 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4154 inode->i_ctime.tv_nsec);
4155
4156 btrfs_set_token_timespec_sec(&token, &item->otime,
4157 BTRFS_I(inode)->i_otime.tv_sec);
4158 btrfs_set_token_timespec_nsec(&token, &item->otime,
4159 BTRFS_I(inode)->i_otime.tv_nsec);
4160
4161 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4162 btrfs_set_token_inode_generation(&token, item,
4163 BTRFS_I(inode)->generation);
4164 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4165 btrfs_set_token_inode_transid(&token, item, trans->transid);
4166 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4167 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4168 BTRFS_I(inode)->ro_flags);
4169 btrfs_set_token_inode_flags(&token, item, flags);
4170 btrfs_set_token_inode_block_group(&token, item, 0);
4171 }
4172
4173 /*
4174 * copy everything in the in-memory inode into the btree.
4175 */
4176 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4177 struct btrfs_root *root,
4178 struct btrfs_inode *inode)
4179 {
4180 struct btrfs_inode_item *inode_item;
4181 struct btrfs_path *path;
4182 struct extent_buffer *leaf;
4183 int ret;
4184
4185 path = btrfs_alloc_path();
4186 if (!path)
4187 return -ENOMEM;
4188
4189 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4190 if (ret) {
4191 if (ret > 0)
4192 ret = -ENOENT;
4193 goto failed;
4194 }
4195
4196 leaf = path->nodes[0];
4197 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4198 struct btrfs_inode_item);
4199
4200 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4201 btrfs_mark_buffer_dirty(leaf);
4202 btrfs_set_inode_last_trans(trans, inode);
4203 ret = 0;
4204 failed:
4205 btrfs_free_path(path);
4206 return ret;
4207 }
4208
4209 /*
4210 * copy everything in the in-memory inode into the btree.
4211 */
4212 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4213 struct btrfs_root *root,
4214 struct btrfs_inode *inode)
4215 {
4216 struct btrfs_fs_info *fs_info = root->fs_info;
4217 int ret;
4218
4219 /*
4220 * If the inode is a free space inode, we can deadlock during commit
4221 * if we put it into the delayed code.
4222 *
4223 * The data relocation inode should also be directly updated
4224 * without delay
4225 */
4226 if (!btrfs_is_free_space_inode(inode)
4227 && !btrfs_is_data_reloc_root(root)
4228 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4229 btrfs_update_root_times(trans, root);
4230
4231 ret = btrfs_delayed_update_inode(trans, root, inode);
4232 if (!ret)
4233 btrfs_set_inode_last_trans(trans, inode);
4234 return ret;
4235 }
4236
4237 return btrfs_update_inode_item(trans, root, inode);
4238 }
4239
4240 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4241 struct btrfs_root *root, struct btrfs_inode *inode)
4242 {
4243 int ret;
4244
4245 ret = btrfs_update_inode(trans, root, inode);
4246 if (ret == -ENOSPC)
4247 return btrfs_update_inode_item(trans, root, inode);
4248 return ret;
4249 }
4250
4251 /*
4252 * unlink helper that gets used here in inode.c and in the tree logging
4253 * recovery code. It remove a link in a directory with a given name, and
4254 * also drops the back refs in the inode to the directory
4255 */
4256 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4257 struct btrfs_inode *dir,
4258 struct btrfs_inode *inode,
4259 const char *name, int name_len,
4260 struct btrfs_rename_ctx *rename_ctx)
4261 {
4262 struct btrfs_root *root = dir->root;
4263 struct btrfs_fs_info *fs_info = root->fs_info;
4264 struct btrfs_path *path;
4265 int ret = 0;
4266 struct btrfs_dir_item *di;
4267 u64 index;
4268 u64 ino = btrfs_ino(inode);
4269 u64 dir_ino = btrfs_ino(dir);
4270
4271 path = btrfs_alloc_path();
4272 if (!path) {
4273 ret = -ENOMEM;
4274 goto out;
4275 }
4276
4277 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4278 name, name_len, -1);
4279 if (IS_ERR_OR_NULL(di)) {
4280 ret = di ? PTR_ERR(di) : -ENOENT;
4281 goto err;
4282 }
4283 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4284 if (ret)
4285 goto err;
4286 btrfs_release_path(path);
4287
4288 /*
4289 * If we don't have dir index, we have to get it by looking up
4290 * the inode ref, since we get the inode ref, remove it directly,
4291 * it is unnecessary to do delayed deletion.
4292 *
4293 * But if we have dir index, needn't search inode ref to get it.
4294 * Since the inode ref is close to the inode item, it is better
4295 * that we delay to delete it, and just do this deletion when
4296 * we update the inode item.
4297 */
4298 if (inode->dir_index) {
4299 ret = btrfs_delayed_delete_inode_ref(inode);
4300 if (!ret) {
4301 index = inode->dir_index;
4302 goto skip_backref;
4303 }
4304 }
4305
4306 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4307 dir_ino, &index);
4308 if (ret) {
4309 btrfs_info(fs_info,
4310 "failed to delete reference to %.*s, inode %llu parent %llu",
4311 name_len, name, ino, dir_ino);
4312 btrfs_abort_transaction(trans, ret);
4313 goto err;
4314 }
4315 skip_backref:
4316 if (rename_ctx)
4317 rename_ctx->index = index;
4318
4319 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4320 if (ret) {
4321 btrfs_abort_transaction(trans, ret);
4322 goto err;
4323 }
4324
4325 /*
4326 * If we are in a rename context, we don't need to update anything in the
4327 * log. That will be done later during the rename by btrfs_log_new_name().
4328 * Besides that, doing it here would only cause extra unnecessary btree
4329 * operations on the log tree, increasing latency for applications.
4330 */
4331 if (!rename_ctx) {
4332 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4333 dir_ino);
4334 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4335 index);
4336 }
4337
4338 /*
4339 * If we have a pending delayed iput we could end up with the final iput
4340 * being run in btrfs-cleaner context. If we have enough of these built
4341 * up we can end up burning a lot of time in btrfs-cleaner without any
4342 * way to throttle the unlinks. Since we're currently holding a ref on
4343 * the inode we can run the delayed iput here without any issues as the
4344 * final iput won't be done until after we drop the ref we're currently
4345 * holding.
4346 */
4347 btrfs_run_delayed_iput(fs_info, inode);
4348 err:
4349 btrfs_free_path(path);
4350 if (ret)
4351 goto out;
4352
4353 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4354 inode_inc_iversion(&inode->vfs_inode);
4355 inode_inc_iversion(&dir->vfs_inode);
4356 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4357 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4358 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4359 ret = btrfs_update_inode(trans, root, dir);
4360 out:
4361 return ret;
4362 }
4363
4364 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4365 struct btrfs_inode *dir, struct btrfs_inode *inode,
4366 const char *name, int name_len)
4367 {
4368 int ret;
4369 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4370 if (!ret) {
4371 drop_nlink(&inode->vfs_inode);
4372 ret = btrfs_update_inode(trans, inode->root, inode);
4373 }
4374 return ret;
4375 }
4376
4377 /*
4378 * helper to start transaction for unlink and rmdir.
4379 *
4380 * unlink and rmdir are special in btrfs, they do not always free space, so
4381 * if we cannot make our reservations the normal way try and see if there is
4382 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4383 * allow the unlink to occur.
4384 */
4385 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4386 {
4387 struct btrfs_root *root = BTRFS_I(dir)->root;
4388
4389 /*
4390 * 1 for the possible orphan item
4391 * 1 for the dir item
4392 * 1 for the dir index
4393 * 1 for the inode ref
4394 * 1 for the inode
4395 * 1 for the parent inode
4396 */
4397 return btrfs_start_transaction_fallback_global_rsv(root, 6);
4398 }
4399
4400 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4401 {
4402 struct btrfs_trans_handle *trans;
4403 struct inode *inode = d_inode(dentry);
4404 int ret;
4405
4406 trans = __unlink_start_trans(dir);
4407 if (IS_ERR(trans))
4408 return PTR_ERR(trans);
4409
4410 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4411 0);
4412
4413 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4414 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4415 dentry->d_name.len);
4416 if (ret)
4417 goto out;
4418
4419 if (inode->i_nlink == 0) {
4420 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4421 if (ret)
4422 goto out;
4423 }
4424
4425 out:
4426 btrfs_end_transaction(trans);
4427 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4428 return ret;
4429 }
4430
4431 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4432 struct inode *dir, struct dentry *dentry)
4433 {
4434 struct btrfs_root *root = BTRFS_I(dir)->root;
4435 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4436 struct btrfs_path *path;
4437 struct extent_buffer *leaf;
4438 struct btrfs_dir_item *di;
4439 struct btrfs_key key;
4440 const char *name = dentry->d_name.name;
4441 int name_len = dentry->d_name.len;
4442 u64 index;
4443 int ret;
4444 u64 objectid;
4445 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4446
4447 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4448 objectid = inode->root->root_key.objectid;
4449 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4450 objectid = inode->location.objectid;
4451 } else {
4452 WARN_ON(1);
4453 return -EINVAL;
4454 }
4455
4456 path = btrfs_alloc_path();
4457 if (!path)
4458 return -ENOMEM;
4459
4460 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4461 name, name_len, -1);
4462 if (IS_ERR_OR_NULL(di)) {
4463 ret = di ? PTR_ERR(di) : -ENOENT;
4464 goto out;
4465 }
4466
4467 leaf = path->nodes[0];
4468 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4469 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4470 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4471 if (ret) {
4472 btrfs_abort_transaction(trans, ret);
4473 goto out;
4474 }
4475 btrfs_release_path(path);
4476
4477 /*
4478 * This is a placeholder inode for a subvolume we didn't have a
4479 * reference to at the time of the snapshot creation. In the meantime
4480 * we could have renamed the real subvol link into our snapshot, so
4481 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4482 * Instead simply lookup the dir_index_item for this entry so we can
4483 * remove it. Otherwise we know we have a ref to the root and we can
4484 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4485 */
4486 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4487 di = btrfs_search_dir_index_item(root, path, dir_ino,
4488 name, name_len);
4489 if (IS_ERR_OR_NULL(di)) {
4490 if (!di)
4491 ret = -ENOENT;
4492 else
4493 ret = PTR_ERR(di);
4494 btrfs_abort_transaction(trans, ret);
4495 goto out;
4496 }
4497
4498 leaf = path->nodes[0];
4499 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4500 index = key.offset;
4501 btrfs_release_path(path);
4502 } else {
4503 ret = btrfs_del_root_ref(trans, objectid,
4504 root->root_key.objectid, dir_ino,
4505 &index, name, name_len);
4506 if (ret) {
4507 btrfs_abort_transaction(trans, ret);
4508 goto out;
4509 }
4510 }
4511
4512 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4513 if (ret) {
4514 btrfs_abort_transaction(trans, ret);
4515 goto out;
4516 }
4517
4518 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4519 inode_inc_iversion(dir);
4520 dir->i_mtime = current_time(dir);
4521 dir->i_ctime = dir->i_mtime;
4522 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4523 if (ret)
4524 btrfs_abort_transaction(trans, ret);
4525 out:
4526 btrfs_free_path(path);
4527 return ret;
4528 }
4529
4530 /*
4531 * Helper to check if the subvolume references other subvolumes or if it's
4532 * default.
4533 */
4534 static noinline int may_destroy_subvol(struct btrfs_root *root)
4535 {
4536 struct btrfs_fs_info *fs_info = root->fs_info;
4537 struct btrfs_path *path;
4538 struct btrfs_dir_item *di;
4539 struct btrfs_key key;
4540 u64 dir_id;
4541 int ret;
4542
4543 path = btrfs_alloc_path();
4544 if (!path)
4545 return -ENOMEM;
4546
4547 /* Make sure this root isn't set as the default subvol */
4548 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4549 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4550 dir_id, "default", 7, 0);
4551 if (di && !IS_ERR(di)) {
4552 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4553 if (key.objectid == root->root_key.objectid) {
4554 ret = -EPERM;
4555 btrfs_err(fs_info,
4556 "deleting default subvolume %llu is not allowed",
4557 key.objectid);
4558 goto out;
4559 }
4560 btrfs_release_path(path);
4561 }
4562
4563 key.objectid = root->root_key.objectid;
4564 key.type = BTRFS_ROOT_REF_KEY;
4565 key.offset = (u64)-1;
4566
4567 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4568 if (ret < 0)
4569 goto out;
4570 BUG_ON(ret == 0);
4571
4572 ret = 0;
4573 if (path->slots[0] > 0) {
4574 path->slots[0]--;
4575 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4576 if (key.objectid == root->root_key.objectid &&
4577 key.type == BTRFS_ROOT_REF_KEY)
4578 ret = -ENOTEMPTY;
4579 }
4580 out:
4581 btrfs_free_path(path);
4582 return ret;
4583 }
4584
4585 /* Delete all dentries for inodes belonging to the root */
4586 static void btrfs_prune_dentries(struct btrfs_root *root)
4587 {
4588 struct btrfs_fs_info *fs_info = root->fs_info;
4589 struct rb_node *node;
4590 struct rb_node *prev;
4591 struct btrfs_inode *entry;
4592 struct inode *inode;
4593 u64 objectid = 0;
4594
4595 if (!BTRFS_FS_ERROR(fs_info))
4596 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4597
4598 spin_lock(&root->inode_lock);
4599 again:
4600 node = root->inode_tree.rb_node;
4601 prev = NULL;
4602 while (node) {
4603 prev = node;
4604 entry = rb_entry(node, struct btrfs_inode, rb_node);
4605
4606 if (objectid < btrfs_ino(entry))
4607 node = node->rb_left;
4608 else if (objectid > btrfs_ino(entry))
4609 node = node->rb_right;
4610 else
4611 break;
4612 }
4613 if (!node) {
4614 while (prev) {
4615 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4616 if (objectid <= btrfs_ino(entry)) {
4617 node = prev;
4618 break;
4619 }
4620 prev = rb_next(prev);
4621 }
4622 }
4623 while (node) {
4624 entry = rb_entry(node, struct btrfs_inode, rb_node);
4625 objectid = btrfs_ino(entry) + 1;
4626 inode = igrab(&entry->vfs_inode);
4627 if (inode) {
4628 spin_unlock(&root->inode_lock);
4629 if (atomic_read(&inode->i_count) > 1)
4630 d_prune_aliases(inode);
4631 /*
4632 * btrfs_drop_inode will have it removed from the inode
4633 * cache when its usage count hits zero.
4634 */
4635 iput(inode);
4636 cond_resched();
4637 spin_lock(&root->inode_lock);
4638 goto again;
4639 }
4640
4641 if (cond_resched_lock(&root->inode_lock))
4642 goto again;
4643
4644 node = rb_next(node);
4645 }
4646 spin_unlock(&root->inode_lock);
4647 }
4648
4649 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4650 {
4651 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4652 struct btrfs_root *root = BTRFS_I(dir)->root;
4653 struct inode *inode = d_inode(dentry);
4654 struct btrfs_root *dest = BTRFS_I(inode)->root;
4655 struct btrfs_trans_handle *trans;
4656 struct btrfs_block_rsv block_rsv;
4657 u64 root_flags;
4658 int ret;
4659
4660 /*
4661 * Don't allow to delete a subvolume with send in progress. This is
4662 * inside the inode lock so the error handling that has to drop the bit
4663 * again is not run concurrently.
4664 */
4665 spin_lock(&dest->root_item_lock);
4666 if (dest->send_in_progress) {
4667 spin_unlock(&dest->root_item_lock);
4668 btrfs_warn(fs_info,
4669 "attempt to delete subvolume %llu during send",
4670 dest->root_key.objectid);
4671 return -EPERM;
4672 }
4673 if (atomic_read(&dest->nr_swapfiles)) {
4674 spin_unlock(&dest->root_item_lock);
4675 btrfs_warn(fs_info,
4676 "attempt to delete subvolume %llu with active swapfile",
4677 root->root_key.objectid);
4678 return -EPERM;
4679 }
4680 root_flags = btrfs_root_flags(&dest->root_item);
4681 btrfs_set_root_flags(&dest->root_item,
4682 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4683 spin_unlock(&dest->root_item_lock);
4684
4685 down_write(&fs_info->subvol_sem);
4686
4687 ret = may_destroy_subvol(dest);
4688 if (ret)
4689 goto out_up_write;
4690
4691 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4692 /*
4693 * One for dir inode,
4694 * two for dir entries,
4695 * two for root ref/backref.
4696 */
4697 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4698 if (ret)
4699 goto out_up_write;
4700
4701 trans = btrfs_start_transaction(root, 0);
4702 if (IS_ERR(trans)) {
4703 ret = PTR_ERR(trans);
4704 goto out_release;
4705 }
4706 trans->block_rsv = &block_rsv;
4707 trans->bytes_reserved = block_rsv.size;
4708
4709 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4710
4711 ret = btrfs_unlink_subvol(trans, dir, dentry);
4712 if (ret) {
4713 btrfs_abort_transaction(trans, ret);
4714 goto out_end_trans;
4715 }
4716
4717 ret = btrfs_record_root_in_trans(trans, dest);
4718 if (ret) {
4719 btrfs_abort_transaction(trans, ret);
4720 goto out_end_trans;
4721 }
4722
4723 memset(&dest->root_item.drop_progress, 0,
4724 sizeof(dest->root_item.drop_progress));
4725 btrfs_set_root_drop_level(&dest->root_item, 0);
4726 btrfs_set_root_refs(&dest->root_item, 0);
4727
4728 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4729 ret = btrfs_insert_orphan_item(trans,
4730 fs_info->tree_root,
4731 dest->root_key.objectid);
4732 if (ret) {
4733 btrfs_abort_transaction(trans, ret);
4734 goto out_end_trans;
4735 }
4736 }
4737
4738 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4739 BTRFS_UUID_KEY_SUBVOL,
4740 dest->root_key.objectid);
4741 if (ret && ret != -ENOENT) {
4742 btrfs_abort_transaction(trans, ret);
4743 goto out_end_trans;
4744 }
4745 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4746 ret = btrfs_uuid_tree_remove(trans,
4747 dest->root_item.received_uuid,
4748 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4749 dest->root_key.objectid);
4750 if (ret && ret != -ENOENT) {
4751 btrfs_abort_transaction(trans, ret);
4752 goto out_end_trans;
4753 }
4754 }
4755
4756 free_anon_bdev(dest->anon_dev);
4757 dest->anon_dev = 0;
4758 out_end_trans:
4759 trans->block_rsv = NULL;
4760 trans->bytes_reserved = 0;
4761 ret = btrfs_end_transaction(trans);
4762 inode->i_flags |= S_DEAD;
4763 out_release:
4764 btrfs_subvolume_release_metadata(root, &block_rsv);
4765 out_up_write:
4766 up_write(&fs_info->subvol_sem);
4767 if (ret) {
4768 spin_lock(&dest->root_item_lock);
4769 root_flags = btrfs_root_flags(&dest->root_item);
4770 btrfs_set_root_flags(&dest->root_item,
4771 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4772 spin_unlock(&dest->root_item_lock);
4773 } else {
4774 d_invalidate(dentry);
4775 btrfs_prune_dentries(dest);
4776 ASSERT(dest->send_in_progress == 0);
4777 }
4778
4779 return ret;
4780 }
4781
4782 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4783 {
4784 struct inode *inode = d_inode(dentry);
4785 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4786 int err = 0;
4787 struct btrfs_trans_handle *trans;
4788 u64 last_unlink_trans;
4789
4790 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4791 return -ENOTEMPTY;
4792 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4793 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4794 btrfs_err(fs_info,
4795 "extent tree v2 doesn't support snapshot deletion yet");
4796 return -EOPNOTSUPP;
4797 }
4798 return btrfs_delete_subvolume(dir, dentry);
4799 }
4800
4801 trans = __unlink_start_trans(dir);
4802 if (IS_ERR(trans))
4803 return PTR_ERR(trans);
4804
4805 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4806 err = btrfs_unlink_subvol(trans, dir, dentry);
4807 goto out;
4808 }
4809
4810 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4811 if (err)
4812 goto out;
4813
4814 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4815
4816 /* now the directory is empty */
4817 err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4818 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4819 dentry->d_name.len);
4820 if (!err) {
4821 btrfs_i_size_write(BTRFS_I(inode), 0);
4822 /*
4823 * Propagate the last_unlink_trans value of the deleted dir to
4824 * its parent directory. This is to prevent an unrecoverable
4825 * log tree in the case we do something like this:
4826 * 1) create dir foo
4827 * 2) create snapshot under dir foo
4828 * 3) delete the snapshot
4829 * 4) rmdir foo
4830 * 5) mkdir foo
4831 * 6) fsync foo or some file inside foo
4832 */
4833 if (last_unlink_trans >= trans->transid)
4834 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4835 }
4836 out:
4837 btrfs_end_transaction(trans);
4838 btrfs_btree_balance_dirty(fs_info);
4839
4840 return err;
4841 }
4842
4843 /*
4844 * btrfs_truncate_block - read, zero a chunk and write a block
4845 * @inode - inode that we're zeroing
4846 * @from - the offset to start zeroing
4847 * @len - the length to zero, 0 to zero the entire range respective to the
4848 * offset
4849 * @front - zero up to the offset instead of from the offset on
4850 *
4851 * This will find the block for the "from" offset and cow the block and zero the
4852 * part we want to zero. This is used with truncate and hole punching.
4853 */
4854 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4855 int front)
4856 {
4857 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4858 struct address_space *mapping = inode->vfs_inode.i_mapping;
4859 struct extent_io_tree *io_tree = &inode->io_tree;
4860 struct btrfs_ordered_extent *ordered;
4861 struct extent_state *cached_state = NULL;
4862 struct extent_changeset *data_reserved = NULL;
4863 bool only_release_metadata = false;
4864 u32 blocksize = fs_info->sectorsize;
4865 pgoff_t index = from >> PAGE_SHIFT;
4866 unsigned offset = from & (blocksize - 1);
4867 struct page *page;
4868 gfp_t mask = btrfs_alloc_write_mask(mapping);
4869 size_t write_bytes = blocksize;
4870 int ret = 0;
4871 u64 block_start;
4872 u64 block_end;
4873
4874 if (IS_ALIGNED(offset, blocksize) &&
4875 (!len || IS_ALIGNED(len, blocksize)))
4876 goto out;
4877
4878 block_start = round_down(from, blocksize);
4879 block_end = block_start + blocksize - 1;
4880
4881 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4882 blocksize);
4883 if (ret < 0) {
4884 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4885 /* For nocow case, no need to reserve data space */
4886 only_release_metadata = true;
4887 } else {
4888 goto out;
4889 }
4890 }
4891 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4892 if (ret < 0) {
4893 if (!only_release_metadata)
4894 btrfs_free_reserved_data_space(inode, data_reserved,
4895 block_start, blocksize);
4896 goto out;
4897 }
4898 again:
4899 page = find_or_create_page(mapping, index, mask);
4900 if (!page) {
4901 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4902 blocksize, true);
4903 btrfs_delalloc_release_extents(inode, blocksize);
4904 ret = -ENOMEM;
4905 goto out;
4906 }
4907 ret = set_page_extent_mapped(page);
4908 if (ret < 0)
4909 goto out_unlock;
4910
4911 if (!PageUptodate(page)) {
4912 ret = btrfs_read_folio(NULL, page_folio(page));
4913 lock_page(page);
4914 if (page->mapping != mapping) {
4915 unlock_page(page);
4916 put_page(page);
4917 goto again;
4918 }
4919 if (!PageUptodate(page)) {
4920 ret = -EIO;
4921 goto out_unlock;
4922 }
4923 }
4924 wait_on_page_writeback(page);
4925
4926 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4927
4928 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4929 if (ordered) {
4930 unlock_extent_cached(io_tree, block_start, block_end,
4931 &cached_state);
4932 unlock_page(page);
4933 put_page(page);
4934 btrfs_start_ordered_extent(ordered, 1);
4935 btrfs_put_ordered_extent(ordered);
4936 goto again;
4937 }
4938
4939 clear_extent_bit(&inode->io_tree, block_start, block_end,
4940 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4941 0, 0, &cached_state);
4942
4943 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4944 &cached_state);
4945 if (ret) {
4946 unlock_extent_cached(io_tree, block_start, block_end,
4947 &cached_state);
4948 goto out_unlock;
4949 }
4950
4951 if (offset != blocksize) {
4952 if (!len)
4953 len = blocksize - offset;
4954 if (front)
4955 memzero_page(page, (block_start - page_offset(page)),
4956 offset);
4957 else
4958 memzero_page(page, (block_start - page_offset(page)) + offset,
4959 len);
4960 }
4961 btrfs_page_clear_checked(fs_info, page, block_start,
4962 block_end + 1 - block_start);
4963 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4964 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4965
4966 if (only_release_metadata)
4967 set_extent_bit(&inode->io_tree, block_start, block_end,
4968 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4969
4970 out_unlock:
4971 if (ret) {
4972 if (only_release_metadata)
4973 btrfs_delalloc_release_metadata(inode, blocksize, true);
4974 else
4975 btrfs_delalloc_release_space(inode, data_reserved,
4976 block_start, blocksize, true);
4977 }
4978 btrfs_delalloc_release_extents(inode, blocksize);
4979 unlock_page(page);
4980 put_page(page);
4981 out:
4982 if (only_release_metadata)
4983 btrfs_check_nocow_unlock(inode);
4984 extent_changeset_free(data_reserved);
4985 return ret;
4986 }
4987
4988 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4989 u64 offset, u64 len)
4990 {
4991 struct btrfs_fs_info *fs_info = root->fs_info;
4992 struct btrfs_trans_handle *trans;
4993 struct btrfs_drop_extents_args drop_args = { 0 };
4994 int ret;
4995
4996 /*
4997 * If NO_HOLES is enabled, we don't need to do anything.
4998 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4999 * or btrfs_update_inode() will be called, which guarantee that the next
5000 * fsync will know this inode was changed and needs to be logged.
5001 */
5002 if (btrfs_fs_incompat(fs_info, NO_HOLES))
5003 return 0;
5004
5005 /*
5006 * 1 - for the one we're dropping
5007 * 1 - for the one we're adding
5008 * 1 - for updating the inode.
5009 */
5010 trans = btrfs_start_transaction(root, 3);
5011 if (IS_ERR(trans))
5012 return PTR_ERR(trans);
5013
5014 drop_args.start = offset;
5015 drop_args.end = offset + len;
5016 drop_args.drop_cache = true;
5017
5018 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5019 if (ret) {
5020 btrfs_abort_transaction(trans, ret);
5021 btrfs_end_transaction(trans);
5022 return ret;
5023 }
5024
5025 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5026 offset, 0, 0, len, 0, len, 0, 0, 0);
5027 if (ret) {
5028 btrfs_abort_transaction(trans, ret);
5029 } else {
5030 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5031 btrfs_update_inode(trans, root, inode);
5032 }
5033 btrfs_end_transaction(trans);
5034 return ret;
5035 }
5036
5037 /*
5038 * This function puts in dummy file extents for the area we're creating a hole
5039 * for. So if we are truncating this file to a larger size we need to insert
5040 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5041 * the range between oldsize and size
5042 */
5043 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5044 {
5045 struct btrfs_root *root = inode->root;
5046 struct btrfs_fs_info *fs_info = root->fs_info;
5047 struct extent_io_tree *io_tree = &inode->io_tree;
5048 struct extent_map *em = NULL;
5049 struct extent_state *cached_state = NULL;
5050 struct extent_map_tree *em_tree = &inode->extent_tree;
5051 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5052 u64 block_end = ALIGN(size, fs_info->sectorsize);
5053 u64 last_byte;
5054 u64 cur_offset;
5055 u64 hole_size;
5056 int err = 0;
5057
5058 /*
5059 * If our size started in the middle of a block we need to zero out the
5060 * rest of the block before we expand the i_size, otherwise we could
5061 * expose stale data.
5062 */
5063 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5064 if (err)
5065 return err;
5066
5067 if (size <= hole_start)
5068 return 0;
5069
5070 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5071 &cached_state);
5072 cur_offset = hole_start;
5073 while (1) {
5074 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5075 block_end - cur_offset);
5076 if (IS_ERR(em)) {
5077 err = PTR_ERR(em);
5078 em = NULL;
5079 break;
5080 }
5081 last_byte = min(extent_map_end(em), block_end);
5082 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5083 hole_size = last_byte - cur_offset;
5084
5085 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5086 struct extent_map *hole_em;
5087
5088 err = maybe_insert_hole(root, inode, cur_offset,
5089 hole_size);
5090 if (err)
5091 break;
5092
5093 err = btrfs_inode_set_file_extent_range(inode,
5094 cur_offset, hole_size);
5095 if (err)
5096 break;
5097
5098 btrfs_drop_extent_cache(inode, cur_offset,
5099 cur_offset + hole_size - 1, 0);
5100 hole_em = alloc_extent_map();
5101 if (!hole_em) {
5102 btrfs_set_inode_full_sync(inode);
5103 goto next;
5104 }
5105 hole_em->start = cur_offset;
5106 hole_em->len = hole_size;
5107 hole_em->orig_start = cur_offset;
5108
5109 hole_em->block_start = EXTENT_MAP_HOLE;
5110 hole_em->block_len = 0;
5111 hole_em->orig_block_len = 0;
5112 hole_em->ram_bytes = hole_size;
5113 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5114 hole_em->generation = fs_info->generation;
5115
5116 while (1) {
5117 write_lock(&em_tree->lock);
5118 err = add_extent_mapping(em_tree, hole_em, 1);
5119 write_unlock(&em_tree->lock);
5120 if (err != -EEXIST)
5121 break;
5122 btrfs_drop_extent_cache(inode, cur_offset,
5123 cur_offset +
5124 hole_size - 1, 0);
5125 }
5126 free_extent_map(hole_em);
5127 } else {
5128 err = btrfs_inode_set_file_extent_range(inode,
5129 cur_offset, hole_size);
5130 if (err)
5131 break;
5132 }
5133 next:
5134 free_extent_map(em);
5135 em = NULL;
5136 cur_offset = last_byte;
5137 if (cur_offset >= block_end)
5138 break;
5139 }
5140 free_extent_map(em);
5141 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5142 return err;
5143 }
5144
5145 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5146 {
5147 struct btrfs_root *root = BTRFS_I(inode)->root;
5148 struct btrfs_trans_handle *trans;
5149 loff_t oldsize = i_size_read(inode);
5150 loff_t newsize = attr->ia_size;
5151 int mask = attr->ia_valid;
5152 int ret;
5153
5154 /*
5155 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5156 * special case where we need to update the times despite not having
5157 * these flags set. For all other operations the VFS set these flags
5158 * explicitly if it wants a timestamp update.
5159 */
5160 if (newsize != oldsize) {
5161 inode_inc_iversion(inode);
5162 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5163 inode->i_mtime = current_time(inode);
5164 inode->i_ctime = inode->i_mtime;
5165 }
5166 }
5167
5168 if (newsize > oldsize) {
5169 /*
5170 * Don't do an expanding truncate while snapshotting is ongoing.
5171 * This is to ensure the snapshot captures a fully consistent
5172 * state of this file - if the snapshot captures this expanding
5173 * truncation, it must capture all writes that happened before
5174 * this truncation.
5175 */
5176 btrfs_drew_write_lock(&root->snapshot_lock);
5177 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5178 if (ret) {
5179 btrfs_drew_write_unlock(&root->snapshot_lock);
5180 return ret;
5181 }
5182
5183 trans = btrfs_start_transaction(root, 1);
5184 if (IS_ERR(trans)) {
5185 btrfs_drew_write_unlock(&root->snapshot_lock);
5186 return PTR_ERR(trans);
5187 }
5188
5189 i_size_write(inode, newsize);
5190 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5191 pagecache_isize_extended(inode, oldsize, newsize);
5192 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5193 btrfs_drew_write_unlock(&root->snapshot_lock);
5194 btrfs_end_transaction(trans);
5195 } else {
5196 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5197
5198 if (btrfs_is_zoned(fs_info)) {
5199 ret = btrfs_wait_ordered_range(inode,
5200 ALIGN(newsize, fs_info->sectorsize),
5201 (u64)-1);
5202 if (ret)
5203 return ret;
5204 }
5205
5206 /*
5207 * We're truncating a file that used to have good data down to
5208 * zero. Make sure any new writes to the file get on disk
5209 * on close.
5210 */
5211 if (newsize == 0)
5212 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5213 &BTRFS_I(inode)->runtime_flags);
5214
5215 truncate_setsize(inode, newsize);
5216
5217 inode_dio_wait(inode);
5218
5219 ret = btrfs_truncate(inode, newsize == oldsize);
5220 if (ret && inode->i_nlink) {
5221 int err;
5222
5223 /*
5224 * Truncate failed, so fix up the in-memory size. We
5225 * adjusted disk_i_size down as we removed extents, so
5226 * wait for disk_i_size to be stable and then update the
5227 * in-memory size to match.
5228 */
5229 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5230 if (err)
5231 return err;
5232 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5233 }
5234 }
5235
5236 return ret;
5237 }
5238
5239 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5240 struct iattr *attr)
5241 {
5242 struct inode *inode = d_inode(dentry);
5243 struct btrfs_root *root = BTRFS_I(inode)->root;
5244 int err;
5245
5246 if (btrfs_root_readonly(root))
5247 return -EROFS;
5248
5249 err = setattr_prepare(mnt_userns, dentry, attr);
5250 if (err)
5251 return err;
5252
5253 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5254 err = btrfs_setsize(inode, attr);
5255 if (err)
5256 return err;
5257 }
5258
5259 if (attr->ia_valid) {
5260 setattr_copy(mnt_userns, inode, attr);
5261 inode_inc_iversion(inode);
5262 err = btrfs_dirty_inode(inode);
5263
5264 if (!err && attr->ia_valid & ATTR_MODE)
5265 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5266 }
5267
5268 return err;
5269 }
5270
5271 /*
5272 * While truncating the inode pages during eviction, we get the VFS
5273 * calling btrfs_invalidate_folio() against each folio of the inode. This
5274 * is slow because the calls to btrfs_invalidate_folio() result in a
5275 * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5276 * which keep merging and splitting extent_state structures over and over,
5277 * wasting lots of time.
5278 *
5279 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5280 * skip all those expensive operations on a per folio basis and do only
5281 * the ordered io finishing, while we release here the extent_map and
5282 * extent_state structures, without the excessive merging and splitting.
5283 */
5284 static void evict_inode_truncate_pages(struct inode *inode)
5285 {
5286 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5287 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5288 struct rb_node *node;
5289
5290 ASSERT(inode->i_state & I_FREEING);
5291 truncate_inode_pages_final(&inode->i_data);
5292
5293 write_lock(&map_tree->lock);
5294 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5295 struct extent_map *em;
5296
5297 node = rb_first_cached(&map_tree->map);
5298 em = rb_entry(node, struct extent_map, rb_node);
5299 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5300 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5301 remove_extent_mapping(map_tree, em);
5302 free_extent_map(em);
5303 if (need_resched()) {
5304 write_unlock(&map_tree->lock);
5305 cond_resched();
5306 write_lock(&map_tree->lock);
5307 }
5308 }
5309 write_unlock(&map_tree->lock);
5310
5311 /*
5312 * Keep looping until we have no more ranges in the io tree.
5313 * We can have ongoing bios started by readahead that have
5314 * their endio callback (extent_io.c:end_bio_extent_readpage)
5315 * still in progress (unlocked the pages in the bio but did not yet
5316 * unlocked the ranges in the io tree). Therefore this means some
5317 * ranges can still be locked and eviction started because before
5318 * submitting those bios, which are executed by a separate task (work
5319 * queue kthread), inode references (inode->i_count) were not taken
5320 * (which would be dropped in the end io callback of each bio).
5321 * Therefore here we effectively end up waiting for those bios and
5322 * anyone else holding locked ranges without having bumped the inode's
5323 * reference count - if we don't do it, when they access the inode's
5324 * io_tree to unlock a range it may be too late, leading to an
5325 * use-after-free issue.
5326 */
5327 spin_lock(&io_tree->lock);
5328 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5329 struct extent_state *state;
5330 struct extent_state *cached_state = NULL;
5331 u64 start;
5332 u64 end;
5333 unsigned state_flags;
5334
5335 node = rb_first(&io_tree->state);
5336 state = rb_entry(node, struct extent_state, rb_node);
5337 start = state->start;
5338 end = state->end;
5339 state_flags = state->state;
5340 spin_unlock(&io_tree->lock);
5341
5342 lock_extent_bits(io_tree, start, end, &cached_state);
5343
5344 /*
5345 * If still has DELALLOC flag, the extent didn't reach disk,
5346 * and its reserved space won't be freed by delayed_ref.
5347 * So we need to free its reserved space here.
5348 * (Refer to comment in btrfs_invalidate_folio, case 2)
5349 *
5350 * Note, end is the bytenr of last byte, so we need + 1 here.
5351 */
5352 if (state_flags & EXTENT_DELALLOC)
5353 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5354 end - start + 1);
5355
5356 clear_extent_bit(io_tree, start, end,
5357 EXTENT_LOCKED | EXTENT_DELALLOC |
5358 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5359 &cached_state);
5360
5361 cond_resched();
5362 spin_lock(&io_tree->lock);
5363 }
5364 spin_unlock(&io_tree->lock);
5365 }
5366
5367 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5368 struct btrfs_block_rsv *rsv)
5369 {
5370 struct btrfs_fs_info *fs_info = root->fs_info;
5371 struct btrfs_trans_handle *trans;
5372 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5373 int ret;
5374
5375 /*
5376 * Eviction should be taking place at some place safe because of our
5377 * delayed iputs. However the normal flushing code will run delayed
5378 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5379 *
5380 * We reserve the delayed_refs_extra here again because we can't use
5381 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5382 * above. We reserve our extra bit here because we generate a ton of
5383 * delayed refs activity by truncating.
5384 *
5385 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5386 * if we fail to make this reservation we can re-try without the
5387 * delayed_refs_extra so we can make some forward progress.
5388 */
5389 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5390 BTRFS_RESERVE_FLUSH_EVICT);
5391 if (ret) {
5392 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5393 BTRFS_RESERVE_FLUSH_EVICT);
5394 if (ret) {
5395 btrfs_warn(fs_info,
5396 "could not allocate space for delete; will truncate on mount");
5397 return ERR_PTR(-ENOSPC);
5398 }
5399 delayed_refs_extra = 0;
5400 }
5401
5402 trans = btrfs_join_transaction(root);
5403 if (IS_ERR(trans))
5404 return trans;
5405
5406 if (delayed_refs_extra) {
5407 trans->block_rsv = &fs_info->trans_block_rsv;
5408 trans->bytes_reserved = delayed_refs_extra;
5409 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5410 delayed_refs_extra, 1);
5411 }
5412 return trans;
5413 }
5414
5415 void btrfs_evict_inode(struct inode *inode)
5416 {
5417 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5418 struct btrfs_trans_handle *trans;
5419 struct btrfs_root *root = BTRFS_I(inode)->root;
5420 struct btrfs_block_rsv *rsv;
5421 int ret;
5422
5423 trace_btrfs_inode_evict(inode);
5424
5425 if (!root) {
5426 fsverity_cleanup_inode(inode);
5427 clear_inode(inode);
5428 return;
5429 }
5430
5431 evict_inode_truncate_pages(inode);
5432
5433 if (inode->i_nlink &&
5434 ((btrfs_root_refs(&root->root_item) != 0 &&
5435 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5436 btrfs_is_free_space_inode(BTRFS_I(inode))))
5437 goto no_delete;
5438
5439 if (is_bad_inode(inode))
5440 goto no_delete;
5441
5442 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5443
5444 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5445 goto no_delete;
5446
5447 if (inode->i_nlink > 0) {
5448 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5449 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5450 goto no_delete;
5451 }
5452
5453 /*
5454 * This makes sure the inode item in tree is uptodate and the space for
5455 * the inode update is released.
5456 */
5457 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5458 if (ret)
5459 goto no_delete;
5460
5461 /*
5462 * This drops any pending insert or delete operations we have for this
5463 * inode. We could have a delayed dir index deletion queued up, but
5464 * we're removing the inode completely so that'll be taken care of in
5465 * the truncate.
5466 */
5467 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5468
5469 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5470 if (!rsv)
5471 goto no_delete;
5472 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5473 rsv->failfast = true;
5474
5475 btrfs_i_size_write(BTRFS_I(inode), 0);
5476
5477 while (1) {
5478 struct btrfs_truncate_control control = {
5479 .inode = BTRFS_I(inode),
5480 .ino = btrfs_ino(BTRFS_I(inode)),
5481 .new_size = 0,
5482 .min_type = 0,
5483 };
5484
5485 trans = evict_refill_and_join(root, rsv);
5486 if (IS_ERR(trans))
5487 goto free_rsv;
5488
5489 trans->block_rsv = rsv;
5490
5491 ret = btrfs_truncate_inode_items(trans, root, &control);
5492 trans->block_rsv = &fs_info->trans_block_rsv;
5493 btrfs_end_transaction(trans);
5494 btrfs_btree_balance_dirty(fs_info);
5495 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5496 goto free_rsv;
5497 else if (!ret)
5498 break;
5499 }
5500
5501 /*
5502 * Errors here aren't a big deal, it just means we leave orphan items in
5503 * the tree. They will be cleaned up on the next mount. If the inode
5504 * number gets reused, cleanup deletes the orphan item without doing
5505 * anything, and unlink reuses the existing orphan item.
5506 *
5507 * If it turns out that we are dropping too many of these, we might want
5508 * to add a mechanism for retrying these after a commit.
5509 */
5510 trans = evict_refill_and_join(root, rsv);
5511 if (!IS_ERR(trans)) {
5512 trans->block_rsv = rsv;
5513 btrfs_orphan_del(trans, BTRFS_I(inode));
5514 trans->block_rsv = &fs_info->trans_block_rsv;
5515 btrfs_end_transaction(trans);
5516 }
5517
5518 free_rsv:
5519 btrfs_free_block_rsv(fs_info, rsv);
5520 no_delete:
5521 /*
5522 * If we didn't successfully delete, the orphan item will still be in
5523 * the tree and we'll retry on the next mount. Again, we might also want
5524 * to retry these periodically in the future.
5525 */
5526 btrfs_remove_delayed_node(BTRFS_I(inode));
5527 fsverity_cleanup_inode(inode);
5528 clear_inode(inode);
5529 }
5530
5531 /*
5532 * Return the key found in the dir entry in the location pointer, fill @type
5533 * with BTRFS_FT_*, and return 0.
5534 *
5535 * If no dir entries were found, returns -ENOENT.
5536 * If found a corrupted location in dir entry, returns -EUCLEAN.
5537 */
5538 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5539 struct btrfs_key *location, u8 *type)
5540 {
5541 const char *name = dentry->d_name.name;
5542 int namelen = dentry->d_name.len;
5543 struct btrfs_dir_item *di;
5544 struct btrfs_path *path;
5545 struct btrfs_root *root = BTRFS_I(dir)->root;
5546 int ret = 0;
5547
5548 path = btrfs_alloc_path();
5549 if (!path)
5550 return -ENOMEM;
5551
5552 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5553 name, namelen, 0);
5554 if (IS_ERR_OR_NULL(di)) {
5555 ret = di ? PTR_ERR(di) : -ENOENT;
5556 goto out;
5557 }
5558
5559 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5560 if (location->type != BTRFS_INODE_ITEM_KEY &&
5561 location->type != BTRFS_ROOT_ITEM_KEY) {
5562 ret = -EUCLEAN;
5563 btrfs_warn(root->fs_info,
5564 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5565 __func__, name, btrfs_ino(BTRFS_I(dir)),
5566 location->objectid, location->type, location->offset);
5567 }
5568 if (!ret)
5569 *type = btrfs_dir_type(path->nodes[0], di);
5570 out:
5571 btrfs_free_path(path);
5572 return ret;
5573 }
5574
5575 /*
5576 * when we hit a tree root in a directory, the btrfs part of the inode
5577 * needs to be changed to reflect the root directory of the tree root. This
5578 * is kind of like crossing a mount point.
5579 */
5580 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5581 struct inode *dir,
5582 struct dentry *dentry,
5583 struct btrfs_key *location,
5584 struct btrfs_root **sub_root)
5585 {
5586 struct btrfs_path *path;
5587 struct btrfs_root *new_root;
5588 struct btrfs_root_ref *ref;
5589 struct extent_buffer *leaf;
5590 struct btrfs_key key;
5591 int ret;
5592 int err = 0;
5593
5594 path = btrfs_alloc_path();
5595 if (!path) {
5596 err = -ENOMEM;
5597 goto out;
5598 }
5599
5600 err = -ENOENT;
5601 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5602 key.type = BTRFS_ROOT_REF_KEY;
5603 key.offset = location->objectid;
5604
5605 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5606 if (ret) {
5607 if (ret < 0)
5608 err = ret;
5609 goto out;
5610 }
5611
5612 leaf = path->nodes[0];
5613 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5614 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5615 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5616 goto out;
5617
5618 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5619 (unsigned long)(ref + 1),
5620 dentry->d_name.len);
5621 if (ret)
5622 goto out;
5623
5624 btrfs_release_path(path);
5625
5626 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5627 if (IS_ERR(new_root)) {
5628 err = PTR_ERR(new_root);
5629 goto out;
5630 }
5631
5632 *sub_root = new_root;
5633 location->objectid = btrfs_root_dirid(&new_root->root_item);
5634 location->type = BTRFS_INODE_ITEM_KEY;
5635 location->offset = 0;
5636 err = 0;
5637 out:
5638 btrfs_free_path(path);
5639 return err;
5640 }
5641
5642 static void inode_tree_add(struct inode *inode)
5643 {
5644 struct btrfs_root *root = BTRFS_I(inode)->root;
5645 struct btrfs_inode *entry;
5646 struct rb_node **p;
5647 struct rb_node *parent;
5648 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5649 u64 ino = btrfs_ino(BTRFS_I(inode));
5650
5651 if (inode_unhashed(inode))
5652 return;
5653 parent = NULL;
5654 spin_lock(&root->inode_lock);
5655 p = &root->inode_tree.rb_node;
5656 while (*p) {
5657 parent = *p;
5658 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5659
5660 if (ino < btrfs_ino(entry))
5661 p = &parent->rb_left;
5662 else if (ino > btrfs_ino(entry))
5663 p = &parent->rb_right;
5664 else {
5665 WARN_ON(!(entry->vfs_inode.i_state &
5666 (I_WILL_FREE | I_FREEING)));
5667 rb_replace_node(parent, new, &root->inode_tree);
5668 RB_CLEAR_NODE(parent);
5669 spin_unlock(&root->inode_lock);
5670 return;
5671 }
5672 }
5673 rb_link_node(new, parent, p);
5674 rb_insert_color(new, &root->inode_tree);
5675 spin_unlock(&root->inode_lock);
5676 }
5677
5678 static void inode_tree_del(struct btrfs_inode *inode)
5679 {
5680 struct btrfs_root *root = inode->root;
5681 int empty = 0;
5682
5683 spin_lock(&root->inode_lock);
5684 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5685 rb_erase(&inode->rb_node, &root->inode_tree);
5686 RB_CLEAR_NODE(&inode->rb_node);
5687 empty = RB_EMPTY_ROOT(&root->inode_tree);
5688 }
5689 spin_unlock(&root->inode_lock);
5690
5691 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5692 spin_lock(&root->inode_lock);
5693 empty = RB_EMPTY_ROOT(&root->inode_tree);
5694 spin_unlock(&root->inode_lock);
5695 if (empty)
5696 btrfs_add_dead_root(root);
5697 }
5698 }
5699
5700
5701 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5702 {
5703 struct btrfs_iget_args *args = p;
5704
5705 inode->i_ino = args->ino;
5706 BTRFS_I(inode)->location.objectid = args->ino;
5707 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5708 BTRFS_I(inode)->location.offset = 0;
5709 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5710 BUG_ON(args->root && !BTRFS_I(inode)->root);
5711 return 0;
5712 }
5713
5714 static int btrfs_find_actor(struct inode *inode, void *opaque)
5715 {
5716 struct btrfs_iget_args *args = opaque;
5717
5718 return args->ino == BTRFS_I(inode)->location.objectid &&
5719 args->root == BTRFS_I(inode)->root;
5720 }
5721
5722 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5723 struct btrfs_root *root)
5724 {
5725 struct inode *inode;
5726 struct btrfs_iget_args args;
5727 unsigned long hashval = btrfs_inode_hash(ino, root);
5728
5729 args.ino = ino;
5730 args.root = root;
5731
5732 inode = iget5_locked(s, hashval, btrfs_find_actor,
5733 btrfs_init_locked_inode,
5734 (void *)&args);
5735 return inode;
5736 }
5737
5738 /*
5739 * Get an inode object given its inode number and corresponding root.
5740 * Path can be preallocated to prevent recursing back to iget through
5741 * allocator. NULL is also valid but may require an additional allocation
5742 * later.
5743 */
5744 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5745 struct btrfs_root *root, struct btrfs_path *path)
5746 {
5747 struct inode *inode;
5748
5749 inode = btrfs_iget_locked(s, ino, root);
5750 if (!inode)
5751 return ERR_PTR(-ENOMEM);
5752
5753 if (inode->i_state & I_NEW) {
5754 int ret;
5755
5756 ret = btrfs_read_locked_inode(inode, path);
5757 if (!ret) {
5758 inode_tree_add(inode);
5759 unlock_new_inode(inode);
5760 } else {
5761 iget_failed(inode);
5762 /*
5763 * ret > 0 can come from btrfs_search_slot called by
5764 * btrfs_read_locked_inode, this means the inode item
5765 * was not found.
5766 */
5767 if (ret > 0)
5768 ret = -ENOENT;
5769 inode = ERR_PTR(ret);
5770 }
5771 }
5772
5773 return inode;
5774 }
5775
5776 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5777 {
5778 return btrfs_iget_path(s, ino, root, NULL);
5779 }
5780
5781 static struct inode *new_simple_dir(struct super_block *s,
5782 struct btrfs_key *key,
5783 struct btrfs_root *root)
5784 {
5785 struct inode *inode = new_inode(s);
5786
5787 if (!inode)
5788 return ERR_PTR(-ENOMEM);
5789
5790 BTRFS_I(inode)->root = btrfs_grab_root(root);
5791 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5792 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5793
5794 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5795 /*
5796 * We only need lookup, the rest is read-only and there's no inode
5797 * associated with the dentry
5798 */
5799 inode->i_op = &simple_dir_inode_operations;
5800 inode->i_opflags &= ~IOP_XATTR;
5801 inode->i_fop = &simple_dir_operations;
5802 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5803 inode->i_mtime = current_time(inode);
5804 inode->i_atime = inode->i_mtime;
5805 inode->i_ctime = inode->i_mtime;
5806 BTRFS_I(inode)->i_otime = inode->i_mtime;
5807
5808 return inode;
5809 }
5810
5811 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5812 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5813 static_assert(BTRFS_FT_DIR == FT_DIR);
5814 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5815 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5816 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5817 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5818 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5819
5820 static inline u8 btrfs_inode_type(struct inode *inode)
5821 {
5822 return fs_umode_to_ftype(inode->i_mode);
5823 }
5824
5825 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5826 {
5827 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5828 struct inode *inode;
5829 struct btrfs_root *root = BTRFS_I(dir)->root;
5830 struct btrfs_root *sub_root = root;
5831 struct btrfs_key location;
5832 u8 di_type = 0;
5833 int ret = 0;
5834
5835 if (dentry->d_name.len > BTRFS_NAME_LEN)
5836 return ERR_PTR(-ENAMETOOLONG);
5837
5838 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5839 if (ret < 0)
5840 return ERR_PTR(ret);
5841
5842 if (location.type == BTRFS_INODE_ITEM_KEY) {
5843 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5844 if (IS_ERR(inode))
5845 return inode;
5846
5847 /* Do extra check against inode mode with di_type */
5848 if (btrfs_inode_type(inode) != di_type) {
5849 btrfs_crit(fs_info,
5850 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5851 inode->i_mode, btrfs_inode_type(inode),
5852 di_type);
5853 iput(inode);
5854 return ERR_PTR(-EUCLEAN);
5855 }
5856 return inode;
5857 }
5858
5859 ret = fixup_tree_root_location(fs_info, dir, dentry,
5860 &location, &sub_root);
5861 if (ret < 0) {
5862 if (ret != -ENOENT)
5863 inode = ERR_PTR(ret);
5864 else
5865 inode = new_simple_dir(dir->i_sb, &location, root);
5866 } else {
5867 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5868 btrfs_put_root(sub_root);
5869
5870 if (IS_ERR(inode))
5871 return inode;
5872
5873 down_read(&fs_info->cleanup_work_sem);
5874 if (!sb_rdonly(inode->i_sb))
5875 ret = btrfs_orphan_cleanup(sub_root);
5876 up_read(&fs_info->cleanup_work_sem);
5877 if (ret) {
5878 iput(inode);
5879 inode = ERR_PTR(ret);
5880 }
5881 }
5882
5883 return inode;
5884 }
5885
5886 static int btrfs_dentry_delete(const struct dentry *dentry)
5887 {
5888 struct btrfs_root *root;
5889 struct inode *inode = d_inode(dentry);
5890
5891 if (!inode && !IS_ROOT(dentry))
5892 inode = d_inode(dentry->d_parent);
5893
5894 if (inode) {
5895 root = BTRFS_I(inode)->root;
5896 if (btrfs_root_refs(&root->root_item) == 0)
5897 return 1;
5898
5899 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5900 return 1;
5901 }
5902 return 0;
5903 }
5904
5905 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5906 unsigned int flags)
5907 {
5908 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5909
5910 if (inode == ERR_PTR(-ENOENT))
5911 inode = NULL;
5912 return d_splice_alias(inode, dentry);
5913 }
5914
5915 /*
5916 * All this infrastructure exists because dir_emit can fault, and we are holding
5917 * the tree lock when doing readdir. For now just allocate a buffer and copy
5918 * our information into that, and then dir_emit from the buffer. This is
5919 * similar to what NFS does, only we don't keep the buffer around in pagecache
5920 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5921 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5922 * tree lock.
5923 */
5924 static int btrfs_opendir(struct inode *inode, struct file *file)
5925 {
5926 struct btrfs_file_private *private;
5927
5928 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5929 if (!private)
5930 return -ENOMEM;
5931 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5932 if (!private->filldir_buf) {
5933 kfree(private);
5934 return -ENOMEM;
5935 }
5936 file->private_data = private;
5937 return 0;
5938 }
5939
5940 struct dir_entry {
5941 u64 ino;
5942 u64 offset;
5943 unsigned type;
5944 int name_len;
5945 };
5946
5947 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5948 {
5949 while (entries--) {
5950 struct dir_entry *entry = addr;
5951 char *name = (char *)(entry + 1);
5952
5953 ctx->pos = get_unaligned(&entry->offset);
5954 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5955 get_unaligned(&entry->ino),
5956 get_unaligned(&entry->type)))
5957 return 1;
5958 addr += sizeof(struct dir_entry) +
5959 get_unaligned(&entry->name_len);
5960 ctx->pos++;
5961 }
5962 return 0;
5963 }
5964
5965 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5966 {
5967 struct inode *inode = file_inode(file);
5968 struct btrfs_root *root = BTRFS_I(inode)->root;
5969 struct btrfs_file_private *private = file->private_data;
5970 struct btrfs_dir_item *di;
5971 struct btrfs_key key;
5972 struct btrfs_key found_key;
5973 struct btrfs_path *path;
5974 void *addr;
5975 struct list_head ins_list;
5976 struct list_head del_list;
5977 int ret;
5978 char *name_ptr;
5979 int name_len;
5980 int entries = 0;
5981 int total_len = 0;
5982 bool put = false;
5983 struct btrfs_key location;
5984
5985 if (!dir_emit_dots(file, ctx))
5986 return 0;
5987
5988 path = btrfs_alloc_path();
5989 if (!path)
5990 return -ENOMEM;
5991
5992 addr = private->filldir_buf;
5993 path->reada = READA_FORWARD;
5994
5995 INIT_LIST_HEAD(&ins_list);
5996 INIT_LIST_HEAD(&del_list);
5997 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5998
5999 again:
6000 key.type = BTRFS_DIR_INDEX_KEY;
6001 key.offset = ctx->pos;
6002 key.objectid = btrfs_ino(BTRFS_I(inode));
6003
6004 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
6005 struct dir_entry *entry;
6006 struct extent_buffer *leaf = path->nodes[0];
6007
6008 if (found_key.objectid != key.objectid)
6009 break;
6010 if (found_key.type != BTRFS_DIR_INDEX_KEY)
6011 break;
6012 if (found_key.offset < ctx->pos)
6013 continue;
6014 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6015 continue;
6016 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
6017 name_len = btrfs_dir_name_len(leaf, di);
6018 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6019 PAGE_SIZE) {
6020 btrfs_release_path(path);
6021 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6022 if (ret)
6023 goto nopos;
6024 addr = private->filldir_buf;
6025 entries = 0;
6026 total_len = 0;
6027 goto again;
6028 }
6029
6030 entry = addr;
6031 put_unaligned(name_len, &entry->name_len);
6032 name_ptr = (char *)(entry + 1);
6033 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6034 name_len);
6035 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6036 &entry->type);
6037 btrfs_dir_item_key_to_cpu(leaf, di, &location);
6038 put_unaligned(location.objectid, &entry->ino);
6039 put_unaligned(found_key.offset, &entry->offset);
6040 entries++;
6041 addr += sizeof(struct dir_entry) + name_len;
6042 total_len += sizeof(struct dir_entry) + name_len;
6043 }
6044 /* Catch error encountered during iteration */
6045 if (ret < 0)
6046 goto err;
6047
6048 btrfs_release_path(path);
6049
6050 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6051 if (ret)
6052 goto nopos;
6053
6054 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6055 if (ret)
6056 goto nopos;
6057
6058 /*
6059 * Stop new entries from being returned after we return the last
6060 * entry.
6061 *
6062 * New directory entries are assigned a strictly increasing
6063 * offset. This means that new entries created during readdir
6064 * are *guaranteed* to be seen in the future by that readdir.
6065 * This has broken buggy programs which operate on names as
6066 * they're returned by readdir. Until we re-use freed offsets
6067 * we have this hack to stop new entries from being returned
6068 * under the assumption that they'll never reach this huge
6069 * offset.
6070 *
6071 * This is being careful not to overflow 32bit loff_t unless the
6072 * last entry requires it because doing so has broken 32bit apps
6073 * in the past.
6074 */
6075 if (ctx->pos >= INT_MAX)
6076 ctx->pos = LLONG_MAX;
6077 else
6078 ctx->pos = INT_MAX;
6079 nopos:
6080 ret = 0;
6081 err:
6082 if (put)
6083 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6084 btrfs_free_path(path);
6085 return ret;
6086 }
6087
6088 /*
6089 * This is somewhat expensive, updating the tree every time the
6090 * inode changes. But, it is most likely to find the inode in cache.
6091 * FIXME, needs more benchmarking...there are no reasons other than performance
6092 * to keep or drop this code.
6093 */
6094 static int btrfs_dirty_inode(struct inode *inode)
6095 {
6096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6097 struct btrfs_root *root = BTRFS_I(inode)->root;
6098 struct btrfs_trans_handle *trans;
6099 int ret;
6100
6101 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6102 return 0;
6103
6104 trans = btrfs_join_transaction(root);
6105 if (IS_ERR(trans))
6106 return PTR_ERR(trans);
6107
6108 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6109 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6110 /* whoops, lets try again with the full transaction */
6111 btrfs_end_transaction(trans);
6112 trans = btrfs_start_transaction(root, 1);
6113 if (IS_ERR(trans))
6114 return PTR_ERR(trans);
6115
6116 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6117 }
6118 btrfs_end_transaction(trans);
6119 if (BTRFS_I(inode)->delayed_node)
6120 btrfs_balance_delayed_items(fs_info);
6121
6122 return ret;
6123 }
6124
6125 /*
6126 * This is a copy of file_update_time. We need this so we can return error on
6127 * ENOSPC for updating the inode in the case of file write and mmap writes.
6128 */
6129 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6130 int flags)
6131 {
6132 struct btrfs_root *root = BTRFS_I(inode)->root;
6133 bool dirty = flags & ~S_VERSION;
6134
6135 if (btrfs_root_readonly(root))
6136 return -EROFS;
6137
6138 if (flags & S_VERSION)
6139 dirty |= inode_maybe_inc_iversion(inode, dirty);
6140 if (flags & S_CTIME)
6141 inode->i_ctime = *now;
6142 if (flags & S_MTIME)
6143 inode->i_mtime = *now;
6144 if (flags & S_ATIME)
6145 inode->i_atime = *now;
6146 return dirty ? btrfs_dirty_inode(inode) : 0;
6147 }
6148
6149 /*
6150 * find the highest existing sequence number in a directory
6151 * and then set the in-memory index_cnt variable to reflect
6152 * free sequence numbers
6153 */
6154 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6155 {
6156 struct btrfs_root *root = inode->root;
6157 struct btrfs_key key, found_key;
6158 struct btrfs_path *path;
6159 struct extent_buffer *leaf;
6160 int ret;
6161
6162 key.objectid = btrfs_ino(inode);
6163 key.type = BTRFS_DIR_INDEX_KEY;
6164 key.offset = (u64)-1;
6165
6166 path = btrfs_alloc_path();
6167 if (!path)
6168 return -ENOMEM;
6169
6170 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6171 if (ret < 0)
6172 goto out;
6173 /* FIXME: we should be able to handle this */
6174 if (ret == 0)
6175 goto out;
6176 ret = 0;
6177
6178 if (path->slots[0] == 0) {
6179 inode->index_cnt = BTRFS_DIR_START_INDEX;
6180 goto out;
6181 }
6182
6183 path->slots[0]--;
6184
6185 leaf = path->nodes[0];
6186 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6187
6188 if (found_key.objectid != btrfs_ino(inode) ||
6189 found_key.type != BTRFS_DIR_INDEX_KEY) {
6190 inode->index_cnt = BTRFS_DIR_START_INDEX;
6191 goto out;
6192 }
6193
6194 inode->index_cnt = found_key.offset + 1;
6195 out:
6196 btrfs_free_path(path);
6197 return ret;
6198 }
6199
6200 /*
6201 * helper to find a free sequence number in a given directory. This current
6202 * code is very simple, later versions will do smarter things in the btree
6203 */
6204 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6205 {
6206 int ret = 0;
6207
6208 if (dir->index_cnt == (u64)-1) {
6209 ret = btrfs_inode_delayed_dir_index_count(dir);
6210 if (ret) {
6211 ret = btrfs_set_inode_index_count(dir);
6212 if (ret)
6213 return ret;
6214 }
6215 }
6216
6217 *index = dir->index_cnt;
6218 dir->index_cnt++;
6219
6220 return ret;
6221 }
6222
6223 static int btrfs_insert_inode_locked(struct inode *inode)
6224 {
6225 struct btrfs_iget_args args;
6226
6227 args.ino = BTRFS_I(inode)->location.objectid;
6228 args.root = BTRFS_I(inode)->root;
6229
6230 return insert_inode_locked4(inode,
6231 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6232 btrfs_find_actor, &args);
6233 }
6234
6235 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6236 unsigned int *trans_num_items)
6237 {
6238 struct inode *dir = args->dir;
6239 struct inode *inode = args->inode;
6240 int ret;
6241
6242 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6243 if (ret)
6244 return ret;
6245
6246 /* 1 to add inode item */
6247 *trans_num_items = 1;
6248 /* 1 to add compression property */
6249 if (BTRFS_I(dir)->prop_compress)
6250 (*trans_num_items)++;
6251 /* 1 to add default ACL xattr */
6252 if (args->default_acl)
6253 (*trans_num_items)++;
6254 /* 1 to add access ACL xattr */
6255 if (args->acl)
6256 (*trans_num_items)++;
6257 #ifdef CONFIG_SECURITY
6258 /* 1 to add LSM xattr */
6259 if (dir->i_security)
6260 (*trans_num_items)++;
6261 #endif
6262 if (args->orphan) {
6263 /* 1 to add orphan item */
6264 (*trans_num_items)++;
6265 } else {
6266 /*
6267 * 1 to add dir item
6268 * 1 to add dir index
6269 * 1 to update parent inode item
6270 *
6271 * No need for 1 unit for the inode ref item because it is
6272 * inserted in a batch together with the inode item at
6273 * btrfs_create_new_inode().
6274 */
6275 *trans_num_items += 3;
6276 }
6277 return 0;
6278 }
6279
6280 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6281 {
6282 posix_acl_release(args->acl);
6283 posix_acl_release(args->default_acl);
6284 }
6285
6286 /*
6287 * Inherit flags from the parent inode.
6288 *
6289 * Currently only the compression flags and the cow flags are inherited.
6290 */
6291 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6292 {
6293 unsigned int flags;
6294
6295 flags = BTRFS_I(dir)->flags;
6296
6297 if (flags & BTRFS_INODE_NOCOMPRESS) {
6298 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6299 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6300 } else if (flags & BTRFS_INODE_COMPRESS) {
6301 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6302 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6303 }
6304
6305 if (flags & BTRFS_INODE_NODATACOW) {
6306 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6307 if (S_ISREG(inode->i_mode))
6308 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6309 }
6310
6311 btrfs_sync_inode_flags_to_i_flags(inode);
6312 }
6313
6314 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6315 struct btrfs_new_inode_args *args)
6316 {
6317 struct inode *dir = args->dir;
6318 struct inode *inode = args->inode;
6319 const char *name = args->orphan ? NULL : args->dentry->d_name.name;
6320 int name_len = args->orphan ? 0 : args->dentry->d_name.len;
6321 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6322 struct btrfs_root *root;
6323 struct btrfs_inode_item *inode_item;
6324 struct btrfs_key *location;
6325 struct btrfs_path *path;
6326 u64 objectid;
6327 struct btrfs_inode_ref *ref;
6328 struct btrfs_key key[2];
6329 u32 sizes[2];
6330 struct btrfs_item_batch batch;
6331 unsigned long ptr;
6332 int ret;
6333
6334 path = btrfs_alloc_path();
6335 if (!path)
6336 return -ENOMEM;
6337
6338 if (!args->subvol)
6339 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6340 root = BTRFS_I(inode)->root;
6341
6342 ret = btrfs_get_free_objectid(root, &objectid);
6343 if (ret)
6344 goto out;
6345 inode->i_ino = objectid;
6346
6347 if (args->orphan) {
6348 /*
6349 * O_TMPFILE, set link count to 0, so that after this point, we
6350 * fill in an inode item with the correct link count.
6351 */
6352 set_nlink(inode, 0);
6353 } else {
6354 trace_btrfs_inode_request(dir);
6355
6356 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6357 if (ret)
6358 goto out;
6359 }
6360 /* index_cnt is ignored for everything but a dir. */
6361 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6362 BTRFS_I(inode)->generation = trans->transid;
6363 inode->i_generation = BTRFS_I(inode)->generation;
6364
6365 /*
6366 * Subvolumes don't inherit flags from their parent directory.
6367 * Originally this was probably by accident, but we probably can't
6368 * change it now without compatibility issues.
6369 */
6370 if (!args->subvol)
6371 btrfs_inherit_iflags(inode, dir);
6372
6373 if (S_ISREG(inode->i_mode)) {
6374 if (btrfs_test_opt(fs_info, NODATASUM))
6375 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6376 if (btrfs_test_opt(fs_info, NODATACOW))
6377 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6378 BTRFS_INODE_NODATASUM;
6379 }
6380
6381 location = &BTRFS_I(inode)->location;
6382 location->objectid = objectid;
6383 location->offset = 0;
6384 location->type = BTRFS_INODE_ITEM_KEY;
6385
6386 ret = btrfs_insert_inode_locked(inode);
6387 if (ret < 0) {
6388 if (!args->orphan)
6389 BTRFS_I(dir)->index_cnt--;
6390 goto out;
6391 }
6392
6393 /*
6394 * We could have gotten an inode number from somebody who was fsynced
6395 * and then removed in this same transaction, so let's just set full
6396 * sync since it will be a full sync anyway and this will blow away the
6397 * old info in the log.
6398 */
6399 btrfs_set_inode_full_sync(BTRFS_I(inode));
6400
6401 key[0].objectid = objectid;
6402 key[0].type = BTRFS_INODE_ITEM_KEY;
6403 key[0].offset = 0;
6404
6405 sizes[0] = sizeof(struct btrfs_inode_item);
6406
6407 if (!args->orphan) {
6408 /*
6409 * Start new inodes with an inode_ref. This is slightly more
6410 * efficient for small numbers of hard links since they will
6411 * be packed into one item. Extended refs will kick in if we
6412 * add more hard links than can fit in the ref item.
6413 */
6414 key[1].objectid = objectid;
6415 key[1].type = BTRFS_INODE_REF_KEY;
6416 if (args->subvol) {
6417 key[1].offset = objectid;
6418 sizes[1] = 2 + sizeof(*ref);
6419 } else {
6420 key[1].offset = btrfs_ino(BTRFS_I(dir));
6421 sizes[1] = name_len + sizeof(*ref);
6422 }
6423 }
6424
6425 batch.keys = &key[0];
6426 batch.data_sizes = &sizes[0];
6427 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6428 batch.nr = args->orphan ? 1 : 2;
6429 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6430 if (ret != 0) {
6431 btrfs_abort_transaction(trans, ret);
6432 goto discard;
6433 }
6434
6435 inode->i_mtime = current_time(inode);
6436 inode->i_atime = inode->i_mtime;
6437 inode->i_ctime = inode->i_mtime;
6438 BTRFS_I(inode)->i_otime = inode->i_mtime;
6439
6440 /*
6441 * We're going to fill the inode item now, so at this point the inode
6442 * must be fully initialized.
6443 */
6444
6445 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6446 struct btrfs_inode_item);
6447 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6448 sizeof(*inode_item));
6449 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6450
6451 if (!args->orphan) {
6452 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6453 struct btrfs_inode_ref);
6454 ptr = (unsigned long)(ref + 1);
6455 if (args->subvol) {
6456 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6457 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6458 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6459 } else {
6460 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6461 btrfs_set_inode_ref_index(path->nodes[0], ref,
6462 BTRFS_I(inode)->dir_index);
6463 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6464 }
6465 }
6466
6467 btrfs_mark_buffer_dirty(path->nodes[0]);
6468 /*
6469 * We don't need the path anymore, plus inheriting properties, adding
6470 * ACLs, security xattrs, orphan item or adding the link, will result in
6471 * allocating yet another path. So just free our path.
6472 */
6473 btrfs_free_path(path);
6474 path = NULL;
6475
6476 if (args->subvol) {
6477 struct inode *parent;
6478
6479 /*
6480 * Subvolumes inherit properties from their parent subvolume,
6481 * not the directory they were created in.
6482 */
6483 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6484 BTRFS_I(dir)->root);
6485 if (IS_ERR(parent)) {
6486 ret = PTR_ERR(parent);
6487 } else {
6488 ret = btrfs_inode_inherit_props(trans, inode, parent);
6489 iput(parent);
6490 }
6491 } else {
6492 ret = btrfs_inode_inherit_props(trans, inode, dir);
6493 }
6494 if (ret) {
6495 btrfs_err(fs_info,
6496 "error inheriting props for ino %llu (root %llu): %d",
6497 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6498 ret);
6499 }
6500
6501 /*
6502 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6503 * probably a bug.
6504 */
6505 if (!args->subvol) {
6506 ret = btrfs_init_inode_security(trans, args);
6507 if (ret) {
6508 btrfs_abort_transaction(trans, ret);
6509 goto discard;
6510 }
6511 }
6512
6513 inode_tree_add(inode);
6514
6515 trace_btrfs_inode_new(inode);
6516 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6517
6518 btrfs_update_root_times(trans, root);
6519
6520 if (args->orphan) {
6521 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6522 } else {
6523 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6524 name_len, 0, BTRFS_I(inode)->dir_index);
6525 }
6526 if (ret) {
6527 btrfs_abort_transaction(trans, ret);
6528 goto discard;
6529 }
6530
6531 return 0;
6532
6533 discard:
6534 /*
6535 * discard_new_inode() calls iput(), but the caller owns the reference
6536 * to the inode.
6537 */
6538 ihold(inode);
6539 discard_new_inode(inode);
6540 out:
6541 btrfs_free_path(path);
6542 return ret;
6543 }
6544
6545 /*
6546 * utility function to add 'inode' into 'parent_inode' with
6547 * a give name and a given sequence number.
6548 * if 'add_backref' is true, also insert a backref from the
6549 * inode to the parent directory.
6550 */
6551 int btrfs_add_link(struct btrfs_trans_handle *trans,
6552 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6553 const char *name, int name_len, int add_backref, u64 index)
6554 {
6555 int ret = 0;
6556 struct btrfs_key key;
6557 struct btrfs_root *root = parent_inode->root;
6558 u64 ino = btrfs_ino(inode);
6559 u64 parent_ino = btrfs_ino(parent_inode);
6560
6561 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6562 memcpy(&key, &inode->root->root_key, sizeof(key));
6563 } else {
6564 key.objectid = ino;
6565 key.type = BTRFS_INODE_ITEM_KEY;
6566 key.offset = 0;
6567 }
6568
6569 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6570 ret = btrfs_add_root_ref(trans, key.objectid,
6571 root->root_key.objectid, parent_ino,
6572 index, name, name_len);
6573 } else if (add_backref) {
6574 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6575 parent_ino, index);
6576 }
6577
6578 /* Nothing to clean up yet */
6579 if (ret)
6580 return ret;
6581
6582 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6583 btrfs_inode_type(&inode->vfs_inode), index);
6584 if (ret == -EEXIST || ret == -EOVERFLOW)
6585 goto fail_dir_item;
6586 else if (ret) {
6587 btrfs_abort_transaction(trans, ret);
6588 return ret;
6589 }
6590
6591 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6592 name_len * 2);
6593 inode_inc_iversion(&parent_inode->vfs_inode);
6594 /*
6595 * If we are replaying a log tree, we do not want to update the mtime
6596 * and ctime of the parent directory with the current time, since the
6597 * log replay procedure is responsible for setting them to their correct
6598 * values (the ones it had when the fsync was done).
6599 */
6600 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6601 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6602
6603 parent_inode->vfs_inode.i_mtime = now;
6604 parent_inode->vfs_inode.i_ctime = now;
6605 }
6606 ret = btrfs_update_inode(trans, root, parent_inode);
6607 if (ret)
6608 btrfs_abort_transaction(trans, ret);
6609 return ret;
6610
6611 fail_dir_item:
6612 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6613 u64 local_index;
6614 int err;
6615 err = btrfs_del_root_ref(trans, key.objectid,
6616 root->root_key.objectid, parent_ino,
6617 &local_index, name, name_len);
6618 if (err)
6619 btrfs_abort_transaction(trans, err);
6620 } else if (add_backref) {
6621 u64 local_index;
6622 int err;
6623
6624 err = btrfs_del_inode_ref(trans, root, name, name_len,
6625 ino, parent_ino, &local_index);
6626 if (err)
6627 btrfs_abort_transaction(trans, err);
6628 }
6629
6630 /* Return the original error code */
6631 return ret;
6632 }
6633
6634 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6635 struct inode *inode)
6636 {
6637 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6638 struct btrfs_root *root = BTRFS_I(dir)->root;
6639 struct btrfs_new_inode_args new_inode_args = {
6640 .dir = dir,
6641 .dentry = dentry,
6642 .inode = inode,
6643 };
6644 unsigned int trans_num_items;
6645 struct btrfs_trans_handle *trans;
6646 int err;
6647
6648 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6649 if (err)
6650 goto out_inode;
6651
6652 trans = btrfs_start_transaction(root, trans_num_items);
6653 if (IS_ERR(trans)) {
6654 err = PTR_ERR(trans);
6655 goto out_new_inode_args;
6656 }
6657
6658 err = btrfs_create_new_inode(trans, &new_inode_args);
6659 if (!err)
6660 d_instantiate_new(dentry, inode);
6661
6662 btrfs_end_transaction(trans);
6663 btrfs_btree_balance_dirty(fs_info);
6664 out_new_inode_args:
6665 btrfs_new_inode_args_destroy(&new_inode_args);
6666 out_inode:
6667 if (err)
6668 iput(inode);
6669 return err;
6670 }
6671
6672 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6673 struct dentry *dentry, umode_t mode, dev_t rdev)
6674 {
6675 struct inode *inode;
6676
6677 inode = new_inode(dir->i_sb);
6678 if (!inode)
6679 return -ENOMEM;
6680 inode_init_owner(mnt_userns, inode, dir, mode);
6681 inode->i_op = &btrfs_special_inode_operations;
6682 init_special_inode(inode, inode->i_mode, rdev);
6683 return btrfs_create_common(dir, dentry, inode);
6684 }
6685
6686 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6687 struct dentry *dentry, umode_t mode, bool excl)
6688 {
6689 struct inode *inode;
6690
6691 inode = new_inode(dir->i_sb);
6692 if (!inode)
6693 return -ENOMEM;
6694 inode_init_owner(mnt_userns, inode, dir, mode);
6695 inode->i_fop = &btrfs_file_operations;
6696 inode->i_op = &btrfs_file_inode_operations;
6697 inode->i_mapping->a_ops = &btrfs_aops;
6698 return btrfs_create_common(dir, dentry, inode);
6699 }
6700
6701 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6702 struct dentry *dentry)
6703 {
6704 struct btrfs_trans_handle *trans = NULL;
6705 struct btrfs_root *root = BTRFS_I(dir)->root;
6706 struct inode *inode = d_inode(old_dentry);
6707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6708 u64 index;
6709 int err;
6710 int drop_inode = 0;
6711
6712 /* do not allow sys_link's with other subvols of the same device */
6713 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6714 return -EXDEV;
6715
6716 if (inode->i_nlink >= BTRFS_LINK_MAX)
6717 return -EMLINK;
6718
6719 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6720 if (err)
6721 goto fail;
6722
6723 /*
6724 * 2 items for inode and inode ref
6725 * 2 items for dir items
6726 * 1 item for parent inode
6727 * 1 item for orphan item deletion if O_TMPFILE
6728 */
6729 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6730 if (IS_ERR(trans)) {
6731 err = PTR_ERR(trans);
6732 trans = NULL;
6733 goto fail;
6734 }
6735
6736 /* There are several dir indexes for this inode, clear the cache. */
6737 BTRFS_I(inode)->dir_index = 0ULL;
6738 inc_nlink(inode);
6739 inode_inc_iversion(inode);
6740 inode->i_ctime = current_time(inode);
6741 ihold(inode);
6742 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6743
6744 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6745 dentry->d_name.name, dentry->d_name.len, 1, index);
6746
6747 if (err) {
6748 drop_inode = 1;
6749 } else {
6750 struct dentry *parent = dentry->d_parent;
6751
6752 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6753 if (err)
6754 goto fail;
6755 if (inode->i_nlink == 1) {
6756 /*
6757 * If new hard link count is 1, it's a file created
6758 * with open(2) O_TMPFILE flag.
6759 */
6760 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6761 if (err)
6762 goto fail;
6763 }
6764 d_instantiate(dentry, inode);
6765 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6766 }
6767
6768 fail:
6769 if (trans)
6770 btrfs_end_transaction(trans);
6771 if (drop_inode) {
6772 inode_dec_link_count(inode);
6773 iput(inode);
6774 }
6775 btrfs_btree_balance_dirty(fs_info);
6776 return err;
6777 }
6778
6779 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6780 struct dentry *dentry, umode_t mode)
6781 {
6782 struct inode *inode;
6783
6784 inode = new_inode(dir->i_sb);
6785 if (!inode)
6786 return -ENOMEM;
6787 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6788 inode->i_op = &btrfs_dir_inode_operations;
6789 inode->i_fop = &btrfs_dir_file_operations;
6790 return btrfs_create_common(dir, dentry, inode);
6791 }
6792
6793 static noinline int uncompress_inline(struct btrfs_path *path,
6794 struct page *page,
6795 size_t pg_offset, u64 extent_offset,
6796 struct btrfs_file_extent_item *item)
6797 {
6798 int ret;
6799 struct extent_buffer *leaf = path->nodes[0];
6800 char *tmp;
6801 size_t max_size;
6802 unsigned long inline_size;
6803 unsigned long ptr;
6804 int compress_type;
6805
6806 WARN_ON(pg_offset != 0);
6807 compress_type = btrfs_file_extent_compression(leaf, item);
6808 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6809 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6810 tmp = kmalloc(inline_size, GFP_NOFS);
6811 if (!tmp)
6812 return -ENOMEM;
6813 ptr = btrfs_file_extent_inline_start(item);
6814
6815 read_extent_buffer(leaf, tmp, ptr, inline_size);
6816
6817 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6818 ret = btrfs_decompress(compress_type, tmp, page,
6819 extent_offset, inline_size, max_size);
6820
6821 /*
6822 * decompression code contains a memset to fill in any space between the end
6823 * of the uncompressed data and the end of max_size in case the decompressed
6824 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6825 * the end of an inline extent and the beginning of the next block, so we
6826 * cover that region here.
6827 */
6828
6829 if (max_size + pg_offset < PAGE_SIZE)
6830 memzero_page(page, pg_offset + max_size,
6831 PAGE_SIZE - max_size - pg_offset);
6832 kfree(tmp);
6833 return ret;
6834 }
6835
6836 /**
6837 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6838 * @inode: file to search in
6839 * @page: page to read extent data into if the extent is inline
6840 * @pg_offset: offset into @page to copy to
6841 * @start: file offset
6842 * @len: length of range starting at @start
6843 *
6844 * This returns the first &struct extent_map which overlaps with the given
6845 * range, reading it from the B-tree and caching it if necessary. Note that
6846 * there may be more extents which overlap the given range after the returned
6847 * extent_map.
6848 *
6849 * If @page is not NULL and the extent is inline, this also reads the extent
6850 * data directly into the page and marks the extent up to date in the io_tree.
6851 *
6852 * Return: ERR_PTR on error, non-NULL extent_map on success.
6853 */
6854 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6855 struct page *page, size_t pg_offset,
6856 u64 start, u64 len)
6857 {
6858 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6859 int ret = 0;
6860 u64 extent_start = 0;
6861 u64 extent_end = 0;
6862 u64 objectid = btrfs_ino(inode);
6863 int extent_type = -1;
6864 struct btrfs_path *path = NULL;
6865 struct btrfs_root *root = inode->root;
6866 struct btrfs_file_extent_item *item;
6867 struct extent_buffer *leaf;
6868 struct btrfs_key found_key;
6869 struct extent_map *em = NULL;
6870 struct extent_map_tree *em_tree = &inode->extent_tree;
6871 struct extent_io_tree *io_tree = &inode->io_tree;
6872
6873 read_lock(&em_tree->lock);
6874 em = lookup_extent_mapping(em_tree, start, len);
6875 read_unlock(&em_tree->lock);
6876
6877 if (em) {
6878 if (em->start > start || em->start + em->len <= start)
6879 free_extent_map(em);
6880 else if (em->block_start == EXTENT_MAP_INLINE && page)
6881 free_extent_map(em);
6882 else
6883 goto out;
6884 }
6885 em = alloc_extent_map();
6886 if (!em) {
6887 ret = -ENOMEM;
6888 goto out;
6889 }
6890 em->start = EXTENT_MAP_HOLE;
6891 em->orig_start = EXTENT_MAP_HOLE;
6892 em->len = (u64)-1;
6893 em->block_len = (u64)-1;
6894
6895 path = btrfs_alloc_path();
6896 if (!path) {
6897 ret = -ENOMEM;
6898 goto out;
6899 }
6900
6901 /* Chances are we'll be called again, so go ahead and do readahead */
6902 path->reada = READA_FORWARD;
6903
6904 /*
6905 * The same explanation in load_free_space_cache applies here as well,
6906 * we only read when we're loading the free space cache, and at that
6907 * point the commit_root has everything we need.
6908 */
6909 if (btrfs_is_free_space_inode(inode)) {
6910 path->search_commit_root = 1;
6911 path->skip_locking = 1;
6912 }
6913
6914 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6915 if (ret < 0) {
6916 goto out;
6917 } else if (ret > 0) {
6918 if (path->slots[0] == 0)
6919 goto not_found;
6920 path->slots[0]--;
6921 ret = 0;
6922 }
6923
6924 leaf = path->nodes[0];
6925 item = btrfs_item_ptr(leaf, path->slots[0],
6926 struct btrfs_file_extent_item);
6927 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6928 if (found_key.objectid != objectid ||
6929 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6930 /*
6931 * If we backup past the first extent we want to move forward
6932 * and see if there is an extent in front of us, otherwise we'll
6933 * say there is a hole for our whole search range which can
6934 * cause problems.
6935 */
6936 extent_end = start;
6937 goto next;
6938 }
6939
6940 extent_type = btrfs_file_extent_type(leaf, item);
6941 extent_start = found_key.offset;
6942 extent_end = btrfs_file_extent_end(path);
6943 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6944 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6945 /* Only regular file could have regular/prealloc extent */
6946 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6947 ret = -EUCLEAN;
6948 btrfs_crit(fs_info,
6949 "regular/prealloc extent found for non-regular inode %llu",
6950 btrfs_ino(inode));
6951 goto out;
6952 }
6953 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6954 extent_start);
6955 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6956 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6957 path->slots[0],
6958 extent_start);
6959 }
6960 next:
6961 if (start >= extent_end) {
6962 path->slots[0]++;
6963 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6964 ret = btrfs_next_leaf(root, path);
6965 if (ret < 0)
6966 goto out;
6967 else if (ret > 0)
6968 goto not_found;
6969
6970 leaf = path->nodes[0];
6971 }
6972 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6973 if (found_key.objectid != objectid ||
6974 found_key.type != BTRFS_EXTENT_DATA_KEY)
6975 goto not_found;
6976 if (start + len <= found_key.offset)
6977 goto not_found;
6978 if (start > found_key.offset)
6979 goto next;
6980
6981 /* New extent overlaps with existing one */
6982 em->start = start;
6983 em->orig_start = start;
6984 em->len = found_key.offset - start;
6985 em->block_start = EXTENT_MAP_HOLE;
6986 goto insert;
6987 }
6988
6989 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6990
6991 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6992 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6993 goto insert;
6994 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6995 unsigned long ptr;
6996 char *map;
6997 size_t size;
6998 size_t extent_offset;
6999 size_t copy_size;
7000
7001 if (!page)
7002 goto out;
7003
7004 size = btrfs_file_extent_ram_bytes(leaf, item);
7005 extent_offset = page_offset(page) + pg_offset - extent_start;
7006 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7007 size - extent_offset);
7008 em->start = extent_start + extent_offset;
7009 em->len = ALIGN(copy_size, fs_info->sectorsize);
7010 em->orig_block_len = em->len;
7011 em->orig_start = em->start;
7012 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7013
7014 if (!PageUptodate(page)) {
7015 if (btrfs_file_extent_compression(leaf, item) !=
7016 BTRFS_COMPRESS_NONE) {
7017 ret = uncompress_inline(path, page, pg_offset,
7018 extent_offset, item);
7019 if (ret)
7020 goto out;
7021 } else {
7022 map = kmap_local_page(page);
7023 read_extent_buffer(leaf, map + pg_offset, ptr,
7024 copy_size);
7025 if (pg_offset + copy_size < PAGE_SIZE) {
7026 memset(map + pg_offset + copy_size, 0,
7027 PAGE_SIZE - pg_offset -
7028 copy_size);
7029 }
7030 kunmap_local(map);
7031 }
7032 flush_dcache_page(page);
7033 }
7034 set_extent_uptodate(io_tree, em->start,
7035 extent_map_end(em) - 1, NULL, GFP_NOFS);
7036 goto insert;
7037 }
7038 not_found:
7039 em->start = start;
7040 em->orig_start = start;
7041 em->len = len;
7042 em->block_start = EXTENT_MAP_HOLE;
7043 insert:
7044 ret = 0;
7045 btrfs_release_path(path);
7046 if (em->start > start || extent_map_end(em) <= start) {
7047 btrfs_err(fs_info,
7048 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7049 em->start, em->len, start, len);
7050 ret = -EIO;
7051 goto out;
7052 }
7053
7054 write_lock(&em_tree->lock);
7055 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7056 write_unlock(&em_tree->lock);
7057 out:
7058 btrfs_free_path(path);
7059
7060 trace_btrfs_get_extent(root, inode, em);
7061
7062 if (ret) {
7063 free_extent_map(em);
7064 return ERR_PTR(ret);
7065 }
7066 return em;
7067 }
7068
7069 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7070 u64 start, u64 len)
7071 {
7072 struct extent_map *em;
7073 struct extent_map *hole_em = NULL;
7074 u64 delalloc_start = start;
7075 u64 end;
7076 u64 delalloc_len;
7077 u64 delalloc_end;
7078 int err = 0;
7079
7080 em = btrfs_get_extent(inode, NULL, 0, start, len);
7081 if (IS_ERR(em))
7082 return em;
7083 /*
7084 * If our em maps to:
7085 * - a hole or
7086 * - a pre-alloc extent,
7087 * there might actually be delalloc bytes behind it.
7088 */
7089 if (em->block_start != EXTENT_MAP_HOLE &&
7090 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7091 return em;
7092 else
7093 hole_em = em;
7094
7095 /* check to see if we've wrapped (len == -1 or similar) */
7096 end = start + len;
7097 if (end < start)
7098 end = (u64)-1;
7099 else
7100 end -= 1;
7101
7102 em = NULL;
7103
7104 /* ok, we didn't find anything, lets look for delalloc */
7105 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7106 end, len, EXTENT_DELALLOC, 1);
7107 delalloc_end = delalloc_start + delalloc_len;
7108 if (delalloc_end < delalloc_start)
7109 delalloc_end = (u64)-1;
7110
7111 /*
7112 * We didn't find anything useful, return the original results from
7113 * get_extent()
7114 */
7115 if (delalloc_start > end || delalloc_end <= start) {
7116 em = hole_em;
7117 hole_em = NULL;
7118 goto out;
7119 }
7120
7121 /*
7122 * Adjust the delalloc_start to make sure it doesn't go backwards from
7123 * the start they passed in
7124 */
7125 delalloc_start = max(start, delalloc_start);
7126 delalloc_len = delalloc_end - delalloc_start;
7127
7128 if (delalloc_len > 0) {
7129 u64 hole_start;
7130 u64 hole_len;
7131 const u64 hole_end = extent_map_end(hole_em);
7132
7133 em = alloc_extent_map();
7134 if (!em) {
7135 err = -ENOMEM;
7136 goto out;
7137 }
7138
7139 ASSERT(hole_em);
7140 /*
7141 * When btrfs_get_extent can't find anything it returns one
7142 * huge hole
7143 *
7144 * Make sure what it found really fits our range, and adjust to
7145 * make sure it is based on the start from the caller
7146 */
7147 if (hole_end <= start || hole_em->start > end) {
7148 free_extent_map(hole_em);
7149 hole_em = NULL;
7150 } else {
7151 hole_start = max(hole_em->start, start);
7152 hole_len = hole_end - hole_start;
7153 }
7154
7155 if (hole_em && delalloc_start > hole_start) {
7156 /*
7157 * Our hole starts before our delalloc, so we have to
7158 * return just the parts of the hole that go until the
7159 * delalloc starts
7160 */
7161 em->len = min(hole_len, delalloc_start - hole_start);
7162 em->start = hole_start;
7163 em->orig_start = hole_start;
7164 /*
7165 * Don't adjust block start at all, it is fixed at
7166 * EXTENT_MAP_HOLE
7167 */
7168 em->block_start = hole_em->block_start;
7169 em->block_len = hole_len;
7170 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7171 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7172 } else {
7173 /*
7174 * Hole is out of passed range or it starts after
7175 * delalloc range
7176 */
7177 em->start = delalloc_start;
7178 em->len = delalloc_len;
7179 em->orig_start = delalloc_start;
7180 em->block_start = EXTENT_MAP_DELALLOC;
7181 em->block_len = delalloc_len;
7182 }
7183 } else {
7184 return hole_em;
7185 }
7186 out:
7187
7188 free_extent_map(hole_em);
7189 if (err) {
7190 free_extent_map(em);
7191 return ERR_PTR(err);
7192 }
7193 return em;
7194 }
7195
7196 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7197 const u64 start,
7198 const u64 len,
7199 const u64 orig_start,
7200 const u64 block_start,
7201 const u64 block_len,
7202 const u64 orig_block_len,
7203 const u64 ram_bytes,
7204 const int type)
7205 {
7206 struct extent_map *em = NULL;
7207 int ret;
7208
7209 if (type != BTRFS_ORDERED_NOCOW) {
7210 em = create_io_em(inode, start, len, orig_start, block_start,
7211 block_len, orig_block_len, ram_bytes,
7212 BTRFS_COMPRESS_NONE, /* compress_type */
7213 type);
7214 if (IS_ERR(em))
7215 goto out;
7216 }
7217 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7218 block_len, 0,
7219 (1 << type) |
7220 (1 << BTRFS_ORDERED_DIRECT),
7221 BTRFS_COMPRESS_NONE);
7222 if (ret) {
7223 if (em) {
7224 free_extent_map(em);
7225 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7226 }
7227 em = ERR_PTR(ret);
7228 }
7229 out:
7230
7231 return em;
7232 }
7233
7234 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7235 u64 start, u64 len)
7236 {
7237 struct btrfs_root *root = inode->root;
7238 struct btrfs_fs_info *fs_info = root->fs_info;
7239 struct extent_map *em;
7240 struct btrfs_key ins;
7241 u64 alloc_hint;
7242 int ret;
7243
7244 alloc_hint = get_extent_allocation_hint(inode, start, len);
7245 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7246 0, alloc_hint, &ins, 1, 1);
7247 if (ret)
7248 return ERR_PTR(ret);
7249
7250 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7251 ins.objectid, ins.offset, ins.offset,
7252 ins.offset, BTRFS_ORDERED_REGULAR);
7253 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7254 if (IS_ERR(em))
7255 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7256 1);
7257
7258 return em;
7259 }
7260
7261 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7262 {
7263 struct btrfs_block_group *block_group;
7264 bool readonly = false;
7265
7266 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7267 if (!block_group || block_group->ro)
7268 readonly = true;
7269 if (block_group)
7270 btrfs_put_block_group(block_group);
7271 return readonly;
7272 }
7273
7274 /*
7275 * Check if we can do nocow write into the range [@offset, @offset + @len)
7276 *
7277 * @offset: File offset
7278 * @len: The length to write, will be updated to the nocow writeable
7279 * range
7280 * @orig_start: (optional) Return the original file offset of the file extent
7281 * @orig_len: (optional) Return the original on-disk length of the file extent
7282 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7283 * @strict: if true, omit optimizations that might force us into unnecessary
7284 * cow. e.g., don't trust generation number.
7285 *
7286 * Return:
7287 * >0 and update @len if we can do nocow write
7288 * 0 if we can't do nocow write
7289 * <0 if error happened
7290 *
7291 * NOTE: This only checks the file extents, caller is responsible to wait for
7292 * any ordered extents.
7293 */
7294 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7295 u64 *orig_start, u64 *orig_block_len,
7296 u64 *ram_bytes, bool strict)
7297 {
7298 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7299 struct can_nocow_file_extent_args nocow_args = { 0 };
7300 struct btrfs_path *path;
7301 int ret;
7302 struct extent_buffer *leaf;
7303 struct btrfs_root *root = BTRFS_I(inode)->root;
7304 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7305 struct btrfs_file_extent_item *fi;
7306 struct btrfs_key key;
7307 int found_type;
7308
7309 path = btrfs_alloc_path();
7310 if (!path)
7311 return -ENOMEM;
7312
7313 ret = btrfs_lookup_file_extent(NULL, root, path,
7314 btrfs_ino(BTRFS_I(inode)), offset, 0);
7315 if (ret < 0)
7316 goto out;
7317
7318 if (ret == 1) {
7319 if (path->slots[0] == 0) {
7320 /* can't find the item, must cow */
7321 ret = 0;
7322 goto out;
7323 }
7324 path->slots[0]--;
7325 }
7326 ret = 0;
7327 leaf = path->nodes[0];
7328 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7329 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7330 key.type != BTRFS_EXTENT_DATA_KEY) {
7331 /* not our file or wrong item type, must cow */
7332 goto out;
7333 }
7334
7335 if (key.offset > offset) {
7336 /* Wrong offset, must cow */
7337 goto out;
7338 }
7339
7340 if (btrfs_file_extent_end(path) <= offset)
7341 goto out;
7342
7343 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7344 found_type = btrfs_file_extent_type(leaf, fi);
7345 if (ram_bytes)
7346 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7347
7348 nocow_args.start = offset;
7349 nocow_args.end = offset + *len - 1;
7350 nocow_args.strict = strict;
7351 nocow_args.free_path = true;
7352
7353 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7354 /* can_nocow_file_extent() has freed the path. */
7355 path = NULL;
7356
7357 if (ret != 1) {
7358 /* Treat errors as not being able to NOCOW. */
7359 ret = 0;
7360 goto out;
7361 }
7362
7363 ret = 0;
7364 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7365 goto out;
7366
7367 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7368 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7369 u64 range_end;
7370
7371 range_end = round_up(offset + nocow_args.num_bytes,
7372 root->fs_info->sectorsize) - 1;
7373 ret = test_range_bit(io_tree, offset, range_end,
7374 EXTENT_DELALLOC, 0, NULL);
7375 if (ret) {
7376 ret = -EAGAIN;
7377 goto out;
7378 }
7379 }
7380
7381 if (orig_start)
7382 *orig_start = key.offset - nocow_args.extent_offset;
7383 if (orig_block_len)
7384 *orig_block_len = nocow_args.disk_num_bytes;
7385
7386 *len = nocow_args.num_bytes;
7387 ret = 1;
7388 out:
7389 btrfs_free_path(path);
7390 return ret;
7391 }
7392
7393 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7394 struct extent_state **cached_state,
7395 unsigned int iomap_flags)
7396 {
7397 const bool writing = (iomap_flags & IOMAP_WRITE);
7398 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7399 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7400 struct btrfs_ordered_extent *ordered;
7401 int ret = 0;
7402
7403 while (1) {
7404 if (nowait) {
7405 if (!try_lock_extent(io_tree, lockstart, lockend))
7406 return -EAGAIN;
7407 } else {
7408 lock_extent_bits(io_tree, lockstart, lockend, cached_state);
7409 }
7410 /*
7411 * We're concerned with the entire range that we're going to be
7412 * doing DIO to, so we need to make sure there's no ordered
7413 * extents in this range.
7414 */
7415 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7416 lockend - lockstart + 1);
7417
7418 /*
7419 * We need to make sure there are no buffered pages in this
7420 * range either, we could have raced between the invalidate in
7421 * generic_file_direct_write and locking the extent. The
7422 * invalidate needs to happen so that reads after a write do not
7423 * get stale data.
7424 */
7425 if (!ordered &&
7426 (!writing || !filemap_range_has_page(inode->i_mapping,
7427 lockstart, lockend)))
7428 break;
7429
7430 unlock_extent_cached(io_tree, lockstart, lockend, cached_state);
7431
7432 if (ordered) {
7433 if (nowait) {
7434 btrfs_put_ordered_extent(ordered);
7435 ret = -EAGAIN;
7436 break;
7437 }
7438 /*
7439 * If we are doing a DIO read and the ordered extent we
7440 * found is for a buffered write, we can not wait for it
7441 * to complete and retry, because if we do so we can
7442 * deadlock with concurrent buffered writes on page
7443 * locks. This happens only if our DIO read covers more
7444 * than one extent map, if at this point has already
7445 * created an ordered extent for a previous extent map
7446 * and locked its range in the inode's io tree, and a
7447 * concurrent write against that previous extent map's
7448 * range and this range started (we unlock the ranges
7449 * in the io tree only when the bios complete and
7450 * buffered writes always lock pages before attempting
7451 * to lock range in the io tree).
7452 */
7453 if (writing ||
7454 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7455 btrfs_start_ordered_extent(ordered, 1);
7456 else
7457 ret = nowait ? -EAGAIN : -ENOTBLK;
7458 btrfs_put_ordered_extent(ordered);
7459 } else {
7460 /*
7461 * We could trigger writeback for this range (and wait
7462 * for it to complete) and then invalidate the pages for
7463 * this range (through invalidate_inode_pages2_range()),
7464 * but that can lead us to a deadlock with a concurrent
7465 * call to readahead (a buffered read or a defrag call
7466 * triggered a readahead) on a page lock due to an
7467 * ordered dio extent we created before but did not have
7468 * yet a corresponding bio submitted (whence it can not
7469 * complete), which makes readahead wait for that
7470 * ordered extent to complete while holding a lock on
7471 * that page.
7472 */
7473 ret = nowait ? -EAGAIN : -ENOTBLK;
7474 }
7475
7476 if (ret)
7477 break;
7478
7479 cond_resched();
7480 }
7481
7482 return ret;
7483 }
7484
7485 /* The callers of this must take lock_extent() */
7486 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7487 u64 len, u64 orig_start, u64 block_start,
7488 u64 block_len, u64 orig_block_len,
7489 u64 ram_bytes, int compress_type,
7490 int type)
7491 {
7492 struct extent_map_tree *em_tree;
7493 struct extent_map *em;
7494 int ret;
7495
7496 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7497 type == BTRFS_ORDERED_COMPRESSED ||
7498 type == BTRFS_ORDERED_NOCOW ||
7499 type == BTRFS_ORDERED_REGULAR);
7500
7501 em_tree = &inode->extent_tree;
7502 em = alloc_extent_map();
7503 if (!em)
7504 return ERR_PTR(-ENOMEM);
7505
7506 em->start = start;
7507 em->orig_start = orig_start;
7508 em->len = len;
7509 em->block_len = block_len;
7510 em->block_start = block_start;
7511 em->orig_block_len = orig_block_len;
7512 em->ram_bytes = ram_bytes;
7513 em->generation = -1;
7514 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7515 if (type == BTRFS_ORDERED_PREALLOC) {
7516 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7517 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7518 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7519 em->compress_type = compress_type;
7520 }
7521
7522 do {
7523 btrfs_drop_extent_cache(inode, em->start,
7524 em->start + em->len - 1, 0);
7525 write_lock(&em_tree->lock);
7526 ret = add_extent_mapping(em_tree, em, 1);
7527 write_unlock(&em_tree->lock);
7528 /*
7529 * The caller has taken lock_extent(), who could race with us
7530 * to add em?
7531 */
7532 } while (ret == -EEXIST);
7533
7534 if (ret) {
7535 free_extent_map(em);
7536 return ERR_PTR(ret);
7537 }
7538
7539 /* em got 2 refs now, callers needs to do free_extent_map once. */
7540 return em;
7541 }
7542
7543
7544 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7545 struct inode *inode,
7546 struct btrfs_dio_data *dio_data,
7547 u64 start, u64 len,
7548 unsigned int iomap_flags)
7549 {
7550 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7552 struct extent_map *em = *map;
7553 int type;
7554 u64 block_start, orig_start, orig_block_len, ram_bytes;
7555 struct btrfs_block_group *bg;
7556 bool can_nocow = false;
7557 bool space_reserved = false;
7558 u64 prev_len;
7559 int ret = 0;
7560
7561 /*
7562 * We don't allocate a new extent in the following cases
7563 *
7564 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7565 * existing extent.
7566 * 2) The extent is marked as PREALLOC. We're good to go here and can
7567 * just use the extent.
7568 *
7569 */
7570 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7571 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7572 em->block_start != EXTENT_MAP_HOLE)) {
7573 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7574 type = BTRFS_ORDERED_PREALLOC;
7575 else
7576 type = BTRFS_ORDERED_NOCOW;
7577 len = min(len, em->len - (start - em->start));
7578 block_start = em->block_start + (start - em->start);
7579
7580 if (can_nocow_extent(inode, start, &len, &orig_start,
7581 &orig_block_len, &ram_bytes, false) == 1) {
7582 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7583 if (bg)
7584 can_nocow = true;
7585 }
7586 }
7587
7588 prev_len = len;
7589 if (can_nocow) {
7590 struct extent_map *em2;
7591
7592 /* We can NOCOW, so only need to reserve metadata space. */
7593 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7594 nowait);
7595 if (ret < 0) {
7596 /* Our caller expects us to free the input extent map. */
7597 free_extent_map(em);
7598 *map = NULL;
7599 btrfs_dec_nocow_writers(bg);
7600 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7601 ret = -EAGAIN;
7602 goto out;
7603 }
7604 space_reserved = true;
7605
7606 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7607 orig_start, block_start,
7608 len, orig_block_len,
7609 ram_bytes, type);
7610 btrfs_dec_nocow_writers(bg);
7611 if (type == BTRFS_ORDERED_PREALLOC) {
7612 free_extent_map(em);
7613 *map = em2;
7614 em = em2;
7615 }
7616
7617 if (IS_ERR(em2)) {
7618 ret = PTR_ERR(em2);
7619 goto out;
7620 }
7621
7622 dio_data->nocow_done = true;
7623 } else {
7624 /* Our caller expects us to free the input extent map. */
7625 free_extent_map(em);
7626 *map = NULL;
7627
7628 if (nowait)
7629 return -EAGAIN;
7630
7631 /*
7632 * If we could not allocate data space before locking the file
7633 * range and we can't do a NOCOW write, then we have to fail.
7634 */
7635 if (!dio_data->data_space_reserved)
7636 return -ENOSPC;
7637
7638 /*
7639 * We have to COW and we have already reserved data space before,
7640 * so now we reserve only metadata.
7641 */
7642 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7643 false);
7644 if (ret < 0)
7645 goto out;
7646 space_reserved = true;
7647
7648 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7649 if (IS_ERR(em)) {
7650 ret = PTR_ERR(em);
7651 goto out;
7652 }
7653 *map = em;
7654 len = min(len, em->len - (start - em->start));
7655 if (len < prev_len)
7656 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7657 prev_len - len, true);
7658 }
7659
7660 /*
7661 * We have created our ordered extent, so we can now release our reservation
7662 * for an outstanding extent.
7663 */
7664 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7665
7666 /*
7667 * Need to update the i_size under the extent lock so buffered
7668 * readers will get the updated i_size when we unlock.
7669 */
7670 if (start + len > i_size_read(inode))
7671 i_size_write(inode, start + len);
7672 out:
7673 if (ret && space_reserved) {
7674 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7675 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7676 }
7677 return ret;
7678 }
7679
7680 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7681 loff_t length, unsigned int flags, struct iomap *iomap,
7682 struct iomap *srcmap)
7683 {
7684 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7685 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7686 struct extent_map *em;
7687 struct extent_state *cached_state = NULL;
7688 struct btrfs_dio_data *dio_data = iter->private;
7689 u64 lockstart, lockend;
7690 const bool write = !!(flags & IOMAP_WRITE);
7691 int ret = 0;
7692 u64 len = length;
7693 const u64 data_alloc_len = length;
7694 bool unlock_extents = false;
7695
7696 /*
7697 * Cap the size of reads to that usually seen in buffered I/O as we need
7698 * to allocate a contiguous array for the checksums.
7699 */
7700 if (!write)
7701 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7702
7703 lockstart = start;
7704 lockend = start + len - 1;
7705
7706 /*
7707 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7708 * enough if we've written compressed pages to this area, so we need to
7709 * flush the dirty pages again to make absolutely sure that any
7710 * outstanding dirty pages are on disk - the first flush only starts
7711 * compression on the data, while keeping the pages locked, so by the
7712 * time the second flush returns we know bios for the compressed pages
7713 * were submitted and finished, and the pages no longer under writeback.
7714 *
7715 * If we have a NOWAIT request and we have any pages in the range that
7716 * are locked, likely due to compression still in progress, we don't want
7717 * to block on page locks. We also don't want to block on pages marked as
7718 * dirty or under writeback (same as for the non-compression case).
7719 * iomap_dio_rw() did the same check, but after that and before we got
7720 * here, mmap'ed writes may have happened or buffered reads started
7721 * (readpage() and readahead(), which lock pages), as we haven't locked
7722 * the file range yet.
7723 */
7724 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7725 &BTRFS_I(inode)->runtime_flags)) {
7726 if (flags & IOMAP_NOWAIT) {
7727 if (filemap_range_needs_writeback(inode->i_mapping,
7728 lockstart, lockend))
7729 return -EAGAIN;
7730 } else {
7731 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7732 start + length - 1);
7733 if (ret)
7734 return ret;
7735 }
7736 }
7737
7738 memset(dio_data, 0, sizeof(*dio_data));
7739
7740 /*
7741 * We always try to allocate data space and must do it before locking
7742 * the file range, to avoid deadlocks with concurrent writes to the same
7743 * range if the range has several extents and the writes don't expand the
7744 * current i_size (the inode lock is taken in shared mode). If we fail to
7745 * allocate data space here we continue and later, after locking the
7746 * file range, we fail with ENOSPC only if we figure out we can not do a
7747 * NOCOW write.
7748 */
7749 if (write && !(flags & IOMAP_NOWAIT)) {
7750 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7751 &dio_data->data_reserved,
7752 start, data_alloc_len);
7753 if (!ret)
7754 dio_data->data_space_reserved = true;
7755 else if (ret && !(BTRFS_I(inode)->flags &
7756 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7757 goto err;
7758 }
7759
7760 /*
7761 * If this errors out it's because we couldn't invalidate pagecache for
7762 * this range and we need to fallback to buffered IO, or we are doing a
7763 * NOWAIT read/write and we need to block.
7764 */
7765 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7766 if (ret < 0)
7767 goto err;
7768
7769 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7770 if (IS_ERR(em)) {
7771 ret = PTR_ERR(em);
7772 goto unlock_err;
7773 }
7774
7775 /*
7776 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7777 * io. INLINE is special, and we could probably kludge it in here, but
7778 * it's still buffered so for safety lets just fall back to the generic
7779 * buffered path.
7780 *
7781 * For COMPRESSED we _have_ to read the entire extent in so we can
7782 * decompress it, so there will be buffering required no matter what we
7783 * do, so go ahead and fallback to buffered.
7784 *
7785 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7786 * to buffered IO. Don't blame me, this is the price we pay for using
7787 * the generic code.
7788 */
7789 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7790 em->block_start == EXTENT_MAP_INLINE) {
7791 free_extent_map(em);
7792 /*
7793 * If we are in a NOWAIT context, return -EAGAIN in order to
7794 * fallback to buffered IO. This is not only because we can
7795 * block with buffered IO (no support for NOWAIT semantics at
7796 * the moment) but also to avoid returning short reads to user
7797 * space - this happens if we were able to read some data from
7798 * previous non-compressed extents and then when we fallback to
7799 * buffered IO, at btrfs_file_read_iter() by calling
7800 * filemap_read(), we fail to fault in pages for the read buffer,
7801 * in which case filemap_read() returns a short read (the number
7802 * of bytes previously read is > 0, so it does not return -EFAULT).
7803 */
7804 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7805 goto unlock_err;
7806 }
7807
7808 len = min(len, em->len - (start - em->start));
7809
7810 /*
7811 * If we have a NOWAIT request and the range contains multiple extents
7812 * (or a mix of extents and holes), then we return -EAGAIN to make the
7813 * caller fallback to a context where it can do a blocking (without
7814 * NOWAIT) request. This way we avoid doing partial IO and returning
7815 * success to the caller, which is not optimal for writes and for reads
7816 * it can result in unexpected behaviour for an application.
7817 *
7818 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7819 * iomap_dio_rw(), we can end up returning less data then what the caller
7820 * asked for, resulting in an unexpected, and incorrect, short read.
7821 * That is, the caller asked to read N bytes and we return less than that,
7822 * which is wrong unless we are crossing EOF. This happens if we get a
7823 * page fault error when trying to fault in pages for the buffer that is
7824 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7825 * have previously submitted bios for other extents in the range, in
7826 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7827 * those bios have completed by the time we get the page fault error,
7828 * which we return back to our caller - we should only return EIOCBQUEUED
7829 * after we have submitted bios for all the extents in the range.
7830 */
7831 if ((flags & IOMAP_NOWAIT) && len < length) {
7832 free_extent_map(em);
7833 ret = -EAGAIN;
7834 goto unlock_err;
7835 }
7836
7837 if (write) {
7838 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7839 start, len, flags);
7840 if (ret < 0)
7841 goto unlock_err;
7842 unlock_extents = true;
7843 /* Recalc len in case the new em is smaller than requested */
7844 len = min(len, em->len - (start - em->start));
7845 if (dio_data->data_space_reserved) {
7846 u64 release_offset;
7847 u64 release_len = 0;
7848
7849 if (dio_data->nocow_done) {
7850 release_offset = start;
7851 release_len = data_alloc_len;
7852 } else if (len < data_alloc_len) {
7853 release_offset = start + len;
7854 release_len = data_alloc_len - len;
7855 }
7856
7857 if (release_len > 0)
7858 btrfs_free_reserved_data_space(BTRFS_I(inode),
7859 dio_data->data_reserved,
7860 release_offset,
7861 release_len);
7862 }
7863 } else {
7864 /*
7865 * We need to unlock only the end area that we aren't using.
7866 * The rest is going to be unlocked by the endio routine.
7867 */
7868 lockstart = start + len;
7869 if (lockstart < lockend)
7870 unlock_extents = true;
7871 }
7872
7873 if (unlock_extents)
7874 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7875 lockstart, lockend, &cached_state);
7876 else
7877 free_extent_state(cached_state);
7878
7879 /*
7880 * Translate extent map information to iomap.
7881 * We trim the extents (and move the addr) even though iomap code does
7882 * that, since we have locked only the parts we are performing I/O in.
7883 */
7884 if ((em->block_start == EXTENT_MAP_HOLE) ||
7885 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7886 iomap->addr = IOMAP_NULL_ADDR;
7887 iomap->type = IOMAP_HOLE;
7888 } else {
7889 iomap->addr = em->block_start + (start - em->start);
7890 iomap->type = IOMAP_MAPPED;
7891 }
7892 iomap->offset = start;
7893 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7894 iomap->length = len;
7895
7896 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7897 iomap->flags |= IOMAP_F_ZONE_APPEND;
7898
7899 free_extent_map(em);
7900
7901 return 0;
7902
7903 unlock_err:
7904 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7905 &cached_state);
7906 err:
7907 if (dio_data->data_space_reserved) {
7908 btrfs_free_reserved_data_space(BTRFS_I(inode),
7909 dio_data->data_reserved,
7910 start, data_alloc_len);
7911 extent_changeset_free(dio_data->data_reserved);
7912 }
7913
7914 return ret;
7915 }
7916
7917 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7918 ssize_t written, unsigned int flags, struct iomap *iomap)
7919 {
7920 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7921 struct btrfs_dio_data *dio_data = iter->private;
7922 size_t submitted = dio_data->submitted;
7923 const bool write = !!(flags & IOMAP_WRITE);
7924 int ret = 0;
7925
7926 if (!write && (iomap->type == IOMAP_HOLE)) {
7927 /* If reading from a hole, unlock and return */
7928 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7929 return 0;
7930 }
7931
7932 if (submitted < length) {
7933 pos += submitted;
7934 length -= submitted;
7935 if (write)
7936 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
7937 pos, length, false);
7938 else
7939 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7940 pos + length - 1);
7941 ret = -ENOTBLK;
7942 }
7943
7944 if (write)
7945 extent_changeset_free(dio_data->data_reserved);
7946 return ret;
7947 }
7948
7949 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7950 {
7951 /*
7952 * This implies a barrier so that stores to dio_bio->bi_status before
7953 * this and loads of dio_bio->bi_status after this are fully ordered.
7954 */
7955 if (!refcount_dec_and_test(&dip->refs))
7956 return;
7957
7958 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7959 btrfs_mark_ordered_io_finished(BTRFS_I(dip->inode), NULL,
7960 dip->file_offset, dip->bytes,
7961 !dip->bio.bi_status);
7962 } else {
7963 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7964 dip->file_offset,
7965 dip->file_offset + dip->bytes - 1);
7966 }
7967
7968 kfree(dip->csums);
7969 bio_endio(&dip->bio);
7970 }
7971
7972 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7973 int mirror_num,
7974 enum btrfs_compression_type compress_type)
7975 {
7976 struct btrfs_dio_private *dip = bio->bi_private;
7977 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7978
7979 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7980
7981 refcount_inc(&dip->refs);
7982 btrfs_submit_bio(fs_info, bio, mirror_num);
7983 }
7984
7985 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7986 struct btrfs_bio *bbio,
7987 const bool uptodate)
7988 {
7989 struct inode *inode = dip->inode;
7990 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7991 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7992 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7993 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7994 blk_status_t err = BLK_STS_OK;
7995 struct bvec_iter iter;
7996 struct bio_vec bv;
7997 u32 offset;
7998
7999 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
8000 u64 start = bbio->file_offset + offset;
8001
8002 if (uptodate &&
8003 (!csum || !btrfs_check_data_csum(inode, bbio, offset, bv.bv_page,
8004 bv.bv_offset))) {
8005 clean_io_failure(fs_info, failure_tree, io_tree, start,
8006 bv.bv_page, btrfs_ino(BTRFS_I(inode)),
8007 bv.bv_offset);
8008 } else {
8009 int ret;
8010
8011 ret = btrfs_repair_one_sector(inode, bbio, offset,
8012 bv.bv_page, bv.bv_offset,
8013 submit_dio_repair_bio);
8014 if (ret)
8015 err = errno_to_blk_status(ret);
8016 }
8017 }
8018
8019 return err;
8020 }
8021
8022 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8023 struct bio *bio,
8024 u64 dio_file_offset)
8025 {
8026 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
8027 }
8028
8029 static void btrfs_end_dio_bio(struct bio *bio)
8030 {
8031 struct btrfs_dio_private *dip = bio->bi_private;
8032 struct btrfs_bio *bbio = btrfs_bio(bio);
8033 blk_status_t err = bio->bi_status;
8034
8035 if (err)
8036 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8037 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8038 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8039 bio->bi_opf, bio->bi_iter.bi_sector,
8040 bio->bi_iter.bi_size, err);
8041
8042 if (bio_op(bio) == REQ_OP_READ)
8043 err = btrfs_check_read_dio_bio(dip, bbio, !err);
8044
8045 if (err)
8046 dip->bio.bi_status = err;
8047
8048 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
8049
8050 bio_put(bio);
8051 btrfs_dio_private_put(dip);
8052 }
8053
8054 static void btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8055 u64 file_offset, int async_submit)
8056 {
8057 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8058 struct btrfs_dio_private *dip = bio->bi_private;
8059 blk_status_t ret;
8060
8061 /* Save the original iter for read repair */
8062 if (btrfs_op(bio) == BTRFS_MAP_READ)
8063 btrfs_bio(bio)->iter = bio->bi_iter;
8064
8065 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8066 goto map;
8067
8068 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
8069 /* Check btrfs_submit_data_write_bio() for async submit rules */
8070 if (async_submit && !atomic_read(&BTRFS_I(inode)->sync_writers) &&
8071 btrfs_wq_submit_bio(inode, bio, 0, file_offset,
8072 btrfs_submit_bio_start_direct_io))
8073 return;
8074
8075 /*
8076 * If we aren't doing async submit, calculate the csum of the
8077 * bio now.
8078 */
8079 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
8080 if (ret) {
8081 bio->bi_status = ret;
8082 bio_endio(bio);
8083 return;
8084 }
8085 } else {
8086 btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums,
8087 file_offset - dip->file_offset);
8088 }
8089 map:
8090 btrfs_submit_bio(fs_info, bio, 0);
8091 }
8092
8093 static void btrfs_submit_direct(const struct iomap_iter *iter,
8094 struct bio *dio_bio, loff_t file_offset)
8095 {
8096 struct btrfs_dio_private *dip =
8097 container_of(dio_bio, struct btrfs_dio_private, bio);
8098 struct inode *inode = iter->inode;
8099 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8100 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8101 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8102 BTRFS_BLOCK_GROUP_RAID56_MASK);
8103 struct bio *bio;
8104 u64 start_sector;
8105 int async_submit = 0;
8106 u64 submit_len;
8107 u64 clone_offset = 0;
8108 u64 clone_len;
8109 u64 logical;
8110 int ret;
8111 blk_status_t status;
8112 struct btrfs_io_geometry geom;
8113 struct btrfs_dio_data *dio_data = iter->private;
8114 struct extent_map *em = NULL;
8115
8116 dip->inode = inode;
8117 dip->file_offset = file_offset;
8118 dip->bytes = dio_bio->bi_iter.bi_size;
8119 refcount_set(&dip->refs, 1);
8120 dip->csums = NULL;
8121
8122 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8123 unsigned int nr_sectors =
8124 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8125
8126 /*
8127 * Load the csums up front to reduce csum tree searches and
8128 * contention when submitting bios.
8129 */
8130 status = BLK_STS_RESOURCE;
8131 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8132 if (!dip)
8133 goto out_err;
8134
8135 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8136 if (status != BLK_STS_OK)
8137 goto out_err;
8138 }
8139
8140 start_sector = dio_bio->bi_iter.bi_sector;
8141 submit_len = dio_bio->bi_iter.bi_size;
8142
8143 do {
8144 logical = start_sector << 9;
8145 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8146 if (IS_ERR(em)) {
8147 status = errno_to_blk_status(PTR_ERR(em));
8148 em = NULL;
8149 goto out_err_em;
8150 }
8151 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8152 logical, &geom);
8153 if (ret) {
8154 status = errno_to_blk_status(ret);
8155 goto out_err_em;
8156 }
8157
8158 clone_len = min(submit_len, geom.len);
8159 ASSERT(clone_len <= UINT_MAX);
8160
8161 /*
8162 * This will never fail as it's passing GPF_NOFS and
8163 * the allocation is backed by btrfs_bioset.
8164 */
8165 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8166 bio->bi_private = dip;
8167 bio->bi_end_io = btrfs_end_dio_bio;
8168 btrfs_bio(bio)->file_offset = file_offset;
8169
8170 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8171 status = extract_ordered_extent(BTRFS_I(inode), bio,
8172 file_offset);
8173 if (status) {
8174 bio_put(bio);
8175 goto out_err;
8176 }
8177 }
8178
8179 ASSERT(submit_len >= clone_len);
8180 submit_len -= clone_len;
8181
8182 /*
8183 * Increase the count before we submit the bio so we know
8184 * the end IO handler won't happen before we increase the
8185 * count. Otherwise, the dip might get freed before we're
8186 * done setting it up.
8187 *
8188 * We transfer the initial reference to the last bio, so we
8189 * don't need to increment the reference count for the last one.
8190 */
8191 if (submit_len > 0) {
8192 refcount_inc(&dip->refs);
8193 /*
8194 * If we are submitting more than one bio, submit them
8195 * all asynchronously. The exception is RAID 5 or 6, as
8196 * asynchronous checksums make it difficult to collect
8197 * full stripe writes.
8198 */
8199 if (!raid56)
8200 async_submit = 1;
8201 }
8202
8203 btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8204
8205 dio_data->submitted += clone_len;
8206 clone_offset += clone_len;
8207 start_sector += clone_len >> 9;
8208 file_offset += clone_len;
8209
8210 free_extent_map(em);
8211 } while (submit_len > 0);
8212 return;
8213
8214 out_err_em:
8215 free_extent_map(em);
8216 out_err:
8217 dio_bio->bi_status = status;
8218 btrfs_dio_private_put(dip);
8219 }
8220
8221 static const struct iomap_ops btrfs_dio_iomap_ops = {
8222 .iomap_begin = btrfs_dio_iomap_begin,
8223 .iomap_end = btrfs_dio_iomap_end,
8224 };
8225
8226 static const struct iomap_dio_ops btrfs_dio_ops = {
8227 .submit_io = btrfs_submit_direct,
8228 .bio_set = &btrfs_dio_bioset,
8229 };
8230
8231 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8232 {
8233 struct btrfs_dio_data data;
8234
8235 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8236 IOMAP_DIO_PARTIAL | IOMAP_DIO_NOSYNC,
8237 &data, done_before);
8238 }
8239
8240 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8241 u64 start, u64 len)
8242 {
8243 int ret;
8244
8245 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8246 if (ret)
8247 return ret;
8248
8249 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8250 }
8251
8252 static int btrfs_writepages(struct address_space *mapping,
8253 struct writeback_control *wbc)
8254 {
8255 return extent_writepages(mapping, wbc);
8256 }
8257
8258 static void btrfs_readahead(struct readahead_control *rac)
8259 {
8260 extent_readahead(rac);
8261 }
8262
8263 /*
8264 * For release_folio() and invalidate_folio() we have a race window where
8265 * folio_end_writeback() is called but the subpage spinlock is not yet released.
8266 * If we continue to release/invalidate the page, we could cause use-after-free
8267 * for subpage spinlock. So this function is to spin and wait for subpage
8268 * spinlock.
8269 */
8270 static void wait_subpage_spinlock(struct page *page)
8271 {
8272 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8273 struct btrfs_subpage *subpage;
8274
8275 if (!btrfs_is_subpage(fs_info, page))
8276 return;
8277
8278 ASSERT(PagePrivate(page) && page->private);
8279 subpage = (struct btrfs_subpage *)page->private;
8280
8281 /*
8282 * This may look insane as we just acquire the spinlock and release it,
8283 * without doing anything. But we just want to make sure no one is
8284 * still holding the subpage spinlock.
8285 * And since the page is not dirty nor writeback, and we have page
8286 * locked, the only possible way to hold a spinlock is from the endio
8287 * function to clear page writeback.
8288 *
8289 * Here we just acquire the spinlock so that all existing callers
8290 * should exit and we're safe to release/invalidate the page.
8291 */
8292 spin_lock_irq(&subpage->lock);
8293 spin_unlock_irq(&subpage->lock);
8294 }
8295
8296 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8297 {
8298 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8299
8300 if (ret == 1) {
8301 wait_subpage_spinlock(&folio->page);
8302 clear_page_extent_mapped(&folio->page);
8303 }
8304 return ret;
8305 }
8306
8307 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8308 {
8309 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8310 return false;
8311 return __btrfs_release_folio(folio, gfp_flags);
8312 }
8313
8314 #ifdef CONFIG_MIGRATION
8315 static int btrfs_migrate_folio(struct address_space *mapping,
8316 struct folio *dst, struct folio *src,
8317 enum migrate_mode mode)
8318 {
8319 int ret = filemap_migrate_folio(mapping, dst, src, mode);
8320
8321 if (ret != MIGRATEPAGE_SUCCESS)
8322 return ret;
8323
8324 if (folio_test_ordered(src)) {
8325 folio_clear_ordered(src);
8326 folio_set_ordered(dst);
8327 }
8328
8329 return MIGRATEPAGE_SUCCESS;
8330 }
8331 #else
8332 #define btrfs_migrate_folio NULL
8333 #endif
8334
8335 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8336 size_t length)
8337 {
8338 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8339 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8340 struct extent_io_tree *tree = &inode->io_tree;
8341 struct extent_state *cached_state = NULL;
8342 u64 page_start = folio_pos(folio);
8343 u64 page_end = page_start + folio_size(folio) - 1;
8344 u64 cur;
8345 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8346
8347 /*
8348 * We have folio locked so no new ordered extent can be created on this
8349 * page, nor bio can be submitted for this folio.
8350 *
8351 * But already submitted bio can still be finished on this folio.
8352 * Furthermore, endio function won't skip folio which has Ordered
8353 * (Private2) already cleared, so it's possible for endio and
8354 * invalidate_folio to do the same ordered extent accounting twice
8355 * on one folio.
8356 *
8357 * So here we wait for any submitted bios to finish, so that we won't
8358 * do double ordered extent accounting on the same folio.
8359 */
8360 folio_wait_writeback(folio);
8361 wait_subpage_spinlock(&folio->page);
8362
8363 /*
8364 * For subpage case, we have call sites like
8365 * btrfs_punch_hole_lock_range() which passes range not aligned to
8366 * sectorsize.
8367 * If the range doesn't cover the full folio, we don't need to and
8368 * shouldn't clear page extent mapped, as folio->private can still
8369 * record subpage dirty bits for other part of the range.
8370 *
8371 * For cases that invalidate the full folio even the range doesn't
8372 * cover the full folio, like invalidating the last folio, we're
8373 * still safe to wait for ordered extent to finish.
8374 */
8375 if (!(offset == 0 && length == folio_size(folio))) {
8376 btrfs_release_folio(folio, GFP_NOFS);
8377 return;
8378 }
8379
8380 if (!inode_evicting)
8381 lock_extent_bits(tree, page_start, page_end, &cached_state);
8382
8383 cur = page_start;
8384 while (cur < page_end) {
8385 struct btrfs_ordered_extent *ordered;
8386 bool delete_states;
8387 u64 range_end;
8388 u32 range_len;
8389
8390 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8391 page_end + 1 - cur);
8392 if (!ordered) {
8393 range_end = page_end;
8394 /*
8395 * No ordered extent covering this range, we are safe
8396 * to delete all extent states in the range.
8397 */
8398 delete_states = true;
8399 goto next;
8400 }
8401 if (ordered->file_offset > cur) {
8402 /*
8403 * There is a range between [cur, oe->file_offset) not
8404 * covered by any ordered extent.
8405 * We are safe to delete all extent states, and handle
8406 * the ordered extent in the next iteration.
8407 */
8408 range_end = ordered->file_offset - 1;
8409 delete_states = true;
8410 goto next;
8411 }
8412
8413 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8414 page_end);
8415 ASSERT(range_end + 1 - cur < U32_MAX);
8416 range_len = range_end + 1 - cur;
8417 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8418 /*
8419 * If Ordered (Private2) is cleared, it means endio has
8420 * already been executed for the range.
8421 * We can't delete the extent states as
8422 * btrfs_finish_ordered_io() may still use some of them.
8423 */
8424 delete_states = false;
8425 goto next;
8426 }
8427 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8428
8429 /*
8430 * IO on this page will never be started, so we need to account
8431 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8432 * here, must leave that up for the ordered extent completion.
8433 *
8434 * This will also unlock the range for incoming
8435 * btrfs_finish_ordered_io().
8436 */
8437 if (!inode_evicting)
8438 clear_extent_bit(tree, cur, range_end,
8439 EXTENT_DELALLOC |
8440 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8441 EXTENT_DEFRAG, 1, 0, &cached_state);
8442
8443 spin_lock_irq(&inode->ordered_tree.lock);
8444 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8445 ordered->truncated_len = min(ordered->truncated_len,
8446 cur - ordered->file_offset);
8447 spin_unlock_irq(&inode->ordered_tree.lock);
8448
8449 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8450 cur, range_end + 1 - cur)) {
8451 btrfs_finish_ordered_io(ordered);
8452 /*
8453 * The ordered extent has finished, now we're again
8454 * safe to delete all extent states of the range.
8455 */
8456 delete_states = true;
8457 } else {
8458 /*
8459 * btrfs_finish_ordered_io() will get executed by endio
8460 * of other pages, thus we can't delete extent states
8461 * anymore
8462 */
8463 delete_states = false;
8464 }
8465 next:
8466 if (ordered)
8467 btrfs_put_ordered_extent(ordered);
8468 /*
8469 * Qgroup reserved space handler
8470 * Sector(s) here will be either:
8471 *
8472 * 1) Already written to disk or bio already finished
8473 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8474 * Qgroup will be handled by its qgroup_record then.
8475 * btrfs_qgroup_free_data() call will do nothing here.
8476 *
8477 * 2) Not written to disk yet
8478 * Then btrfs_qgroup_free_data() call will clear the
8479 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8480 * reserved data space.
8481 * Since the IO will never happen for this page.
8482 */
8483 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8484 if (!inode_evicting) {
8485 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8486 EXTENT_DELALLOC | EXTENT_UPTODATE |
8487 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8488 delete_states, &cached_state);
8489 }
8490 cur = range_end + 1;
8491 }
8492 /*
8493 * We have iterated through all ordered extents of the page, the page
8494 * should not have Ordered (Private2) anymore, or the above iteration
8495 * did something wrong.
8496 */
8497 ASSERT(!folio_test_ordered(folio));
8498 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8499 if (!inode_evicting)
8500 __btrfs_release_folio(folio, GFP_NOFS);
8501 clear_page_extent_mapped(&folio->page);
8502 }
8503
8504 /*
8505 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8506 * called from a page fault handler when a page is first dirtied. Hence we must
8507 * be careful to check for EOF conditions here. We set the page up correctly
8508 * for a written page which means we get ENOSPC checking when writing into
8509 * holes and correct delalloc and unwritten extent mapping on filesystems that
8510 * support these features.
8511 *
8512 * We are not allowed to take the i_mutex here so we have to play games to
8513 * protect against truncate races as the page could now be beyond EOF. Because
8514 * truncate_setsize() writes the inode size before removing pages, once we have
8515 * the page lock we can determine safely if the page is beyond EOF. If it is not
8516 * beyond EOF, then the page is guaranteed safe against truncation until we
8517 * unlock the page.
8518 */
8519 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8520 {
8521 struct page *page = vmf->page;
8522 struct inode *inode = file_inode(vmf->vma->vm_file);
8523 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8524 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8525 struct btrfs_ordered_extent *ordered;
8526 struct extent_state *cached_state = NULL;
8527 struct extent_changeset *data_reserved = NULL;
8528 unsigned long zero_start;
8529 loff_t size;
8530 vm_fault_t ret;
8531 int ret2;
8532 int reserved = 0;
8533 u64 reserved_space;
8534 u64 page_start;
8535 u64 page_end;
8536 u64 end;
8537
8538 reserved_space = PAGE_SIZE;
8539
8540 sb_start_pagefault(inode->i_sb);
8541 page_start = page_offset(page);
8542 page_end = page_start + PAGE_SIZE - 1;
8543 end = page_end;
8544
8545 /*
8546 * Reserving delalloc space after obtaining the page lock can lead to
8547 * deadlock. For example, if a dirty page is locked by this function
8548 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8549 * dirty page write out, then the btrfs_writepages() function could
8550 * end up waiting indefinitely to get a lock on the page currently
8551 * being processed by btrfs_page_mkwrite() function.
8552 */
8553 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8554 page_start, reserved_space);
8555 if (!ret2) {
8556 ret2 = file_update_time(vmf->vma->vm_file);
8557 reserved = 1;
8558 }
8559 if (ret2) {
8560 ret = vmf_error(ret2);
8561 if (reserved)
8562 goto out;
8563 goto out_noreserve;
8564 }
8565
8566 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8567 again:
8568 down_read(&BTRFS_I(inode)->i_mmap_lock);
8569 lock_page(page);
8570 size = i_size_read(inode);
8571
8572 if ((page->mapping != inode->i_mapping) ||
8573 (page_start >= size)) {
8574 /* page got truncated out from underneath us */
8575 goto out_unlock;
8576 }
8577 wait_on_page_writeback(page);
8578
8579 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8580 ret2 = set_page_extent_mapped(page);
8581 if (ret2 < 0) {
8582 ret = vmf_error(ret2);
8583 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8584 goto out_unlock;
8585 }
8586
8587 /*
8588 * we can't set the delalloc bits if there are pending ordered
8589 * extents. Drop our locks and wait for them to finish
8590 */
8591 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8592 PAGE_SIZE);
8593 if (ordered) {
8594 unlock_extent_cached(io_tree, page_start, page_end,
8595 &cached_state);
8596 unlock_page(page);
8597 up_read(&BTRFS_I(inode)->i_mmap_lock);
8598 btrfs_start_ordered_extent(ordered, 1);
8599 btrfs_put_ordered_extent(ordered);
8600 goto again;
8601 }
8602
8603 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8604 reserved_space = round_up(size - page_start,
8605 fs_info->sectorsize);
8606 if (reserved_space < PAGE_SIZE) {
8607 end = page_start + reserved_space - 1;
8608 btrfs_delalloc_release_space(BTRFS_I(inode),
8609 data_reserved, page_start,
8610 PAGE_SIZE - reserved_space, true);
8611 }
8612 }
8613
8614 /*
8615 * page_mkwrite gets called when the page is firstly dirtied after it's
8616 * faulted in, but write(2) could also dirty a page and set delalloc
8617 * bits, thus in this case for space account reason, we still need to
8618 * clear any delalloc bits within this page range since we have to
8619 * reserve data&meta space before lock_page() (see above comments).
8620 */
8621 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8622 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8623 EXTENT_DEFRAG, 0, 0, &cached_state);
8624
8625 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8626 &cached_state);
8627 if (ret2) {
8628 unlock_extent_cached(io_tree, page_start, page_end,
8629 &cached_state);
8630 ret = VM_FAULT_SIGBUS;
8631 goto out_unlock;
8632 }
8633
8634 /* page is wholly or partially inside EOF */
8635 if (page_start + PAGE_SIZE > size)
8636 zero_start = offset_in_page(size);
8637 else
8638 zero_start = PAGE_SIZE;
8639
8640 if (zero_start != PAGE_SIZE)
8641 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8642
8643 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8644 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8645 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8646
8647 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8648
8649 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8650 up_read(&BTRFS_I(inode)->i_mmap_lock);
8651
8652 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8653 sb_end_pagefault(inode->i_sb);
8654 extent_changeset_free(data_reserved);
8655 return VM_FAULT_LOCKED;
8656
8657 out_unlock:
8658 unlock_page(page);
8659 up_read(&BTRFS_I(inode)->i_mmap_lock);
8660 out:
8661 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8662 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8663 reserved_space, (ret != 0));
8664 out_noreserve:
8665 sb_end_pagefault(inode->i_sb);
8666 extent_changeset_free(data_reserved);
8667 return ret;
8668 }
8669
8670 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8671 {
8672 struct btrfs_truncate_control control = {
8673 .inode = BTRFS_I(inode),
8674 .ino = btrfs_ino(BTRFS_I(inode)),
8675 .min_type = BTRFS_EXTENT_DATA_KEY,
8676 .clear_extent_range = true,
8677 };
8678 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8679 struct btrfs_root *root = BTRFS_I(inode)->root;
8680 struct btrfs_block_rsv *rsv;
8681 int ret;
8682 struct btrfs_trans_handle *trans;
8683 u64 mask = fs_info->sectorsize - 1;
8684 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8685
8686 if (!skip_writeback) {
8687 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8688 (u64)-1);
8689 if (ret)
8690 return ret;
8691 }
8692
8693 /*
8694 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8695 * things going on here:
8696 *
8697 * 1) We need to reserve space to update our inode.
8698 *
8699 * 2) We need to have something to cache all the space that is going to
8700 * be free'd up by the truncate operation, but also have some slack
8701 * space reserved in case it uses space during the truncate (thank you
8702 * very much snapshotting).
8703 *
8704 * And we need these to be separate. The fact is we can use a lot of
8705 * space doing the truncate, and we have no earthly idea how much space
8706 * we will use, so we need the truncate reservation to be separate so it
8707 * doesn't end up using space reserved for updating the inode. We also
8708 * need to be able to stop the transaction and start a new one, which
8709 * means we need to be able to update the inode several times, and we
8710 * have no idea of knowing how many times that will be, so we can't just
8711 * reserve 1 item for the entirety of the operation, so that has to be
8712 * done separately as well.
8713 *
8714 * So that leaves us with
8715 *
8716 * 1) rsv - for the truncate reservation, which we will steal from the
8717 * transaction reservation.
8718 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8719 * updating the inode.
8720 */
8721 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8722 if (!rsv)
8723 return -ENOMEM;
8724 rsv->size = min_size;
8725 rsv->failfast = true;
8726
8727 /*
8728 * 1 for the truncate slack space
8729 * 1 for updating the inode.
8730 */
8731 trans = btrfs_start_transaction(root, 2);
8732 if (IS_ERR(trans)) {
8733 ret = PTR_ERR(trans);
8734 goto out;
8735 }
8736
8737 /* Migrate the slack space for the truncate to our reserve */
8738 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8739 min_size, false);
8740 BUG_ON(ret);
8741
8742 trans->block_rsv = rsv;
8743
8744 while (1) {
8745 struct extent_state *cached_state = NULL;
8746 const u64 new_size = inode->i_size;
8747 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8748
8749 control.new_size = new_size;
8750 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8751 &cached_state);
8752 /*
8753 * We want to drop from the next block forward in case this new
8754 * size is not block aligned since we will be keeping the last
8755 * block of the extent just the way it is.
8756 */
8757 btrfs_drop_extent_cache(BTRFS_I(inode),
8758 ALIGN(new_size, fs_info->sectorsize),
8759 (u64)-1, 0);
8760
8761 ret = btrfs_truncate_inode_items(trans, root, &control);
8762
8763 inode_sub_bytes(inode, control.sub_bytes);
8764 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8765
8766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8767 (u64)-1, &cached_state);
8768
8769 trans->block_rsv = &fs_info->trans_block_rsv;
8770 if (ret != -ENOSPC && ret != -EAGAIN)
8771 break;
8772
8773 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8774 if (ret)
8775 break;
8776
8777 btrfs_end_transaction(trans);
8778 btrfs_btree_balance_dirty(fs_info);
8779
8780 trans = btrfs_start_transaction(root, 2);
8781 if (IS_ERR(trans)) {
8782 ret = PTR_ERR(trans);
8783 trans = NULL;
8784 break;
8785 }
8786
8787 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8788 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8789 rsv, min_size, false);
8790 BUG_ON(ret); /* shouldn't happen */
8791 trans->block_rsv = rsv;
8792 }
8793
8794 /*
8795 * We can't call btrfs_truncate_block inside a trans handle as we could
8796 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8797 * know we've truncated everything except the last little bit, and can
8798 * do btrfs_truncate_block and then update the disk_i_size.
8799 */
8800 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8801 btrfs_end_transaction(trans);
8802 btrfs_btree_balance_dirty(fs_info);
8803
8804 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8805 if (ret)
8806 goto out;
8807 trans = btrfs_start_transaction(root, 1);
8808 if (IS_ERR(trans)) {
8809 ret = PTR_ERR(trans);
8810 goto out;
8811 }
8812 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8813 }
8814
8815 if (trans) {
8816 int ret2;
8817
8818 trans->block_rsv = &fs_info->trans_block_rsv;
8819 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8820 if (ret2 && !ret)
8821 ret = ret2;
8822
8823 ret2 = btrfs_end_transaction(trans);
8824 if (ret2 && !ret)
8825 ret = ret2;
8826 btrfs_btree_balance_dirty(fs_info);
8827 }
8828 out:
8829 btrfs_free_block_rsv(fs_info, rsv);
8830 /*
8831 * So if we truncate and then write and fsync we normally would just
8832 * write the extents that changed, which is a problem if we need to
8833 * first truncate that entire inode. So set this flag so we write out
8834 * all of the extents in the inode to the sync log so we're completely
8835 * safe.
8836 *
8837 * If no extents were dropped or trimmed we don't need to force the next
8838 * fsync to truncate all the inode's items from the log and re-log them
8839 * all. This means the truncate operation did not change the file size,
8840 * or changed it to a smaller size but there was only an implicit hole
8841 * between the old i_size and the new i_size, and there were no prealloc
8842 * extents beyond i_size to drop.
8843 */
8844 if (control.extents_found > 0)
8845 btrfs_set_inode_full_sync(BTRFS_I(inode));
8846
8847 return ret;
8848 }
8849
8850 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8851 struct inode *dir)
8852 {
8853 struct inode *inode;
8854
8855 inode = new_inode(dir->i_sb);
8856 if (inode) {
8857 /*
8858 * Subvolumes don't inherit the sgid bit or the parent's gid if
8859 * the parent's sgid bit is set. This is probably a bug.
8860 */
8861 inode_init_owner(mnt_userns, inode, NULL,
8862 S_IFDIR | (~current_umask() & S_IRWXUGO));
8863 inode->i_op = &btrfs_dir_inode_operations;
8864 inode->i_fop = &btrfs_dir_file_operations;
8865 }
8866 return inode;
8867 }
8868
8869 struct inode *btrfs_alloc_inode(struct super_block *sb)
8870 {
8871 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8872 struct btrfs_inode *ei;
8873 struct inode *inode;
8874
8875 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8876 if (!ei)
8877 return NULL;
8878
8879 ei->root = NULL;
8880 ei->generation = 0;
8881 ei->last_trans = 0;
8882 ei->last_sub_trans = 0;
8883 ei->logged_trans = 0;
8884 ei->delalloc_bytes = 0;
8885 ei->new_delalloc_bytes = 0;
8886 ei->defrag_bytes = 0;
8887 ei->disk_i_size = 0;
8888 ei->flags = 0;
8889 ei->ro_flags = 0;
8890 ei->csum_bytes = 0;
8891 ei->index_cnt = (u64)-1;
8892 ei->dir_index = 0;
8893 ei->last_unlink_trans = 0;
8894 ei->last_reflink_trans = 0;
8895 ei->last_log_commit = 0;
8896
8897 spin_lock_init(&ei->lock);
8898 ei->outstanding_extents = 0;
8899 if (sb->s_magic != BTRFS_TEST_MAGIC)
8900 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8901 BTRFS_BLOCK_RSV_DELALLOC);
8902 ei->runtime_flags = 0;
8903 ei->prop_compress = BTRFS_COMPRESS_NONE;
8904 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8905
8906 ei->delayed_node = NULL;
8907
8908 ei->i_otime.tv_sec = 0;
8909 ei->i_otime.tv_nsec = 0;
8910
8911 inode = &ei->vfs_inode;
8912 extent_map_tree_init(&ei->extent_tree);
8913 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8914 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8915 IO_TREE_INODE_IO_FAILURE, inode);
8916 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8917 IO_TREE_INODE_FILE_EXTENT, inode);
8918 ei->io_tree.track_uptodate = true;
8919 ei->io_failure_tree.track_uptodate = true;
8920 atomic_set(&ei->sync_writers, 0);
8921 mutex_init(&ei->log_mutex);
8922 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8923 INIT_LIST_HEAD(&ei->delalloc_inodes);
8924 INIT_LIST_HEAD(&ei->delayed_iput);
8925 RB_CLEAR_NODE(&ei->rb_node);
8926 init_rwsem(&ei->i_mmap_lock);
8927
8928 return inode;
8929 }
8930
8931 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8932 void btrfs_test_destroy_inode(struct inode *inode)
8933 {
8934 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8935 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8936 }
8937 #endif
8938
8939 void btrfs_free_inode(struct inode *inode)
8940 {
8941 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8942 }
8943
8944 void btrfs_destroy_inode(struct inode *vfs_inode)
8945 {
8946 struct btrfs_ordered_extent *ordered;
8947 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8948 struct btrfs_root *root = inode->root;
8949
8950 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8951 WARN_ON(vfs_inode->i_data.nrpages);
8952 WARN_ON(inode->block_rsv.reserved);
8953 WARN_ON(inode->block_rsv.size);
8954 WARN_ON(inode->outstanding_extents);
8955 if (!S_ISDIR(vfs_inode->i_mode)) {
8956 WARN_ON(inode->delalloc_bytes);
8957 WARN_ON(inode->new_delalloc_bytes);
8958 }
8959 WARN_ON(inode->csum_bytes);
8960 WARN_ON(inode->defrag_bytes);
8961
8962 /*
8963 * This can happen where we create an inode, but somebody else also
8964 * created the same inode and we need to destroy the one we already
8965 * created.
8966 */
8967 if (!root)
8968 return;
8969
8970 while (1) {
8971 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8972 if (!ordered)
8973 break;
8974 else {
8975 btrfs_err(root->fs_info,
8976 "found ordered extent %llu %llu on inode cleanup",
8977 ordered->file_offset, ordered->num_bytes);
8978 btrfs_remove_ordered_extent(inode, ordered);
8979 btrfs_put_ordered_extent(ordered);
8980 btrfs_put_ordered_extent(ordered);
8981 }
8982 }
8983 btrfs_qgroup_check_reserved_leak(inode);
8984 inode_tree_del(inode);
8985 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8986 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8987 btrfs_put_root(inode->root);
8988 }
8989
8990 int btrfs_drop_inode(struct inode *inode)
8991 {
8992 struct btrfs_root *root = BTRFS_I(inode)->root;
8993
8994 if (root == NULL)
8995 return 1;
8996
8997 /* the snap/subvol tree is on deleting */
8998 if (btrfs_root_refs(&root->root_item) == 0)
8999 return 1;
9000 else
9001 return generic_drop_inode(inode);
9002 }
9003
9004 static void init_once(void *foo)
9005 {
9006 struct btrfs_inode *ei = foo;
9007
9008 inode_init_once(&ei->vfs_inode);
9009 }
9010
9011 void __cold btrfs_destroy_cachep(void)
9012 {
9013 /*
9014 * Make sure all delayed rcu free inodes are flushed before we
9015 * destroy cache.
9016 */
9017 rcu_barrier();
9018 bioset_exit(&btrfs_dio_bioset);
9019 kmem_cache_destroy(btrfs_inode_cachep);
9020 kmem_cache_destroy(btrfs_trans_handle_cachep);
9021 kmem_cache_destroy(btrfs_path_cachep);
9022 kmem_cache_destroy(btrfs_free_space_cachep);
9023 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9024 }
9025
9026 int __init btrfs_init_cachep(void)
9027 {
9028 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9029 sizeof(struct btrfs_inode), 0,
9030 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9031 init_once);
9032 if (!btrfs_inode_cachep)
9033 goto fail;
9034
9035 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9036 sizeof(struct btrfs_trans_handle), 0,
9037 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9038 if (!btrfs_trans_handle_cachep)
9039 goto fail;
9040
9041 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9042 sizeof(struct btrfs_path), 0,
9043 SLAB_MEM_SPREAD, NULL);
9044 if (!btrfs_path_cachep)
9045 goto fail;
9046
9047 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9048 sizeof(struct btrfs_free_space), 0,
9049 SLAB_MEM_SPREAD, NULL);
9050 if (!btrfs_free_space_cachep)
9051 goto fail;
9052
9053 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9054 PAGE_SIZE, PAGE_SIZE,
9055 SLAB_MEM_SPREAD, NULL);
9056 if (!btrfs_free_space_bitmap_cachep)
9057 goto fail;
9058
9059 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
9060 offsetof(struct btrfs_dio_private, bio),
9061 BIOSET_NEED_BVECS))
9062 goto fail;
9063
9064 return 0;
9065 fail:
9066 btrfs_destroy_cachep();
9067 return -ENOMEM;
9068 }
9069
9070 static int btrfs_getattr(struct user_namespace *mnt_userns,
9071 const struct path *path, struct kstat *stat,
9072 u32 request_mask, unsigned int flags)
9073 {
9074 u64 delalloc_bytes;
9075 u64 inode_bytes;
9076 struct inode *inode = d_inode(path->dentry);
9077 u32 blocksize = inode->i_sb->s_blocksize;
9078 u32 bi_flags = BTRFS_I(inode)->flags;
9079 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9080
9081 stat->result_mask |= STATX_BTIME;
9082 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9083 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9084 if (bi_flags & BTRFS_INODE_APPEND)
9085 stat->attributes |= STATX_ATTR_APPEND;
9086 if (bi_flags & BTRFS_INODE_COMPRESS)
9087 stat->attributes |= STATX_ATTR_COMPRESSED;
9088 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9089 stat->attributes |= STATX_ATTR_IMMUTABLE;
9090 if (bi_flags & BTRFS_INODE_NODUMP)
9091 stat->attributes |= STATX_ATTR_NODUMP;
9092 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9093 stat->attributes |= STATX_ATTR_VERITY;
9094
9095 stat->attributes_mask |= (STATX_ATTR_APPEND |
9096 STATX_ATTR_COMPRESSED |
9097 STATX_ATTR_IMMUTABLE |
9098 STATX_ATTR_NODUMP);
9099
9100 generic_fillattr(mnt_userns, inode, stat);
9101 stat->dev = BTRFS_I(inode)->root->anon_dev;
9102
9103 spin_lock(&BTRFS_I(inode)->lock);
9104 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9105 inode_bytes = inode_get_bytes(inode);
9106 spin_unlock(&BTRFS_I(inode)->lock);
9107 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9108 ALIGN(delalloc_bytes, blocksize)) >> 9;
9109 return 0;
9110 }
9111
9112 static int btrfs_rename_exchange(struct inode *old_dir,
9113 struct dentry *old_dentry,
9114 struct inode *new_dir,
9115 struct dentry *new_dentry)
9116 {
9117 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9118 struct btrfs_trans_handle *trans;
9119 unsigned int trans_num_items;
9120 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9121 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9122 struct inode *new_inode = new_dentry->d_inode;
9123 struct inode *old_inode = old_dentry->d_inode;
9124 struct timespec64 ctime = current_time(old_inode);
9125 struct btrfs_rename_ctx old_rename_ctx;
9126 struct btrfs_rename_ctx new_rename_ctx;
9127 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9128 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9129 u64 old_idx = 0;
9130 u64 new_idx = 0;
9131 int ret;
9132 int ret2;
9133 bool need_abort = false;
9134
9135 /*
9136 * For non-subvolumes allow exchange only within one subvolume, in the
9137 * same inode namespace. Two subvolumes (represented as directory) can
9138 * be exchanged as they're a logical link and have a fixed inode number.
9139 */
9140 if (root != dest &&
9141 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9142 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9143 return -EXDEV;
9144
9145 /* close the race window with snapshot create/destroy ioctl */
9146 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9147 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9148 down_read(&fs_info->subvol_sem);
9149
9150 /*
9151 * For each inode:
9152 * 1 to remove old dir item
9153 * 1 to remove old dir index
9154 * 1 to add new dir item
9155 * 1 to add new dir index
9156 * 1 to update parent inode
9157 *
9158 * If the parents are the same, we only need to account for one
9159 */
9160 trans_num_items = (old_dir == new_dir ? 9 : 10);
9161 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9162 /*
9163 * 1 to remove old root ref
9164 * 1 to remove old root backref
9165 * 1 to add new root ref
9166 * 1 to add new root backref
9167 */
9168 trans_num_items += 4;
9169 } else {
9170 /*
9171 * 1 to update inode item
9172 * 1 to remove old inode ref
9173 * 1 to add new inode ref
9174 */
9175 trans_num_items += 3;
9176 }
9177 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9178 trans_num_items += 4;
9179 else
9180 trans_num_items += 3;
9181 trans = btrfs_start_transaction(root, trans_num_items);
9182 if (IS_ERR(trans)) {
9183 ret = PTR_ERR(trans);
9184 goto out_notrans;
9185 }
9186
9187 if (dest != root) {
9188 ret = btrfs_record_root_in_trans(trans, dest);
9189 if (ret)
9190 goto out_fail;
9191 }
9192
9193 /*
9194 * We need to find a free sequence number both in the source and
9195 * in the destination directory for the exchange.
9196 */
9197 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9198 if (ret)
9199 goto out_fail;
9200 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9201 if (ret)
9202 goto out_fail;
9203
9204 BTRFS_I(old_inode)->dir_index = 0ULL;
9205 BTRFS_I(new_inode)->dir_index = 0ULL;
9206
9207 /* Reference for the source. */
9208 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9209 /* force full log commit if subvolume involved. */
9210 btrfs_set_log_full_commit(trans);
9211 } else {
9212 ret = btrfs_insert_inode_ref(trans, dest,
9213 new_dentry->d_name.name,
9214 new_dentry->d_name.len,
9215 old_ino,
9216 btrfs_ino(BTRFS_I(new_dir)),
9217 old_idx);
9218 if (ret)
9219 goto out_fail;
9220 need_abort = true;
9221 }
9222
9223 /* And now for the dest. */
9224 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9225 /* force full log commit if subvolume involved. */
9226 btrfs_set_log_full_commit(trans);
9227 } else {
9228 ret = btrfs_insert_inode_ref(trans, root,
9229 old_dentry->d_name.name,
9230 old_dentry->d_name.len,
9231 new_ino,
9232 btrfs_ino(BTRFS_I(old_dir)),
9233 new_idx);
9234 if (ret) {
9235 if (need_abort)
9236 btrfs_abort_transaction(trans, ret);
9237 goto out_fail;
9238 }
9239 }
9240
9241 /* Update inode version and ctime/mtime. */
9242 inode_inc_iversion(old_dir);
9243 inode_inc_iversion(new_dir);
9244 inode_inc_iversion(old_inode);
9245 inode_inc_iversion(new_inode);
9246 old_dir->i_mtime = ctime;
9247 old_dir->i_ctime = ctime;
9248 new_dir->i_mtime = ctime;
9249 new_dir->i_ctime = ctime;
9250 old_inode->i_ctime = ctime;
9251 new_inode->i_ctime = ctime;
9252
9253 if (old_dentry->d_parent != new_dentry->d_parent) {
9254 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9255 BTRFS_I(old_inode), 1);
9256 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9257 BTRFS_I(new_inode), 1);
9258 }
9259
9260 /* src is a subvolume */
9261 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9262 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9263 } else { /* src is an inode */
9264 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9265 BTRFS_I(old_dentry->d_inode),
9266 old_dentry->d_name.name,
9267 old_dentry->d_name.len,
9268 &old_rename_ctx);
9269 if (!ret)
9270 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9271 }
9272 if (ret) {
9273 btrfs_abort_transaction(trans, ret);
9274 goto out_fail;
9275 }
9276
9277 /* dest is a subvolume */
9278 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9279 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9280 } else { /* dest is an inode */
9281 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9282 BTRFS_I(new_dentry->d_inode),
9283 new_dentry->d_name.name,
9284 new_dentry->d_name.len,
9285 &new_rename_ctx);
9286 if (!ret)
9287 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9288 }
9289 if (ret) {
9290 btrfs_abort_transaction(trans, ret);
9291 goto out_fail;
9292 }
9293
9294 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9295 new_dentry->d_name.name,
9296 new_dentry->d_name.len, 0, old_idx);
9297 if (ret) {
9298 btrfs_abort_transaction(trans, ret);
9299 goto out_fail;
9300 }
9301
9302 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9303 old_dentry->d_name.name,
9304 old_dentry->d_name.len, 0, new_idx);
9305 if (ret) {
9306 btrfs_abort_transaction(trans, ret);
9307 goto out_fail;
9308 }
9309
9310 if (old_inode->i_nlink == 1)
9311 BTRFS_I(old_inode)->dir_index = old_idx;
9312 if (new_inode->i_nlink == 1)
9313 BTRFS_I(new_inode)->dir_index = new_idx;
9314
9315 /*
9316 * Now pin the logs of the roots. We do it to ensure that no other task
9317 * can sync the logs while we are in progress with the rename, because
9318 * that could result in an inconsistency in case any of the inodes that
9319 * are part of this rename operation were logged before.
9320 */
9321 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9322 btrfs_pin_log_trans(root);
9323 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9324 btrfs_pin_log_trans(dest);
9325
9326 /* Do the log updates for all inodes. */
9327 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9328 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9329 old_rename_ctx.index, new_dentry->d_parent);
9330 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9331 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9332 new_rename_ctx.index, old_dentry->d_parent);
9333
9334 /* Now unpin the logs. */
9335 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9336 btrfs_end_log_trans(root);
9337 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9338 btrfs_end_log_trans(dest);
9339 out_fail:
9340 ret2 = btrfs_end_transaction(trans);
9341 ret = ret ? ret : ret2;
9342 out_notrans:
9343 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9344 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9345 up_read(&fs_info->subvol_sem);
9346
9347 return ret;
9348 }
9349
9350 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9351 struct inode *dir)
9352 {
9353 struct inode *inode;
9354
9355 inode = new_inode(dir->i_sb);
9356 if (inode) {
9357 inode_init_owner(mnt_userns, inode, dir,
9358 S_IFCHR | WHITEOUT_MODE);
9359 inode->i_op = &btrfs_special_inode_operations;
9360 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9361 }
9362 return inode;
9363 }
9364
9365 static int btrfs_rename(struct user_namespace *mnt_userns,
9366 struct inode *old_dir, struct dentry *old_dentry,
9367 struct inode *new_dir, struct dentry *new_dentry,
9368 unsigned int flags)
9369 {
9370 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9371 struct btrfs_new_inode_args whiteout_args = {
9372 .dir = old_dir,
9373 .dentry = old_dentry,
9374 };
9375 struct btrfs_trans_handle *trans;
9376 unsigned int trans_num_items;
9377 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9378 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9379 struct inode *new_inode = d_inode(new_dentry);
9380 struct inode *old_inode = d_inode(old_dentry);
9381 struct btrfs_rename_ctx rename_ctx;
9382 u64 index = 0;
9383 int ret;
9384 int ret2;
9385 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9386
9387 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9388 return -EPERM;
9389
9390 /* we only allow rename subvolume link between subvolumes */
9391 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9392 return -EXDEV;
9393
9394 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9395 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9396 return -ENOTEMPTY;
9397
9398 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9399 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9400 return -ENOTEMPTY;
9401
9402
9403 /* check for collisions, even if the name isn't there */
9404 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9405 new_dentry->d_name.name,
9406 new_dentry->d_name.len);
9407
9408 if (ret) {
9409 if (ret == -EEXIST) {
9410 /* we shouldn't get
9411 * eexist without a new_inode */
9412 if (WARN_ON(!new_inode)) {
9413 return ret;
9414 }
9415 } else {
9416 /* maybe -EOVERFLOW */
9417 return ret;
9418 }
9419 }
9420 ret = 0;
9421
9422 /*
9423 * we're using rename to replace one file with another. Start IO on it
9424 * now so we don't add too much work to the end of the transaction
9425 */
9426 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9427 filemap_flush(old_inode->i_mapping);
9428
9429 if (flags & RENAME_WHITEOUT) {
9430 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9431 if (!whiteout_args.inode)
9432 return -ENOMEM;
9433 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9434 if (ret)
9435 goto out_whiteout_inode;
9436 } else {
9437 /* 1 to update the old parent inode. */
9438 trans_num_items = 1;
9439 }
9440
9441 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9442 /* Close the race window with snapshot create/destroy ioctl */
9443 down_read(&fs_info->subvol_sem);
9444 /*
9445 * 1 to remove old root ref
9446 * 1 to remove old root backref
9447 * 1 to add new root ref
9448 * 1 to add new root backref
9449 */
9450 trans_num_items += 4;
9451 } else {
9452 /*
9453 * 1 to update inode
9454 * 1 to remove old inode ref
9455 * 1 to add new inode ref
9456 */
9457 trans_num_items += 3;
9458 }
9459 /*
9460 * 1 to remove old dir item
9461 * 1 to remove old dir index
9462 * 1 to add new dir item
9463 * 1 to add new dir index
9464 */
9465 trans_num_items += 4;
9466 /* 1 to update new parent inode if it's not the same as the old parent */
9467 if (new_dir != old_dir)
9468 trans_num_items++;
9469 if (new_inode) {
9470 /*
9471 * 1 to update inode
9472 * 1 to remove inode ref
9473 * 1 to remove dir item
9474 * 1 to remove dir index
9475 * 1 to possibly add orphan item
9476 */
9477 trans_num_items += 5;
9478 }
9479 trans = btrfs_start_transaction(root, trans_num_items);
9480 if (IS_ERR(trans)) {
9481 ret = PTR_ERR(trans);
9482 goto out_notrans;
9483 }
9484
9485 if (dest != root) {
9486 ret = btrfs_record_root_in_trans(trans, dest);
9487 if (ret)
9488 goto out_fail;
9489 }
9490
9491 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9492 if (ret)
9493 goto out_fail;
9494
9495 BTRFS_I(old_inode)->dir_index = 0ULL;
9496 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9497 /* force full log commit if subvolume involved. */
9498 btrfs_set_log_full_commit(trans);
9499 } else {
9500 ret = btrfs_insert_inode_ref(trans, dest,
9501 new_dentry->d_name.name,
9502 new_dentry->d_name.len,
9503 old_ino,
9504 btrfs_ino(BTRFS_I(new_dir)), index);
9505 if (ret)
9506 goto out_fail;
9507 }
9508
9509 inode_inc_iversion(old_dir);
9510 inode_inc_iversion(new_dir);
9511 inode_inc_iversion(old_inode);
9512 old_dir->i_mtime = current_time(old_dir);
9513 old_dir->i_ctime = old_dir->i_mtime;
9514 new_dir->i_mtime = old_dir->i_mtime;
9515 new_dir->i_ctime = old_dir->i_mtime;
9516 old_inode->i_ctime = old_dir->i_mtime;
9517
9518 if (old_dentry->d_parent != new_dentry->d_parent)
9519 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9520 BTRFS_I(old_inode), 1);
9521
9522 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9523 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9524 } else {
9525 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9526 BTRFS_I(d_inode(old_dentry)),
9527 old_dentry->d_name.name,
9528 old_dentry->d_name.len,
9529 &rename_ctx);
9530 if (!ret)
9531 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9532 }
9533 if (ret) {
9534 btrfs_abort_transaction(trans, ret);
9535 goto out_fail;
9536 }
9537
9538 if (new_inode) {
9539 inode_inc_iversion(new_inode);
9540 new_inode->i_ctime = current_time(new_inode);
9541 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9542 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9543 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9544 BUG_ON(new_inode->i_nlink == 0);
9545 } else {
9546 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9547 BTRFS_I(d_inode(new_dentry)),
9548 new_dentry->d_name.name,
9549 new_dentry->d_name.len);
9550 }
9551 if (!ret && new_inode->i_nlink == 0)
9552 ret = btrfs_orphan_add(trans,
9553 BTRFS_I(d_inode(new_dentry)));
9554 if (ret) {
9555 btrfs_abort_transaction(trans, ret);
9556 goto out_fail;
9557 }
9558 }
9559
9560 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9561 new_dentry->d_name.name,
9562 new_dentry->d_name.len, 0, index);
9563 if (ret) {
9564 btrfs_abort_transaction(trans, ret);
9565 goto out_fail;
9566 }
9567
9568 if (old_inode->i_nlink == 1)
9569 BTRFS_I(old_inode)->dir_index = index;
9570
9571 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9572 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9573 rename_ctx.index, new_dentry->d_parent);
9574
9575 if (flags & RENAME_WHITEOUT) {
9576 ret = btrfs_create_new_inode(trans, &whiteout_args);
9577 if (ret) {
9578 btrfs_abort_transaction(trans, ret);
9579 goto out_fail;
9580 } else {
9581 unlock_new_inode(whiteout_args.inode);
9582 iput(whiteout_args.inode);
9583 whiteout_args.inode = NULL;
9584 }
9585 }
9586 out_fail:
9587 ret2 = btrfs_end_transaction(trans);
9588 ret = ret ? ret : ret2;
9589 out_notrans:
9590 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9591 up_read(&fs_info->subvol_sem);
9592 if (flags & RENAME_WHITEOUT)
9593 btrfs_new_inode_args_destroy(&whiteout_args);
9594 out_whiteout_inode:
9595 if (flags & RENAME_WHITEOUT)
9596 iput(whiteout_args.inode);
9597 return ret;
9598 }
9599
9600 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9601 struct dentry *old_dentry, struct inode *new_dir,
9602 struct dentry *new_dentry, unsigned int flags)
9603 {
9604 int ret;
9605
9606 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9607 return -EINVAL;
9608
9609 if (flags & RENAME_EXCHANGE)
9610 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9611 new_dentry);
9612 else
9613 ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9614 new_dentry, flags);
9615
9616 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9617
9618 return ret;
9619 }
9620
9621 struct btrfs_delalloc_work {
9622 struct inode *inode;
9623 struct completion completion;
9624 struct list_head list;
9625 struct btrfs_work work;
9626 };
9627
9628 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9629 {
9630 struct btrfs_delalloc_work *delalloc_work;
9631 struct inode *inode;
9632
9633 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9634 work);
9635 inode = delalloc_work->inode;
9636 filemap_flush(inode->i_mapping);
9637 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9638 &BTRFS_I(inode)->runtime_flags))
9639 filemap_flush(inode->i_mapping);
9640
9641 iput(inode);
9642 complete(&delalloc_work->completion);
9643 }
9644
9645 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9646 {
9647 struct btrfs_delalloc_work *work;
9648
9649 work = kmalloc(sizeof(*work), GFP_NOFS);
9650 if (!work)
9651 return NULL;
9652
9653 init_completion(&work->completion);
9654 INIT_LIST_HEAD(&work->list);
9655 work->inode = inode;
9656 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9657
9658 return work;
9659 }
9660
9661 /*
9662 * some fairly slow code that needs optimization. This walks the list
9663 * of all the inodes with pending delalloc and forces them to disk.
9664 */
9665 static int start_delalloc_inodes(struct btrfs_root *root,
9666 struct writeback_control *wbc, bool snapshot,
9667 bool in_reclaim_context)
9668 {
9669 struct btrfs_inode *binode;
9670 struct inode *inode;
9671 struct btrfs_delalloc_work *work, *next;
9672 struct list_head works;
9673 struct list_head splice;
9674 int ret = 0;
9675 bool full_flush = wbc->nr_to_write == LONG_MAX;
9676
9677 INIT_LIST_HEAD(&works);
9678 INIT_LIST_HEAD(&splice);
9679
9680 mutex_lock(&root->delalloc_mutex);
9681 spin_lock(&root->delalloc_lock);
9682 list_splice_init(&root->delalloc_inodes, &splice);
9683 while (!list_empty(&splice)) {
9684 binode = list_entry(splice.next, struct btrfs_inode,
9685 delalloc_inodes);
9686
9687 list_move_tail(&binode->delalloc_inodes,
9688 &root->delalloc_inodes);
9689
9690 if (in_reclaim_context &&
9691 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9692 continue;
9693
9694 inode = igrab(&binode->vfs_inode);
9695 if (!inode) {
9696 cond_resched_lock(&root->delalloc_lock);
9697 continue;
9698 }
9699 spin_unlock(&root->delalloc_lock);
9700
9701 if (snapshot)
9702 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9703 &binode->runtime_flags);
9704 if (full_flush) {
9705 work = btrfs_alloc_delalloc_work(inode);
9706 if (!work) {
9707 iput(inode);
9708 ret = -ENOMEM;
9709 goto out;
9710 }
9711 list_add_tail(&work->list, &works);
9712 btrfs_queue_work(root->fs_info->flush_workers,
9713 &work->work);
9714 } else {
9715 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9716 btrfs_add_delayed_iput(inode);
9717 if (ret || wbc->nr_to_write <= 0)
9718 goto out;
9719 }
9720 cond_resched();
9721 spin_lock(&root->delalloc_lock);
9722 }
9723 spin_unlock(&root->delalloc_lock);
9724
9725 out:
9726 list_for_each_entry_safe(work, next, &works, list) {
9727 list_del_init(&work->list);
9728 wait_for_completion(&work->completion);
9729 kfree(work);
9730 }
9731
9732 if (!list_empty(&splice)) {
9733 spin_lock(&root->delalloc_lock);
9734 list_splice_tail(&splice, &root->delalloc_inodes);
9735 spin_unlock(&root->delalloc_lock);
9736 }
9737 mutex_unlock(&root->delalloc_mutex);
9738 return ret;
9739 }
9740
9741 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9742 {
9743 struct writeback_control wbc = {
9744 .nr_to_write = LONG_MAX,
9745 .sync_mode = WB_SYNC_NONE,
9746 .range_start = 0,
9747 .range_end = LLONG_MAX,
9748 };
9749 struct btrfs_fs_info *fs_info = root->fs_info;
9750
9751 if (BTRFS_FS_ERROR(fs_info))
9752 return -EROFS;
9753
9754 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9755 }
9756
9757 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9758 bool in_reclaim_context)
9759 {
9760 struct writeback_control wbc = {
9761 .nr_to_write = nr,
9762 .sync_mode = WB_SYNC_NONE,
9763 .range_start = 0,
9764 .range_end = LLONG_MAX,
9765 };
9766 struct btrfs_root *root;
9767 struct list_head splice;
9768 int ret;
9769
9770 if (BTRFS_FS_ERROR(fs_info))
9771 return -EROFS;
9772
9773 INIT_LIST_HEAD(&splice);
9774
9775 mutex_lock(&fs_info->delalloc_root_mutex);
9776 spin_lock(&fs_info->delalloc_root_lock);
9777 list_splice_init(&fs_info->delalloc_roots, &splice);
9778 while (!list_empty(&splice)) {
9779 /*
9780 * Reset nr_to_write here so we know that we're doing a full
9781 * flush.
9782 */
9783 if (nr == LONG_MAX)
9784 wbc.nr_to_write = LONG_MAX;
9785
9786 root = list_first_entry(&splice, struct btrfs_root,
9787 delalloc_root);
9788 root = btrfs_grab_root(root);
9789 BUG_ON(!root);
9790 list_move_tail(&root->delalloc_root,
9791 &fs_info->delalloc_roots);
9792 spin_unlock(&fs_info->delalloc_root_lock);
9793
9794 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9795 btrfs_put_root(root);
9796 if (ret < 0 || wbc.nr_to_write <= 0)
9797 goto out;
9798 spin_lock(&fs_info->delalloc_root_lock);
9799 }
9800 spin_unlock(&fs_info->delalloc_root_lock);
9801
9802 ret = 0;
9803 out:
9804 if (!list_empty(&splice)) {
9805 spin_lock(&fs_info->delalloc_root_lock);
9806 list_splice_tail(&splice, &fs_info->delalloc_roots);
9807 spin_unlock(&fs_info->delalloc_root_lock);
9808 }
9809 mutex_unlock(&fs_info->delalloc_root_mutex);
9810 return ret;
9811 }
9812
9813 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9814 struct dentry *dentry, const char *symname)
9815 {
9816 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9817 struct btrfs_trans_handle *trans;
9818 struct btrfs_root *root = BTRFS_I(dir)->root;
9819 struct btrfs_path *path;
9820 struct btrfs_key key;
9821 struct inode *inode;
9822 struct btrfs_new_inode_args new_inode_args = {
9823 .dir = dir,
9824 .dentry = dentry,
9825 };
9826 unsigned int trans_num_items;
9827 int err;
9828 int name_len;
9829 int datasize;
9830 unsigned long ptr;
9831 struct btrfs_file_extent_item *ei;
9832 struct extent_buffer *leaf;
9833
9834 name_len = strlen(symname);
9835 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9836 return -ENAMETOOLONG;
9837
9838 inode = new_inode(dir->i_sb);
9839 if (!inode)
9840 return -ENOMEM;
9841 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9842 inode->i_op = &btrfs_symlink_inode_operations;
9843 inode_nohighmem(inode);
9844 inode->i_mapping->a_ops = &btrfs_aops;
9845 btrfs_i_size_write(BTRFS_I(inode), name_len);
9846 inode_set_bytes(inode, name_len);
9847
9848 new_inode_args.inode = inode;
9849 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9850 if (err)
9851 goto out_inode;
9852 /* 1 additional item for the inline extent */
9853 trans_num_items++;
9854
9855 trans = btrfs_start_transaction(root, trans_num_items);
9856 if (IS_ERR(trans)) {
9857 err = PTR_ERR(trans);
9858 goto out_new_inode_args;
9859 }
9860
9861 err = btrfs_create_new_inode(trans, &new_inode_args);
9862 if (err)
9863 goto out;
9864
9865 path = btrfs_alloc_path();
9866 if (!path) {
9867 err = -ENOMEM;
9868 btrfs_abort_transaction(trans, err);
9869 discard_new_inode(inode);
9870 inode = NULL;
9871 goto out;
9872 }
9873 key.objectid = btrfs_ino(BTRFS_I(inode));
9874 key.offset = 0;
9875 key.type = BTRFS_EXTENT_DATA_KEY;
9876 datasize = btrfs_file_extent_calc_inline_size(name_len);
9877 err = btrfs_insert_empty_item(trans, root, path, &key,
9878 datasize);
9879 if (err) {
9880 btrfs_abort_transaction(trans, err);
9881 btrfs_free_path(path);
9882 discard_new_inode(inode);
9883 inode = NULL;
9884 goto out;
9885 }
9886 leaf = path->nodes[0];
9887 ei = btrfs_item_ptr(leaf, path->slots[0],
9888 struct btrfs_file_extent_item);
9889 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9890 btrfs_set_file_extent_type(leaf, ei,
9891 BTRFS_FILE_EXTENT_INLINE);
9892 btrfs_set_file_extent_encryption(leaf, ei, 0);
9893 btrfs_set_file_extent_compression(leaf, ei, 0);
9894 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9895 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9896
9897 ptr = btrfs_file_extent_inline_start(ei);
9898 write_extent_buffer(leaf, symname, ptr, name_len);
9899 btrfs_mark_buffer_dirty(leaf);
9900 btrfs_free_path(path);
9901
9902 d_instantiate_new(dentry, inode);
9903 err = 0;
9904 out:
9905 btrfs_end_transaction(trans);
9906 btrfs_btree_balance_dirty(fs_info);
9907 out_new_inode_args:
9908 btrfs_new_inode_args_destroy(&new_inode_args);
9909 out_inode:
9910 if (err)
9911 iput(inode);
9912 return err;
9913 }
9914
9915 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9916 struct btrfs_trans_handle *trans_in,
9917 struct btrfs_inode *inode,
9918 struct btrfs_key *ins,
9919 u64 file_offset)
9920 {
9921 struct btrfs_file_extent_item stack_fi;
9922 struct btrfs_replace_extent_info extent_info;
9923 struct btrfs_trans_handle *trans = trans_in;
9924 struct btrfs_path *path;
9925 u64 start = ins->objectid;
9926 u64 len = ins->offset;
9927 int qgroup_released;
9928 int ret;
9929
9930 memset(&stack_fi, 0, sizeof(stack_fi));
9931
9932 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9933 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9934 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9935 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9936 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9937 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9938 /* Encryption and other encoding is reserved and all 0 */
9939
9940 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9941 if (qgroup_released < 0)
9942 return ERR_PTR(qgroup_released);
9943
9944 if (trans) {
9945 ret = insert_reserved_file_extent(trans, inode,
9946 file_offset, &stack_fi,
9947 true, qgroup_released);
9948 if (ret)
9949 goto free_qgroup;
9950 return trans;
9951 }
9952
9953 extent_info.disk_offset = start;
9954 extent_info.disk_len = len;
9955 extent_info.data_offset = 0;
9956 extent_info.data_len = len;
9957 extent_info.file_offset = file_offset;
9958 extent_info.extent_buf = (char *)&stack_fi;
9959 extent_info.is_new_extent = true;
9960 extent_info.update_times = true;
9961 extent_info.qgroup_reserved = qgroup_released;
9962 extent_info.insertions = 0;
9963
9964 path = btrfs_alloc_path();
9965 if (!path) {
9966 ret = -ENOMEM;
9967 goto free_qgroup;
9968 }
9969
9970 ret = btrfs_replace_file_extents(inode, path, file_offset,
9971 file_offset + len - 1, &extent_info,
9972 &trans);
9973 btrfs_free_path(path);
9974 if (ret)
9975 goto free_qgroup;
9976 return trans;
9977
9978 free_qgroup:
9979 /*
9980 * We have released qgroup data range at the beginning of the function,
9981 * and normally qgroup_released bytes will be freed when committing
9982 * transaction.
9983 * But if we error out early, we have to free what we have released
9984 * or we leak qgroup data reservation.
9985 */
9986 btrfs_qgroup_free_refroot(inode->root->fs_info,
9987 inode->root->root_key.objectid, qgroup_released,
9988 BTRFS_QGROUP_RSV_DATA);
9989 return ERR_PTR(ret);
9990 }
9991
9992 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9993 u64 start, u64 num_bytes, u64 min_size,
9994 loff_t actual_len, u64 *alloc_hint,
9995 struct btrfs_trans_handle *trans)
9996 {
9997 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9998 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9999 struct extent_map *em;
10000 struct btrfs_root *root = BTRFS_I(inode)->root;
10001 struct btrfs_key ins;
10002 u64 cur_offset = start;
10003 u64 clear_offset = start;
10004 u64 i_size;
10005 u64 cur_bytes;
10006 u64 last_alloc = (u64)-1;
10007 int ret = 0;
10008 bool own_trans = true;
10009 u64 end = start + num_bytes - 1;
10010
10011 if (trans)
10012 own_trans = false;
10013 while (num_bytes > 0) {
10014 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10015 cur_bytes = max(cur_bytes, min_size);
10016 /*
10017 * If we are severely fragmented we could end up with really
10018 * small allocations, so if the allocator is returning small
10019 * chunks lets make its job easier by only searching for those
10020 * sized chunks.
10021 */
10022 cur_bytes = min(cur_bytes, last_alloc);
10023 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10024 min_size, 0, *alloc_hint, &ins, 1, 0);
10025 if (ret)
10026 break;
10027
10028 /*
10029 * We've reserved this space, and thus converted it from
10030 * ->bytes_may_use to ->bytes_reserved. Any error that happens
10031 * from here on out we will only need to clear our reservation
10032 * for the remaining unreserved area, so advance our
10033 * clear_offset by our extent size.
10034 */
10035 clear_offset += ins.offset;
10036
10037 last_alloc = ins.offset;
10038 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10039 &ins, cur_offset);
10040 /*
10041 * Now that we inserted the prealloc extent we can finally
10042 * decrement the number of reservations in the block group.
10043 * If we did it before, we could race with relocation and have
10044 * relocation miss the reserved extent, making it fail later.
10045 */
10046 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10047 if (IS_ERR(trans)) {
10048 ret = PTR_ERR(trans);
10049 btrfs_free_reserved_extent(fs_info, ins.objectid,
10050 ins.offset, 0);
10051 break;
10052 }
10053
10054 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10055 cur_offset + ins.offset -1, 0);
10056
10057 em = alloc_extent_map();
10058 if (!em) {
10059 btrfs_set_inode_full_sync(BTRFS_I(inode));
10060 goto next;
10061 }
10062
10063 em->start = cur_offset;
10064 em->orig_start = cur_offset;
10065 em->len = ins.offset;
10066 em->block_start = ins.objectid;
10067 em->block_len = ins.offset;
10068 em->orig_block_len = ins.offset;
10069 em->ram_bytes = ins.offset;
10070 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10071 em->generation = trans->transid;
10072
10073 while (1) {
10074 write_lock(&em_tree->lock);
10075 ret = add_extent_mapping(em_tree, em, 1);
10076 write_unlock(&em_tree->lock);
10077 if (ret != -EEXIST)
10078 break;
10079 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10080 cur_offset + ins.offset - 1,
10081 0);
10082 }
10083 free_extent_map(em);
10084 next:
10085 num_bytes -= ins.offset;
10086 cur_offset += ins.offset;
10087 *alloc_hint = ins.objectid + ins.offset;
10088
10089 inode_inc_iversion(inode);
10090 inode->i_ctime = current_time(inode);
10091 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10092 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10093 (actual_len > inode->i_size) &&
10094 (cur_offset > inode->i_size)) {
10095 if (cur_offset > actual_len)
10096 i_size = actual_len;
10097 else
10098 i_size = cur_offset;
10099 i_size_write(inode, i_size);
10100 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10101 }
10102
10103 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10104
10105 if (ret) {
10106 btrfs_abort_transaction(trans, ret);
10107 if (own_trans)
10108 btrfs_end_transaction(trans);
10109 break;
10110 }
10111
10112 if (own_trans) {
10113 btrfs_end_transaction(trans);
10114 trans = NULL;
10115 }
10116 }
10117 if (clear_offset < end)
10118 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10119 end - clear_offset + 1);
10120 return ret;
10121 }
10122
10123 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10124 u64 start, u64 num_bytes, u64 min_size,
10125 loff_t actual_len, u64 *alloc_hint)
10126 {
10127 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10128 min_size, actual_len, alloc_hint,
10129 NULL);
10130 }
10131
10132 int btrfs_prealloc_file_range_trans(struct inode *inode,
10133 struct btrfs_trans_handle *trans, int mode,
10134 u64 start, u64 num_bytes, u64 min_size,
10135 loff_t actual_len, u64 *alloc_hint)
10136 {
10137 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10138 min_size, actual_len, alloc_hint, trans);
10139 }
10140
10141 static int btrfs_permission(struct user_namespace *mnt_userns,
10142 struct inode *inode, int mask)
10143 {
10144 struct btrfs_root *root = BTRFS_I(inode)->root;
10145 umode_t mode = inode->i_mode;
10146
10147 if (mask & MAY_WRITE &&
10148 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10149 if (btrfs_root_readonly(root))
10150 return -EROFS;
10151 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10152 return -EACCES;
10153 }
10154 return generic_permission(mnt_userns, inode, mask);
10155 }
10156
10157 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10158 struct dentry *dentry, umode_t mode)
10159 {
10160 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10161 struct btrfs_trans_handle *trans;
10162 struct btrfs_root *root = BTRFS_I(dir)->root;
10163 struct inode *inode;
10164 struct btrfs_new_inode_args new_inode_args = {
10165 .dir = dir,
10166 .dentry = dentry,
10167 .orphan = true,
10168 };
10169 unsigned int trans_num_items;
10170 int ret;
10171
10172 inode = new_inode(dir->i_sb);
10173 if (!inode)
10174 return -ENOMEM;
10175 inode_init_owner(mnt_userns, inode, dir, mode);
10176 inode->i_fop = &btrfs_file_operations;
10177 inode->i_op = &btrfs_file_inode_operations;
10178 inode->i_mapping->a_ops = &btrfs_aops;
10179
10180 new_inode_args.inode = inode;
10181 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10182 if (ret)
10183 goto out_inode;
10184
10185 trans = btrfs_start_transaction(root, trans_num_items);
10186 if (IS_ERR(trans)) {
10187 ret = PTR_ERR(trans);
10188 goto out_new_inode_args;
10189 }
10190
10191 ret = btrfs_create_new_inode(trans, &new_inode_args);
10192
10193 /*
10194 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10195 * set it to 1 because d_tmpfile() will issue a warning if the count is
10196 * 0, through:
10197 *
10198 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10199 */
10200 set_nlink(inode, 1);
10201
10202 if (!ret) {
10203 d_tmpfile(dentry, inode);
10204 unlock_new_inode(inode);
10205 mark_inode_dirty(inode);
10206 }
10207
10208 btrfs_end_transaction(trans);
10209 btrfs_btree_balance_dirty(fs_info);
10210 out_new_inode_args:
10211 btrfs_new_inode_args_destroy(&new_inode_args);
10212 out_inode:
10213 if (ret)
10214 iput(inode);
10215 return ret;
10216 }
10217
10218 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10219 {
10220 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10221 unsigned long index = start >> PAGE_SHIFT;
10222 unsigned long end_index = end >> PAGE_SHIFT;
10223 struct page *page;
10224 u32 len;
10225
10226 ASSERT(end + 1 - start <= U32_MAX);
10227 len = end + 1 - start;
10228 while (index <= end_index) {
10229 page = find_get_page(inode->vfs_inode.i_mapping, index);
10230 ASSERT(page); /* Pages should be in the extent_io_tree */
10231
10232 btrfs_page_set_writeback(fs_info, page, start, len);
10233 put_page(page);
10234 index++;
10235 }
10236 }
10237
10238 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
10239 int compress_type)
10240 {
10241 switch (compress_type) {
10242 case BTRFS_COMPRESS_NONE:
10243 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10244 case BTRFS_COMPRESS_ZLIB:
10245 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10246 case BTRFS_COMPRESS_LZO:
10247 /*
10248 * The LZO format depends on the sector size. 64K is the maximum
10249 * sector size that we support.
10250 */
10251 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10252 return -EINVAL;
10253 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10254 (fs_info->sectorsize_bits - 12);
10255 case BTRFS_COMPRESS_ZSTD:
10256 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10257 default:
10258 return -EUCLEAN;
10259 }
10260 }
10261
10262 static ssize_t btrfs_encoded_read_inline(
10263 struct kiocb *iocb,
10264 struct iov_iter *iter, u64 start,
10265 u64 lockend,
10266 struct extent_state **cached_state,
10267 u64 extent_start, size_t count,
10268 struct btrfs_ioctl_encoded_io_args *encoded,
10269 bool *unlocked)
10270 {
10271 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10272 struct btrfs_root *root = inode->root;
10273 struct btrfs_fs_info *fs_info = root->fs_info;
10274 struct extent_io_tree *io_tree = &inode->io_tree;
10275 struct btrfs_path *path;
10276 struct extent_buffer *leaf;
10277 struct btrfs_file_extent_item *item;
10278 u64 ram_bytes;
10279 unsigned long ptr;
10280 void *tmp;
10281 ssize_t ret;
10282
10283 path = btrfs_alloc_path();
10284 if (!path) {
10285 ret = -ENOMEM;
10286 goto out;
10287 }
10288 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10289 extent_start, 0);
10290 if (ret) {
10291 if (ret > 0) {
10292 /* The extent item disappeared? */
10293 ret = -EIO;
10294 }
10295 goto out;
10296 }
10297 leaf = path->nodes[0];
10298 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10299
10300 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10301 ptr = btrfs_file_extent_inline_start(item);
10302
10303 encoded->len = min_t(u64, extent_start + ram_bytes,
10304 inode->vfs_inode.i_size) - iocb->ki_pos;
10305 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10306 btrfs_file_extent_compression(leaf, item));
10307 if (ret < 0)
10308 goto out;
10309 encoded->compression = ret;
10310 if (encoded->compression) {
10311 size_t inline_size;
10312
10313 inline_size = btrfs_file_extent_inline_item_len(leaf,
10314 path->slots[0]);
10315 if (inline_size > count) {
10316 ret = -ENOBUFS;
10317 goto out;
10318 }
10319 count = inline_size;
10320 encoded->unencoded_len = ram_bytes;
10321 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10322 } else {
10323 count = min_t(u64, count, encoded->len);
10324 encoded->len = count;
10325 encoded->unencoded_len = count;
10326 ptr += iocb->ki_pos - extent_start;
10327 }
10328
10329 tmp = kmalloc(count, GFP_NOFS);
10330 if (!tmp) {
10331 ret = -ENOMEM;
10332 goto out;
10333 }
10334 read_extent_buffer(leaf, tmp, ptr, count);
10335 btrfs_release_path(path);
10336 unlock_extent_cached(io_tree, start, lockend, cached_state);
10337 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10338 *unlocked = true;
10339
10340 ret = copy_to_iter(tmp, count, iter);
10341 if (ret != count)
10342 ret = -EFAULT;
10343 kfree(tmp);
10344 out:
10345 btrfs_free_path(path);
10346 return ret;
10347 }
10348
10349 struct btrfs_encoded_read_private {
10350 struct btrfs_inode *inode;
10351 u64 file_offset;
10352 wait_queue_head_t wait;
10353 atomic_t pending;
10354 blk_status_t status;
10355 bool skip_csum;
10356 };
10357
10358 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10359 struct bio *bio, int mirror_num)
10360 {
10361 struct btrfs_encoded_read_private *priv = bio->bi_private;
10362 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10363 blk_status_t ret;
10364
10365 if (!priv->skip_csum) {
10366 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10367 if (ret)
10368 return ret;
10369 }
10370
10371 atomic_inc(&priv->pending);
10372 btrfs_submit_bio(fs_info, bio, mirror_num);
10373 return BLK_STS_OK;
10374 }
10375
10376 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10377 {
10378 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10379 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10380 struct btrfs_inode *inode = priv->inode;
10381 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10382 u32 sectorsize = fs_info->sectorsize;
10383 struct bio_vec *bvec;
10384 struct bvec_iter_all iter_all;
10385 u32 bio_offset = 0;
10386
10387 if (priv->skip_csum || !uptodate)
10388 return bbio->bio.bi_status;
10389
10390 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10391 unsigned int i, nr_sectors, pgoff;
10392
10393 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10394 pgoff = bvec->bv_offset;
10395 for (i = 0; i < nr_sectors; i++) {
10396 ASSERT(pgoff < PAGE_SIZE);
10397 if (btrfs_check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10398 bvec->bv_page, pgoff))
10399 return BLK_STS_IOERR;
10400 bio_offset += sectorsize;
10401 pgoff += sectorsize;
10402 }
10403 }
10404 return BLK_STS_OK;
10405 }
10406
10407 static void btrfs_encoded_read_endio(struct bio *bio)
10408 {
10409 struct btrfs_encoded_read_private *priv = bio->bi_private;
10410 struct btrfs_bio *bbio = btrfs_bio(bio);
10411 blk_status_t status;
10412
10413 status = btrfs_encoded_read_verify_csum(bbio);
10414 if (status) {
10415 /*
10416 * The memory barrier implied by the atomic_dec_return() here
10417 * pairs with the memory barrier implied by the
10418 * atomic_dec_return() or io_wait_event() in
10419 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10420 * write is observed before the load of status in
10421 * btrfs_encoded_read_regular_fill_pages().
10422 */
10423 WRITE_ONCE(priv->status, status);
10424 }
10425 if (!atomic_dec_return(&priv->pending))
10426 wake_up(&priv->wait);
10427 btrfs_bio_free_csum(bbio);
10428 bio_put(bio);
10429 }
10430
10431 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10432 u64 file_offset, u64 disk_bytenr,
10433 u64 disk_io_size, struct page **pages)
10434 {
10435 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10436 struct btrfs_encoded_read_private priv = {
10437 .inode = inode,
10438 .file_offset = file_offset,
10439 .pending = ATOMIC_INIT(1),
10440 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10441 };
10442 unsigned long i = 0;
10443 u64 cur = 0;
10444 int ret;
10445
10446 init_waitqueue_head(&priv.wait);
10447 /*
10448 * Submit bios for the extent, splitting due to bio or stripe limits as
10449 * necessary.
10450 */
10451 while (cur < disk_io_size) {
10452 struct extent_map *em;
10453 struct btrfs_io_geometry geom;
10454 struct bio *bio = NULL;
10455 u64 remaining;
10456
10457 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10458 disk_io_size - cur);
10459 if (IS_ERR(em)) {
10460 ret = PTR_ERR(em);
10461 } else {
10462 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10463 disk_bytenr + cur, &geom);
10464 free_extent_map(em);
10465 }
10466 if (ret) {
10467 WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10468 break;
10469 }
10470 remaining = min(geom.len, disk_io_size - cur);
10471 while (bio || remaining) {
10472 size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10473
10474 if (!bio) {
10475 bio = btrfs_bio_alloc(BIO_MAX_VECS);
10476 bio->bi_iter.bi_sector =
10477 (disk_bytenr + cur) >> SECTOR_SHIFT;
10478 bio->bi_end_io = btrfs_encoded_read_endio;
10479 bio->bi_private = &priv;
10480 bio->bi_opf = REQ_OP_READ;
10481 }
10482
10483 if (!bytes ||
10484 bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10485 blk_status_t status;
10486
10487 status = submit_encoded_read_bio(inode, bio, 0);
10488 if (status) {
10489 WRITE_ONCE(priv.status, status);
10490 bio_put(bio);
10491 goto out;
10492 }
10493 bio = NULL;
10494 continue;
10495 }
10496
10497 i++;
10498 cur += bytes;
10499 remaining -= bytes;
10500 }
10501 }
10502
10503 out:
10504 if (atomic_dec_return(&priv.pending))
10505 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10506 /* See btrfs_encoded_read_endio() for ordering. */
10507 return blk_status_to_errno(READ_ONCE(priv.status));
10508 }
10509
10510 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10511 struct iov_iter *iter,
10512 u64 start, u64 lockend,
10513 struct extent_state **cached_state,
10514 u64 disk_bytenr, u64 disk_io_size,
10515 size_t count, bool compressed,
10516 bool *unlocked)
10517 {
10518 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10519 struct extent_io_tree *io_tree = &inode->io_tree;
10520 struct page **pages;
10521 unsigned long nr_pages, i;
10522 u64 cur;
10523 size_t page_offset;
10524 ssize_t ret;
10525
10526 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10527 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10528 if (!pages)
10529 return -ENOMEM;
10530 ret = btrfs_alloc_page_array(nr_pages, pages);
10531 if (ret) {
10532 ret = -ENOMEM;
10533 goto out;
10534 }
10535
10536 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10537 disk_io_size, pages);
10538 if (ret)
10539 goto out;
10540
10541 unlock_extent_cached(io_tree, start, lockend, cached_state);
10542 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10543 *unlocked = true;
10544
10545 if (compressed) {
10546 i = 0;
10547 page_offset = 0;
10548 } else {
10549 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10550 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10551 }
10552 cur = 0;
10553 while (cur < count) {
10554 size_t bytes = min_t(size_t, count - cur,
10555 PAGE_SIZE - page_offset);
10556
10557 if (copy_page_to_iter(pages[i], page_offset, bytes,
10558 iter) != bytes) {
10559 ret = -EFAULT;
10560 goto out;
10561 }
10562 i++;
10563 cur += bytes;
10564 page_offset = 0;
10565 }
10566 ret = count;
10567 out:
10568 for (i = 0; i < nr_pages; i++) {
10569 if (pages[i])
10570 __free_page(pages[i]);
10571 }
10572 kfree(pages);
10573 return ret;
10574 }
10575
10576 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10577 struct btrfs_ioctl_encoded_io_args *encoded)
10578 {
10579 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10580 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10581 struct extent_io_tree *io_tree = &inode->io_tree;
10582 ssize_t ret;
10583 size_t count = iov_iter_count(iter);
10584 u64 start, lockend, disk_bytenr, disk_io_size;
10585 struct extent_state *cached_state = NULL;
10586 struct extent_map *em;
10587 bool unlocked = false;
10588
10589 file_accessed(iocb->ki_filp);
10590
10591 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10592
10593 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10594 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10595 return 0;
10596 }
10597 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10598 /*
10599 * We don't know how long the extent containing iocb->ki_pos is, but if
10600 * it's compressed we know that it won't be longer than this.
10601 */
10602 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10603
10604 for (;;) {
10605 struct btrfs_ordered_extent *ordered;
10606
10607 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10608 lockend - start + 1);
10609 if (ret)
10610 goto out_unlock_inode;
10611 lock_extent_bits(io_tree, start, lockend, &cached_state);
10612 ordered = btrfs_lookup_ordered_range(inode, start,
10613 lockend - start + 1);
10614 if (!ordered)
10615 break;
10616 btrfs_put_ordered_extent(ordered);
10617 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10618 cond_resched();
10619 }
10620
10621 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10622 if (IS_ERR(em)) {
10623 ret = PTR_ERR(em);
10624 goto out_unlock_extent;
10625 }
10626
10627 if (em->block_start == EXTENT_MAP_INLINE) {
10628 u64 extent_start = em->start;
10629
10630 /*
10631 * For inline extents we get everything we need out of the
10632 * extent item.
10633 */
10634 free_extent_map(em);
10635 em = NULL;
10636 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10637 &cached_state, extent_start,
10638 count, encoded, &unlocked);
10639 goto out;
10640 }
10641
10642 /*
10643 * We only want to return up to EOF even if the extent extends beyond
10644 * that.
10645 */
10646 encoded->len = min_t(u64, extent_map_end(em),
10647 inode->vfs_inode.i_size) - iocb->ki_pos;
10648 if (em->block_start == EXTENT_MAP_HOLE ||
10649 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10650 disk_bytenr = EXTENT_MAP_HOLE;
10651 count = min_t(u64, count, encoded->len);
10652 encoded->len = count;
10653 encoded->unencoded_len = count;
10654 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10655 disk_bytenr = em->block_start;
10656 /*
10657 * Bail if the buffer isn't large enough to return the whole
10658 * compressed extent.
10659 */
10660 if (em->block_len > count) {
10661 ret = -ENOBUFS;
10662 goto out_em;
10663 }
10664 disk_io_size = em->block_len;
10665 count = em->block_len;
10666 encoded->unencoded_len = em->ram_bytes;
10667 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10668 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10669 em->compress_type);
10670 if (ret < 0)
10671 goto out_em;
10672 encoded->compression = ret;
10673 } else {
10674 disk_bytenr = em->block_start + (start - em->start);
10675 if (encoded->len > count)
10676 encoded->len = count;
10677 /*
10678 * Don't read beyond what we locked. This also limits the page
10679 * allocations that we'll do.
10680 */
10681 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10682 count = start + disk_io_size - iocb->ki_pos;
10683 encoded->len = count;
10684 encoded->unencoded_len = count;
10685 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10686 }
10687 free_extent_map(em);
10688 em = NULL;
10689
10690 if (disk_bytenr == EXTENT_MAP_HOLE) {
10691 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10692 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10693 unlocked = true;
10694 ret = iov_iter_zero(count, iter);
10695 if (ret != count)
10696 ret = -EFAULT;
10697 } else {
10698 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10699 &cached_state, disk_bytenr,
10700 disk_io_size, count,
10701 encoded->compression,
10702 &unlocked);
10703 }
10704
10705 out:
10706 if (ret >= 0)
10707 iocb->ki_pos += encoded->len;
10708 out_em:
10709 free_extent_map(em);
10710 out_unlock_extent:
10711 if (!unlocked)
10712 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10713 out_unlock_inode:
10714 if (!unlocked)
10715 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10716 return ret;
10717 }
10718
10719 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10720 const struct btrfs_ioctl_encoded_io_args *encoded)
10721 {
10722 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10723 struct btrfs_root *root = inode->root;
10724 struct btrfs_fs_info *fs_info = root->fs_info;
10725 struct extent_io_tree *io_tree = &inode->io_tree;
10726 struct extent_changeset *data_reserved = NULL;
10727 struct extent_state *cached_state = NULL;
10728 int compression;
10729 size_t orig_count;
10730 u64 start, end;
10731 u64 num_bytes, ram_bytes, disk_num_bytes;
10732 unsigned long nr_pages, i;
10733 struct page **pages;
10734 struct btrfs_key ins;
10735 bool extent_reserved = false;
10736 struct extent_map *em;
10737 ssize_t ret;
10738
10739 switch (encoded->compression) {
10740 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10741 compression = BTRFS_COMPRESS_ZLIB;
10742 break;
10743 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10744 compression = BTRFS_COMPRESS_ZSTD;
10745 break;
10746 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10747 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10748 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10749 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10750 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10751 /* The sector size must match for LZO. */
10752 if (encoded->compression -
10753 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10754 fs_info->sectorsize_bits)
10755 return -EINVAL;
10756 compression = BTRFS_COMPRESS_LZO;
10757 break;
10758 default:
10759 return -EINVAL;
10760 }
10761 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10762 return -EINVAL;
10763
10764 orig_count = iov_iter_count(from);
10765
10766 /* The extent size must be sane. */
10767 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10768 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10769 return -EINVAL;
10770
10771 /*
10772 * The compressed data must be smaller than the decompressed data.
10773 *
10774 * It's of course possible for data to compress to larger or the same
10775 * size, but the buffered I/O path falls back to no compression for such
10776 * data, and we don't want to break any assumptions by creating these
10777 * extents.
10778 *
10779 * Note that this is less strict than the current check we have that the
10780 * compressed data must be at least one sector smaller than the
10781 * decompressed data. We only want to enforce the weaker requirement
10782 * from old kernels that it is at least one byte smaller.
10783 */
10784 if (orig_count >= encoded->unencoded_len)
10785 return -EINVAL;
10786
10787 /* The extent must start on a sector boundary. */
10788 start = iocb->ki_pos;
10789 if (!IS_ALIGNED(start, fs_info->sectorsize))
10790 return -EINVAL;
10791
10792 /*
10793 * The extent must end on a sector boundary. However, we allow a write
10794 * which ends at or extends i_size to have an unaligned length; we round
10795 * up the extent size and set i_size to the unaligned end.
10796 */
10797 if (start + encoded->len < inode->vfs_inode.i_size &&
10798 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10799 return -EINVAL;
10800
10801 /* Finally, the offset in the unencoded data must be sector-aligned. */
10802 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10803 return -EINVAL;
10804
10805 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10806 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10807 end = start + num_bytes - 1;
10808
10809 /*
10810 * If the extent cannot be inline, the compressed data on disk must be
10811 * sector-aligned. For convenience, we extend it with zeroes if it
10812 * isn't.
10813 */
10814 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10815 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10816 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10817 if (!pages)
10818 return -ENOMEM;
10819 for (i = 0; i < nr_pages; i++) {
10820 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10821 char *kaddr;
10822
10823 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10824 if (!pages[i]) {
10825 ret = -ENOMEM;
10826 goto out_pages;
10827 }
10828 kaddr = kmap_local_page(pages[i]);
10829 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10830 kunmap_local(kaddr);
10831 ret = -EFAULT;
10832 goto out_pages;
10833 }
10834 if (bytes < PAGE_SIZE)
10835 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10836 kunmap_local(kaddr);
10837 }
10838
10839 for (;;) {
10840 struct btrfs_ordered_extent *ordered;
10841
10842 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10843 if (ret)
10844 goto out_pages;
10845 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10846 start >> PAGE_SHIFT,
10847 end >> PAGE_SHIFT);
10848 if (ret)
10849 goto out_pages;
10850 lock_extent_bits(io_tree, start, end, &cached_state);
10851 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10852 if (!ordered &&
10853 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10854 break;
10855 if (ordered)
10856 btrfs_put_ordered_extent(ordered);
10857 unlock_extent_cached(io_tree, start, end, &cached_state);
10858 cond_resched();
10859 }
10860
10861 /*
10862 * We don't use the higher-level delalloc space functions because our
10863 * num_bytes and disk_num_bytes are different.
10864 */
10865 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10866 if (ret)
10867 goto out_unlock;
10868 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10869 if (ret)
10870 goto out_free_data_space;
10871 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10872 false);
10873 if (ret)
10874 goto out_qgroup_free_data;
10875
10876 /* Try an inline extent first. */
10877 if (start == 0 && encoded->unencoded_len == encoded->len &&
10878 encoded->unencoded_offset == 0) {
10879 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10880 compression, pages, true);
10881 if (ret <= 0) {
10882 if (ret == 0)
10883 ret = orig_count;
10884 goto out_delalloc_release;
10885 }
10886 }
10887
10888 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10889 disk_num_bytes, 0, 0, &ins, 1, 1);
10890 if (ret)
10891 goto out_delalloc_release;
10892 extent_reserved = true;
10893
10894 em = create_io_em(inode, start, num_bytes,
10895 start - encoded->unencoded_offset, ins.objectid,
10896 ins.offset, ins.offset, ram_bytes, compression,
10897 BTRFS_ORDERED_COMPRESSED);
10898 if (IS_ERR(em)) {
10899 ret = PTR_ERR(em);
10900 goto out_free_reserved;
10901 }
10902 free_extent_map(em);
10903
10904 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10905 ins.objectid, ins.offset,
10906 encoded->unencoded_offset,
10907 (1 << BTRFS_ORDERED_ENCODED) |
10908 (1 << BTRFS_ORDERED_COMPRESSED),
10909 compression);
10910 if (ret) {
10911 btrfs_drop_extent_cache(inode, start, end, 0);
10912 goto out_free_reserved;
10913 }
10914 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10915
10916 if (start + encoded->len > inode->vfs_inode.i_size)
10917 i_size_write(&inode->vfs_inode, start + encoded->len);
10918
10919 unlock_extent_cached(io_tree, start, end, &cached_state);
10920
10921 btrfs_delalloc_release_extents(inode, num_bytes);
10922
10923 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10924 ins.offset, pages, nr_pages, 0, NULL,
10925 false)) {
10926 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10927 ret = -EIO;
10928 goto out_pages;
10929 }
10930 ret = orig_count;
10931 goto out;
10932
10933 out_free_reserved:
10934 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10935 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10936 out_delalloc_release:
10937 btrfs_delalloc_release_extents(inode, num_bytes);
10938 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10939 out_qgroup_free_data:
10940 if (ret < 0)
10941 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10942 out_free_data_space:
10943 /*
10944 * If btrfs_reserve_extent() succeeded, then we already decremented
10945 * bytes_may_use.
10946 */
10947 if (!extent_reserved)
10948 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10949 out_unlock:
10950 unlock_extent_cached(io_tree, start, end, &cached_state);
10951 out_pages:
10952 for (i = 0; i < nr_pages; i++) {
10953 if (pages[i])
10954 __free_page(pages[i]);
10955 }
10956 kvfree(pages);
10957 out:
10958 if (ret >= 0)
10959 iocb->ki_pos += encoded->len;
10960 return ret;
10961 }
10962
10963 #ifdef CONFIG_SWAP
10964 /*
10965 * Add an entry indicating a block group or device which is pinned by a
10966 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10967 * negative errno on failure.
10968 */
10969 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10970 bool is_block_group)
10971 {
10972 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10973 struct btrfs_swapfile_pin *sp, *entry;
10974 struct rb_node **p;
10975 struct rb_node *parent = NULL;
10976
10977 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10978 if (!sp)
10979 return -ENOMEM;
10980 sp->ptr = ptr;
10981 sp->inode = inode;
10982 sp->is_block_group = is_block_group;
10983 sp->bg_extent_count = 1;
10984
10985 spin_lock(&fs_info->swapfile_pins_lock);
10986 p = &fs_info->swapfile_pins.rb_node;
10987 while (*p) {
10988 parent = *p;
10989 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10990 if (sp->ptr < entry->ptr ||
10991 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10992 p = &(*p)->rb_left;
10993 } else if (sp->ptr > entry->ptr ||
10994 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10995 p = &(*p)->rb_right;
10996 } else {
10997 if (is_block_group)
10998 entry->bg_extent_count++;
10999 spin_unlock(&fs_info->swapfile_pins_lock);
11000 kfree(sp);
11001 return 1;
11002 }
11003 }
11004 rb_link_node(&sp->node, parent, p);
11005 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
11006 spin_unlock(&fs_info->swapfile_pins_lock);
11007 return 0;
11008 }
11009
11010 /* Free all of the entries pinned by this swapfile. */
11011 static void btrfs_free_swapfile_pins(struct inode *inode)
11012 {
11013 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
11014 struct btrfs_swapfile_pin *sp;
11015 struct rb_node *node, *next;
11016
11017 spin_lock(&fs_info->swapfile_pins_lock);
11018 node = rb_first(&fs_info->swapfile_pins);
11019 while (node) {
11020 next = rb_next(node);
11021 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
11022 if (sp->inode == inode) {
11023 rb_erase(&sp->node, &fs_info->swapfile_pins);
11024 if (sp->is_block_group) {
11025 btrfs_dec_block_group_swap_extents(sp->ptr,
11026 sp->bg_extent_count);
11027 btrfs_put_block_group(sp->ptr);
11028 }
11029 kfree(sp);
11030 }
11031 node = next;
11032 }
11033 spin_unlock(&fs_info->swapfile_pins_lock);
11034 }
11035
11036 struct btrfs_swap_info {
11037 u64 start;
11038 u64 block_start;
11039 u64 block_len;
11040 u64 lowest_ppage;
11041 u64 highest_ppage;
11042 unsigned long nr_pages;
11043 int nr_extents;
11044 };
11045
11046 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
11047 struct btrfs_swap_info *bsi)
11048 {
11049 unsigned long nr_pages;
11050 unsigned long max_pages;
11051 u64 first_ppage, first_ppage_reported, next_ppage;
11052 int ret;
11053
11054 /*
11055 * Our swapfile may have had its size extended after the swap header was
11056 * written. In that case activating the swapfile should not go beyond
11057 * the max size set in the swap header.
11058 */
11059 if (bsi->nr_pages >= sis->max)
11060 return 0;
11061
11062 max_pages = sis->max - bsi->nr_pages;
11063 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11064 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11065 PAGE_SIZE) >> PAGE_SHIFT;
11066
11067 if (first_ppage >= next_ppage)
11068 return 0;
11069 nr_pages = next_ppage - first_ppage;
11070 nr_pages = min(nr_pages, max_pages);
11071
11072 first_ppage_reported = first_ppage;
11073 if (bsi->start == 0)
11074 first_ppage_reported++;
11075 if (bsi->lowest_ppage > first_ppage_reported)
11076 bsi->lowest_ppage = first_ppage_reported;
11077 if (bsi->highest_ppage < (next_ppage - 1))
11078 bsi->highest_ppage = next_ppage - 1;
11079
11080 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11081 if (ret < 0)
11082 return ret;
11083 bsi->nr_extents += ret;
11084 bsi->nr_pages += nr_pages;
11085 return 0;
11086 }
11087
11088 static void btrfs_swap_deactivate(struct file *file)
11089 {
11090 struct inode *inode = file_inode(file);
11091
11092 btrfs_free_swapfile_pins(inode);
11093 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11094 }
11095
11096 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11097 sector_t *span)
11098 {
11099 struct inode *inode = file_inode(file);
11100 struct btrfs_root *root = BTRFS_I(inode)->root;
11101 struct btrfs_fs_info *fs_info = root->fs_info;
11102 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11103 struct extent_state *cached_state = NULL;
11104 struct extent_map *em = NULL;
11105 struct btrfs_device *device = NULL;
11106 struct btrfs_swap_info bsi = {
11107 .lowest_ppage = (sector_t)-1ULL,
11108 };
11109 int ret = 0;
11110 u64 isize;
11111 u64 start;
11112
11113 /*
11114 * If the swap file was just created, make sure delalloc is done. If the
11115 * file changes again after this, the user is doing something stupid and
11116 * we don't really care.
11117 */
11118 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11119 if (ret)
11120 return ret;
11121
11122 /*
11123 * The inode is locked, so these flags won't change after we check them.
11124 */
11125 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11126 btrfs_warn(fs_info, "swapfile must not be compressed");
11127 return -EINVAL;
11128 }
11129 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11130 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11131 return -EINVAL;
11132 }
11133 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11134 btrfs_warn(fs_info, "swapfile must not be checksummed");
11135 return -EINVAL;
11136 }
11137
11138 /*
11139 * Balance or device remove/replace/resize can move stuff around from
11140 * under us. The exclop protection makes sure they aren't running/won't
11141 * run concurrently while we are mapping the swap extents, and
11142 * fs_info->swapfile_pins prevents them from running while the swap
11143 * file is active and moving the extents. Note that this also prevents
11144 * a concurrent device add which isn't actually necessary, but it's not
11145 * really worth the trouble to allow it.
11146 */
11147 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11148 btrfs_warn(fs_info,
11149 "cannot activate swapfile while exclusive operation is running");
11150 return -EBUSY;
11151 }
11152
11153 /*
11154 * Prevent snapshot creation while we are activating the swap file.
11155 * We do not want to race with snapshot creation. If snapshot creation
11156 * already started before we bumped nr_swapfiles from 0 to 1 and
11157 * completes before the first write into the swap file after it is
11158 * activated, than that write would fallback to COW.
11159 */
11160 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11161 btrfs_exclop_finish(fs_info);
11162 btrfs_warn(fs_info,
11163 "cannot activate swapfile because snapshot creation is in progress");
11164 return -EINVAL;
11165 }
11166 /*
11167 * Snapshots can create extents which require COW even if NODATACOW is
11168 * set. We use this counter to prevent snapshots. We must increment it
11169 * before walking the extents because we don't want a concurrent
11170 * snapshot to run after we've already checked the extents.
11171 *
11172 * It is possible that subvolume is marked for deletion but still not
11173 * removed yet. To prevent this race, we check the root status before
11174 * activating the swapfile.
11175 */
11176 spin_lock(&root->root_item_lock);
11177 if (btrfs_root_dead(root)) {
11178 spin_unlock(&root->root_item_lock);
11179
11180 btrfs_exclop_finish(fs_info);
11181 btrfs_warn(fs_info,
11182 "cannot activate swapfile because subvolume %llu is being deleted",
11183 root->root_key.objectid);
11184 return -EPERM;
11185 }
11186 atomic_inc(&root->nr_swapfiles);
11187 spin_unlock(&root->root_item_lock);
11188
11189 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11190
11191 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11192 start = 0;
11193 while (start < isize) {
11194 u64 logical_block_start, physical_block_start;
11195 struct btrfs_block_group *bg;
11196 u64 len = isize - start;
11197
11198 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11199 if (IS_ERR(em)) {
11200 ret = PTR_ERR(em);
11201 goto out;
11202 }
11203
11204 if (em->block_start == EXTENT_MAP_HOLE) {
11205 btrfs_warn(fs_info, "swapfile must not have holes");
11206 ret = -EINVAL;
11207 goto out;
11208 }
11209 if (em->block_start == EXTENT_MAP_INLINE) {
11210 /*
11211 * It's unlikely we'll ever actually find ourselves
11212 * here, as a file small enough to fit inline won't be
11213 * big enough to store more than the swap header, but in
11214 * case something changes in the future, let's catch it
11215 * here rather than later.
11216 */
11217 btrfs_warn(fs_info, "swapfile must not be inline");
11218 ret = -EINVAL;
11219 goto out;
11220 }
11221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11222 btrfs_warn(fs_info, "swapfile must not be compressed");
11223 ret = -EINVAL;
11224 goto out;
11225 }
11226
11227 logical_block_start = em->block_start + (start - em->start);
11228 len = min(len, em->len - (start - em->start));
11229 free_extent_map(em);
11230 em = NULL;
11231
11232 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11233 if (ret < 0) {
11234 goto out;
11235 } else if (ret) {
11236 ret = 0;
11237 } else {
11238 btrfs_warn(fs_info,
11239 "swapfile must not be copy-on-write");
11240 ret = -EINVAL;
11241 goto out;
11242 }
11243
11244 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11245 if (IS_ERR(em)) {
11246 ret = PTR_ERR(em);
11247 goto out;
11248 }
11249
11250 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11251 btrfs_warn(fs_info,
11252 "swapfile must have single data profile");
11253 ret = -EINVAL;
11254 goto out;
11255 }
11256
11257 if (device == NULL) {
11258 device = em->map_lookup->stripes[0].dev;
11259 ret = btrfs_add_swapfile_pin(inode, device, false);
11260 if (ret == 1)
11261 ret = 0;
11262 else if (ret)
11263 goto out;
11264 } else if (device != em->map_lookup->stripes[0].dev) {
11265 btrfs_warn(fs_info, "swapfile must be on one device");
11266 ret = -EINVAL;
11267 goto out;
11268 }
11269
11270 physical_block_start = (em->map_lookup->stripes[0].physical +
11271 (logical_block_start - em->start));
11272 len = min(len, em->len - (logical_block_start - em->start));
11273 free_extent_map(em);
11274 em = NULL;
11275
11276 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11277 if (!bg) {
11278 btrfs_warn(fs_info,
11279 "could not find block group containing swapfile");
11280 ret = -EINVAL;
11281 goto out;
11282 }
11283
11284 if (!btrfs_inc_block_group_swap_extents(bg)) {
11285 btrfs_warn(fs_info,
11286 "block group for swapfile at %llu is read-only%s",
11287 bg->start,
11288 atomic_read(&fs_info->scrubs_running) ?
11289 " (scrub running)" : "");
11290 btrfs_put_block_group(bg);
11291 ret = -EINVAL;
11292 goto out;
11293 }
11294
11295 ret = btrfs_add_swapfile_pin(inode, bg, true);
11296 if (ret) {
11297 btrfs_put_block_group(bg);
11298 if (ret == 1)
11299 ret = 0;
11300 else
11301 goto out;
11302 }
11303
11304 if (bsi.block_len &&
11305 bsi.block_start + bsi.block_len == physical_block_start) {
11306 bsi.block_len += len;
11307 } else {
11308 if (bsi.block_len) {
11309 ret = btrfs_add_swap_extent(sis, &bsi);
11310 if (ret)
11311 goto out;
11312 }
11313 bsi.start = start;
11314 bsi.block_start = physical_block_start;
11315 bsi.block_len = len;
11316 }
11317
11318 start += len;
11319 }
11320
11321 if (bsi.block_len)
11322 ret = btrfs_add_swap_extent(sis, &bsi);
11323
11324 out:
11325 if (!IS_ERR_OR_NULL(em))
11326 free_extent_map(em);
11327
11328 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11329
11330 if (ret)
11331 btrfs_swap_deactivate(file);
11332
11333 btrfs_drew_write_unlock(&root->snapshot_lock);
11334
11335 btrfs_exclop_finish(fs_info);
11336
11337 if (ret)
11338 return ret;
11339
11340 if (device)
11341 sis->bdev = device->bdev;
11342 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11343 sis->max = bsi.nr_pages;
11344 sis->pages = bsi.nr_pages - 1;
11345 sis->highest_bit = bsi.nr_pages - 1;
11346 return bsi.nr_extents;
11347 }
11348 #else
11349 static void btrfs_swap_deactivate(struct file *file)
11350 {
11351 }
11352
11353 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11354 sector_t *span)
11355 {
11356 return -EOPNOTSUPP;
11357 }
11358 #endif
11359
11360 /*
11361 * Update the number of bytes used in the VFS' inode. When we replace extents in
11362 * a range (clone, dedupe, fallocate's zero range), we must update the number of
11363 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11364 * always get a correct value.
11365 */
11366 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11367 const u64 add_bytes,
11368 const u64 del_bytes)
11369 {
11370 if (add_bytes == del_bytes)
11371 return;
11372
11373 spin_lock(&inode->lock);
11374 if (del_bytes > 0)
11375 inode_sub_bytes(&inode->vfs_inode, del_bytes);
11376 if (add_bytes > 0)
11377 inode_add_bytes(&inode->vfs_inode, add_bytes);
11378 spin_unlock(&inode->lock);
11379 }
11380
11381 /**
11382 * Verify that there are no ordered extents for a given file range.
11383 *
11384 * @inode: The target inode.
11385 * @start: Start offset of the file range, should be sector size aligned.
11386 * @end: End offset (inclusive) of the file range, its value +1 should be
11387 * sector size aligned.
11388 *
11389 * This should typically be used for cases where we locked an inode's VFS lock in
11390 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11391 * we have flushed all delalloc in the range, we have waited for all ordered
11392 * extents in the range to complete and finally we have locked the file range in
11393 * the inode's io_tree.
11394 */
11395 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11396 {
11397 struct btrfs_root *root = inode->root;
11398 struct btrfs_ordered_extent *ordered;
11399
11400 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11401 return;
11402
11403 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11404 if (ordered) {
11405 btrfs_err(root->fs_info,
11406 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11407 start, end, btrfs_ino(inode), root->root_key.objectid,
11408 ordered->file_offset,
11409 ordered->file_offset + ordered->num_bytes - 1);
11410 btrfs_put_ordered_extent(ordered);
11411 }
11412
11413 ASSERT(ordered == NULL);
11414 }
11415
11416 static const struct inode_operations btrfs_dir_inode_operations = {
11417 .getattr = btrfs_getattr,
11418 .lookup = btrfs_lookup,
11419 .create = btrfs_create,
11420 .unlink = btrfs_unlink,
11421 .link = btrfs_link,
11422 .mkdir = btrfs_mkdir,
11423 .rmdir = btrfs_rmdir,
11424 .rename = btrfs_rename2,
11425 .symlink = btrfs_symlink,
11426 .setattr = btrfs_setattr,
11427 .mknod = btrfs_mknod,
11428 .listxattr = btrfs_listxattr,
11429 .permission = btrfs_permission,
11430 .get_acl = btrfs_get_acl,
11431 .set_acl = btrfs_set_acl,
11432 .update_time = btrfs_update_time,
11433 .tmpfile = btrfs_tmpfile,
11434 .fileattr_get = btrfs_fileattr_get,
11435 .fileattr_set = btrfs_fileattr_set,
11436 };
11437
11438 static const struct file_operations btrfs_dir_file_operations = {
11439 .llseek = generic_file_llseek,
11440 .read = generic_read_dir,
11441 .iterate_shared = btrfs_real_readdir,
11442 .open = btrfs_opendir,
11443 .unlocked_ioctl = btrfs_ioctl,
11444 #ifdef CONFIG_COMPAT
11445 .compat_ioctl = btrfs_compat_ioctl,
11446 #endif
11447 .release = btrfs_release_file,
11448 .fsync = btrfs_sync_file,
11449 };
11450
11451 /*
11452 * btrfs doesn't support the bmap operation because swapfiles
11453 * use bmap to make a mapping of extents in the file. They assume
11454 * these extents won't change over the life of the file and they
11455 * use the bmap result to do IO directly to the drive.
11456 *
11457 * the btrfs bmap call would return logical addresses that aren't
11458 * suitable for IO and they also will change frequently as COW
11459 * operations happen. So, swapfile + btrfs == corruption.
11460 *
11461 * For now we're avoiding this by dropping bmap.
11462 */
11463 static const struct address_space_operations btrfs_aops = {
11464 .read_folio = btrfs_read_folio,
11465 .writepages = btrfs_writepages,
11466 .readahead = btrfs_readahead,
11467 .direct_IO = noop_direct_IO,
11468 .invalidate_folio = btrfs_invalidate_folio,
11469 .release_folio = btrfs_release_folio,
11470 .migrate_folio = btrfs_migrate_folio,
11471 .dirty_folio = filemap_dirty_folio,
11472 .error_remove_page = generic_error_remove_page,
11473 .swap_activate = btrfs_swap_activate,
11474 .swap_deactivate = btrfs_swap_deactivate,
11475 };
11476
11477 static const struct inode_operations btrfs_file_inode_operations = {
11478 .getattr = btrfs_getattr,
11479 .setattr = btrfs_setattr,
11480 .listxattr = btrfs_listxattr,
11481 .permission = btrfs_permission,
11482 .fiemap = btrfs_fiemap,
11483 .get_acl = btrfs_get_acl,
11484 .set_acl = btrfs_set_acl,
11485 .update_time = btrfs_update_time,
11486 .fileattr_get = btrfs_fileattr_get,
11487 .fileattr_set = btrfs_fileattr_set,
11488 };
11489 static const struct inode_operations btrfs_special_inode_operations = {
11490 .getattr = btrfs_getattr,
11491 .setattr = btrfs_setattr,
11492 .permission = btrfs_permission,
11493 .listxattr = btrfs_listxattr,
11494 .get_acl = btrfs_get_acl,
11495 .set_acl = btrfs_set_acl,
11496 .update_time = btrfs_update_time,
11497 };
11498 static const struct inode_operations btrfs_symlink_inode_operations = {
11499 .get_link = page_get_link,
11500 .getattr = btrfs_getattr,
11501 .setattr = btrfs_setattr,
11502 .permission = btrfs_permission,
11503 .listxattr = btrfs_listxattr,
11504 .update_time = btrfs_update_time,
11505 };
11506
11507 const struct dentry_operations btrfs_dentry_operations = {
11508 .d_delete = btrfs_dentry_delete,
11509 };