]> git.ipfire.org Git - people/ms/linux.git/blob - fs/btrfs/inode.c
Merge tag 'cxl-fixes-for-5.19-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[people/ms/linux.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58
59 struct btrfs_iget_args {
60 u64 ino;
61 struct btrfs_root *root;
62 };
63
64 struct btrfs_dio_data {
65 ssize_t submitted;
66 struct extent_changeset *data_reserved;
67 bool data_space_reserved;
68 bool nocow_done;
69 };
70
71 struct btrfs_dio_private {
72 struct inode *inode;
73
74 /*
75 * Since DIO can use anonymous page, we cannot use page_offset() to
76 * grab the file offset, thus need a dedicated member for file offset.
77 */
78 u64 file_offset;
79 /* Used for bio::bi_size */
80 u32 bytes;
81
82 /*
83 * References to this structure. There is one reference per in-flight
84 * bio plus one while we're still setting up.
85 */
86 refcount_t refs;
87
88 /* Array of checksums */
89 u8 *csums;
90
91 /* This must be last */
92 struct bio bio;
93 };
94
95 static struct bio_set btrfs_dio_bioset;
96
97 struct btrfs_rename_ctx {
98 /* Output field. Stores the index number of the old directory entry. */
99 u64 index;
100 };
101
102 static const struct inode_operations btrfs_dir_inode_operations;
103 static const struct inode_operations btrfs_symlink_inode_operations;
104 static const struct inode_operations btrfs_special_inode_operations;
105 static const struct inode_operations btrfs_file_inode_operations;
106 static const struct address_space_operations btrfs_aops;
107 static const struct file_operations btrfs_dir_file_operations;
108
109 static struct kmem_cache *btrfs_inode_cachep;
110 struct kmem_cache *btrfs_trans_handle_cachep;
111 struct kmem_cache *btrfs_path_cachep;
112 struct kmem_cache *btrfs_free_space_cachep;
113 struct kmem_cache *btrfs_free_space_bitmap_cachep;
114
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
117 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
118 static noinline int cow_file_range(struct btrfs_inode *inode,
119 struct page *locked_page,
120 u64 start, u64 end, int *page_started,
121 unsigned long *nr_written, int unlock);
122 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
123 u64 len, u64 orig_start, u64 block_start,
124 u64 block_len, u64 orig_block_len,
125 u64 ram_bytes, int compress_type,
126 int type);
127
128 static void __endio_write_update_ordered(struct btrfs_inode *inode,
129 const u64 offset, const u64 bytes,
130 const bool uptodate);
131
132 /*
133 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
134 *
135 * ilock_flags can have the following bit set:
136 *
137 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
138 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
139 * return -EAGAIN
140 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
141 */
142 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
143 {
144 if (ilock_flags & BTRFS_ILOCK_SHARED) {
145 if (ilock_flags & BTRFS_ILOCK_TRY) {
146 if (!inode_trylock_shared(inode))
147 return -EAGAIN;
148 else
149 return 0;
150 }
151 inode_lock_shared(inode);
152 } else {
153 if (ilock_flags & BTRFS_ILOCK_TRY) {
154 if (!inode_trylock(inode))
155 return -EAGAIN;
156 else
157 return 0;
158 }
159 inode_lock(inode);
160 }
161 if (ilock_flags & BTRFS_ILOCK_MMAP)
162 down_write(&BTRFS_I(inode)->i_mmap_lock);
163 return 0;
164 }
165
166 /*
167 * btrfs_inode_unlock - unock inode i_rwsem
168 *
169 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
170 * to decide whether the lock acquired is shared or exclusive.
171 */
172 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
173 {
174 if (ilock_flags & BTRFS_ILOCK_MMAP)
175 up_write(&BTRFS_I(inode)->i_mmap_lock);
176 if (ilock_flags & BTRFS_ILOCK_SHARED)
177 inode_unlock_shared(inode);
178 else
179 inode_unlock(inode);
180 }
181
182 /*
183 * Cleanup all submitted ordered extents in specified range to handle errors
184 * from the btrfs_run_delalloc_range() callback.
185 *
186 * NOTE: caller must ensure that when an error happens, it can not call
187 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
188 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
189 * to be released, which we want to happen only when finishing the ordered
190 * extent (btrfs_finish_ordered_io()).
191 */
192 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
193 struct page *locked_page,
194 u64 offset, u64 bytes)
195 {
196 unsigned long index = offset >> PAGE_SHIFT;
197 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
198 u64 page_start = page_offset(locked_page);
199 u64 page_end = page_start + PAGE_SIZE - 1;
200
201 struct page *page;
202
203 while (index <= end_index) {
204 /*
205 * For locked page, we will call end_extent_writepage() on it
206 * in run_delalloc_range() for the error handling. That
207 * end_extent_writepage() function will call
208 * btrfs_mark_ordered_io_finished() to clear page Ordered and
209 * run the ordered extent accounting.
210 *
211 * Here we can't just clear the Ordered bit, or
212 * btrfs_mark_ordered_io_finished() would skip the accounting
213 * for the page range, and the ordered extent will never finish.
214 */
215 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
216 index++;
217 continue;
218 }
219 page = find_get_page(inode->vfs_inode.i_mapping, index);
220 index++;
221 if (!page)
222 continue;
223
224 /*
225 * Here we just clear all Ordered bits for every page in the
226 * range, then __endio_write_update_ordered() will handle
227 * the ordered extent accounting for the range.
228 */
229 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
230 offset, bytes);
231 put_page(page);
232 }
233
234 /* The locked page covers the full range, nothing needs to be done */
235 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
236 return;
237 /*
238 * In case this page belongs to the delalloc range being instantiated
239 * then skip it, since the first page of a range is going to be
240 * properly cleaned up by the caller of run_delalloc_range
241 */
242 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
243 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
244 offset = page_offset(locked_page) + PAGE_SIZE;
245 }
246
247 return __endio_write_update_ordered(inode, offset, bytes, false);
248 }
249
250 static int btrfs_dirty_inode(struct inode *inode);
251
252 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
253 struct btrfs_new_inode_args *args)
254 {
255 int err;
256
257 if (args->default_acl) {
258 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
259 ACL_TYPE_DEFAULT);
260 if (err)
261 return err;
262 }
263 if (args->acl) {
264 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
265 if (err)
266 return err;
267 }
268 if (!args->default_acl && !args->acl)
269 cache_no_acl(args->inode);
270 return btrfs_xattr_security_init(trans, args->inode, args->dir,
271 &args->dentry->d_name);
272 }
273
274 /*
275 * this does all the hard work for inserting an inline extent into
276 * the btree. The caller should have done a btrfs_drop_extents so that
277 * no overlapping inline items exist in the btree
278 */
279 static int insert_inline_extent(struct btrfs_trans_handle *trans,
280 struct btrfs_path *path,
281 struct btrfs_inode *inode, bool extent_inserted,
282 size_t size, size_t compressed_size,
283 int compress_type,
284 struct page **compressed_pages,
285 bool update_i_size)
286 {
287 struct btrfs_root *root = inode->root;
288 struct extent_buffer *leaf;
289 struct page *page = NULL;
290 char *kaddr;
291 unsigned long ptr;
292 struct btrfs_file_extent_item *ei;
293 int ret;
294 size_t cur_size = size;
295 u64 i_size;
296
297 ASSERT((compressed_size > 0 && compressed_pages) ||
298 (compressed_size == 0 && !compressed_pages));
299
300 if (compressed_size && compressed_pages)
301 cur_size = compressed_size;
302
303 if (!extent_inserted) {
304 struct btrfs_key key;
305 size_t datasize;
306
307 key.objectid = btrfs_ino(inode);
308 key.offset = 0;
309 key.type = BTRFS_EXTENT_DATA_KEY;
310
311 datasize = btrfs_file_extent_calc_inline_size(cur_size);
312 ret = btrfs_insert_empty_item(trans, root, path, &key,
313 datasize);
314 if (ret)
315 goto fail;
316 }
317 leaf = path->nodes[0];
318 ei = btrfs_item_ptr(leaf, path->slots[0],
319 struct btrfs_file_extent_item);
320 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
321 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
322 btrfs_set_file_extent_encryption(leaf, ei, 0);
323 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
324 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
325 ptr = btrfs_file_extent_inline_start(ei);
326
327 if (compress_type != BTRFS_COMPRESS_NONE) {
328 struct page *cpage;
329 int i = 0;
330 while (compressed_size > 0) {
331 cpage = compressed_pages[i];
332 cur_size = min_t(unsigned long, compressed_size,
333 PAGE_SIZE);
334
335 kaddr = kmap_atomic(cpage);
336 write_extent_buffer(leaf, kaddr, ptr, cur_size);
337 kunmap_atomic(kaddr);
338
339 i++;
340 ptr += cur_size;
341 compressed_size -= cur_size;
342 }
343 btrfs_set_file_extent_compression(leaf, ei,
344 compress_type);
345 } else {
346 page = find_get_page(inode->vfs_inode.i_mapping, 0);
347 btrfs_set_file_extent_compression(leaf, ei, 0);
348 kaddr = kmap_atomic(page);
349 write_extent_buffer(leaf, kaddr, ptr, size);
350 kunmap_atomic(kaddr);
351 put_page(page);
352 }
353 btrfs_mark_buffer_dirty(leaf);
354 btrfs_release_path(path);
355
356 /*
357 * We align size to sectorsize for inline extents just for simplicity
358 * sake.
359 */
360 ret = btrfs_inode_set_file_extent_range(inode, 0,
361 ALIGN(size, root->fs_info->sectorsize));
362 if (ret)
363 goto fail;
364
365 /*
366 * We're an inline extent, so nobody can extend the file past i_size
367 * without locking a page we already have locked.
368 *
369 * We must do any i_size and inode updates before we unlock the pages.
370 * Otherwise we could end up racing with unlink.
371 */
372 i_size = i_size_read(&inode->vfs_inode);
373 if (update_i_size && size > i_size) {
374 i_size_write(&inode->vfs_inode, size);
375 i_size = size;
376 }
377 inode->disk_i_size = i_size;
378
379 fail:
380 return ret;
381 }
382
383
384 /*
385 * conditionally insert an inline extent into the file. This
386 * does the checks required to make sure the data is small enough
387 * to fit as an inline extent.
388 */
389 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
390 size_t compressed_size,
391 int compress_type,
392 struct page **compressed_pages,
393 bool update_i_size)
394 {
395 struct btrfs_drop_extents_args drop_args = { 0 };
396 struct btrfs_root *root = inode->root;
397 struct btrfs_fs_info *fs_info = root->fs_info;
398 struct btrfs_trans_handle *trans;
399 u64 data_len = (compressed_size ?: size);
400 int ret;
401 struct btrfs_path *path;
402
403 /*
404 * We can create an inline extent if it ends at or beyond the current
405 * i_size, is no larger than a sector (decompressed), and the (possibly
406 * compressed) data fits in a leaf and the configured maximum inline
407 * size.
408 */
409 if (size < i_size_read(&inode->vfs_inode) ||
410 size > fs_info->sectorsize ||
411 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
412 data_len > fs_info->max_inline)
413 return 1;
414
415 path = btrfs_alloc_path();
416 if (!path)
417 return -ENOMEM;
418
419 trans = btrfs_join_transaction(root);
420 if (IS_ERR(trans)) {
421 btrfs_free_path(path);
422 return PTR_ERR(trans);
423 }
424 trans->block_rsv = &inode->block_rsv;
425
426 drop_args.path = path;
427 drop_args.start = 0;
428 drop_args.end = fs_info->sectorsize;
429 drop_args.drop_cache = true;
430 drop_args.replace_extent = true;
431 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
432 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
433 if (ret) {
434 btrfs_abort_transaction(trans, ret);
435 goto out;
436 }
437
438 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
439 size, compressed_size, compress_type,
440 compressed_pages, update_i_size);
441 if (ret && ret != -ENOSPC) {
442 btrfs_abort_transaction(trans, ret);
443 goto out;
444 } else if (ret == -ENOSPC) {
445 ret = 1;
446 goto out;
447 }
448
449 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
450 ret = btrfs_update_inode(trans, root, inode);
451 if (ret && ret != -ENOSPC) {
452 btrfs_abort_transaction(trans, ret);
453 goto out;
454 } else if (ret == -ENOSPC) {
455 ret = 1;
456 goto out;
457 }
458
459 btrfs_set_inode_full_sync(inode);
460 out:
461 /*
462 * Don't forget to free the reserved space, as for inlined extent
463 * it won't count as data extent, free them directly here.
464 * And at reserve time, it's always aligned to page size, so
465 * just free one page here.
466 */
467 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
468 btrfs_free_path(path);
469 btrfs_end_transaction(trans);
470 return ret;
471 }
472
473 struct async_extent {
474 u64 start;
475 u64 ram_size;
476 u64 compressed_size;
477 struct page **pages;
478 unsigned long nr_pages;
479 int compress_type;
480 struct list_head list;
481 };
482
483 struct async_chunk {
484 struct inode *inode;
485 struct page *locked_page;
486 u64 start;
487 u64 end;
488 unsigned int write_flags;
489 struct list_head extents;
490 struct cgroup_subsys_state *blkcg_css;
491 struct btrfs_work work;
492 struct async_cow *async_cow;
493 };
494
495 struct async_cow {
496 atomic_t num_chunks;
497 struct async_chunk chunks[];
498 };
499
500 static noinline int add_async_extent(struct async_chunk *cow,
501 u64 start, u64 ram_size,
502 u64 compressed_size,
503 struct page **pages,
504 unsigned long nr_pages,
505 int compress_type)
506 {
507 struct async_extent *async_extent;
508
509 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
510 BUG_ON(!async_extent); /* -ENOMEM */
511 async_extent->start = start;
512 async_extent->ram_size = ram_size;
513 async_extent->compressed_size = compressed_size;
514 async_extent->pages = pages;
515 async_extent->nr_pages = nr_pages;
516 async_extent->compress_type = compress_type;
517 list_add_tail(&async_extent->list, &cow->extents);
518 return 0;
519 }
520
521 /*
522 * Check if the inode needs to be submitted to compression, based on mount
523 * options, defragmentation, properties or heuristics.
524 */
525 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
526 u64 end)
527 {
528 struct btrfs_fs_info *fs_info = inode->root->fs_info;
529
530 if (!btrfs_inode_can_compress(inode)) {
531 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
532 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
533 btrfs_ino(inode));
534 return 0;
535 }
536 /*
537 * Special check for subpage.
538 *
539 * We lock the full page then run each delalloc range in the page, thus
540 * for the following case, we will hit some subpage specific corner case:
541 *
542 * 0 32K 64K
543 * | |///////| |///////|
544 * \- A \- B
545 *
546 * In above case, both range A and range B will try to unlock the full
547 * page [0, 64K), causing the one finished later will have page
548 * unlocked already, triggering various page lock requirement BUG_ON()s.
549 *
550 * So here we add an artificial limit that subpage compression can only
551 * if the range is fully page aligned.
552 *
553 * In theory we only need to ensure the first page is fully covered, but
554 * the tailing partial page will be locked until the full compression
555 * finishes, delaying the write of other range.
556 *
557 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
558 * first to prevent any submitted async extent to unlock the full page.
559 * By this, we can ensure for subpage case that only the last async_cow
560 * will unlock the full page.
561 */
562 if (fs_info->sectorsize < PAGE_SIZE) {
563 if (!IS_ALIGNED(start, PAGE_SIZE) ||
564 !IS_ALIGNED(end + 1, PAGE_SIZE))
565 return 0;
566 }
567
568 /* force compress */
569 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
570 return 1;
571 /* defrag ioctl */
572 if (inode->defrag_compress)
573 return 1;
574 /* bad compression ratios */
575 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
576 return 0;
577 if (btrfs_test_opt(fs_info, COMPRESS) ||
578 inode->flags & BTRFS_INODE_COMPRESS ||
579 inode->prop_compress)
580 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
581 return 0;
582 }
583
584 static inline void inode_should_defrag(struct btrfs_inode *inode,
585 u64 start, u64 end, u64 num_bytes, u32 small_write)
586 {
587 /* If this is a small write inside eof, kick off a defrag */
588 if (num_bytes < small_write &&
589 (start > 0 || end + 1 < inode->disk_i_size))
590 btrfs_add_inode_defrag(NULL, inode, small_write);
591 }
592
593 /*
594 * we create compressed extents in two phases. The first
595 * phase compresses a range of pages that have already been
596 * locked (both pages and state bits are locked).
597 *
598 * This is done inside an ordered work queue, and the compression
599 * is spread across many cpus. The actual IO submission is step
600 * two, and the ordered work queue takes care of making sure that
601 * happens in the same order things were put onto the queue by
602 * writepages and friends.
603 *
604 * If this code finds it can't get good compression, it puts an
605 * entry onto the work queue to write the uncompressed bytes. This
606 * makes sure that both compressed inodes and uncompressed inodes
607 * are written in the same order that the flusher thread sent them
608 * down.
609 */
610 static noinline int compress_file_range(struct async_chunk *async_chunk)
611 {
612 struct inode *inode = async_chunk->inode;
613 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
614 u64 blocksize = fs_info->sectorsize;
615 u64 start = async_chunk->start;
616 u64 end = async_chunk->end;
617 u64 actual_end;
618 u64 i_size;
619 int ret = 0;
620 struct page **pages = NULL;
621 unsigned long nr_pages;
622 unsigned long total_compressed = 0;
623 unsigned long total_in = 0;
624 int i;
625 int will_compress;
626 int compress_type = fs_info->compress_type;
627 int compressed_extents = 0;
628 int redirty = 0;
629
630 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
631 SZ_16K);
632
633 /*
634 * We need to save i_size before now because it could change in between
635 * us evaluating the size and assigning it. This is because we lock and
636 * unlock the page in truncate and fallocate, and then modify the i_size
637 * later on.
638 *
639 * The barriers are to emulate READ_ONCE, remove that once i_size_read
640 * does that for us.
641 */
642 barrier();
643 i_size = i_size_read(inode);
644 barrier();
645 actual_end = min_t(u64, i_size, end + 1);
646 again:
647 will_compress = 0;
648 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
649 nr_pages = min_t(unsigned long, nr_pages,
650 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
651
652 /*
653 * we don't want to send crud past the end of i_size through
654 * compression, that's just a waste of CPU time. So, if the
655 * end of the file is before the start of our current
656 * requested range of bytes, we bail out to the uncompressed
657 * cleanup code that can deal with all of this.
658 *
659 * It isn't really the fastest way to fix things, but this is a
660 * very uncommon corner.
661 */
662 if (actual_end <= start)
663 goto cleanup_and_bail_uncompressed;
664
665 total_compressed = actual_end - start;
666
667 /*
668 * Skip compression for a small file range(<=blocksize) that
669 * isn't an inline extent, since it doesn't save disk space at all.
670 */
671 if (total_compressed <= blocksize &&
672 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
673 goto cleanup_and_bail_uncompressed;
674
675 /*
676 * For subpage case, we require full page alignment for the sector
677 * aligned range.
678 * Thus we must also check against @actual_end, not just @end.
679 */
680 if (blocksize < PAGE_SIZE) {
681 if (!IS_ALIGNED(start, PAGE_SIZE) ||
682 !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
683 goto cleanup_and_bail_uncompressed;
684 }
685
686 total_compressed = min_t(unsigned long, total_compressed,
687 BTRFS_MAX_UNCOMPRESSED);
688 total_in = 0;
689 ret = 0;
690
691 /*
692 * we do compression for mount -o compress and when the
693 * inode has not been flagged as nocompress. This flag can
694 * change at any time if we discover bad compression ratios.
695 */
696 if (inode_need_compress(BTRFS_I(inode), start, end)) {
697 WARN_ON(pages);
698 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
699 if (!pages) {
700 /* just bail out to the uncompressed code */
701 nr_pages = 0;
702 goto cont;
703 }
704
705 if (BTRFS_I(inode)->defrag_compress)
706 compress_type = BTRFS_I(inode)->defrag_compress;
707 else if (BTRFS_I(inode)->prop_compress)
708 compress_type = BTRFS_I(inode)->prop_compress;
709
710 /*
711 * we need to call clear_page_dirty_for_io on each
712 * page in the range. Otherwise applications with the file
713 * mmap'd can wander in and change the page contents while
714 * we are compressing them.
715 *
716 * If the compression fails for any reason, we set the pages
717 * dirty again later on.
718 *
719 * Note that the remaining part is redirtied, the start pointer
720 * has moved, the end is the original one.
721 */
722 if (!redirty) {
723 extent_range_clear_dirty_for_io(inode, start, end);
724 redirty = 1;
725 }
726
727 /* Compression level is applied here and only here */
728 ret = btrfs_compress_pages(
729 compress_type | (fs_info->compress_level << 4),
730 inode->i_mapping, start,
731 pages,
732 &nr_pages,
733 &total_in,
734 &total_compressed);
735
736 if (!ret) {
737 unsigned long offset = offset_in_page(total_compressed);
738 struct page *page = pages[nr_pages - 1];
739
740 /* zero the tail end of the last page, we might be
741 * sending it down to disk
742 */
743 if (offset)
744 memzero_page(page, offset, PAGE_SIZE - offset);
745 will_compress = 1;
746 }
747 }
748 cont:
749 /*
750 * Check cow_file_range() for why we don't even try to create inline
751 * extent for subpage case.
752 */
753 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
754 /* lets try to make an inline extent */
755 if (ret || total_in < actual_end) {
756 /* we didn't compress the entire range, try
757 * to make an uncompressed inline extent.
758 */
759 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
760 0, BTRFS_COMPRESS_NONE,
761 NULL, false);
762 } else {
763 /* try making a compressed inline extent */
764 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
765 total_compressed,
766 compress_type, pages,
767 false);
768 }
769 if (ret <= 0) {
770 unsigned long clear_flags = EXTENT_DELALLOC |
771 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
772 EXTENT_DO_ACCOUNTING;
773 unsigned long page_error_op;
774
775 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
776
777 /*
778 * inline extent creation worked or returned error,
779 * we don't need to create any more async work items.
780 * Unlock and free up our temp pages.
781 *
782 * We use DO_ACCOUNTING here because we need the
783 * delalloc_release_metadata to be done _after_ we drop
784 * our outstanding extent for clearing delalloc for this
785 * range.
786 */
787 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
788 NULL,
789 clear_flags,
790 PAGE_UNLOCK |
791 PAGE_START_WRITEBACK |
792 page_error_op |
793 PAGE_END_WRITEBACK);
794
795 /*
796 * Ensure we only free the compressed pages if we have
797 * them allocated, as we can still reach here with
798 * inode_need_compress() == false.
799 */
800 if (pages) {
801 for (i = 0; i < nr_pages; i++) {
802 WARN_ON(pages[i]->mapping);
803 put_page(pages[i]);
804 }
805 kfree(pages);
806 }
807 return 0;
808 }
809 }
810
811 if (will_compress) {
812 /*
813 * we aren't doing an inline extent round the compressed size
814 * up to a block size boundary so the allocator does sane
815 * things
816 */
817 total_compressed = ALIGN(total_compressed, blocksize);
818
819 /*
820 * one last check to make sure the compression is really a
821 * win, compare the page count read with the blocks on disk,
822 * compression must free at least one sector size
823 */
824 total_in = round_up(total_in, fs_info->sectorsize);
825 if (total_compressed + blocksize <= total_in) {
826 compressed_extents++;
827
828 /*
829 * The async work queues will take care of doing actual
830 * allocation on disk for these compressed pages, and
831 * will submit them to the elevator.
832 */
833 add_async_extent(async_chunk, start, total_in,
834 total_compressed, pages, nr_pages,
835 compress_type);
836
837 if (start + total_in < end) {
838 start += total_in;
839 pages = NULL;
840 cond_resched();
841 goto again;
842 }
843 return compressed_extents;
844 }
845 }
846 if (pages) {
847 /*
848 * the compression code ran but failed to make things smaller,
849 * free any pages it allocated and our page pointer array
850 */
851 for (i = 0; i < nr_pages; i++) {
852 WARN_ON(pages[i]->mapping);
853 put_page(pages[i]);
854 }
855 kfree(pages);
856 pages = NULL;
857 total_compressed = 0;
858 nr_pages = 0;
859
860 /* flag the file so we don't compress in the future */
861 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
862 !(BTRFS_I(inode)->prop_compress)) {
863 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
864 }
865 }
866 cleanup_and_bail_uncompressed:
867 /*
868 * No compression, but we still need to write the pages in the file
869 * we've been given so far. redirty the locked page if it corresponds
870 * to our extent and set things up for the async work queue to run
871 * cow_file_range to do the normal delalloc dance.
872 */
873 if (async_chunk->locked_page &&
874 (page_offset(async_chunk->locked_page) >= start &&
875 page_offset(async_chunk->locked_page)) <= end) {
876 __set_page_dirty_nobuffers(async_chunk->locked_page);
877 /* unlocked later on in the async handlers */
878 }
879
880 if (redirty)
881 extent_range_redirty_for_io(inode, start, end);
882 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
883 BTRFS_COMPRESS_NONE);
884 compressed_extents++;
885
886 return compressed_extents;
887 }
888
889 static void free_async_extent_pages(struct async_extent *async_extent)
890 {
891 int i;
892
893 if (!async_extent->pages)
894 return;
895
896 for (i = 0; i < async_extent->nr_pages; i++) {
897 WARN_ON(async_extent->pages[i]->mapping);
898 put_page(async_extent->pages[i]);
899 }
900 kfree(async_extent->pages);
901 async_extent->nr_pages = 0;
902 async_extent->pages = NULL;
903 }
904
905 static int submit_uncompressed_range(struct btrfs_inode *inode,
906 struct async_extent *async_extent,
907 struct page *locked_page)
908 {
909 u64 start = async_extent->start;
910 u64 end = async_extent->start + async_extent->ram_size - 1;
911 unsigned long nr_written = 0;
912 int page_started = 0;
913 int ret;
914
915 /*
916 * Call cow_file_range() to run the delalloc range directly, since we
917 * won't go to NOCOW or async path again.
918 *
919 * Also we call cow_file_range() with @unlock_page == 0, so that we
920 * can directly submit them without interruption.
921 */
922 ret = cow_file_range(inode, locked_page, start, end, &page_started,
923 &nr_written, 0);
924 /* Inline extent inserted, page gets unlocked and everything is done */
925 if (page_started) {
926 ret = 0;
927 goto out;
928 }
929 if (ret < 0) {
930 if (locked_page)
931 unlock_page(locked_page);
932 goto out;
933 }
934
935 ret = extent_write_locked_range(&inode->vfs_inode, start, end);
936 /* All pages will be unlocked, including @locked_page */
937 out:
938 kfree(async_extent);
939 return ret;
940 }
941
942 static int submit_one_async_extent(struct btrfs_inode *inode,
943 struct async_chunk *async_chunk,
944 struct async_extent *async_extent,
945 u64 *alloc_hint)
946 {
947 struct extent_io_tree *io_tree = &inode->io_tree;
948 struct btrfs_root *root = inode->root;
949 struct btrfs_fs_info *fs_info = root->fs_info;
950 struct btrfs_key ins;
951 struct page *locked_page = NULL;
952 struct extent_map *em;
953 int ret = 0;
954 u64 start = async_extent->start;
955 u64 end = async_extent->start + async_extent->ram_size - 1;
956
957 /*
958 * If async_chunk->locked_page is in the async_extent range, we need to
959 * handle it.
960 */
961 if (async_chunk->locked_page) {
962 u64 locked_page_start = page_offset(async_chunk->locked_page);
963 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
964
965 if (!(start >= locked_page_end || end <= locked_page_start))
966 locked_page = async_chunk->locked_page;
967 }
968 lock_extent(io_tree, start, end);
969
970 /* We have fall back to uncompressed write */
971 if (!async_extent->pages)
972 return submit_uncompressed_range(inode, async_extent, locked_page);
973
974 ret = btrfs_reserve_extent(root, async_extent->ram_size,
975 async_extent->compressed_size,
976 async_extent->compressed_size,
977 0, *alloc_hint, &ins, 1, 1);
978 if (ret) {
979 free_async_extent_pages(async_extent);
980 /*
981 * Here we used to try again by going back to non-compressed
982 * path for ENOSPC. But we can't reserve space even for
983 * compressed size, how could it work for uncompressed size
984 * which requires larger size? So here we directly go error
985 * path.
986 */
987 goto out_free;
988 }
989
990 /* Here we're doing allocation and writeback of the compressed pages */
991 em = create_io_em(inode, start,
992 async_extent->ram_size, /* len */
993 start, /* orig_start */
994 ins.objectid, /* block_start */
995 ins.offset, /* block_len */
996 ins.offset, /* orig_block_len */
997 async_extent->ram_size, /* ram_bytes */
998 async_extent->compress_type,
999 BTRFS_ORDERED_COMPRESSED);
1000 if (IS_ERR(em)) {
1001 ret = PTR_ERR(em);
1002 goto out_free_reserve;
1003 }
1004 free_extent_map(em);
1005
1006 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */
1007 async_extent->ram_size, /* num_bytes */
1008 async_extent->ram_size, /* ram_bytes */
1009 ins.objectid, /* disk_bytenr */
1010 ins.offset, /* disk_num_bytes */
1011 0, /* offset */
1012 1 << BTRFS_ORDERED_COMPRESSED,
1013 async_extent->compress_type);
1014 if (ret) {
1015 btrfs_drop_extent_cache(inode, start, end, 0);
1016 goto out_free_reserve;
1017 }
1018 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1019
1020 /* Clear dirty, set writeback and unlock the pages. */
1021 extent_clear_unlock_delalloc(inode, start, end,
1022 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1023 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1024 if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1025 async_extent->ram_size, /* num_bytes */
1026 ins.objectid, /* disk_bytenr */
1027 ins.offset, /* compressed_len */
1028 async_extent->pages, /* compressed_pages */
1029 async_extent->nr_pages,
1030 async_chunk->write_flags,
1031 async_chunk->blkcg_css, true)) {
1032 const u64 start = async_extent->start;
1033 const u64 end = start + async_extent->ram_size - 1;
1034
1035 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1036
1037 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1038 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1039 free_async_extent_pages(async_extent);
1040 }
1041 *alloc_hint = ins.objectid + ins.offset;
1042 kfree(async_extent);
1043 return ret;
1044
1045 out_free_reserve:
1046 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1047 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1048 out_free:
1049 extent_clear_unlock_delalloc(inode, start, end,
1050 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1051 EXTENT_DELALLOC_NEW |
1052 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1053 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1054 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1055 free_async_extent_pages(async_extent);
1056 kfree(async_extent);
1057 return ret;
1058 }
1059
1060 /*
1061 * Phase two of compressed writeback. This is the ordered portion of the code,
1062 * which only gets called in the order the work was queued. We walk all the
1063 * async extents created by compress_file_range and send them down to the disk.
1064 */
1065 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1066 {
1067 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1068 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1069 struct async_extent *async_extent;
1070 u64 alloc_hint = 0;
1071 int ret = 0;
1072
1073 while (!list_empty(&async_chunk->extents)) {
1074 u64 extent_start;
1075 u64 ram_size;
1076
1077 async_extent = list_entry(async_chunk->extents.next,
1078 struct async_extent, list);
1079 list_del(&async_extent->list);
1080 extent_start = async_extent->start;
1081 ram_size = async_extent->ram_size;
1082
1083 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1084 &alloc_hint);
1085 btrfs_debug(fs_info,
1086 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1087 inode->root->root_key.objectid,
1088 btrfs_ino(inode), extent_start, ram_size, ret);
1089 }
1090 }
1091
1092 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1093 u64 num_bytes)
1094 {
1095 struct extent_map_tree *em_tree = &inode->extent_tree;
1096 struct extent_map *em;
1097 u64 alloc_hint = 0;
1098
1099 read_lock(&em_tree->lock);
1100 em = search_extent_mapping(em_tree, start, num_bytes);
1101 if (em) {
1102 /*
1103 * if block start isn't an actual block number then find the
1104 * first block in this inode and use that as a hint. If that
1105 * block is also bogus then just don't worry about it.
1106 */
1107 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1108 free_extent_map(em);
1109 em = search_extent_mapping(em_tree, 0, 0);
1110 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1111 alloc_hint = em->block_start;
1112 if (em)
1113 free_extent_map(em);
1114 } else {
1115 alloc_hint = em->block_start;
1116 free_extent_map(em);
1117 }
1118 }
1119 read_unlock(&em_tree->lock);
1120
1121 return alloc_hint;
1122 }
1123
1124 /*
1125 * when extent_io.c finds a delayed allocation range in the file,
1126 * the call backs end up in this code. The basic idea is to
1127 * allocate extents on disk for the range, and create ordered data structs
1128 * in ram to track those extents.
1129 *
1130 * locked_page is the page that writepage had locked already. We use
1131 * it to make sure we don't do extra locks or unlocks.
1132 *
1133 * *page_started is set to one if we unlock locked_page and do everything
1134 * required to start IO on it. It may be clean and already done with
1135 * IO when we return.
1136 */
1137 static noinline int cow_file_range(struct btrfs_inode *inode,
1138 struct page *locked_page,
1139 u64 start, u64 end, int *page_started,
1140 unsigned long *nr_written, int unlock)
1141 {
1142 struct btrfs_root *root = inode->root;
1143 struct btrfs_fs_info *fs_info = root->fs_info;
1144 u64 alloc_hint = 0;
1145 u64 num_bytes;
1146 unsigned long ram_size;
1147 u64 cur_alloc_size = 0;
1148 u64 min_alloc_size;
1149 u64 blocksize = fs_info->sectorsize;
1150 struct btrfs_key ins;
1151 struct extent_map *em;
1152 unsigned clear_bits;
1153 unsigned long page_ops;
1154 bool extent_reserved = false;
1155 int ret = 0;
1156
1157 if (btrfs_is_free_space_inode(inode)) {
1158 ret = -EINVAL;
1159 goto out_unlock;
1160 }
1161
1162 num_bytes = ALIGN(end - start + 1, blocksize);
1163 num_bytes = max(blocksize, num_bytes);
1164 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1165
1166 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1167
1168 /*
1169 * Due to the page size limit, for subpage we can only trigger the
1170 * writeback for the dirty sectors of page, that means data writeback
1171 * is doing more writeback than what we want.
1172 *
1173 * This is especially unexpected for some call sites like fallocate,
1174 * where we only increase i_size after everything is done.
1175 * This means we can trigger inline extent even if we didn't want to.
1176 * So here we skip inline extent creation completely.
1177 */
1178 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1179 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1180 end + 1);
1181
1182 /* lets try to make an inline extent */
1183 ret = cow_file_range_inline(inode, actual_end, 0,
1184 BTRFS_COMPRESS_NONE, NULL, false);
1185 if (ret == 0) {
1186 /*
1187 * We use DO_ACCOUNTING here because we need the
1188 * delalloc_release_metadata to be run _after_ we drop
1189 * our outstanding extent for clearing delalloc for this
1190 * range.
1191 */
1192 extent_clear_unlock_delalloc(inode, start, end,
1193 locked_page,
1194 EXTENT_LOCKED | EXTENT_DELALLOC |
1195 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1196 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1197 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1198 *nr_written = *nr_written +
1199 (end - start + PAGE_SIZE) / PAGE_SIZE;
1200 *page_started = 1;
1201 /*
1202 * locked_page is locked by the caller of
1203 * writepage_delalloc(), not locked by
1204 * __process_pages_contig().
1205 *
1206 * We can't let __process_pages_contig() to unlock it,
1207 * as it doesn't have any subpage::writers recorded.
1208 *
1209 * Here we manually unlock the page, since the caller
1210 * can't use page_started to determine if it's an
1211 * inline extent or a compressed extent.
1212 */
1213 unlock_page(locked_page);
1214 goto out;
1215 } else if (ret < 0) {
1216 goto out_unlock;
1217 }
1218 }
1219
1220 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1221 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1222
1223 /*
1224 * Relocation relies on the relocated extents to have exactly the same
1225 * size as the original extents. Normally writeback for relocation data
1226 * extents follows a NOCOW path because relocation preallocates the
1227 * extents. However, due to an operation such as scrub turning a block
1228 * group to RO mode, it may fallback to COW mode, so we must make sure
1229 * an extent allocated during COW has exactly the requested size and can
1230 * not be split into smaller extents, otherwise relocation breaks and
1231 * fails during the stage where it updates the bytenr of file extent
1232 * items.
1233 */
1234 if (btrfs_is_data_reloc_root(root))
1235 min_alloc_size = num_bytes;
1236 else
1237 min_alloc_size = fs_info->sectorsize;
1238
1239 while (num_bytes > 0) {
1240 cur_alloc_size = num_bytes;
1241 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1242 min_alloc_size, 0, alloc_hint,
1243 &ins, 1, 1);
1244 if (ret < 0)
1245 goto out_unlock;
1246 cur_alloc_size = ins.offset;
1247 extent_reserved = true;
1248
1249 ram_size = ins.offset;
1250 em = create_io_em(inode, start, ins.offset, /* len */
1251 start, /* orig_start */
1252 ins.objectid, /* block_start */
1253 ins.offset, /* block_len */
1254 ins.offset, /* orig_block_len */
1255 ram_size, /* ram_bytes */
1256 BTRFS_COMPRESS_NONE, /* compress_type */
1257 BTRFS_ORDERED_REGULAR /* type */);
1258 if (IS_ERR(em)) {
1259 ret = PTR_ERR(em);
1260 goto out_reserve;
1261 }
1262 free_extent_map(em);
1263
1264 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1265 ins.objectid, cur_alloc_size, 0,
1266 1 << BTRFS_ORDERED_REGULAR,
1267 BTRFS_COMPRESS_NONE);
1268 if (ret)
1269 goto out_drop_extent_cache;
1270
1271 if (btrfs_is_data_reloc_root(root)) {
1272 ret = btrfs_reloc_clone_csums(inode, start,
1273 cur_alloc_size);
1274 /*
1275 * Only drop cache here, and process as normal.
1276 *
1277 * We must not allow extent_clear_unlock_delalloc()
1278 * at out_unlock label to free meta of this ordered
1279 * extent, as its meta should be freed by
1280 * btrfs_finish_ordered_io().
1281 *
1282 * So we must continue until @start is increased to
1283 * skip current ordered extent.
1284 */
1285 if (ret)
1286 btrfs_drop_extent_cache(inode, start,
1287 start + ram_size - 1, 0);
1288 }
1289
1290 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1291
1292 /*
1293 * We're not doing compressed IO, don't unlock the first page
1294 * (which the caller expects to stay locked), don't clear any
1295 * dirty bits and don't set any writeback bits
1296 *
1297 * Do set the Ordered (Private2) bit so we know this page was
1298 * properly setup for writepage.
1299 */
1300 page_ops = unlock ? PAGE_UNLOCK : 0;
1301 page_ops |= PAGE_SET_ORDERED;
1302
1303 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1304 locked_page,
1305 EXTENT_LOCKED | EXTENT_DELALLOC,
1306 page_ops);
1307 if (num_bytes < cur_alloc_size)
1308 num_bytes = 0;
1309 else
1310 num_bytes -= cur_alloc_size;
1311 alloc_hint = ins.objectid + ins.offset;
1312 start += cur_alloc_size;
1313 extent_reserved = false;
1314
1315 /*
1316 * btrfs_reloc_clone_csums() error, since start is increased
1317 * extent_clear_unlock_delalloc() at out_unlock label won't
1318 * free metadata of current ordered extent, we're OK to exit.
1319 */
1320 if (ret)
1321 goto out_unlock;
1322 }
1323 out:
1324 return ret;
1325
1326 out_drop_extent_cache:
1327 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1328 out_reserve:
1329 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1330 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1331 out_unlock:
1332 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1333 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1334 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1335 /*
1336 * If we reserved an extent for our delalloc range (or a subrange) and
1337 * failed to create the respective ordered extent, then it means that
1338 * when we reserved the extent we decremented the extent's size from
1339 * the data space_info's bytes_may_use counter and incremented the
1340 * space_info's bytes_reserved counter by the same amount. We must make
1341 * sure extent_clear_unlock_delalloc() does not try to decrement again
1342 * the data space_info's bytes_may_use counter, therefore we do not pass
1343 * it the flag EXTENT_CLEAR_DATA_RESV.
1344 */
1345 if (extent_reserved) {
1346 extent_clear_unlock_delalloc(inode, start,
1347 start + cur_alloc_size - 1,
1348 locked_page,
1349 clear_bits,
1350 page_ops);
1351 start += cur_alloc_size;
1352 if (start >= end)
1353 goto out;
1354 }
1355 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1356 clear_bits | EXTENT_CLEAR_DATA_RESV,
1357 page_ops);
1358 goto out;
1359 }
1360
1361 /*
1362 * work queue call back to started compression on a file and pages
1363 */
1364 static noinline void async_cow_start(struct btrfs_work *work)
1365 {
1366 struct async_chunk *async_chunk;
1367 int compressed_extents;
1368
1369 async_chunk = container_of(work, struct async_chunk, work);
1370
1371 compressed_extents = compress_file_range(async_chunk);
1372 if (compressed_extents == 0) {
1373 btrfs_add_delayed_iput(async_chunk->inode);
1374 async_chunk->inode = NULL;
1375 }
1376 }
1377
1378 /*
1379 * work queue call back to submit previously compressed pages
1380 */
1381 static noinline void async_cow_submit(struct btrfs_work *work)
1382 {
1383 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1384 work);
1385 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1386 unsigned long nr_pages;
1387
1388 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1389 PAGE_SHIFT;
1390
1391 /*
1392 * ->inode could be NULL if async_chunk_start has failed to compress,
1393 * in which case we don't have anything to submit, yet we need to
1394 * always adjust ->async_delalloc_pages as its paired with the init
1395 * happening in cow_file_range_async
1396 */
1397 if (async_chunk->inode)
1398 submit_compressed_extents(async_chunk);
1399
1400 /* atomic_sub_return implies a barrier */
1401 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1402 5 * SZ_1M)
1403 cond_wake_up_nomb(&fs_info->async_submit_wait);
1404 }
1405
1406 static noinline void async_cow_free(struct btrfs_work *work)
1407 {
1408 struct async_chunk *async_chunk;
1409 struct async_cow *async_cow;
1410
1411 async_chunk = container_of(work, struct async_chunk, work);
1412 if (async_chunk->inode)
1413 btrfs_add_delayed_iput(async_chunk->inode);
1414 if (async_chunk->blkcg_css)
1415 css_put(async_chunk->blkcg_css);
1416
1417 async_cow = async_chunk->async_cow;
1418 if (atomic_dec_and_test(&async_cow->num_chunks))
1419 kvfree(async_cow);
1420 }
1421
1422 static int cow_file_range_async(struct btrfs_inode *inode,
1423 struct writeback_control *wbc,
1424 struct page *locked_page,
1425 u64 start, u64 end, int *page_started,
1426 unsigned long *nr_written)
1427 {
1428 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1429 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1430 struct async_cow *ctx;
1431 struct async_chunk *async_chunk;
1432 unsigned long nr_pages;
1433 u64 cur_end;
1434 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1435 int i;
1436 bool should_compress;
1437 unsigned nofs_flag;
1438 const unsigned int write_flags = wbc_to_write_flags(wbc);
1439
1440 unlock_extent(&inode->io_tree, start, end);
1441
1442 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1443 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1444 num_chunks = 1;
1445 should_compress = false;
1446 } else {
1447 should_compress = true;
1448 }
1449
1450 nofs_flag = memalloc_nofs_save();
1451 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1452 memalloc_nofs_restore(nofs_flag);
1453
1454 if (!ctx) {
1455 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1456 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1457 EXTENT_DO_ACCOUNTING;
1458 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1459 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1460
1461 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1462 clear_bits, page_ops);
1463 return -ENOMEM;
1464 }
1465
1466 async_chunk = ctx->chunks;
1467 atomic_set(&ctx->num_chunks, num_chunks);
1468
1469 for (i = 0; i < num_chunks; i++) {
1470 if (should_compress)
1471 cur_end = min(end, start + SZ_512K - 1);
1472 else
1473 cur_end = end;
1474
1475 /*
1476 * igrab is called higher up in the call chain, take only the
1477 * lightweight reference for the callback lifetime
1478 */
1479 ihold(&inode->vfs_inode);
1480 async_chunk[i].async_cow = ctx;
1481 async_chunk[i].inode = &inode->vfs_inode;
1482 async_chunk[i].start = start;
1483 async_chunk[i].end = cur_end;
1484 async_chunk[i].write_flags = write_flags;
1485 INIT_LIST_HEAD(&async_chunk[i].extents);
1486
1487 /*
1488 * The locked_page comes all the way from writepage and its
1489 * the original page we were actually given. As we spread
1490 * this large delalloc region across multiple async_chunk
1491 * structs, only the first struct needs a pointer to locked_page
1492 *
1493 * This way we don't need racey decisions about who is supposed
1494 * to unlock it.
1495 */
1496 if (locked_page) {
1497 /*
1498 * Depending on the compressibility, the pages might or
1499 * might not go through async. We want all of them to
1500 * be accounted against wbc once. Let's do it here
1501 * before the paths diverge. wbc accounting is used
1502 * only for foreign writeback detection and doesn't
1503 * need full accuracy. Just account the whole thing
1504 * against the first page.
1505 */
1506 wbc_account_cgroup_owner(wbc, locked_page,
1507 cur_end - start);
1508 async_chunk[i].locked_page = locked_page;
1509 locked_page = NULL;
1510 } else {
1511 async_chunk[i].locked_page = NULL;
1512 }
1513
1514 if (blkcg_css != blkcg_root_css) {
1515 css_get(blkcg_css);
1516 async_chunk[i].blkcg_css = blkcg_css;
1517 } else {
1518 async_chunk[i].blkcg_css = NULL;
1519 }
1520
1521 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1522 async_cow_submit, async_cow_free);
1523
1524 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1525 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1526
1527 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1528
1529 *nr_written += nr_pages;
1530 start = cur_end + 1;
1531 }
1532 *page_started = 1;
1533 return 0;
1534 }
1535
1536 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1537 struct page *locked_page, u64 start,
1538 u64 end, int *page_started,
1539 unsigned long *nr_written)
1540 {
1541 int ret;
1542
1543 ret = cow_file_range(inode, locked_page, start, end, page_started,
1544 nr_written, 0);
1545 if (ret)
1546 return ret;
1547
1548 if (*page_started)
1549 return 0;
1550
1551 __set_page_dirty_nobuffers(locked_page);
1552 account_page_redirty(locked_page);
1553 extent_write_locked_range(&inode->vfs_inode, start, end);
1554 *page_started = 1;
1555
1556 return 0;
1557 }
1558
1559 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1560 u64 bytenr, u64 num_bytes)
1561 {
1562 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1563 struct btrfs_ordered_sum *sums;
1564 int ret;
1565 LIST_HEAD(list);
1566
1567 ret = btrfs_lookup_csums_range(csum_root, bytenr,
1568 bytenr + num_bytes - 1, &list, 0);
1569 if (ret == 0 && list_empty(&list))
1570 return 0;
1571
1572 while (!list_empty(&list)) {
1573 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1574 list_del(&sums->list);
1575 kfree(sums);
1576 }
1577 if (ret < 0)
1578 return ret;
1579 return 1;
1580 }
1581
1582 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1583 const u64 start, const u64 end,
1584 int *page_started, unsigned long *nr_written)
1585 {
1586 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1587 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1588 const u64 range_bytes = end + 1 - start;
1589 struct extent_io_tree *io_tree = &inode->io_tree;
1590 u64 range_start = start;
1591 u64 count;
1592
1593 /*
1594 * If EXTENT_NORESERVE is set it means that when the buffered write was
1595 * made we had not enough available data space and therefore we did not
1596 * reserve data space for it, since we though we could do NOCOW for the
1597 * respective file range (either there is prealloc extent or the inode
1598 * has the NOCOW bit set).
1599 *
1600 * However when we need to fallback to COW mode (because for example the
1601 * block group for the corresponding extent was turned to RO mode by a
1602 * scrub or relocation) we need to do the following:
1603 *
1604 * 1) We increment the bytes_may_use counter of the data space info.
1605 * If COW succeeds, it allocates a new data extent and after doing
1606 * that it decrements the space info's bytes_may_use counter and
1607 * increments its bytes_reserved counter by the same amount (we do
1608 * this at btrfs_add_reserved_bytes()). So we need to increment the
1609 * bytes_may_use counter to compensate (when space is reserved at
1610 * buffered write time, the bytes_may_use counter is incremented);
1611 *
1612 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1613 * that if the COW path fails for any reason, it decrements (through
1614 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1615 * data space info, which we incremented in the step above.
1616 *
1617 * If we need to fallback to cow and the inode corresponds to a free
1618 * space cache inode or an inode of the data relocation tree, we must
1619 * also increment bytes_may_use of the data space_info for the same
1620 * reason. Space caches and relocated data extents always get a prealloc
1621 * extent for them, however scrub or balance may have set the block
1622 * group that contains that extent to RO mode and therefore force COW
1623 * when starting writeback.
1624 */
1625 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1626 EXTENT_NORESERVE, 0);
1627 if (count > 0 || is_space_ino || is_reloc_ino) {
1628 u64 bytes = count;
1629 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1630 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1631
1632 if (is_space_ino || is_reloc_ino)
1633 bytes = range_bytes;
1634
1635 spin_lock(&sinfo->lock);
1636 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1637 spin_unlock(&sinfo->lock);
1638
1639 if (count > 0)
1640 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1641 0, 0, NULL);
1642 }
1643
1644 return cow_file_range(inode, locked_page, start, end, page_started,
1645 nr_written, 1);
1646 }
1647
1648 struct can_nocow_file_extent_args {
1649 /* Input fields. */
1650
1651 /* Start file offset of the range we want to NOCOW. */
1652 u64 start;
1653 /* End file offset (inclusive) of the range we want to NOCOW. */
1654 u64 end;
1655 bool writeback_path;
1656 bool strict;
1657 /*
1658 * Free the path passed to can_nocow_file_extent() once it's not needed
1659 * anymore.
1660 */
1661 bool free_path;
1662
1663 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1664
1665 u64 disk_bytenr;
1666 u64 disk_num_bytes;
1667 u64 extent_offset;
1668 /* Number of bytes that can be written to in NOCOW mode. */
1669 u64 num_bytes;
1670 };
1671
1672 /*
1673 * Check if we can NOCOW the file extent that the path points to.
1674 * This function may return with the path released, so the caller should check
1675 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1676 *
1677 * Returns: < 0 on error
1678 * 0 if we can not NOCOW
1679 * 1 if we can NOCOW
1680 */
1681 static int can_nocow_file_extent(struct btrfs_path *path,
1682 struct btrfs_key *key,
1683 struct btrfs_inode *inode,
1684 struct can_nocow_file_extent_args *args)
1685 {
1686 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1687 struct extent_buffer *leaf = path->nodes[0];
1688 struct btrfs_root *root = inode->root;
1689 struct btrfs_file_extent_item *fi;
1690 u64 extent_end;
1691 u8 extent_type;
1692 int can_nocow = 0;
1693 int ret = 0;
1694
1695 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1696 extent_type = btrfs_file_extent_type(leaf, fi);
1697
1698 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1699 goto out;
1700
1701 /* Can't access these fields unless we know it's not an inline extent. */
1702 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1703 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1704 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1705
1706 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1707 extent_type == BTRFS_FILE_EXTENT_REG)
1708 goto out;
1709
1710 /*
1711 * If the extent was created before the generation where the last snapshot
1712 * for its subvolume was created, then this implies the extent is shared,
1713 * hence we must COW.
1714 */
1715 if (!args->strict &&
1716 btrfs_file_extent_generation(leaf, fi) <=
1717 btrfs_root_last_snapshot(&root->root_item))
1718 goto out;
1719
1720 /* An explicit hole, must COW. */
1721 if (args->disk_bytenr == 0)
1722 goto out;
1723
1724 /* Compressed/encrypted/encoded extents must be COWed. */
1725 if (btrfs_file_extent_compression(leaf, fi) ||
1726 btrfs_file_extent_encryption(leaf, fi) ||
1727 btrfs_file_extent_other_encoding(leaf, fi))
1728 goto out;
1729
1730 extent_end = btrfs_file_extent_end(path);
1731
1732 /*
1733 * The following checks can be expensive, as they need to take other
1734 * locks and do btree or rbtree searches, so release the path to avoid
1735 * blocking other tasks for too long.
1736 */
1737 btrfs_release_path(path);
1738
1739 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1740 key->offset - args->extent_offset,
1741 args->disk_bytenr, false, path);
1742 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1743 if (ret != 0)
1744 goto out;
1745
1746 if (args->free_path) {
1747 /*
1748 * We don't need the path anymore, plus through the
1749 * csum_exist_in_range() call below we will end up allocating
1750 * another path. So free the path to avoid unnecessary extra
1751 * memory usage.
1752 */
1753 btrfs_free_path(path);
1754 path = NULL;
1755 }
1756
1757 /* If there are pending snapshots for this root, we must COW. */
1758 if (args->writeback_path && !is_freespace_inode &&
1759 atomic_read(&root->snapshot_force_cow))
1760 goto out;
1761
1762 args->disk_bytenr += args->extent_offset;
1763 args->disk_bytenr += args->start - key->offset;
1764 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1765
1766 /*
1767 * Force COW if csums exist in the range. This ensures that csums for a
1768 * given extent are either valid or do not exist.
1769 */
1770 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes);
1771 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1772 if (ret != 0)
1773 goto out;
1774
1775 can_nocow = 1;
1776 out:
1777 if (args->free_path && path)
1778 btrfs_free_path(path);
1779
1780 return ret < 0 ? ret : can_nocow;
1781 }
1782
1783 /*
1784 * when nowcow writeback call back. This checks for snapshots or COW copies
1785 * of the extents that exist in the file, and COWs the file as required.
1786 *
1787 * If no cow copies or snapshots exist, we write directly to the existing
1788 * blocks on disk
1789 */
1790 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1791 struct page *locked_page,
1792 const u64 start, const u64 end,
1793 int *page_started,
1794 unsigned long *nr_written)
1795 {
1796 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1797 struct btrfs_root *root = inode->root;
1798 struct btrfs_path *path;
1799 u64 cow_start = (u64)-1;
1800 u64 cur_offset = start;
1801 int ret;
1802 bool check_prev = true;
1803 u64 ino = btrfs_ino(inode);
1804 struct btrfs_block_group *bg;
1805 bool nocow = false;
1806 struct can_nocow_file_extent_args nocow_args = { 0 };
1807
1808 path = btrfs_alloc_path();
1809 if (!path) {
1810 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1811 EXTENT_LOCKED | EXTENT_DELALLOC |
1812 EXTENT_DO_ACCOUNTING |
1813 EXTENT_DEFRAG, PAGE_UNLOCK |
1814 PAGE_START_WRITEBACK |
1815 PAGE_END_WRITEBACK);
1816 return -ENOMEM;
1817 }
1818
1819 nocow_args.end = end;
1820 nocow_args.writeback_path = true;
1821
1822 while (1) {
1823 struct btrfs_key found_key;
1824 struct btrfs_file_extent_item *fi;
1825 struct extent_buffer *leaf;
1826 u64 extent_end;
1827 u64 ram_bytes;
1828 u64 nocow_end;
1829 int extent_type;
1830
1831 nocow = false;
1832
1833 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1834 cur_offset, 0);
1835 if (ret < 0)
1836 goto error;
1837
1838 /*
1839 * If there is no extent for our range when doing the initial
1840 * search, then go back to the previous slot as it will be the
1841 * one containing the search offset
1842 */
1843 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1844 leaf = path->nodes[0];
1845 btrfs_item_key_to_cpu(leaf, &found_key,
1846 path->slots[0] - 1);
1847 if (found_key.objectid == ino &&
1848 found_key.type == BTRFS_EXTENT_DATA_KEY)
1849 path->slots[0]--;
1850 }
1851 check_prev = false;
1852 next_slot:
1853 /* Go to next leaf if we have exhausted the current one */
1854 leaf = path->nodes[0];
1855 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1856 ret = btrfs_next_leaf(root, path);
1857 if (ret < 0) {
1858 if (cow_start != (u64)-1)
1859 cur_offset = cow_start;
1860 goto error;
1861 }
1862 if (ret > 0)
1863 break;
1864 leaf = path->nodes[0];
1865 }
1866
1867 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1868
1869 /* Didn't find anything for our INO */
1870 if (found_key.objectid > ino)
1871 break;
1872 /*
1873 * Keep searching until we find an EXTENT_ITEM or there are no
1874 * more extents for this inode
1875 */
1876 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1877 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1878 path->slots[0]++;
1879 goto next_slot;
1880 }
1881
1882 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1883 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1884 found_key.offset > end)
1885 break;
1886
1887 /*
1888 * If the found extent starts after requested offset, then
1889 * adjust extent_end to be right before this extent begins
1890 */
1891 if (found_key.offset > cur_offset) {
1892 extent_end = found_key.offset;
1893 extent_type = 0;
1894 goto out_check;
1895 }
1896
1897 /*
1898 * Found extent which begins before our range and potentially
1899 * intersect it
1900 */
1901 fi = btrfs_item_ptr(leaf, path->slots[0],
1902 struct btrfs_file_extent_item);
1903 extent_type = btrfs_file_extent_type(leaf, fi);
1904 /* If this is triggered then we have a memory corruption. */
1905 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
1906 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
1907 ret = -EUCLEAN;
1908 goto error;
1909 }
1910 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1911 extent_end = btrfs_file_extent_end(path);
1912
1913 /*
1914 * If the extent we got ends before our current offset, skip to
1915 * the next extent.
1916 */
1917 if (extent_end <= cur_offset) {
1918 path->slots[0]++;
1919 goto next_slot;
1920 }
1921
1922 nocow_args.start = cur_offset;
1923 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
1924 if (ret < 0) {
1925 if (cow_start != (u64)-1)
1926 cur_offset = cow_start;
1927 goto error;
1928 } else if (ret == 0) {
1929 goto out_check;
1930 }
1931
1932 ret = 0;
1933 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
1934 if (bg)
1935 nocow = true;
1936 out_check:
1937 /*
1938 * If nocow is false then record the beginning of the range
1939 * that needs to be COWed
1940 */
1941 if (!nocow) {
1942 if (cow_start == (u64)-1)
1943 cow_start = cur_offset;
1944 cur_offset = extent_end;
1945 if (cur_offset > end)
1946 break;
1947 if (!path->nodes[0])
1948 continue;
1949 path->slots[0]++;
1950 goto next_slot;
1951 }
1952
1953 /*
1954 * COW range from cow_start to found_key.offset - 1. As the key
1955 * will contain the beginning of the first extent that can be
1956 * NOCOW, following one which needs to be COW'ed
1957 */
1958 if (cow_start != (u64)-1) {
1959 ret = fallback_to_cow(inode, locked_page,
1960 cow_start, found_key.offset - 1,
1961 page_started, nr_written);
1962 if (ret)
1963 goto error;
1964 cow_start = (u64)-1;
1965 }
1966
1967 nocow_end = cur_offset + nocow_args.num_bytes - 1;
1968
1969 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1970 u64 orig_start = found_key.offset - nocow_args.extent_offset;
1971 struct extent_map *em;
1972
1973 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
1974 orig_start,
1975 nocow_args.disk_bytenr, /* block_start */
1976 nocow_args.num_bytes, /* block_len */
1977 nocow_args.disk_num_bytes, /* orig_block_len */
1978 ram_bytes, BTRFS_COMPRESS_NONE,
1979 BTRFS_ORDERED_PREALLOC);
1980 if (IS_ERR(em)) {
1981 ret = PTR_ERR(em);
1982 goto error;
1983 }
1984 free_extent_map(em);
1985 ret = btrfs_add_ordered_extent(inode,
1986 cur_offset, nocow_args.num_bytes,
1987 nocow_args.num_bytes,
1988 nocow_args.disk_bytenr,
1989 nocow_args.num_bytes, 0,
1990 1 << BTRFS_ORDERED_PREALLOC,
1991 BTRFS_COMPRESS_NONE);
1992 if (ret) {
1993 btrfs_drop_extent_cache(inode, cur_offset,
1994 nocow_end, 0);
1995 goto error;
1996 }
1997 } else {
1998 ret = btrfs_add_ordered_extent(inode, cur_offset,
1999 nocow_args.num_bytes,
2000 nocow_args.num_bytes,
2001 nocow_args.disk_bytenr,
2002 nocow_args.num_bytes,
2003 0,
2004 1 << BTRFS_ORDERED_NOCOW,
2005 BTRFS_COMPRESS_NONE);
2006 if (ret)
2007 goto error;
2008 }
2009
2010 if (nocow) {
2011 btrfs_dec_nocow_writers(bg);
2012 nocow = false;
2013 }
2014
2015 if (btrfs_is_data_reloc_root(root))
2016 /*
2017 * Error handled later, as we must prevent
2018 * extent_clear_unlock_delalloc() in error handler
2019 * from freeing metadata of created ordered extent.
2020 */
2021 ret = btrfs_reloc_clone_csums(inode, cur_offset,
2022 nocow_args.num_bytes);
2023
2024 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2025 locked_page, EXTENT_LOCKED |
2026 EXTENT_DELALLOC |
2027 EXTENT_CLEAR_DATA_RESV,
2028 PAGE_UNLOCK | PAGE_SET_ORDERED);
2029
2030 cur_offset = extent_end;
2031
2032 /*
2033 * btrfs_reloc_clone_csums() error, now we're OK to call error
2034 * handler, as metadata for created ordered extent will only
2035 * be freed by btrfs_finish_ordered_io().
2036 */
2037 if (ret)
2038 goto error;
2039 if (cur_offset > end)
2040 break;
2041 }
2042 btrfs_release_path(path);
2043
2044 if (cur_offset <= end && cow_start == (u64)-1)
2045 cow_start = cur_offset;
2046
2047 if (cow_start != (u64)-1) {
2048 cur_offset = end;
2049 ret = fallback_to_cow(inode, locked_page, cow_start, end,
2050 page_started, nr_written);
2051 if (ret)
2052 goto error;
2053 }
2054
2055 error:
2056 if (nocow)
2057 btrfs_dec_nocow_writers(bg);
2058
2059 if (ret && cur_offset < end)
2060 extent_clear_unlock_delalloc(inode, cur_offset, end,
2061 locked_page, EXTENT_LOCKED |
2062 EXTENT_DELALLOC | EXTENT_DEFRAG |
2063 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2064 PAGE_START_WRITEBACK |
2065 PAGE_END_WRITEBACK);
2066 btrfs_free_path(path);
2067 return ret;
2068 }
2069
2070 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2071 {
2072 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2073 if (inode->defrag_bytes &&
2074 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2075 0, NULL))
2076 return false;
2077 return true;
2078 }
2079 return false;
2080 }
2081
2082 /*
2083 * Function to process delayed allocation (create CoW) for ranges which are
2084 * being touched for the first time.
2085 */
2086 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2087 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2088 struct writeback_control *wbc)
2089 {
2090 int ret;
2091 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2092
2093 /*
2094 * The range must cover part of the @locked_page, or the returned
2095 * @page_started can confuse the caller.
2096 */
2097 ASSERT(!(end <= page_offset(locked_page) ||
2098 start >= page_offset(locked_page) + PAGE_SIZE));
2099
2100 if (should_nocow(inode, start, end)) {
2101 /*
2102 * Normally on a zoned device we're only doing COW writes, but
2103 * in case of relocation on a zoned filesystem we have taken
2104 * precaution, that we're only writing sequentially. It's safe
2105 * to use run_delalloc_nocow() here, like for regular
2106 * preallocated inodes.
2107 */
2108 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2109 ret = run_delalloc_nocow(inode, locked_page, start, end,
2110 page_started, nr_written);
2111 } else if (!btrfs_inode_can_compress(inode) ||
2112 !inode_need_compress(inode, start, end)) {
2113 if (zoned)
2114 ret = run_delalloc_zoned(inode, locked_page, start, end,
2115 page_started, nr_written);
2116 else
2117 ret = cow_file_range(inode, locked_page, start, end,
2118 page_started, nr_written, 1);
2119 } else {
2120 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2121 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2122 page_started, nr_written);
2123 }
2124 ASSERT(ret <= 0);
2125 if (ret)
2126 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2127 end - start + 1);
2128 return ret;
2129 }
2130
2131 void btrfs_split_delalloc_extent(struct inode *inode,
2132 struct extent_state *orig, u64 split)
2133 {
2134 u64 size;
2135
2136 /* not delalloc, ignore it */
2137 if (!(orig->state & EXTENT_DELALLOC))
2138 return;
2139
2140 size = orig->end - orig->start + 1;
2141 if (size > BTRFS_MAX_EXTENT_SIZE) {
2142 u32 num_extents;
2143 u64 new_size;
2144
2145 /*
2146 * See the explanation in btrfs_merge_delalloc_extent, the same
2147 * applies here, just in reverse.
2148 */
2149 new_size = orig->end - split + 1;
2150 num_extents = count_max_extents(new_size);
2151 new_size = split - orig->start;
2152 num_extents += count_max_extents(new_size);
2153 if (count_max_extents(size) >= num_extents)
2154 return;
2155 }
2156
2157 spin_lock(&BTRFS_I(inode)->lock);
2158 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2159 spin_unlock(&BTRFS_I(inode)->lock);
2160 }
2161
2162 /*
2163 * Handle merged delayed allocation extents so we can keep track of new extents
2164 * that are just merged onto old extents, such as when we are doing sequential
2165 * writes, so we can properly account for the metadata space we'll need.
2166 */
2167 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2168 struct extent_state *other)
2169 {
2170 u64 new_size, old_size;
2171 u32 num_extents;
2172
2173 /* not delalloc, ignore it */
2174 if (!(other->state & EXTENT_DELALLOC))
2175 return;
2176
2177 if (new->start > other->start)
2178 new_size = new->end - other->start + 1;
2179 else
2180 new_size = other->end - new->start + 1;
2181
2182 /* we're not bigger than the max, unreserve the space and go */
2183 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2184 spin_lock(&BTRFS_I(inode)->lock);
2185 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2186 spin_unlock(&BTRFS_I(inode)->lock);
2187 return;
2188 }
2189
2190 /*
2191 * We have to add up either side to figure out how many extents were
2192 * accounted for before we merged into one big extent. If the number of
2193 * extents we accounted for is <= the amount we need for the new range
2194 * then we can return, otherwise drop. Think of it like this
2195 *
2196 * [ 4k][MAX_SIZE]
2197 *
2198 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2199 * need 2 outstanding extents, on one side we have 1 and the other side
2200 * we have 1 so they are == and we can return. But in this case
2201 *
2202 * [MAX_SIZE+4k][MAX_SIZE+4k]
2203 *
2204 * Each range on their own accounts for 2 extents, but merged together
2205 * they are only 3 extents worth of accounting, so we need to drop in
2206 * this case.
2207 */
2208 old_size = other->end - other->start + 1;
2209 num_extents = count_max_extents(old_size);
2210 old_size = new->end - new->start + 1;
2211 num_extents += count_max_extents(old_size);
2212 if (count_max_extents(new_size) >= num_extents)
2213 return;
2214
2215 spin_lock(&BTRFS_I(inode)->lock);
2216 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2217 spin_unlock(&BTRFS_I(inode)->lock);
2218 }
2219
2220 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2221 struct inode *inode)
2222 {
2223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2224
2225 spin_lock(&root->delalloc_lock);
2226 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2227 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2228 &root->delalloc_inodes);
2229 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2230 &BTRFS_I(inode)->runtime_flags);
2231 root->nr_delalloc_inodes++;
2232 if (root->nr_delalloc_inodes == 1) {
2233 spin_lock(&fs_info->delalloc_root_lock);
2234 BUG_ON(!list_empty(&root->delalloc_root));
2235 list_add_tail(&root->delalloc_root,
2236 &fs_info->delalloc_roots);
2237 spin_unlock(&fs_info->delalloc_root_lock);
2238 }
2239 }
2240 spin_unlock(&root->delalloc_lock);
2241 }
2242
2243
2244 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2245 struct btrfs_inode *inode)
2246 {
2247 struct btrfs_fs_info *fs_info = root->fs_info;
2248
2249 if (!list_empty(&inode->delalloc_inodes)) {
2250 list_del_init(&inode->delalloc_inodes);
2251 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2252 &inode->runtime_flags);
2253 root->nr_delalloc_inodes--;
2254 if (!root->nr_delalloc_inodes) {
2255 ASSERT(list_empty(&root->delalloc_inodes));
2256 spin_lock(&fs_info->delalloc_root_lock);
2257 BUG_ON(list_empty(&root->delalloc_root));
2258 list_del_init(&root->delalloc_root);
2259 spin_unlock(&fs_info->delalloc_root_lock);
2260 }
2261 }
2262 }
2263
2264 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2265 struct btrfs_inode *inode)
2266 {
2267 spin_lock(&root->delalloc_lock);
2268 __btrfs_del_delalloc_inode(root, inode);
2269 spin_unlock(&root->delalloc_lock);
2270 }
2271
2272 /*
2273 * Properly track delayed allocation bytes in the inode and to maintain the
2274 * list of inodes that have pending delalloc work to be done.
2275 */
2276 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2277 unsigned *bits)
2278 {
2279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2280
2281 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2282 WARN_ON(1);
2283 /*
2284 * set_bit and clear bit hooks normally require _irqsave/restore
2285 * but in this case, we are only testing for the DELALLOC
2286 * bit, which is only set or cleared with irqs on
2287 */
2288 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2289 struct btrfs_root *root = BTRFS_I(inode)->root;
2290 u64 len = state->end + 1 - state->start;
2291 u32 num_extents = count_max_extents(len);
2292 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2293
2294 spin_lock(&BTRFS_I(inode)->lock);
2295 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2296 spin_unlock(&BTRFS_I(inode)->lock);
2297
2298 /* For sanity tests */
2299 if (btrfs_is_testing(fs_info))
2300 return;
2301
2302 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2303 fs_info->delalloc_batch);
2304 spin_lock(&BTRFS_I(inode)->lock);
2305 BTRFS_I(inode)->delalloc_bytes += len;
2306 if (*bits & EXTENT_DEFRAG)
2307 BTRFS_I(inode)->defrag_bytes += len;
2308 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2309 &BTRFS_I(inode)->runtime_flags))
2310 btrfs_add_delalloc_inodes(root, inode);
2311 spin_unlock(&BTRFS_I(inode)->lock);
2312 }
2313
2314 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2315 (*bits & EXTENT_DELALLOC_NEW)) {
2316 spin_lock(&BTRFS_I(inode)->lock);
2317 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2318 state->start;
2319 spin_unlock(&BTRFS_I(inode)->lock);
2320 }
2321 }
2322
2323 /*
2324 * Once a range is no longer delalloc this function ensures that proper
2325 * accounting happens.
2326 */
2327 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2328 struct extent_state *state, unsigned *bits)
2329 {
2330 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2331 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2332 u64 len = state->end + 1 - state->start;
2333 u32 num_extents = count_max_extents(len);
2334
2335 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2336 spin_lock(&inode->lock);
2337 inode->defrag_bytes -= len;
2338 spin_unlock(&inode->lock);
2339 }
2340
2341 /*
2342 * set_bit and clear bit hooks normally require _irqsave/restore
2343 * but in this case, we are only testing for the DELALLOC
2344 * bit, which is only set or cleared with irqs on
2345 */
2346 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2347 struct btrfs_root *root = inode->root;
2348 bool do_list = !btrfs_is_free_space_inode(inode);
2349
2350 spin_lock(&inode->lock);
2351 btrfs_mod_outstanding_extents(inode, -num_extents);
2352 spin_unlock(&inode->lock);
2353
2354 /*
2355 * We don't reserve metadata space for space cache inodes so we
2356 * don't need to call delalloc_release_metadata if there is an
2357 * error.
2358 */
2359 if (*bits & EXTENT_CLEAR_META_RESV &&
2360 root != fs_info->tree_root)
2361 btrfs_delalloc_release_metadata(inode, len, false);
2362
2363 /* For sanity tests. */
2364 if (btrfs_is_testing(fs_info))
2365 return;
2366
2367 if (!btrfs_is_data_reloc_root(root) &&
2368 do_list && !(state->state & EXTENT_NORESERVE) &&
2369 (*bits & EXTENT_CLEAR_DATA_RESV))
2370 btrfs_free_reserved_data_space_noquota(fs_info, len);
2371
2372 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2373 fs_info->delalloc_batch);
2374 spin_lock(&inode->lock);
2375 inode->delalloc_bytes -= len;
2376 if (do_list && inode->delalloc_bytes == 0 &&
2377 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2378 &inode->runtime_flags))
2379 btrfs_del_delalloc_inode(root, inode);
2380 spin_unlock(&inode->lock);
2381 }
2382
2383 if ((state->state & EXTENT_DELALLOC_NEW) &&
2384 (*bits & EXTENT_DELALLOC_NEW)) {
2385 spin_lock(&inode->lock);
2386 ASSERT(inode->new_delalloc_bytes >= len);
2387 inode->new_delalloc_bytes -= len;
2388 if (*bits & EXTENT_ADD_INODE_BYTES)
2389 inode_add_bytes(&inode->vfs_inode, len);
2390 spin_unlock(&inode->lock);
2391 }
2392 }
2393
2394 /*
2395 * in order to insert checksums into the metadata in large chunks,
2396 * we wait until bio submission time. All the pages in the bio are
2397 * checksummed and sums are attached onto the ordered extent record.
2398 *
2399 * At IO completion time the cums attached on the ordered extent record
2400 * are inserted into the btree
2401 */
2402 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2403 u64 dio_file_offset)
2404 {
2405 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2406 }
2407
2408 /*
2409 * Split an extent_map at [start, start + len]
2410 *
2411 * This function is intended to be used only for extract_ordered_extent().
2412 */
2413 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2414 u64 pre, u64 post)
2415 {
2416 struct extent_map_tree *em_tree = &inode->extent_tree;
2417 struct extent_map *em;
2418 struct extent_map *split_pre = NULL;
2419 struct extent_map *split_mid = NULL;
2420 struct extent_map *split_post = NULL;
2421 int ret = 0;
2422 unsigned long flags;
2423
2424 /* Sanity check */
2425 if (pre == 0 && post == 0)
2426 return 0;
2427
2428 split_pre = alloc_extent_map();
2429 if (pre)
2430 split_mid = alloc_extent_map();
2431 if (post)
2432 split_post = alloc_extent_map();
2433 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2434 ret = -ENOMEM;
2435 goto out;
2436 }
2437
2438 ASSERT(pre + post < len);
2439
2440 lock_extent(&inode->io_tree, start, start + len - 1);
2441 write_lock(&em_tree->lock);
2442 em = lookup_extent_mapping(em_tree, start, len);
2443 if (!em) {
2444 ret = -EIO;
2445 goto out_unlock;
2446 }
2447
2448 ASSERT(em->len == len);
2449 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2450 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2451 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2452 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2453 ASSERT(!list_empty(&em->list));
2454
2455 flags = em->flags;
2456 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2457
2458 /* First, replace the em with a new extent_map starting from * em->start */
2459 split_pre->start = em->start;
2460 split_pre->len = (pre ? pre : em->len - post);
2461 split_pre->orig_start = split_pre->start;
2462 split_pre->block_start = em->block_start;
2463 split_pre->block_len = split_pre->len;
2464 split_pre->orig_block_len = split_pre->block_len;
2465 split_pre->ram_bytes = split_pre->len;
2466 split_pre->flags = flags;
2467 split_pre->compress_type = em->compress_type;
2468 split_pre->generation = em->generation;
2469
2470 replace_extent_mapping(em_tree, em, split_pre, 1);
2471
2472 /*
2473 * Now we only have an extent_map at:
2474 * [em->start, em->start + pre] if pre != 0
2475 * [em->start, em->start + em->len - post] if pre == 0
2476 */
2477
2478 if (pre) {
2479 /* Insert the middle extent_map */
2480 split_mid->start = em->start + pre;
2481 split_mid->len = em->len - pre - post;
2482 split_mid->orig_start = split_mid->start;
2483 split_mid->block_start = em->block_start + pre;
2484 split_mid->block_len = split_mid->len;
2485 split_mid->orig_block_len = split_mid->block_len;
2486 split_mid->ram_bytes = split_mid->len;
2487 split_mid->flags = flags;
2488 split_mid->compress_type = em->compress_type;
2489 split_mid->generation = em->generation;
2490 add_extent_mapping(em_tree, split_mid, 1);
2491 }
2492
2493 if (post) {
2494 split_post->start = em->start + em->len - post;
2495 split_post->len = post;
2496 split_post->orig_start = split_post->start;
2497 split_post->block_start = em->block_start + em->len - post;
2498 split_post->block_len = split_post->len;
2499 split_post->orig_block_len = split_post->block_len;
2500 split_post->ram_bytes = split_post->len;
2501 split_post->flags = flags;
2502 split_post->compress_type = em->compress_type;
2503 split_post->generation = em->generation;
2504 add_extent_mapping(em_tree, split_post, 1);
2505 }
2506
2507 /* Once for us */
2508 free_extent_map(em);
2509 /* Once for the tree */
2510 free_extent_map(em);
2511
2512 out_unlock:
2513 write_unlock(&em_tree->lock);
2514 unlock_extent(&inode->io_tree, start, start + len - 1);
2515 out:
2516 free_extent_map(split_pre);
2517 free_extent_map(split_mid);
2518 free_extent_map(split_post);
2519
2520 return ret;
2521 }
2522
2523 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2524 struct bio *bio, loff_t file_offset)
2525 {
2526 struct btrfs_ordered_extent *ordered;
2527 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2528 u64 file_len;
2529 u64 len = bio->bi_iter.bi_size;
2530 u64 end = start + len;
2531 u64 ordered_end;
2532 u64 pre, post;
2533 int ret = 0;
2534
2535 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2536 if (WARN_ON_ONCE(!ordered))
2537 return BLK_STS_IOERR;
2538
2539 /* No need to split */
2540 if (ordered->disk_num_bytes == len)
2541 goto out;
2542
2543 /* We cannot split once end_bio'd ordered extent */
2544 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2545 ret = -EINVAL;
2546 goto out;
2547 }
2548
2549 /* We cannot split a compressed ordered extent */
2550 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2551 ret = -EINVAL;
2552 goto out;
2553 }
2554
2555 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2556 /* bio must be in one ordered extent */
2557 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2558 ret = -EINVAL;
2559 goto out;
2560 }
2561
2562 /* Checksum list should be empty */
2563 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2564 ret = -EINVAL;
2565 goto out;
2566 }
2567
2568 file_len = ordered->num_bytes;
2569 pre = start - ordered->disk_bytenr;
2570 post = ordered_end - end;
2571
2572 ret = btrfs_split_ordered_extent(ordered, pre, post);
2573 if (ret)
2574 goto out;
2575 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2576
2577 out:
2578 btrfs_put_ordered_extent(ordered);
2579
2580 return errno_to_blk_status(ret);
2581 }
2582
2583 /*
2584 * extent_io.c submission hook. This does the right thing for csum calculation
2585 * on write, or reading the csums from the tree before a read.
2586 *
2587 * Rules about async/sync submit,
2588 * a) read: sync submit
2589 *
2590 * b) write without checksum: sync submit
2591 *
2592 * c) write with checksum:
2593 * c-1) if bio is issued by fsync: sync submit
2594 * (sync_writers != 0)
2595 *
2596 * c-2) if root is reloc root: sync submit
2597 * (only in case of buffered IO)
2598 *
2599 * c-3) otherwise: async submit
2600 */
2601 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2602 int mirror_num, enum btrfs_compression_type compress_type)
2603 {
2604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2605 struct btrfs_root *root = BTRFS_I(inode)->root;
2606 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2607 blk_status_t ret = 0;
2608 int skip_sum;
2609 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2610
2611 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2612 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2613
2614 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2615 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2616
2617 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2618 struct page *page = bio_first_bvec_all(bio)->bv_page;
2619 loff_t file_offset = page_offset(page);
2620
2621 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2622 if (ret)
2623 goto out;
2624 }
2625
2626 if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2627 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2628 if (ret)
2629 goto out;
2630
2631 if (compress_type != BTRFS_COMPRESS_NONE) {
2632 /*
2633 * btrfs_submit_compressed_read will handle completing
2634 * the bio if there were any errors, so just return
2635 * here.
2636 */
2637 btrfs_submit_compressed_read(inode, bio, mirror_num);
2638 return;
2639 } else {
2640 /*
2641 * Lookup bio sums does extra checks around whether we
2642 * need to csum or not, which is why we ignore skip_sum
2643 * here.
2644 */
2645 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2646 if (ret)
2647 goto out;
2648 }
2649 goto mapit;
2650 } else if (async && !skip_sum) {
2651 /* csum items have already been cloned */
2652 if (btrfs_is_data_reloc_root(root))
2653 goto mapit;
2654 /* we're doing a write, do the async checksumming */
2655 ret = btrfs_wq_submit_bio(inode, bio, mirror_num,
2656 0, btrfs_submit_bio_start);
2657 goto out;
2658 } else if (!skip_sum) {
2659 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
2660 if (ret)
2661 goto out;
2662 }
2663
2664 mapit:
2665 ret = btrfs_map_bio(fs_info, bio, mirror_num);
2666
2667 out:
2668 if (ret) {
2669 bio->bi_status = ret;
2670 bio_endio(bio);
2671 }
2672 }
2673
2674 /*
2675 * given a list of ordered sums record them in the inode. This happens
2676 * at IO completion time based on sums calculated at bio submission time.
2677 */
2678 static int add_pending_csums(struct btrfs_trans_handle *trans,
2679 struct list_head *list)
2680 {
2681 struct btrfs_ordered_sum *sum;
2682 struct btrfs_root *csum_root = NULL;
2683 int ret;
2684
2685 list_for_each_entry(sum, list, list) {
2686 trans->adding_csums = true;
2687 if (!csum_root)
2688 csum_root = btrfs_csum_root(trans->fs_info,
2689 sum->bytenr);
2690 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2691 trans->adding_csums = false;
2692 if (ret)
2693 return ret;
2694 }
2695 return 0;
2696 }
2697
2698 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2699 const u64 start,
2700 const u64 len,
2701 struct extent_state **cached_state)
2702 {
2703 u64 search_start = start;
2704 const u64 end = start + len - 1;
2705
2706 while (search_start < end) {
2707 const u64 search_len = end - search_start + 1;
2708 struct extent_map *em;
2709 u64 em_len;
2710 int ret = 0;
2711
2712 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2713 if (IS_ERR(em))
2714 return PTR_ERR(em);
2715
2716 if (em->block_start != EXTENT_MAP_HOLE)
2717 goto next;
2718
2719 em_len = em->len;
2720 if (em->start < search_start)
2721 em_len -= search_start - em->start;
2722 if (em_len > search_len)
2723 em_len = search_len;
2724
2725 ret = set_extent_bit(&inode->io_tree, search_start,
2726 search_start + em_len - 1,
2727 EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2728 GFP_NOFS, NULL);
2729 next:
2730 search_start = extent_map_end(em);
2731 free_extent_map(em);
2732 if (ret)
2733 return ret;
2734 }
2735 return 0;
2736 }
2737
2738 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2739 unsigned int extra_bits,
2740 struct extent_state **cached_state)
2741 {
2742 WARN_ON(PAGE_ALIGNED(end));
2743
2744 if (start >= i_size_read(&inode->vfs_inode) &&
2745 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2746 /*
2747 * There can't be any extents following eof in this case so just
2748 * set the delalloc new bit for the range directly.
2749 */
2750 extra_bits |= EXTENT_DELALLOC_NEW;
2751 } else {
2752 int ret;
2753
2754 ret = btrfs_find_new_delalloc_bytes(inode, start,
2755 end + 1 - start,
2756 cached_state);
2757 if (ret)
2758 return ret;
2759 }
2760
2761 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2762 cached_state);
2763 }
2764
2765 /* see btrfs_writepage_start_hook for details on why this is required */
2766 struct btrfs_writepage_fixup {
2767 struct page *page;
2768 struct inode *inode;
2769 struct btrfs_work work;
2770 };
2771
2772 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2773 {
2774 struct btrfs_writepage_fixup *fixup;
2775 struct btrfs_ordered_extent *ordered;
2776 struct extent_state *cached_state = NULL;
2777 struct extent_changeset *data_reserved = NULL;
2778 struct page *page;
2779 struct btrfs_inode *inode;
2780 u64 page_start;
2781 u64 page_end;
2782 int ret = 0;
2783 bool free_delalloc_space = true;
2784
2785 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2786 page = fixup->page;
2787 inode = BTRFS_I(fixup->inode);
2788 page_start = page_offset(page);
2789 page_end = page_offset(page) + PAGE_SIZE - 1;
2790
2791 /*
2792 * This is similar to page_mkwrite, we need to reserve the space before
2793 * we take the page lock.
2794 */
2795 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2796 PAGE_SIZE);
2797 again:
2798 lock_page(page);
2799
2800 /*
2801 * Before we queued this fixup, we took a reference on the page.
2802 * page->mapping may go NULL, but it shouldn't be moved to a different
2803 * address space.
2804 */
2805 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2806 /*
2807 * Unfortunately this is a little tricky, either
2808 *
2809 * 1) We got here and our page had already been dealt with and
2810 * we reserved our space, thus ret == 0, so we need to just
2811 * drop our space reservation and bail. This can happen the
2812 * first time we come into the fixup worker, or could happen
2813 * while waiting for the ordered extent.
2814 * 2) Our page was already dealt with, but we happened to get an
2815 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2816 * this case we obviously don't have anything to release, but
2817 * because the page was already dealt with we don't want to
2818 * mark the page with an error, so make sure we're resetting
2819 * ret to 0. This is why we have this check _before_ the ret
2820 * check, because we do not want to have a surprise ENOSPC
2821 * when the page was already properly dealt with.
2822 */
2823 if (!ret) {
2824 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2825 btrfs_delalloc_release_space(inode, data_reserved,
2826 page_start, PAGE_SIZE,
2827 true);
2828 }
2829 ret = 0;
2830 goto out_page;
2831 }
2832
2833 /*
2834 * We can't mess with the page state unless it is locked, so now that
2835 * it is locked bail if we failed to make our space reservation.
2836 */
2837 if (ret)
2838 goto out_page;
2839
2840 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2841
2842 /* already ordered? We're done */
2843 if (PageOrdered(page))
2844 goto out_reserved;
2845
2846 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2847 if (ordered) {
2848 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2849 &cached_state);
2850 unlock_page(page);
2851 btrfs_start_ordered_extent(ordered, 1);
2852 btrfs_put_ordered_extent(ordered);
2853 goto again;
2854 }
2855
2856 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2857 &cached_state);
2858 if (ret)
2859 goto out_reserved;
2860
2861 /*
2862 * Everything went as planned, we're now the owner of a dirty page with
2863 * delayed allocation bits set and space reserved for our COW
2864 * destination.
2865 *
2866 * The page was dirty when we started, nothing should have cleaned it.
2867 */
2868 BUG_ON(!PageDirty(page));
2869 free_delalloc_space = false;
2870 out_reserved:
2871 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2872 if (free_delalloc_space)
2873 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2874 PAGE_SIZE, true);
2875 unlock_extent_cached(&inode->io_tree, page_start, page_end,
2876 &cached_state);
2877 out_page:
2878 if (ret) {
2879 /*
2880 * We hit ENOSPC or other errors. Update the mapping and page
2881 * to reflect the errors and clean the page.
2882 */
2883 mapping_set_error(page->mapping, ret);
2884 end_extent_writepage(page, ret, page_start, page_end);
2885 clear_page_dirty_for_io(page);
2886 SetPageError(page);
2887 }
2888 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2889 unlock_page(page);
2890 put_page(page);
2891 kfree(fixup);
2892 extent_changeset_free(data_reserved);
2893 /*
2894 * As a precaution, do a delayed iput in case it would be the last iput
2895 * that could need flushing space. Recursing back to fixup worker would
2896 * deadlock.
2897 */
2898 btrfs_add_delayed_iput(&inode->vfs_inode);
2899 }
2900
2901 /*
2902 * There are a few paths in the higher layers of the kernel that directly
2903 * set the page dirty bit without asking the filesystem if it is a
2904 * good idea. This causes problems because we want to make sure COW
2905 * properly happens and the data=ordered rules are followed.
2906 *
2907 * In our case any range that doesn't have the ORDERED bit set
2908 * hasn't been properly setup for IO. We kick off an async process
2909 * to fix it up. The async helper will wait for ordered extents, set
2910 * the delalloc bit and make it safe to write the page.
2911 */
2912 int btrfs_writepage_cow_fixup(struct page *page)
2913 {
2914 struct inode *inode = page->mapping->host;
2915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2916 struct btrfs_writepage_fixup *fixup;
2917
2918 /* This page has ordered extent covering it already */
2919 if (PageOrdered(page))
2920 return 0;
2921
2922 /*
2923 * PageChecked is set below when we create a fixup worker for this page,
2924 * don't try to create another one if we're already PageChecked()
2925 *
2926 * The extent_io writepage code will redirty the page if we send back
2927 * EAGAIN.
2928 */
2929 if (PageChecked(page))
2930 return -EAGAIN;
2931
2932 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2933 if (!fixup)
2934 return -EAGAIN;
2935
2936 /*
2937 * We are already holding a reference to this inode from
2938 * write_cache_pages. We need to hold it because the space reservation
2939 * takes place outside of the page lock, and we can't trust
2940 * page->mapping outside of the page lock.
2941 */
2942 ihold(inode);
2943 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2944 get_page(page);
2945 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2946 fixup->page = page;
2947 fixup->inode = inode;
2948 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2949
2950 return -EAGAIN;
2951 }
2952
2953 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2954 struct btrfs_inode *inode, u64 file_pos,
2955 struct btrfs_file_extent_item *stack_fi,
2956 const bool update_inode_bytes,
2957 u64 qgroup_reserved)
2958 {
2959 struct btrfs_root *root = inode->root;
2960 const u64 sectorsize = root->fs_info->sectorsize;
2961 struct btrfs_path *path;
2962 struct extent_buffer *leaf;
2963 struct btrfs_key ins;
2964 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2965 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2966 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2967 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2968 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2969 struct btrfs_drop_extents_args drop_args = { 0 };
2970 int ret;
2971
2972 path = btrfs_alloc_path();
2973 if (!path)
2974 return -ENOMEM;
2975
2976 /*
2977 * we may be replacing one extent in the tree with another.
2978 * The new extent is pinned in the extent map, and we don't want
2979 * to drop it from the cache until it is completely in the btree.
2980 *
2981 * So, tell btrfs_drop_extents to leave this extent in the cache.
2982 * the caller is expected to unpin it and allow it to be merged
2983 * with the others.
2984 */
2985 drop_args.path = path;
2986 drop_args.start = file_pos;
2987 drop_args.end = file_pos + num_bytes;
2988 drop_args.replace_extent = true;
2989 drop_args.extent_item_size = sizeof(*stack_fi);
2990 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2991 if (ret)
2992 goto out;
2993
2994 if (!drop_args.extent_inserted) {
2995 ins.objectid = btrfs_ino(inode);
2996 ins.offset = file_pos;
2997 ins.type = BTRFS_EXTENT_DATA_KEY;
2998
2999 ret = btrfs_insert_empty_item(trans, root, path, &ins,
3000 sizeof(*stack_fi));
3001 if (ret)
3002 goto out;
3003 }
3004 leaf = path->nodes[0];
3005 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3006 write_extent_buffer(leaf, stack_fi,
3007 btrfs_item_ptr_offset(leaf, path->slots[0]),
3008 sizeof(struct btrfs_file_extent_item));
3009
3010 btrfs_mark_buffer_dirty(leaf);
3011 btrfs_release_path(path);
3012
3013 /*
3014 * If we dropped an inline extent here, we know the range where it is
3015 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3016 * number of bytes only for that range containing the inline extent.
3017 * The remaining of the range will be processed when clearning the
3018 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3019 */
3020 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3021 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3022
3023 inline_size = drop_args.bytes_found - inline_size;
3024 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3025 drop_args.bytes_found -= inline_size;
3026 num_bytes -= sectorsize;
3027 }
3028
3029 if (update_inode_bytes)
3030 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3031
3032 ins.objectid = disk_bytenr;
3033 ins.offset = disk_num_bytes;
3034 ins.type = BTRFS_EXTENT_ITEM_KEY;
3035
3036 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3037 if (ret)
3038 goto out;
3039
3040 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3041 file_pos - offset,
3042 qgroup_reserved, &ins);
3043 out:
3044 btrfs_free_path(path);
3045
3046 return ret;
3047 }
3048
3049 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3050 u64 start, u64 len)
3051 {
3052 struct btrfs_block_group *cache;
3053
3054 cache = btrfs_lookup_block_group(fs_info, start);
3055 ASSERT(cache);
3056
3057 spin_lock(&cache->lock);
3058 cache->delalloc_bytes -= len;
3059 spin_unlock(&cache->lock);
3060
3061 btrfs_put_block_group(cache);
3062 }
3063
3064 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3065 struct btrfs_ordered_extent *oe)
3066 {
3067 struct btrfs_file_extent_item stack_fi;
3068 bool update_inode_bytes;
3069 u64 num_bytes = oe->num_bytes;
3070 u64 ram_bytes = oe->ram_bytes;
3071
3072 memset(&stack_fi, 0, sizeof(stack_fi));
3073 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3074 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3075 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3076 oe->disk_num_bytes);
3077 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3078 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3079 num_bytes = ram_bytes = oe->truncated_len;
3080 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3081 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3082 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3083 /* Encryption and other encoding is reserved and all 0 */
3084
3085 /*
3086 * For delalloc, when completing an ordered extent we update the inode's
3087 * bytes when clearing the range in the inode's io tree, so pass false
3088 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3089 * except if the ordered extent was truncated.
3090 */
3091 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3092 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3093 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3094
3095 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3096 oe->file_offset, &stack_fi,
3097 update_inode_bytes, oe->qgroup_rsv);
3098 }
3099
3100 /*
3101 * As ordered data IO finishes, this gets called so we can finish
3102 * an ordered extent if the range of bytes in the file it covers are
3103 * fully written.
3104 */
3105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3106 {
3107 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3108 struct btrfs_root *root = inode->root;
3109 struct btrfs_fs_info *fs_info = root->fs_info;
3110 struct btrfs_trans_handle *trans = NULL;
3111 struct extent_io_tree *io_tree = &inode->io_tree;
3112 struct extent_state *cached_state = NULL;
3113 u64 start, end;
3114 int compress_type = 0;
3115 int ret = 0;
3116 u64 logical_len = ordered_extent->num_bytes;
3117 bool freespace_inode;
3118 bool truncated = false;
3119 bool clear_reserved_extent = true;
3120 unsigned int clear_bits = EXTENT_DEFRAG;
3121
3122 start = ordered_extent->file_offset;
3123 end = start + ordered_extent->num_bytes - 1;
3124
3125 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3126 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3127 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3128 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3129 clear_bits |= EXTENT_DELALLOC_NEW;
3130
3131 freespace_inode = btrfs_is_free_space_inode(inode);
3132
3133 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3134 ret = -EIO;
3135 goto out;
3136 }
3137
3138 /* A valid bdev implies a write on a sequential zone */
3139 if (ordered_extent->bdev) {
3140 btrfs_rewrite_logical_zoned(ordered_extent);
3141 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3142 ordered_extent->disk_num_bytes);
3143 }
3144
3145 btrfs_free_io_failure_record(inode, start, end);
3146
3147 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3148 truncated = true;
3149 logical_len = ordered_extent->truncated_len;
3150 /* Truncated the entire extent, don't bother adding */
3151 if (!logical_len)
3152 goto out;
3153 }
3154
3155 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3156 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3157
3158 btrfs_inode_safe_disk_i_size_write(inode, 0);
3159 if (freespace_inode)
3160 trans = btrfs_join_transaction_spacecache(root);
3161 else
3162 trans = btrfs_join_transaction(root);
3163 if (IS_ERR(trans)) {
3164 ret = PTR_ERR(trans);
3165 trans = NULL;
3166 goto out;
3167 }
3168 trans->block_rsv = &inode->block_rsv;
3169 ret = btrfs_update_inode_fallback(trans, root, inode);
3170 if (ret) /* -ENOMEM or corruption */
3171 btrfs_abort_transaction(trans, ret);
3172 goto out;
3173 }
3174
3175 clear_bits |= EXTENT_LOCKED;
3176 lock_extent_bits(io_tree, start, end, &cached_state);
3177
3178 if (freespace_inode)
3179 trans = btrfs_join_transaction_spacecache(root);
3180 else
3181 trans = btrfs_join_transaction(root);
3182 if (IS_ERR(trans)) {
3183 ret = PTR_ERR(trans);
3184 trans = NULL;
3185 goto out;
3186 }
3187
3188 trans->block_rsv = &inode->block_rsv;
3189
3190 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3191 compress_type = ordered_extent->compress_type;
3192 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3193 BUG_ON(compress_type);
3194 ret = btrfs_mark_extent_written(trans, inode,
3195 ordered_extent->file_offset,
3196 ordered_extent->file_offset +
3197 logical_len);
3198 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3199 ordered_extent->disk_num_bytes);
3200 } else {
3201 BUG_ON(root == fs_info->tree_root);
3202 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3203 if (!ret) {
3204 clear_reserved_extent = false;
3205 btrfs_release_delalloc_bytes(fs_info,
3206 ordered_extent->disk_bytenr,
3207 ordered_extent->disk_num_bytes);
3208 }
3209 }
3210 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3211 ordered_extent->num_bytes, trans->transid);
3212 if (ret < 0) {
3213 btrfs_abort_transaction(trans, ret);
3214 goto out;
3215 }
3216
3217 ret = add_pending_csums(trans, &ordered_extent->list);
3218 if (ret) {
3219 btrfs_abort_transaction(trans, ret);
3220 goto out;
3221 }
3222
3223 /*
3224 * If this is a new delalloc range, clear its new delalloc flag to
3225 * update the inode's number of bytes. This needs to be done first
3226 * before updating the inode item.
3227 */
3228 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3229 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3230 clear_extent_bit(&inode->io_tree, start, end,
3231 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3232 0, 0, &cached_state);
3233
3234 btrfs_inode_safe_disk_i_size_write(inode, 0);
3235 ret = btrfs_update_inode_fallback(trans, root, inode);
3236 if (ret) { /* -ENOMEM or corruption */
3237 btrfs_abort_transaction(trans, ret);
3238 goto out;
3239 }
3240 ret = 0;
3241 out:
3242 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3243 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3244 &cached_state);
3245
3246 if (trans)
3247 btrfs_end_transaction(trans);
3248
3249 if (ret || truncated) {
3250 u64 unwritten_start = start;
3251
3252 /*
3253 * If we failed to finish this ordered extent for any reason we
3254 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3255 * extent, and mark the inode with the error if it wasn't
3256 * already set. Any error during writeback would have already
3257 * set the mapping error, so we need to set it if we're the ones
3258 * marking this ordered extent as failed.
3259 */
3260 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3261 &ordered_extent->flags))
3262 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3263
3264 if (truncated)
3265 unwritten_start += logical_len;
3266 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3267
3268 /* Drop the cache for the part of the extent we didn't write. */
3269 btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3270
3271 /*
3272 * If the ordered extent had an IOERR or something else went
3273 * wrong we need to return the space for this ordered extent
3274 * back to the allocator. We only free the extent in the
3275 * truncated case if we didn't write out the extent at all.
3276 *
3277 * If we made it past insert_reserved_file_extent before we
3278 * errored out then we don't need to do this as the accounting
3279 * has already been done.
3280 */
3281 if ((ret || !logical_len) &&
3282 clear_reserved_extent &&
3283 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3284 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3285 /*
3286 * Discard the range before returning it back to the
3287 * free space pool
3288 */
3289 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3290 btrfs_discard_extent(fs_info,
3291 ordered_extent->disk_bytenr,
3292 ordered_extent->disk_num_bytes,
3293 NULL);
3294 btrfs_free_reserved_extent(fs_info,
3295 ordered_extent->disk_bytenr,
3296 ordered_extent->disk_num_bytes, 1);
3297 }
3298 }
3299
3300 /*
3301 * This needs to be done to make sure anybody waiting knows we are done
3302 * updating everything for this ordered extent.
3303 */
3304 btrfs_remove_ordered_extent(inode, ordered_extent);
3305
3306 /* once for us */
3307 btrfs_put_ordered_extent(ordered_extent);
3308 /* once for the tree */
3309 btrfs_put_ordered_extent(ordered_extent);
3310
3311 return ret;
3312 }
3313
3314 static void finish_ordered_fn(struct btrfs_work *work)
3315 {
3316 struct btrfs_ordered_extent *ordered_extent;
3317 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3318 btrfs_finish_ordered_io(ordered_extent);
3319 }
3320
3321 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3322 struct page *page, u64 start,
3323 u64 end, bool uptodate)
3324 {
3325 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3326
3327 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3328 finish_ordered_fn, uptodate);
3329 }
3330
3331 /*
3332 * check_data_csum - verify checksum of one sector of uncompressed data
3333 * @inode: inode
3334 * @io_bio: btrfs_io_bio which contains the csum
3335 * @bio_offset: offset to the beginning of the bio (in bytes)
3336 * @page: page where is the data to be verified
3337 * @pgoff: offset inside the page
3338 * @start: logical offset in the file
3339 *
3340 * The length of such check is always one sector size.
3341 */
3342 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3343 u32 bio_offset, struct page *page, u32 pgoff,
3344 u64 start)
3345 {
3346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3347 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3348 char *kaddr;
3349 u32 len = fs_info->sectorsize;
3350 const u32 csum_size = fs_info->csum_size;
3351 unsigned int offset_sectors;
3352 u8 *csum_expected;
3353 u8 csum[BTRFS_CSUM_SIZE];
3354
3355 ASSERT(pgoff + len <= PAGE_SIZE);
3356
3357 offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3358 csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3359
3360 kaddr = kmap_atomic(page);
3361 shash->tfm = fs_info->csum_shash;
3362
3363 crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3364 kunmap_atomic(kaddr);
3365
3366 if (memcmp(csum, csum_expected, csum_size))
3367 goto zeroit;
3368
3369 return 0;
3370 zeroit:
3371 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3372 bbio->mirror_num);
3373 if (bbio->device)
3374 btrfs_dev_stat_inc_and_print(bbio->device,
3375 BTRFS_DEV_STAT_CORRUPTION_ERRS);
3376 memzero_page(page, pgoff, len);
3377 return -EIO;
3378 }
3379
3380 /*
3381 * When reads are done, we need to check csums to verify the data is correct.
3382 * if there's a match, we allow the bio to finish. If not, the code in
3383 * extent_io.c will try to find good copies for us.
3384 *
3385 * @bio_offset: offset to the beginning of the bio (in bytes)
3386 * @start: file offset of the range start
3387 * @end: file offset of the range end (inclusive)
3388 *
3389 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3390 * csum match.
3391 */
3392 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3393 u32 bio_offset, struct page *page,
3394 u64 start, u64 end)
3395 {
3396 struct inode *inode = page->mapping->host;
3397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3399 struct btrfs_root *root = BTRFS_I(inode)->root;
3400 const u32 sectorsize = root->fs_info->sectorsize;
3401 u32 pg_off;
3402 unsigned int result = 0;
3403
3404 if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3405 btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3406 return 0;
3407 }
3408
3409 /*
3410 * This only happens for NODATASUM or compressed read.
3411 * Normally this should be covered by above check for compressed read
3412 * or the next check for NODATASUM. Just do a quicker exit here.
3413 */
3414 if (bbio->csum == NULL)
3415 return 0;
3416
3417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3418 return 0;
3419
3420 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
3421 return 0;
3422
3423 ASSERT(page_offset(page) <= start &&
3424 end <= page_offset(page) + PAGE_SIZE - 1);
3425 for (pg_off = offset_in_page(start);
3426 pg_off < offset_in_page(end);
3427 pg_off += sectorsize, bio_offset += sectorsize) {
3428 u64 file_offset = pg_off + page_offset(page);
3429 int ret;
3430
3431 if (btrfs_is_data_reloc_root(root) &&
3432 test_range_bit(io_tree, file_offset,
3433 file_offset + sectorsize - 1,
3434 EXTENT_NODATASUM, 1, NULL)) {
3435 /* Skip the range without csum for data reloc inode */
3436 clear_extent_bits(io_tree, file_offset,
3437 file_offset + sectorsize - 1,
3438 EXTENT_NODATASUM);
3439 continue;
3440 }
3441 ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3442 page_offset(page) + pg_off);
3443 if (ret < 0) {
3444 const int nr_bit = (pg_off - offset_in_page(start)) >>
3445 root->fs_info->sectorsize_bits;
3446
3447 result |= (1U << nr_bit);
3448 }
3449 }
3450 return result;
3451 }
3452
3453 /*
3454 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3455 *
3456 * @inode: The inode we want to perform iput on
3457 *
3458 * This function uses the generic vfs_inode::i_count to track whether we should
3459 * just decrement it (in case it's > 1) or if this is the last iput then link
3460 * the inode to the delayed iput machinery. Delayed iputs are processed at
3461 * transaction commit time/superblock commit/cleaner kthread.
3462 */
3463 void btrfs_add_delayed_iput(struct inode *inode)
3464 {
3465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3466 struct btrfs_inode *binode = BTRFS_I(inode);
3467
3468 if (atomic_add_unless(&inode->i_count, -1, 1))
3469 return;
3470
3471 atomic_inc(&fs_info->nr_delayed_iputs);
3472 spin_lock(&fs_info->delayed_iput_lock);
3473 ASSERT(list_empty(&binode->delayed_iput));
3474 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3475 spin_unlock(&fs_info->delayed_iput_lock);
3476 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3477 wake_up_process(fs_info->cleaner_kthread);
3478 }
3479
3480 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3481 struct btrfs_inode *inode)
3482 {
3483 list_del_init(&inode->delayed_iput);
3484 spin_unlock(&fs_info->delayed_iput_lock);
3485 iput(&inode->vfs_inode);
3486 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3487 wake_up(&fs_info->delayed_iputs_wait);
3488 spin_lock(&fs_info->delayed_iput_lock);
3489 }
3490
3491 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3492 struct btrfs_inode *inode)
3493 {
3494 if (!list_empty(&inode->delayed_iput)) {
3495 spin_lock(&fs_info->delayed_iput_lock);
3496 if (!list_empty(&inode->delayed_iput))
3497 run_delayed_iput_locked(fs_info, inode);
3498 spin_unlock(&fs_info->delayed_iput_lock);
3499 }
3500 }
3501
3502 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3503 {
3504
3505 spin_lock(&fs_info->delayed_iput_lock);
3506 while (!list_empty(&fs_info->delayed_iputs)) {
3507 struct btrfs_inode *inode;
3508
3509 inode = list_first_entry(&fs_info->delayed_iputs,
3510 struct btrfs_inode, delayed_iput);
3511 run_delayed_iput_locked(fs_info, inode);
3512 cond_resched_lock(&fs_info->delayed_iput_lock);
3513 }
3514 spin_unlock(&fs_info->delayed_iput_lock);
3515 }
3516
3517 /**
3518 * Wait for flushing all delayed iputs
3519 *
3520 * @fs_info: the filesystem
3521 *
3522 * This will wait on any delayed iputs that are currently running with KILLABLE
3523 * set. Once they are all done running we will return, unless we are killed in
3524 * which case we return EINTR. This helps in user operations like fallocate etc
3525 * that might get blocked on the iputs.
3526 *
3527 * Return EINTR if we were killed, 0 if nothing's pending
3528 */
3529 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3530 {
3531 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3532 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3533 if (ret)
3534 return -EINTR;
3535 return 0;
3536 }
3537
3538 /*
3539 * This creates an orphan entry for the given inode in case something goes wrong
3540 * in the middle of an unlink.
3541 */
3542 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3543 struct btrfs_inode *inode)
3544 {
3545 int ret;
3546
3547 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3548 if (ret && ret != -EEXIST) {
3549 btrfs_abort_transaction(trans, ret);
3550 return ret;
3551 }
3552
3553 return 0;
3554 }
3555
3556 /*
3557 * We have done the delete so we can go ahead and remove the orphan item for
3558 * this particular inode.
3559 */
3560 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3561 struct btrfs_inode *inode)
3562 {
3563 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3564 }
3565
3566 /*
3567 * this cleans up any orphans that may be left on the list from the last use
3568 * of this root.
3569 */
3570 int btrfs_orphan_cleanup(struct btrfs_root *root)
3571 {
3572 struct btrfs_fs_info *fs_info = root->fs_info;
3573 struct btrfs_path *path;
3574 struct extent_buffer *leaf;
3575 struct btrfs_key key, found_key;
3576 struct btrfs_trans_handle *trans;
3577 struct inode *inode;
3578 u64 last_objectid = 0;
3579 int ret = 0, nr_unlink = 0;
3580
3581 /* Bail out if the cleanup is already running. */
3582 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3583 return 0;
3584
3585 path = btrfs_alloc_path();
3586 if (!path) {
3587 ret = -ENOMEM;
3588 goto out;
3589 }
3590 path->reada = READA_BACK;
3591
3592 key.objectid = BTRFS_ORPHAN_OBJECTID;
3593 key.type = BTRFS_ORPHAN_ITEM_KEY;
3594 key.offset = (u64)-1;
3595
3596 while (1) {
3597 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3598 if (ret < 0)
3599 goto out;
3600
3601 /*
3602 * if ret == 0 means we found what we were searching for, which
3603 * is weird, but possible, so only screw with path if we didn't
3604 * find the key and see if we have stuff that matches
3605 */
3606 if (ret > 0) {
3607 ret = 0;
3608 if (path->slots[0] == 0)
3609 break;
3610 path->slots[0]--;
3611 }
3612
3613 /* pull out the item */
3614 leaf = path->nodes[0];
3615 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3616
3617 /* make sure the item matches what we want */
3618 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3619 break;
3620 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3621 break;
3622
3623 /* release the path since we're done with it */
3624 btrfs_release_path(path);
3625
3626 /*
3627 * this is where we are basically btrfs_lookup, without the
3628 * crossing root thing. we store the inode number in the
3629 * offset of the orphan item.
3630 */
3631
3632 if (found_key.offset == last_objectid) {
3633 btrfs_err(fs_info,
3634 "Error removing orphan entry, stopping orphan cleanup");
3635 ret = -EINVAL;
3636 goto out;
3637 }
3638
3639 last_objectid = found_key.offset;
3640
3641 found_key.objectid = found_key.offset;
3642 found_key.type = BTRFS_INODE_ITEM_KEY;
3643 found_key.offset = 0;
3644 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3645 ret = PTR_ERR_OR_ZERO(inode);
3646 if (ret && ret != -ENOENT)
3647 goto out;
3648
3649 if (ret == -ENOENT && root == fs_info->tree_root) {
3650 struct btrfs_root *dead_root;
3651 int is_dead_root = 0;
3652
3653 /*
3654 * This is an orphan in the tree root. Currently these
3655 * could come from 2 sources:
3656 * a) a root (snapshot/subvolume) deletion in progress
3657 * b) a free space cache inode
3658 * We need to distinguish those two, as the orphan item
3659 * for a root must not get deleted before the deletion
3660 * of the snapshot/subvolume's tree completes.
3661 *
3662 * btrfs_find_orphan_roots() ran before us, which has
3663 * found all deleted roots and loaded them into
3664 * fs_info->fs_roots. So here we can find if an
3665 * orphan item corresponds to a deleted root by looking
3666 * up the root from that xarray.
3667 */
3668
3669 spin_lock(&fs_info->fs_roots_lock);
3670 dead_root = xa_load(&fs_info->fs_roots,
3671 (unsigned long)found_key.objectid);
3672 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3673 is_dead_root = 1;
3674 spin_unlock(&fs_info->fs_roots_lock);
3675
3676 if (is_dead_root) {
3677 /* prevent this orphan from being found again */
3678 key.offset = found_key.objectid - 1;
3679 continue;
3680 }
3681
3682 }
3683
3684 /*
3685 * If we have an inode with links, there are a couple of
3686 * possibilities:
3687 *
3688 * 1. We were halfway through creating fsverity metadata for the
3689 * file. In that case, the orphan item represents incomplete
3690 * fsverity metadata which must be cleaned up with
3691 * btrfs_drop_verity_items and deleting the orphan item.
3692
3693 * 2. Old kernels (before v3.12) used to create an
3694 * orphan item for truncate indicating that there were possibly
3695 * extent items past i_size that needed to be deleted. In v3.12,
3696 * truncate was changed to update i_size in sync with the extent
3697 * items, but the (useless) orphan item was still created. Since
3698 * v4.18, we don't create the orphan item for truncate at all.
3699 *
3700 * So, this item could mean that we need to do a truncate, but
3701 * only if this filesystem was last used on a pre-v3.12 kernel
3702 * and was not cleanly unmounted. The odds of that are quite
3703 * slim, and it's a pain to do the truncate now, so just delete
3704 * the orphan item.
3705 *
3706 * It's also possible that this orphan item was supposed to be
3707 * deleted but wasn't. The inode number may have been reused,
3708 * but either way, we can delete the orphan item.
3709 */
3710 if (ret == -ENOENT || inode->i_nlink) {
3711 if (!ret) {
3712 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3713 iput(inode);
3714 if (ret)
3715 goto out;
3716 }
3717 trans = btrfs_start_transaction(root, 1);
3718 if (IS_ERR(trans)) {
3719 ret = PTR_ERR(trans);
3720 goto out;
3721 }
3722 btrfs_debug(fs_info, "auto deleting %Lu",
3723 found_key.objectid);
3724 ret = btrfs_del_orphan_item(trans, root,
3725 found_key.objectid);
3726 btrfs_end_transaction(trans);
3727 if (ret)
3728 goto out;
3729 continue;
3730 }
3731
3732 nr_unlink++;
3733
3734 /* this will do delete_inode and everything for us */
3735 iput(inode);
3736 }
3737 /* release the path since we're done with it */
3738 btrfs_release_path(path);
3739
3740 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3741 trans = btrfs_join_transaction(root);
3742 if (!IS_ERR(trans))
3743 btrfs_end_transaction(trans);
3744 }
3745
3746 if (nr_unlink)
3747 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3748
3749 out:
3750 if (ret)
3751 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3752 btrfs_free_path(path);
3753 return ret;
3754 }
3755
3756 /*
3757 * very simple check to peek ahead in the leaf looking for xattrs. If we
3758 * don't find any xattrs, we know there can't be any acls.
3759 *
3760 * slot is the slot the inode is in, objectid is the objectid of the inode
3761 */
3762 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3763 int slot, u64 objectid,
3764 int *first_xattr_slot)
3765 {
3766 u32 nritems = btrfs_header_nritems(leaf);
3767 struct btrfs_key found_key;
3768 static u64 xattr_access = 0;
3769 static u64 xattr_default = 0;
3770 int scanned = 0;
3771
3772 if (!xattr_access) {
3773 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3774 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3775 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3776 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3777 }
3778
3779 slot++;
3780 *first_xattr_slot = -1;
3781 while (slot < nritems) {
3782 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3783
3784 /* we found a different objectid, there must not be acls */
3785 if (found_key.objectid != objectid)
3786 return 0;
3787
3788 /* we found an xattr, assume we've got an acl */
3789 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3790 if (*first_xattr_slot == -1)
3791 *first_xattr_slot = slot;
3792 if (found_key.offset == xattr_access ||
3793 found_key.offset == xattr_default)
3794 return 1;
3795 }
3796
3797 /*
3798 * we found a key greater than an xattr key, there can't
3799 * be any acls later on
3800 */
3801 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3802 return 0;
3803
3804 slot++;
3805 scanned++;
3806
3807 /*
3808 * it goes inode, inode backrefs, xattrs, extents,
3809 * so if there are a ton of hard links to an inode there can
3810 * be a lot of backrefs. Don't waste time searching too hard,
3811 * this is just an optimization
3812 */
3813 if (scanned >= 8)
3814 break;
3815 }
3816 /* we hit the end of the leaf before we found an xattr or
3817 * something larger than an xattr. We have to assume the inode
3818 * has acls
3819 */
3820 if (*first_xattr_slot == -1)
3821 *first_xattr_slot = slot;
3822 return 1;
3823 }
3824
3825 /*
3826 * read an inode from the btree into the in-memory inode
3827 */
3828 static int btrfs_read_locked_inode(struct inode *inode,
3829 struct btrfs_path *in_path)
3830 {
3831 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3832 struct btrfs_path *path = in_path;
3833 struct extent_buffer *leaf;
3834 struct btrfs_inode_item *inode_item;
3835 struct btrfs_root *root = BTRFS_I(inode)->root;
3836 struct btrfs_key location;
3837 unsigned long ptr;
3838 int maybe_acls;
3839 u32 rdev;
3840 int ret;
3841 bool filled = false;
3842 int first_xattr_slot;
3843
3844 ret = btrfs_fill_inode(inode, &rdev);
3845 if (!ret)
3846 filled = true;
3847
3848 if (!path) {
3849 path = btrfs_alloc_path();
3850 if (!path)
3851 return -ENOMEM;
3852 }
3853
3854 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3855
3856 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3857 if (ret) {
3858 if (path != in_path)
3859 btrfs_free_path(path);
3860 return ret;
3861 }
3862
3863 leaf = path->nodes[0];
3864
3865 if (filled)
3866 goto cache_index;
3867
3868 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3869 struct btrfs_inode_item);
3870 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3871 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3872 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3873 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3874 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3875 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3876 round_up(i_size_read(inode), fs_info->sectorsize));
3877
3878 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3879 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3880
3881 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3882 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3883
3884 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3885 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3886
3887 BTRFS_I(inode)->i_otime.tv_sec =
3888 btrfs_timespec_sec(leaf, &inode_item->otime);
3889 BTRFS_I(inode)->i_otime.tv_nsec =
3890 btrfs_timespec_nsec(leaf, &inode_item->otime);
3891
3892 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3893 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3894 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3895
3896 inode_set_iversion_queried(inode,
3897 btrfs_inode_sequence(leaf, inode_item));
3898 inode->i_generation = BTRFS_I(inode)->generation;
3899 inode->i_rdev = 0;
3900 rdev = btrfs_inode_rdev(leaf, inode_item);
3901
3902 BTRFS_I(inode)->index_cnt = (u64)-1;
3903 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3904 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3905
3906 cache_index:
3907 /*
3908 * If we were modified in the current generation and evicted from memory
3909 * and then re-read we need to do a full sync since we don't have any
3910 * idea about which extents were modified before we were evicted from
3911 * cache.
3912 *
3913 * This is required for both inode re-read from disk and delayed inode
3914 * in the delayed_nodes xarray.
3915 */
3916 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3917 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3918 &BTRFS_I(inode)->runtime_flags);
3919
3920 /*
3921 * We don't persist the id of the transaction where an unlink operation
3922 * against the inode was last made. So here we assume the inode might
3923 * have been evicted, and therefore the exact value of last_unlink_trans
3924 * lost, and set it to last_trans to avoid metadata inconsistencies
3925 * between the inode and its parent if the inode is fsync'ed and the log
3926 * replayed. For example, in the scenario:
3927 *
3928 * touch mydir/foo
3929 * ln mydir/foo mydir/bar
3930 * sync
3931 * unlink mydir/bar
3932 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3933 * xfs_io -c fsync mydir/foo
3934 * <power failure>
3935 * mount fs, triggers fsync log replay
3936 *
3937 * We must make sure that when we fsync our inode foo we also log its
3938 * parent inode, otherwise after log replay the parent still has the
3939 * dentry with the "bar" name but our inode foo has a link count of 1
3940 * and doesn't have an inode ref with the name "bar" anymore.
3941 *
3942 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3943 * but it guarantees correctness at the expense of occasional full
3944 * transaction commits on fsync if our inode is a directory, or if our
3945 * inode is not a directory, logging its parent unnecessarily.
3946 */
3947 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3948
3949 /*
3950 * Same logic as for last_unlink_trans. We don't persist the generation
3951 * of the last transaction where this inode was used for a reflink
3952 * operation, so after eviction and reloading the inode we must be
3953 * pessimistic and assume the last transaction that modified the inode.
3954 */
3955 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3956
3957 path->slots[0]++;
3958 if (inode->i_nlink != 1 ||
3959 path->slots[0] >= btrfs_header_nritems(leaf))
3960 goto cache_acl;
3961
3962 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3963 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3964 goto cache_acl;
3965
3966 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3967 if (location.type == BTRFS_INODE_REF_KEY) {
3968 struct btrfs_inode_ref *ref;
3969
3970 ref = (struct btrfs_inode_ref *)ptr;
3971 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3972 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3973 struct btrfs_inode_extref *extref;
3974
3975 extref = (struct btrfs_inode_extref *)ptr;
3976 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3977 extref);
3978 }
3979 cache_acl:
3980 /*
3981 * try to precache a NULL acl entry for files that don't have
3982 * any xattrs or acls
3983 */
3984 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3985 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3986 if (first_xattr_slot != -1) {
3987 path->slots[0] = first_xattr_slot;
3988 ret = btrfs_load_inode_props(inode, path);
3989 if (ret)
3990 btrfs_err(fs_info,
3991 "error loading props for ino %llu (root %llu): %d",
3992 btrfs_ino(BTRFS_I(inode)),
3993 root->root_key.objectid, ret);
3994 }
3995 if (path != in_path)
3996 btrfs_free_path(path);
3997
3998 if (!maybe_acls)
3999 cache_no_acl(inode);
4000
4001 switch (inode->i_mode & S_IFMT) {
4002 case S_IFREG:
4003 inode->i_mapping->a_ops = &btrfs_aops;
4004 inode->i_fop = &btrfs_file_operations;
4005 inode->i_op = &btrfs_file_inode_operations;
4006 break;
4007 case S_IFDIR:
4008 inode->i_fop = &btrfs_dir_file_operations;
4009 inode->i_op = &btrfs_dir_inode_operations;
4010 break;
4011 case S_IFLNK:
4012 inode->i_op = &btrfs_symlink_inode_operations;
4013 inode_nohighmem(inode);
4014 inode->i_mapping->a_ops = &btrfs_aops;
4015 break;
4016 default:
4017 inode->i_op = &btrfs_special_inode_operations;
4018 init_special_inode(inode, inode->i_mode, rdev);
4019 break;
4020 }
4021
4022 btrfs_sync_inode_flags_to_i_flags(inode);
4023 return 0;
4024 }
4025
4026 /*
4027 * given a leaf and an inode, copy the inode fields into the leaf
4028 */
4029 static void fill_inode_item(struct btrfs_trans_handle *trans,
4030 struct extent_buffer *leaf,
4031 struct btrfs_inode_item *item,
4032 struct inode *inode)
4033 {
4034 struct btrfs_map_token token;
4035 u64 flags;
4036
4037 btrfs_init_map_token(&token, leaf);
4038
4039 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4040 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4041 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4042 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4043 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4044
4045 btrfs_set_token_timespec_sec(&token, &item->atime,
4046 inode->i_atime.tv_sec);
4047 btrfs_set_token_timespec_nsec(&token, &item->atime,
4048 inode->i_atime.tv_nsec);
4049
4050 btrfs_set_token_timespec_sec(&token, &item->mtime,
4051 inode->i_mtime.tv_sec);
4052 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4053 inode->i_mtime.tv_nsec);
4054
4055 btrfs_set_token_timespec_sec(&token, &item->ctime,
4056 inode->i_ctime.tv_sec);
4057 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4058 inode->i_ctime.tv_nsec);
4059
4060 btrfs_set_token_timespec_sec(&token, &item->otime,
4061 BTRFS_I(inode)->i_otime.tv_sec);
4062 btrfs_set_token_timespec_nsec(&token, &item->otime,
4063 BTRFS_I(inode)->i_otime.tv_nsec);
4064
4065 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4066 btrfs_set_token_inode_generation(&token, item,
4067 BTRFS_I(inode)->generation);
4068 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4069 btrfs_set_token_inode_transid(&token, item, trans->transid);
4070 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4071 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4072 BTRFS_I(inode)->ro_flags);
4073 btrfs_set_token_inode_flags(&token, item, flags);
4074 btrfs_set_token_inode_block_group(&token, item, 0);
4075 }
4076
4077 /*
4078 * copy everything in the in-memory inode into the btree.
4079 */
4080 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4081 struct btrfs_root *root,
4082 struct btrfs_inode *inode)
4083 {
4084 struct btrfs_inode_item *inode_item;
4085 struct btrfs_path *path;
4086 struct extent_buffer *leaf;
4087 int ret;
4088
4089 path = btrfs_alloc_path();
4090 if (!path)
4091 return -ENOMEM;
4092
4093 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4094 if (ret) {
4095 if (ret > 0)
4096 ret = -ENOENT;
4097 goto failed;
4098 }
4099
4100 leaf = path->nodes[0];
4101 inode_item = btrfs_item_ptr(leaf, path->slots[0],
4102 struct btrfs_inode_item);
4103
4104 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4105 btrfs_mark_buffer_dirty(leaf);
4106 btrfs_set_inode_last_trans(trans, inode);
4107 ret = 0;
4108 failed:
4109 btrfs_free_path(path);
4110 return ret;
4111 }
4112
4113 /*
4114 * copy everything in the in-memory inode into the btree.
4115 */
4116 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4117 struct btrfs_root *root,
4118 struct btrfs_inode *inode)
4119 {
4120 struct btrfs_fs_info *fs_info = root->fs_info;
4121 int ret;
4122
4123 /*
4124 * If the inode is a free space inode, we can deadlock during commit
4125 * if we put it into the delayed code.
4126 *
4127 * The data relocation inode should also be directly updated
4128 * without delay
4129 */
4130 if (!btrfs_is_free_space_inode(inode)
4131 && !btrfs_is_data_reloc_root(root)
4132 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4133 btrfs_update_root_times(trans, root);
4134
4135 ret = btrfs_delayed_update_inode(trans, root, inode);
4136 if (!ret)
4137 btrfs_set_inode_last_trans(trans, inode);
4138 return ret;
4139 }
4140
4141 return btrfs_update_inode_item(trans, root, inode);
4142 }
4143
4144 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4145 struct btrfs_root *root, struct btrfs_inode *inode)
4146 {
4147 int ret;
4148
4149 ret = btrfs_update_inode(trans, root, inode);
4150 if (ret == -ENOSPC)
4151 return btrfs_update_inode_item(trans, root, inode);
4152 return ret;
4153 }
4154
4155 /*
4156 * unlink helper that gets used here in inode.c and in the tree logging
4157 * recovery code. It remove a link in a directory with a given name, and
4158 * also drops the back refs in the inode to the directory
4159 */
4160 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4161 struct btrfs_inode *dir,
4162 struct btrfs_inode *inode,
4163 const char *name, int name_len,
4164 struct btrfs_rename_ctx *rename_ctx)
4165 {
4166 struct btrfs_root *root = dir->root;
4167 struct btrfs_fs_info *fs_info = root->fs_info;
4168 struct btrfs_path *path;
4169 int ret = 0;
4170 struct btrfs_dir_item *di;
4171 u64 index;
4172 u64 ino = btrfs_ino(inode);
4173 u64 dir_ino = btrfs_ino(dir);
4174
4175 path = btrfs_alloc_path();
4176 if (!path) {
4177 ret = -ENOMEM;
4178 goto out;
4179 }
4180
4181 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4182 name, name_len, -1);
4183 if (IS_ERR_OR_NULL(di)) {
4184 ret = di ? PTR_ERR(di) : -ENOENT;
4185 goto err;
4186 }
4187 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4188 if (ret)
4189 goto err;
4190 btrfs_release_path(path);
4191
4192 /*
4193 * If we don't have dir index, we have to get it by looking up
4194 * the inode ref, since we get the inode ref, remove it directly,
4195 * it is unnecessary to do delayed deletion.
4196 *
4197 * But if we have dir index, needn't search inode ref to get it.
4198 * Since the inode ref is close to the inode item, it is better
4199 * that we delay to delete it, and just do this deletion when
4200 * we update the inode item.
4201 */
4202 if (inode->dir_index) {
4203 ret = btrfs_delayed_delete_inode_ref(inode);
4204 if (!ret) {
4205 index = inode->dir_index;
4206 goto skip_backref;
4207 }
4208 }
4209
4210 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4211 dir_ino, &index);
4212 if (ret) {
4213 btrfs_info(fs_info,
4214 "failed to delete reference to %.*s, inode %llu parent %llu",
4215 name_len, name, ino, dir_ino);
4216 btrfs_abort_transaction(trans, ret);
4217 goto err;
4218 }
4219 skip_backref:
4220 if (rename_ctx)
4221 rename_ctx->index = index;
4222
4223 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4224 if (ret) {
4225 btrfs_abort_transaction(trans, ret);
4226 goto err;
4227 }
4228
4229 /*
4230 * If we are in a rename context, we don't need to update anything in the
4231 * log. That will be done later during the rename by btrfs_log_new_name().
4232 * Besides that, doing it here would only cause extra unncessary btree
4233 * operations on the log tree, increasing latency for applications.
4234 */
4235 if (!rename_ctx) {
4236 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4237 dir_ino);
4238 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4239 index);
4240 }
4241
4242 /*
4243 * If we have a pending delayed iput we could end up with the final iput
4244 * being run in btrfs-cleaner context. If we have enough of these built
4245 * up we can end up burning a lot of time in btrfs-cleaner without any
4246 * way to throttle the unlinks. Since we're currently holding a ref on
4247 * the inode we can run the delayed iput here without any issues as the
4248 * final iput won't be done until after we drop the ref we're currently
4249 * holding.
4250 */
4251 btrfs_run_delayed_iput(fs_info, inode);
4252 err:
4253 btrfs_free_path(path);
4254 if (ret)
4255 goto out;
4256
4257 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4258 inode_inc_iversion(&inode->vfs_inode);
4259 inode_inc_iversion(&dir->vfs_inode);
4260 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4261 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4262 ret = btrfs_update_inode(trans, root, dir);
4263 out:
4264 return ret;
4265 }
4266
4267 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4268 struct btrfs_inode *dir, struct btrfs_inode *inode,
4269 const char *name, int name_len)
4270 {
4271 int ret;
4272 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL);
4273 if (!ret) {
4274 drop_nlink(&inode->vfs_inode);
4275 ret = btrfs_update_inode(trans, inode->root, inode);
4276 }
4277 return ret;
4278 }
4279
4280 /*
4281 * helper to start transaction for unlink and rmdir.
4282 *
4283 * unlink and rmdir are special in btrfs, they do not always free space, so
4284 * if we cannot make our reservations the normal way try and see if there is
4285 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4286 * allow the unlink to occur.
4287 */
4288 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4289 {
4290 struct btrfs_root *root = BTRFS_I(dir)->root;
4291
4292 /*
4293 * 1 for the possible orphan item
4294 * 1 for the dir item
4295 * 1 for the dir index
4296 * 1 for the inode ref
4297 * 1 for the inode
4298 * 1 for the parent inode
4299 */
4300 return btrfs_start_transaction_fallback_global_rsv(root, 6);
4301 }
4302
4303 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4304 {
4305 struct btrfs_trans_handle *trans;
4306 struct inode *inode = d_inode(dentry);
4307 int ret;
4308
4309 trans = __unlink_start_trans(dir);
4310 if (IS_ERR(trans))
4311 return PTR_ERR(trans);
4312
4313 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4314 0);
4315
4316 ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4317 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4318 dentry->d_name.len);
4319 if (ret)
4320 goto out;
4321
4322 if (inode->i_nlink == 0) {
4323 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4324 if (ret)
4325 goto out;
4326 }
4327
4328 out:
4329 btrfs_end_transaction(trans);
4330 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4331 return ret;
4332 }
4333
4334 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4335 struct inode *dir, struct dentry *dentry)
4336 {
4337 struct btrfs_root *root = BTRFS_I(dir)->root;
4338 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4339 struct btrfs_path *path;
4340 struct extent_buffer *leaf;
4341 struct btrfs_dir_item *di;
4342 struct btrfs_key key;
4343 const char *name = dentry->d_name.name;
4344 int name_len = dentry->d_name.len;
4345 u64 index;
4346 int ret;
4347 u64 objectid;
4348 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4349
4350 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4351 objectid = inode->root->root_key.objectid;
4352 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4353 objectid = inode->location.objectid;
4354 } else {
4355 WARN_ON(1);
4356 return -EINVAL;
4357 }
4358
4359 path = btrfs_alloc_path();
4360 if (!path)
4361 return -ENOMEM;
4362
4363 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4364 name, name_len, -1);
4365 if (IS_ERR_OR_NULL(di)) {
4366 ret = di ? PTR_ERR(di) : -ENOENT;
4367 goto out;
4368 }
4369
4370 leaf = path->nodes[0];
4371 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4372 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4373 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4374 if (ret) {
4375 btrfs_abort_transaction(trans, ret);
4376 goto out;
4377 }
4378 btrfs_release_path(path);
4379
4380 /*
4381 * This is a placeholder inode for a subvolume we didn't have a
4382 * reference to at the time of the snapshot creation. In the meantime
4383 * we could have renamed the real subvol link into our snapshot, so
4384 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4385 * Instead simply lookup the dir_index_item for this entry so we can
4386 * remove it. Otherwise we know we have a ref to the root and we can
4387 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4388 */
4389 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4390 di = btrfs_search_dir_index_item(root, path, dir_ino,
4391 name, name_len);
4392 if (IS_ERR_OR_NULL(di)) {
4393 if (!di)
4394 ret = -ENOENT;
4395 else
4396 ret = PTR_ERR(di);
4397 btrfs_abort_transaction(trans, ret);
4398 goto out;
4399 }
4400
4401 leaf = path->nodes[0];
4402 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4403 index = key.offset;
4404 btrfs_release_path(path);
4405 } else {
4406 ret = btrfs_del_root_ref(trans, objectid,
4407 root->root_key.objectid, dir_ino,
4408 &index, name, name_len);
4409 if (ret) {
4410 btrfs_abort_transaction(trans, ret);
4411 goto out;
4412 }
4413 }
4414
4415 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4416 if (ret) {
4417 btrfs_abort_transaction(trans, ret);
4418 goto out;
4419 }
4420
4421 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4422 inode_inc_iversion(dir);
4423 dir->i_mtime = dir->i_ctime = current_time(dir);
4424 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4425 if (ret)
4426 btrfs_abort_transaction(trans, ret);
4427 out:
4428 btrfs_free_path(path);
4429 return ret;
4430 }
4431
4432 /*
4433 * Helper to check if the subvolume references other subvolumes or if it's
4434 * default.
4435 */
4436 static noinline int may_destroy_subvol(struct btrfs_root *root)
4437 {
4438 struct btrfs_fs_info *fs_info = root->fs_info;
4439 struct btrfs_path *path;
4440 struct btrfs_dir_item *di;
4441 struct btrfs_key key;
4442 u64 dir_id;
4443 int ret;
4444
4445 path = btrfs_alloc_path();
4446 if (!path)
4447 return -ENOMEM;
4448
4449 /* Make sure this root isn't set as the default subvol */
4450 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4451 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4452 dir_id, "default", 7, 0);
4453 if (di && !IS_ERR(di)) {
4454 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4455 if (key.objectid == root->root_key.objectid) {
4456 ret = -EPERM;
4457 btrfs_err(fs_info,
4458 "deleting default subvolume %llu is not allowed",
4459 key.objectid);
4460 goto out;
4461 }
4462 btrfs_release_path(path);
4463 }
4464
4465 key.objectid = root->root_key.objectid;
4466 key.type = BTRFS_ROOT_REF_KEY;
4467 key.offset = (u64)-1;
4468
4469 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4470 if (ret < 0)
4471 goto out;
4472 BUG_ON(ret == 0);
4473
4474 ret = 0;
4475 if (path->slots[0] > 0) {
4476 path->slots[0]--;
4477 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4478 if (key.objectid == root->root_key.objectid &&
4479 key.type == BTRFS_ROOT_REF_KEY)
4480 ret = -ENOTEMPTY;
4481 }
4482 out:
4483 btrfs_free_path(path);
4484 return ret;
4485 }
4486
4487 /* Delete all dentries for inodes belonging to the root */
4488 static void btrfs_prune_dentries(struct btrfs_root *root)
4489 {
4490 struct btrfs_fs_info *fs_info = root->fs_info;
4491 struct rb_node *node;
4492 struct rb_node *prev;
4493 struct btrfs_inode *entry;
4494 struct inode *inode;
4495 u64 objectid = 0;
4496
4497 if (!BTRFS_FS_ERROR(fs_info))
4498 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4499
4500 spin_lock(&root->inode_lock);
4501 again:
4502 node = root->inode_tree.rb_node;
4503 prev = NULL;
4504 while (node) {
4505 prev = node;
4506 entry = rb_entry(node, struct btrfs_inode, rb_node);
4507
4508 if (objectid < btrfs_ino(entry))
4509 node = node->rb_left;
4510 else if (objectid > btrfs_ino(entry))
4511 node = node->rb_right;
4512 else
4513 break;
4514 }
4515 if (!node) {
4516 while (prev) {
4517 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4518 if (objectid <= btrfs_ino(entry)) {
4519 node = prev;
4520 break;
4521 }
4522 prev = rb_next(prev);
4523 }
4524 }
4525 while (node) {
4526 entry = rb_entry(node, struct btrfs_inode, rb_node);
4527 objectid = btrfs_ino(entry) + 1;
4528 inode = igrab(&entry->vfs_inode);
4529 if (inode) {
4530 spin_unlock(&root->inode_lock);
4531 if (atomic_read(&inode->i_count) > 1)
4532 d_prune_aliases(inode);
4533 /*
4534 * btrfs_drop_inode will have it removed from the inode
4535 * cache when its usage count hits zero.
4536 */
4537 iput(inode);
4538 cond_resched();
4539 spin_lock(&root->inode_lock);
4540 goto again;
4541 }
4542
4543 if (cond_resched_lock(&root->inode_lock))
4544 goto again;
4545
4546 node = rb_next(node);
4547 }
4548 spin_unlock(&root->inode_lock);
4549 }
4550
4551 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4552 {
4553 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4554 struct btrfs_root *root = BTRFS_I(dir)->root;
4555 struct inode *inode = d_inode(dentry);
4556 struct btrfs_root *dest = BTRFS_I(inode)->root;
4557 struct btrfs_trans_handle *trans;
4558 struct btrfs_block_rsv block_rsv;
4559 u64 root_flags;
4560 int ret;
4561
4562 /*
4563 * Don't allow to delete a subvolume with send in progress. This is
4564 * inside the inode lock so the error handling that has to drop the bit
4565 * again is not run concurrently.
4566 */
4567 spin_lock(&dest->root_item_lock);
4568 if (dest->send_in_progress) {
4569 spin_unlock(&dest->root_item_lock);
4570 btrfs_warn(fs_info,
4571 "attempt to delete subvolume %llu during send",
4572 dest->root_key.objectid);
4573 return -EPERM;
4574 }
4575 if (atomic_read(&dest->nr_swapfiles)) {
4576 spin_unlock(&dest->root_item_lock);
4577 btrfs_warn(fs_info,
4578 "attempt to delete subvolume %llu with active swapfile",
4579 root->root_key.objectid);
4580 return -EPERM;
4581 }
4582 root_flags = btrfs_root_flags(&dest->root_item);
4583 btrfs_set_root_flags(&dest->root_item,
4584 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4585 spin_unlock(&dest->root_item_lock);
4586
4587 down_write(&fs_info->subvol_sem);
4588
4589 ret = may_destroy_subvol(dest);
4590 if (ret)
4591 goto out_up_write;
4592
4593 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4594 /*
4595 * One for dir inode,
4596 * two for dir entries,
4597 * two for root ref/backref.
4598 */
4599 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4600 if (ret)
4601 goto out_up_write;
4602
4603 trans = btrfs_start_transaction(root, 0);
4604 if (IS_ERR(trans)) {
4605 ret = PTR_ERR(trans);
4606 goto out_release;
4607 }
4608 trans->block_rsv = &block_rsv;
4609 trans->bytes_reserved = block_rsv.size;
4610
4611 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4612
4613 ret = btrfs_unlink_subvol(trans, dir, dentry);
4614 if (ret) {
4615 btrfs_abort_transaction(trans, ret);
4616 goto out_end_trans;
4617 }
4618
4619 ret = btrfs_record_root_in_trans(trans, dest);
4620 if (ret) {
4621 btrfs_abort_transaction(trans, ret);
4622 goto out_end_trans;
4623 }
4624
4625 memset(&dest->root_item.drop_progress, 0,
4626 sizeof(dest->root_item.drop_progress));
4627 btrfs_set_root_drop_level(&dest->root_item, 0);
4628 btrfs_set_root_refs(&dest->root_item, 0);
4629
4630 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4631 ret = btrfs_insert_orphan_item(trans,
4632 fs_info->tree_root,
4633 dest->root_key.objectid);
4634 if (ret) {
4635 btrfs_abort_transaction(trans, ret);
4636 goto out_end_trans;
4637 }
4638 }
4639
4640 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4641 BTRFS_UUID_KEY_SUBVOL,
4642 dest->root_key.objectid);
4643 if (ret && ret != -ENOENT) {
4644 btrfs_abort_transaction(trans, ret);
4645 goto out_end_trans;
4646 }
4647 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4648 ret = btrfs_uuid_tree_remove(trans,
4649 dest->root_item.received_uuid,
4650 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4651 dest->root_key.objectid);
4652 if (ret && ret != -ENOENT) {
4653 btrfs_abort_transaction(trans, ret);
4654 goto out_end_trans;
4655 }
4656 }
4657
4658 free_anon_bdev(dest->anon_dev);
4659 dest->anon_dev = 0;
4660 out_end_trans:
4661 trans->block_rsv = NULL;
4662 trans->bytes_reserved = 0;
4663 ret = btrfs_end_transaction(trans);
4664 inode->i_flags |= S_DEAD;
4665 out_release:
4666 btrfs_subvolume_release_metadata(root, &block_rsv);
4667 out_up_write:
4668 up_write(&fs_info->subvol_sem);
4669 if (ret) {
4670 spin_lock(&dest->root_item_lock);
4671 root_flags = btrfs_root_flags(&dest->root_item);
4672 btrfs_set_root_flags(&dest->root_item,
4673 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4674 spin_unlock(&dest->root_item_lock);
4675 } else {
4676 d_invalidate(dentry);
4677 btrfs_prune_dentries(dest);
4678 ASSERT(dest->send_in_progress == 0);
4679 }
4680
4681 return ret;
4682 }
4683
4684 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4685 {
4686 struct inode *inode = d_inode(dentry);
4687 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4688 int err = 0;
4689 struct btrfs_trans_handle *trans;
4690 u64 last_unlink_trans;
4691
4692 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4693 return -ENOTEMPTY;
4694 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4695 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4696 btrfs_err(fs_info,
4697 "extent tree v2 doesn't support snapshot deletion yet");
4698 return -EOPNOTSUPP;
4699 }
4700 return btrfs_delete_subvolume(dir, dentry);
4701 }
4702
4703 trans = __unlink_start_trans(dir);
4704 if (IS_ERR(trans))
4705 return PTR_ERR(trans);
4706
4707 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4708 err = btrfs_unlink_subvol(trans, dir, dentry);
4709 goto out;
4710 }
4711
4712 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4713 if (err)
4714 goto out;
4715
4716 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4717
4718 /* now the directory is empty */
4719 err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4720 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4721 dentry->d_name.len);
4722 if (!err) {
4723 btrfs_i_size_write(BTRFS_I(inode), 0);
4724 /*
4725 * Propagate the last_unlink_trans value of the deleted dir to
4726 * its parent directory. This is to prevent an unrecoverable
4727 * log tree in the case we do something like this:
4728 * 1) create dir foo
4729 * 2) create snapshot under dir foo
4730 * 3) delete the snapshot
4731 * 4) rmdir foo
4732 * 5) mkdir foo
4733 * 6) fsync foo or some file inside foo
4734 */
4735 if (last_unlink_trans >= trans->transid)
4736 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4737 }
4738 out:
4739 btrfs_end_transaction(trans);
4740 btrfs_btree_balance_dirty(fs_info);
4741
4742 return err;
4743 }
4744
4745 /*
4746 * btrfs_truncate_block - read, zero a chunk and write a block
4747 * @inode - inode that we're zeroing
4748 * @from - the offset to start zeroing
4749 * @len - the length to zero, 0 to zero the entire range respective to the
4750 * offset
4751 * @front - zero up to the offset instead of from the offset on
4752 *
4753 * This will find the block for the "from" offset and cow the block and zero the
4754 * part we want to zero. This is used with truncate and hole punching.
4755 */
4756 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4757 int front)
4758 {
4759 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4760 struct address_space *mapping = inode->vfs_inode.i_mapping;
4761 struct extent_io_tree *io_tree = &inode->io_tree;
4762 struct btrfs_ordered_extent *ordered;
4763 struct extent_state *cached_state = NULL;
4764 struct extent_changeset *data_reserved = NULL;
4765 bool only_release_metadata = false;
4766 u32 blocksize = fs_info->sectorsize;
4767 pgoff_t index = from >> PAGE_SHIFT;
4768 unsigned offset = from & (blocksize - 1);
4769 struct page *page;
4770 gfp_t mask = btrfs_alloc_write_mask(mapping);
4771 size_t write_bytes = blocksize;
4772 int ret = 0;
4773 u64 block_start;
4774 u64 block_end;
4775
4776 if (IS_ALIGNED(offset, blocksize) &&
4777 (!len || IS_ALIGNED(len, blocksize)))
4778 goto out;
4779
4780 block_start = round_down(from, blocksize);
4781 block_end = block_start + blocksize - 1;
4782
4783 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4784 blocksize);
4785 if (ret < 0) {
4786 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
4787 /* For nocow case, no need to reserve data space */
4788 only_release_metadata = true;
4789 } else {
4790 goto out;
4791 }
4792 }
4793 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4794 if (ret < 0) {
4795 if (!only_release_metadata)
4796 btrfs_free_reserved_data_space(inode, data_reserved,
4797 block_start, blocksize);
4798 goto out;
4799 }
4800 again:
4801 page = find_or_create_page(mapping, index, mask);
4802 if (!page) {
4803 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4804 blocksize, true);
4805 btrfs_delalloc_release_extents(inode, blocksize);
4806 ret = -ENOMEM;
4807 goto out;
4808 }
4809 ret = set_page_extent_mapped(page);
4810 if (ret < 0)
4811 goto out_unlock;
4812
4813 if (!PageUptodate(page)) {
4814 ret = btrfs_read_folio(NULL, page_folio(page));
4815 lock_page(page);
4816 if (page->mapping != mapping) {
4817 unlock_page(page);
4818 put_page(page);
4819 goto again;
4820 }
4821 if (!PageUptodate(page)) {
4822 ret = -EIO;
4823 goto out_unlock;
4824 }
4825 }
4826 wait_on_page_writeback(page);
4827
4828 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4829
4830 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4831 if (ordered) {
4832 unlock_extent_cached(io_tree, block_start, block_end,
4833 &cached_state);
4834 unlock_page(page);
4835 put_page(page);
4836 btrfs_start_ordered_extent(ordered, 1);
4837 btrfs_put_ordered_extent(ordered);
4838 goto again;
4839 }
4840
4841 clear_extent_bit(&inode->io_tree, block_start, block_end,
4842 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4843 0, 0, &cached_state);
4844
4845 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4846 &cached_state);
4847 if (ret) {
4848 unlock_extent_cached(io_tree, block_start, block_end,
4849 &cached_state);
4850 goto out_unlock;
4851 }
4852
4853 if (offset != blocksize) {
4854 if (!len)
4855 len = blocksize - offset;
4856 if (front)
4857 memzero_page(page, (block_start - page_offset(page)),
4858 offset);
4859 else
4860 memzero_page(page, (block_start - page_offset(page)) + offset,
4861 len);
4862 flush_dcache_page(page);
4863 }
4864 btrfs_page_clear_checked(fs_info, page, block_start,
4865 block_end + 1 - block_start);
4866 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4867 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4868
4869 if (only_release_metadata)
4870 set_extent_bit(&inode->io_tree, block_start, block_end,
4871 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
4872
4873 out_unlock:
4874 if (ret) {
4875 if (only_release_metadata)
4876 btrfs_delalloc_release_metadata(inode, blocksize, true);
4877 else
4878 btrfs_delalloc_release_space(inode, data_reserved,
4879 block_start, blocksize, true);
4880 }
4881 btrfs_delalloc_release_extents(inode, blocksize);
4882 unlock_page(page);
4883 put_page(page);
4884 out:
4885 if (only_release_metadata)
4886 btrfs_check_nocow_unlock(inode);
4887 extent_changeset_free(data_reserved);
4888 return ret;
4889 }
4890
4891 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4892 u64 offset, u64 len)
4893 {
4894 struct btrfs_fs_info *fs_info = root->fs_info;
4895 struct btrfs_trans_handle *trans;
4896 struct btrfs_drop_extents_args drop_args = { 0 };
4897 int ret;
4898
4899 /*
4900 * If NO_HOLES is enabled, we don't need to do anything.
4901 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4902 * or btrfs_update_inode() will be called, which guarantee that the next
4903 * fsync will know this inode was changed and needs to be logged.
4904 */
4905 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4906 return 0;
4907
4908 /*
4909 * 1 - for the one we're dropping
4910 * 1 - for the one we're adding
4911 * 1 - for updating the inode.
4912 */
4913 trans = btrfs_start_transaction(root, 3);
4914 if (IS_ERR(trans))
4915 return PTR_ERR(trans);
4916
4917 drop_args.start = offset;
4918 drop_args.end = offset + len;
4919 drop_args.drop_cache = true;
4920
4921 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4922 if (ret) {
4923 btrfs_abort_transaction(trans, ret);
4924 btrfs_end_transaction(trans);
4925 return ret;
4926 }
4927
4928 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
4929 offset, 0, 0, len, 0, len, 0, 0, 0);
4930 if (ret) {
4931 btrfs_abort_transaction(trans, ret);
4932 } else {
4933 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4934 btrfs_update_inode(trans, root, inode);
4935 }
4936 btrfs_end_transaction(trans);
4937 return ret;
4938 }
4939
4940 /*
4941 * This function puts in dummy file extents for the area we're creating a hole
4942 * for. So if we are truncating this file to a larger size we need to insert
4943 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4944 * the range between oldsize and size
4945 */
4946 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4947 {
4948 struct btrfs_root *root = inode->root;
4949 struct btrfs_fs_info *fs_info = root->fs_info;
4950 struct extent_io_tree *io_tree = &inode->io_tree;
4951 struct extent_map *em = NULL;
4952 struct extent_state *cached_state = NULL;
4953 struct extent_map_tree *em_tree = &inode->extent_tree;
4954 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4955 u64 block_end = ALIGN(size, fs_info->sectorsize);
4956 u64 last_byte;
4957 u64 cur_offset;
4958 u64 hole_size;
4959 int err = 0;
4960
4961 /*
4962 * If our size started in the middle of a block we need to zero out the
4963 * rest of the block before we expand the i_size, otherwise we could
4964 * expose stale data.
4965 */
4966 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4967 if (err)
4968 return err;
4969
4970 if (size <= hole_start)
4971 return 0;
4972
4973 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4974 &cached_state);
4975 cur_offset = hole_start;
4976 while (1) {
4977 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4978 block_end - cur_offset);
4979 if (IS_ERR(em)) {
4980 err = PTR_ERR(em);
4981 em = NULL;
4982 break;
4983 }
4984 last_byte = min(extent_map_end(em), block_end);
4985 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4986 hole_size = last_byte - cur_offset;
4987
4988 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4989 struct extent_map *hole_em;
4990
4991 err = maybe_insert_hole(root, inode, cur_offset,
4992 hole_size);
4993 if (err)
4994 break;
4995
4996 err = btrfs_inode_set_file_extent_range(inode,
4997 cur_offset, hole_size);
4998 if (err)
4999 break;
5000
5001 btrfs_drop_extent_cache(inode, cur_offset,
5002 cur_offset + hole_size - 1, 0);
5003 hole_em = alloc_extent_map();
5004 if (!hole_em) {
5005 btrfs_set_inode_full_sync(inode);
5006 goto next;
5007 }
5008 hole_em->start = cur_offset;
5009 hole_em->len = hole_size;
5010 hole_em->orig_start = cur_offset;
5011
5012 hole_em->block_start = EXTENT_MAP_HOLE;
5013 hole_em->block_len = 0;
5014 hole_em->orig_block_len = 0;
5015 hole_em->ram_bytes = hole_size;
5016 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5017 hole_em->generation = fs_info->generation;
5018
5019 while (1) {
5020 write_lock(&em_tree->lock);
5021 err = add_extent_mapping(em_tree, hole_em, 1);
5022 write_unlock(&em_tree->lock);
5023 if (err != -EEXIST)
5024 break;
5025 btrfs_drop_extent_cache(inode, cur_offset,
5026 cur_offset +
5027 hole_size - 1, 0);
5028 }
5029 free_extent_map(hole_em);
5030 } else {
5031 err = btrfs_inode_set_file_extent_range(inode,
5032 cur_offset, hole_size);
5033 if (err)
5034 break;
5035 }
5036 next:
5037 free_extent_map(em);
5038 em = NULL;
5039 cur_offset = last_byte;
5040 if (cur_offset >= block_end)
5041 break;
5042 }
5043 free_extent_map(em);
5044 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5045 return err;
5046 }
5047
5048 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5049 {
5050 struct btrfs_root *root = BTRFS_I(inode)->root;
5051 struct btrfs_trans_handle *trans;
5052 loff_t oldsize = i_size_read(inode);
5053 loff_t newsize = attr->ia_size;
5054 int mask = attr->ia_valid;
5055 int ret;
5056
5057 /*
5058 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5059 * special case where we need to update the times despite not having
5060 * these flags set. For all other operations the VFS set these flags
5061 * explicitly if it wants a timestamp update.
5062 */
5063 if (newsize != oldsize) {
5064 inode_inc_iversion(inode);
5065 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5066 inode->i_ctime = inode->i_mtime =
5067 current_time(inode);
5068 }
5069
5070 if (newsize > oldsize) {
5071 /*
5072 * Don't do an expanding truncate while snapshotting is ongoing.
5073 * This is to ensure the snapshot captures a fully consistent
5074 * state of this file - if the snapshot captures this expanding
5075 * truncation, it must capture all writes that happened before
5076 * this truncation.
5077 */
5078 btrfs_drew_write_lock(&root->snapshot_lock);
5079 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5080 if (ret) {
5081 btrfs_drew_write_unlock(&root->snapshot_lock);
5082 return ret;
5083 }
5084
5085 trans = btrfs_start_transaction(root, 1);
5086 if (IS_ERR(trans)) {
5087 btrfs_drew_write_unlock(&root->snapshot_lock);
5088 return PTR_ERR(trans);
5089 }
5090
5091 i_size_write(inode, newsize);
5092 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5093 pagecache_isize_extended(inode, oldsize, newsize);
5094 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5095 btrfs_drew_write_unlock(&root->snapshot_lock);
5096 btrfs_end_transaction(trans);
5097 } else {
5098 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5099
5100 if (btrfs_is_zoned(fs_info)) {
5101 ret = btrfs_wait_ordered_range(inode,
5102 ALIGN(newsize, fs_info->sectorsize),
5103 (u64)-1);
5104 if (ret)
5105 return ret;
5106 }
5107
5108 /*
5109 * We're truncating a file that used to have good data down to
5110 * zero. Make sure any new writes to the file get on disk
5111 * on close.
5112 */
5113 if (newsize == 0)
5114 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5115 &BTRFS_I(inode)->runtime_flags);
5116
5117 truncate_setsize(inode, newsize);
5118
5119 inode_dio_wait(inode);
5120
5121 ret = btrfs_truncate(inode, newsize == oldsize);
5122 if (ret && inode->i_nlink) {
5123 int err;
5124
5125 /*
5126 * Truncate failed, so fix up the in-memory size. We
5127 * adjusted disk_i_size down as we removed extents, so
5128 * wait for disk_i_size to be stable and then update the
5129 * in-memory size to match.
5130 */
5131 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5132 if (err)
5133 return err;
5134 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5135 }
5136 }
5137
5138 return ret;
5139 }
5140
5141 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5142 struct iattr *attr)
5143 {
5144 struct inode *inode = d_inode(dentry);
5145 struct btrfs_root *root = BTRFS_I(inode)->root;
5146 int err;
5147
5148 if (btrfs_root_readonly(root))
5149 return -EROFS;
5150
5151 err = setattr_prepare(mnt_userns, dentry, attr);
5152 if (err)
5153 return err;
5154
5155 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5156 err = btrfs_setsize(inode, attr);
5157 if (err)
5158 return err;
5159 }
5160
5161 if (attr->ia_valid) {
5162 setattr_copy(mnt_userns, inode, attr);
5163 inode_inc_iversion(inode);
5164 err = btrfs_dirty_inode(inode);
5165
5166 if (!err && attr->ia_valid & ATTR_MODE)
5167 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5168 }
5169
5170 return err;
5171 }
5172
5173 /*
5174 * While truncating the inode pages during eviction, we get the VFS
5175 * calling btrfs_invalidate_folio() against each folio of the inode. This
5176 * is slow because the calls to btrfs_invalidate_folio() result in a
5177 * huge amount of calls to lock_extent_bits() and clear_extent_bit(),
5178 * which keep merging and splitting extent_state structures over and over,
5179 * wasting lots of time.
5180 *
5181 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5182 * skip all those expensive operations on a per folio basis and do only
5183 * the ordered io finishing, while we release here the extent_map and
5184 * extent_state structures, without the excessive merging and splitting.
5185 */
5186 static void evict_inode_truncate_pages(struct inode *inode)
5187 {
5188 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5189 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5190 struct rb_node *node;
5191
5192 ASSERT(inode->i_state & I_FREEING);
5193 truncate_inode_pages_final(&inode->i_data);
5194
5195 write_lock(&map_tree->lock);
5196 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5197 struct extent_map *em;
5198
5199 node = rb_first_cached(&map_tree->map);
5200 em = rb_entry(node, struct extent_map, rb_node);
5201 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5202 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5203 remove_extent_mapping(map_tree, em);
5204 free_extent_map(em);
5205 if (need_resched()) {
5206 write_unlock(&map_tree->lock);
5207 cond_resched();
5208 write_lock(&map_tree->lock);
5209 }
5210 }
5211 write_unlock(&map_tree->lock);
5212
5213 /*
5214 * Keep looping until we have no more ranges in the io tree.
5215 * We can have ongoing bios started by readahead that have
5216 * their endio callback (extent_io.c:end_bio_extent_readpage)
5217 * still in progress (unlocked the pages in the bio but did not yet
5218 * unlocked the ranges in the io tree). Therefore this means some
5219 * ranges can still be locked and eviction started because before
5220 * submitting those bios, which are executed by a separate task (work
5221 * queue kthread), inode references (inode->i_count) were not taken
5222 * (which would be dropped in the end io callback of each bio).
5223 * Therefore here we effectively end up waiting for those bios and
5224 * anyone else holding locked ranges without having bumped the inode's
5225 * reference count - if we don't do it, when they access the inode's
5226 * io_tree to unlock a range it may be too late, leading to an
5227 * use-after-free issue.
5228 */
5229 spin_lock(&io_tree->lock);
5230 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5231 struct extent_state *state;
5232 struct extent_state *cached_state = NULL;
5233 u64 start;
5234 u64 end;
5235 unsigned state_flags;
5236
5237 node = rb_first(&io_tree->state);
5238 state = rb_entry(node, struct extent_state, rb_node);
5239 start = state->start;
5240 end = state->end;
5241 state_flags = state->state;
5242 spin_unlock(&io_tree->lock);
5243
5244 lock_extent_bits(io_tree, start, end, &cached_state);
5245
5246 /*
5247 * If still has DELALLOC flag, the extent didn't reach disk,
5248 * and its reserved space won't be freed by delayed_ref.
5249 * So we need to free its reserved space here.
5250 * (Refer to comment in btrfs_invalidate_folio, case 2)
5251 *
5252 * Note, end is the bytenr of last byte, so we need + 1 here.
5253 */
5254 if (state_flags & EXTENT_DELALLOC)
5255 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5256 end - start + 1);
5257
5258 clear_extent_bit(io_tree, start, end,
5259 EXTENT_LOCKED | EXTENT_DELALLOC |
5260 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5261 &cached_state);
5262
5263 cond_resched();
5264 spin_lock(&io_tree->lock);
5265 }
5266 spin_unlock(&io_tree->lock);
5267 }
5268
5269 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5270 struct btrfs_block_rsv *rsv)
5271 {
5272 struct btrfs_fs_info *fs_info = root->fs_info;
5273 struct btrfs_trans_handle *trans;
5274 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5275 int ret;
5276
5277 /*
5278 * Eviction should be taking place at some place safe because of our
5279 * delayed iputs. However the normal flushing code will run delayed
5280 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5281 *
5282 * We reserve the delayed_refs_extra here again because we can't use
5283 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5284 * above. We reserve our extra bit here because we generate a ton of
5285 * delayed refs activity by truncating.
5286 *
5287 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5288 * if we fail to make this reservation we can re-try without the
5289 * delayed_refs_extra so we can make some forward progress.
5290 */
5291 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5292 BTRFS_RESERVE_FLUSH_EVICT);
5293 if (ret) {
5294 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5295 BTRFS_RESERVE_FLUSH_EVICT);
5296 if (ret) {
5297 btrfs_warn(fs_info,
5298 "could not allocate space for delete; will truncate on mount");
5299 return ERR_PTR(-ENOSPC);
5300 }
5301 delayed_refs_extra = 0;
5302 }
5303
5304 trans = btrfs_join_transaction(root);
5305 if (IS_ERR(trans))
5306 return trans;
5307
5308 if (delayed_refs_extra) {
5309 trans->block_rsv = &fs_info->trans_block_rsv;
5310 trans->bytes_reserved = delayed_refs_extra;
5311 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5312 delayed_refs_extra, 1);
5313 }
5314 return trans;
5315 }
5316
5317 void btrfs_evict_inode(struct inode *inode)
5318 {
5319 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5320 struct btrfs_trans_handle *trans;
5321 struct btrfs_root *root = BTRFS_I(inode)->root;
5322 struct btrfs_block_rsv *rsv;
5323 int ret;
5324
5325 trace_btrfs_inode_evict(inode);
5326
5327 if (!root) {
5328 fsverity_cleanup_inode(inode);
5329 clear_inode(inode);
5330 return;
5331 }
5332
5333 evict_inode_truncate_pages(inode);
5334
5335 if (inode->i_nlink &&
5336 ((btrfs_root_refs(&root->root_item) != 0 &&
5337 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5338 btrfs_is_free_space_inode(BTRFS_I(inode))))
5339 goto no_delete;
5340
5341 if (is_bad_inode(inode))
5342 goto no_delete;
5343
5344 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5345
5346 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5347 goto no_delete;
5348
5349 if (inode->i_nlink > 0) {
5350 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5351 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5352 goto no_delete;
5353 }
5354
5355 /*
5356 * This makes sure the inode item in tree is uptodate and the space for
5357 * the inode update is released.
5358 */
5359 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5360 if (ret)
5361 goto no_delete;
5362
5363 /*
5364 * This drops any pending insert or delete operations we have for this
5365 * inode. We could have a delayed dir index deletion queued up, but
5366 * we're removing the inode completely so that'll be taken care of in
5367 * the truncate.
5368 */
5369 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5370
5371 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5372 if (!rsv)
5373 goto no_delete;
5374 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5375 rsv->failfast = 1;
5376
5377 btrfs_i_size_write(BTRFS_I(inode), 0);
5378
5379 while (1) {
5380 struct btrfs_truncate_control control = {
5381 .inode = BTRFS_I(inode),
5382 .ino = btrfs_ino(BTRFS_I(inode)),
5383 .new_size = 0,
5384 .min_type = 0,
5385 };
5386
5387 trans = evict_refill_and_join(root, rsv);
5388 if (IS_ERR(trans))
5389 goto free_rsv;
5390
5391 trans->block_rsv = rsv;
5392
5393 ret = btrfs_truncate_inode_items(trans, root, &control);
5394 trans->block_rsv = &fs_info->trans_block_rsv;
5395 btrfs_end_transaction(trans);
5396 btrfs_btree_balance_dirty(fs_info);
5397 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5398 goto free_rsv;
5399 else if (!ret)
5400 break;
5401 }
5402
5403 /*
5404 * Errors here aren't a big deal, it just means we leave orphan items in
5405 * the tree. They will be cleaned up on the next mount. If the inode
5406 * number gets reused, cleanup deletes the orphan item without doing
5407 * anything, and unlink reuses the existing orphan item.
5408 *
5409 * If it turns out that we are dropping too many of these, we might want
5410 * to add a mechanism for retrying these after a commit.
5411 */
5412 trans = evict_refill_and_join(root, rsv);
5413 if (!IS_ERR(trans)) {
5414 trans->block_rsv = rsv;
5415 btrfs_orphan_del(trans, BTRFS_I(inode));
5416 trans->block_rsv = &fs_info->trans_block_rsv;
5417 btrfs_end_transaction(trans);
5418 }
5419
5420 free_rsv:
5421 btrfs_free_block_rsv(fs_info, rsv);
5422 no_delete:
5423 /*
5424 * If we didn't successfully delete, the orphan item will still be in
5425 * the tree and we'll retry on the next mount. Again, we might also want
5426 * to retry these periodically in the future.
5427 */
5428 btrfs_remove_delayed_node(BTRFS_I(inode));
5429 fsverity_cleanup_inode(inode);
5430 clear_inode(inode);
5431 }
5432
5433 /*
5434 * Return the key found in the dir entry in the location pointer, fill @type
5435 * with BTRFS_FT_*, and return 0.
5436 *
5437 * If no dir entries were found, returns -ENOENT.
5438 * If found a corrupted location in dir entry, returns -EUCLEAN.
5439 */
5440 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5441 struct btrfs_key *location, u8 *type)
5442 {
5443 const char *name = dentry->d_name.name;
5444 int namelen = dentry->d_name.len;
5445 struct btrfs_dir_item *di;
5446 struct btrfs_path *path;
5447 struct btrfs_root *root = BTRFS_I(dir)->root;
5448 int ret = 0;
5449
5450 path = btrfs_alloc_path();
5451 if (!path)
5452 return -ENOMEM;
5453
5454 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5455 name, namelen, 0);
5456 if (IS_ERR_OR_NULL(di)) {
5457 ret = di ? PTR_ERR(di) : -ENOENT;
5458 goto out;
5459 }
5460
5461 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5462 if (location->type != BTRFS_INODE_ITEM_KEY &&
5463 location->type != BTRFS_ROOT_ITEM_KEY) {
5464 ret = -EUCLEAN;
5465 btrfs_warn(root->fs_info,
5466 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5467 __func__, name, btrfs_ino(BTRFS_I(dir)),
5468 location->objectid, location->type, location->offset);
5469 }
5470 if (!ret)
5471 *type = btrfs_dir_type(path->nodes[0], di);
5472 out:
5473 btrfs_free_path(path);
5474 return ret;
5475 }
5476
5477 /*
5478 * when we hit a tree root in a directory, the btrfs part of the inode
5479 * needs to be changed to reflect the root directory of the tree root. This
5480 * is kind of like crossing a mount point.
5481 */
5482 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5483 struct inode *dir,
5484 struct dentry *dentry,
5485 struct btrfs_key *location,
5486 struct btrfs_root **sub_root)
5487 {
5488 struct btrfs_path *path;
5489 struct btrfs_root *new_root;
5490 struct btrfs_root_ref *ref;
5491 struct extent_buffer *leaf;
5492 struct btrfs_key key;
5493 int ret;
5494 int err = 0;
5495
5496 path = btrfs_alloc_path();
5497 if (!path) {
5498 err = -ENOMEM;
5499 goto out;
5500 }
5501
5502 err = -ENOENT;
5503 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5504 key.type = BTRFS_ROOT_REF_KEY;
5505 key.offset = location->objectid;
5506
5507 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5508 if (ret) {
5509 if (ret < 0)
5510 err = ret;
5511 goto out;
5512 }
5513
5514 leaf = path->nodes[0];
5515 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5516 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5517 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5518 goto out;
5519
5520 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5521 (unsigned long)(ref + 1),
5522 dentry->d_name.len);
5523 if (ret)
5524 goto out;
5525
5526 btrfs_release_path(path);
5527
5528 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5529 if (IS_ERR(new_root)) {
5530 err = PTR_ERR(new_root);
5531 goto out;
5532 }
5533
5534 *sub_root = new_root;
5535 location->objectid = btrfs_root_dirid(&new_root->root_item);
5536 location->type = BTRFS_INODE_ITEM_KEY;
5537 location->offset = 0;
5538 err = 0;
5539 out:
5540 btrfs_free_path(path);
5541 return err;
5542 }
5543
5544 static void inode_tree_add(struct inode *inode)
5545 {
5546 struct btrfs_root *root = BTRFS_I(inode)->root;
5547 struct btrfs_inode *entry;
5548 struct rb_node **p;
5549 struct rb_node *parent;
5550 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5551 u64 ino = btrfs_ino(BTRFS_I(inode));
5552
5553 if (inode_unhashed(inode))
5554 return;
5555 parent = NULL;
5556 spin_lock(&root->inode_lock);
5557 p = &root->inode_tree.rb_node;
5558 while (*p) {
5559 parent = *p;
5560 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5561
5562 if (ino < btrfs_ino(entry))
5563 p = &parent->rb_left;
5564 else if (ino > btrfs_ino(entry))
5565 p = &parent->rb_right;
5566 else {
5567 WARN_ON(!(entry->vfs_inode.i_state &
5568 (I_WILL_FREE | I_FREEING)));
5569 rb_replace_node(parent, new, &root->inode_tree);
5570 RB_CLEAR_NODE(parent);
5571 spin_unlock(&root->inode_lock);
5572 return;
5573 }
5574 }
5575 rb_link_node(new, parent, p);
5576 rb_insert_color(new, &root->inode_tree);
5577 spin_unlock(&root->inode_lock);
5578 }
5579
5580 static void inode_tree_del(struct btrfs_inode *inode)
5581 {
5582 struct btrfs_root *root = inode->root;
5583 int empty = 0;
5584
5585 spin_lock(&root->inode_lock);
5586 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5587 rb_erase(&inode->rb_node, &root->inode_tree);
5588 RB_CLEAR_NODE(&inode->rb_node);
5589 empty = RB_EMPTY_ROOT(&root->inode_tree);
5590 }
5591 spin_unlock(&root->inode_lock);
5592
5593 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5594 spin_lock(&root->inode_lock);
5595 empty = RB_EMPTY_ROOT(&root->inode_tree);
5596 spin_unlock(&root->inode_lock);
5597 if (empty)
5598 btrfs_add_dead_root(root);
5599 }
5600 }
5601
5602
5603 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5604 {
5605 struct btrfs_iget_args *args = p;
5606
5607 inode->i_ino = args->ino;
5608 BTRFS_I(inode)->location.objectid = args->ino;
5609 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5610 BTRFS_I(inode)->location.offset = 0;
5611 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5612 BUG_ON(args->root && !BTRFS_I(inode)->root);
5613 return 0;
5614 }
5615
5616 static int btrfs_find_actor(struct inode *inode, void *opaque)
5617 {
5618 struct btrfs_iget_args *args = opaque;
5619
5620 return args->ino == BTRFS_I(inode)->location.objectid &&
5621 args->root == BTRFS_I(inode)->root;
5622 }
5623
5624 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5625 struct btrfs_root *root)
5626 {
5627 struct inode *inode;
5628 struct btrfs_iget_args args;
5629 unsigned long hashval = btrfs_inode_hash(ino, root);
5630
5631 args.ino = ino;
5632 args.root = root;
5633
5634 inode = iget5_locked(s, hashval, btrfs_find_actor,
5635 btrfs_init_locked_inode,
5636 (void *)&args);
5637 return inode;
5638 }
5639
5640 /*
5641 * Get an inode object given its inode number and corresponding root.
5642 * Path can be preallocated to prevent recursing back to iget through
5643 * allocator. NULL is also valid but may require an additional allocation
5644 * later.
5645 */
5646 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5647 struct btrfs_root *root, struct btrfs_path *path)
5648 {
5649 struct inode *inode;
5650
5651 inode = btrfs_iget_locked(s, ino, root);
5652 if (!inode)
5653 return ERR_PTR(-ENOMEM);
5654
5655 if (inode->i_state & I_NEW) {
5656 int ret;
5657
5658 ret = btrfs_read_locked_inode(inode, path);
5659 if (!ret) {
5660 inode_tree_add(inode);
5661 unlock_new_inode(inode);
5662 } else {
5663 iget_failed(inode);
5664 /*
5665 * ret > 0 can come from btrfs_search_slot called by
5666 * btrfs_read_locked_inode, this means the inode item
5667 * was not found.
5668 */
5669 if (ret > 0)
5670 ret = -ENOENT;
5671 inode = ERR_PTR(ret);
5672 }
5673 }
5674
5675 return inode;
5676 }
5677
5678 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5679 {
5680 return btrfs_iget_path(s, ino, root, NULL);
5681 }
5682
5683 static struct inode *new_simple_dir(struct super_block *s,
5684 struct btrfs_key *key,
5685 struct btrfs_root *root)
5686 {
5687 struct inode *inode = new_inode(s);
5688
5689 if (!inode)
5690 return ERR_PTR(-ENOMEM);
5691
5692 BTRFS_I(inode)->root = btrfs_grab_root(root);
5693 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5694 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5695
5696 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5697 /*
5698 * We only need lookup, the rest is read-only and there's no inode
5699 * associated with the dentry
5700 */
5701 inode->i_op = &simple_dir_inode_operations;
5702 inode->i_opflags &= ~IOP_XATTR;
5703 inode->i_fop = &simple_dir_operations;
5704 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5705 inode->i_mtime = current_time(inode);
5706 inode->i_atime = inode->i_mtime;
5707 inode->i_ctime = inode->i_mtime;
5708 BTRFS_I(inode)->i_otime = inode->i_mtime;
5709
5710 return inode;
5711 }
5712
5713 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5714 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5715 static_assert(BTRFS_FT_DIR == FT_DIR);
5716 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5717 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5718 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5719 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5720 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5721
5722 static inline u8 btrfs_inode_type(struct inode *inode)
5723 {
5724 return fs_umode_to_ftype(inode->i_mode);
5725 }
5726
5727 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5728 {
5729 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5730 struct inode *inode;
5731 struct btrfs_root *root = BTRFS_I(dir)->root;
5732 struct btrfs_root *sub_root = root;
5733 struct btrfs_key location;
5734 u8 di_type = 0;
5735 int ret = 0;
5736
5737 if (dentry->d_name.len > BTRFS_NAME_LEN)
5738 return ERR_PTR(-ENAMETOOLONG);
5739
5740 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5741 if (ret < 0)
5742 return ERR_PTR(ret);
5743
5744 if (location.type == BTRFS_INODE_ITEM_KEY) {
5745 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5746 if (IS_ERR(inode))
5747 return inode;
5748
5749 /* Do extra check against inode mode with di_type */
5750 if (btrfs_inode_type(inode) != di_type) {
5751 btrfs_crit(fs_info,
5752 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5753 inode->i_mode, btrfs_inode_type(inode),
5754 di_type);
5755 iput(inode);
5756 return ERR_PTR(-EUCLEAN);
5757 }
5758 return inode;
5759 }
5760
5761 ret = fixup_tree_root_location(fs_info, dir, dentry,
5762 &location, &sub_root);
5763 if (ret < 0) {
5764 if (ret != -ENOENT)
5765 inode = ERR_PTR(ret);
5766 else
5767 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5768 } else {
5769 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5770 }
5771 if (root != sub_root)
5772 btrfs_put_root(sub_root);
5773
5774 if (!IS_ERR(inode) && root != sub_root) {
5775 down_read(&fs_info->cleanup_work_sem);
5776 if (!sb_rdonly(inode->i_sb))
5777 ret = btrfs_orphan_cleanup(sub_root);
5778 up_read(&fs_info->cleanup_work_sem);
5779 if (ret) {
5780 iput(inode);
5781 inode = ERR_PTR(ret);
5782 }
5783 }
5784
5785 return inode;
5786 }
5787
5788 static int btrfs_dentry_delete(const struct dentry *dentry)
5789 {
5790 struct btrfs_root *root;
5791 struct inode *inode = d_inode(dentry);
5792
5793 if (!inode && !IS_ROOT(dentry))
5794 inode = d_inode(dentry->d_parent);
5795
5796 if (inode) {
5797 root = BTRFS_I(inode)->root;
5798 if (btrfs_root_refs(&root->root_item) == 0)
5799 return 1;
5800
5801 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5802 return 1;
5803 }
5804 return 0;
5805 }
5806
5807 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5808 unsigned int flags)
5809 {
5810 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5811
5812 if (inode == ERR_PTR(-ENOENT))
5813 inode = NULL;
5814 return d_splice_alias(inode, dentry);
5815 }
5816
5817 /*
5818 * All this infrastructure exists because dir_emit can fault, and we are holding
5819 * the tree lock when doing readdir. For now just allocate a buffer and copy
5820 * our information into that, and then dir_emit from the buffer. This is
5821 * similar to what NFS does, only we don't keep the buffer around in pagecache
5822 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5823 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5824 * tree lock.
5825 */
5826 static int btrfs_opendir(struct inode *inode, struct file *file)
5827 {
5828 struct btrfs_file_private *private;
5829
5830 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5831 if (!private)
5832 return -ENOMEM;
5833 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5834 if (!private->filldir_buf) {
5835 kfree(private);
5836 return -ENOMEM;
5837 }
5838 file->private_data = private;
5839 return 0;
5840 }
5841
5842 struct dir_entry {
5843 u64 ino;
5844 u64 offset;
5845 unsigned type;
5846 int name_len;
5847 };
5848
5849 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5850 {
5851 while (entries--) {
5852 struct dir_entry *entry = addr;
5853 char *name = (char *)(entry + 1);
5854
5855 ctx->pos = get_unaligned(&entry->offset);
5856 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5857 get_unaligned(&entry->ino),
5858 get_unaligned(&entry->type)))
5859 return 1;
5860 addr += sizeof(struct dir_entry) +
5861 get_unaligned(&entry->name_len);
5862 ctx->pos++;
5863 }
5864 return 0;
5865 }
5866
5867 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5868 {
5869 struct inode *inode = file_inode(file);
5870 struct btrfs_root *root = BTRFS_I(inode)->root;
5871 struct btrfs_file_private *private = file->private_data;
5872 struct btrfs_dir_item *di;
5873 struct btrfs_key key;
5874 struct btrfs_key found_key;
5875 struct btrfs_path *path;
5876 void *addr;
5877 struct list_head ins_list;
5878 struct list_head del_list;
5879 int ret;
5880 char *name_ptr;
5881 int name_len;
5882 int entries = 0;
5883 int total_len = 0;
5884 bool put = false;
5885 struct btrfs_key location;
5886
5887 if (!dir_emit_dots(file, ctx))
5888 return 0;
5889
5890 path = btrfs_alloc_path();
5891 if (!path)
5892 return -ENOMEM;
5893
5894 addr = private->filldir_buf;
5895 path->reada = READA_FORWARD;
5896
5897 INIT_LIST_HEAD(&ins_list);
5898 INIT_LIST_HEAD(&del_list);
5899 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5900
5901 again:
5902 key.type = BTRFS_DIR_INDEX_KEY;
5903 key.offset = ctx->pos;
5904 key.objectid = btrfs_ino(BTRFS_I(inode));
5905
5906 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5907 struct dir_entry *entry;
5908 struct extent_buffer *leaf = path->nodes[0];
5909
5910 if (found_key.objectid != key.objectid)
5911 break;
5912 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5913 break;
5914 if (found_key.offset < ctx->pos)
5915 continue;
5916 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5917 continue;
5918 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5919 name_len = btrfs_dir_name_len(leaf, di);
5920 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5921 PAGE_SIZE) {
5922 btrfs_release_path(path);
5923 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5924 if (ret)
5925 goto nopos;
5926 addr = private->filldir_buf;
5927 entries = 0;
5928 total_len = 0;
5929 goto again;
5930 }
5931
5932 entry = addr;
5933 put_unaligned(name_len, &entry->name_len);
5934 name_ptr = (char *)(entry + 1);
5935 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5936 name_len);
5937 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5938 &entry->type);
5939 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5940 put_unaligned(location.objectid, &entry->ino);
5941 put_unaligned(found_key.offset, &entry->offset);
5942 entries++;
5943 addr += sizeof(struct dir_entry) + name_len;
5944 total_len += sizeof(struct dir_entry) + name_len;
5945 }
5946 /* Catch error encountered during iteration */
5947 if (ret < 0)
5948 goto err;
5949
5950 btrfs_release_path(path);
5951
5952 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5953 if (ret)
5954 goto nopos;
5955
5956 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5957 if (ret)
5958 goto nopos;
5959
5960 /*
5961 * Stop new entries from being returned after we return the last
5962 * entry.
5963 *
5964 * New directory entries are assigned a strictly increasing
5965 * offset. This means that new entries created during readdir
5966 * are *guaranteed* to be seen in the future by that readdir.
5967 * This has broken buggy programs which operate on names as
5968 * they're returned by readdir. Until we re-use freed offsets
5969 * we have this hack to stop new entries from being returned
5970 * under the assumption that they'll never reach this huge
5971 * offset.
5972 *
5973 * This is being careful not to overflow 32bit loff_t unless the
5974 * last entry requires it because doing so has broken 32bit apps
5975 * in the past.
5976 */
5977 if (ctx->pos >= INT_MAX)
5978 ctx->pos = LLONG_MAX;
5979 else
5980 ctx->pos = INT_MAX;
5981 nopos:
5982 ret = 0;
5983 err:
5984 if (put)
5985 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5986 btrfs_free_path(path);
5987 return ret;
5988 }
5989
5990 /*
5991 * This is somewhat expensive, updating the tree every time the
5992 * inode changes. But, it is most likely to find the inode in cache.
5993 * FIXME, needs more benchmarking...there are no reasons other than performance
5994 * to keep or drop this code.
5995 */
5996 static int btrfs_dirty_inode(struct inode *inode)
5997 {
5998 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5999 struct btrfs_root *root = BTRFS_I(inode)->root;
6000 struct btrfs_trans_handle *trans;
6001 int ret;
6002
6003 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6004 return 0;
6005
6006 trans = btrfs_join_transaction(root);
6007 if (IS_ERR(trans))
6008 return PTR_ERR(trans);
6009
6010 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6011 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6012 /* whoops, lets try again with the full transaction */
6013 btrfs_end_transaction(trans);
6014 trans = btrfs_start_transaction(root, 1);
6015 if (IS_ERR(trans))
6016 return PTR_ERR(trans);
6017
6018 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6019 }
6020 btrfs_end_transaction(trans);
6021 if (BTRFS_I(inode)->delayed_node)
6022 btrfs_balance_delayed_items(fs_info);
6023
6024 return ret;
6025 }
6026
6027 /*
6028 * This is a copy of file_update_time. We need this so we can return error on
6029 * ENOSPC for updating the inode in the case of file write and mmap writes.
6030 */
6031 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6032 int flags)
6033 {
6034 struct btrfs_root *root = BTRFS_I(inode)->root;
6035 bool dirty = flags & ~S_VERSION;
6036
6037 if (btrfs_root_readonly(root))
6038 return -EROFS;
6039
6040 if (flags & S_VERSION)
6041 dirty |= inode_maybe_inc_iversion(inode, dirty);
6042 if (flags & S_CTIME)
6043 inode->i_ctime = *now;
6044 if (flags & S_MTIME)
6045 inode->i_mtime = *now;
6046 if (flags & S_ATIME)
6047 inode->i_atime = *now;
6048 return dirty ? btrfs_dirty_inode(inode) : 0;
6049 }
6050
6051 /*
6052 * find the highest existing sequence number in a directory
6053 * and then set the in-memory index_cnt variable to reflect
6054 * free sequence numbers
6055 */
6056 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6057 {
6058 struct btrfs_root *root = inode->root;
6059 struct btrfs_key key, found_key;
6060 struct btrfs_path *path;
6061 struct extent_buffer *leaf;
6062 int ret;
6063
6064 key.objectid = btrfs_ino(inode);
6065 key.type = BTRFS_DIR_INDEX_KEY;
6066 key.offset = (u64)-1;
6067
6068 path = btrfs_alloc_path();
6069 if (!path)
6070 return -ENOMEM;
6071
6072 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6073 if (ret < 0)
6074 goto out;
6075 /* FIXME: we should be able to handle this */
6076 if (ret == 0)
6077 goto out;
6078 ret = 0;
6079
6080 if (path->slots[0] == 0) {
6081 inode->index_cnt = BTRFS_DIR_START_INDEX;
6082 goto out;
6083 }
6084
6085 path->slots[0]--;
6086
6087 leaf = path->nodes[0];
6088 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6089
6090 if (found_key.objectid != btrfs_ino(inode) ||
6091 found_key.type != BTRFS_DIR_INDEX_KEY) {
6092 inode->index_cnt = BTRFS_DIR_START_INDEX;
6093 goto out;
6094 }
6095
6096 inode->index_cnt = found_key.offset + 1;
6097 out:
6098 btrfs_free_path(path);
6099 return ret;
6100 }
6101
6102 /*
6103 * helper to find a free sequence number in a given directory. This current
6104 * code is very simple, later versions will do smarter things in the btree
6105 */
6106 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6107 {
6108 int ret = 0;
6109
6110 if (dir->index_cnt == (u64)-1) {
6111 ret = btrfs_inode_delayed_dir_index_count(dir);
6112 if (ret) {
6113 ret = btrfs_set_inode_index_count(dir);
6114 if (ret)
6115 return ret;
6116 }
6117 }
6118
6119 *index = dir->index_cnt;
6120 dir->index_cnt++;
6121
6122 return ret;
6123 }
6124
6125 static int btrfs_insert_inode_locked(struct inode *inode)
6126 {
6127 struct btrfs_iget_args args;
6128
6129 args.ino = BTRFS_I(inode)->location.objectid;
6130 args.root = BTRFS_I(inode)->root;
6131
6132 return insert_inode_locked4(inode,
6133 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6134 btrfs_find_actor, &args);
6135 }
6136
6137 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6138 unsigned int *trans_num_items)
6139 {
6140 struct inode *dir = args->dir;
6141 struct inode *inode = args->inode;
6142 int ret;
6143
6144 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6145 if (ret)
6146 return ret;
6147
6148 /* 1 to add inode item */
6149 *trans_num_items = 1;
6150 /* 1 to add compression property */
6151 if (BTRFS_I(dir)->prop_compress)
6152 (*trans_num_items)++;
6153 /* 1 to add default ACL xattr */
6154 if (args->default_acl)
6155 (*trans_num_items)++;
6156 /* 1 to add access ACL xattr */
6157 if (args->acl)
6158 (*trans_num_items)++;
6159 #ifdef CONFIG_SECURITY
6160 /* 1 to add LSM xattr */
6161 if (dir->i_security)
6162 (*trans_num_items)++;
6163 #endif
6164 if (args->orphan) {
6165 /* 1 to add orphan item */
6166 (*trans_num_items)++;
6167 } else {
6168 /*
6169 * 1 to add dir item
6170 * 1 to add dir index
6171 * 1 to update parent inode item
6172 *
6173 * No need for 1 unit for the inode ref item because it is
6174 * inserted in a batch together with the inode item at
6175 * btrfs_create_new_inode().
6176 */
6177 *trans_num_items += 3;
6178 }
6179 return 0;
6180 }
6181
6182 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6183 {
6184 posix_acl_release(args->acl);
6185 posix_acl_release(args->default_acl);
6186 }
6187
6188 /*
6189 * Inherit flags from the parent inode.
6190 *
6191 * Currently only the compression flags and the cow flags are inherited.
6192 */
6193 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6194 {
6195 unsigned int flags;
6196
6197 flags = BTRFS_I(dir)->flags;
6198
6199 if (flags & BTRFS_INODE_NOCOMPRESS) {
6200 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6201 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6202 } else if (flags & BTRFS_INODE_COMPRESS) {
6203 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6204 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6205 }
6206
6207 if (flags & BTRFS_INODE_NODATACOW) {
6208 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6209 if (S_ISREG(inode->i_mode))
6210 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6211 }
6212
6213 btrfs_sync_inode_flags_to_i_flags(inode);
6214 }
6215
6216 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6217 struct btrfs_new_inode_args *args)
6218 {
6219 struct inode *dir = args->dir;
6220 struct inode *inode = args->inode;
6221 const char *name = args->orphan ? NULL : args->dentry->d_name.name;
6222 int name_len = args->orphan ? 0 : args->dentry->d_name.len;
6223 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6224 struct btrfs_root *root;
6225 struct btrfs_inode_item *inode_item;
6226 struct btrfs_key *location;
6227 struct btrfs_path *path;
6228 u64 objectid;
6229 struct btrfs_inode_ref *ref;
6230 struct btrfs_key key[2];
6231 u32 sizes[2];
6232 struct btrfs_item_batch batch;
6233 unsigned long ptr;
6234 int ret;
6235
6236 path = btrfs_alloc_path();
6237 if (!path)
6238 return -ENOMEM;
6239
6240 if (!args->subvol)
6241 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6242 root = BTRFS_I(inode)->root;
6243
6244 ret = btrfs_get_free_objectid(root, &objectid);
6245 if (ret)
6246 goto out;
6247 inode->i_ino = objectid;
6248
6249 if (args->orphan) {
6250 /*
6251 * O_TMPFILE, set link count to 0, so that after this point, we
6252 * fill in an inode item with the correct link count.
6253 */
6254 set_nlink(inode, 0);
6255 } else {
6256 trace_btrfs_inode_request(dir);
6257
6258 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6259 if (ret)
6260 goto out;
6261 }
6262 /* index_cnt is ignored for everything but a dir. */
6263 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6264 BTRFS_I(inode)->generation = trans->transid;
6265 inode->i_generation = BTRFS_I(inode)->generation;
6266
6267 /*
6268 * Subvolumes don't inherit flags from their parent directory.
6269 * Originally this was probably by accident, but we probably can't
6270 * change it now without compatibility issues.
6271 */
6272 if (!args->subvol)
6273 btrfs_inherit_iflags(inode, dir);
6274
6275 if (S_ISREG(inode->i_mode)) {
6276 if (btrfs_test_opt(fs_info, NODATASUM))
6277 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6278 if (btrfs_test_opt(fs_info, NODATACOW))
6279 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6280 BTRFS_INODE_NODATASUM;
6281 }
6282
6283 location = &BTRFS_I(inode)->location;
6284 location->objectid = objectid;
6285 location->offset = 0;
6286 location->type = BTRFS_INODE_ITEM_KEY;
6287
6288 ret = btrfs_insert_inode_locked(inode);
6289 if (ret < 0) {
6290 if (!args->orphan)
6291 BTRFS_I(dir)->index_cnt--;
6292 goto out;
6293 }
6294
6295 /*
6296 * We could have gotten an inode number from somebody who was fsynced
6297 * and then removed in this same transaction, so let's just set full
6298 * sync since it will be a full sync anyway and this will blow away the
6299 * old info in the log.
6300 */
6301 btrfs_set_inode_full_sync(BTRFS_I(inode));
6302
6303 key[0].objectid = objectid;
6304 key[0].type = BTRFS_INODE_ITEM_KEY;
6305 key[0].offset = 0;
6306
6307 sizes[0] = sizeof(struct btrfs_inode_item);
6308
6309 if (!args->orphan) {
6310 /*
6311 * Start new inodes with an inode_ref. This is slightly more
6312 * efficient for small numbers of hard links since they will
6313 * be packed into one item. Extended refs will kick in if we
6314 * add more hard links than can fit in the ref item.
6315 */
6316 key[1].objectid = objectid;
6317 key[1].type = BTRFS_INODE_REF_KEY;
6318 if (args->subvol) {
6319 key[1].offset = objectid;
6320 sizes[1] = 2 + sizeof(*ref);
6321 } else {
6322 key[1].offset = btrfs_ino(BTRFS_I(dir));
6323 sizes[1] = name_len + sizeof(*ref);
6324 }
6325 }
6326
6327 batch.keys = &key[0];
6328 batch.data_sizes = &sizes[0];
6329 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6330 batch.nr = args->orphan ? 1 : 2;
6331 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6332 if (ret != 0) {
6333 btrfs_abort_transaction(trans, ret);
6334 goto discard;
6335 }
6336
6337 inode->i_mtime = current_time(inode);
6338 inode->i_atime = inode->i_mtime;
6339 inode->i_ctime = inode->i_mtime;
6340 BTRFS_I(inode)->i_otime = inode->i_mtime;
6341
6342 /*
6343 * We're going to fill the inode item now, so at this point the inode
6344 * must be fully initialized.
6345 */
6346
6347 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6348 struct btrfs_inode_item);
6349 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6350 sizeof(*inode_item));
6351 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6352
6353 if (!args->orphan) {
6354 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6355 struct btrfs_inode_ref);
6356 ptr = (unsigned long)(ref + 1);
6357 if (args->subvol) {
6358 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6359 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6360 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6361 } else {
6362 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6363 btrfs_set_inode_ref_index(path->nodes[0], ref,
6364 BTRFS_I(inode)->dir_index);
6365 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6366 }
6367 }
6368
6369 btrfs_mark_buffer_dirty(path->nodes[0]);
6370 btrfs_release_path(path);
6371
6372 if (args->subvol) {
6373 struct inode *parent;
6374
6375 /*
6376 * Subvolumes inherit properties from their parent subvolume,
6377 * not the directory they were created in.
6378 */
6379 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6380 BTRFS_I(dir)->root);
6381 if (IS_ERR(parent)) {
6382 ret = PTR_ERR(parent);
6383 } else {
6384 ret = btrfs_inode_inherit_props(trans, inode, parent);
6385 iput(parent);
6386 }
6387 } else {
6388 ret = btrfs_inode_inherit_props(trans, inode, dir);
6389 }
6390 if (ret) {
6391 btrfs_err(fs_info,
6392 "error inheriting props for ino %llu (root %llu): %d",
6393 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6394 ret);
6395 }
6396
6397 /*
6398 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6399 * probably a bug.
6400 */
6401 if (!args->subvol) {
6402 ret = btrfs_init_inode_security(trans, args);
6403 if (ret) {
6404 btrfs_abort_transaction(trans, ret);
6405 goto discard;
6406 }
6407 }
6408
6409 inode_tree_add(inode);
6410
6411 trace_btrfs_inode_new(inode);
6412 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6413
6414 btrfs_update_root_times(trans, root);
6415
6416 if (args->orphan) {
6417 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6418 } else {
6419 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6420 name_len, 0, BTRFS_I(inode)->dir_index);
6421 }
6422 if (ret) {
6423 btrfs_abort_transaction(trans, ret);
6424 goto discard;
6425 }
6426
6427 ret = 0;
6428 goto out;
6429
6430 discard:
6431 /*
6432 * discard_new_inode() calls iput(), but the caller owns the reference
6433 * to the inode.
6434 */
6435 ihold(inode);
6436 discard_new_inode(inode);
6437 out:
6438 btrfs_free_path(path);
6439 return ret;
6440 }
6441
6442 /*
6443 * utility function to add 'inode' into 'parent_inode' with
6444 * a give name and a given sequence number.
6445 * if 'add_backref' is true, also insert a backref from the
6446 * inode to the parent directory.
6447 */
6448 int btrfs_add_link(struct btrfs_trans_handle *trans,
6449 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6450 const char *name, int name_len, int add_backref, u64 index)
6451 {
6452 int ret = 0;
6453 struct btrfs_key key;
6454 struct btrfs_root *root = parent_inode->root;
6455 u64 ino = btrfs_ino(inode);
6456 u64 parent_ino = btrfs_ino(parent_inode);
6457
6458 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6459 memcpy(&key, &inode->root->root_key, sizeof(key));
6460 } else {
6461 key.objectid = ino;
6462 key.type = BTRFS_INODE_ITEM_KEY;
6463 key.offset = 0;
6464 }
6465
6466 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6467 ret = btrfs_add_root_ref(trans, key.objectid,
6468 root->root_key.objectid, parent_ino,
6469 index, name, name_len);
6470 } else if (add_backref) {
6471 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6472 parent_ino, index);
6473 }
6474
6475 /* Nothing to clean up yet */
6476 if (ret)
6477 return ret;
6478
6479 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6480 btrfs_inode_type(&inode->vfs_inode), index);
6481 if (ret == -EEXIST || ret == -EOVERFLOW)
6482 goto fail_dir_item;
6483 else if (ret) {
6484 btrfs_abort_transaction(trans, ret);
6485 return ret;
6486 }
6487
6488 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6489 name_len * 2);
6490 inode_inc_iversion(&parent_inode->vfs_inode);
6491 /*
6492 * If we are replaying a log tree, we do not want to update the mtime
6493 * and ctime of the parent directory with the current time, since the
6494 * log replay procedure is responsible for setting them to their correct
6495 * values (the ones it had when the fsync was done).
6496 */
6497 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6498 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6499
6500 parent_inode->vfs_inode.i_mtime = now;
6501 parent_inode->vfs_inode.i_ctime = now;
6502 }
6503 ret = btrfs_update_inode(trans, root, parent_inode);
6504 if (ret)
6505 btrfs_abort_transaction(trans, ret);
6506 return ret;
6507
6508 fail_dir_item:
6509 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6510 u64 local_index;
6511 int err;
6512 err = btrfs_del_root_ref(trans, key.objectid,
6513 root->root_key.objectid, parent_ino,
6514 &local_index, name, name_len);
6515 if (err)
6516 btrfs_abort_transaction(trans, err);
6517 } else if (add_backref) {
6518 u64 local_index;
6519 int err;
6520
6521 err = btrfs_del_inode_ref(trans, root, name, name_len,
6522 ino, parent_ino, &local_index);
6523 if (err)
6524 btrfs_abort_transaction(trans, err);
6525 }
6526
6527 /* Return the original error code */
6528 return ret;
6529 }
6530
6531 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6532 struct inode *inode)
6533 {
6534 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6535 struct btrfs_root *root = BTRFS_I(dir)->root;
6536 struct btrfs_new_inode_args new_inode_args = {
6537 .dir = dir,
6538 .dentry = dentry,
6539 .inode = inode,
6540 };
6541 unsigned int trans_num_items;
6542 struct btrfs_trans_handle *trans;
6543 int err;
6544
6545 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6546 if (err)
6547 goto out_inode;
6548
6549 trans = btrfs_start_transaction(root, trans_num_items);
6550 if (IS_ERR(trans)) {
6551 err = PTR_ERR(trans);
6552 goto out_new_inode_args;
6553 }
6554
6555 err = btrfs_create_new_inode(trans, &new_inode_args);
6556 if (!err)
6557 d_instantiate_new(dentry, inode);
6558
6559 btrfs_end_transaction(trans);
6560 btrfs_btree_balance_dirty(fs_info);
6561 out_new_inode_args:
6562 btrfs_new_inode_args_destroy(&new_inode_args);
6563 out_inode:
6564 if (err)
6565 iput(inode);
6566 return err;
6567 }
6568
6569 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6570 struct dentry *dentry, umode_t mode, dev_t rdev)
6571 {
6572 struct inode *inode;
6573
6574 inode = new_inode(dir->i_sb);
6575 if (!inode)
6576 return -ENOMEM;
6577 inode_init_owner(mnt_userns, inode, dir, mode);
6578 inode->i_op = &btrfs_special_inode_operations;
6579 init_special_inode(inode, inode->i_mode, rdev);
6580 return btrfs_create_common(dir, dentry, inode);
6581 }
6582
6583 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6584 struct dentry *dentry, umode_t mode, bool excl)
6585 {
6586 struct inode *inode;
6587
6588 inode = new_inode(dir->i_sb);
6589 if (!inode)
6590 return -ENOMEM;
6591 inode_init_owner(mnt_userns, inode, dir, mode);
6592 inode->i_fop = &btrfs_file_operations;
6593 inode->i_op = &btrfs_file_inode_operations;
6594 inode->i_mapping->a_ops = &btrfs_aops;
6595 return btrfs_create_common(dir, dentry, inode);
6596 }
6597
6598 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6599 struct dentry *dentry)
6600 {
6601 struct btrfs_trans_handle *trans = NULL;
6602 struct btrfs_root *root = BTRFS_I(dir)->root;
6603 struct inode *inode = d_inode(old_dentry);
6604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6605 u64 index;
6606 int err;
6607 int drop_inode = 0;
6608
6609 /* do not allow sys_link's with other subvols of the same device */
6610 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6611 return -EXDEV;
6612
6613 if (inode->i_nlink >= BTRFS_LINK_MAX)
6614 return -EMLINK;
6615
6616 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6617 if (err)
6618 goto fail;
6619
6620 /*
6621 * 2 items for inode and inode ref
6622 * 2 items for dir items
6623 * 1 item for parent inode
6624 * 1 item for orphan item deletion if O_TMPFILE
6625 */
6626 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6627 if (IS_ERR(trans)) {
6628 err = PTR_ERR(trans);
6629 trans = NULL;
6630 goto fail;
6631 }
6632
6633 /* There are several dir indexes for this inode, clear the cache. */
6634 BTRFS_I(inode)->dir_index = 0ULL;
6635 inc_nlink(inode);
6636 inode_inc_iversion(inode);
6637 inode->i_ctime = current_time(inode);
6638 ihold(inode);
6639 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6640
6641 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6642 dentry->d_name.name, dentry->d_name.len, 1, index);
6643
6644 if (err) {
6645 drop_inode = 1;
6646 } else {
6647 struct dentry *parent = dentry->d_parent;
6648
6649 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6650 if (err)
6651 goto fail;
6652 if (inode->i_nlink == 1) {
6653 /*
6654 * If new hard link count is 1, it's a file created
6655 * with open(2) O_TMPFILE flag.
6656 */
6657 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6658 if (err)
6659 goto fail;
6660 }
6661 d_instantiate(dentry, inode);
6662 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6663 }
6664
6665 fail:
6666 if (trans)
6667 btrfs_end_transaction(trans);
6668 if (drop_inode) {
6669 inode_dec_link_count(inode);
6670 iput(inode);
6671 }
6672 btrfs_btree_balance_dirty(fs_info);
6673 return err;
6674 }
6675
6676 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6677 struct dentry *dentry, umode_t mode)
6678 {
6679 struct inode *inode;
6680
6681 inode = new_inode(dir->i_sb);
6682 if (!inode)
6683 return -ENOMEM;
6684 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6685 inode->i_op = &btrfs_dir_inode_operations;
6686 inode->i_fop = &btrfs_dir_file_operations;
6687 return btrfs_create_common(dir, dentry, inode);
6688 }
6689
6690 static noinline int uncompress_inline(struct btrfs_path *path,
6691 struct page *page,
6692 size_t pg_offset, u64 extent_offset,
6693 struct btrfs_file_extent_item *item)
6694 {
6695 int ret;
6696 struct extent_buffer *leaf = path->nodes[0];
6697 char *tmp;
6698 size_t max_size;
6699 unsigned long inline_size;
6700 unsigned long ptr;
6701 int compress_type;
6702
6703 WARN_ON(pg_offset != 0);
6704 compress_type = btrfs_file_extent_compression(leaf, item);
6705 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6706 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6707 tmp = kmalloc(inline_size, GFP_NOFS);
6708 if (!tmp)
6709 return -ENOMEM;
6710 ptr = btrfs_file_extent_inline_start(item);
6711
6712 read_extent_buffer(leaf, tmp, ptr, inline_size);
6713
6714 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6715 ret = btrfs_decompress(compress_type, tmp, page,
6716 extent_offset, inline_size, max_size);
6717
6718 /*
6719 * decompression code contains a memset to fill in any space between the end
6720 * of the uncompressed data and the end of max_size in case the decompressed
6721 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6722 * the end of an inline extent and the beginning of the next block, so we
6723 * cover that region here.
6724 */
6725
6726 if (max_size + pg_offset < PAGE_SIZE)
6727 memzero_page(page, pg_offset + max_size,
6728 PAGE_SIZE - max_size - pg_offset);
6729 kfree(tmp);
6730 return ret;
6731 }
6732
6733 /**
6734 * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6735 * @inode: file to search in
6736 * @page: page to read extent data into if the extent is inline
6737 * @pg_offset: offset into @page to copy to
6738 * @start: file offset
6739 * @len: length of range starting at @start
6740 *
6741 * This returns the first &struct extent_map which overlaps with the given
6742 * range, reading it from the B-tree and caching it if necessary. Note that
6743 * there may be more extents which overlap the given range after the returned
6744 * extent_map.
6745 *
6746 * If @page is not NULL and the extent is inline, this also reads the extent
6747 * data directly into the page and marks the extent up to date in the io_tree.
6748 *
6749 * Return: ERR_PTR on error, non-NULL extent_map on success.
6750 */
6751 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6752 struct page *page, size_t pg_offset,
6753 u64 start, u64 len)
6754 {
6755 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6756 int ret = 0;
6757 u64 extent_start = 0;
6758 u64 extent_end = 0;
6759 u64 objectid = btrfs_ino(inode);
6760 int extent_type = -1;
6761 struct btrfs_path *path = NULL;
6762 struct btrfs_root *root = inode->root;
6763 struct btrfs_file_extent_item *item;
6764 struct extent_buffer *leaf;
6765 struct btrfs_key found_key;
6766 struct extent_map *em = NULL;
6767 struct extent_map_tree *em_tree = &inode->extent_tree;
6768 struct extent_io_tree *io_tree = &inode->io_tree;
6769
6770 read_lock(&em_tree->lock);
6771 em = lookup_extent_mapping(em_tree, start, len);
6772 read_unlock(&em_tree->lock);
6773
6774 if (em) {
6775 if (em->start > start || em->start + em->len <= start)
6776 free_extent_map(em);
6777 else if (em->block_start == EXTENT_MAP_INLINE && page)
6778 free_extent_map(em);
6779 else
6780 goto out;
6781 }
6782 em = alloc_extent_map();
6783 if (!em) {
6784 ret = -ENOMEM;
6785 goto out;
6786 }
6787 em->start = EXTENT_MAP_HOLE;
6788 em->orig_start = EXTENT_MAP_HOLE;
6789 em->len = (u64)-1;
6790 em->block_len = (u64)-1;
6791
6792 path = btrfs_alloc_path();
6793 if (!path) {
6794 ret = -ENOMEM;
6795 goto out;
6796 }
6797
6798 /* Chances are we'll be called again, so go ahead and do readahead */
6799 path->reada = READA_FORWARD;
6800
6801 /*
6802 * The same explanation in load_free_space_cache applies here as well,
6803 * we only read when we're loading the free space cache, and at that
6804 * point the commit_root has everything we need.
6805 */
6806 if (btrfs_is_free_space_inode(inode)) {
6807 path->search_commit_root = 1;
6808 path->skip_locking = 1;
6809 }
6810
6811 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6812 if (ret < 0) {
6813 goto out;
6814 } else if (ret > 0) {
6815 if (path->slots[0] == 0)
6816 goto not_found;
6817 path->slots[0]--;
6818 ret = 0;
6819 }
6820
6821 leaf = path->nodes[0];
6822 item = btrfs_item_ptr(leaf, path->slots[0],
6823 struct btrfs_file_extent_item);
6824 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6825 if (found_key.objectid != objectid ||
6826 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6827 /*
6828 * If we backup past the first extent we want to move forward
6829 * and see if there is an extent in front of us, otherwise we'll
6830 * say there is a hole for our whole search range which can
6831 * cause problems.
6832 */
6833 extent_end = start;
6834 goto next;
6835 }
6836
6837 extent_type = btrfs_file_extent_type(leaf, item);
6838 extent_start = found_key.offset;
6839 extent_end = btrfs_file_extent_end(path);
6840 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6841 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6842 /* Only regular file could have regular/prealloc extent */
6843 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6844 ret = -EUCLEAN;
6845 btrfs_crit(fs_info,
6846 "regular/prealloc extent found for non-regular inode %llu",
6847 btrfs_ino(inode));
6848 goto out;
6849 }
6850 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6851 extent_start);
6852 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6853 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6854 path->slots[0],
6855 extent_start);
6856 }
6857 next:
6858 if (start >= extent_end) {
6859 path->slots[0]++;
6860 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6861 ret = btrfs_next_leaf(root, path);
6862 if (ret < 0)
6863 goto out;
6864 else if (ret > 0)
6865 goto not_found;
6866
6867 leaf = path->nodes[0];
6868 }
6869 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6870 if (found_key.objectid != objectid ||
6871 found_key.type != BTRFS_EXTENT_DATA_KEY)
6872 goto not_found;
6873 if (start + len <= found_key.offset)
6874 goto not_found;
6875 if (start > found_key.offset)
6876 goto next;
6877
6878 /* New extent overlaps with existing one */
6879 em->start = start;
6880 em->orig_start = start;
6881 em->len = found_key.offset - start;
6882 em->block_start = EXTENT_MAP_HOLE;
6883 goto insert;
6884 }
6885
6886 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6887
6888 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6889 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6890 goto insert;
6891 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6892 unsigned long ptr;
6893 char *map;
6894 size_t size;
6895 size_t extent_offset;
6896 size_t copy_size;
6897
6898 if (!page)
6899 goto out;
6900
6901 size = btrfs_file_extent_ram_bytes(leaf, item);
6902 extent_offset = page_offset(page) + pg_offset - extent_start;
6903 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6904 size - extent_offset);
6905 em->start = extent_start + extent_offset;
6906 em->len = ALIGN(copy_size, fs_info->sectorsize);
6907 em->orig_block_len = em->len;
6908 em->orig_start = em->start;
6909 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6910
6911 if (!PageUptodate(page)) {
6912 if (btrfs_file_extent_compression(leaf, item) !=
6913 BTRFS_COMPRESS_NONE) {
6914 ret = uncompress_inline(path, page, pg_offset,
6915 extent_offset, item);
6916 if (ret)
6917 goto out;
6918 } else {
6919 map = kmap_local_page(page);
6920 read_extent_buffer(leaf, map + pg_offset, ptr,
6921 copy_size);
6922 if (pg_offset + copy_size < PAGE_SIZE) {
6923 memset(map + pg_offset + copy_size, 0,
6924 PAGE_SIZE - pg_offset -
6925 copy_size);
6926 }
6927 kunmap_local(map);
6928 }
6929 flush_dcache_page(page);
6930 }
6931 set_extent_uptodate(io_tree, em->start,
6932 extent_map_end(em) - 1, NULL, GFP_NOFS);
6933 goto insert;
6934 }
6935 not_found:
6936 em->start = start;
6937 em->orig_start = start;
6938 em->len = len;
6939 em->block_start = EXTENT_MAP_HOLE;
6940 insert:
6941 ret = 0;
6942 btrfs_release_path(path);
6943 if (em->start > start || extent_map_end(em) <= start) {
6944 btrfs_err(fs_info,
6945 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6946 em->start, em->len, start, len);
6947 ret = -EIO;
6948 goto out;
6949 }
6950
6951 write_lock(&em_tree->lock);
6952 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6953 write_unlock(&em_tree->lock);
6954 out:
6955 btrfs_free_path(path);
6956
6957 trace_btrfs_get_extent(root, inode, em);
6958
6959 if (ret) {
6960 free_extent_map(em);
6961 return ERR_PTR(ret);
6962 }
6963 return em;
6964 }
6965
6966 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6967 u64 start, u64 len)
6968 {
6969 struct extent_map *em;
6970 struct extent_map *hole_em = NULL;
6971 u64 delalloc_start = start;
6972 u64 end;
6973 u64 delalloc_len;
6974 u64 delalloc_end;
6975 int err = 0;
6976
6977 em = btrfs_get_extent(inode, NULL, 0, start, len);
6978 if (IS_ERR(em))
6979 return em;
6980 /*
6981 * If our em maps to:
6982 * - a hole or
6983 * - a pre-alloc extent,
6984 * there might actually be delalloc bytes behind it.
6985 */
6986 if (em->block_start != EXTENT_MAP_HOLE &&
6987 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6988 return em;
6989 else
6990 hole_em = em;
6991
6992 /* check to see if we've wrapped (len == -1 or similar) */
6993 end = start + len;
6994 if (end < start)
6995 end = (u64)-1;
6996 else
6997 end -= 1;
6998
6999 em = NULL;
7000
7001 /* ok, we didn't find anything, lets look for delalloc */
7002 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7003 end, len, EXTENT_DELALLOC, 1);
7004 delalloc_end = delalloc_start + delalloc_len;
7005 if (delalloc_end < delalloc_start)
7006 delalloc_end = (u64)-1;
7007
7008 /*
7009 * We didn't find anything useful, return the original results from
7010 * get_extent()
7011 */
7012 if (delalloc_start > end || delalloc_end <= start) {
7013 em = hole_em;
7014 hole_em = NULL;
7015 goto out;
7016 }
7017
7018 /*
7019 * Adjust the delalloc_start to make sure it doesn't go backwards from
7020 * the start they passed in
7021 */
7022 delalloc_start = max(start, delalloc_start);
7023 delalloc_len = delalloc_end - delalloc_start;
7024
7025 if (delalloc_len > 0) {
7026 u64 hole_start;
7027 u64 hole_len;
7028 const u64 hole_end = extent_map_end(hole_em);
7029
7030 em = alloc_extent_map();
7031 if (!em) {
7032 err = -ENOMEM;
7033 goto out;
7034 }
7035
7036 ASSERT(hole_em);
7037 /*
7038 * When btrfs_get_extent can't find anything it returns one
7039 * huge hole
7040 *
7041 * Make sure what it found really fits our range, and adjust to
7042 * make sure it is based on the start from the caller
7043 */
7044 if (hole_end <= start || hole_em->start > end) {
7045 free_extent_map(hole_em);
7046 hole_em = NULL;
7047 } else {
7048 hole_start = max(hole_em->start, start);
7049 hole_len = hole_end - hole_start;
7050 }
7051
7052 if (hole_em && delalloc_start > hole_start) {
7053 /*
7054 * Our hole starts before our delalloc, so we have to
7055 * return just the parts of the hole that go until the
7056 * delalloc starts
7057 */
7058 em->len = min(hole_len, delalloc_start - hole_start);
7059 em->start = hole_start;
7060 em->orig_start = hole_start;
7061 /*
7062 * Don't adjust block start at all, it is fixed at
7063 * EXTENT_MAP_HOLE
7064 */
7065 em->block_start = hole_em->block_start;
7066 em->block_len = hole_len;
7067 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7068 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7069 } else {
7070 /*
7071 * Hole is out of passed range or it starts after
7072 * delalloc range
7073 */
7074 em->start = delalloc_start;
7075 em->len = delalloc_len;
7076 em->orig_start = delalloc_start;
7077 em->block_start = EXTENT_MAP_DELALLOC;
7078 em->block_len = delalloc_len;
7079 }
7080 } else {
7081 return hole_em;
7082 }
7083 out:
7084
7085 free_extent_map(hole_em);
7086 if (err) {
7087 free_extent_map(em);
7088 return ERR_PTR(err);
7089 }
7090 return em;
7091 }
7092
7093 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7094 const u64 start,
7095 const u64 len,
7096 const u64 orig_start,
7097 const u64 block_start,
7098 const u64 block_len,
7099 const u64 orig_block_len,
7100 const u64 ram_bytes,
7101 const int type)
7102 {
7103 struct extent_map *em = NULL;
7104 int ret;
7105
7106 if (type != BTRFS_ORDERED_NOCOW) {
7107 em = create_io_em(inode, start, len, orig_start, block_start,
7108 block_len, orig_block_len, ram_bytes,
7109 BTRFS_COMPRESS_NONE, /* compress_type */
7110 type);
7111 if (IS_ERR(em))
7112 goto out;
7113 }
7114 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7115 block_len, 0,
7116 (1 << type) |
7117 (1 << BTRFS_ORDERED_DIRECT),
7118 BTRFS_COMPRESS_NONE);
7119 if (ret) {
7120 if (em) {
7121 free_extent_map(em);
7122 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7123 }
7124 em = ERR_PTR(ret);
7125 }
7126 out:
7127
7128 return em;
7129 }
7130
7131 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7132 u64 start, u64 len)
7133 {
7134 struct btrfs_root *root = inode->root;
7135 struct btrfs_fs_info *fs_info = root->fs_info;
7136 struct extent_map *em;
7137 struct btrfs_key ins;
7138 u64 alloc_hint;
7139 int ret;
7140
7141 alloc_hint = get_extent_allocation_hint(inode, start, len);
7142 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7143 0, alloc_hint, &ins, 1, 1);
7144 if (ret)
7145 return ERR_PTR(ret);
7146
7147 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7148 ins.objectid, ins.offset, ins.offset,
7149 ins.offset, BTRFS_ORDERED_REGULAR);
7150 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7151 if (IS_ERR(em))
7152 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7153 1);
7154
7155 return em;
7156 }
7157
7158 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7159 {
7160 struct btrfs_block_group *block_group;
7161 bool readonly = false;
7162
7163 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7164 if (!block_group || block_group->ro)
7165 readonly = true;
7166 if (block_group)
7167 btrfs_put_block_group(block_group);
7168 return readonly;
7169 }
7170
7171 /*
7172 * Check if we can do nocow write into the range [@offset, @offset + @len)
7173 *
7174 * @offset: File offset
7175 * @len: The length to write, will be updated to the nocow writeable
7176 * range
7177 * @orig_start: (optional) Return the original file offset of the file extent
7178 * @orig_len: (optional) Return the original on-disk length of the file extent
7179 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7180 * @strict: if true, omit optimizations that might force us into unnecessary
7181 * cow. e.g., don't trust generation number.
7182 *
7183 * Return:
7184 * >0 and update @len if we can do nocow write
7185 * 0 if we can't do nocow write
7186 * <0 if error happened
7187 *
7188 * NOTE: This only checks the file extents, caller is responsible to wait for
7189 * any ordered extents.
7190 */
7191 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7192 u64 *orig_start, u64 *orig_block_len,
7193 u64 *ram_bytes, bool strict)
7194 {
7195 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7196 struct can_nocow_file_extent_args nocow_args = { 0 };
7197 struct btrfs_path *path;
7198 int ret;
7199 struct extent_buffer *leaf;
7200 struct btrfs_root *root = BTRFS_I(inode)->root;
7201 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7202 struct btrfs_file_extent_item *fi;
7203 struct btrfs_key key;
7204 int found_type;
7205
7206 path = btrfs_alloc_path();
7207 if (!path)
7208 return -ENOMEM;
7209
7210 ret = btrfs_lookup_file_extent(NULL, root, path,
7211 btrfs_ino(BTRFS_I(inode)), offset, 0);
7212 if (ret < 0)
7213 goto out;
7214
7215 if (ret == 1) {
7216 if (path->slots[0] == 0) {
7217 /* can't find the item, must cow */
7218 ret = 0;
7219 goto out;
7220 }
7221 path->slots[0]--;
7222 }
7223 ret = 0;
7224 leaf = path->nodes[0];
7225 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7226 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7227 key.type != BTRFS_EXTENT_DATA_KEY) {
7228 /* not our file or wrong item type, must cow */
7229 goto out;
7230 }
7231
7232 if (key.offset > offset) {
7233 /* Wrong offset, must cow */
7234 goto out;
7235 }
7236
7237 if (btrfs_file_extent_end(path) <= offset)
7238 goto out;
7239
7240 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7241 found_type = btrfs_file_extent_type(leaf, fi);
7242 if (ram_bytes)
7243 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7244
7245 nocow_args.start = offset;
7246 nocow_args.end = offset + *len - 1;
7247 nocow_args.strict = strict;
7248 nocow_args.free_path = true;
7249
7250 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7251 /* can_nocow_file_extent() has freed the path. */
7252 path = NULL;
7253
7254 if (ret != 1) {
7255 /* Treat errors as not being able to NOCOW. */
7256 ret = 0;
7257 goto out;
7258 }
7259
7260 ret = 0;
7261 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7262 goto out;
7263
7264 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7265 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7266 u64 range_end;
7267
7268 range_end = round_up(offset + nocow_args.num_bytes,
7269 root->fs_info->sectorsize) - 1;
7270 ret = test_range_bit(io_tree, offset, range_end,
7271 EXTENT_DELALLOC, 0, NULL);
7272 if (ret) {
7273 ret = -EAGAIN;
7274 goto out;
7275 }
7276 }
7277
7278 if (orig_start)
7279 *orig_start = key.offset - nocow_args.extent_offset;
7280 if (orig_block_len)
7281 *orig_block_len = nocow_args.disk_num_bytes;
7282
7283 *len = nocow_args.num_bytes;
7284 ret = 1;
7285 out:
7286 btrfs_free_path(path);
7287 return ret;
7288 }
7289
7290 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7291 struct extent_state **cached_state,
7292 unsigned int iomap_flags)
7293 {
7294 const bool writing = (iomap_flags & IOMAP_WRITE);
7295 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7296 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7297 struct btrfs_ordered_extent *ordered;
7298 int ret = 0;
7299
7300 while (1) {
7301 if (nowait) {
7302 if (!try_lock_extent(io_tree, lockstart, lockend))
7303 return -EAGAIN;
7304 } else {
7305 lock_extent_bits(io_tree, lockstart, lockend, cached_state);
7306 }
7307 /*
7308 * We're concerned with the entire range that we're going to be
7309 * doing DIO to, so we need to make sure there's no ordered
7310 * extents in this range.
7311 */
7312 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7313 lockend - lockstart + 1);
7314
7315 /*
7316 * We need to make sure there are no buffered pages in this
7317 * range either, we could have raced between the invalidate in
7318 * generic_file_direct_write and locking the extent. The
7319 * invalidate needs to happen so that reads after a write do not
7320 * get stale data.
7321 */
7322 if (!ordered &&
7323 (!writing || !filemap_range_has_page(inode->i_mapping,
7324 lockstart, lockend)))
7325 break;
7326
7327 unlock_extent_cached(io_tree, lockstart, lockend, cached_state);
7328
7329 if (ordered) {
7330 if (nowait) {
7331 btrfs_put_ordered_extent(ordered);
7332 ret = -EAGAIN;
7333 break;
7334 }
7335 /*
7336 * If we are doing a DIO read and the ordered extent we
7337 * found is for a buffered write, we can not wait for it
7338 * to complete and retry, because if we do so we can
7339 * deadlock with concurrent buffered writes on page
7340 * locks. This happens only if our DIO read covers more
7341 * than one extent map, if at this point has already
7342 * created an ordered extent for a previous extent map
7343 * and locked its range in the inode's io tree, and a
7344 * concurrent write against that previous extent map's
7345 * range and this range started (we unlock the ranges
7346 * in the io tree only when the bios complete and
7347 * buffered writes always lock pages before attempting
7348 * to lock range in the io tree).
7349 */
7350 if (writing ||
7351 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7352 btrfs_start_ordered_extent(ordered, 1);
7353 else
7354 ret = nowait ? -EAGAIN : -ENOTBLK;
7355 btrfs_put_ordered_extent(ordered);
7356 } else {
7357 /*
7358 * We could trigger writeback for this range (and wait
7359 * for it to complete) and then invalidate the pages for
7360 * this range (through invalidate_inode_pages2_range()),
7361 * but that can lead us to a deadlock with a concurrent
7362 * call to readahead (a buffered read or a defrag call
7363 * triggered a readahead) on a page lock due to an
7364 * ordered dio extent we created before but did not have
7365 * yet a corresponding bio submitted (whence it can not
7366 * complete), which makes readahead wait for that
7367 * ordered extent to complete while holding a lock on
7368 * that page.
7369 */
7370 ret = nowait ? -EAGAIN : -ENOTBLK;
7371 }
7372
7373 if (ret)
7374 break;
7375
7376 cond_resched();
7377 }
7378
7379 return ret;
7380 }
7381
7382 /* The callers of this must take lock_extent() */
7383 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7384 u64 len, u64 orig_start, u64 block_start,
7385 u64 block_len, u64 orig_block_len,
7386 u64 ram_bytes, int compress_type,
7387 int type)
7388 {
7389 struct extent_map_tree *em_tree;
7390 struct extent_map *em;
7391 int ret;
7392
7393 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7394 type == BTRFS_ORDERED_COMPRESSED ||
7395 type == BTRFS_ORDERED_NOCOW ||
7396 type == BTRFS_ORDERED_REGULAR);
7397
7398 em_tree = &inode->extent_tree;
7399 em = alloc_extent_map();
7400 if (!em)
7401 return ERR_PTR(-ENOMEM);
7402
7403 em->start = start;
7404 em->orig_start = orig_start;
7405 em->len = len;
7406 em->block_len = block_len;
7407 em->block_start = block_start;
7408 em->orig_block_len = orig_block_len;
7409 em->ram_bytes = ram_bytes;
7410 em->generation = -1;
7411 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7412 if (type == BTRFS_ORDERED_PREALLOC) {
7413 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7414 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7415 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7416 em->compress_type = compress_type;
7417 }
7418
7419 do {
7420 btrfs_drop_extent_cache(inode, em->start,
7421 em->start + em->len - 1, 0);
7422 write_lock(&em_tree->lock);
7423 ret = add_extent_mapping(em_tree, em, 1);
7424 write_unlock(&em_tree->lock);
7425 /*
7426 * The caller has taken lock_extent(), who could race with us
7427 * to add em?
7428 */
7429 } while (ret == -EEXIST);
7430
7431 if (ret) {
7432 free_extent_map(em);
7433 return ERR_PTR(ret);
7434 }
7435
7436 /* em got 2 refs now, callers needs to do free_extent_map once. */
7437 return em;
7438 }
7439
7440
7441 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7442 struct inode *inode,
7443 struct btrfs_dio_data *dio_data,
7444 u64 start, u64 len,
7445 unsigned int iomap_flags)
7446 {
7447 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7448 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7449 struct extent_map *em = *map;
7450 int type;
7451 u64 block_start, orig_start, orig_block_len, ram_bytes;
7452 struct btrfs_block_group *bg;
7453 bool can_nocow = false;
7454 bool space_reserved = false;
7455 u64 prev_len;
7456 int ret = 0;
7457
7458 /*
7459 * We don't allocate a new extent in the following cases
7460 *
7461 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7462 * existing extent.
7463 * 2) The extent is marked as PREALLOC. We're good to go here and can
7464 * just use the extent.
7465 *
7466 */
7467 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7468 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7469 em->block_start != EXTENT_MAP_HOLE)) {
7470 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7471 type = BTRFS_ORDERED_PREALLOC;
7472 else
7473 type = BTRFS_ORDERED_NOCOW;
7474 len = min(len, em->len - (start - em->start));
7475 block_start = em->block_start + (start - em->start);
7476
7477 if (can_nocow_extent(inode, start, &len, &orig_start,
7478 &orig_block_len, &ram_bytes, false) == 1) {
7479 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7480 if (bg)
7481 can_nocow = true;
7482 }
7483 }
7484
7485 prev_len = len;
7486 if (can_nocow) {
7487 struct extent_map *em2;
7488
7489 /* We can NOCOW, so only need to reserve metadata space. */
7490 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7491 nowait);
7492 if (ret < 0) {
7493 /* Our caller expects us to free the input extent map. */
7494 free_extent_map(em);
7495 *map = NULL;
7496 btrfs_dec_nocow_writers(bg);
7497 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7498 ret = -EAGAIN;
7499 goto out;
7500 }
7501 space_reserved = true;
7502
7503 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7504 orig_start, block_start,
7505 len, orig_block_len,
7506 ram_bytes, type);
7507 btrfs_dec_nocow_writers(bg);
7508 if (type == BTRFS_ORDERED_PREALLOC) {
7509 free_extent_map(em);
7510 *map = em = em2;
7511 }
7512
7513 if (IS_ERR(em2)) {
7514 ret = PTR_ERR(em2);
7515 goto out;
7516 }
7517
7518 dio_data->nocow_done = true;
7519 } else {
7520 /* Our caller expects us to free the input extent map. */
7521 free_extent_map(em);
7522 *map = NULL;
7523
7524 if (nowait)
7525 return -EAGAIN;
7526
7527 /*
7528 * If we could not allocate data space before locking the file
7529 * range and we can't do a NOCOW write, then we have to fail.
7530 */
7531 if (!dio_data->data_space_reserved)
7532 return -ENOSPC;
7533
7534 /*
7535 * We have to COW and we have already reserved data space before,
7536 * so now we reserve only metadata.
7537 */
7538 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7539 false);
7540 if (ret < 0)
7541 goto out;
7542 space_reserved = true;
7543
7544 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7545 if (IS_ERR(em)) {
7546 ret = PTR_ERR(em);
7547 goto out;
7548 }
7549 *map = em;
7550 len = min(len, em->len - (start - em->start));
7551 if (len < prev_len)
7552 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7553 prev_len - len, true);
7554 }
7555
7556 /*
7557 * We have created our ordered extent, so we can now release our reservation
7558 * for an outstanding extent.
7559 */
7560 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7561
7562 /*
7563 * Need to update the i_size under the extent lock so buffered
7564 * readers will get the updated i_size when we unlock.
7565 */
7566 if (start + len > i_size_read(inode))
7567 i_size_write(inode, start + len);
7568 out:
7569 if (ret && space_reserved) {
7570 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7571 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7572 }
7573 return ret;
7574 }
7575
7576 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7577 loff_t length, unsigned int flags, struct iomap *iomap,
7578 struct iomap *srcmap)
7579 {
7580 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7581 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7582 struct extent_map *em;
7583 struct extent_state *cached_state = NULL;
7584 struct btrfs_dio_data *dio_data = iter->private;
7585 u64 lockstart, lockend;
7586 const bool write = !!(flags & IOMAP_WRITE);
7587 int ret = 0;
7588 u64 len = length;
7589 const u64 data_alloc_len = length;
7590 bool unlock_extents = false;
7591
7592 if (!write)
7593 len = min_t(u64, len, fs_info->sectorsize);
7594
7595 lockstart = start;
7596 lockend = start + len - 1;
7597
7598 /*
7599 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7600 * enough if we've written compressed pages to this area, so we need to
7601 * flush the dirty pages again to make absolutely sure that any
7602 * outstanding dirty pages are on disk - the first flush only starts
7603 * compression on the data, while keeping the pages locked, so by the
7604 * time the second flush returns we know bios for the compressed pages
7605 * were submitted and finished, and the pages no longer under writeback.
7606 *
7607 * If we have a NOWAIT request and we have any pages in the range that
7608 * are locked, likely due to compression still in progress, we don't want
7609 * to block on page locks. We also don't want to block on pages marked as
7610 * dirty or under writeback (same as for the non-compression case).
7611 * iomap_dio_rw() did the same check, but after that and before we got
7612 * here, mmap'ed writes may have happened or buffered reads started
7613 * (readpage() and readahead(), which lock pages), as we haven't locked
7614 * the file range yet.
7615 */
7616 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7617 &BTRFS_I(inode)->runtime_flags)) {
7618 if (flags & IOMAP_NOWAIT) {
7619 if (filemap_range_needs_writeback(inode->i_mapping,
7620 lockstart, lockend))
7621 return -EAGAIN;
7622 } else {
7623 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7624 start + length - 1);
7625 if (ret)
7626 return ret;
7627 }
7628 }
7629
7630 memset(dio_data, 0, sizeof(*dio_data));
7631
7632 /*
7633 * We always try to allocate data space and must do it before locking
7634 * the file range, to avoid deadlocks with concurrent writes to the same
7635 * range if the range has several extents and the writes don't expand the
7636 * current i_size (the inode lock is taken in shared mode). If we fail to
7637 * allocate data space here we continue and later, after locking the
7638 * file range, we fail with ENOSPC only if we figure out we can not do a
7639 * NOCOW write.
7640 */
7641 if (write && !(flags & IOMAP_NOWAIT)) {
7642 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7643 &dio_data->data_reserved,
7644 start, data_alloc_len);
7645 if (!ret)
7646 dio_data->data_space_reserved = true;
7647 else if (ret && !(BTRFS_I(inode)->flags &
7648 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7649 goto err;
7650 }
7651
7652 /*
7653 * If this errors out it's because we couldn't invalidate pagecache for
7654 * this range and we need to fallback to buffered IO, or we are doing a
7655 * NOWAIT read/write and we need to block.
7656 */
7657 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7658 if (ret < 0)
7659 goto err;
7660
7661 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7662 if (IS_ERR(em)) {
7663 ret = PTR_ERR(em);
7664 goto unlock_err;
7665 }
7666
7667 /*
7668 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7669 * io. INLINE is special, and we could probably kludge it in here, but
7670 * it's still buffered so for safety lets just fall back to the generic
7671 * buffered path.
7672 *
7673 * For COMPRESSED we _have_ to read the entire extent in so we can
7674 * decompress it, so there will be buffering required no matter what we
7675 * do, so go ahead and fallback to buffered.
7676 *
7677 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7678 * to buffered IO. Don't blame me, this is the price we pay for using
7679 * the generic code.
7680 */
7681 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7682 em->block_start == EXTENT_MAP_INLINE) {
7683 free_extent_map(em);
7684 ret = -ENOTBLK;
7685 goto unlock_err;
7686 }
7687
7688 len = min(len, em->len - (start - em->start));
7689
7690 /*
7691 * If we have a NOWAIT request and the range contains multiple extents
7692 * (or a mix of extents and holes), then we return -EAGAIN to make the
7693 * caller fallback to a context where it can do a blocking (without
7694 * NOWAIT) request. This way we avoid doing partial IO and returning
7695 * success to the caller, which is not optimal for writes and for reads
7696 * it can result in unexpected behaviour for an application.
7697 *
7698 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7699 * iomap_dio_rw(), we can end up returning less data then what the caller
7700 * asked for, resulting in an unexpected, and incorrect, short read.
7701 * That is, the caller asked to read N bytes and we return less than that,
7702 * which is wrong unless we are crossing EOF. This happens if we get a
7703 * page fault error when trying to fault in pages for the buffer that is
7704 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7705 * have previously submitted bios for other extents in the range, in
7706 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7707 * those bios have completed by the time we get the page fault error,
7708 * which we return back to our caller - we should only return EIOCBQUEUED
7709 * after we have submitted bios for all the extents in the range.
7710 */
7711 if ((flags & IOMAP_NOWAIT) && len < length) {
7712 free_extent_map(em);
7713 ret = -EAGAIN;
7714 goto unlock_err;
7715 }
7716
7717 if (write) {
7718 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7719 start, len, flags);
7720 if (ret < 0)
7721 goto unlock_err;
7722 unlock_extents = true;
7723 /* Recalc len in case the new em is smaller than requested */
7724 len = min(len, em->len - (start - em->start));
7725 if (dio_data->data_space_reserved) {
7726 u64 release_offset;
7727 u64 release_len = 0;
7728
7729 if (dio_data->nocow_done) {
7730 release_offset = start;
7731 release_len = data_alloc_len;
7732 } else if (len < data_alloc_len) {
7733 release_offset = start + len;
7734 release_len = data_alloc_len - len;
7735 }
7736
7737 if (release_len > 0)
7738 btrfs_free_reserved_data_space(BTRFS_I(inode),
7739 dio_data->data_reserved,
7740 release_offset,
7741 release_len);
7742 }
7743 } else {
7744 /*
7745 * We need to unlock only the end area that we aren't using.
7746 * The rest is going to be unlocked by the endio routine.
7747 */
7748 lockstart = start + len;
7749 if (lockstart < lockend)
7750 unlock_extents = true;
7751 }
7752
7753 if (unlock_extents)
7754 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7755 lockstart, lockend, &cached_state);
7756 else
7757 free_extent_state(cached_state);
7758
7759 /*
7760 * Translate extent map information to iomap.
7761 * We trim the extents (and move the addr) even though iomap code does
7762 * that, since we have locked only the parts we are performing I/O in.
7763 */
7764 if ((em->block_start == EXTENT_MAP_HOLE) ||
7765 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7766 iomap->addr = IOMAP_NULL_ADDR;
7767 iomap->type = IOMAP_HOLE;
7768 } else {
7769 iomap->addr = em->block_start + (start - em->start);
7770 iomap->type = IOMAP_MAPPED;
7771 }
7772 iomap->offset = start;
7773 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7774 iomap->length = len;
7775
7776 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7777 iomap->flags |= IOMAP_F_ZONE_APPEND;
7778
7779 free_extent_map(em);
7780
7781 return 0;
7782
7783 unlock_err:
7784 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7785 &cached_state);
7786 err:
7787 if (dio_data->data_space_reserved) {
7788 btrfs_free_reserved_data_space(BTRFS_I(inode),
7789 dio_data->data_reserved,
7790 start, data_alloc_len);
7791 extent_changeset_free(dio_data->data_reserved);
7792 }
7793
7794 return ret;
7795 }
7796
7797 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7798 ssize_t written, unsigned int flags, struct iomap *iomap)
7799 {
7800 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7801 struct btrfs_dio_data *dio_data = iter->private;
7802 size_t submitted = dio_data->submitted;
7803 const bool write = !!(flags & IOMAP_WRITE);
7804 int ret = 0;
7805
7806 if (!write && (iomap->type == IOMAP_HOLE)) {
7807 /* If reading from a hole, unlock and return */
7808 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
7809 return 0;
7810 }
7811
7812 if (submitted < length) {
7813 pos += submitted;
7814 length -= submitted;
7815 if (write)
7816 __endio_write_update_ordered(BTRFS_I(inode), pos,
7817 length, false);
7818 else
7819 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7820 pos + length - 1);
7821 ret = -ENOTBLK;
7822 }
7823
7824 if (write)
7825 extent_changeset_free(dio_data->data_reserved);
7826 return ret;
7827 }
7828
7829 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7830 {
7831 /*
7832 * This implies a barrier so that stores to dio_bio->bi_status before
7833 * this and loads of dio_bio->bi_status after this are fully ordered.
7834 */
7835 if (!refcount_dec_and_test(&dip->refs))
7836 return;
7837
7838 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
7839 __endio_write_update_ordered(BTRFS_I(dip->inode),
7840 dip->file_offset,
7841 dip->bytes,
7842 !dip->bio.bi_status);
7843 } else {
7844 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7845 dip->file_offset,
7846 dip->file_offset + dip->bytes - 1);
7847 }
7848
7849 kfree(dip->csums);
7850 bio_endio(&dip->bio);
7851 }
7852
7853 static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7854 int mirror_num,
7855 enum btrfs_compression_type compress_type)
7856 {
7857 struct btrfs_dio_private *dip = bio->bi_private;
7858 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7859
7860 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7861
7862 if (btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA))
7863 return;
7864
7865 refcount_inc(&dip->refs);
7866 if (btrfs_map_bio(fs_info, bio, mirror_num))
7867 refcount_dec(&dip->refs);
7868 }
7869
7870 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
7871 struct btrfs_bio *bbio,
7872 const bool uptodate)
7873 {
7874 struct inode *inode = dip->inode;
7875 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7876 const u32 sectorsize = fs_info->sectorsize;
7877 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7878 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7879 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7880 struct bio_vec bvec;
7881 struct bvec_iter iter;
7882 u32 bio_offset = 0;
7883 blk_status_t err = BLK_STS_OK;
7884
7885 __bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
7886 unsigned int i, nr_sectors, pgoff;
7887
7888 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7889 pgoff = bvec.bv_offset;
7890 for (i = 0; i < nr_sectors; i++) {
7891 u64 start = bbio->file_offset + bio_offset;
7892
7893 ASSERT(pgoff < PAGE_SIZE);
7894 if (uptodate &&
7895 (!csum || !check_data_csum(inode, bbio,
7896 bio_offset, bvec.bv_page,
7897 pgoff, start))) {
7898 clean_io_failure(fs_info, failure_tree, io_tree,
7899 start, bvec.bv_page,
7900 btrfs_ino(BTRFS_I(inode)),
7901 pgoff);
7902 } else {
7903 int ret;
7904
7905 ret = btrfs_repair_one_sector(inode, &bbio->bio,
7906 bio_offset, bvec.bv_page, pgoff,
7907 start, bbio->mirror_num,
7908 submit_dio_repair_bio);
7909 if (ret)
7910 err = errno_to_blk_status(ret);
7911 }
7912 ASSERT(bio_offset + sectorsize > bio_offset);
7913 bio_offset += sectorsize;
7914 pgoff += sectorsize;
7915 }
7916 }
7917 return err;
7918 }
7919
7920 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7921 const u64 offset, const u64 bytes,
7922 const bool uptodate)
7923 {
7924 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
7925 finish_ordered_fn, uptodate);
7926 }
7927
7928 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
7929 struct bio *bio,
7930 u64 dio_file_offset)
7931 {
7932 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
7933 }
7934
7935 static void btrfs_end_dio_bio(struct bio *bio)
7936 {
7937 struct btrfs_dio_private *dip = bio->bi_private;
7938 struct btrfs_bio *bbio = btrfs_bio(bio);
7939 blk_status_t err = bio->bi_status;
7940
7941 if (err)
7942 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7943 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7944 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7945 bio->bi_opf, bio->bi_iter.bi_sector,
7946 bio->bi_iter.bi_size, err);
7947
7948 if (bio_op(bio) == REQ_OP_READ)
7949 err = btrfs_check_read_dio_bio(dip, bbio, !err);
7950
7951 if (err)
7952 dip->bio.bi_status = err;
7953
7954 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
7955
7956 bio_put(bio);
7957 btrfs_dio_private_put(dip);
7958 }
7959
7960 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7961 struct inode *inode, u64 file_offset, int async_submit)
7962 {
7963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7964 struct btrfs_dio_private *dip = bio->bi_private;
7965 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
7966 blk_status_t ret;
7967
7968 /* Check btrfs_submit_bio_hook() for rules about async submit. */
7969 if (async_submit)
7970 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7971
7972 if (!write) {
7973 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7974 if (ret)
7975 goto err;
7976 }
7977
7978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7979 goto map;
7980
7981 if (write && async_submit) {
7982 ret = btrfs_wq_submit_bio(inode, bio, 0, file_offset,
7983 btrfs_submit_bio_start_direct_io);
7984 goto err;
7985 } else if (write) {
7986 /*
7987 * If we aren't doing async submit, calculate the csum of the
7988 * bio now.
7989 */
7990 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
7991 if (ret)
7992 goto err;
7993 } else {
7994 u64 csum_offset;
7995
7996 csum_offset = file_offset - dip->file_offset;
7997 csum_offset >>= fs_info->sectorsize_bits;
7998 csum_offset *= fs_info->csum_size;
7999 btrfs_bio(bio)->csum = dip->csums + csum_offset;
8000 }
8001 map:
8002 ret = btrfs_map_bio(fs_info, bio, 0);
8003 err:
8004 return ret;
8005 }
8006
8007 static void btrfs_submit_direct(const struct iomap_iter *iter,
8008 struct bio *dio_bio, loff_t file_offset)
8009 {
8010 struct btrfs_dio_private *dip =
8011 container_of(dio_bio, struct btrfs_dio_private, bio);
8012 struct inode *inode = iter->inode;
8013 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8014 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8015 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8016 BTRFS_BLOCK_GROUP_RAID56_MASK);
8017 struct bio *bio;
8018 u64 start_sector;
8019 int async_submit = 0;
8020 u64 submit_len;
8021 u64 clone_offset = 0;
8022 u64 clone_len;
8023 u64 logical;
8024 int ret;
8025 blk_status_t status;
8026 struct btrfs_io_geometry geom;
8027 struct btrfs_dio_data *dio_data = iter->private;
8028 struct extent_map *em = NULL;
8029
8030 dip->inode = inode;
8031 dip->file_offset = file_offset;
8032 dip->bytes = dio_bio->bi_iter.bi_size;
8033 refcount_set(&dip->refs, 1);
8034 dip->csums = NULL;
8035
8036 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8037 unsigned int nr_sectors =
8038 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
8039
8040 /*
8041 * Load the csums up front to reduce csum tree searches and
8042 * contention when submitting bios.
8043 */
8044 status = BLK_STS_RESOURCE;
8045 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
8046 if (!dip)
8047 goto out_err;
8048
8049 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8050 if (status != BLK_STS_OK)
8051 goto out_err;
8052 }
8053
8054 start_sector = dio_bio->bi_iter.bi_sector;
8055 submit_len = dio_bio->bi_iter.bi_size;
8056
8057 do {
8058 logical = start_sector << 9;
8059 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8060 if (IS_ERR(em)) {
8061 status = errno_to_blk_status(PTR_ERR(em));
8062 em = NULL;
8063 goto out_err_em;
8064 }
8065 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8066 logical, &geom);
8067 if (ret) {
8068 status = errno_to_blk_status(ret);
8069 goto out_err_em;
8070 }
8071
8072 clone_len = min(submit_len, geom.len);
8073 ASSERT(clone_len <= UINT_MAX);
8074
8075 /*
8076 * This will never fail as it's passing GPF_NOFS and
8077 * the allocation is backed by btrfs_bioset.
8078 */
8079 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8080 bio->bi_private = dip;
8081 bio->bi_end_io = btrfs_end_dio_bio;
8082 btrfs_bio(bio)->file_offset = file_offset;
8083
8084 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8085 status = extract_ordered_extent(BTRFS_I(inode), bio,
8086 file_offset);
8087 if (status) {
8088 bio_put(bio);
8089 goto out_err;
8090 }
8091 }
8092
8093 ASSERT(submit_len >= clone_len);
8094 submit_len -= clone_len;
8095
8096 /*
8097 * Increase the count before we submit the bio so we know
8098 * the end IO handler won't happen before we increase the
8099 * count. Otherwise, the dip might get freed before we're
8100 * done setting it up.
8101 *
8102 * We transfer the initial reference to the last bio, so we
8103 * don't need to increment the reference count for the last one.
8104 */
8105 if (submit_len > 0) {
8106 refcount_inc(&dip->refs);
8107 /*
8108 * If we are submitting more than one bio, submit them
8109 * all asynchronously. The exception is RAID 5 or 6, as
8110 * asynchronous checksums make it difficult to collect
8111 * full stripe writes.
8112 */
8113 if (!raid56)
8114 async_submit = 1;
8115 }
8116
8117 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8118 async_submit);
8119 if (status) {
8120 bio_put(bio);
8121 if (submit_len > 0)
8122 refcount_dec(&dip->refs);
8123 goto out_err_em;
8124 }
8125
8126 dio_data->submitted += clone_len;
8127 clone_offset += clone_len;
8128 start_sector += clone_len >> 9;
8129 file_offset += clone_len;
8130
8131 free_extent_map(em);
8132 } while (submit_len > 0);
8133 return;
8134
8135 out_err_em:
8136 free_extent_map(em);
8137 out_err:
8138 dio_bio->bi_status = status;
8139 btrfs_dio_private_put(dip);
8140 }
8141
8142 static const struct iomap_ops btrfs_dio_iomap_ops = {
8143 .iomap_begin = btrfs_dio_iomap_begin,
8144 .iomap_end = btrfs_dio_iomap_end,
8145 };
8146
8147 static const struct iomap_dio_ops btrfs_dio_ops = {
8148 .submit_io = btrfs_submit_direct,
8149 .bio_set = &btrfs_dio_bioset,
8150 };
8151
8152 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
8153 {
8154 struct btrfs_dio_data data;
8155
8156 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8157 IOMAP_DIO_PARTIAL, &data, done_before);
8158 }
8159
8160 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8161 u64 start, u64 len)
8162 {
8163 int ret;
8164
8165 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8166 if (ret)
8167 return ret;
8168
8169 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8170 }
8171
8172 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8173 {
8174 struct inode *inode = page->mapping->host;
8175 int ret;
8176
8177 if (current->flags & PF_MEMALLOC) {
8178 redirty_page_for_writepage(wbc, page);
8179 unlock_page(page);
8180 return 0;
8181 }
8182
8183 /*
8184 * If we are under memory pressure we will call this directly from the
8185 * VM, we need to make sure we have the inode referenced for the ordered
8186 * extent. If not just return like we didn't do anything.
8187 */
8188 if (!igrab(inode)) {
8189 redirty_page_for_writepage(wbc, page);
8190 return AOP_WRITEPAGE_ACTIVATE;
8191 }
8192 ret = extent_write_full_page(page, wbc);
8193 btrfs_add_delayed_iput(inode);
8194 return ret;
8195 }
8196
8197 static int btrfs_writepages(struct address_space *mapping,
8198 struct writeback_control *wbc)
8199 {
8200 return extent_writepages(mapping, wbc);
8201 }
8202
8203 static void btrfs_readahead(struct readahead_control *rac)
8204 {
8205 extent_readahead(rac);
8206 }
8207
8208 /*
8209 * For release_folio() and invalidate_folio() we have a race window where
8210 * folio_end_writeback() is called but the subpage spinlock is not yet released.
8211 * If we continue to release/invalidate the page, we could cause use-after-free
8212 * for subpage spinlock. So this function is to spin and wait for subpage
8213 * spinlock.
8214 */
8215 static void wait_subpage_spinlock(struct page *page)
8216 {
8217 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8218 struct btrfs_subpage *subpage;
8219
8220 if (!btrfs_is_subpage(fs_info, page))
8221 return;
8222
8223 ASSERT(PagePrivate(page) && page->private);
8224 subpage = (struct btrfs_subpage *)page->private;
8225
8226 /*
8227 * This may look insane as we just acquire the spinlock and release it,
8228 * without doing anything. But we just want to make sure no one is
8229 * still holding the subpage spinlock.
8230 * And since the page is not dirty nor writeback, and we have page
8231 * locked, the only possible way to hold a spinlock is from the endio
8232 * function to clear page writeback.
8233 *
8234 * Here we just acquire the spinlock so that all existing callers
8235 * should exit and we're safe to release/invalidate the page.
8236 */
8237 spin_lock_irq(&subpage->lock);
8238 spin_unlock_irq(&subpage->lock);
8239 }
8240
8241 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8242 {
8243 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
8244
8245 if (ret == 1) {
8246 wait_subpage_spinlock(&folio->page);
8247 clear_page_extent_mapped(&folio->page);
8248 }
8249 return ret;
8250 }
8251
8252 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8253 {
8254 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8255 return false;
8256 return __btrfs_release_folio(folio, gfp_flags);
8257 }
8258
8259 #ifdef CONFIG_MIGRATION
8260 static int btrfs_migratepage(struct address_space *mapping,
8261 struct page *newpage, struct page *page,
8262 enum migrate_mode mode)
8263 {
8264 int ret;
8265
8266 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8267 if (ret != MIGRATEPAGE_SUCCESS)
8268 return ret;
8269
8270 if (page_has_private(page))
8271 attach_page_private(newpage, detach_page_private(page));
8272
8273 if (PageOrdered(page)) {
8274 ClearPageOrdered(page);
8275 SetPageOrdered(newpage);
8276 }
8277
8278 if (mode != MIGRATE_SYNC_NO_COPY)
8279 migrate_page_copy(newpage, page);
8280 else
8281 migrate_page_states(newpage, page);
8282 return MIGRATEPAGE_SUCCESS;
8283 }
8284 #endif
8285
8286 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8287 size_t length)
8288 {
8289 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8290 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8291 struct extent_io_tree *tree = &inode->io_tree;
8292 struct extent_state *cached_state = NULL;
8293 u64 page_start = folio_pos(folio);
8294 u64 page_end = page_start + folio_size(folio) - 1;
8295 u64 cur;
8296 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8297
8298 /*
8299 * We have folio locked so no new ordered extent can be created on this
8300 * page, nor bio can be submitted for this folio.
8301 *
8302 * But already submitted bio can still be finished on this folio.
8303 * Furthermore, endio function won't skip folio which has Ordered
8304 * (Private2) already cleared, so it's possible for endio and
8305 * invalidate_folio to do the same ordered extent accounting twice
8306 * on one folio.
8307 *
8308 * So here we wait for any submitted bios to finish, so that we won't
8309 * do double ordered extent accounting on the same folio.
8310 */
8311 folio_wait_writeback(folio);
8312 wait_subpage_spinlock(&folio->page);
8313
8314 /*
8315 * For subpage case, we have call sites like
8316 * btrfs_punch_hole_lock_range() which passes range not aligned to
8317 * sectorsize.
8318 * If the range doesn't cover the full folio, we don't need to and
8319 * shouldn't clear page extent mapped, as folio->private can still
8320 * record subpage dirty bits for other part of the range.
8321 *
8322 * For cases that invalidate the full folio even the range doesn't
8323 * cover the full folio, like invalidating the last folio, we're
8324 * still safe to wait for ordered extent to finish.
8325 */
8326 if (!(offset == 0 && length == folio_size(folio))) {
8327 btrfs_release_folio(folio, GFP_NOFS);
8328 return;
8329 }
8330
8331 if (!inode_evicting)
8332 lock_extent_bits(tree, page_start, page_end, &cached_state);
8333
8334 cur = page_start;
8335 while (cur < page_end) {
8336 struct btrfs_ordered_extent *ordered;
8337 bool delete_states;
8338 u64 range_end;
8339 u32 range_len;
8340
8341 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8342 page_end + 1 - cur);
8343 if (!ordered) {
8344 range_end = page_end;
8345 /*
8346 * No ordered extent covering this range, we are safe
8347 * to delete all extent states in the range.
8348 */
8349 delete_states = true;
8350 goto next;
8351 }
8352 if (ordered->file_offset > cur) {
8353 /*
8354 * There is a range between [cur, oe->file_offset) not
8355 * covered by any ordered extent.
8356 * We are safe to delete all extent states, and handle
8357 * the ordered extent in the next iteration.
8358 */
8359 range_end = ordered->file_offset - 1;
8360 delete_states = true;
8361 goto next;
8362 }
8363
8364 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8365 page_end);
8366 ASSERT(range_end + 1 - cur < U32_MAX);
8367 range_len = range_end + 1 - cur;
8368 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8369 /*
8370 * If Ordered (Private2) is cleared, it means endio has
8371 * already been executed for the range.
8372 * We can't delete the extent states as
8373 * btrfs_finish_ordered_io() may still use some of them.
8374 */
8375 delete_states = false;
8376 goto next;
8377 }
8378 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8379
8380 /*
8381 * IO on this page will never be started, so we need to account
8382 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8383 * here, must leave that up for the ordered extent completion.
8384 *
8385 * This will also unlock the range for incoming
8386 * btrfs_finish_ordered_io().
8387 */
8388 if (!inode_evicting)
8389 clear_extent_bit(tree, cur, range_end,
8390 EXTENT_DELALLOC |
8391 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8392 EXTENT_DEFRAG, 1, 0, &cached_state);
8393
8394 spin_lock_irq(&inode->ordered_tree.lock);
8395 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8396 ordered->truncated_len = min(ordered->truncated_len,
8397 cur - ordered->file_offset);
8398 spin_unlock_irq(&inode->ordered_tree.lock);
8399
8400 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8401 cur, range_end + 1 - cur)) {
8402 btrfs_finish_ordered_io(ordered);
8403 /*
8404 * The ordered extent has finished, now we're again
8405 * safe to delete all extent states of the range.
8406 */
8407 delete_states = true;
8408 } else {
8409 /*
8410 * btrfs_finish_ordered_io() will get executed by endio
8411 * of other pages, thus we can't delete extent states
8412 * anymore
8413 */
8414 delete_states = false;
8415 }
8416 next:
8417 if (ordered)
8418 btrfs_put_ordered_extent(ordered);
8419 /*
8420 * Qgroup reserved space handler
8421 * Sector(s) here will be either:
8422 *
8423 * 1) Already written to disk or bio already finished
8424 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8425 * Qgroup will be handled by its qgroup_record then.
8426 * btrfs_qgroup_free_data() call will do nothing here.
8427 *
8428 * 2) Not written to disk yet
8429 * Then btrfs_qgroup_free_data() call will clear the
8430 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8431 * reserved data space.
8432 * Since the IO will never happen for this page.
8433 */
8434 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8435 if (!inode_evicting) {
8436 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8437 EXTENT_DELALLOC | EXTENT_UPTODATE |
8438 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8439 delete_states, &cached_state);
8440 }
8441 cur = range_end + 1;
8442 }
8443 /*
8444 * We have iterated through all ordered extents of the page, the page
8445 * should not have Ordered (Private2) anymore, or the above iteration
8446 * did something wrong.
8447 */
8448 ASSERT(!folio_test_ordered(folio));
8449 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8450 if (!inode_evicting)
8451 __btrfs_release_folio(folio, GFP_NOFS);
8452 clear_page_extent_mapped(&folio->page);
8453 }
8454
8455 /*
8456 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8457 * called from a page fault handler when a page is first dirtied. Hence we must
8458 * be careful to check for EOF conditions here. We set the page up correctly
8459 * for a written page which means we get ENOSPC checking when writing into
8460 * holes and correct delalloc and unwritten extent mapping on filesystems that
8461 * support these features.
8462 *
8463 * We are not allowed to take the i_mutex here so we have to play games to
8464 * protect against truncate races as the page could now be beyond EOF. Because
8465 * truncate_setsize() writes the inode size before removing pages, once we have
8466 * the page lock we can determine safely if the page is beyond EOF. If it is not
8467 * beyond EOF, then the page is guaranteed safe against truncation until we
8468 * unlock the page.
8469 */
8470 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8471 {
8472 struct page *page = vmf->page;
8473 struct inode *inode = file_inode(vmf->vma->vm_file);
8474 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8475 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8476 struct btrfs_ordered_extent *ordered;
8477 struct extent_state *cached_state = NULL;
8478 struct extent_changeset *data_reserved = NULL;
8479 unsigned long zero_start;
8480 loff_t size;
8481 vm_fault_t ret;
8482 int ret2;
8483 int reserved = 0;
8484 u64 reserved_space;
8485 u64 page_start;
8486 u64 page_end;
8487 u64 end;
8488
8489 reserved_space = PAGE_SIZE;
8490
8491 sb_start_pagefault(inode->i_sb);
8492 page_start = page_offset(page);
8493 page_end = page_start + PAGE_SIZE - 1;
8494 end = page_end;
8495
8496 /*
8497 * Reserving delalloc space after obtaining the page lock can lead to
8498 * deadlock. For example, if a dirty page is locked by this function
8499 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8500 * dirty page write out, then the btrfs_writepage() function could
8501 * end up waiting indefinitely to get a lock on the page currently
8502 * being processed by btrfs_page_mkwrite() function.
8503 */
8504 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8505 page_start, reserved_space);
8506 if (!ret2) {
8507 ret2 = file_update_time(vmf->vma->vm_file);
8508 reserved = 1;
8509 }
8510 if (ret2) {
8511 ret = vmf_error(ret2);
8512 if (reserved)
8513 goto out;
8514 goto out_noreserve;
8515 }
8516
8517 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8518 again:
8519 down_read(&BTRFS_I(inode)->i_mmap_lock);
8520 lock_page(page);
8521 size = i_size_read(inode);
8522
8523 if ((page->mapping != inode->i_mapping) ||
8524 (page_start >= size)) {
8525 /* page got truncated out from underneath us */
8526 goto out_unlock;
8527 }
8528 wait_on_page_writeback(page);
8529
8530 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8531 ret2 = set_page_extent_mapped(page);
8532 if (ret2 < 0) {
8533 ret = vmf_error(ret2);
8534 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8535 goto out_unlock;
8536 }
8537
8538 /*
8539 * we can't set the delalloc bits if there are pending ordered
8540 * extents. Drop our locks and wait for them to finish
8541 */
8542 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8543 PAGE_SIZE);
8544 if (ordered) {
8545 unlock_extent_cached(io_tree, page_start, page_end,
8546 &cached_state);
8547 unlock_page(page);
8548 up_read(&BTRFS_I(inode)->i_mmap_lock);
8549 btrfs_start_ordered_extent(ordered, 1);
8550 btrfs_put_ordered_extent(ordered);
8551 goto again;
8552 }
8553
8554 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8555 reserved_space = round_up(size - page_start,
8556 fs_info->sectorsize);
8557 if (reserved_space < PAGE_SIZE) {
8558 end = page_start + reserved_space - 1;
8559 btrfs_delalloc_release_space(BTRFS_I(inode),
8560 data_reserved, page_start,
8561 PAGE_SIZE - reserved_space, true);
8562 }
8563 }
8564
8565 /*
8566 * page_mkwrite gets called when the page is firstly dirtied after it's
8567 * faulted in, but write(2) could also dirty a page and set delalloc
8568 * bits, thus in this case for space account reason, we still need to
8569 * clear any delalloc bits within this page range since we have to
8570 * reserve data&meta space before lock_page() (see above comments).
8571 */
8572 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8573 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8574 EXTENT_DEFRAG, 0, 0, &cached_state);
8575
8576 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8577 &cached_state);
8578 if (ret2) {
8579 unlock_extent_cached(io_tree, page_start, page_end,
8580 &cached_state);
8581 ret = VM_FAULT_SIGBUS;
8582 goto out_unlock;
8583 }
8584
8585 /* page is wholly or partially inside EOF */
8586 if (page_start + PAGE_SIZE > size)
8587 zero_start = offset_in_page(size);
8588 else
8589 zero_start = PAGE_SIZE;
8590
8591 if (zero_start != PAGE_SIZE) {
8592 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8593 flush_dcache_page(page);
8594 }
8595 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8596 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8597 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8598
8599 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8600
8601 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8602 up_read(&BTRFS_I(inode)->i_mmap_lock);
8603
8604 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8605 sb_end_pagefault(inode->i_sb);
8606 extent_changeset_free(data_reserved);
8607 return VM_FAULT_LOCKED;
8608
8609 out_unlock:
8610 unlock_page(page);
8611 up_read(&BTRFS_I(inode)->i_mmap_lock);
8612 out:
8613 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8614 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8615 reserved_space, (ret != 0));
8616 out_noreserve:
8617 sb_end_pagefault(inode->i_sb);
8618 extent_changeset_free(data_reserved);
8619 return ret;
8620 }
8621
8622 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8623 {
8624 struct btrfs_truncate_control control = {
8625 .inode = BTRFS_I(inode),
8626 .ino = btrfs_ino(BTRFS_I(inode)),
8627 .min_type = BTRFS_EXTENT_DATA_KEY,
8628 .clear_extent_range = true,
8629 };
8630 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8631 struct btrfs_root *root = BTRFS_I(inode)->root;
8632 struct btrfs_block_rsv *rsv;
8633 int ret;
8634 struct btrfs_trans_handle *trans;
8635 u64 mask = fs_info->sectorsize - 1;
8636 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8637
8638 if (!skip_writeback) {
8639 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8640 (u64)-1);
8641 if (ret)
8642 return ret;
8643 }
8644
8645 /*
8646 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8647 * things going on here:
8648 *
8649 * 1) We need to reserve space to update our inode.
8650 *
8651 * 2) We need to have something to cache all the space that is going to
8652 * be free'd up by the truncate operation, but also have some slack
8653 * space reserved in case it uses space during the truncate (thank you
8654 * very much snapshotting).
8655 *
8656 * And we need these to be separate. The fact is we can use a lot of
8657 * space doing the truncate, and we have no earthly idea how much space
8658 * we will use, so we need the truncate reservation to be separate so it
8659 * doesn't end up using space reserved for updating the inode. We also
8660 * need to be able to stop the transaction and start a new one, which
8661 * means we need to be able to update the inode several times, and we
8662 * have no idea of knowing how many times that will be, so we can't just
8663 * reserve 1 item for the entirety of the operation, so that has to be
8664 * done separately as well.
8665 *
8666 * So that leaves us with
8667 *
8668 * 1) rsv - for the truncate reservation, which we will steal from the
8669 * transaction reservation.
8670 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8671 * updating the inode.
8672 */
8673 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8674 if (!rsv)
8675 return -ENOMEM;
8676 rsv->size = min_size;
8677 rsv->failfast = 1;
8678
8679 /*
8680 * 1 for the truncate slack space
8681 * 1 for updating the inode.
8682 */
8683 trans = btrfs_start_transaction(root, 2);
8684 if (IS_ERR(trans)) {
8685 ret = PTR_ERR(trans);
8686 goto out;
8687 }
8688
8689 /* Migrate the slack space for the truncate to our reserve */
8690 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8691 min_size, false);
8692 BUG_ON(ret);
8693
8694 trans->block_rsv = rsv;
8695
8696 while (1) {
8697 struct extent_state *cached_state = NULL;
8698 const u64 new_size = inode->i_size;
8699 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8700
8701 control.new_size = new_size;
8702 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8703 &cached_state);
8704 /*
8705 * We want to drop from the next block forward in case this new
8706 * size is not block aligned since we will be keeping the last
8707 * block of the extent just the way it is.
8708 */
8709 btrfs_drop_extent_cache(BTRFS_I(inode),
8710 ALIGN(new_size, fs_info->sectorsize),
8711 (u64)-1, 0);
8712
8713 ret = btrfs_truncate_inode_items(trans, root, &control);
8714
8715 inode_sub_bytes(inode, control.sub_bytes);
8716 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8717
8718 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
8719 (u64)-1, &cached_state);
8720
8721 trans->block_rsv = &fs_info->trans_block_rsv;
8722 if (ret != -ENOSPC && ret != -EAGAIN)
8723 break;
8724
8725 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8726 if (ret)
8727 break;
8728
8729 btrfs_end_transaction(trans);
8730 btrfs_btree_balance_dirty(fs_info);
8731
8732 trans = btrfs_start_transaction(root, 2);
8733 if (IS_ERR(trans)) {
8734 ret = PTR_ERR(trans);
8735 trans = NULL;
8736 break;
8737 }
8738
8739 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8740 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8741 rsv, min_size, false);
8742 BUG_ON(ret); /* shouldn't happen */
8743 trans->block_rsv = rsv;
8744 }
8745
8746 /*
8747 * We can't call btrfs_truncate_block inside a trans handle as we could
8748 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8749 * know we've truncated everything except the last little bit, and can
8750 * do btrfs_truncate_block and then update the disk_i_size.
8751 */
8752 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8753 btrfs_end_transaction(trans);
8754 btrfs_btree_balance_dirty(fs_info);
8755
8756 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8757 if (ret)
8758 goto out;
8759 trans = btrfs_start_transaction(root, 1);
8760 if (IS_ERR(trans)) {
8761 ret = PTR_ERR(trans);
8762 goto out;
8763 }
8764 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8765 }
8766
8767 if (trans) {
8768 int ret2;
8769
8770 trans->block_rsv = &fs_info->trans_block_rsv;
8771 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
8772 if (ret2 && !ret)
8773 ret = ret2;
8774
8775 ret2 = btrfs_end_transaction(trans);
8776 if (ret2 && !ret)
8777 ret = ret2;
8778 btrfs_btree_balance_dirty(fs_info);
8779 }
8780 out:
8781 btrfs_free_block_rsv(fs_info, rsv);
8782 /*
8783 * So if we truncate and then write and fsync we normally would just
8784 * write the extents that changed, which is a problem if we need to
8785 * first truncate that entire inode. So set this flag so we write out
8786 * all of the extents in the inode to the sync log so we're completely
8787 * safe.
8788 *
8789 * If no extents were dropped or trimmed we don't need to force the next
8790 * fsync to truncate all the inode's items from the log and re-log them
8791 * all. This means the truncate operation did not change the file size,
8792 * or changed it to a smaller size but there was only an implicit hole
8793 * between the old i_size and the new i_size, and there were no prealloc
8794 * extents beyond i_size to drop.
8795 */
8796 if (control.extents_found > 0)
8797 btrfs_set_inode_full_sync(BTRFS_I(inode));
8798
8799 return ret;
8800 }
8801
8802 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8803 struct inode *dir)
8804 {
8805 struct inode *inode;
8806
8807 inode = new_inode(dir->i_sb);
8808 if (inode) {
8809 /*
8810 * Subvolumes don't inherit the sgid bit or the parent's gid if
8811 * the parent's sgid bit is set. This is probably a bug.
8812 */
8813 inode_init_owner(mnt_userns, inode, NULL,
8814 S_IFDIR | (~current_umask() & S_IRWXUGO));
8815 inode->i_op = &btrfs_dir_inode_operations;
8816 inode->i_fop = &btrfs_dir_file_operations;
8817 }
8818 return inode;
8819 }
8820
8821 struct inode *btrfs_alloc_inode(struct super_block *sb)
8822 {
8823 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8824 struct btrfs_inode *ei;
8825 struct inode *inode;
8826
8827 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8828 if (!ei)
8829 return NULL;
8830
8831 ei->root = NULL;
8832 ei->generation = 0;
8833 ei->last_trans = 0;
8834 ei->last_sub_trans = 0;
8835 ei->logged_trans = 0;
8836 ei->delalloc_bytes = 0;
8837 ei->new_delalloc_bytes = 0;
8838 ei->defrag_bytes = 0;
8839 ei->disk_i_size = 0;
8840 ei->flags = 0;
8841 ei->ro_flags = 0;
8842 ei->csum_bytes = 0;
8843 ei->index_cnt = (u64)-1;
8844 ei->dir_index = 0;
8845 ei->last_unlink_trans = 0;
8846 ei->last_reflink_trans = 0;
8847 ei->last_log_commit = 0;
8848
8849 spin_lock_init(&ei->lock);
8850 ei->outstanding_extents = 0;
8851 if (sb->s_magic != BTRFS_TEST_MAGIC)
8852 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8853 BTRFS_BLOCK_RSV_DELALLOC);
8854 ei->runtime_flags = 0;
8855 ei->prop_compress = BTRFS_COMPRESS_NONE;
8856 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8857
8858 ei->delayed_node = NULL;
8859
8860 ei->i_otime.tv_sec = 0;
8861 ei->i_otime.tv_nsec = 0;
8862
8863 inode = &ei->vfs_inode;
8864 extent_map_tree_init(&ei->extent_tree);
8865 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8866 extent_io_tree_init(fs_info, &ei->io_failure_tree,
8867 IO_TREE_INODE_IO_FAILURE, inode);
8868 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8869 IO_TREE_INODE_FILE_EXTENT, inode);
8870 ei->io_tree.track_uptodate = true;
8871 ei->io_failure_tree.track_uptodate = true;
8872 atomic_set(&ei->sync_writers, 0);
8873 mutex_init(&ei->log_mutex);
8874 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8875 INIT_LIST_HEAD(&ei->delalloc_inodes);
8876 INIT_LIST_HEAD(&ei->delayed_iput);
8877 RB_CLEAR_NODE(&ei->rb_node);
8878 init_rwsem(&ei->i_mmap_lock);
8879
8880 return inode;
8881 }
8882
8883 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8884 void btrfs_test_destroy_inode(struct inode *inode)
8885 {
8886 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8887 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8888 }
8889 #endif
8890
8891 void btrfs_free_inode(struct inode *inode)
8892 {
8893 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8894 }
8895
8896 void btrfs_destroy_inode(struct inode *vfs_inode)
8897 {
8898 struct btrfs_ordered_extent *ordered;
8899 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8900 struct btrfs_root *root = inode->root;
8901
8902 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8903 WARN_ON(vfs_inode->i_data.nrpages);
8904 WARN_ON(inode->block_rsv.reserved);
8905 WARN_ON(inode->block_rsv.size);
8906 WARN_ON(inode->outstanding_extents);
8907 if (!S_ISDIR(vfs_inode->i_mode)) {
8908 WARN_ON(inode->delalloc_bytes);
8909 WARN_ON(inode->new_delalloc_bytes);
8910 }
8911 WARN_ON(inode->csum_bytes);
8912 WARN_ON(inode->defrag_bytes);
8913
8914 /*
8915 * This can happen where we create an inode, but somebody else also
8916 * created the same inode and we need to destroy the one we already
8917 * created.
8918 */
8919 if (!root)
8920 return;
8921
8922 while (1) {
8923 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8924 if (!ordered)
8925 break;
8926 else {
8927 btrfs_err(root->fs_info,
8928 "found ordered extent %llu %llu on inode cleanup",
8929 ordered->file_offset, ordered->num_bytes);
8930 btrfs_remove_ordered_extent(inode, ordered);
8931 btrfs_put_ordered_extent(ordered);
8932 btrfs_put_ordered_extent(ordered);
8933 }
8934 }
8935 btrfs_qgroup_check_reserved_leak(inode);
8936 inode_tree_del(inode);
8937 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8938 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8939 btrfs_put_root(inode->root);
8940 }
8941
8942 int btrfs_drop_inode(struct inode *inode)
8943 {
8944 struct btrfs_root *root = BTRFS_I(inode)->root;
8945
8946 if (root == NULL)
8947 return 1;
8948
8949 /* the snap/subvol tree is on deleting */
8950 if (btrfs_root_refs(&root->root_item) == 0)
8951 return 1;
8952 else
8953 return generic_drop_inode(inode);
8954 }
8955
8956 static void init_once(void *foo)
8957 {
8958 struct btrfs_inode *ei = foo;
8959
8960 inode_init_once(&ei->vfs_inode);
8961 }
8962
8963 void __cold btrfs_destroy_cachep(void)
8964 {
8965 /*
8966 * Make sure all delayed rcu free inodes are flushed before we
8967 * destroy cache.
8968 */
8969 rcu_barrier();
8970 bioset_exit(&btrfs_dio_bioset);
8971 kmem_cache_destroy(btrfs_inode_cachep);
8972 kmem_cache_destroy(btrfs_trans_handle_cachep);
8973 kmem_cache_destroy(btrfs_path_cachep);
8974 kmem_cache_destroy(btrfs_free_space_cachep);
8975 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8976 }
8977
8978 int __init btrfs_init_cachep(void)
8979 {
8980 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8981 sizeof(struct btrfs_inode), 0,
8982 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8983 init_once);
8984 if (!btrfs_inode_cachep)
8985 goto fail;
8986
8987 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8988 sizeof(struct btrfs_trans_handle), 0,
8989 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8990 if (!btrfs_trans_handle_cachep)
8991 goto fail;
8992
8993 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8994 sizeof(struct btrfs_path), 0,
8995 SLAB_MEM_SPREAD, NULL);
8996 if (!btrfs_path_cachep)
8997 goto fail;
8998
8999 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9000 sizeof(struct btrfs_free_space), 0,
9001 SLAB_MEM_SPREAD, NULL);
9002 if (!btrfs_free_space_cachep)
9003 goto fail;
9004
9005 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9006 PAGE_SIZE, PAGE_SIZE,
9007 SLAB_MEM_SPREAD, NULL);
9008 if (!btrfs_free_space_bitmap_cachep)
9009 goto fail;
9010
9011 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
9012 offsetof(struct btrfs_dio_private, bio),
9013 BIOSET_NEED_BVECS))
9014 goto fail;
9015
9016 return 0;
9017 fail:
9018 btrfs_destroy_cachep();
9019 return -ENOMEM;
9020 }
9021
9022 static int btrfs_getattr(struct user_namespace *mnt_userns,
9023 const struct path *path, struct kstat *stat,
9024 u32 request_mask, unsigned int flags)
9025 {
9026 u64 delalloc_bytes;
9027 u64 inode_bytes;
9028 struct inode *inode = d_inode(path->dentry);
9029 u32 blocksize = inode->i_sb->s_blocksize;
9030 u32 bi_flags = BTRFS_I(inode)->flags;
9031 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9032
9033 stat->result_mask |= STATX_BTIME;
9034 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9035 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9036 if (bi_flags & BTRFS_INODE_APPEND)
9037 stat->attributes |= STATX_ATTR_APPEND;
9038 if (bi_flags & BTRFS_INODE_COMPRESS)
9039 stat->attributes |= STATX_ATTR_COMPRESSED;
9040 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9041 stat->attributes |= STATX_ATTR_IMMUTABLE;
9042 if (bi_flags & BTRFS_INODE_NODUMP)
9043 stat->attributes |= STATX_ATTR_NODUMP;
9044 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9045 stat->attributes |= STATX_ATTR_VERITY;
9046
9047 stat->attributes_mask |= (STATX_ATTR_APPEND |
9048 STATX_ATTR_COMPRESSED |
9049 STATX_ATTR_IMMUTABLE |
9050 STATX_ATTR_NODUMP);
9051
9052 generic_fillattr(mnt_userns, inode, stat);
9053 stat->dev = BTRFS_I(inode)->root->anon_dev;
9054
9055 spin_lock(&BTRFS_I(inode)->lock);
9056 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9057 inode_bytes = inode_get_bytes(inode);
9058 spin_unlock(&BTRFS_I(inode)->lock);
9059 stat->blocks = (ALIGN(inode_bytes, blocksize) +
9060 ALIGN(delalloc_bytes, blocksize)) >> 9;
9061 return 0;
9062 }
9063
9064 static int btrfs_rename_exchange(struct inode *old_dir,
9065 struct dentry *old_dentry,
9066 struct inode *new_dir,
9067 struct dentry *new_dentry)
9068 {
9069 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9070 struct btrfs_trans_handle *trans;
9071 unsigned int trans_num_items;
9072 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9073 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9074 struct inode *new_inode = new_dentry->d_inode;
9075 struct inode *old_inode = old_dentry->d_inode;
9076 struct timespec64 ctime = current_time(old_inode);
9077 struct btrfs_rename_ctx old_rename_ctx;
9078 struct btrfs_rename_ctx new_rename_ctx;
9079 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9080 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9081 u64 old_idx = 0;
9082 u64 new_idx = 0;
9083 int ret;
9084 int ret2;
9085 bool need_abort = false;
9086
9087 /*
9088 * For non-subvolumes allow exchange only within one subvolume, in the
9089 * same inode namespace. Two subvolumes (represented as directory) can
9090 * be exchanged as they're a logical link and have a fixed inode number.
9091 */
9092 if (root != dest &&
9093 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9094 new_ino != BTRFS_FIRST_FREE_OBJECTID))
9095 return -EXDEV;
9096
9097 /* close the race window with snapshot create/destroy ioctl */
9098 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9099 new_ino == BTRFS_FIRST_FREE_OBJECTID)
9100 down_read(&fs_info->subvol_sem);
9101
9102 /*
9103 * For each inode:
9104 * 1 to remove old dir item
9105 * 1 to remove old dir index
9106 * 1 to add new dir item
9107 * 1 to add new dir index
9108 * 1 to update parent inode
9109 *
9110 * If the parents are the same, we only need to account for one
9111 */
9112 trans_num_items = (old_dir == new_dir ? 9 : 10);
9113 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9114 /*
9115 * 1 to remove old root ref
9116 * 1 to remove old root backref
9117 * 1 to add new root ref
9118 * 1 to add new root backref
9119 */
9120 trans_num_items += 4;
9121 } else {
9122 /*
9123 * 1 to update inode item
9124 * 1 to remove old inode ref
9125 * 1 to add new inode ref
9126 */
9127 trans_num_items += 3;
9128 }
9129 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9130 trans_num_items += 4;
9131 else
9132 trans_num_items += 3;
9133 trans = btrfs_start_transaction(root, trans_num_items);
9134 if (IS_ERR(trans)) {
9135 ret = PTR_ERR(trans);
9136 goto out_notrans;
9137 }
9138
9139 if (dest != root) {
9140 ret = btrfs_record_root_in_trans(trans, dest);
9141 if (ret)
9142 goto out_fail;
9143 }
9144
9145 /*
9146 * We need to find a free sequence number both in the source and
9147 * in the destination directory for the exchange.
9148 */
9149 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9150 if (ret)
9151 goto out_fail;
9152 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9153 if (ret)
9154 goto out_fail;
9155
9156 BTRFS_I(old_inode)->dir_index = 0ULL;
9157 BTRFS_I(new_inode)->dir_index = 0ULL;
9158
9159 /* Reference for the source. */
9160 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9161 /* force full log commit if subvolume involved. */
9162 btrfs_set_log_full_commit(trans);
9163 } else {
9164 ret = btrfs_insert_inode_ref(trans, dest,
9165 new_dentry->d_name.name,
9166 new_dentry->d_name.len,
9167 old_ino,
9168 btrfs_ino(BTRFS_I(new_dir)),
9169 old_idx);
9170 if (ret)
9171 goto out_fail;
9172 need_abort = true;
9173 }
9174
9175 /* And now for the dest. */
9176 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9177 /* force full log commit if subvolume involved. */
9178 btrfs_set_log_full_commit(trans);
9179 } else {
9180 ret = btrfs_insert_inode_ref(trans, root,
9181 old_dentry->d_name.name,
9182 old_dentry->d_name.len,
9183 new_ino,
9184 btrfs_ino(BTRFS_I(old_dir)),
9185 new_idx);
9186 if (ret) {
9187 if (need_abort)
9188 btrfs_abort_transaction(trans, ret);
9189 goto out_fail;
9190 }
9191 }
9192
9193 /* Update inode version and ctime/mtime. */
9194 inode_inc_iversion(old_dir);
9195 inode_inc_iversion(new_dir);
9196 inode_inc_iversion(old_inode);
9197 inode_inc_iversion(new_inode);
9198 old_dir->i_ctime = old_dir->i_mtime = ctime;
9199 new_dir->i_ctime = new_dir->i_mtime = ctime;
9200 old_inode->i_ctime = ctime;
9201 new_inode->i_ctime = ctime;
9202
9203 if (old_dentry->d_parent != new_dentry->d_parent) {
9204 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9205 BTRFS_I(old_inode), 1);
9206 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9207 BTRFS_I(new_inode), 1);
9208 }
9209
9210 /* src is a subvolume */
9211 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9212 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9213 } else { /* src is an inode */
9214 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9215 BTRFS_I(old_dentry->d_inode),
9216 old_dentry->d_name.name,
9217 old_dentry->d_name.len,
9218 &old_rename_ctx);
9219 if (!ret)
9220 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9221 }
9222 if (ret) {
9223 btrfs_abort_transaction(trans, ret);
9224 goto out_fail;
9225 }
9226
9227 /* dest is a subvolume */
9228 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9229 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9230 } else { /* dest is an inode */
9231 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9232 BTRFS_I(new_dentry->d_inode),
9233 new_dentry->d_name.name,
9234 new_dentry->d_name.len,
9235 &new_rename_ctx);
9236 if (!ret)
9237 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9238 }
9239 if (ret) {
9240 btrfs_abort_transaction(trans, ret);
9241 goto out_fail;
9242 }
9243
9244 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9245 new_dentry->d_name.name,
9246 new_dentry->d_name.len, 0, old_idx);
9247 if (ret) {
9248 btrfs_abort_transaction(trans, ret);
9249 goto out_fail;
9250 }
9251
9252 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9253 old_dentry->d_name.name,
9254 old_dentry->d_name.len, 0, new_idx);
9255 if (ret) {
9256 btrfs_abort_transaction(trans, ret);
9257 goto out_fail;
9258 }
9259
9260 if (old_inode->i_nlink == 1)
9261 BTRFS_I(old_inode)->dir_index = old_idx;
9262 if (new_inode->i_nlink == 1)
9263 BTRFS_I(new_inode)->dir_index = new_idx;
9264
9265 /*
9266 * Now pin the logs of the roots. We do it to ensure that no other task
9267 * can sync the logs while we are in progress with the rename, because
9268 * that could result in an inconsistency in case any of the inodes that
9269 * are part of this rename operation were logged before.
9270 */
9271 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9272 btrfs_pin_log_trans(root);
9273 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9274 btrfs_pin_log_trans(dest);
9275
9276 /* Do the log updates for all inodes. */
9277 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9278 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9279 old_rename_ctx.index, new_dentry->d_parent);
9280 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9281 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9282 new_rename_ctx.index, old_dentry->d_parent);
9283
9284 /* Now unpin the logs. */
9285 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9286 btrfs_end_log_trans(root);
9287 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9288 btrfs_end_log_trans(dest);
9289 out_fail:
9290 ret2 = btrfs_end_transaction(trans);
9291 ret = ret ? ret : ret2;
9292 out_notrans:
9293 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9294 old_ino == BTRFS_FIRST_FREE_OBJECTID)
9295 up_read(&fs_info->subvol_sem);
9296
9297 return ret;
9298 }
9299
9300 static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9301 struct inode *dir)
9302 {
9303 struct inode *inode;
9304
9305 inode = new_inode(dir->i_sb);
9306 if (inode) {
9307 inode_init_owner(mnt_userns, inode, dir,
9308 S_IFCHR | WHITEOUT_MODE);
9309 inode->i_op = &btrfs_special_inode_operations;
9310 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9311 }
9312 return inode;
9313 }
9314
9315 static int btrfs_rename(struct user_namespace *mnt_userns,
9316 struct inode *old_dir, struct dentry *old_dentry,
9317 struct inode *new_dir, struct dentry *new_dentry,
9318 unsigned int flags)
9319 {
9320 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9321 struct btrfs_new_inode_args whiteout_args = {
9322 .dir = old_dir,
9323 .dentry = old_dentry,
9324 };
9325 struct btrfs_trans_handle *trans;
9326 unsigned int trans_num_items;
9327 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9328 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9329 struct inode *new_inode = d_inode(new_dentry);
9330 struct inode *old_inode = d_inode(old_dentry);
9331 struct btrfs_rename_ctx rename_ctx;
9332 u64 index = 0;
9333 int ret;
9334 int ret2;
9335 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9336
9337 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9338 return -EPERM;
9339
9340 /* we only allow rename subvolume link between subvolumes */
9341 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9342 return -EXDEV;
9343
9344 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9345 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9346 return -ENOTEMPTY;
9347
9348 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9349 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9350 return -ENOTEMPTY;
9351
9352
9353 /* check for collisions, even if the name isn't there */
9354 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9355 new_dentry->d_name.name,
9356 new_dentry->d_name.len);
9357
9358 if (ret) {
9359 if (ret == -EEXIST) {
9360 /* we shouldn't get
9361 * eexist without a new_inode */
9362 if (WARN_ON(!new_inode)) {
9363 return ret;
9364 }
9365 } else {
9366 /* maybe -EOVERFLOW */
9367 return ret;
9368 }
9369 }
9370 ret = 0;
9371
9372 /*
9373 * we're using rename to replace one file with another. Start IO on it
9374 * now so we don't add too much work to the end of the transaction
9375 */
9376 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9377 filemap_flush(old_inode->i_mapping);
9378
9379 if (flags & RENAME_WHITEOUT) {
9380 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9381 if (!whiteout_args.inode)
9382 return -ENOMEM;
9383 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9384 if (ret)
9385 goto out_whiteout_inode;
9386 } else {
9387 /* 1 to update the old parent inode. */
9388 trans_num_items = 1;
9389 }
9390
9391 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9392 /* Close the race window with snapshot create/destroy ioctl */
9393 down_read(&fs_info->subvol_sem);
9394 /*
9395 * 1 to remove old root ref
9396 * 1 to remove old root backref
9397 * 1 to add new root ref
9398 * 1 to add new root backref
9399 */
9400 trans_num_items += 4;
9401 } else {
9402 /*
9403 * 1 to update inode
9404 * 1 to remove old inode ref
9405 * 1 to add new inode ref
9406 */
9407 trans_num_items += 3;
9408 }
9409 /*
9410 * 1 to remove old dir item
9411 * 1 to remove old dir index
9412 * 1 to add new dir item
9413 * 1 to add new dir index
9414 */
9415 trans_num_items += 4;
9416 /* 1 to update new parent inode if it's not the same as the old parent */
9417 if (new_dir != old_dir)
9418 trans_num_items++;
9419 if (new_inode) {
9420 /*
9421 * 1 to update inode
9422 * 1 to remove inode ref
9423 * 1 to remove dir item
9424 * 1 to remove dir index
9425 * 1 to possibly add orphan item
9426 */
9427 trans_num_items += 5;
9428 }
9429 trans = btrfs_start_transaction(root, trans_num_items);
9430 if (IS_ERR(trans)) {
9431 ret = PTR_ERR(trans);
9432 goto out_notrans;
9433 }
9434
9435 if (dest != root) {
9436 ret = btrfs_record_root_in_trans(trans, dest);
9437 if (ret)
9438 goto out_fail;
9439 }
9440
9441 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9442 if (ret)
9443 goto out_fail;
9444
9445 BTRFS_I(old_inode)->dir_index = 0ULL;
9446 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9447 /* force full log commit if subvolume involved. */
9448 btrfs_set_log_full_commit(trans);
9449 } else {
9450 ret = btrfs_insert_inode_ref(trans, dest,
9451 new_dentry->d_name.name,
9452 new_dentry->d_name.len,
9453 old_ino,
9454 btrfs_ino(BTRFS_I(new_dir)), index);
9455 if (ret)
9456 goto out_fail;
9457 }
9458
9459 inode_inc_iversion(old_dir);
9460 inode_inc_iversion(new_dir);
9461 inode_inc_iversion(old_inode);
9462 old_dir->i_ctime = old_dir->i_mtime =
9463 new_dir->i_ctime = new_dir->i_mtime =
9464 old_inode->i_ctime = current_time(old_dir);
9465
9466 if (old_dentry->d_parent != new_dentry->d_parent)
9467 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9468 BTRFS_I(old_inode), 1);
9469
9470 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9471 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9472 } else {
9473 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9474 BTRFS_I(d_inode(old_dentry)),
9475 old_dentry->d_name.name,
9476 old_dentry->d_name.len,
9477 &rename_ctx);
9478 if (!ret)
9479 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9480 }
9481 if (ret) {
9482 btrfs_abort_transaction(trans, ret);
9483 goto out_fail;
9484 }
9485
9486 if (new_inode) {
9487 inode_inc_iversion(new_inode);
9488 new_inode->i_ctime = current_time(new_inode);
9489 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9490 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9491 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9492 BUG_ON(new_inode->i_nlink == 0);
9493 } else {
9494 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9495 BTRFS_I(d_inode(new_dentry)),
9496 new_dentry->d_name.name,
9497 new_dentry->d_name.len);
9498 }
9499 if (!ret && new_inode->i_nlink == 0)
9500 ret = btrfs_orphan_add(trans,
9501 BTRFS_I(d_inode(new_dentry)));
9502 if (ret) {
9503 btrfs_abort_transaction(trans, ret);
9504 goto out_fail;
9505 }
9506 }
9507
9508 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9509 new_dentry->d_name.name,
9510 new_dentry->d_name.len, 0, index);
9511 if (ret) {
9512 btrfs_abort_transaction(trans, ret);
9513 goto out_fail;
9514 }
9515
9516 if (old_inode->i_nlink == 1)
9517 BTRFS_I(old_inode)->dir_index = index;
9518
9519 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9520 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9521 rename_ctx.index, new_dentry->d_parent);
9522
9523 if (flags & RENAME_WHITEOUT) {
9524 ret = btrfs_create_new_inode(trans, &whiteout_args);
9525 if (ret) {
9526 btrfs_abort_transaction(trans, ret);
9527 goto out_fail;
9528 } else {
9529 unlock_new_inode(whiteout_args.inode);
9530 iput(whiteout_args.inode);
9531 whiteout_args.inode = NULL;
9532 }
9533 }
9534 out_fail:
9535 ret2 = btrfs_end_transaction(trans);
9536 ret = ret ? ret : ret2;
9537 out_notrans:
9538 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9539 up_read(&fs_info->subvol_sem);
9540 if (flags & RENAME_WHITEOUT)
9541 btrfs_new_inode_args_destroy(&whiteout_args);
9542 out_whiteout_inode:
9543 if (flags & RENAME_WHITEOUT)
9544 iput(whiteout_args.inode);
9545 return ret;
9546 }
9547
9548 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9549 struct dentry *old_dentry, struct inode *new_dir,
9550 struct dentry *new_dentry, unsigned int flags)
9551 {
9552 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9553 return -EINVAL;
9554
9555 if (flags & RENAME_EXCHANGE)
9556 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9557 new_dentry);
9558
9559 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9560 new_dentry, flags);
9561 }
9562
9563 struct btrfs_delalloc_work {
9564 struct inode *inode;
9565 struct completion completion;
9566 struct list_head list;
9567 struct btrfs_work work;
9568 };
9569
9570 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9571 {
9572 struct btrfs_delalloc_work *delalloc_work;
9573 struct inode *inode;
9574
9575 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9576 work);
9577 inode = delalloc_work->inode;
9578 filemap_flush(inode->i_mapping);
9579 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9580 &BTRFS_I(inode)->runtime_flags))
9581 filemap_flush(inode->i_mapping);
9582
9583 iput(inode);
9584 complete(&delalloc_work->completion);
9585 }
9586
9587 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9588 {
9589 struct btrfs_delalloc_work *work;
9590
9591 work = kmalloc(sizeof(*work), GFP_NOFS);
9592 if (!work)
9593 return NULL;
9594
9595 init_completion(&work->completion);
9596 INIT_LIST_HEAD(&work->list);
9597 work->inode = inode;
9598 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9599
9600 return work;
9601 }
9602
9603 /*
9604 * some fairly slow code that needs optimization. This walks the list
9605 * of all the inodes with pending delalloc and forces them to disk.
9606 */
9607 static int start_delalloc_inodes(struct btrfs_root *root,
9608 struct writeback_control *wbc, bool snapshot,
9609 bool in_reclaim_context)
9610 {
9611 struct btrfs_inode *binode;
9612 struct inode *inode;
9613 struct btrfs_delalloc_work *work, *next;
9614 struct list_head works;
9615 struct list_head splice;
9616 int ret = 0;
9617 bool full_flush = wbc->nr_to_write == LONG_MAX;
9618
9619 INIT_LIST_HEAD(&works);
9620 INIT_LIST_HEAD(&splice);
9621
9622 mutex_lock(&root->delalloc_mutex);
9623 spin_lock(&root->delalloc_lock);
9624 list_splice_init(&root->delalloc_inodes, &splice);
9625 while (!list_empty(&splice)) {
9626 binode = list_entry(splice.next, struct btrfs_inode,
9627 delalloc_inodes);
9628
9629 list_move_tail(&binode->delalloc_inodes,
9630 &root->delalloc_inodes);
9631
9632 if (in_reclaim_context &&
9633 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9634 continue;
9635
9636 inode = igrab(&binode->vfs_inode);
9637 if (!inode) {
9638 cond_resched_lock(&root->delalloc_lock);
9639 continue;
9640 }
9641 spin_unlock(&root->delalloc_lock);
9642
9643 if (snapshot)
9644 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9645 &binode->runtime_flags);
9646 if (full_flush) {
9647 work = btrfs_alloc_delalloc_work(inode);
9648 if (!work) {
9649 iput(inode);
9650 ret = -ENOMEM;
9651 goto out;
9652 }
9653 list_add_tail(&work->list, &works);
9654 btrfs_queue_work(root->fs_info->flush_workers,
9655 &work->work);
9656 } else {
9657 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9658 btrfs_add_delayed_iput(inode);
9659 if (ret || wbc->nr_to_write <= 0)
9660 goto out;
9661 }
9662 cond_resched();
9663 spin_lock(&root->delalloc_lock);
9664 }
9665 spin_unlock(&root->delalloc_lock);
9666
9667 out:
9668 list_for_each_entry_safe(work, next, &works, list) {
9669 list_del_init(&work->list);
9670 wait_for_completion(&work->completion);
9671 kfree(work);
9672 }
9673
9674 if (!list_empty(&splice)) {
9675 spin_lock(&root->delalloc_lock);
9676 list_splice_tail(&splice, &root->delalloc_inodes);
9677 spin_unlock(&root->delalloc_lock);
9678 }
9679 mutex_unlock(&root->delalloc_mutex);
9680 return ret;
9681 }
9682
9683 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9684 {
9685 struct writeback_control wbc = {
9686 .nr_to_write = LONG_MAX,
9687 .sync_mode = WB_SYNC_NONE,
9688 .range_start = 0,
9689 .range_end = LLONG_MAX,
9690 };
9691 struct btrfs_fs_info *fs_info = root->fs_info;
9692
9693 if (BTRFS_FS_ERROR(fs_info))
9694 return -EROFS;
9695
9696 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9697 }
9698
9699 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9700 bool in_reclaim_context)
9701 {
9702 struct writeback_control wbc = {
9703 .nr_to_write = nr,
9704 .sync_mode = WB_SYNC_NONE,
9705 .range_start = 0,
9706 .range_end = LLONG_MAX,
9707 };
9708 struct btrfs_root *root;
9709 struct list_head splice;
9710 int ret;
9711
9712 if (BTRFS_FS_ERROR(fs_info))
9713 return -EROFS;
9714
9715 INIT_LIST_HEAD(&splice);
9716
9717 mutex_lock(&fs_info->delalloc_root_mutex);
9718 spin_lock(&fs_info->delalloc_root_lock);
9719 list_splice_init(&fs_info->delalloc_roots, &splice);
9720 while (!list_empty(&splice)) {
9721 /*
9722 * Reset nr_to_write here so we know that we're doing a full
9723 * flush.
9724 */
9725 if (nr == LONG_MAX)
9726 wbc.nr_to_write = LONG_MAX;
9727
9728 root = list_first_entry(&splice, struct btrfs_root,
9729 delalloc_root);
9730 root = btrfs_grab_root(root);
9731 BUG_ON(!root);
9732 list_move_tail(&root->delalloc_root,
9733 &fs_info->delalloc_roots);
9734 spin_unlock(&fs_info->delalloc_root_lock);
9735
9736 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9737 btrfs_put_root(root);
9738 if (ret < 0 || wbc.nr_to_write <= 0)
9739 goto out;
9740 spin_lock(&fs_info->delalloc_root_lock);
9741 }
9742 spin_unlock(&fs_info->delalloc_root_lock);
9743
9744 ret = 0;
9745 out:
9746 if (!list_empty(&splice)) {
9747 spin_lock(&fs_info->delalloc_root_lock);
9748 list_splice_tail(&splice, &fs_info->delalloc_roots);
9749 spin_unlock(&fs_info->delalloc_root_lock);
9750 }
9751 mutex_unlock(&fs_info->delalloc_root_mutex);
9752 return ret;
9753 }
9754
9755 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9756 struct dentry *dentry, const char *symname)
9757 {
9758 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9759 struct btrfs_trans_handle *trans;
9760 struct btrfs_root *root = BTRFS_I(dir)->root;
9761 struct btrfs_path *path;
9762 struct btrfs_key key;
9763 struct inode *inode;
9764 struct btrfs_new_inode_args new_inode_args = {
9765 .dir = dir,
9766 .dentry = dentry,
9767 };
9768 unsigned int trans_num_items;
9769 int err;
9770 int name_len;
9771 int datasize;
9772 unsigned long ptr;
9773 struct btrfs_file_extent_item *ei;
9774 struct extent_buffer *leaf;
9775
9776 name_len = strlen(symname);
9777 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9778 return -ENAMETOOLONG;
9779
9780 inode = new_inode(dir->i_sb);
9781 if (!inode)
9782 return -ENOMEM;
9783 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9784 inode->i_op = &btrfs_symlink_inode_operations;
9785 inode_nohighmem(inode);
9786 inode->i_mapping->a_ops = &btrfs_aops;
9787 btrfs_i_size_write(BTRFS_I(inode), name_len);
9788 inode_set_bytes(inode, name_len);
9789
9790 new_inode_args.inode = inode;
9791 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9792 if (err)
9793 goto out_inode;
9794 /* 1 additional item for the inline extent */
9795 trans_num_items++;
9796
9797 trans = btrfs_start_transaction(root, trans_num_items);
9798 if (IS_ERR(trans)) {
9799 err = PTR_ERR(trans);
9800 goto out_new_inode_args;
9801 }
9802
9803 err = btrfs_create_new_inode(trans, &new_inode_args);
9804 if (err)
9805 goto out;
9806
9807 path = btrfs_alloc_path();
9808 if (!path) {
9809 err = -ENOMEM;
9810 btrfs_abort_transaction(trans, err);
9811 discard_new_inode(inode);
9812 inode = NULL;
9813 goto out;
9814 }
9815 key.objectid = btrfs_ino(BTRFS_I(inode));
9816 key.offset = 0;
9817 key.type = BTRFS_EXTENT_DATA_KEY;
9818 datasize = btrfs_file_extent_calc_inline_size(name_len);
9819 err = btrfs_insert_empty_item(trans, root, path, &key,
9820 datasize);
9821 if (err) {
9822 btrfs_abort_transaction(trans, err);
9823 btrfs_free_path(path);
9824 discard_new_inode(inode);
9825 inode = NULL;
9826 goto out;
9827 }
9828 leaf = path->nodes[0];
9829 ei = btrfs_item_ptr(leaf, path->slots[0],
9830 struct btrfs_file_extent_item);
9831 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9832 btrfs_set_file_extent_type(leaf, ei,
9833 BTRFS_FILE_EXTENT_INLINE);
9834 btrfs_set_file_extent_encryption(leaf, ei, 0);
9835 btrfs_set_file_extent_compression(leaf, ei, 0);
9836 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9837 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9838
9839 ptr = btrfs_file_extent_inline_start(ei);
9840 write_extent_buffer(leaf, symname, ptr, name_len);
9841 btrfs_mark_buffer_dirty(leaf);
9842 btrfs_free_path(path);
9843
9844 d_instantiate_new(dentry, inode);
9845 err = 0;
9846 out:
9847 btrfs_end_transaction(trans);
9848 btrfs_btree_balance_dirty(fs_info);
9849 out_new_inode_args:
9850 btrfs_new_inode_args_destroy(&new_inode_args);
9851 out_inode:
9852 if (err)
9853 iput(inode);
9854 return err;
9855 }
9856
9857 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9858 struct btrfs_trans_handle *trans_in,
9859 struct btrfs_inode *inode,
9860 struct btrfs_key *ins,
9861 u64 file_offset)
9862 {
9863 struct btrfs_file_extent_item stack_fi;
9864 struct btrfs_replace_extent_info extent_info;
9865 struct btrfs_trans_handle *trans = trans_in;
9866 struct btrfs_path *path;
9867 u64 start = ins->objectid;
9868 u64 len = ins->offset;
9869 int qgroup_released;
9870 int ret;
9871
9872 memset(&stack_fi, 0, sizeof(stack_fi));
9873
9874 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9875 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9876 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9877 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9878 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9879 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9880 /* Encryption and other encoding is reserved and all 0 */
9881
9882 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9883 if (qgroup_released < 0)
9884 return ERR_PTR(qgroup_released);
9885
9886 if (trans) {
9887 ret = insert_reserved_file_extent(trans, inode,
9888 file_offset, &stack_fi,
9889 true, qgroup_released);
9890 if (ret)
9891 goto free_qgroup;
9892 return trans;
9893 }
9894
9895 extent_info.disk_offset = start;
9896 extent_info.disk_len = len;
9897 extent_info.data_offset = 0;
9898 extent_info.data_len = len;
9899 extent_info.file_offset = file_offset;
9900 extent_info.extent_buf = (char *)&stack_fi;
9901 extent_info.is_new_extent = true;
9902 extent_info.update_times = true;
9903 extent_info.qgroup_reserved = qgroup_released;
9904 extent_info.insertions = 0;
9905
9906 path = btrfs_alloc_path();
9907 if (!path) {
9908 ret = -ENOMEM;
9909 goto free_qgroup;
9910 }
9911
9912 ret = btrfs_replace_file_extents(inode, path, file_offset,
9913 file_offset + len - 1, &extent_info,
9914 &trans);
9915 btrfs_free_path(path);
9916 if (ret)
9917 goto free_qgroup;
9918 return trans;
9919
9920 free_qgroup:
9921 /*
9922 * We have released qgroup data range at the beginning of the function,
9923 * and normally qgroup_released bytes will be freed when committing
9924 * transaction.
9925 * But if we error out early, we have to free what we have released
9926 * or we leak qgroup data reservation.
9927 */
9928 btrfs_qgroup_free_refroot(inode->root->fs_info,
9929 inode->root->root_key.objectid, qgroup_released,
9930 BTRFS_QGROUP_RSV_DATA);
9931 return ERR_PTR(ret);
9932 }
9933
9934 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9935 u64 start, u64 num_bytes, u64 min_size,
9936 loff_t actual_len, u64 *alloc_hint,
9937 struct btrfs_trans_handle *trans)
9938 {
9939 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9940 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9941 struct extent_map *em;
9942 struct btrfs_root *root = BTRFS_I(inode)->root;
9943 struct btrfs_key ins;
9944 u64 cur_offset = start;
9945 u64 clear_offset = start;
9946 u64 i_size;
9947 u64 cur_bytes;
9948 u64 last_alloc = (u64)-1;
9949 int ret = 0;
9950 bool own_trans = true;
9951 u64 end = start + num_bytes - 1;
9952
9953 if (trans)
9954 own_trans = false;
9955 while (num_bytes > 0) {
9956 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9957 cur_bytes = max(cur_bytes, min_size);
9958 /*
9959 * If we are severely fragmented we could end up with really
9960 * small allocations, so if the allocator is returning small
9961 * chunks lets make its job easier by only searching for those
9962 * sized chunks.
9963 */
9964 cur_bytes = min(cur_bytes, last_alloc);
9965 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9966 min_size, 0, *alloc_hint, &ins, 1, 0);
9967 if (ret)
9968 break;
9969
9970 /*
9971 * We've reserved this space, and thus converted it from
9972 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9973 * from here on out we will only need to clear our reservation
9974 * for the remaining unreserved area, so advance our
9975 * clear_offset by our extent size.
9976 */
9977 clear_offset += ins.offset;
9978
9979 last_alloc = ins.offset;
9980 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9981 &ins, cur_offset);
9982 /*
9983 * Now that we inserted the prealloc extent we can finally
9984 * decrement the number of reservations in the block group.
9985 * If we did it before, we could race with relocation and have
9986 * relocation miss the reserved extent, making it fail later.
9987 */
9988 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9989 if (IS_ERR(trans)) {
9990 ret = PTR_ERR(trans);
9991 btrfs_free_reserved_extent(fs_info, ins.objectid,
9992 ins.offset, 0);
9993 break;
9994 }
9995
9996 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9997 cur_offset + ins.offset -1, 0);
9998
9999 em = alloc_extent_map();
10000 if (!em) {
10001 btrfs_set_inode_full_sync(BTRFS_I(inode));
10002 goto next;
10003 }
10004
10005 em->start = cur_offset;
10006 em->orig_start = cur_offset;
10007 em->len = ins.offset;
10008 em->block_start = ins.objectid;
10009 em->block_len = ins.offset;
10010 em->orig_block_len = ins.offset;
10011 em->ram_bytes = ins.offset;
10012 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10013 em->generation = trans->transid;
10014
10015 while (1) {
10016 write_lock(&em_tree->lock);
10017 ret = add_extent_mapping(em_tree, em, 1);
10018 write_unlock(&em_tree->lock);
10019 if (ret != -EEXIST)
10020 break;
10021 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10022 cur_offset + ins.offset - 1,
10023 0);
10024 }
10025 free_extent_map(em);
10026 next:
10027 num_bytes -= ins.offset;
10028 cur_offset += ins.offset;
10029 *alloc_hint = ins.objectid + ins.offset;
10030
10031 inode_inc_iversion(inode);
10032 inode->i_ctime = current_time(inode);
10033 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10034 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10035 (actual_len > inode->i_size) &&
10036 (cur_offset > inode->i_size)) {
10037 if (cur_offset > actual_len)
10038 i_size = actual_len;
10039 else
10040 i_size = cur_offset;
10041 i_size_write(inode, i_size);
10042 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10043 }
10044
10045 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10046
10047 if (ret) {
10048 btrfs_abort_transaction(trans, ret);
10049 if (own_trans)
10050 btrfs_end_transaction(trans);
10051 break;
10052 }
10053
10054 if (own_trans) {
10055 btrfs_end_transaction(trans);
10056 trans = NULL;
10057 }
10058 }
10059 if (clear_offset < end)
10060 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10061 end - clear_offset + 1);
10062 return ret;
10063 }
10064
10065 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10066 u64 start, u64 num_bytes, u64 min_size,
10067 loff_t actual_len, u64 *alloc_hint)
10068 {
10069 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10070 min_size, actual_len, alloc_hint,
10071 NULL);
10072 }
10073
10074 int btrfs_prealloc_file_range_trans(struct inode *inode,
10075 struct btrfs_trans_handle *trans, int mode,
10076 u64 start, u64 num_bytes, u64 min_size,
10077 loff_t actual_len, u64 *alloc_hint)
10078 {
10079 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10080 min_size, actual_len, alloc_hint, trans);
10081 }
10082
10083 static int btrfs_permission(struct user_namespace *mnt_userns,
10084 struct inode *inode, int mask)
10085 {
10086 struct btrfs_root *root = BTRFS_I(inode)->root;
10087 umode_t mode = inode->i_mode;
10088
10089 if (mask & MAY_WRITE &&
10090 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10091 if (btrfs_root_readonly(root))
10092 return -EROFS;
10093 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10094 return -EACCES;
10095 }
10096 return generic_permission(mnt_userns, inode, mask);
10097 }
10098
10099 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10100 struct dentry *dentry, umode_t mode)
10101 {
10102 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10103 struct btrfs_trans_handle *trans;
10104 struct btrfs_root *root = BTRFS_I(dir)->root;
10105 struct inode *inode;
10106 struct btrfs_new_inode_args new_inode_args = {
10107 .dir = dir,
10108 .dentry = dentry,
10109 .orphan = true,
10110 };
10111 unsigned int trans_num_items;
10112 int ret;
10113
10114 inode = new_inode(dir->i_sb);
10115 if (!inode)
10116 return -ENOMEM;
10117 inode_init_owner(mnt_userns, inode, dir, mode);
10118 inode->i_fop = &btrfs_file_operations;
10119 inode->i_op = &btrfs_file_inode_operations;
10120 inode->i_mapping->a_ops = &btrfs_aops;
10121
10122 new_inode_args.inode = inode;
10123 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
10124 if (ret)
10125 goto out_inode;
10126
10127 trans = btrfs_start_transaction(root, trans_num_items);
10128 if (IS_ERR(trans)) {
10129 ret = PTR_ERR(trans);
10130 goto out_new_inode_args;
10131 }
10132
10133 ret = btrfs_create_new_inode(trans, &new_inode_args);
10134
10135 /*
10136 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10137 * set it to 1 because d_tmpfile() will issue a warning if the count is
10138 * 0, through:
10139 *
10140 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10141 */
10142 set_nlink(inode, 1);
10143
10144 if (!ret) {
10145 d_tmpfile(dentry, inode);
10146 unlock_new_inode(inode);
10147 mark_inode_dirty(inode);
10148 }
10149
10150 btrfs_end_transaction(trans);
10151 btrfs_btree_balance_dirty(fs_info);
10152 out_new_inode_args:
10153 btrfs_new_inode_args_destroy(&new_inode_args);
10154 out_inode:
10155 if (ret)
10156 iput(inode);
10157 return ret;
10158 }
10159
10160 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10161 {
10162 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10163 unsigned long index = start >> PAGE_SHIFT;
10164 unsigned long end_index = end >> PAGE_SHIFT;
10165 struct page *page;
10166 u32 len;
10167
10168 ASSERT(end + 1 - start <= U32_MAX);
10169 len = end + 1 - start;
10170 while (index <= end_index) {
10171 page = find_get_page(inode->vfs_inode.i_mapping, index);
10172 ASSERT(page); /* Pages should be in the extent_io_tree */
10173
10174 btrfs_page_set_writeback(fs_info, page, start, len);
10175 put_page(page);
10176 index++;
10177 }
10178 }
10179
10180 static int btrfs_encoded_io_compression_from_extent(
10181 struct btrfs_fs_info *fs_info,
10182 int compress_type)
10183 {
10184 switch (compress_type) {
10185 case BTRFS_COMPRESS_NONE:
10186 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10187 case BTRFS_COMPRESS_ZLIB:
10188 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10189 case BTRFS_COMPRESS_LZO:
10190 /*
10191 * The LZO format depends on the sector size. 64K is the maximum
10192 * sector size that we support.
10193 */
10194 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10195 return -EINVAL;
10196 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10197 (fs_info->sectorsize_bits - 12);
10198 case BTRFS_COMPRESS_ZSTD:
10199 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10200 default:
10201 return -EUCLEAN;
10202 }
10203 }
10204
10205 static ssize_t btrfs_encoded_read_inline(
10206 struct kiocb *iocb,
10207 struct iov_iter *iter, u64 start,
10208 u64 lockend,
10209 struct extent_state **cached_state,
10210 u64 extent_start, size_t count,
10211 struct btrfs_ioctl_encoded_io_args *encoded,
10212 bool *unlocked)
10213 {
10214 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10215 struct btrfs_root *root = inode->root;
10216 struct btrfs_fs_info *fs_info = root->fs_info;
10217 struct extent_io_tree *io_tree = &inode->io_tree;
10218 struct btrfs_path *path;
10219 struct extent_buffer *leaf;
10220 struct btrfs_file_extent_item *item;
10221 u64 ram_bytes;
10222 unsigned long ptr;
10223 void *tmp;
10224 ssize_t ret;
10225
10226 path = btrfs_alloc_path();
10227 if (!path) {
10228 ret = -ENOMEM;
10229 goto out;
10230 }
10231 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10232 extent_start, 0);
10233 if (ret) {
10234 if (ret > 0) {
10235 /* The extent item disappeared? */
10236 ret = -EIO;
10237 }
10238 goto out;
10239 }
10240 leaf = path->nodes[0];
10241 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10242
10243 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10244 ptr = btrfs_file_extent_inline_start(item);
10245
10246 encoded->len = min_t(u64, extent_start + ram_bytes,
10247 inode->vfs_inode.i_size) - iocb->ki_pos;
10248 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10249 btrfs_file_extent_compression(leaf, item));
10250 if (ret < 0)
10251 goto out;
10252 encoded->compression = ret;
10253 if (encoded->compression) {
10254 size_t inline_size;
10255
10256 inline_size = btrfs_file_extent_inline_item_len(leaf,
10257 path->slots[0]);
10258 if (inline_size > count) {
10259 ret = -ENOBUFS;
10260 goto out;
10261 }
10262 count = inline_size;
10263 encoded->unencoded_len = ram_bytes;
10264 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10265 } else {
10266 count = min_t(u64, count, encoded->len);
10267 encoded->len = count;
10268 encoded->unencoded_len = count;
10269 ptr += iocb->ki_pos - extent_start;
10270 }
10271
10272 tmp = kmalloc(count, GFP_NOFS);
10273 if (!tmp) {
10274 ret = -ENOMEM;
10275 goto out;
10276 }
10277 read_extent_buffer(leaf, tmp, ptr, count);
10278 btrfs_release_path(path);
10279 unlock_extent_cached(io_tree, start, lockend, cached_state);
10280 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10281 *unlocked = true;
10282
10283 ret = copy_to_iter(tmp, count, iter);
10284 if (ret != count)
10285 ret = -EFAULT;
10286 kfree(tmp);
10287 out:
10288 btrfs_free_path(path);
10289 return ret;
10290 }
10291
10292 struct btrfs_encoded_read_private {
10293 struct btrfs_inode *inode;
10294 u64 file_offset;
10295 wait_queue_head_t wait;
10296 atomic_t pending;
10297 blk_status_t status;
10298 bool skip_csum;
10299 };
10300
10301 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10302 struct bio *bio, int mirror_num)
10303 {
10304 struct btrfs_encoded_read_private *priv = bio->bi_private;
10305 struct btrfs_bio *bbio = btrfs_bio(bio);
10306 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10307 blk_status_t ret;
10308
10309 if (!priv->skip_csum) {
10310 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10311 if (ret)
10312 return ret;
10313 }
10314
10315 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
10316 if (ret) {
10317 btrfs_bio_free_csum(bbio);
10318 return ret;
10319 }
10320
10321 atomic_inc(&priv->pending);
10322 ret = btrfs_map_bio(fs_info, bio, mirror_num);
10323 if (ret) {
10324 atomic_dec(&priv->pending);
10325 btrfs_bio_free_csum(bbio);
10326 }
10327 return ret;
10328 }
10329
10330 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10331 {
10332 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
10333 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private;
10334 struct btrfs_inode *inode = priv->inode;
10335 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10336 u32 sectorsize = fs_info->sectorsize;
10337 struct bio_vec *bvec;
10338 struct bvec_iter_all iter_all;
10339 u64 start = priv->file_offset;
10340 u32 bio_offset = 0;
10341
10342 if (priv->skip_csum || !uptodate)
10343 return bbio->bio.bi_status;
10344
10345 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10346 unsigned int i, nr_sectors, pgoff;
10347
10348 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10349 pgoff = bvec->bv_offset;
10350 for (i = 0; i < nr_sectors; i++) {
10351 ASSERT(pgoff < PAGE_SIZE);
10352 if (check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10353 bvec->bv_page, pgoff, start))
10354 return BLK_STS_IOERR;
10355 start += sectorsize;
10356 bio_offset += sectorsize;
10357 pgoff += sectorsize;
10358 }
10359 }
10360 return BLK_STS_OK;
10361 }
10362
10363 static void btrfs_encoded_read_endio(struct bio *bio)
10364 {
10365 struct btrfs_encoded_read_private *priv = bio->bi_private;
10366 struct btrfs_bio *bbio = btrfs_bio(bio);
10367 blk_status_t status;
10368
10369 status = btrfs_encoded_read_verify_csum(bbio);
10370 if (status) {
10371 /*
10372 * The memory barrier implied by the atomic_dec_return() here
10373 * pairs with the memory barrier implied by the
10374 * atomic_dec_return() or io_wait_event() in
10375 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10376 * write is observed before the load of status in
10377 * btrfs_encoded_read_regular_fill_pages().
10378 */
10379 WRITE_ONCE(priv->status, status);
10380 }
10381 if (!atomic_dec_return(&priv->pending))
10382 wake_up(&priv->wait);
10383 btrfs_bio_free_csum(bbio);
10384 bio_put(bio);
10385 }
10386
10387 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10388 u64 file_offset,
10389 u64 disk_bytenr,
10390 u64 disk_io_size,
10391 struct page **pages)
10392 {
10393 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10394 struct btrfs_encoded_read_private priv = {
10395 .inode = inode,
10396 .file_offset = file_offset,
10397 .pending = ATOMIC_INIT(1),
10398 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10399 };
10400 unsigned long i = 0;
10401 u64 cur = 0;
10402 int ret;
10403
10404 init_waitqueue_head(&priv.wait);
10405 /*
10406 * Submit bios for the extent, splitting due to bio or stripe limits as
10407 * necessary.
10408 */
10409 while (cur < disk_io_size) {
10410 struct extent_map *em;
10411 struct btrfs_io_geometry geom;
10412 struct bio *bio = NULL;
10413 u64 remaining;
10414
10415 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10416 disk_io_size - cur);
10417 if (IS_ERR(em)) {
10418 ret = PTR_ERR(em);
10419 } else {
10420 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10421 disk_bytenr + cur, &geom);
10422 free_extent_map(em);
10423 }
10424 if (ret) {
10425 WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10426 break;
10427 }
10428 remaining = min(geom.len, disk_io_size - cur);
10429 while (bio || remaining) {
10430 size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10431
10432 if (!bio) {
10433 bio = btrfs_bio_alloc(BIO_MAX_VECS);
10434 bio->bi_iter.bi_sector =
10435 (disk_bytenr + cur) >> SECTOR_SHIFT;
10436 bio->bi_end_io = btrfs_encoded_read_endio;
10437 bio->bi_private = &priv;
10438 bio->bi_opf = REQ_OP_READ;
10439 }
10440
10441 if (!bytes ||
10442 bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10443 blk_status_t status;
10444
10445 status = submit_encoded_read_bio(inode, bio, 0);
10446 if (status) {
10447 WRITE_ONCE(priv.status, status);
10448 bio_put(bio);
10449 goto out;
10450 }
10451 bio = NULL;
10452 continue;
10453 }
10454
10455 i++;
10456 cur += bytes;
10457 remaining -= bytes;
10458 }
10459 }
10460
10461 out:
10462 if (atomic_dec_return(&priv.pending))
10463 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10464 /* See btrfs_encoded_read_endio() for ordering. */
10465 return blk_status_to_errno(READ_ONCE(priv.status));
10466 }
10467
10468 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10469 struct iov_iter *iter,
10470 u64 start, u64 lockend,
10471 struct extent_state **cached_state,
10472 u64 disk_bytenr, u64 disk_io_size,
10473 size_t count, bool compressed,
10474 bool *unlocked)
10475 {
10476 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10477 struct extent_io_tree *io_tree = &inode->io_tree;
10478 struct page **pages;
10479 unsigned long nr_pages, i;
10480 u64 cur;
10481 size_t page_offset;
10482 ssize_t ret;
10483
10484 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10485 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10486 if (!pages)
10487 return -ENOMEM;
10488 ret = btrfs_alloc_page_array(nr_pages, pages);
10489 if (ret) {
10490 ret = -ENOMEM;
10491 goto out;
10492 }
10493
10494 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10495 disk_io_size, pages);
10496 if (ret)
10497 goto out;
10498
10499 unlock_extent_cached(io_tree, start, lockend, cached_state);
10500 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10501 *unlocked = true;
10502
10503 if (compressed) {
10504 i = 0;
10505 page_offset = 0;
10506 } else {
10507 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10508 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10509 }
10510 cur = 0;
10511 while (cur < count) {
10512 size_t bytes = min_t(size_t, count - cur,
10513 PAGE_SIZE - page_offset);
10514
10515 if (copy_page_to_iter(pages[i], page_offset, bytes,
10516 iter) != bytes) {
10517 ret = -EFAULT;
10518 goto out;
10519 }
10520 i++;
10521 cur += bytes;
10522 page_offset = 0;
10523 }
10524 ret = count;
10525 out:
10526 for (i = 0; i < nr_pages; i++) {
10527 if (pages[i])
10528 __free_page(pages[i]);
10529 }
10530 kfree(pages);
10531 return ret;
10532 }
10533
10534 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10535 struct btrfs_ioctl_encoded_io_args *encoded)
10536 {
10537 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10538 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10539 struct extent_io_tree *io_tree = &inode->io_tree;
10540 ssize_t ret;
10541 size_t count = iov_iter_count(iter);
10542 u64 start, lockend, disk_bytenr, disk_io_size;
10543 struct extent_state *cached_state = NULL;
10544 struct extent_map *em;
10545 bool unlocked = false;
10546
10547 file_accessed(iocb->ki_filp);
10548
10549 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10550
10551 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10552 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10553 return 0;
10554 }
10555 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10556 /*
10557 * We don't know how long the extent containing iocb->ki_pos is, but if
10558 * it's compressed we know that it won't be longer than this.
10559 */
10560 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10561
10562 for (;;) {
10563 struct btrfs_ordered_extent *ordered;
10564
10565 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10566 lockend - start + 1);
10567 if (ret)
10568 goto out_unlock_inode;
10569 lock_extent_bits(io_tree, start, lockend, &cached_state);
10570 ordered = btrfs_lookup_ordered_range(inode, start,
10571 lockend - start + 1);
10572 if (!ordered)
10573 break;
10574 btrfs_put_ordered_extent(ordered);
10575 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10576 cond_resched();
10577 }
10578
10579 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10580 if (IS_ERR(em)) {
10581 ret = PTR_ERR(em);
10582 goto out_unlock_extent;
10583 }
10584
10585 if (em->block_start == EXTENT_MAP_INLINE) {
10586 u64 extent_start = em->start;
10587
10588 /*
10589 * For inline extents we get everything we need out of the
10590 * extent item.
10591 */
10592 free_extent_map(em);
10593 em = NULL;
10594 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10595 &cached_state, extent_start,
10596 count, encoded, &unlocked);
10597 goto out;
10598 }
10599
10600 /*
10601 * We only want to return up to EOF even if the extent extends beyond
10602 * that.
10603 */
10604 encoded->len = min_t(u64, extent_map_end(em),
10605 inode->vfs_inode.i_size) - iocb->ki_pos;
10606 if (em->block_start == EXTENT_MAP_HOLE ||
10607 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10608 disk_bytenr = EXTENT_MAP_HOLE;
10609 count = min_t(u64, count, encoded->len);
10610 encoded->len = count;
10611 encoded->unencoded_len = count;
10612 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10613 disk_bytenr = em->block_start;
10614 /*
10615 * Bail if the buffer isn't large enough to return the whole
10616 * compressed extent.
10617 */
10618 if (em->block_len > count) {
10619 ret = -ENOBUFS;
10620 goto out_em;
10621 }
10622 disk_io_size = count = em->block_len;
10623 encoded->unencoded_len = em->ram_bytes;
10624 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10625 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10626 em->compress_type);
10627 if (ret < 0)
10628 goto out_em;
10629 encoded->compression = ret;
10630 } else {
10631 disk_bytenr = em->block_start + (start - em->start);
10632 if (encoded->len > count)
10633 encoded->len = count;
10634 /*
10635 * Don't read beyond what we locked. This also limits the page
10636 * allocations that we'll do.
10637 */
10638 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10639 count = start + disk_io_size - iocb->ki_pos;
10640 encoded->len = count;
10641 encoded->unencoded_len = count;
10642 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10643 }
10644 free_extent_map(em);
10645 em = NULL;
10646
10647 if (disk_bytenr == EXTENT_MAP_HOLE) {
10648 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10649 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10650 unlocked = true;
10651 ret = iov_iter_zero(count, iter);
10652 if (ret != count)
10653 ret = -EFAULT;
10654 } else {
10655 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10656 &cached_state, disk_bytenr,
10657 disk_io_size, count,
10658 encoded->compression,
10659 &unlocked);
10660 }
10661
10662 out:
10663 if (ret >= 0)
10664 iocb->ki_pos += encoded->len;
10665 out_em:
10666 free_extent_map(em);
10667 out_unlock_extent:
10668 if (!unlocked)
10669 unlock_extent_cached(io_tree, start, lockend, &cached_state);
10670 out_unlock_inode:
10671 if (!unlocked)
10672 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10673 return ret;
10674 }
10675
10676 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10677 const struct btrfs_ioctl_encoded_io_args *encoded)
10678 {
10679 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10680 struct btrfs_root *root = inode->root;
10681 struct btrfs_fs_info *fs_info = root->fs_info;
10682 struct extent_io_tree *io_tree = &inode->io_tree;
10683 struct extent_changeset *data_reserved = NULL;
10684 struct extent_state *cached_state = NULL;
10685 int compression;
10686 size_t orig_count;
10687 u64 start, end;
10688 u64 num_bytes, ram_bytes, disk_num_bytes;
10689 unsigned long nr_pages, i;
10690 struct page **pages;
10691 struct btrfs_key ins;
10692 bool extent_reserved = false;
10693 struct extent_map *em;
10694 ssize_t ret;
10695
10696 switch (encoded->compression) {
10697 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10698 compression = BTRFS_COMPRESS_ZLIB;
10699 break;
10700 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10701 compression = BTRFS_COMPRESS_ZSTD;
10702 break;
10703 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10704 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10705 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10706 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10707 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10708 /* The sector size must match for LZO. */
10709 if (encoded->compression -
10710 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10711 fs_info->sectorsize_bits)
10712 return -EINVAL;
10713 compression = BTRFS_COMPRESS_LZO;
10714 break;
10715 default:
10716 return -EINVAL;
10717 }
10718 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10719 return -EINVAL;
10720
10721 orig_count = iov_iter_count(from);
10722
10723 /* The extent size must be sane. */
10724 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10725 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10726 return -EINVAL;
10727
10728 /*
10729 * The compressed data must be smaller than the decompressed data.
10730 *
10731 * It's of course possible for data to compress to larger or the same
10732 * size, but the buffered I/O path falls back to no compression for such
10733 * data, and we don't want to break any assumptions by creating these
10734 * extents.
10735 *
10736 * Note that this is less strict than the current check we have that the
10737 * compressed data must be at least one sector smaller than the
10738 * decompressed data. We only want to enforce the weaker requirement
10739 * from old kernels that it is at least one byte smaller.
10740 */
10741 if (orig_count >= encoded->unencoded_len)
10742 return -EINVAL;
10743
10744 /* The extent must start on a sector boundary. */
10745 start = iocb->ki_pos;
10746 if (!IS_ALIGNED(start, fs_info->sectorsize))
10747 return -EINVAL;
10748
10749 /*
10750 * The extent must end on a sector boundary. However, we allow a write
10751 * which ends at or extends i_size to have an unaligned length; we round
10752 * up the extent size and set i_size to the unaligned end.
10753 */
10754 if (start + encoded->len < inode->vfs_inode.i_size &&
10755 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10756 return -EINVAL;
10757
10758 /* Finally, the offset in the unencoded data must be sector-aligned. */
10759 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10760 return -EINVAL;
10761
10762 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10763 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10764 end = start + num_bytes - 1;
10765
10766 /*
10767 * If the extent cannot be inline, the compressed data on disk must be
10768 * sector-aligned. For convenience, we extend it with zeroes if it
10769 * isn't.
10770 */
10771 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10772 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10773 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10774 if (!pages)
10775 return -ENOMEM;
10776 for (i = 0; i < nr_pages; i++) {
10777 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10778 char *kaddr;
10779
10780 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10781 if (!pages[i]) {
10782 ret = -ENOMEM;
10783 goto out_pages;
10784 }
10785 kaddr = kmap(pages[i]);
10786 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10787 kunmap(pages[i]);
10788 ret = -EFAULT;
10789 goto out_pages;
10790 }
10791 if (bytes < PAGE_SIZE)
10792 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10793 kunmap(pages[i]);
10794 }
10795
10796 for (;;) {
10797 struct btrfs_ordered_extent *ordered;
10798
10799 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10800 if (ret)
10801 goto out_pages;
10802 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10803 start >> PAGE_SHIFT,
10804 end >> PAGE_SHIFT);
10805 if (ret)
10806 goto out_pages;
10807 lock_extent_bits(io_tree, start, end, &cached_state);
10808 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10809 if (!ordered &&
10810 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10811 break;
10812 if (ordered)
10813 btrfs_put_ordered_extent(ordered);
10814 unlock_extent_cached(io_tree, start, end, &cached_state);
10815 cond_resched();
10816 }
10817
10818 /*
10819 * We don't use the higher-level delalloc space functions because our
10820 * num_bytes and disk_num_bytes are different.
10821 */
10822 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10823 if (ret)
10824 goto out_unlock;
10825 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10826 if (ret)
10827 goto out_free_data_space;
10828 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10829 false);
10830 if (ret)
10831 goto out_qgroup_free_data;
10832
10833 /* Try an inline extent first. */
10834 if (start == 0 && encoded->unencoded_len == encoded->len &&
10835 encoded->unencoded_offset == 0) {
10836 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10837 compression, pages, true);
10838 if (ret <= 0) {
10839 if (ret == 0)
10840 ret = orig_count;
10841 goto out_delalloc_release;
10842 }
10843 }
10844
10845 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10846 disk_num_bytes, 0, 0, &ins, 1, 1);
10847 if (ret)
10848 goto out_delalloc_release;
10849 extent_reserved = true;
10850
10851 em = create_io_em(inode, start, num_bytes,
10852 start - encoded->unencoded_offset, ins.objectid,
10853 ins.offset, ins.offset, ram_bytes, compression,
10854 BTRFS_ORDERED_COMPRESSED);
10855 if (IS_ERR(em)) {
10856 ret = PTR_ERR(em);
10857 goto out_free_reserved;
10858 }
10859 free_extent_map(em);
10860
10861 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10862 ins.objectid, ins.offset,
10863 encoded->unencoded_offset,
10864 (1 << BTRFS_ORDERED_ENCODED) |
10865 (1 << BTRFS_ORDERED_COMPRESSED),
10866 compression);
10867 if (ret) {
10868 btrfs_drop_extent_cache(inode, start, end, 0);
10869 goto out_free_reserved;
10870 }
10871 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10872
10873 if (start + encoded->len > inode->vfs_inode.i_size)
10874 i_size_write(&inode->vfs_inode, start + encoded->len);
10875
10876 unlock_extent_cached(io_tree, start, end, &cached_state);
10877
10878 btrfs_delalloc_release_extents(inode, num_bytes);
10879
10880 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10881 ins.offset, pages, nr_pages, 0, NULL,
10882 false)) {
10883 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10884 ret = -EIO;
10885 goto out_pages;
10886 }
10887 ret = orig_count;
10888 goto out;
10889
10890 out_free_reserved:
10891 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10892 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10893 out_delalloc_release:
10894 btrfs_delalloc_release_extents(inode, num_bytes);
10895 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10896 out_qgroup_free_data:
10897 if (ret < 0)
10898 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10899 out_free_data_space:
10900 /*
10901 * If btrfs_reserve_extent() succeeded, then we already decremented
10902 * bytes_may_use.
10903 */
10904 if (!extent_reserved)
10905 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10906 out_unlock:
10907 unlock_extent_cached(io_tree, start, end, &cached_state);
10908 out_pages:
10909 for (i = 0; i < nr_pages; i++) {
10910 if (pages[i])
10911 __free_page(pages[i]);
10912 }
10913 kvfree(pages);
10914 out:
10915 if (ret >= 0)
10916 iocb->ki_pos += encoded->len;
10917 return ret;
10918 }
10919
10920 #ifdef CONFIG_SWAP
10921 /*
10922 * Add an entry indicating a block group or device which is pinned by a
10923 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10924 * negative errno on failure.
10925 */
10926 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10927 bool is_block_group)
10928 {
10929 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10930 struct btrfs_swapfile_pin *sp, *entry;
10931 struct rb_node **p;
10932 struct rb_node *parent = NULL;
10933
10934 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10935 if (!sp)
10936 return -ENOMEM;
10937 sp->ptr = ptr;
10938 sp->inode = inode;
10939 sp->is_block_group = is_block_group;
10940 sp->bg_extent_count = 1;
10941
10942 spin_lock(&fs_info->swapfile_pins_lock);
10943 p = &fs_info->swapfile_pins.rb_node;
10944 while (*p) {
10945 parent = *p;
10946 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10947 if (sp->ptr < entry->ptr ||
10948 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10949 p = &(*p)->rb_left;
10950 } else if (sp->ptr > entry->ptr ||
10951 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10952 p = &(*p)->rb_right;
10953 } else {
10954 if (is_block_group)
10955 entry->bg_extent_count++;
10956 spin_unlock(&fs_info->swapfile_pins_lock);
10957 kfree(sp);
10958 return 1;
10959 }
10960 }
10961 rb_link_node(&sp->node, parent, p);
10962 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10963 spin_unlock(&fs_info->swapfile_pins_lock);
10964 return 0;
10965 }
10966
10967 /* Free all of the entries pinned by this swapfile. */
10968 static void btrfs_free_swapfile_pins(struct inode *inode)
10969 {
10970 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10971 struct btrfs_swapfile_pin *sp;
10972 struct rb_node *node, *next;
10973
10974 spin_lock(&fs_info->swapfile_pins_lock);
10975 node = rb_first(&fs_info->swapfile_pins);
10976 while (node) {
10977 next = rb_next(node);
10978 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10979 if (sp->inode == inode) {
10980 rb_erase(&sp->node, &fs_info->swapfile_pins);
10981 if (sp->is_block_group) {
10982 btrfs_dec_block_group_swap_extents(sp->ptr,
10983 sp->bg_extent_count);
10984 btrfs_put_block_group(sp->ptr);
10985 }
10986 kfree(sp);
10987 }
10988 node = next;
10989 }
10990 spin_unlock(&fs_info->swapfile_pins_lock);
10991 }
10992
10993 struct btrfs_swap_info {
10994 u64 start;
10995 u64 block_start;
10996 u64 block_len;
10997 u64 lowest_ppage;
10998 u64 highest_ppage;
10999 unsigned long nr_pages;
11000 int nr_extents;
11001 };
11002
11003 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
11004 struct btrfs_swap_info *bsi)
11005 {
11006 unsigned long nr_pages;
11007 unsigned long max_pages;
11008 u64 first_ppage, first_ppage_reported, next_ppage;
11009 int ret;
11010
11011 /*
11012 * Our swapfile may have had its size extended after the swap header was
11013 * written. In that case activating the swapfile should not go beyond
11014 * the max size set in the swap header.
11015 */
11016 if (bsi->nr_pages >= sis->max)
11017 return 0;
11018
11019 max_pages = sis->max - bsi->nr_pages;
11020 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
11021 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
11022 PAGE_SIZE) >> PAGE_SHIFT;
11023
11024 if (first_ppage >= next_ppage)
11025 return 0;
11026 nr_pages = next_ppage - first_ppage;
11027 nr_pages = min(nr_pages, max_pages);
11028
11029 first_ppage_reported = first_ppage;
11030 if (bsi->start == 0)
11031 first_ppage_reported++;
11032 if (bsi->lowest_ppage > first_ppage_reported)
11033 bsi->lowest_ppage = first_ppage_reported;
11034 if (bsi->highest_ppage < (next_ppage - 1))
11035 bsi->highest_ppage = next_ppage - 1;
11036
11037 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11038 if (ret < 0)
11039 return ret;
11040 bsi->nr_extents += ret;
11041 bsi->nr_pages += nr_pages;
11042 return 0;
11043 }
11044
11045 static void btrfs_swap_deactivate(struct file *file)
11046 {
11047 struct inode *inode = file_inode(file);
11048
11049 btrfs_free_swapfile_pins(inode);
11050 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11051 }
11052
11053 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11054 sector_t *span)
11055 {
11056 struct inode *inode = file_inode(file);
11057 struct btrfs_root *root = BTRFS_I(inode)->root;
11058 struct btrfs_fs_info *fs_info = root->fs_info;
11059 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11060 struct extent_state *cached_state = NULL;
11061 struct extent_map *em = NULL;
11062 struct btrfs_device *device = NULL;
11063 struct btrfs_swap_info bsi = {
11064 .lowest_ppage = (sector_t)-1ULL,
11065 };
11066 int ret = 0;
11067 u64 isize;
11068 u64 start;
11069
11070 /*
11071 * If the swap file was just created, make sure delalloc is done. If the
11072 * file changes again after this, the user is doing something stupid and
11073 * we don't really care.
11074 */
11075 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11076 if (ret)
11077 return ret;
11078
11079 /*
11080 * The inode is locked, so these flags won't change after we check them.
11081 */
11082 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11083 btrfs_warn(fs_info, "swapfile must not be compressed");
11084 return -EINVAL;
11085 }
11086 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11087 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11088 return -EINVAL;
11089 }
11090 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11091 btrfs_warn(fs_info, "swapfile must not be checksummed");
11092 return -EINVAL;
11093 }
11094
11095 /*
11096 * Balance or device remove/replace/resize can move stuff around from
11097 * under us. The exclop protection makes sure they aren't running/won't
11098 * run concurrently while we are mapping the swap extents, and
11099 * fs_info->swapfile_pins prevents them from running while the swap
11100 * file is active and moving the extents. Note that this also prevents
11101 * a concurrent device add which isn't actually necessary, but it's not
11102 * really worth the trouble to allow it.
11103 */
11104 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
11105 btrfs_warn(fs_info,
11106 "cannot activate swapfile while exclusive operation is running");
11107 return -EBUSY;
11108 }
11109
11110 /*
11111 * Prevent snapshot creation while we are activating the swap file.
11112 * We do not want to race with snapshot creation. If snapshot creation
11113 * already started before we bumped nr_swapfiles from 0 to 1 and
11114 * completes before the first write into the swap file after it is
11115 * activated, than that write would fallback to COW.
11116 */
11117 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11118 btrfs_exclop_finish(fs_info);
11119 btrfs_warn(fs_info,
11120 "cannot activate swapfile because snapshot creation is in progress");
11121 return -EINVAL;
11122 }
11123 /*
11124 * Snapshots can create extents which require COW even if NODATACOW is
11125 * set. We use this counter to prevent snapshots. We must increment it
11126 * before walking the extents because we don't want a concurrent
11127 * snapshot to run after we've already checked the extents.
11128 *
11129 * It is possible that subvolume is marked for deletion but still not
11130 * removed yet. To prevent this race, we check the root status before
11131 * activating the swapfile.
11132 */
11133 spin_lock(&root->root_item_lock);
11134 if (btrfs_root_dead(root)) {
11135 spin_unlock(&root->root_item_lock);
11136
11137 btrfs_exclop_finish(fs_info);
11138 btrfs_warn(fs_info,
11139 "cannot activate swapfile because subvolume %llu is being deleted",
11140 root->root_key.objectid);
11141 return -EPERM;
11142 }
11143 atomic_inc(&root->nr_swapfiles);
11144 spin_unlock(&root->root_item_lock);
11145
11146 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11147
11148 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
11149 start = 0;
11150 while (start < isize) {
11151 u64 logical_block_start, physical_block_start;
11152 struct btrfs_block_group *bg;
11153 u64 len = isize - start;
11154
11155 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
11156 if (IS_ERR(em)) {
11157 ret = PTR_ERR(em);
11158 goto out;
11159 }
11160
11161 if (em->block_start == EXTENT_MAP_HOLE) {
11162 btrfs_warn(fs_info, "swapfile must not have holes");
11163 ret = -EINVAL;
11164 goto out;
11165 }
11166 if (em->block_start == EXTENT_MAP_INLINE) {
11167 /*
11168 * It's unlikely we'll ever actually find ourselves
11169 * here, as a file small enough to fit inline won't be
11170 * big enough to store more than the swap header, but in
11171 * case something changes in the future, let's catch it
11172 * here rather than later.
11173 */
11174 btrfs_warn(fs_info, "swapfile must not be inline");
11175 ret = -EINVAL;
11176 goto out;
11177 }
11178 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11179 btrfs_warn(fs_info, "swapfile must not be compressed");
11180 ret = -EINVAL;
11181 goto out;
11182 }
11183
11184 logical_block_start = em->block_start + (start - em->start);
11185 len = min(len, em->len - (start - em->start));
11186 free_extent_map(em);
11187 em = NULL;
11188
11189 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
11190 if (ret < 0) {
11191 goto out;
11192 } else if (ret) {
11193 ret = 0;
11194 } else {
11195 btrfs_warn(fs_info,
11196 "swapfile must not be copy-on-write");
11197 ret = -EINVAL;
11198 goto out;
11199 }
11200
11201 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11202 if (IS_ERR(em)) {
11203 ret = PTR_ERR(em);
11204 goto out;
11205 }
11206
11207 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11208 btrfs_warn(fs_info,
11209 "swapfile must have single data profile");
11210 ret = -EINVAL;
11211 goto out;
11212 }
11213
11214 if (device == NULL) {
11215 device = em->map_lookup->stripes[0].dev;
11216 ret = btrfs_add_swapfile_pin(inode, device, false);
11217 if (ret == 1)
11218 ret = 0;
11219 else if (ret)
11220 goto out;
11221 } else if (device != em->map_lookup->stripes[0].dev) {
11222 btrfs_warn(fs_info, "swapfile must be on one device");
11223 ret = -EINVAL;
11224 goto out;
11225 }
11226
11227 physical_block_start = (em->map_lookup->stripes[0].physical +
11228 (logical_block_start - em->start));
11229 len = min(len, em->len - (logical_block_start - em->start));
11230 free_extent_map(em);
11231 em = NULL;
11232
11233 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11234 if (!bg) {
11235 btrfs_warn(fs_info,
11236 "could not find block group containing swapfile");
11237 ret = -EINVAL;
11238 goto out;
11239 }
11240
11241 if (!btrfs_inc_block_group_swap_extents(bg)) {
11242 btrfs_warn(fs_info,
11243 "block group for swapfile at %llu is read-only%s",
11244 bg->start,
11245 atomic_read(&fs_info->scrubs_running) ?
11246 " (scrub running)" : "");
11247 btrfs_put_block_group(bg);
11248 ret = -EINVAL;
11249 goto out;
11250 }
11251
11252 ret = btrfs_add_swapfile_pin(inode, bg, true);
11253 if (ret) {
11254 btrfs_put_block_group(bg);
11255 if (ret == 1)
11256 ret = 0;
11257 else
11258 goto out;
11259 }
11260
11261 if (bsi.block_len &&
11262 bsi.block_start + bsi.block_len == physical_block_start) {
11263 bsi.block_len += len;
11264 } else {
11265 if (bsi.block_len) {
11266 ret = btrfs_add_swap_extent(sis, &bsi);
11267 if (ret)
11268 goto out;
11269 }
11270 bsi.start = start;
11271 bsi.block_start = physical_block_start;
11272 bsi.block_len = len;
11273 }
11274
11275 start += len;
11276 }
11277
11278 if (bsi.block_len)
11279 ret = btrfs_add_swap_extent(sis, &bsi);
11280
11281 out:
11282 if (!IS_ERR_OR_NULL(em))
11283 free_extent_map(em);
11284
11285 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
11286
11287 if (ret)
11288 btrfs_swap_deactivate(file);
11289
11290 btrfs_drew_write_unlock(&root->snapshot_lock);
11291
11292 btrfs_exclop_finish(fs_info);
11293
11294 if (ret)
11295 return ret;
11296
11297 if (device)
11298 sis->bdev = device->bdev;
11299 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11300 sis->max = bsi.nr_pages;
11301 sis->pages = bsi.nr_pages - 1;
11302 sis->highest_bit = bsi.nr_pages - 1;
11303 return bsi.nr_extents;
11304 }
11305 #else
11306 static void btrfs_swap_deactivate(struct file *file)
11307 {
11308 }
11309
11310 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11311 sector_t *span)
11312 {
11313 return -EOPNOTSUPP;
11314 }
11315 #endif
11316
11317 /*
11318 * Update the number of bytes used in the VFS' inode. When we replace extents in
11319 * a range (clone, dedupe, fallocate's zero range), we must update the number of
11320 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11321 * always get a correct value.
11322 */
11323 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11324 const u64 add_bytes,
11325 const u64 del_bytes)
11326 {
11327 if (add_bytes == del_bytes)
11328 return;
11329
11330 spin_lock(&inode->lock);
11331 if (del_bytes > 0)
11332 inode_sub_bytes(&inode->vfs_inode, del_bytes);
11333 if (add_bytes > 0)
11334 inode_add_bytes(&inode->vfs_inode, add_bytes);
11335 spin_unlock(&inode->lock);
11336 }
11337
11338 /**
11339 * Verify that there are no ordered extents for a given file range.
11340 *
11341 * @inode: The target inode.
11342 * @start: Start offset of the file range, should be sector size aligned.
11343 * @end: End offset (inclusive) of the file range, its value +1 should be
11344 * sector size aligned.
11345 *
11346 * This should typically be used for cases where we locked an inode's VFS lock in
11347 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11348 * we have flushed all delalloc in the range, we have waited for all ordered
11349 * extents in the range to complete and finally we have locked the file range in
11350 * the inode's io_tree.
11351 */
11352 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11353 {
11354 struct btrfs_root *root = inode->root;
11355 struct btrfs_ordered_extent *ordered;
11356
11357 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11358 return;
11359
11360 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11361 if (ordered) {
11362 btrfs_err(root->fs_info,
11363 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11364 start, end, btrfs_ino(inode), root->root_key.objectid,
11365 ordered->file_offset,
11366 ordered->file_offset + ordered->num_bytes - 1);
11367 btrfs_put_ordered_extent(ordered);
11368 }
11369
11370 ASSERT(ordered == NULL);
11371 }
11372
11373 static const struct inode_operations btrfs_dir_inode_operations = {
11374 .getattr = btrfs_getattr,
11375 .lookup = btrfs_lookup,
11376 .create = btrfs_create,
11377 .unlink = btrfs_unlink,
11378 .link = btrfs_link,
11379 .mkdir = btrfs_mkdir,
11380 .rmdir = btrfs_rmdir,
11381 .rename = btrfs_rename2,
11382 .symlink = btrfs_symlink,
11383 .setattr = btrfs_setattr,
11384 .mknod = btrfs_mknod,
11385 .listxattr = btrfs_listxattr,
11386 .permission = btrfs_permission,
11387 .get_acl = btrfs_get_acl,
11388 .set_acl = btrfs_set_acl,
11389 .update_time = btrfs_update_time,
11390 .tmpfile = btrfs_tmpfile,
11391 .fileattr_get = btrfs_fileattr_get,
11392 .fileattr_set = btrfs_fileattr_set,
11393 };
11394
11395 static const struct file_operations btrfs_dir_file_operations = {
11396 .llseek = generic_file_llseek,
11397 .read = generic_read_dir,
11398 .iterate_shared = btrfs_real_readdir,
11399 .open = btrfs_opendir,
11400 .unlocked_ioctl = btrfs_ioctl,
11401 #ifdef CONFIG_COMPAT
11402 .compat_ioctl = btrfs_compat_ioctl,
11403 #endif
11404 .release = btrfs_release_file,
11405 .fsync = btrfs_sync_file,
11406 };
11407
11408 /*
11409 * btrfs doesn't support the bmap operation because swapfiles
11410 * use bmap to make a mapping of extents in the file. They assume
11411 * these extents won't change over the life of the file and they
11412 * use the bmap result to do IO directly to the drive.
11413 *
11414 * the btrfs bmap call would return logical addresses that aren't
11415 * suitable for IO and they also will change frequently as COW
11416 * operations happen. So, swapfile + btrfs == corruption.
11417 *
11418 * For now we're avoiding this by dropping bmap.
11419 */
11420 static const struct address_space_operations btrfs_aops = {
11421 .read_folio = btrfs_read_folio,
11422 .writepage = btrfs_writepage,
11423 .writepages = btrfs_writepages,
11424 .readahead = btrfs_readahead,
11425 .direct_IO = noop_direct_IO,
11426 .invalidate_folio = btrfs_invalidate_folio,
11427 .release_folio = btrfs_release_folio,
11428 #ifdef CONFIG_MIGRATION
11429 .migratepage = btrfs_migratepage,
11430 #endif
11431 .dirty_folio = filemap_dirty_folio,
11432 .error_remove_page = generic_error_remove_page,
11433 .swap_activate = btrfs_swap_activate,
11434 .swap_deactivate = btrfs_swap_deactivate,
11435 };
11436
11437 static const struct inode_operations btrfs_file_inode_operations = {
11438 .getattr = btrfs_getattr,
11439 .setattr = btrfs_setattr,
11440 .listxattr = btrfs_listxattr,
11441 .permission = btrfs_permission,
11442 .fiemap = btrfs_fiemap,
11443 .get_acl = btrfs_get_acl,
11444 .set_acl = btrfs_set_acl,
11445 .update_time = btrfs_update_time,
11446 .fileattr_get = btrfs_fileattr_get,
11447 .fileattr_set = btrfs_fileattr_set,
11448 };
11449 static const struct inode_operations btrfs_special_inode_operations = {
11450 .getattr = btrfs_getattr,
11451 .setattr = btrfs_setattr,
11452 .permission = btrfs_permission,
11453 .listxattr = btrfs_listxattr,
11454 .get_acl = btrfs_get_acl,
11455 .set_acl = btrfs_set_acl,
11456 .update_time = btrfs_update_time,
11457 };
11458 static const struct inode_operations btrfs_symlink_inode_operations = {
11459 .get_link = page_get_link,
11460 .getattr = btrfs_getattr,
11461 .setattr = btrfs_setattr,
11462 .permission = btrfs_permission,
11463 .listxattr = btrfs_listxattr,
11464 .update_time = btrfs_update_time,
11465 };
11466
11467 const struct dentry_operations btrfs_dentry_operations = {
11468 .d_delete = btrfs_dentry_delete,
11469 };