]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/inode.c
Merge tag 'wireless-2023-09-27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74
75 struct btrfs_iget_args {
76 u64 ino;
77 struct btrfs_root *root;
78 };
79
80 struct btrfs_dio_data {
81 ssize_t submitted;
82 struct extent_changeset *data_reserved;
83 struct btrfs_ordered_extent *ordered;
84 bool data_space_reserved;
85 bool nocow_done;
86 };
87
88 struct btrfs_dio_private {
89 /* Range of I/O */
90 u64 file_offset;
91 u32 bytes;
92
93 /* This must be last */
94 struct btrfs_bio bbio;
95 };
96
97 static struct bio_set btrfs_dio_bioset;
98
99 struct btrfs_rename_ctx {
100 /* Output field. Stores the index number of the old directory entry. */
101 u64 index;
102 };
103
104 /*
105 * Used by data_reloc_print_warning_inode() to pass needed info for filename
106 * resolution and output of error message.
107 */
108 struct data_reloc_warn {
109 struct btrfs_path path;
110 struct btrfs_fs_info *fs_info;
111 u64 extent_item_size;
112 u64 logical;
113 int mirror_num;
114 };
115
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122
123 static struct kmem_cache *btrfs_inode_cachep;
124
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127
128 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
129 struct page *locked_page, u64 start,
130 u64 end, struct writeback_control *wbc,
131 bool pages_dirty);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 u64 len, u64 orig_start, u64 block_start,
134 u64 block_len, u64 orig_block_len,
135 u64 ram_bytes, int compress_type,
136 int type);
137
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 u64 root, void *warn_ctx)
140 {
141 struct data_reloc_warn *warn = warn_ctx;
142 struct btrfs_fs_info *fs_info = warn->fs_info;
143 struct extent_buffer *eb;
144 struct btrfs_inode_item *inode_item;
145 struct inode_fs_paths *ipath = NULL;
146 struct btrfs_root *local_root;
147 struct btrfs_key key;
148 unsigned int nofs_flag;
149 u32 nlink;
150 int ret;
151
152 local_root = btrfs_get_fs_root(fs_info, root, true);
153 if (IS_ERR(local_root)) {
154 ret = PTR_ERR(local_root);
155 goto err;
156 }
157
158 /* This makes the path point to (inum INODE_ITEM ioff). */
159 key.objectid = inum;
160 key.type = BTRFS_INODE_ITEM_KEY;
161 key.offset = 0;
162
163 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 if (ret) {
165 btrfs_put_root(local_root);
166 btrfs_release_path(&warn->path);
167 goto err;
168 }
169
170 eb = warn->path.nodes[0];
171 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 nlink = btrfs_inode_nlink(eb, inode_item);
173 btrfs_release_path(&warn->path);
174
175 nofs_flag = memalloc_nofs_save();
176 ipath = init_ipath(4096, local_root, &warn->path);
177 memalloc_nofs_restore(nofs_flag);
178 if (IS_ERR(ipath)) {
179 btrfs_put_root(local_root);
180 ret = PTR_ERR(ipath);
181 ipath = NULL;
182 /*
183 * -ENOMEM, not a critical error, just output an generic error
184 * without filename.
185 */
186 btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 warn->logical, warn->mirror_num, root, inum, offset);
189 return ret;
190 }
191 ret = paths_from_inode(inum, ipath);
192 if (ret < 0)
193 goto err;
194
195 /*
196 * We deliberately ignore the bit ipath might have been too small to
197 * hold all of the paths here
198 */
199 for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 warn->logical, warn->mirror_num, root, inum, offset,
203 fs_info->sectorsize, nlink,
204 (char *)(unsigned long)ipath->fspath->val[i]);
205 }
206
207 btrfs_put_root(local_root);
208 free_ipath(ipath);
209 return 0;
210
211 err:
212 btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 warn->logical, warn->mirror_num, root, inum, offset, ret);
215
216 free_ipath(ipath);
217 return ret;
218 }
219
220 /*
221 * Do extra user-friendly error output (e.g. lookup all the affected files).
222 *
223 * Return true if we succeeded doing the backref lookup.
224 * Return false if such lookup failed, and has to fallback to the old error message.
225 */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 const u8 *csum, const u8 *csum_expected,
228 int mirror_num)
229 {
230 struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 struct btrfs_path path = { 0 };
232 struct btrfs_key found_key = { 0 };
233 struct extent_buffer *eb;
234 struct btrfs_extent_item *ei;
235 const u32 csum_size = fs_info->csum_size;
236 u64 logical;
237 u64 flags;
238 u32 item_size;
239 int ret;
240
241 mutex_lock(&fs_info->reloc_mutex);
242 logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 mutex_unlock(&fs_info->reloc_mutex);
244
245 if (logical == U64_MAX) {
246 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 CSUM_FMT_VALUE(csum_size, csum),
251 CSUM_FMT_VALUE(csum_size, csum_expected),
252 mirror_num);
253 return;
254 }
255
256 logical += file_off;
257 btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 inode->root->root_key.objectid,
260 btrfs_ino(inode), file_off, logical,
261 CSUM_FMT_VALUE(csum_size, csum),
262 CSUM_FMT_VALUE(csum_size, csum_expected),
263 mirror_num);
264
265 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 if (ret < 0) {
267 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 logical, ret);
269 return;
270 }
271 eb = path.nodes[0];
272 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 item_size = btrfs_item_size(eb, path.slots[0]);
274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 unsigned long ptr = 0;
276 u64 ref_root;
277 u8 ref_level;
278
279 while (true) {
280 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 item_size, &ref_root,
282 &ref_level);
283 if (ret < 0) {
284 btrfs_warn_rl(fs_info,
285 "failed to resolve tree backref for logical %llu: %d",
286 logical, ret);
287 break;
288 }
289 if (ret > 0)
290 break;
291
292 btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 logical, mirror_num,
295 (ref_level ? "node" : "leaf"),
296 ref_level, ref_root);
297 }
298 btrfs_release_path(&path);
299 } else {
300 struct btrfs_backref_walk_ctx ctx = { 0 };
301 struct data_reloc_warn reloc_warn = { 0 };
302
303 btrfs_release_path(&path);
304
305 ctx.bytenr = found_key.objectid;
306 ctx.extent_item_pos = logical - found_key.objectid;
307 ctx.fs_info = fs_info;
308
309 reloc_warn.logical = logical;
310 reloc_warn.extent_item_size = found_key.offset;
311 reloc_warn.mirror_num = mirror_num;
312 reloc_warn.fs_info = fs_info;
313
314 iterate_extent_inodes(&ctx, true,
315 data_reloc_print_warning_inode, &reloc_warn);
316 }
317 }
318
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 struct btrfs_root *root = inode->root;
323 const u32 csum_size = root->fs_info->csum_size;
324
325 /* For data reloc tree, it's better to do a backref lookup instead. */
326 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 return print_data_reloc_error(inode, logical_start, csum,
328 csum_expected, mirror_num);
329
330 /* Output without objectid, which is more meaningful */
331 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 root->root_key.objectid, btrfs_ino(inode),
335 logical_start,
336 CSUM_FMT_VALUE(csum_size, csum),
337 CSUM_FMT_VALUE(csum_size, csum_expected),
338 mirror_num);
339 } else {
340 btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 root->root_key.objectid, btrfs_ino(inode),
343 logical_start,
344 CSUM_FMT_VALUE(csum_size, csum),
345 CSUM_FMT_VALUE(csum_size, csum_expected),
346 mirror_num);
347 }
348 }
349
350 /*
351 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352 *
353 * ilock_flags can have the following bit set:
354 *
355 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357 * return -EAGAIN
358 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359 */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 if (ilock_flags & BTRFS_ILOCK_TRY) {
364 if (!inode_trylock_shared(&inode->vfs_inode))
365 return -EAGAIN;
366 else
367 return 0;
368 }
369 inode_lock_shared(&inode->vfs_inode);
370 } else {
371 if (ilock_flags & BTRFS_ILOCK_TRY) {
372 if (!inode_trylock(&inode->vfs_inode))
373 return -EAGAIN;
374 else
375 return 0;
376 }
377 inode_lock(&inode->vfs_inode);
378 }
379 if (ilock_flags & BTRFS_ILOCK_MMAP)
380 down_write(&inode->i_mmap_lock);
381 return 0;
382 }
383
384 /*
385 * btrfs_inode_unlock - unock inode i_rwsem
386 *
387 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388 * to decide whether the lock acquired is shared or exclusive.
389 */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 if (ilock_flags & BTRFS_ILOCK_MMAP)
393 up_write(&inode->i_mmap_lock);
394 if (ilock_flags & BTRFS_ILOCK_SHARED)
395 inode_unlock_shared(&inode->vfs_inode);
396 else
397 inode_unlock(&inode->vfs_inode);
398 }
399
400 /*
401 * Cleanup all submitted ordered extents in specified range to handle errors
402 * from the btrfs_run_delalloc_range() callback.
403 *
404 * NOTE: caller must ensure that when an error happens, it can not call
405 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407 * to be released, which we want to happen only when finishing the ordered
408 * extent (btrfs_finish_ordered_io()).
409 */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 struct page *locked_page,
412 u64 offset, u64 bytes)
413 {
414 unsigned long index = offset >> PAGE_SHIFT;
415 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 u64 page_start = 0, page_end = 0;
417 struct page *page;
418
419 if (locked_page) {
420 page_start = page_offset(locked_page);
421 page_end = page_start + PAGE_SIZE - 1;
422 }
423
424 while (index <= end_index) {
425 /*
426 * For locked page, we will call btrfs_mark_ordered_io_finished
427 * through btrfs_mark_ordered_io_finished() on it
428 * in run_delalloc_range() for the error handling, which will
429 * clear page Ordered and run the ordered extent accounting.
430 *
431 * Here we can't just clear the Ordered bit, or
432 * btrfs_mark_ordered_io_finished() would skip the accounting
433 * for the page range, and the ordered extent will never finish.
434 */
435 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
436 index++;
437 continue;
438 }
439 page = find_get_page(inode->vfs_inode.i_mapping, index);
440 index++;
441 if (!page)
442 continue;
443
444 /*
445 * Here we just clear all Ordered bits for every page in the
446 * range, then btrfs_mark_ordered_io_finished() will handle
447 * the ordered extent accounting for the range.
448 */
449 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
450 offset, bytes);
451 put_page(page);
452 }
453
454 if (locked_page) {
455 /* The locked page covers the full range, nothing needs to be done */
456 if (bytes + offset <= page_start + PAGE_SIZE)
457 return;
458 /*
459 * In case this page belongs to the delalloc range being
460 * instantiated then skip it, since the first page of a range is
461 * going to be properly cleaned up by the caller of
462 * run_delalloc_range
463 */
464 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
465 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
466 offset = page_offset(locked_page) + PAGE_SIZE;
467 }
468 }
469
470 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
471 }
472
473 static int btrfs_dirty_inode(struct btrfs_inode *inode);
474
475 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
476 struct btrfs_new_inode_args *args)
477 {
478 int err;
479
480 if (args->default_acl) {
481 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
482 ACL_TYPE_DEFAULT);
483 if (err)
484 return err;
485 }
486 if (args->acl) {
487 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
488 if (err)
489 return err;
490 }
491 if (!args->default_acl && !args->acl)
492 cache_no_acl(args->inode);
493 return btrfs_xattr_security_init(trans, args->inode, args->dir,
494 &args->dentry->d_name);
495 }
496
497 /*
498 * this does all the hard work for inserting an inline extent into
499 * the btree. The caller should have done a btrfs_drop_extents so that
500 * no overlapping inline items exist in the btree
501 */
502 static int insert_inline_extent(struct btrfs_trans_handle *trans,
503 struct btrfs_path *path,
504 struct btrfs_inode *inode, bool extent_inserted,
505 size_t size, size_t compressed_size,
506 int compress_type,
507 struct page **compressed_pages,
508 bool update_i_size)
509 {
510 struct btrfs_root *root = inode->root;
511 struct extent_buffer *leaf;
512 struct page *page = NULL;
513 char *kaddr;
514 unsigned long ptr;
515 struct btrfs_file_extent_item *ei;
516 int ret;
517 size_t cur_size = size;
518 u64 i_size;
519
520 ASSERT((compressed_size > 0 && compressed_pages) ||
521 (compressed_size == 0 && !compressed_pages));
522
523 if (compressed_size && compressed_pages)
524 cur_size = compressed_size;
525
526 if (!extent_inserted) {
527 struct btrfs_key key;
528 size_t datasize;
529
530 key.objectid = btrfs_ino(inode);
531 key.offset = 0;
532 key.type = BTRFS_EXTENT_DATA_KEY;
533
534 datasize = btrfs_file_extent_calc_inline_size(cur_size);
535 ret = btrfs_insert_empty_item(trans, root, path, &key,
536 datasize);
537 if (ret)
538 goto fail;
539 }
540 leaf = path->nodes[0];
541 ei = btrfs_item_ptr(leaf, path->slots[0],
542 struct btrfs_file_extent_item);
543 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
544 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
545 btrfs_set_file_extent_encryption(leaf, ei, 0);
546 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
547 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
548 ptr = btrfs_file_extent_inline_start(ei);
549
550 if (compress_type != BTRFS_COMPRESS_NONE) {
551 struct page *cpage;
552 int i = 0;
553 while (compressed_size > 0) {
554 cpage = compressed_pages[i];
555 cur_size = min_t(unsigned long, compressed_size,
556 PAGE_SIZE);
557
558 kaddr = kmap_local_page(cpage);
559 write_extent_buffer(leaf, kaddr, ptr, cur_size);
560 kunmap_local(kaddr);
561
562 i++;
563 ptr += cur_size;
564 compressed_size -= cur_size;
565 }
566 btrfs_set_file_extent_compression(leaf, ei,
567 compress_type);
568 } else {
569 page = find_get_page(inode->vfs_inode.i_mapping, 0);
570 btrfs_set_file_extent_compression(leaf, ei, 0);
571 kaddr = kmap_local_page(page);
572 write_extent_buffer(leaf, kaddr, ptr, size);
573 kunmap_local(kaddr);
574 put_page(page);
575 }
576 btrfs_mark_buffer_dirty(leaf);
577 btrfs_release_path(path);
578
579 /*
580 * We align size to sectorsize for inline extents just for simplicity
581 * sake.
582 */
583 ret = btrfs_inode_set_file_extent_range(inode, 0,
584 ALIGN(size, root->fs_info->sectorsize));
585 if (ret)
586 goto fail;
587
588 /*
589 * We're an inline extent, so nobody can extend the file past i_size
590 * without locking a page we already have locked.
591 *
592 * We must do any i_size and inode updates before we unlock the pages.
593 * Otherwise we could end up racing with unlink.
594 */
595 i_size = i_size_read(&inode->vfs_inode);
596 if (update_i_size && size > i_size) {
597 i_size_write(&inode->vfs_inode, size);
598 i_size = size;
599 }
600 inode->disk_i_size = i_size;
601
602 fail:
603 return ret;
604 }
605
606
607 /*
608 * conditionally insert an inline extent into the file. This
609 * does the checks required to make sure the data is small enough
610 * to fit as an inline extent.
611 */
612 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
613 size_t compressed_size,
614 int compress_type,
615 struct page **compressed_pages,
616 bool update_i_size)
617 {
618 struct btrfs_drop_extents_args drop_args = { 0 };
619 struct btrfs_root *root = inode->root;
620 struct btrfs_fs_info *fs_info = root->fs_info;
621 struct btrfs_trans_handle *trans;
622 u64 data_len = (compressed_size ?: size);
623 int ret;
624 struct btrfs_path *path;
625
626 /*
627 * We can create an inline extent if it ends at or beyond the current
628 * i_size, is no larger than a sector (decompressed), and the (possibly
629 * compressed) data fits in a leaf and the configured maximum inline
630 * size.
631 */
632 if (size < i_size_read(&inode->vfs_inode) ||
633 size > fs_info->sectorsize ||
634 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
635 data_len > fs_info->max_inline)
636 return 1;
637
638 path = btrfs_alloc_path();
639 if (!path)
640 return -ENOMEM;
641
642 trans = btrfs_join_transaction(root);
643 if (IS_ERR(trans)) {
644 btrfs_free_path(path);
645 return PTR_ERR(trans);
646 }
647 trans->block_rsv = &inode->block_rsv;
648
649 drop_args.path = path;
650 drop_args.start = 0;
651 drop_args.end = fs_info->sectorsize;
652 drop_args.drop_cache = true;
653 drop_args.replace_extent = true;
654 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
655 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
656 if (ret) {
657 btrfs_abort_transaction(trans, ret);
658 goto out;
659 }
660
661 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
662 size, compressed_size, compress_type,
663 compressed_pages, update_i_size);
664 if (ret && ret != -ENOSPC) {
665 btrfs_abort_transaction(trans, ret);
666 goto out;
667 } else if (ret == -ENOSPC) {
668 ret = 1;
669 goto out;
670 }
671
672 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
673 ret = btrfs_update_inode(trans, root, inode);
674 if (ret && ret != -ENOSPC) {
675 btrfs_abort_transaction(trans, ret);
676 goto out;
677 } else if (ret == -ENOSPC) {
678 ret = 1;
679 goto out;
680 }
681
682 btrfs_set_inode_full_sync(inode);
683 out:
684 /*
685 * Don't forget to free the reserved space, as for inlined extent
686 * it won't count as data extent, free them directly here.
687 * And at reserve time, it's always aligned to page size, so
688 * just free one page here.
689 */
690 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
691 btrfs_free_path(path);
692 btrfs_end_transaction(trans);
693 return ret;
694 }
695
696 struct async_extent {
697 u64 start;
698 u64 ram_size;
699 u64 compressed_size;
700 struct page **pages;
701 unsigned long nr_pages;
702 int compress_type;
703 struct list_head list;
704 };
705
706 struct async_chunk {
707 struct btrfs_inode *inode;
708 struct page *locked_page;
709 u64 start;
710 u64 end;
711 blk_opf_t write_flags;
712 struct list_head extents;
713 struct cgroup_subsys_state *blkcg_css;
714 struct btrfs_work work;
715 struct async_cow *async_cow;
716 };
717
718 struct async_cow {
719 atomic_t num_chunks;
720 struct async_chunk chunks[];
721 };
722
723 static noinline int add_async_extent(struct async_chunk *cow,
724 u64 start, u64 ram_size,
725 u64 compressed_size,
726 struct page **pages,
727 unsigned long nr_pages,
728 int compress_type)
729 {
730 struct async_extent *async_extent;
731
732 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
733 BUG_ON(!async_extent); /* -ENOMEM */
734 async_extent->start = start;
735 async_extent->ram_size = ram_size;
736 async_extent->compressed_size = compressed_size;
737 async_extent->pages = pages;
738 async_extent->nr_pages = nr_pages;
739 async_extent->compress_type = compress_type;
740 list_add_tail(&async_extent->list, &cow->extents);
741 return 0;
742 }
743
744 /*
745 * Check if the inode needs to be submitted to compression, based on mount
746 * options, defragmentation, properties or heuristics.
747 */
748 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
749 u64 end)
750 {
751 struct btrfs_fs_info *fs_info = inode->root->fs_info;
752
753 if (!btrfs_inode_can_compress(inode)) {
754 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
755 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
756 btrfs_ino(inode));
757 return 0;
758 }
759 /*
760 * Special check for subpage.
761 *
762 * We lock the full page then run each delalloc range in the page, thus
763 * for the following case, we will hit some subpage specific corner case:
764 *
765 * 0 32K 64K
766 * | |///////| |///////|
767 * \- A \- B
768 *
769 * In above case, both range A and range B will try to unlock the full
770 * page [0, 64K), causing the one finished later will have page
771 * unlocked already, triggering various page lock requirement BUG_ON()s.
772 *
773 * So here we add an artificial limit that subpage compression can only
774 * if the range is fully page aligned.
775 *
776 * In theory we only need to ensure the first page is fully covered, but
777 * the tailing partial page will be locked until the full compression
778 * finishes, delaying the write of other range.
779 *
780 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
781 * first to prevent any submitted async extent to unlock the full page.
782 * By this, we can ensure for subpage case that only the last async_cow
783 * will unlock the full page.
784 */
785 if (fs_info->sectorsize < PAGE_SIZE) {
786 if (!PAGE_ALIGNED(start) ||
787 !PAGE_ALIGNED(end + 1))
788 return 0;
789 }
790
791 /* force compress */
792 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
793 return 1;
794 /* defrag ioctl */
795 if (inode->defrag_compress)
796 return 1;
797 /* bad compression ratios */
798 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
799 return 0;
800 if (btrfs_test_opt(fs_info, COMPRESS) ||
801 inode->flags & BTRFS_INODE_COMPRESS ||
802 inode->prop_compress)
803 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
804 return 0;
805 }
806
807 static inline void inode_should_defrag(struct btrfs_inode *inode,
808 u64 start, u64 end, u64 num_bytes, u32 small_write)
809 {
810 /* If this is a small write inside eof, kick off a defrag */
811 if (num_bytes < small_write &&
812 (start > 0 || end + 1 < inode->disk_i_size))
813 btrfs_add_inode_defrag(NULL, inode, small_write);
814 }
815
816 /*
817 * Work queue call back to started compression on a file and pages.
818 *
819 * This is done inside an ordered work queue, and the compression is spread
820 * across many cpus. The actual IO submission is step two, and the ordered work
821 * queue takes care of making sure that happens in the same order things were
822 * put onto the queue by writepages and friends.
823 *
824 * If this code finds it can't get good compression, it puts an entry onto the
825 * work queue to write the uncompressed bytes. This makes sure that both
826 * compressed inodes and uncompressed inodes are written in the same order that
827 * the flusher thread sent them down.
828 */
829 static void compress_file_range(struct btrfs_work *work)
830 {
831 struct async_chunk *async_chunk =
832 container_of(work, struct async_chunk, work);
833 struct btrfs_inode *inode = async_chunk->inode;
834 struct btrfs_fs_info *fs_info = inode->root->fs_info;
835 struct address_space *mapping = inode->vfs_inode.i_mapping;
836 u64 blocksize = fs_info->sectorsize;
837 u64 start = async_chunk->start;
838 u64 end = async_chunk->end;
839 u64 actual_end;
840 u64 i_size;
841 int ret = 0;
842 struct page **pages;
843 unsigned long nr_pages;
844 unsigned long total_compressed = 0;
845 unsigned long total_in = 0;
846 unsigned int poff;
847 int i;
848 int compress_type = fs_info->compress_type;
849
850 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
851
852 /*
853 * We need to call clear_page_dirty_for_io on each page in the range.
854 * Otherwise applications with the file mmap'd can wander in and change
855 * the page contents while we are compressing them.
856 */
857 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
858
859 /*
860 * We need to save i_size before now because it could change in between
861 * us evaluating the size and assigning it. This is because we lock and
862 * unlock the page in truncate and fallocate, and then modify the i_size
863 * later on.
864 *
865 * The barriers are to emulate READ_ONCE, remove that once i_size_read
866 * does that for us.
867 */
868 barrier();
869 i_size = i_size_read(&inode->vfs_inode);
870 barrier();
871 actual_end = min_t(u64, i_size, end + 1);
872 again:
873 pages = NULL;
874 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
875 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
876
877 /*
878 * we don't want to send crud past the end of i_size through
879 * compression, that's just a waste of CPU time. So, if the
880 * end of the file is before the start of our current
881 * requested range of bytes, we bail out to the uncompressed
882 * cleanup code that can deal with all of this.
883 *
884 * It isn't really the fastest way to fix things, but this is a
885 * very uncommon corner.
886 */
887 if (actual_end <= start)
888 goto cleanup_and_bail_uncompressed;
889
890 total_compressed = actual_end - start;
891
892 /*
893 * Skip compression for a small file range(<=blocksize) that
894 * isn't an inline extent, since it doesn't save disk space at all.
895 */
896 if (total_compressed <= blocksize &&
897 (start > 0 || end + 1 < inode->disk_i_size))
898 goto cleanup_and_bail_uncompressed;
899
900 /*
901 * For subpage case, we require full page alignment for the sector
902 * aligned range.
903 * Thus we must also check against @actual_end, not just @end.
904 */
905 if (blocksize < PAGE_SIZE) {
906 if (!PAGE_ALIGNED(start) ||
907 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
908 goto cleanup_and_bail_uncompressed;
909 }
910
911 total_compressed = min_t(unsigned long, total_compressed,
912 BTRFS_MAX_UNCOMPRESSED);
913 total_in = 0;
914 ret = 0;
915
916 /*
917 * We do compression for mount -o compress and when the inode has not
918 * been flagged as NOCOMPRESS. This flag can change at any time if we
919 * discover bad compression ratios.
920 */
921 if (!inode_need_compress(inode, start, end))
922 goto cleanup_and_bail_uncompressed;
923
924 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
925 if (!pages) {
926 /*
927 * Memory allocation failure is not a fatal error, we can fall
928 * back to uncompressed code.
929 */
930 goto cleanup_and_bail_uncompressed;
931 }
932
933 if (inode->defrag_compress)
934 compress_type = inode->defrag_compress;
935 else if (inode->prop_compress)
936 compress_type = inode->prop_compress;
937
938 /* Compression level is applied here. */
939 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
940 mapping, start, pages, &nr_pages, &total_in,
941 &total_compressed);
942 if (ret)
943 goto mark_incompressible;
944
945 /*
946 * Zero the tail end of the last page, as we might be sending it down
947 * to disk.
948 */
949 poff = offset_in_page(total_compressed);
950 if (poff)
951 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
952
953 /*
954 * Try to create an inline extent.
955 *
956 * If we didn't compress the entire range, try to create an uncompressed
957 * inline extent, else a compressed one.
958 *
959 * Check cow_file_range() for why we don't even try to create inline
960 * extent for the subpage case.
961 */
962 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
963 if (total_in < actual_end) {
964 ret = cow_file_range_inline(inode, actual_end, 0,
965 BTRFS_COMPRESS_NONE, NULL,
966 false);
967 } else {
968 ret = cow_file_range_inline(inode, actual_end,
969 total_compressed,
970 compress_type, pages,
971 false);
972 }
973 if (ret <= 0) {
974 unsigned long clear_flags = EXTENT_DELALLOC |
975 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
976 EXTENT_DO_ACCOUNTING;
977
978 if (ret < 0)
979 mapping_set_error(mapping, -EIO);
980
981 /*
982 * inline extent creation worked or returned error,
983 * we don't need to create any more async work items.
984 * Unlock and free up our temp pages.
985 *
986 * We use DO_ACCOUNTING here because we need the
987 * delalloc_release_metadata to be done _after_ we drop
988 * our outstanding extent for clearing delalloc for this
989 * range.
990 */
991 extent_clear_unlock_delalloc(inode, start, end,
992 NULL,
993 clear_flags,
994 PAGE_UNLOCK |
995 PAGE_START_WRITEBACK |
996 PAGE_END_WRITEBACK);
997 goto free_pages;
998 }
999 }
1000
1001 /*
1002 * We aren't doing an inline extent. Round the compressed size up to a
1003 * block size boundary so the allocator does sane things.
1004 */
1005 total_compressed = ALIGN(total_compressed, blocksize);
1006
1007 /*
1008 * One last check to make sure the compression is really a win, compare
1009 * the page count read with the blocks on disk, compression must free at
1010 * least one sector.
1011 */
1012 total_in = round_up(total_in, fs_info->sectorsize);
1013 if (total_compressed + blocksize > total_in)
1014 goto mark_incompressible;
1015
1016 /*
1017 * The async work queues will take care of doing actual allocation on
1018 * disk for these compressed pages, and will submit the bios.
1019 */
1020 add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1021 nr_pages, compress_type);
1022 if (start + total_in < end) {
1023 start += total_in;
1024 cond_resched();
1025 goto again;
1026 }
1027 return;
1028
1029 mark_incompressible:
1030 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1031 inode->flags |= BTRFS_INODE_NOCOMPRESS;
1032 cleanup_and_bail_uncompressed:
1033 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1034 BTRFS_COMPRESS_NONE);
1035 free_pages:
1036 if (pages) {
1037 for (i = 0; i < nr_pages; i++) {
1038 WARN_ON(pages[i]->mapping);
1039 put_page(pages[i]);
1040 }
1041 kfree(pages);
1042 }
1043 }
1044
1045 static void free_async_extent_pages(struct async_extent *async_extent)
1046 {
1047 int i;
1048
1049 if (!async_extent->pages)
1050 return;
1051
1052 for (i = 0; i < async_extent->nr_pages; i++) {
1053 WARN_ON(async_extent->pages[i]->mapping);
1054 put_page(async_extent->pages[i]);
1055 }
1056 kfree(async_extent->pages);
1057 async_extent->nr_pages = 0;
1058 async_extent->pages = NULL;
1059 }
1060
1061 static void submit_uncompressed_range(struct btrfs_inode *inode,
1062 struct async_extent *async_extent,
1063 struct page *locked_page)
1064 {
1065 u64 start = async_extent->start;
1066 u64 end = async_extent->start + async_extent->ram_size - 1;
1067 int ret;
1068 struct writeback_control wbc = {
1069 .sync_mode = WB_SYNC_ALL,
1070 .range_start = start,
1071 .range_end = end,
1072 .no_cgroup_owner = 1,
1073 };
1074
1075 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1076 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1077 wbc_detach_inode(&wbc);
1078 if (ret < 0) {
1079 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1080 if (locked_page) {
1081 const u64 page_start = page_offset(locked_page);
1082
1083 set_page_writeback(locked_page);
1084 end_page_writeback(locked_page);
1085 btrfs_mark_ordered_io_finished(inode, locked_page,
1086 page_start, PAGE_SIZE,
1087 !ret);
1088 mapping_set_error(locked_page->mapping, ret);
1089 unlock_page(locked_page);
1090 }
1091 }
1092 }
1093
1094 static void submit_one_async_extent(struct async_chunk *async_chunk,
1095 struct async_extent *async_extent,
1096 u64 *alloc_hint)
1097 {
1098 struct btrfs_inode *inode = async_chunk->inode;
1099 struct extent_io_tree *io_tree = &inode->io_tree;
1100 struct btrfs_root *root = inode->root;
1101 struct btrfs_fs_info *fs_info = root->fs_info;
1102 struct btrfs_ordered_extent *ordered;
1103 struct btrfs_key ins;
1104 struct page *locked_page = NULL;
1105 struct extent_map *em;
1106 int ret = 0;
1107 u64 start = async_extent->start;
1108 u64 end = async_extent->start + async_extent->ram_size - 1;
1109
1110 if (async_chunk->blkcg_css)
1111 kthread_associate_blkcg(async_chunk->blkcg_css);
1112
1113 /*
1114 * If async_chunk->locked_page is in the async_extent range, we need to
1115 * handle it.
1116 */
1117 if (async_chunk->locked_page) {
1118 u64 locked_page_start = page_offset(async_chunk->locked_page);
1119 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1120
1121 if (!(start >= locked_page_end || end <= locked_page_start))
1122 locked_page = async_chunk->locked_page;
1123 }
1124 lock_extent(io_tree, start, end, NULL);
1125
1126 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1127 submit_uncompressed_range(inode, async_extent, locked_page);
1128 goto done;
1129 }
1130
1131 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1132 async_extent->compressed_size,
1133 async_extent->compressed_size,
1134 0, *alloc_hint, &ins, 1, 1);
1135 if (ret) {
1136 /*
1137 * Here we used to try again by going back to non-compressed
1138 * path for ENOSPC. But we can't reserve space even for
1139 * compressed size, how could it work for uncompressed size
1140 * which requires larger size? So here we directly go error
1141 * path.
1142 */
1143 goto out_free;
1144 }
1145
1146 /* Here we're doing allocation and writeback of the compressed pages */
1147 em = create_io_em(inode, start,
1148 async_extent->ram_size, /* len */
1149 start, /* orig_start */
1150 ins.objectid, /* block_start */
1151 ins.offset, /* block_len */
1152 ins.offset, /* orig_block_len */
1153 async_extent->ram_size, /* ram_bytes */
1154 async_extent->compress_type,
1155 BTRFS_ORDERED_COMPRESSED);
1156 if (IS_ERR(em)) {
1157 ret = PTR_ERR(em);
1158 goto out_free_reserve;
1159 }
1160 free_extent_map(em);
1161
1162 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */
1163 async_extent->ram_size, /* num_bytes */
1164 async_extent->ram_size, /* ram_bytes */
1165 ins.objectid, /* disk_bytenr */
1166 ins.offset, /* disk_num_bytes */
1167 0, /* offset */
1168 1 << BTRFS_ORDERED_COMPRESSED,
1169 async_extent->compress_type);
1170 if (IS_ERR(ordered)) {
1171 btrfs_drop_extent_map_range(inode, start, end, false);
1172 ret = PTR_ERR(ordered);
1173 goto out_free_reserve;
1174 }
1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1176
1177 /* Clear dirty, set writeback and unlock the pages. */
1178 extent_clear_unlock_delalloc(inode, start, end,
1179 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1180 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1181 btrfs_submit_compressed_write(ordered,
1182 async_extent->pages, /* compressed_pages */
1183 async_extent->nr_pages,
1184 async_chunk->write_flags, true);
1185 *alloc_hint = ins.objectid + ins.offset;
1186 done:
1187 if (async_chunk->blkcg_css)
1188 kthread_associate_blkcg(NULL);
1189 kfree(async_extent);
1190 return;
1191
1192 out_free_reserve:
1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1195 out_free:
1196 mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1197 extent_clear_unlock_delalloc(inode, start, end,
1198 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1199 EXTENT_DELALLOC_NEW |
1200 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1201 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1202 PAGE_END_WRITEBACK);
1203 free_async_extent_pages(async_extent);
1204 if (async_chunk->blkcg_css)
1205 kthread_associate_blkcg(NULL);
1206 btrfs_debug(fs_info,
1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1208 root->root_key.objectid, btrfs_ino(inode), start,
1209 async_extent->ram_size, ret);
1210 kfree(async_extent);
1211 }
1212
1213 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1214 u64 num_bytes)
1215 {
1216 struct extent_map_tree *em_tree = &inode->extent_tree;
1217 struct extent_map *em;
1218 u64 alloc_hint = 0;
1219
1220 read_lock(&em_tree->lock);
1221 em = search_extent_mapping(em_tree, start, num_bytes);
1222 if (em) {
1223 /*
1224 * if block start isn't an actual block number then find the
1225 * first block in this inode and use that as a hint. If that
1226 * block is also bogus then just don't worry about it.
1227 */
1228 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1229 free_extent_map(em);
1230 em = search_extent_mapping(em_tree, 0, 0);
1231 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1232 alloc_hint = em->block_start;
1233 if (em)
1234 free_extent_map(em);
1235 } else {
1236 alloc_hint = em->block_start;
1237 free_extent_map(em);
1238 }
1239 }
1240 read_unlock(&em_tree->lock);
1241
1242 return alloc_hint;
1243 }
1244
1245 /*
1246 * when extent_io.c finds a delayed allocation range in the file,
1247 * the call backs end up in this code. The basic idea is to
1248 * allocate extents on disk for the range, and create ordered data structs
1249 * in ram to track those extents.
1250 *
1251 * locked_page is the page that writepage had locked already. We use
1252 * it to make sure we don't do extra locks or unlocks.
1253 *
1254 * When this function fails, it unlocks all pages except @locked_page.
1255 *
1256 * When this function successfully creates an inline extent, it returns 1 and
1257 * unlocks all pages including locked_page and starts I/O on them.
1258 * (In reality inline extents are limited to a single page, so locked_page is
1259 * the only page handled anyway).
1260 *
1261 * When this function succeed and creates a normal extent, the page locking
1262 * status depends on the passed in flags:
1263 *
1264 * - If @keep_locked is set, all pages are kept locked.
1265 * - Else all pages except for @locked_page are unlocked.
1266 *
1267 * When a failure happens in the second or later iteration of the
1268 * while-loop, the ordered extents created in previous iterations are kept
1269 * intact. So, the caller must clean them up by calling
1270 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1271 * example.
1272 */
1273 static noinline int cow_file_range(struct btrfs_inode *inode,
1274 struct page *locked_page, u64 start, u64 end,
1275 u64 *done_offset,
1276 bool keep_locked, bool no_inline)
1277 {
1278 struct btrfs_root *root = inode->root;
1279 struct btrfs_fs_info *fs_info = root->fs_info;
1280 u64 alloc_hint = 0;
1281 u64 orig_start = start;
1282 u64 num_bytes;
1283 unsigned long ram_size;
1284 u64 cur_alloc_size = 0;
1285 u64 min_alloc_size;
1286 u64 blocksize = fs_info->sectorsize;
1287 struct btrfs_key ins;
1288 struct extent_map *em;
1289 unsigned clear_bits;
1290 unsigned long page_ops;
1291 bool extent_reserved = false;
1292 int ret = 0;
1293
1294 if (btrfs_is_free_space_inode(inode)) {
1295 ret = -EINVAL;
1296 goto out_unlock;
1297 }
1298
1299 num_bytes = ALIGN(end - start + 1, blocksize);
1300 num_bytes = max(blocksize, num_bytes);
1301 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1302
1303 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1304
1305 /*
1306 * Due to the page size limit, for subpage we can only trigger the
1307 * writeback for the dirty sectors of page, that means data writeback
1308 * is doing more writeback than what we want.
1309 *
1310 * This is especially unexpected for some call sites like fallocate,
1311 * where we only increase i_size after everything is done.
1312 * This means we can trigger inline extent even if we didn't want to.
1313 * So here we skip inline extent creation completely.
1314 */
1315 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1316 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1317 end + 1);
1318
1319 /* lets try to make an inline extent */
1320 ret = cow_file_range_inline(inode, actual_end, 0,
1321 BTRFS_COMPRESS_NONE, NULL, false);
1322 if (ret == 0) {
1323 /*
1324 * We use DO_ACCOUNTING here because we need the
1325 * delalloc_release_metadata to be run _after_ we drop
1326 * our outstanding extent for clearing delalloc for this
1327 * range.
1328 */
1329 extent_clear_unlock_delalloc(inode, start, end,
1330 locked_page,
1331 EXTENT_LOCKED | EXTENT_DELALLOC |
1332 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1333 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1334 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1335 /*
1336 * locked_page is locked by the caller of
1337 * writepage_delalloc(), not locked by
1338 * __process_pages_contig().
1339 *
1340 * We can't let __process_pages_contig() to unlock it,
1341 * as it doesn't have any subpage::writers recorded.
1342 *
1343 * Here we manually unlock the page, since the caller
1344 * can't determine if it's an inline extent or a
1345 * compressed extent.
1346 */
1347 unlock_page(locked_page);
1348 ret = 1;
1349 goto done;
1350 } else if (ret < 0) {
1351 goto out_unlock;
1352 }
1353 }
1354
1355 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1356
1357 /*
1358 * Relocation relies on the relocated extents to have exactly the same
1359 * size as the original extents. Normally writeback for relocation data
1360 * extents follows a NOCOW path because relocation preallocates the
1361 * extents. However, due to an operation such as scrub turning a block
1362 * group to RO mode, it may fallback to COW mode, so we must make sure
1363 * an extent allocated during COW has exactly the requested size and can
1364 * not be split into smaller extents, otherwise relocation breaks and
1365 * fails during the stage where it updates the bytenr of file extent
1366 * items.
1367 */
1368 if (btrfs_is_data_reloc_root(root))
1369 min_alloc_size = num_bytes;
1370 else
1371 min_alloc_size = fs_info->sectorsize;
1372
1373 while (num_bytes > 0) {
1374 struct btrfs_ordered_extent *ordered;
1375
1376 cur_alloc_size = num_bytes;
1377 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1378 min_alloc_size, 0, alloc_hint,
1379 &ins, 1, 1);
1380 if (ret == -EAGAIN) {
1381 /*
1382 * btrfs_reserve_extent only returns -EAGAIN for zoned
1383 * file systems, which is an indication that there are
1384 * no active zones to allocate from at the moment.
1385 *
1386 * If this is the first loop iteration, wait for at
1387 * least one zone to finish before retrying the
1388 * allocation. Otherwise ask the caller to write out
1389 * the already allocated blocks before coming back to
1390 * us, or return -ENOSPC if it can't handle retries.
1391 */
1392 ASSERT(btrfs_is_zoned(fs_info));
1393 if (start == orig_start) {
1394 wait_on_bit_io(&inode->root->fs_info->flags,
1395 BTRFS_FS_NEED_ZONE_FINISH,
1396 TASK_UNINTERRUPTIBLE);
1397 continue;
1398 }
1399 if (done_offset) {
1400 *done_offset = start - 1;
1401 return 0;
1402 }
1403 ret = -ENOSPC;
1404 }
1405 if (ret < 0)
1406 goto out_unlock;
1407 cur_alloc_size = ins.offset;
1408 extent_reserved = true;
1409
1410 ram_size = ins.offset;
1411 em = create_io_em(inode, start, ins.offset, /* len */
1412 start, /* orig_start */
1413 ins.objectid, /* block_start */
1414 ins.offset, /* block_len */
1415 ins.offset, /* orig_block_len */
1416 ram_size, /* ram_bytes */
1417 BTRFS_COMPRESS_NONE, /* compress_type */
1418 BTRFS_ORDERED_REGULAR /* type */);
1419 if (IS_ERR(em)) {
1420 ret = PTR_ERR(em);
1421 goto out_reserve;
1422 }
1423 free_extent_map(em);
1424
1425 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1426 ram_size, ins.objectid, cur_alloc_size,
1427 0, 1 << BTRFS_ORDERED_REGULAR,
1428 BTRFS_COMPRESS_NONE);
1429 if (IS_ERR(ordered)) {
1430 ret = PTR_ERR(ordered);
1431 goto out_drop_extent_cache;
1432 }
1433
1434 if (btrfs_is_data_reloc_root(root)) {
1435 ret = btrfs_reloc_clone_csums(ordered);
1436
1437 /*
1438 * Only drop cache here, and process as normal.
1439 *
1440 * We must not allow extent_clear_unlock_delalloc()
1441 * at out_unlock label to free meta of this ordered
1442 * extent, as its meta should be freed by
1443 * btrfs_finish_ordered_io().
1444 *
1445 * So we must continue until @start is increased to
1446 * skip current ordered extent.
1447 */
1448 if (ret)
1449 btrfs_drop_extent_map_range(inode, start,
1450 start + ram_size - 1,
1451 false);
1452 }
1453 btrfs_put_ordered_extent(ordered);
1454
1455 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1456
1457 /*
1458 * We're not doing compressed IO, don't unlock the first page
1459 * (which the caller expects to stay locked), don't clear any
1460 * dirty bits and don't set any writeback bits
1461 *
1462 * Do set the Ordered (Private2) bit so we know this page was
1463 * properly setup for writepage.
1464 */
1465 page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1466 page_ops |= PAGE_SET_ORDERED;
1467
1468 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1469 locked_page,
1470 EXTENT_LOCKED | EXTENT_DELALLOC,
1471 page_ops);
1472 if (num_bytes < cur_alloc_size)
1473 num_bytes = 0;
1474 else
1475 num_bytes -= cur_alloc_size;
1476 alloc_hint = ins.objectid + ins.offset;
1477 start += cur_alloc_size;
1478 extent_reserved = false;
1479
1480 /*
1481 * btrfs_reloc_clone_csums() error, since start is increased
1482 * extent_clear_unlock_delalloc() at out_unlock label won't
1483 * free metadata of current ordered extent, we're OK to exit.
1484 */
1485 if (ret)
1486 goto out_unlock;
1487 }
1488 done:
1489 if (done_offset)
1490 *done_offset = end;
1491 return ret;
1492
1493 out_drop_extent_cache:
1494 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1495 out_reserve:
1496 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1497 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1498 out_unlock:
1499 /*
1500 * Now, we have three regions to clean up:
1501 *
1502 * |-------(1)----|---(2)---|-------------(3)----------|
1503 * `- orig_start `- start `- start + cur_alloc_size `- end
1504 *
1505 * We process each region below.
1506 */
1507
1508 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1509 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1510 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1511
1512 /*
1513 * For the range (1). We have already instantiated the ordered extents
1514 * for this region. They are cleaned up by
1515 * btrfs_cleanup_ordered_extents() in e.g,
1516 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1517 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1518 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1519 * function.
1520 *
1521 * However, in case of @keep_locked, we still need to unlock the pages
1522 * (except @locked_page) to ensure all the pages are unlocked.
1523 */
1524 if (keep_locked && orig_start < start) {
1525 if (!locked_page)
1526 mapping_set_error(inode->vfs_inode.i_mapping, ret);
1527 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1528 locked_page, 0, page_ops);
1529 }
1530
1531 /*
1532 * For the range (2). If we reserved an extent for our delalloc range
1533 * (or a subrange) and failed to create the respective ordered extent,
1534 * then it means that when we reserved the extent we decremented the
1535 * extent's size from the data space_info's bytes_may_use counter and
1536 * incremented the space_info's bytes_reserved counter by the same
1537 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1538 * to decrement again the data space_info's bytes_may_use counter,
1539 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1540 */
1541 if (extent_reserved) {
1542 extent_clear_unlock_delalloc(inode, start,
1543 start + cur_alloc_size - 1,
1544 locked_page,
1545 clear_bits,
1546 page_ops);
1547 start += cur_alloc_size;
1548 }
1549
1550 /*
1551 * For the range (3). We never touched the region. In addition to the
1552 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1553 * space_info's bytes_may_use counter, reserved in
1554 * btrfs_check_data_free_space().
1555 */
1556 if (start < end) {
1557 clear_bits |= EXTENT_CLEAR_DATA_RESV;
1558 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1559 clear_bits, page_ops);
1560 }
1561 return ret;
1562 }
1563
1564 /*
1565 * Phase two of compressed writeback. This is the ordered portion of the code,
1566 * which only gets called in the order the work was queued. We walk all the
1567 * async extents created by compress_file_range and send them down to the disk.
1568 */
1569 static noinline void submit_compressed_extents(struct btrfs_work *work)
1570 {
1571 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1572 work);
1573 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1574 struct async_extent *async_extent;
1575 unsigned long nr_pages;
1576 u64 alloc_hint = 0;
1577
1578 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1579 PAGE_SHIFT;
1580
1581 while (!list_empty(&async_chunk->extents)) {
1582 async_extent = list_entry(async_chunk->extents.next,
1583 struct async_extent, list);
1584 list_del(&async_extent->list);
1585 submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1586 }
1587
1588 /* atomic_sub_return implies a barrier */
1589 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1590 5 * SZ_1M)
1591 cond_wake_up_nomb(&fs_info->async_submit_wait);
1592 }
1593
1594 static noinline void async_cow_free(struct btrfs_work *work)
1595 {
1596 struct async_chunk *async_chunk;
1597 struct async_cow *async_cow;
1598
1599 async_chunk = container_of(work, struct async_chunk, work);
1600 btrfs_add_delayed_iput(async_chunk->inode);
1601 if (async_chunk->blkcg_css)
1602 css_put(async_chunk->blkcg_css);
1603
1604 async_cow = async_chunk->async_cow;
1605 if (atomic_dec_and_test(&async_cow->num_chunks))
1606 kvfree(async_cow);
1607 }
1608
1609 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1610 struct page *locked_page, u64 start,
1611 u64 end, struct writeback_control *wbc)
1612 {
1613 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1614 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1615 struct async_cow *ctx;
1616 struct async_chunk *async_chunk;
1617 unsigned long nr_pages;
1618 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1619 int i;
1620 unsigned nofs_flag;
1621 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1622
1623 nofs_flag = memalloc_nofs_save();
1624 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1625 memalloc_nofs_restore(nofs_flag);
1626 if (!ctx)
1627 return false;
1628
1629 unlock_extent(&inode->io_tree, start, end, NULL);
1630 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1631
1632 async_chunk = ctx->chunks;
1633 atomic_set(&ctx->num_chunks, num_chunks);
1634
1635 for (i = 0; i < num_chunks; i++) {
1636 u64 cur_end = min(end, start + SZ_512K - 1);
1637
1638 /*
1639 * igrab is called higher up in the call chain, take only the
1640 * lightweight reference for the callback lifetime
1641 */
1642 ihold(&inode->vfs_inode);
1643 async_chunk[i].async_cow = ctx;
1644 async_chunk[i].inode = inode;
1645 async_chunk[i].start = start;
1646 async_chunk[i].end = cur_end;
1647 async_chunk[i].write_flags = write_flags;
1648 INIT_LIST_HEAD(&async_chunk[i].extents);
1649
1650 /*
1651 * The locked_page comes all the way from writepage and its
1652 * the original page we were actually given. As we spread
1653 * this large delalloc region across multiple async_chunk
1654 * structs, only the first struct needs a pointer to locked_page
1655 *
1656 * This way we don't need racey decisions about who is supposed
1657 * to unlock it.
1658 */
1659 if (locked_page) {
1660 /*
1661 * Depending on the compressibility, the pages might or
1662 * might not go through async. We want all of them to
1663 * be accounted against wbc once. Let's do it here
1664 * before the paths diverge. wbc accounting is used
1665 * only for foreign writeback detection and doesn't
1666 * need full accuracy. Just account the whole thing
1667 * against the first page.
1668 */
1669 wbc_account_cgroup_owner(wbc, locked_page,
1670 cur_end - start);
1671 async_chunk[i].locked_page = locked_page;
1672 locked_page = NULL;
1673 } else {
1674 async_chunk[i].locked_page = NULL;
1675 }
1676
1677 if (blkcg_css != blkcg_root_css) {
1678 css_get(blkcg_css);
1679 async_chunk[i].blkcg_css = blkcg_css;
1680 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1681 } else {
1682 async_chunk[i].blkcg_css = NULL;
1683 }
1684
1685 btrfs_init_work(&async_chunk[i].work, compress_file_range,
1686 submit_compressed_extents, async_cow_free);
1687
1688 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1689 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1690
1691 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1692
1693 start = cur_end + 1;
1694 }
1695 return true;
1696 }
1697
1698 /*
1699 * Run the delalloc range from start to end, and write back any dirty pages
1700 * covered by the range.
1701 */
1702 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1703 struct page *locked_page, u64 start,
1704 u64 end, struct writeback_control *wbc,
1705 bool pages_dirty)
1706 {
1707 u64 done_offset = end;
1708 int ret;
1709
1710 while (start <= end) {
1711 ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1712 true, false);
1713 if (ret)
1714 return ret;
1715 extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1716 done_offset, wbc, pages_dirty);
1717 start = done_offset + 1;
1718 }
1719
1720 return 1;
1721 }
1722
1723 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1724 u64 bytenr, u64 num_bytes, bool nowait)
1725 {
1726 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1727 struct btrfs_ordered_sum *sums;
1728 int ret;
1729 LIST_HEAD(list);
1730
1731 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1732 &list, 0, nowait);
1733 if (ret == 0 && list_empty(&list))
1734 return 0;
1735
1736 while (!list_empty(&list)) {
1737 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1738 list_del(&sums->list);
1739 kfree(sums);
1740 }
1741 if (ret < 0)
1742 return ret;
1743 return 1;
1744 }
1745
1746 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1747 const u64 start, const u64 end)
1748 {
1749 const bool is_space_ino = btrfs_is_free_space_inode(inode);
1750 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1751 const u64 range_bytes = end + 1 - start;
1752 struct extent_io_tree *io_tree = &inode->io_tree;
1753 u64 range_start = start;
1754 u64 count;
1755 int ret;
1756
1757 /*
1758 * If EXTENT_NORESERVE is set it means that when the buffered write was
1759 * made we had not enough available data space and therefore we did not
1760 * reserve data space for it, since we though we could do NOCOW for the
1761 * respective file range (either there is prealloc extent or the inode
1762 * has the NOCOW bit set).
1763 *
1764 * However when we need to fallback to COW mode (because for example the
1765 * block group for the corresponding extent was turned to RO mode by a
1766 * scrub or relocation) we need to do the following:
1767 *
1768 * 1) We increment the bytes_may_use counter of the data space info.
1769 * If COW succeeds, it allocates a new data extent and after doing
1770 * that it decrements the space info's bytes_may_use counter and
1771 * increments its bytes_reserved counter by the same amount (we do
1772 * this at btrfs_add_reserved_bytes()). So we need to increment the
1773 * bytes_may_use counter to compensate (when space is reserved at
1774 * buffered write time, the bytes_may_use counter is incremented);
1775 *
1776 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1777 * that if the COW path fails for any reason, it decrements (through
1778 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1779 * data space info, which we incremented in the step above.
1780 *
1781 * If we need to fallback to cow and the inode corresponds to a free
1782 * space cache inode or an inode of the data relocation tree, we must
1783 * also increment bytes_may_use of the data space_info for the same
1784 * reason. Space caches and relocated data extents always get a prealloc
1785 * extent for them, however scrub or balance may have set the block
1786 * group that contains that extent to RO mode and therefore force COW
1787 * when starting writeback.
1788 */
1789 count = count_range_bits(io_tree, &range_start, end, range_bytes,
1790 EXTENT_NORESERVE, 0, NULL);
1791 if (count > 0 || is_space_ino || is_reloc_ino) {
1792 u64 bytes = count;
1793 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1794 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1795
1796 if (is_space_ino || is_reloc_ino)
1797 bytes = range_bytes;
1798
1799 spin_lock(&sinfo->lock);
1800 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1801 spin_unlock(&sinfo->lock);
1802
1803 if (count > 0)
1804 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1805 NULL);
1806 }
1807
1808 /*
1809 * Don't try to create inline extents, as a mix of inline extent that
1810 * is written out and unlocked directly and a normal NOCOW extent
1811 * doesn't work.
1812 */
1813 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1814 ASSERT(ret != 1);
1815 return ret;
1816 }
1817
1818 struct can_nocow_file_extent_args {
1819 /* Input fields. */
1820
1821 /* Start file offset of the range we want to NOCOW. */
1822 u64 start;
1823 /* End file offset (inclusive) of the range we want to NOCOW. */
1824 u64 end;
1825 bool writeback_path;
1826 bool strict;
1827 /*
1828 * Free the path passed to can_nocow_file_extent() once it's not needed
1829 * anymore.
1830 */
1831 bool free_path;
1832
1833 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1834
1835 u64 disk_bytenr;
1836 u64 disk_num_bytes;
1837 u64 extent_offset;
1838 /* Number of bytes that can be written to in NOCOW mode. */
1839 u64 num_bytes;
1840 };
1841
1842 /*
1843 * Check if we can NOCOW the file extent that the path points to.
1844 * This function may return with the path released, so the caller should check
1845 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1846 *
1847 * Returns: < 0 on error
1848 * 0 if we can not NOCOW
1849 * 1 if we can NOCOW
1850 */
1851 static int can_nocow_file_extent(struct btrfs_path *path,
1852 struct btrfs_key *key,
1853 struct btrfs_inode *inode,
1854 struct can_nocow_file_extent_args *args)
1855 {
1856 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1857 struct extent_buffer *leaf = path->nodes[0];
1858 struct btrfs_root *root = inode->root;
1859 struct btrfs_file_extent_item *fi;
1860 u64 extent_end;
1861 u8 extent_type;
1862 int can_nocow = 0;
1863 int ret = 0;
1864 bool nowait = path->nowait;
1865
1866 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1867 extent_type = btrfs_file_extent_type(leaf, fi);
1868
1869 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1870 goto out;
1871
1872 /* Can't access these fields unless we know it's not an inline extent. */
1873 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1874 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1875 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1876
1877 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1878 extent_type == BTRFS_FILE_EXTENT_REG)
1879 goto out;
1880
1881 /*
1882 * If the extent was created before the generation where the last snapshot
1883 * for its subvolume was created, then this implies the extent is shared,
1884 * hence we must COW.
1885 */
1886 if (!args->strict &&
1887 btrfs_file_extent_generation(leaf, fi) <=
1888 btrfs_root_last_snapshot(&root->root_item))
1889 goto out;
1890
1891 /* An explicit hole, must COW. */
1892 if (args->disk_bytenr == 0)
1893 goto out;
1894
1895 /* Compressed/encrypted/encoded extents must be COWed. */
1896 if (btrfs_file_extent_compression(leaf, fi) ||
1897 btrfs_file_extent_encryption(leaf, fi) ||
1898 btrfs_file_extent_other_encoding(leaf, fi))
1899 goto out;
1900
1901 extent_end = btrfs_file_extent_end(path);
1902
1903 /*
1904 * The following checks can be expensive, as they need to take other
1905 * locks and do btree or rbtree searches, so release the path to avoid
1906 * blocking other tasks for too long.
1907 */
1908 btrfs_release_path(path);
1909
1910 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1911 key->offset - args->extent_offset,
1912 args->disk_bytenr, args->strict, path);
1913 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1914 if (ret != 0)
1915 goto out;
1916
1917 if (args->free_path) {
1918 /*
1919 * We don't need the path anymore, plus through the
1920 * csum_exist_in_range() call below we will end up allocating
1921 * another path. So free the path to avoid unnecessary extra
1922 * memory usage.
1923 */
1924 btrfs_free_path(path);
1925 path = NULL;
1926 }
1927
1928 /* If there are pending snapshots for this root, we must COW. */
1929 if (args->writeback_path && !is_freespace_inode &&
1930 atomic_read(&root->snapshot_force_cow))
1931 goto out;
1932
1933 args->disk_bytenr += args->extent_offset;
1934 args->disk_bytenr += args->start - key->offset;
1935 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1936
1937 /*
1938 * Force COW if csums exist in the range. This ensures that csums for a
1939 * given extent are either valid or do not exist.
1940 */
1941 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1942 nowait);
1943 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1944 if (ret != 0)
1945 goto out;
1946
1947 can_nocow = 1;
1948 out:
1949 if (args->free_path && path)
1950 btrfs_free_path(path);
1951
1952 return ret < 0 ? ret : can_nocow;
1953 }
1954
1955 /*
1956 * when nowcow writeback call back. This checks for snapshots or COW copies
1957 * of the extents that exist in the file, and COWs the file as required.
1958 *
1959 * If no cow copies or snapshots exist, we write directly to the existing
1960 * blocks on disk
1961 */
1962 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1963 struct page *locked_page,
1964 const u64 start, const u64 end)
1965 {
1966 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1967 struct btrfs_root *root = inode->root;
1968 struct btrfs_path *path;
1969 u64 cow_start = (u64)-1;
1970 u64 cur_offset = start;
1971 int ret;
1972 bool check_prev = true;
1973 u64 ino = btrfs_ino(inode);
1974 struct can_nocow_file_extent_args nocow_args = { 0 };
1975
1976 /*
1977 * Normally on a zoned device we're only doing COW writes, but in case
1978 * of relocation on a zoned filesystem serializes I/O so that we're only
1979 * writing sequentially and can end up here as well.
1980 */
1981 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1982
1983 path = btrfs_alloc_path();
1984 if (!path) {
1985 ret = -ENOMEM;
1986 goto error;
1987 }
1988
1989 nocow_args.end = end;
1990 nocow_args.writeback_path = true;
1991
1992 while (1) {
1993 struct btrfs_block_group *nocow_bg = NULL;
1994 struct btrfs_ordered_extent *ordered;
1995 struct btrfs_key found_key;
1996 struct btrfs_file_extent_item *fi;
1997 struct extent_buffer *leaf;
1998 u64 extent_end;
1999 u64 ram_bytes;
2000 u64 nocow_end;
2001 int extent_type;
2002 bool is_prealloc;
2003
2004 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2005 cur_offset, 0);
2006 if (ret < 0)
2007 goto error;
2008
2009 /*
2010 * If there is no extent for our range when doing the initial
2011 * search, then go back to the previous slot as it will be the
2012 * one containing the search offset
2013 */
2014 if (ret > 0 && path->slots[0] > 0 && check_prev) {
2015 leaf = path->nodes[0];
2016 btrfs_item_key_to_cpu(leaf, &found_key,
2017 path->slots[0] - 1);
2018 if (found_key.objectid == ino &&
2019 found_key.type == BTRFS_EXTENT_DATA_KEY)
2020 path->slots[0]--;
2021 }
2022 check_prev = false;
2023 next_slot:
2024 /* Go to next leaf if we have exhausted the current one */
2025 leaf = path->nodes[0];
2026 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2027 ret = btrfs_next_leaf(root, path);
2028 if (ret < 0)
2029 goto error;
2030 if (ret > 0)
2031 break;
2032 leaf = path->nodes[0];
2033 }
2034
2035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2036
2037 /* Didn't find anything for our INO */
2038 if (found_key.objectid > ino)
2039 break;
2040 /*
2041 * Keep searching until we find an EXTENT_ITEM or there are no
2042 * more extents for this inode
2043 */
2044 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2045 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2046 path->slots[0]++;
2047 goto next_slot;
2048 }
2049
2050 /* Found key is not EXTENT_DATA_KEY or starts after req range */
2051 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2052 found_key.offset > end)
2053 break;
2054
2055 /*
2056 * If the found extent starts after requested offset, then
2057 * adjust extent_end to be right before this extent begins
2058 */
2059 if (found_key.offset > cur_offset) {
2060 extent_end = found_key.offset;
2061 extent_type = 0;
2062 goto must_cow;
2063 }
2064
2065 /*
2066 * Found extent which begins before our range and potentially
2067 * intersect it
2068 */
2069 fi = btrfs_item_ptr(leaf, path->slots[0],
2070 struct btrfs_file_extent_item);
2071 extent_type = btrfs_file_extent_type(leaf, fi);
2072 /* If this is triggered then we have a memory corruption. */
2073 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2074 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2075 ret = -EUCLEAN;
2076 goto error;
2077 }
2078 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2079 extent_end = btrfs_file_extent_end(path);
2080
2081 /*
2082 * If the extent we got ends before our current offset, skip to
2083 * the next extent.
2084 */
2085 if (extent_end <= cur_offset) {
2086 path->slots[0]++;
2087 goto next_slot;
2088 }
2089
2090 nocow_args.start = cur_offset;
2091 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2092 if (ret < 0)
2093 goto error;
2094 if (ret == 0)
2095 goto must_cow;
2096
2097 ret = 0;
2098 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2099 if (!nocow_bg) {
2100 must_cow:
2101 /*
2102 * If we can't perform NOCOW writeback for the range,
2103 * then record the beginning of the range that needs to
2104 * be COWed. It will be written out before the next
2105 * NOCOW range if we find one, or when exiting this
2106 * loop.
2107 */
2108 if (cow_start == (u64)-1)
2109 cow_start = cur_offset;
2110 cur_offset = extent_end;
2111 if (cur_offset > end)
2112 break;
2113 if (!path->nodes[0])
2114 continue;
2115 path->slots[0]++;
2116 goto next_slot;
2117 }
2118
2119 /*
2120 * COW range from cow_start to found_key.offset - 1. As the key
2121 * will contain the beginning of the first extent that can be
2122 * NOCOW, following one which needs to be COW'ed
2123 */
2124 if (cow_start != (u64)-1) {
2125 ret = fallback_to_cow(inode, locked_page,
2126 cow_start, found_key.offset - 1);
2127 cow_start = (u64)-1;
2128 if (ret) {
2129 btrfs_dec_nocow_writers(nocow_bg);
2130 goto error;
2131 }
2132 }
2133
2134 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2135 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2136 if (is_prealloc) {
2137 u64 orig_start = found_key.offset - nocow_args.extent_offset;
2138 struct extent_map *em;
2139
2140 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2141 orig_start,
2142 nocow_args.disk_bytenr, /* block_start */
2143 nocow_args.num_bytes, /* block_len */
2144 nocow_args.disk_num_bytes, /* orig_block_len */
2145 ram_bytes, BTRFS_COMPRESS_NONE,
2146 BTRFS_ORDERED_PREALLOC);
2147 if (IS_ERR(em)) {
2148 btrfs_dec_nocow_writers(nocow_bg);
2149 ret = PTR_ERR(em);
2150 goto error;
2151 }
2152 free_extent_map(em);
2153 }
2154
2155 ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2156 nocow_args.num_bytes, nocow_args.num_bytes,
2157 nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2158 is_prealloc
2159 ? (1 << BTRFS_ORDERED_PREALLOC)
2160 : (1 << BTRFS_ORDERED_NOCOW),
2161 BTRFS_COMPRESS_NONE);
2162 btrfs_dec_nocow_writers(nocow_bg);
2163 if (IS_ERR(ordered)) {
2164 if (is_prealloc) {
2165 btrfs_drop_extent_map_range(inode, cur_offset,
2166 nocow_end, false);
2167 }
2168 ret = PTR_ERR(ordered);
2169 goto error;
2170 }
2171
2172 if (btrfs_is_data_reloc_root(root))
2173 /*
2174 * Error handled later, as we must prevent
2175 * extent_clear_unlock_delalloc() in error handler
2176 * from freeing metadata of created ordered extent.
2177 */
2178 ret = btrfs_reloc_clone_csums(ordered);
2179 btrfs_put_ordered_extent(ordered);
2180
2181 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2182 locked_page, EXTENT_LOCKED |
2183 EXTENT_DELALLOC |
2184 EXTENT_CLEAR_DATA_RESV,
2185 PAGE_UNLOCK | PAGE_SET_ORDERED);
2186
2187 cur_offset = extent_end;
2188
2189 /*
2190 * btrfs_reloc_clone_csums() error, now we're OK to call error
2191 * handler, as metadata for created ordered extent will only
2192 * be freed by btrfs_finish_ordered_io().
2193 */
2194 if (ret)
2195 goto error;
2196 if (cur_offset > end)
2197 break;
2198 }
2199 btrfs_release_path(path);
2200
2201 if (cur_offset <= end && cow_start == (u64)-1)
2202 cow_start = cur_offset;
2203
2204 if (cow_start != (u64)-1) {
2205 cur_offset = end;
2206 ret = fallback_to_cow(inode, locked_page, cow_start, end);
2207 cow_start = (u64)-1;
2208 if (ret)
2209 goto error;
2210 }
2211
2212 btrfs_free_path(path);
2213 return 0;
2214
2215 error:
2216 /*
2217 * If an error happened while a COW region is outstanding, cur_offset
2218 * needs to be reset to cow_start to ensure the COW region is unlocked
2219 * as well.
2220 */
2221 if (cow_start != (u64)-1)
2222 cur_offset = cow_start;
2223 if (cur_offset < end)
2224 extent_clear_unlock_delalloc(inode, cur_offset, end,
2225 locked_page, EXTENT_LOCKED |
2226 EXTENT_DELALLOC | EXTENT_DEFRAG |
2227 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2228 PAGE_START_WRITEBACK |
2229 PAGE_END_WRITEBACK);
2230 btrfs_free_path(path);
2231 return ret;
2232 }
2233
2234 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2235 {
2236 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2237 if (inode->defrag_bytes &&
2238 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2239 0, NULL))
2240 return false;
2241 return true;
2242 }
2243 return false;
2244 }
2245
2246 /*
2247 * Function to process delayed allocation (create CoW) for ranges which are
2248 * being touched for the first time.
2249 */
2250 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2251 u64 start, u64 end, struct writeback_control *wbc)
2252 {
2253 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2254 int ret;
2255
2256 /*
2257 * The range must cover part of the @locked_page, or a return of 1
2258 * can confuse the caller.
2259 */
2260 ASSERT(!(end <= page_offset(locked_page) ||
2261 start >= page_offset(locked_page) + PAGE_SIZE));
2262
2263 if (should_nocow(inode, start, end)) {
2264 ret = run_delalloc_nocow(inode, locked_page, start, end);
2265 goto out;
2266 }
2267
2268 if (btrfs_inode_can_compress(inode) &&
2269 inode_need_compress(inode, start, end) &&
2270 run_delalloc_compressed(inode, locked_page, start, end, wbc))
2271 return 1;
2272
2273 if (zoned)
2274 ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2275 true);
2276 else
2277 ret = cow_file_range(inode, locked_page, start, end, NULL,
2278 false, false);
2279
2280 out:
2281 if (ret < 0)
2282 btrfs_cleanup_ordered_extents(inode, locked_page, start,
2283 end - start + 1);
2284 return ret;
2285 }
2286
2287 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2288 struct extent_state *orig, u64 split)
2289 {
2290 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2291 u64 size;
2292
2293 /* not delalloc, ignore it */
2294 if (!(orig->state & EXTENT_DELALLOC))
2295 return;
2296
2297 size = orig->end - orig->start + 1;
2298 if (size > fs_info->max_extent_size) {
2299 u32 num_extents;
2300 u64 new_size;
2301
2302 /*
2303 * See the explanation in btrfs_merge_delalloc_extent, the same
2304 * applies here, just in reverse.
2305 */
2306 new_size = orig->end - split + 1;
2307 num_extents = count_max_extents(fs_info, new_size);
2308 new_size = split - orig->start;
2309 num_extents += count_max_extents(fs_info, new_size);
2310 if (count_max_extents(fs_info, size) >= num_extents)
2311 return;
2312 }
2313
2314 spin_lock(&inode->lock);
2315 btrfs_mod_outstanding_extents(inode, 1);
2316 spin_unlock(&inode->lock);
2317 }
2318
2319 /*
2320 * Handle merged delayed allocation extents so we can keep track of new extents
2321 * that are just merged onto old extents, such as when we are doing sequential
2322 * writes, so we can properly account for the metadata space we'll need.
2323 */
2324 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2325 struct extent_state *other)
2326 {
2327 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2328 u64 new_size, old_size;
2329 u32 num_extents;
2330
2331 /* not delalloc, ignore it */
2332 if (!(other->state & EXTENT_DELALLOC))
2333 return;
2334
2335 if (new->start > other->start)
2336 new_size = new->end - other->start + 1;
2337 else
2338 new_size = other->end - new->start + 1;
2339
2340 /* we're not bigger than the max, unreserve the space and go */
2341 if (new_size <= fs_info->max_extent_size) {
2342 spin_lock(&inode->lock);
2343 btrfs_mod_outstanding_extents(inode, -1);
2344 spin_unlock(&inode->lock);
2345 return;
2346 }
2347
2348 /*
2349 * We have to add up either side to figure out how many extents were
2350 * accounted for before we merged into one big extent. If the number of
2351 * extents we accounted for is <= the amount we need for the new range
2352 * then we can return, otherwise drop. Think of it like this
2353 *
2354 * [ 4k][MAX_SIZE]
2355 *
2356 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2357 * need 2 outstanding extents, on one side we have 1 and the other side
2358 * we have 1 so they are == and we can return. But in this case
2359 *
2360 * [MAX_SIZE+4k][MAX_SIZE+4k]
2361 *
2362 * Each range on their own accounts for 2 extents, but merged together
2363 * they are only 3 extents worth of accounting, so we need to drop in
2364 * this case.
2365 */
2366 old_size = other->end - other->start + 1;
2367 num_extents = count_max_extents(fs_info, old_size);
2368 old_size = new->end - new->start + 1;
2369 num_extents += count_max_extents(fs_info, old_size);
2370 if (count_max_extents(fs_info, new_size) >= num_extents)
2371 return;
2372
2373 spin_lock(&inode->lock);
2374 btrfs_mod_outstanding_extents(inode, -1);
2375 spin_unlock(&inode->lock);
2376 }
2377
2378 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2379 struct btrfs_inode *inode)
2380 {
2381 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2382
2383 spin_lock(&root->delalloc_lock);
2384 if (list_empty(&inode->delalloc_inodes)) {
2385 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2386 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2387 root->nr_delalloc_inodes++;
2388 if (root->nr_delalloc_inodes == 1) {
2389 spin_lock(&fs_info->delalloc_root_lock);
2390 BUG_ON(!list_empty(&root->delalloc_root));
2391 list_add_tail(&root->delalloc_root,
2392 &fs_info->delalloc_roots);
2393 spin_unlock(&fs_info->delalloc_root_lock);
2394 }
2395 }
2396 spin_unlock(&root->delalloc_lock);
2397 }
2398
2399 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2400 struct btrfs_inode *inode)
2401 {
2402 struct btrfs_fs_info *fs_info = root->fs_info;
2403
2404 if (!list_empty(&inode->delalloc_inodes)) {
2405 list_del_init(&inode->delalloc_inodes);
2406 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2407 &inode->runtime_flags);
2408 root->nr_delalloc_inodes--;
2409 if (!root->nr_delalloc_inodes) {
2410 ASSERT(list_empty(&root->delalloc_inodes));
2411 spin_lock(&fs_info->delalloc_root_lock);
2412 BUG_ON(list_empty(&root->delalloc_root));
2413 list_del_init(&root->delalloc_root);
2414 spin_unlock(&fs_info->delalloc_root_lock);
2415 }
2416 }
2417 }
2418
2419 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2420 struct btrfs_inode *inode)
2421 {
2422 spin_lock(&root->delalloc_lock);
2423 __btrfs_del_delalloc_inode(root, inode);
2424 spin_unlock(&root->delalloc_lock);
2425 }
2426
2427 /*
2428 * Properly track delayed allocation bytes in the inode and to maintain the
2429 * list of inodes that have pending delalloc work to be done.
2430 */
2431 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2432 u32 bits)
2433 {
2434 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2435
2436 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2437 WARN_ON(1);
2438 /*
2439 * set_bit and clear bit hooks normally require _irqsave/restore
2440 * but in this case, we are only testing for the DELALLOC
2441 * bit, which is only set or cleared with irqs on
2442 */
2443 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2444 struct btrfs_root *root = inode->root;
2445 u64 len = state->end + 1 - state->start;
2446 u32 num_extents = count_max_extents(fs_info, len);
2447 bool do_list = !btrfs_is_free_space_inode(inode);
2448
2449 spin_lock(&inode->lock);
2450 btrfs_mod_outstanding_extents(inode, num_extents);
2451 spin_unlock(&inode->lock);
2452
2453 /* For sanity tests */
2454 if (btrfs_is_testing(fs_info))
2455 return;
2456
2457 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2458 fs_info->delalloc_batch);
2459 spin_lock(&inode->lock);
2460 inode->delalloc_bytes += len;
2461 if (bits & EXTENT_DEFRAG)
2462 inode->defrag_bytes += len;
2463 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2464 &inode->runtime_flags))
2465 btrfs_add_delalloc_inodes(root, inode);
2466 spin_unlock(&inode->lock);
2467 }
2468
2469 if (!(state->state & EXTENT_DELALLOC_NEW) &&
2470 (bits & EXTENT_DELALLOC_NEW)) {
2471 spin_lock(&inode->lock);
2472 inode->new_delalloc_bytes += state->end + 1 - state->start;
2473 spin_unlock(&inode->lock);
2474 }
2475 }
2476
2477 /*
2478 * Once a range is no longer delalloc this function ensures that proper
2479 * accounting happens.
2480 */
2481 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2482 struct extent_state *state, u32 bits)
2483 {
2484 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2485 u64 len = state->end + 1 - state->start;
2486 u32 num_extents = count_max_extents(fs_info, len);
2487
2488 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2489 spin_lock(&inode->lock);
2490 inode->defrag_bytes -= len;
2491 spin_unlock(&inode->lock);
2492 }
2493
2494 /*
2495 * set_bit and clear bit hooks normally require _irqsave/restore
2496 * but in this case, we are only testing for the DELALLOC
2497 * bit, which is only set or cleared with irqs on
2498 */
2499 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2500 struct btrfs_root *root = inode->root;
2501 bool do_list = !btrfs_is_free_space_inode(inode);
2502
2503 spin_lock(&inode->lock);
2504 btrfs_mod_outstanding_extents(inode, -num_extents);
2505 spin_unlock(&inode->lock);
2506
2507 /*
2508 * We don't reserve metadata space for space cache inodes so we
2509 * don't need to call delalloc_release_metadata if there is an
2510 * error.
2511 */
2512 if (bits & EXTENT_CLEAR_META_RESV &&
2513 root != fs_info->tree_root)
2514 btrfs_delalloc_release_metadata(inode, len, false);
2515
2516 /* For sanity tests. */
2517 if (btrfs_is_testing(fs_info))
2518 return;
2519
2520 if (!btrfs_is_data_reloc_root(root) &&
2521 do_list && !(state->state & EXTENT_NORESERVE) &&
2522 (bits & EXTENT_CLEAR_DATA_RESV))
2523 btrfs_free_reserved_data_space_noquota(fs_info, len);
2524
2525 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2526 fs_info->delalloc_batch);
2527 spin_lock(&inode->lock);
2528 inode->delalloc_bytes -= len;
2529 if (do_list && inode->delalloc_bytes == 0 &&
2530 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2531 &inode->runtime_flags))
2532 btrfs_del_delalloc_inode(root, inode);
2533 spin_unlock(&inode->lock);
2534 }
2535
2536 if ((state->state & EXTENT_DELALLOC_NEW) &&
2537 (bits & EXTENT_DELALLOC_NEW)) {
2538 spin_lock(&inode->lock);
2539 ASSERT(inode->new_delalloc_bytes >= len);
2540 inode->new_delalloc_bytes -= len;
2541 if (bits & EXTENT_ADD_INODE_BYTES)
2542 inode_add_bytes(&inode->vfs_inode, len);
2543 spin_unlock(&inode->lock);
2544 }
2545 }
2546
2547 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2548 struct btrfs_ordered_extent *ordered)
2549 {
2550 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2551 u64 len = bbio->bio.bi_iter.bi_size;
2552 struct btrfs_ordered_extent *new;
2553 int ret;
2554
2555 /* Must always be called for the beginning of an ordered extent. */
2556 if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2557 return -EINVAL;
2558
2559 /* No need to split if the ordered extent covers the entire bio. */
2560 if (ordered->disk_num_bytes == len) {
2561 refcount_inc(&ordered->refs);
2562 bbio->ordered = ordered;
2563 return 0;
2564 }
2565
2566 /*
2567 * Don't split the extent_map for NOCOW extents, as we're writing into
2568 * a pre-existing one.
2569 */
2570 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2571 ret = split_extent_map(bbio->inode, bbio->file_offset,
2572 ordered->num_bytes, len,
2573 ordered->disk_bytenr);
2574 if (ret)
2575 return ret;
2576 }
2577
2578 new = btrfs_split_ordered_extent(ordered, len);
2579 if (IS_ERR(new))
2580 return PTR_ERR(new);
2581 bbio->ordered = new;
2582 return 0;
2583 }
2584
2585 /*
2586 * given a list of ordered sums record them in the inode. This happens
2587 * at IO completion time based on sums calculated at bio submission time.
2588 */
2589 static int add_pending_csums(struct btrfs_trans_handle *trans,
2590 struct list_head *list)
2591 {
2592 struct btrfs_ordered_sum *sum;
2593 struct btrfs_root *csum_root = NULL;
2594 int ret;
2595
2596 list_for_each_entry(sum, list, list) {
2597 trans->adding_csums = true;
2598 if (!csum_root)
2599 csum_root = btrfs_csum_root(trans->fs_info,
2600 sum->logical);
2601 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2602 trans->adding_csums = false;
2603 if (ret)
2604 return ret;
2605 }
2606 return 0;
2607 }
2608
2609 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2610 const u64 start,
2611 const u64 len,
2612 struct extent_state **cached_state)
2613 {
2614 u64 search_start = start;
2615 const u64 end = start + len - 1;
2616
2617 while (search_start < end) {
2618 const u64 search_len = end - search_start + 1;
2619 struct extent_map *em;
2620 u64 em_len;
2621 int ret = 0;
2622
2623 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2624 if (IS_ERR(em))
2625 return PTR_ERR(em);
2626
2627 if (em->block_start != EXTENT_MAP_HOLE)
2628 goto next;
2629
2630 em_len = em->len;
2631 if (em->start < search_start)
2632 em_len -= search_start - em->start;
2633 if (em_len > search_len)
2634 em_len = search_len;
2635
2636 ret = set_extent_bit(&inode->io_tree, search_start,
2637 search_start + em_len - 1,
2638 EXTENT_DELALLOC_NEW, cached_state);
2639 next:
2640 search_start = extent_map_end(em);
2641 free_extent_map(em);
2642 if (ret)
2643 return ret;
2644 }
2645 return 0;
2646 }
2647
2648 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2649 unsigned int extra_bits,
2650 struct extent_state **cached_state)
2651 {
2652 WARN_ON(PAGE_ALIGNED(end));
2653
2654 if (start >= i_size_read(&inode->vfs_inode) &&
2655 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2656 /*
2657 * There can't be any extents following eof in this case so just
2658 * set the delalloc new bit for the range directly.
2659 */
2660 extra_bits |= EXTENT_DELALLOC_NEW;
2661 } else {
2662 int ret;
2663
2664 ret = btrfs_find_new_delalloc_bytes(inode, start,
2665 end + 1 - start,
2666 cached_state);
2667 if (ret)
2668 return ret;
2669 }
2670
2671 return set_extent_bit(&inode->io_tree, start, end,
2672 EXTENT_DELALLOC | extra_bits, cached_state);
2673 }
2674
2675 /* see btrfs_writepage_start_hook for details on why this is required */
2676 struct btrfs_writepage_fixup {
2677 struct page *page;
2678 struct btrfs_inode *inode;
2679 struct btrfs_work work;
2680 };
2681
2682 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2683 {
2684 struct btrfs_writepage_fixup *fixup =
2685 container_of(work, struct btrfs_writepage_fixup, work);
2686 struct btrfs_ordered_extent *ordered;
2687 struct extent_state *cached_state = NULL;
2688 struct extent_changeset *data_reserved = NULL;
2689 struct page *page = fixup->page;
2690 struct btrfs_inode *inode = fixup->inode;
2691 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2692 u64 page_start = page_offset(page);
2693 u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2694 int ret = 0;
2695 bool free_delalloc_space = true;
2696
2697 /*
2698 * This is similar to page_mkwrite, we need to reserve the space before
2699 * we take the page lock.
2700 */
2701 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2702 PAGE_SIZE);
2703 again:
2704 lock_page(page);
2705
2706 /*
2707 * Before we queued this fixup, we took a reference on the page.
2708 * page->mapping may go NULL, but it shouldn't be moved to a different
2709 * address space.
2710 */
2711 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2712 /*
2713 * Unfortunately this is a little tricky, either
2714 *
2715 * 1) We got here and our page had already been dealt with and
2716 * we reserved our space, thus ret == 0, so we need to just
2717 * drop our space reservation and bail. This can happen the
2718 * first time we come into the fixup worker, or could happen
2719 * while waiting for the ordered extent.
2720 * 2) Our page was already dealt with, but we happened to get an
2721 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2722 * this case we obviously don't have anything to release, but
2723 * because the page was already dealt with we don't want to
2724 * mark the page with an error, so make sure we're resetting
2725 * ret to 0. This is why we have this check _before_ the ret
2726 * check, because we do not want to have a surprise ENOSPC
2727 * when the page was already properly dealt with.
2728 */
2729 if (!ret) {
2730 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2731 btrfs_delalloc_release_space(inode, data_reserved,
2732 page_start, PAGE_SIZE,
2733 true);
2734 }
2735 ret = 0;
2736 goto out_page;
2737 }
2738
2739 /*
2740 * We can't mess with the page state unless it is locked, so now that
2741 * it is locked bail if we failed to make our space reservation.
2742 */
2743 if (ret)
2744 goto out_page;
2745
2746 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2747
2748 /* already ordered? We're done */
2749 if (PageOrdered(page))
2750 goto out_reserved;
2751
2752 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2753 if (ordered) {
2754 unlock_extent(&inode->io_tree, page_start, page_end,
2755 &cached_state);
2756 unlock_page(page);
2757 btrfs_start_ordered_extent(ordered);
2758 btrfs_put_ordered_extent(ordered);
2759 goto again;
2760 }
2761
2762 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2763 &cached_state);
2764 if (ret)
2765 goto out_reserved;
2766
2767 /*
2768 * Everything went as planned, we're now the owner of a dirty page with
2769 * delayed allocation bits set and space reserved for our COW
2770 * destination.
2771 *
2772 * The page was dirty when we started, nothing should have cleaned it.
2773 */
2774 BUG_ON(!PageDirty(page));
2775 free_delalloc_space = false;
2776 out_reserved:
2777 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2778 if (free_delalloc_space)
2779 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2780 PAGE_SIZE, true);
2781 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2782 out_page:
2783 if (ret) {
2784 /*
2785 * We hit ENOSPC or other errors. Update the mapping and page
2786 * to reflect the errors and clean the page.
2787 */
2788 mapping_set_error(page->mapping, ret);
2789 btrfs_mark_ordered_io_finished(inode, page, page_start,
2790 PAGE_SIZE, !ret);
2791 clear_page_dirty_for_io(page);
2792 }
2793 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2794 unlock_page(page);
2795 put_page(page);
2796 kfree(fixup);
2797 extent_changeset_free(data_reserved);
2798 /*
2799 * As a precaution, do a delayed iput in case it would be the last iput
2800 * that could need flushing space. Recursing back to fixup worker would
2801 * deadlock.
2802 */
2803 btrfs_add_delayed_iput(inode);
2804 }
2805
2806 /*
2807 * There are a few paths in the higher layers of the kernel that directly
2808 * set the page dirty bit without asking the filesystem if it is a
2809 * good idea. This causes problems because we want to make sure COW
2810 * properly happens and the data=ordered rules are followed.
2811 *
2812 * In our case any range that doesn't have the ORDERED bit set
2813 * hasn't been properly setup for IO. We kick off an async process
2814 * to fix it up. The async helper will wait for ordered extents, set
2815 * the delalloc bit and make it safe to write the page.
2816 */
2817 int btrfs_writepage_cow_fixup(struct page *page)
2818 {
2819 struct inode *inode = page->mapping->host;
2820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2821 struct btrfs_writepage_fixup *fixup;
2822
2823 /* This page has ordered extent covering it already */
2824 if (PageOrdered(page))
2825 return 0;
2826
2827 /*
2828 * PageChecked is set below when we create a fixup worker for this page,
2829 * don't try to create another one if we're already PageChecked()
2830 *
2831 * The extent_io writepage code will redirty the page if we send back
2832 * EAGAIN.
2833 */
2834 if (PageChecked(page))
2835 return -EAGAIN;
2836
2837 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2838 if (!fixup)
2839 return -EAGAIN;
2840
2841 /*
2842 * We are already holding a reference to this inode from
2843 * write_cache_pages. We need to hold it because the space reservation
2844 * takes place outside of the page lock, and we can't trust
2845 * page->mapping outside of the page lock.
2846 */
2847 ihold(inode);
2848 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2849 get_page(page);
2850 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2851 fixup->page = page;
2852 fixup->inode = BTRFS_I(inode);
2853 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2854
2855 return -EAGAIN;
2856 }
2857
2858 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2859 struct btrfs_inode *inode, u64 file_pos,
2860 struct btrfs_file_extent_item *stack_fi,
2861 const bool update_inode_bytes,
2862 u64 qgroup_reserved)
2863 {
2864 struct btrfs_root *root = inode->root;
2865 const u64 sectorsize = root->fs_info->sectorsize;
2866 struct btrfs_path *path;
2867 struct extent_buffer *leaf;
2868 struct btrfs_key ins;
2869 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2870 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2871 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2872 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2873 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2874 struct btrfs_drop_extents_args drop_args = { 0 };
2875 int ret;
2876
2877 path = btrfs_alloc_path();
2878 if (!path)
2879 return -ENOMEM;
2880
2881 /*
2882 * we may be replacing one extent in the tree with another.
2883 * The new extent is pinned in the extent map, and we don't want
2884 * to drop it from the cache until it is completely in the btree.
2885 *
2886 * So, tell btrfs_drop_extents to leave this extent in the cache.
2887 * the caller is expected to unpin it and allow it to be merged
2888 * with the others.
2889 */
2890 drop_args.path = path;
2891 drop_args.start = file_pos;
2892 drop_args.end = file_pos + num_bytes;
2893 drop_args.replace_extent = true;
2894 drop_args.extent_item_size = sizeof(*stack_fi);
2895 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2896 if (ret)
2897 goto out;
2898
2899 if (!drop_args.extent_inserted) {
2900 ins.objectid = btrfs_ino(inode);
2901 ins.offset = file_pos;
2902 ins.type = BTRFS_EXTENT_DATA_KEY;
2903
2904 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2905 sizeof(*stack_fi));
2906 if (ret)
2907 goto out;
2908 }
2909 leaf = path->nodes[0];
2910 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2911 write_extent_buffer(leaf, stack_fi,
2912 btrfs_item_ptr_offset(leaf, path->slots[0]),
2913 sizeof(struct btrfs_file_extent_item));
2914
2915 btrfs_mark_buffer_dirty(leaf);
2916 btrfs_release_path(path);
2917
2918 /*
2919 * If we dropped an inline extent here, we know the range where it is
2920 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2921 * number of bytes only for that range containing the inline extent.
2922 * The remaining of the range will be processed when clearning the
2923 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2924 */
2925 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2926 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2927
2928 inline_size = drop_args.bytes_found - inline_size;
2929 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2930 drop_args.bytes_found -= inline_size;
2931 num_bytes -= sectorsize;
2932 }
2933
2934 if (update_inode_bytes)
2935 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2936
2937 ins.objectid = disk_bytenr;
2938 ins.offset = disk_num_bytes;
2939 ins.type = BTRFS_EXTENT_ITEM_KEY;
2940
2941 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2942 if (ret)
2943 goto out;
2944
2945 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2946 file_pos - offset,
2947 qgroup_reserved, &ins);
2948 out:
2949 btrfs_free_path(path);
2950
2951 return ret;
2952 }
2953
2954 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2955 u64 start, u64 len)
2956 {
2957 struct btrfs_block_group *cache;
2958
2959 cache = btrfs_lookup_block_group(fs_info, start);
2960 ASSERT(cache);
2961
2962 spin_lock(&cache->lock);
2963 cache->delalloc_bytes -= len;
2964 spin_unlock(&cache->lock);
2965
2966 btrfs_put_block_group(cache);
2967 }
2968
2969 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2970 struct btrfs_ordered_extent *oe)
2971 {
2972 struct btrfs_file_extent_item stack_fi;
2973 bool update_inode_bytes;
2974 u64 num_bytes = oe->num_bytes;
2975 u64 ram_bytes = oe->ram_bytes;
2976
2977 memset(&stack_fi, 0, sizeof(stack_fi));
2978 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2979 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2980 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2981 oe->disk_num_bytes);
2982 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2983 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2984 num_bytes = oe->truncated_len;
2985 ram_bytes = num_bytes;
2986 }
2987 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2988 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2989 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2990 /* Encryption and other encoding is reserved and all 0 */
2991
2992 /*
2993 * For delalloc, when completing an ordered extent we update the inode's
2994 * bytes when clearing the range in the inode's io tree, so pass false
2995 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2996 * except if the ordered extent was truncated.
2997 */
2998 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2999 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3000 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3001
3002 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3003 oe->file_offset, &stack_fi,
3004 update_inode_bytes, oe->qgroup_rsv);
3005 }
3006
3007 /*
3008 * As ordered data IO finishes, this gets called so we can finish
3009 * an ordered extent if the range of bytes in the file it covers are
3010 * fully written.
3011 */
3012 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3013 {
3014 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3015 struct btrfs_root *root = inode->root;
3016 struct btrfs_fs_info *fs_info = root->fs_info;
3017 struct btrfs_trans_handle *trans = NULL;
3018 struct extent_io_tree *io_tree = &inode->io_tree;
3019 struct extent_state *cached_state = NULL;
3020 u64 start, end;
3021 int compress_type = 0;
3022 int ret = 0;
3023 u64 logical_len = ordered_extent->num_bytes;
3024 bool freespace_inode;
3025 bool truncated = false;
3026 bool clear_reserved_extent = true;
3027 unsigned int clear_bits = EXTENT_DEFRAG;
3028
3029 start = ordered_extent->file_offset;
3030 end = start + ordered_extent->num_bytes - 1;
3031
3032 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3033 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3034 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3035 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3036 clear_bits |= EXTENT_DELALLOC_NEW;
3037
3038 freespace_inode = btrfs_is_free_space_inode(inode);
3039 if (!freespace_inode)
3040 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3041
3042 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3043 ret = -EIO;
3044 goto out;
3045 }
3046
3047 if (btrfs_is_zoned(fs_info))
3048 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3049 ordered_extent->disk_num_bytes);
3050
3051 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3052 truncated = true;
3053 logical_len = ordered_extent->truncated_len;
3054 /* Truncated the entire extent, don't bother adding */
3055 if (!logical_len)
3056 goto out;
3057 }
3058
3059 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3060 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3061
3062 btrfs_inode_safe_disk_i_size_write(inode, 0);
3063 if (freespace_inode)
3064 trans = btrfs_join_transaction_spacecache(root);
3065 else
3066 trans = btrfs_join_transaction(root);
3067 if (IS_ERR(trans)) {
3068 ret = PTR_ERR(trans);
3069 trans = NULL;
3070 goto out;
3071 }
3072 trans->block_rsv = &inode->block_rsv;
3073 ret = btrfs_update_inode_fallback(trans, root, inode);
3074 if (ret) /* -ENOMEM or corruption */
3075 btrfs_abort_transaction(trans, ret);
3076 goto out;
3077 }
3078
3079 clear_bits |= EXTENT_LOCKED;
3080 lock_extent(io_tree, start, end, &cached_state);
3081
3082 if (freespace_inode)
3083 trans = btrfs_join_transaction_spacecache(root);
3084 else
3085 trans = btrfs_join_transaction(root);
3086 if (IS_ERR(trans)) {
3087 ret = PTR_ERR(trans);
3088 trans = NULL;
3089 goto out;
3090 }
3091
3092 trans->block_rsv = &inode->block_rsv;
3093
3094 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3095 compress_type = ordered_extent->compress_type;
3096 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3097 BUG_ON(compress_type);
3098 ret = btrfs_mark_extent_written(trans, inode,
3099 ordered_extent->file_offset,
3100 ordered_extent->file_offset +
3101 logical_len);
3102 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3103 ordered_extent->disk_num_bytes);
3104 } else {
3105 BUG_ON(root == fs_info->tree_root);
3106 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3107 if (!ret) {
3108 clear_reserved_extent = false;
3109 btrfs_release_delalloc_bytes(fs_info,
3110 ordered_extent->disk_bytenr,
3111 ordered_extent->disk_num_bytes);
3112 }
3113 }
3114 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3115 ordered_extent->num_bytes, trans->transid);
3116 if (ret < 0) {
3117 btrfs_abort_transaction(trans, ret);
3118 goto out;
3119 }
3120
3121 ret = add_pending_csums(trans, &ordered_extent->list);
3122 if (ret) {
3123 btrfs_abort_transaction(trans, ret);
3124 goto out;
3125 }
3126
3127 /*
3128 * If this is a new delalloc range, clear its new delalloc flag to
3129 * update the inode's number of bytes. This needs to be done first
3130 * before updating the inode item.
3131 */
3132 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3133 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3134 clear_extent_bit(&inode->io_tree, start, end,
3135 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3136 &cached_state);
3137
3138 btrfs_inode_safe_disk_i_size_write(inode, 0);
3139 ret = btrfs_update_inode_fallback(trans, root, inode);
3140 if (ret) { /* -ENOMEM or corruption */
3141 btrfs_abort_transaction(trans, ret);
3142 goto out;
3143 }
3144 ret = 0;
3145 out:
3146 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3147 &cached_state);
3148
3149 if (trans)
3150 btrfs_end_transaction(trans);
3151
3152 if (ret || truncated) {
3153 u64 unwritten_start = start;
3154
3155 /*
3156 * If we failed to finish this ordered extent for any reason we
3157 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3158 * extent, and mark the inode with the error if it wasn't
3159 * already set. Any error during writeback would have already
3160 * set the mapping error, so we need to set it if we're the ones
3161 * marking this ordered extent as failed.
3162 */
3163 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3164 &ordered_extent->flags))
3165 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3166
3167 if (truncated)
3168 unwritten_start += logical_len;
3169 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3170
3171 /* Drop extent maps for the part of the extent we didn't write. */
3172 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3173
3174 /*
3175 * If the ordered extent had an IOERR or something else went
3176 * wrong we need to return the space for this ordered extent
3177 * back to the allocator. We only free the extent in the
3178 * truncated case if we didn't write out the extent at all.
3179 *
3180 * If we made it past insert_reserved_file_extent before we
3181 * errored out then we don't need to do this as the accounting
3182 * has already been done.
3183 */
3184 if ((ret || !logical_len) &&
3185 clear_reserved_extent &&
3186 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3187 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3188 /*
3189 * Discard the range before returning it back to the
3190 * free space pool
3191 */
3192 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3193 btrfs_discard_extent(fs_info,
3194 ordered_extent->disk_bytenr,
3195 ordered_extent->disk_num_bytes,
3196 NULL);
3197 btrfs_free_reserved_extent(fs_info,
3198 ordered_extent->disk_bytenr,
3199 ordered_extent->disk_num_bytes, 1);
3200 /*
3201 * Actually free the qgroup rsv which was released when
3202 * the ordered extent was created.
3203 */
3204 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3205 ordered_extent->qgroup_rsv,
3206 BTRFS_QGROUP_RSV_DATA);
3207 }
3208 }
3209
3210 /*
3211 * This needs to be done to make sure anybody waiting knows we are done
3212 * updating everything for this ordered extent.
3213 */
3214 btrfs_remove_ordered_extent(inode, ordered_extent);
3215
3216 /* once for us */
3217 btrfs_put_ordered_extent(ordered_extent);
3218 /* once for the tree */
3219 btrfs_put_ordered_extent(ordered_extent);
3220
3221 return ret;
3222 }
3223
3224 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3225 {
3226 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3227 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3228 btrfs_finish_ordered_zoned(ordered);
3229 return btrfs_finish_one_ordered(ordered);
3230 }
3231
3232 /*
3233 * Verify the checksum for a single sector without any extra action that depend
3234 * on the type of I/O.
3235 */
3236 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3237 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3238 {
3239 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3240 char *kaddr;
3241
3242 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3243
3244 shash->tfm = fs_info->csum_shash;
3245
3246 kaddr = kmap_local_page(page) + pgoff;
3247 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3248 kunmap_local(kaddr);
3249
3250 if (memcmp(csum, csum_expected, fs_info->csum_size))
3251 return -EIO;
3252 return 0;
3253 }
3254
3255 /*
3256 * Verify the checksum of a single data sector.
3257 *
3258 * @bbio: btrfs_io_bio which contains the csum
3259 * @dev: device the sector is on
3260 * @bio_offset: offset to the beginning of the bio (in bytes)
3261 * @bv: bio_vec to check
3262 *
3263 * Check if the checksum on a data block is valid. When a checksum mismatch is
3264 * detected, report the error and fill the corrupted range with zero.
3265 *
3266 * Return %true if the sector is ok or had no checksum to start with, else %false.
3267 */
3268 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3269 u32 bio_offset, struct bio_vec *bv)
3270 {
3271 struct btrfs_inode *inode = bbio->inode;
3272 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3273 u64 file_offset = bbio->file_offset + bio_offset;
3274 u64 end = file_offset + bv->bv_len - 1;
3275 u8 *csum_expected;
3276 u8 csum[BTRFS_CSUM_SIZE];
3277
3278 ASSERT(bv->bv_len == fs_info->sectorsize);
3279
3280 if (!bbio->csum)
3281 return true;
3282
3283 if (btrfs_is_data_reloc_root(inode->root) &&
3284 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3285 1, NULL)) {
3286 /* Skip the range without csum for data reloc inode */
3287 clear_extent_bits(&inode->io_tree, file_offset, end,
3288 EXTENT_NODATASUM);
3289 return true;
3290 }
3291
3292 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3293 fs_info->csum_size;
3294 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3295 csum_expected))
3296 goto zeroit;
3297 return true;
3298
3299 zeroit:
3300 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3301 bbio->mirror_num);
3302 if (dev)
3303 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3304 memzero_bvec(bv);
3305 return false;
3306 }
3307
3308 /*
3309 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3310 *
3311 * @inode: The inode we want to perform iput on
3312 *
3313 * This function uses the generic vfs_inode::i_count to track whether we should
3314 * just decrement it (in case it's > 1) or if this is the last iput then link
3315 * the inode to the delayed iput machinery. Delayed iputs are processed at
3316 * transaction commit time/superblock commit/cleaner kthread.
3317 */
3318 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3319 {
3320 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3321 unsigned long flags;
3322
3323 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3324 return;
3325
3326 atomic_inc(&fs_info->nr_delayed_iputs);
3327 /*
3328 * Need to be irq safe here because we can be called from either an irq
3329 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3330 * context.
3331 */
3332 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3333 ASSERT(list_empty(&inode->delayed_iput));
3334 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3335 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3336 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3337 wake_up_process(fs_info->cleaner_kthread);
3338 }
3339
3340 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3341 struct btrfs_inode *inode)
3342 {
3343 list_del_init(&inode->delayed_iput);
3344 spin_unlock_irq(&fs_info->delayed_iput_lock);
3345 iput(&inode->vfs_inode);
3346 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3347 wake_up(&fs_info->delayed_iputs_wait);
3348 spin_lock_irq(&fs_info->delayed_iput_lock);
3349 }
3350
3351 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3352 struct btrfs_inode *inode)
3353 {
3354 if (!list_empty(&inode->delayed_iput)) {
3355 spin_lock_irq(&fs_info->delayed_iput_lock);
3356 if (!list_empty(&inode->delayed_iput))
3357 run_delayed_iput_locked(fs_info, inode);
3358 spin_unlock_irq(&fs_info->delayed_iput_lock);
3359 }
3360 }
3361
3362 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3363 {
3364 /*
3365 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3366 * calls btrfs_add_delayed_iput() and that needs to lock
3367 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3368 * prevent a deadlock.
3369 */
3370 spin_lock_irq(&fs_info->delayed_iput_lock);
3371 while (!list_empty(&fs_info->delayed_iputs)) {
3372 struct btrfs_inode *inode;
3373
3374 inode = list_first_entry(&fs_info->delayed_iputs,
3375 struct btrfs_inode, delayed_iput);
3376 run_delayed_iput_locked(fs_info, inode);
3377 if (need_resched()) {
3378 spin_unlock_irq(&fs_info->delayed_iput_lock);
3379 cond_resched();
3380 spin_lock_irq(&fs_info->delayed_iput_lock);
3381 }
3382 }
3383 spin_unlock_irq(&fs_info->delayed_iput_lock);
3384 }
3385
3386 /*
3387 * Wait for flushing all delayed iputs
3388 *
3389 * @fs_info: the filesystem
3390 *
3391 * This will wait on any delayed iputs that are currently running with KILLABLE
3392 * set. Once they are all done running we will return, unless we are killed in
3393 * which case we return EINTR. This helps in user operations like fallocate etc
3394 * that might get blocked on the iputs.
3395 *
3396 * Return EINTR if we were killed, 0 if nothing's pending
3397 */
3398 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3399 {
3400 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3401 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3402 if (ret)
3403 return -EINTR;
3404 return 0;
3405 }
3406
3407 /*
3408 * This creates an orphan entry for the given inode in case something goes wrong
3409 * in the middle of an unlink.
3410 */
3411 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3412 struct btrfs_inode *inode)
3413 {
3414 int ret;
3415
3416 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3417 if (ret && ret != -EEXIST) {
3418 btrfs_abort_transaction(trans, ret);
3419 return ret;
3420 }
3421
3422 return 0;
3423 }
3424
3425 /*
3426 * We have done the delete so we can go ahead and remove the orphan item for
3427 * this particular inode.
3428 */
3429 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3430 struct btrfs_inode *inode)
3431 {
3432 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3433 }
3434
3435 /*
3436 * this cleans up any orphans that may be left on the list from the last use
3437 * of this root.
3438 */
3439 int btrfs_orphan_cleanup(struct btrfs_root *root)
3440 {
3441 struct btrfs_fs_info *fs_info = root->fs_info;
3442 struct btrfs_path *path;
3443 struct extent_buffer *leaf;
3444 struct btrfs_key key, found_key;
3445 struct btrfs_trans_handle *trans;
3446 struct inode *inode;
3447 u64 last_objectid = 0;
3448 int ret = 0, nr_unlink = 0;
3449
3450 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3451 return 0;
3452
3453 path = btrfs_alloc_path();
3454 if (!path) {
3455 ret = -ENOMEM;
3456 goto out;
3457 }
3458 path->reada = READA_BACK;
3459
3460 key.objectid = BTRFS_ORPHAN_OBJECTID;
3461 key.type = BTRFS_ORPHAN_ITEM_KEY;
3462 key.offset = (u64)-1;
3463
3464 while (1) {
3465 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3466 if (ret < 0)
3467 goto out;
3468
3469 /*
3470 * if ret == 0 means we found what we were searching for, which
3471 * is weird, but possible, so only screw with path if we didn't
3472 * find the key and see if we have stuff that matches
3473 */
3474 if (ret > 0) {
3475 ret = 0;
3476 if (path->slots[0] == 0)
3477 break;
3478 path->slots[0]--;
3479 }
3480
3481 /* pull out the item */
3482 leaf = path->nodes[0];
3483 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3484
3485 /* make sure the item matches what we want */
3486 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3487 break;
3488 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3489 break;
3490
3491 /* release the path since we're done with it */
3492 btrfs_release_path(path);
3493
3494 /*
3495 * this is where we are basically btrfs_lookup, without the
3496 * crossing root thing. we store the inode number in the
3497 * offset of the orphan item.
3498 */
3499
3500 if (found_key.offset == last_objectid) {
3501 /*
3502 * We found the same inode as before. This means we were
3503 * not able to remove its items via eviction triggered
3504 * by an iput(). A transaction abort may have happened,
3505 * due to -ENOSPC for example, so try to grab the error
3506 * that lead to a transaction abort, if any.
3507 */
3508 btrfs_err(fs_info,
3509 "Error removing orphan entry, stopping orphan cleanup");
3510 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3511 goto out;
3512 }
3513
3514 last_objectid = found_key.offset;
3515
3516 found_key.objectid = found_key.offset;
3517 found_key.type = BTRFS_INODE_ITEM_KEY;
3518 found_key.offset = 0;
3519 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3520 if (IS_ERR(inode)) {
3521 ret = PTR_ERR(inode);
3522 inode = NULL;
3523 if (ret != -ENOENT)
3524 goto out;
3525 }
3526
3527 if (!inode && root == fs_info->tree_root) {
3528 struct btrfs_root *dead_root;
3529 int is_dead_root = 0;
3530
3531 /*
3532 * This is an orphan in the tree root. Currently these
3533 * could come from 2 sources:
3534 * a) a root (snapshot/subvolume) deletion in progress
3535 * b) a free space cache inode
3536 * We need to distinguish those two, as the orphan item
3537 * for a root must not get deleted before the deletion
3538 * of the snapshot/subvolume's tree completes.
3539 *
3540 * btrfs_find_orphan_roots() ran before us, which has
3541 * found all deleted roots and loaded them into
3542 * fs_info->fs_roots_radix. So here we can find if an
3543 * orphan item corresponds to a deleted root by looking
3544 * up the root from that radix tree.
3545 */
3546
3547 spin_lock(&fs_info->fs_roots_radix_lock);
3548 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3549 (unsigned long)found_key.objectid);
3550 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3551 is_dead_root = 1;
3552 spin_unlock(&fs_info->fs_roots_radix_lock);
3553
3554 if (is_dead_root) {
3555 /* prevent this orphan from being found again */
3556 key.offset = found_key.objectid - 1;
3557 continue;
3558 }
3559
3560 }
3561
3562 /*
3563 * If we have an inode with links, there are a couple of
3564 * possibilities:
3565 *
3566 * 1. We were halfway through creating fsverity metadata for the
3567 * file. In that case, the orphan item represents incomplete
3568 * fsverity metadata which must be cleaned up with
3569 * btrfs_drop_verity_items and deleting the orphan item.
3570
3571 * 2. Old kernels (before v3.12) used to create an
3572 * orphan item for truncate indicating that there were possibly
3573 * extent items past i_size that needed to be deleted. In v3.12,
3574 * truncate was changed to update i_size in sync with the extent
3575 * items, but the (useless) orphan item was still created. Since
3576 * v4.18, we don't create the orphan item for truncate at all.
3577 *
3578 * So, this item could mean that we need to do a truncate, but
3579 * only if this filesystem was last used on a pre-v3.12 kernel
3580 * and was not cleanly unmounted. The odds of that are quite
3581 * slim, and it's a pain to do the truncate now, so just delete
3582 * the orphan item.
3583 *
3584 * It's also possible that this orphan item was supposed to be
3585 * deleted but wasn't. The inode number may have been reused,
3586 * but either way, we can delete the orphan item.
3587 */
3588 if (!inode || inode->i_nlink) {
3589 if (inode) {
3590 ret = btrfs_drop_verity_items(BTRFS_I(inode));
3591 iput(inode);
3592 inode = NULL;
3593 if (ret)
3594 goto out;
3595 }
3596 trans = btrfs_start_transaction(root, 1);
3597 if (IS_ERR(trans)) {
3598 ret = PTR_ERR(trans);
3599 goto out;
3600 }
3601 btrfs_debug(fs_info, "auto deleting %Lu",
3602 found_key.objectid);
3603 ret = btrfs_del_orphan_item(trans, root,
3604 found_key.objectid);
3605 btrfs_end_transaction(trans);
3606 if (ret)
3607 goto out;
3608 continue;
3609 }
3610
3611 nr_unlink++;
3612
3613 /* this will do delete_inode and everything for us */
3614 iput(inode);
3615 }
3616 /* release the path since we're done with it */
3617 btrfs_release_path(path);
3618
3619 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3620 trans = btrfs_join_transaction(root);
3621 if (!IS_ERR(trans))
3622 btrfs_end_transaction(trans);
3623 }
3624
3625 if (nr_unlink)
3626 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3627
3628 out:
3629 if (ret)
3630 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3631 btrfs_free_path(path);
3632 return ret;
3633 }
3634
3635 /*
3636 * very simple check to peek ahead in the leaf looking for xattrs. If we
3637 * don't find any xattrs, we know there can't be any acls.
3638 *
3639 * slot is the slot the inode is in, objectid is the objectid of the inode
3640 */
3641 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3642 int slot, u64 objectid,
3643 int *first_xattr_slot)
3644 {
3645 u32 nritems = btrfs_header_nritems(leaf);
3646 struct btrfs_key found_key;
3647 static u64 xattr_access = 0;
3648 static u64 xattr_default = 0;
3649 int scanned = 0;
3650
3651 if (!xattr_access) {
3652 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3653 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3654 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3655 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3656 }
3657
3658 slot++;
3659 *first_xattr_slot = -1;
3660 while (slot < nritems) {
3661 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3662
3663 /* we found a different objectid, there must not be acls */
3664 if (found_key.objectid != objectid)
3665 return 0;
3666
3667 /* we found an xattr, assume we've got an acl */
3668 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3669 if (*first_xattr_slot == -1)
3670 *first_xattr_slot = slot;
3671 if (found_key.offset == xattr_access ||
3672 found_key.offset == xattr_default)
3673 return 1;
3674 }
3675
3676 /*
3677 * we found a key greater than an xattr key, there can't
3678 * be any acls later on
3679 */
3680 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3681 return 0;
3682
3683 slot++;
3684 scanned++;
3685
3686 /*
3687 * it goes inode, inode backrefs, xattrs, extents,
3688 * so if there are a ton of hard links to an inode there can
3689 * be a lot of backrefs. Don't waste time searching too hard,
3690 * this is just an optimization
3691 */
3692 if (scanned >= 8)
3693 break;
3694 }
3695 /* we hit the end of the leaf before we found an xattr or
3696 * something larger than an xattr. We have to assume the inode
3697 * has acls
3698 */
3699 if (*first_xattr_slot == -1)
3700 *first_xattr_slot = slot;
3701 return 1;
3702 }
3703
3704 /*
3705 * read an inode from the btree into the in-memory inode
3706 */
3707 static int btrfs_read_locked_inode(struct inode *inode,
3708 struct btrfs_path *in_path)
3709 {
3710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3711 struct btrfs_path *path = in_path;
3712 struct extent_buffer *leaf;
3713 struct btrfs_inode_item *inode_item;
3714 struct btrfs_root *root = BTRFS_I(inode)->root;
3715 struct btrfs_key location;
3716 unsigned long ptr;
3717 int maybe_acls;
3718 u32 rdev;
3719 int ret;
3720 bool filled = false;
3721 int first_xattr_slot;
3722
3723 ret = btrfs_fill_inode(inode, &rdev);
3724 if (!ret)
3725 filled = true;
3726
3727 if (!path) {
3728 path = btrfs_alloc_path();
3729 if (!path)
3730 return -ENOMEM;
3731 }
3732
3733 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3734
3735 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3736 if (ret) {
3737 if (path != in_path)
3738 btrfs_free_path(path);
3739 return ret;
3740 }
3741
3742 leaf = path->nodes[0];
3743
3744 if (filled)
3745 goto cache_index;
3746
3747 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3748 struct btrfs_inode_item);
3749 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3750 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3751 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3752 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3753 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3754 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3755 round_up(i_size_read(inode), fs_info->sectorsize));
3756
3757 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3758 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3759
3760 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3761 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3762
3763 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3764 btrfs_timespec_nsec(leaf, &inode_item->ctime));
3765
3766 BTRFS_I(inode)->i_otime.tv_sec =
3767 btrfs_timespec_sec(leaf, &inode_item->otime);
3768 BTRFS_I(inode)->i_otime.tv_nsec =
3769 btrfs_timespec_nsec(leaf, &inode_item->otime);
3770
3771 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3772 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3773 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3774
3775 inode_set_iversion_queried(inode,
3776 btrfs_inode_sequence(leaf, inode_item));
3777 inode->i_generation = BTRFS_I(inode)->generation;
3778 inode->i_rdev = 0;
3779 rdev = btrfs_inode_rdev(leaf, inode_item);
3780
3781 BTRFS_I(inode)->index_cnt = (u64)-1;
3782 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3783 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3784
3785 cache_index:
3786 /*
3787 * If we were modified in the current generation and evicted from memory
3788 * and then re-read we need to do a full sync since we don't have any
3789 * idea about which extents were modified before we were evicted from
3790 * cache.
3791 *
3792 * This is required for both inode re-read from disk and delayed inode
3793 * in delayed_nodes_tree.
3794 */
3795 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3796 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3797 &BTRFS_I(inode)->runtime_flags);
3798
3799 /*
3800 * We don't persist the id of the transaction where an unlink operation
3801 * against the inode was last made. So here we assume the inode might
3802 * have been evicted, and therefore the exact value of last_unlink_trans
3803 * lost, and set it to last_trans to avoid metadata inconsistencies
3804 * between the inode and its parent if the inode is fsync'ed and the log
3805 * replayed. For example, in the scenario:
3806 *
3807 * touch mydir/foo
3808 * ln mydir/foo mydir/bar
3809 * sync
3810 * unlink mydir/bar
3811 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3812 * xfs_io -c fsync mydir/foo
3813 * <power failure>
3814 * mount fs, triggers fsync log replay
3815 *
3816 * We must make sure that when we fsync our inode foo we also log its
3817 * parent inode, otherwise after log replay the parent still has the
3818 * dentry with the "bar" name but our inode foo has a link count of 1
3819 * and doesn't have an inode ref with the name "bar" anymore.
3820 *
3821 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3822 * but it guarantees correctness at the expense of occasional full
3823 * transaction commits on fsync if our inode is a directory, or if our
3824 * inode is not a directory, logging its parent unnecessarily.
3825 */
3826 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3827
3828 /*
3829 * Same logic as for last_unlink_trans. We don't persist the generation
3830 * of the last transaction where this inode was used for a reflink
3831 * operation, so after eviction and reloading the inode we must be
3832 * pessimistic and assume the last transaction that modified the inode.
3833 */
3834 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3835
3836 path->slots[0]++;
3837 if (inode->i_nlink != 1 ||
3838 path->slots[0] >= btrfs_header_nritems(leaf))
3839 goto cache_acl;
3840
3841 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3842 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3843 goto cache_acl;
3844
3845 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3846 if (location.type == BTRFS_INODE_REF_KEY) {
3847 struct btrfs_inode_ref *ref;
3848
3849 ref = (struct btrfs_inode_ref *)ptr;
3850 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3851 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3852 struct btrfs_inode_extref *extref;
3853
3854 extref = (struct btrfs_inode_extref *)ptr;
3855 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3856 extref);
3857 }
3858 cache_acl:
3859 /*
3860 * try to precache a NULL acl entry for files that don't have
3861 * any xattrs or acls
3862 */
3863 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3864 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3865 if (first_xattr_slot != -1) {
3866 path->slots[0] = first_xattr_slot;
3867 ret = btrfs_load_inode_props(inode, path);
3868 if (ret)
3869 btrfs_err(fs_info,
3870 "error loading props for ino %llu (root %llu): %d",
3871 btrfs_ino(BTRFS_I(inode)),
3872 root->root_key.objectid, ret);
3873 }
3874 if (path != in_path)
3875 btrfs_free_path(path);
3876
3877 if (!maybe_acls)
3878 cache_no_acl(inode);
3879
3880 switch (inode->i_mode & S_IFMT) {
3881 case S_IFREG:
3882 inode->i_mapping->a_ops = &btrfs_aops;
3883 inode->i_fop = &btrfs_file_operations;
3884 inode->i_op = &btrfs_file_inode_operations;
3885 break;
3886 case S_IFDIR:
3887 inode->i_fop = &btrfs_dir_file_operations;
3888 inode->i_op = &btrfs_dir_inode_operations;
3889 break;
3890 case S_IFLNK:
3891 inode->i_op = &btrfs_symlink_inode_operations;
3892 inode_nohighmem(inode);
3893 inode->i_mapping->a_ops = &btrfs_aops;
3894 break;
3895 default:
3896 inode->i_op = &btrfs_special_inode_operations;
3897 init_special_inode(inode, inode->i_mode, rdev);
3898 break;
3899 }
3900
3901 btrfs_sync_inode_flags_to_i_flags(inode);
3902 return 0;
3903 }
3904
3905 /*
3906 * given a leaf and an inode, copy the inode fields into the leaf
3907 */
3908 static void fill_inode_item(struct btrfs_trans_handle *trans,
3909 struct extent_buffer *leaf,
3910 struct btrfs_inode_item *item,
3911 struct inode *inode)
3912 {
3913 struct btrfs_map_token token;
3914 u64 flags;
3915
3916 btrfs_init_map_token(&token, leaf);
3917
3918 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3919 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3920 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3921 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3922 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3923
3924 btrfs_set_token_timespec_sec(&token, &item->atime,
3925 inode->i_atime.tv_sec);
3926 btrfs_set_token_timespec_nsec(&token, &item->atime,
3927 inode->i_atime.tv_nsec);
3928
3929 btrfs_set_token_timespec_sec(&token, &item->mtime,
3930 inode->i_mtime.tv_sec);
3931 btrfs_set_token_timespec_nsec(&token, &item->mtime,
3932 inode->i_mtime.tv_nsec);
3933
3934 btrfs_set_token_timespec_sec(&token, &item->ctime,
3935 inode_get_ctime(inode).tv_sec);
3936 btrfs_set_token_timespec_nsec(&token, &item->ctime,
3937 inode_get_ctime(inode).tv_nsec);
3938
3939 btrfs_set_token_timespec_sec(&token, &item->otime,
3940 BTRFS_I(inode)->i_otime.tv_sec);
3941 btrfs_set_token_timespec_nsec(&token, &item->otime,
3942 BTRFS_I(inode)->i_otime.tv_nsec);
3943
3944 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3945 btrfs_set_token_inode_generation(&token, item,
3946 BTRFS_I(inode)->generation);
3947 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3948 btrfs_set_token_inode_transid(&token, item, trans->transid);
3949 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3950 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3951 BTRFS_I(inode)->ro_flags);
3952 btrfs_set_token_inode_flags(&token, item, flags);
3953 btrfs_set_token_inode_block_group(&token, item, 0);
3954 }
3955
3956 /*
3957 * copy everything in the in-memory inode into the btree.
3958 */
3959 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3960 struct btrfs_root *root,
3961 struct btrfs_inode *inode)
3962 {
3963 struct btrfs_inode_item *inode_item;
3964 struct btrfs_path *path;
3965 struct extent_buffer *leaf;
3966 int ret;
3967
3968 path = btrfs_alloc_path();
3969 if (!path)
3970 return -ENOMEM;
3971
3972 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3973 if (ret) {
3974 if (ret > 0)
3975 ret = -ENOENT;
3976 goto failed;
3977 }
3978
3979 leaf = path->nodes[0];
3980 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3981 struct btrfs_inode_item);
3982
3983 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
3984 btrfs_mark_buffer_dirty(leaf);
3985 btrfs_set_inode_last_trans(trans, inode);
3986 ret = 0;
3987 failed:
3988 btrfs_free_path(path);
3989 return ret;
3990 }
3991
3992 /*
3993 * copy everything in the in-memory inode into the btree.
3994 */
3995 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3996 struct btrfs_root *root,
3997 struct btrfs_inode *inode)
3998 {
3999 struct btrfs_fs_info *fs_info = root->fs_info;
4000 int ret;
4001
4002 /*
4003 * If the inode is a free space inode, we can deadlock during commit
4004 * if we put it into the delayed code.
4005 *
4006 * The data relocation inode should also be directly updated
4007 * without delay
4008 */
4009 if (!btrfs_is_free_space_inode(inode)
4010 && !btrfs_is_data_reloc_root(root)
4011 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4012 btrfs_update_root_times(trans, root);
4013
4014 ret = btrfs_delayed_update_inode(trans, root, inode);
4015 if (!ret)
4016 btrfs_set_inode_last_trans(trans, inode);
4017 return ret;
4018 }
4019
4020 return btrfs_update_inode_item(trans, root, inode);
4021 }
4022
4023 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4024 struct btrfs_root *root, struct btrfs_inode *inode)
4025 {
4026 int ret;
4027
4028 ret = btrfs_update_inode(trans, root, inode);
4029 if (ret == -ENOSPC)
4030 return btrfs_update_inode_item(trans, root, inode);
4031 return ret;
4032 }
4033
4034 /*
4035 * unlink helper that gets used here in inode.c and in the tree logging
4036 * recovery code. It remove a link in a directory with a given name, and
4037 * also drops the back refs in the inode to the directory
4038 */
4039 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4040 struct btrfs_inode *dir,
4041 struct btrfs_inode *inode,
4042 const struct fscrypt_str *name,
4043 struct btrfs_rename_ctx *rename_ctx)
4044 {
4045 struct btrfs_root *root = dir->root;
4046 struct btrfs_fs_info *fs_info = root->fs_info;
4047 struct btrfs_path *path;
4048 int ret = 0;
4049 struct btrfs_dir_item *di;
4050 u64 index;
4051 u64 ino = btrfs_ino(inode);
4052 u64 dir_ino = btrfs_ino(dir);
4053
4054 path = btrfs_alloc_path();
4055 if (!path) {
4056 ret = -ENOMEM;
4057 goto out;
4058 }
4059
4060 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4061 if (IS_ERR_OR_NULL(di)) {
4062 ret = di ? PTR_ERR(di) : -ENOENT;
4063 goto err;
4064 }
4065 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4066 if (ret)
4067 goto err;
4068 btrfs_release_path(path);
4069
4070 /*
4071 * If we don't have dir index, we have to get it by looking up
4072 * the inode ref, since we get the inode ref, remove it directly,
4073 * it is unnecessary to do delayed deletion.
4074 *
4075 * But if we have dir index, needn't search inode ref to get it.
4076 * Since the inode ref is close to the inode item, it is better
4077 * that we delay to delete it, and just do this deletion when
4078 * we update the inode item.
4079 */
4080 if (inode->dir_index) {
4081 ret = btrfs_delayed_delete_inode_ref(inode);
4082 if (!ret) {
4083 index = inode->dir_index;
4084 goto skip_backref;
4085 }
4086 }
4087
4088 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4089 if (ret) {
4090 btrfs_info(fs_info,
4091 "failed to delete reference to %.*s, inode %llu parent %llu",
4092 name->len, name->name, ino, dir_ino);
4093 btrfs_abort_transaction(trans, ret);
4094 goto err;
4095 }
4096 skip_backref:
4097 if (rename_ctx)
4098 rename_ctx->index = index;
4099
4100 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4101 if (ret) {
4102 btrfs_abort_transaction(trans, ret);
4103 goto err;
4104 }
4105
4106 /*
4107 * If we are in a rename context, we don't need to update anything in the
4108 * log. That will be done later during the rename by btrfs_log_new_name().
4109 * Besides that, doing it here would only cause extra unnecessary btree
4110 * operations on the log tree, increasing latency for applications.
4111 */
4112 if (!rename_ctx) {
4113 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4114 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4115 }
4116
4117 /*
4118 * If we have a pending delayed iput we could end up with the final iput
4119 * being run in btrfs-cleaner context. If we have enough of these built
4120 * up we can end up burning a lot of time in btrfs-cleaner without any
4121 * way to throttle the unlinks. Since we're currently holding a ref on
4122 * the inode we can run the delayed iput here without any issues as the
4123 * final iput won't be done until after we drop the ref we're currently
4124 * holding.
4125 */
4126 btrfs_run_delayed_iput(fs_info, inode);
4127 err:
4128 btrfs_free_path(path);
4129 if (ret)
4130 goto out;
4131
4132 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4133 inode_inc_iversion(&inode->vfs_inode);
4134 inode_inc_iversion(&dir->vfs_inode);
4135 inode_set_ctime_current(&inode->vfs_inode);
4136 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4137 ret = btrfs_update_inode(trans, root, dir);
4138 out:
4139 return ret;
4140 }
4141
4142 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4143 struct btrfs_inode *dir, struct btrfs_inode *inode,
4144 const struct fscrypt_str *name)
4145 {
4146 int ret;
4147
4148 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4149 if (!ret) {
4150 drop_nlink(&inode->vfs_inode);
4151 ret = btrfs_update_inode(trans, inode->root, inode);
4152 }
4153 return ret;
4154 }
4155
4156 /*
4157 * helper to start transaction for unlink and rmdir.
4158 *
4159 * unlink and rmdir are special in btrfs, they do not always free space, so
4160 * if we cannot make our reservations the normal way try and see if there is
4161 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4162 * allow the unlink to occur.
4163 */
4164 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4165 {
4166 struct btrfs_root *root = dir->root;
4167
4168 return btrfs_start_transaction_fallback_global_rsv(root,
4169 BTRFS_UNLINK_METADATA_UNITS);
4170 }
4171
4172 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4173 {
4174 struct btrfs_trans_handle *trans;
4175 struct inode *inode = d_inode(dentry);
4176 int ret;
4177 struct fscrypt_name fname;
4178
4179 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4180 if (ret)
4181 return ret;
4182
4183 /* This needs to handle no-key deletions later on */
4184
4185 trans = __unlink_start_trans(BTRFS_I(dir));
4186 if (IS_ERR(trans)) {
4187 ret = PTR_ERR(trans);
4188 goto fscrypt_free;
4189 }
4190
4191 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4192 false);
4193
4194 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4195 &fname.disk_name);
4196 if (ret)
4197 goto end_trans;
4198
4199 if (inode->i_nlink == 0) {
4200 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4201 if (ret)
4202 goto end_trans;
4203 }
4204
4205 end_trans:
4206 btrfs_end_transaction(trans);
4207 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4208 fscrypt_free:
4209 fscrypt_free_filename(&fname);
4210 return ret;
4211 }
4212
4213 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4214 struct btrfs_inode *dir, struct dentry *dentry)
4215 {
4216 struct btrfs_root *root = dir->root;
4217 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4218 struct btrfs_path *path;
4219 struct extent_buffer *leaf;
4220 struct btrfs_dir_item *di;
4221 struct btrfs_key key;
4222 u64 index;
4223 int ret;
4224 u64 objectid;
4225 u64 dir_ino = btrfs_ino(dir);
4226 struct fscrypt_name fname;
4227
4228 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4229 if (ret)
4230 return ret;
4231
4232 /* This needs to handle no-key deletions later on */
4233
4234 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4235 objectid = inode->root->root_key.objectid;
4236 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4237 objectid = inode->location.objectid;
4238 } else {
4239 WARN_ON(1);
4240 fscrypt_free_filename(&fname);
4241 return -EINVAL;
4242 }
4243
4244 path = btrfs_alloc_path();
4245 if (!path) {
4246 ret = -ENOMEM;
4247 goto out;
4248 }
4249
4250 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4251 &fname.disk_name, -1);
4252 if (IS_ERR_OR_NULL(di)) {
4253 ret = di ? PTR_ERR(di) : -ENOENT;
4254 goto out;
4255 }
4256
4257 leaf = path->nodes[0];
4258 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4259 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4260 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4261 if (ret) {
4262 btrfs_abort_transaction(trans, ret);
4263 goto out;
4264 }
4265 btrfs_release_path(path);
4266
4267 /*
4268 * This is a placeholder inode for a subvolume we didn't have a
4269 * reference to at the time of the snapshot creation. In the meantime
4270 * we could have renamed the real subvol link into our snapshot, so
4271 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4272 * Instead simply lookup the dir_index_item for this entry so we can
4273 * remove it. Otherwise we know we have a ref to the root and we can
4274 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4275 */
4276 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4277 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4278 if (IS_ERR_OR_NULL(di)) {
4279 if (!di)
4280 ret = -ENOENT;
4281 else
4282 ret = PTR_ERR(di);
4283 btrfs_abort_transaction(trans, ret);
4284 goto out;
4285 }
4286
4287 leaf = path->nodes[0];
4288 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4289 index = key.offset;
4290 btrfs_release_path(path);
4291 } else {
4292 ret = btrfs_del_root_ref(trans, objectid,
4293 root->root_key.objectid, dir_ino,
4294 &index, &fname.disk_name);
4295 if (ret) {
4296 btrfs_abort_transaction(trans, ret);
4297 goto out;
4298 }
4299 }
4300
4301 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4302 if (ret) {
4303 btrfs_abort_transaction(trans, ret);
4304 goto out;
4305 }
4306
4307 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4308 inode_inc_iversion(&dir->vfs_inode);
4309 dir->vfs_inode.i_mtime = inode_set_ctime_current(&dir->vfs_inode);
4310 ret = btrfs_update_inode_fallback(trans, root, dir);
4311 if (ret)
4312 btrfs_abort_transaction(trans, ret);
4313 out:
4314 btrfs_free_path(path);
4315 fscrypt_free_filename(&fname);
4316 return ret;
4317 }
4318
4319 /*
4320 * Helper to check if the subvolume references other subvolumes or if it's
4321 * default.
4322 */
4323 static noinline int may_destroy_subvol(struct btrfs_root *root)
4324 {
4325 struct btrfs_fs_info *fs_info = root->fs_info;
4326 struct btrfs_path *path;
4327 struct btrfs_dir_item *di;
4328 struct btrfs_key key;
4329 struct fscrypt_str name = FSTR_INIT("default", 7);
4330 u64 dir_id;
4331 int ret;
4332
4333 path = btrfs_alloc_path();
4334 if (!path)
4335 return -ENOMEM;
4336
4337 /* Make sure this root isn't set as the default subvol */
4338 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4339 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4340 dir_id, &name, 0);
4341 if (di && !IS_ERR(di)) {
4342 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4343 if (key.objectid == root->root_key.objectid) {
4344 ret = -EPERM;
4345 btrfs_err(fs_info,
4346 "deleting default subvolume %llu is not allowed",
4347 key.objectid);
4348 goto out;
4349 }
4350 btrfs_release_path(path);
4351 }
4352
4353 key.objectid = root->root_key.objectid;
4354 key.type = BTRFS_ROOT_REF_KEY;
4355 key.offset = (u64)-1;
4356
4357 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4358 if (ret < 0)
4359 goto out;
4360 BUG_ON(ret == 0);
4361
4362 ret = 0;
4363 if (path->slots[0] > 0) {
4364 path->slots[0]--;
4365 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4366 if (key.objectid == root->root_key.objectid &&
4367 key.type == BTRFS_ROOT_REF_KEY)
4368 ret = -ENOTEMPTY;
4369 }
4370 out:
4371 btrfs_free_path(path);
4372 return ret;
4373 }
4374
4375 /* Delete all dentries for inodes belonging to the root */
4376 static void btrfs_prune_dentries(struct btrfs_root *root)
4377 {
4378 struct btrfs_fs_info *fs_info = root->fs_info;
4379 struct rb_node *node;
4380 struct rb_node *prev;
4381 struct btrfs_inode *entry;
4382 struct inode *inode;
4383 u64 objectid = 0;
4384
4385 if (!BTRFS_FS_ERROR(fs_info))
4386 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4387
4388 spin_lock(&root->inode_lock);
4389 again:
4390 node = root->inode_tree.rb_node;
4391 prev = NULL;
4392 while (node) {
4393 prev = node;
4394 entry = rb_entry(node, struct btrfs_inode, rb_node);
4395
4396 if (objectid < btrfs_ino(entry))
4397 node = node->rb_left;
4398 else if (objectid > btrfs_ino(entry))
4399 node = node->rb_right;
4400 else
4401 break;
4402 }
4403 if (!node) {
4404 while (prev) {
4405 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4406 if (objectid <= btrfs_ino(entry)) {
4407 node = prev;
4408 break;
4409 }
4410 prev = rb_next(prev);
4411 }
4412 }
4413 while (node) {
4414 entry = rb_entry(node, struct btrfs_inode, rb_node);
4415 objectid = btrfs_ino(entry) + 1;
4416 inode = igrab(&entry->vfs_inode);
4417 if (inode) {
4418 spin_unlock(&root->inode_lock);
4419 if (atomic_read(&inode->i_count) > 1)
4420 d_prune_aliases(inode);
4421 /*
4422 * btrfs_drop_inode will have it removed from the inode
4423 * cache when its usage count hits zero.
4424 */
4425 iput(inode);
4426 cond_resched();
4427 spin_lock(&root->inode_lock);
4428 goto again;
4429 }
4430
4431 if (cond_resched_lock(&root->inode_lock))
4432 goto again;
4433
4434 node = rb_next(node);
4435 }
4436 spin_unlock(&root->inode_lock);
4437 }
4438
4439 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4440 {
4441 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4442 struct btrfs_root *root = dir->root;
4443 struct inode *inode = d_inode(dentry);
4444 struct btrfs_root *dest = BTRFS_I(inode)->root;
4445 struct btrfs_trans_handle *trans;
4446 struct btrfs_block_rsv block_rsv;
4447 u64 root_flags;
4448 int ret;
4449
4450 /*
4451 * Don't allow to delete a subvolume with send in progress. This is
4452 * inside the inode lock so the error handling that has to drop the bit
4453 * again is not run concurrently.
4454 */
4455 spin_lock(&dest->root_item_lock);
4456 if (dest->send_in_progress) {
4457 spin_unlock(&dest->root_item_lock);
4458 btrfs_warn(fs_info,
4459 "attempt to delete subvolume %llu during send",
4460 dest->root_key.objectid);
4461 return -EPERM;
4462 }
4463 if (atomic_read(&dest->nr_swapfiles)) {
4464 spin_unlock(&dest->root_item_lock);
4465 btrfs_warn(fs_info,
4466 "attempt to delete subvolume %llu with active swapfile",
4467 root->root_key.objectid);
4468 return -EPERM;
4469 }
4470 root_flags = btrfs_root_flags(&dest->root_item);
4471 btrfs_set_root_flags(&dest->root_item,
4472 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4473 spin_unlock(&dest->root_item_lock);
4474
4475 down_write(&fs_info->subvol_sem);
4476
4477 ret = may_destroy_subvol(dest);
4478 if (ret)
4479 goto out_up_write;
4480
4481 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4482 /*
4483 * One for dir inode,
4484 * two for dir entries,
4485 * two for root ref/backref.
4486 */
4487 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4488 if (ret)
4489 goto out_up_write;
4490
4491 trans = btrfs_start_transaction(root, 0);
4492 if (IS_ERR(trans)) {
4493 ret = PTR_ERR(trans);
4494 goto out_release;
4495 }
4496 trans->block_rsv = &block_rsv;
4497 trans->bytes_reserved = block_rsv.size;
4498
4499 btrfs_record_snapshot_destroy(trans, dir);
4500
4501 ret = btrfs_unlink_subvol(trans, dir, dentry);
4502 if (ret) {
4503 btrfs_abort_transaction(trans, ret);
4504 goto out_end_trans;
4505 }
4506
4507 ret = btrfs_record_root_in_trans(trans, dest);
4508 if (ret) {
4509 btrfs_abort_transaction(trans, ret);
4510 goto out_end_trans;
4511 }
4512
4513 memset(&dest->root_item.drop_progress, 0,
4514 sizeof(dest->root_item.drop_progress));
4515 btrfs_set_root_drop_level(&dest->root_item, 0);
4516 btrfs_set_root_refs(&dest->root_item, 0);
4517
4518 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4519 ret = btrfs_insert_orphan_item(trans,
4520 fs_info->tree_root,
4521 dest->root_key.objectid);
4522 if (ret) {
4523 btrfs_abort_transaction(trans, ret);
4524 goto out_end_trans;
4525 }
4526 }
4527
4528 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4529 BTRFS_UUID_KEY_SUBVOL,
4530 dest->root_key.objectid);
4531 if (ret && ret != -ENOENT) {
4532 btrfs_abort_transaction(trans, ret);
4533 goto out_end_trans;
4534 }
4535 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4536 ret = btrfs_uuid_tree_remove(trans,
4537 dest->root_item.received_uuid,
4538 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4539 dest->root_key.objectid);
4540 if (ret && ret != -ENOENT) {
4541 btrfs_abort_transaction(trans, ret);
4542 goto out_end_trans;
4543 }
4544 }
4545
4546 free_anon_bdev(dest->anon_dev);
4547 dest->anon_dev = 0;
4548 out_end_trans:
4549 trans->block_rsv = NULL;
4550 trans->bytes_reserved = 0;
4551 ret = btrfs_end_transaction(trans);
4552 inode->i_flags |= S_DEAD;
4553 out_release:
4554 btrfs_subvolume_release_metadata(root, &block_rsv);
4555 out_up_write:
4556 up_write(&fs_info->subvol_sem);
4557 if (ret) {
4558 spin_lock(&dest->root_item_lock);
4559 root_flags = btrfs_root_flags(&dest->root_item);
4560 btrfs_set_root_flags(&dest->root_item,
4561 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4562 spin_unlock(&dest->root_item_lock);
4563 } else {
4564 d_invalidate(dentry);
4565 btrfs_prune_dentries(dest);
4566 ASSERT(dest->send_in_progress == 0);
4567 }
4568
4569 return ret;
4570 }
4571
4572 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4573 {
4574 struct inode *inode = d_inode(dentry);
4575 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4576 int err = 0;
4577 struct btrfs_trans_handle *trans;
4578 u64 last_unlink_trans;
4579 struct fscrypt_name fname;
4580
4581 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4582 return -ENOTEMPTY;
4583 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4584 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4585 btrfs_err(fs_info,
4586 "extent tree v2 doesn't support snapshot deletion yet");
4587 return -EOPNOTSUPP;
4588 }
4589 return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4590 }
4591
4592 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4593 if (err)
4594 return err;
4595
4596 /* This needs to handle no-key deletions later on */
4597
4598 trans = __unlink_start_trans(BTRFS_I(dir));
4599 if (IS_ERR(trans)) {
4600 err = PTR_ERR(trans);
4601 goto out_notrans;
4602 }
4603
4604 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4605 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4606 goto out;
4607 }
4608
4609 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4610 if (err)
4611 goto out;
4612
4613 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4614
4615 /* now the directory is empty */
4616 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4617 &fname.disk_name);
4618 if (!err) {
4619 btrfs_i_size_write(BTRFS_I(inode), 0);
4620 /*
4621 * Propagate the last_unlink_trans value of the deleted dir to
4622 * its parent directory. This is to prevent an unrecoverable
4623 * log tree in the case we do something like this:
4624 * 1) create dir foo
4625 * 2) create snapshot under dir foo
4626 * 3) delete the snapshot
4627 * 4) rmdir foo
4628 * 5) mkdir foo
4629 * 6) fsync foo or some file inside foo
4630 */
4631 if (last_unlink_trans >= trans->transid)
4632 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4633 }
4634 out:
4635 btrfs_end_transaction(trans);
4636 out_notrans:
4637 btrfs_btree_balance_dirty(fs_info);
4638 fscrypt_free_filename(&fname);
4639
4640 return err;
4641 }
4642
4643 /*
4644 * btrfs_truncate_block - read, zero a chunk and write a block
4645 * @inode - inode that we're zeroing
4646 * @from - the offset to start zeroing
4647 * @len - the length to zero, 0 to zero the entire range respective to the
4648 * offset
4649 * @front - zero up to the offset instead of from the offset on
4650 *
4651 * This will find the block for the "from" offset and cow the block and zero the
4652 * part we want to zero. This is used with truncate and hole punching.
4653 */
4654 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4655 int front)
4656 {
4657 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4658 struct address_space *mapping = inode->vfs_inode.i_mapping;
4659 struct extent_io_tree *io_tree = &inode->io_tree;
4660 struct btrfs_ordered_extent *ordered;
4661 struct extent_state *cached_state = NULL;
4662 struct extent_changeset *data_reserved = NULL;
4663 bool only_release_metadata = false;
4664 u32 blocksize = fs_info->sectorsize;
4665 pgoff_t index = from >> PAGE_SHIFT;
4666 unsigned offset = from & (blocksize - 1);
4667 struct page *page;
4668 gfp_t mask = btrfs_alloc_write_mask(mapping);
4669 size_t write_bytes = blocksize;
4670 int ret = 0;
4671 u64 block_start;
4672 u64 block_end;
4673
4674 if (IS_ALIGNED(offset, blocksize) &&
4675 (!len || IS_ALIGNED(len, blocksize)))
4676 goto out;
4677
4678 block_start = round_down(from, blocksize);
4679 block_end = block_start + blocksize - 1;
4680
4681 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4682 blocksize, false);
4683 if (ret < 0) {
4684 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4685 /* For nocow case, no need to reserve data space */
4686 only_release_metadata = true;
4687 } else {
4688 goto out;
4689 }
4690 }
4691 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4692 if (ret < 0) {
4693 if (!only_release_metadata)
4694 btrfs_free_reserved_data_space(inode, data_reserved,
4695 block_start, blocksize);
4696 goto out;
4697 }
4698 again:
4699 page = find_or_create_page(mapping, index, mask);
4700 if (!page) {
4701 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4702 blocksize, true);
4703 btrfs_delalloc_release_extents(inode, blocksize);
4704 ret = -ENOMEM;
4705 goto out;
4706 }
4707
4708 if (!PageUptodate(page)) {
4709 ret = btrfs_read_folio(NULL, page_folio(page));
4710 lock_page(page);
4711 if (page->mapping != mapping) {
4712 unlock_page(page);
4713 put_page(page);
4714 goto again;
4715 }
4716 if (!PageUptodate(page)) {
4717 ret = -EIO;
4718 goto out_unlock;
4719 }
4720 }
4721
4722 /*
4723 * We unlock the page after the io is completed and then re-lock it
4724 * above. release_folio() could have come in between that and cleared
4725 * PagePrivate(), but left the page in the mapping. Set the page mapped
4726 * here to make sure it's properly set for the subpage stuff.
4727 */
4728 ret = set_page_extent_mapped(page);
4729 if (ret < 0)
4730 goto out_unlock;
4731
4732 wait_on_page_writeback(page);
4733
4734 lock_extent(io_tree, block_start, block_end, &cached_state);
4735
4736 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4737 if (ordered) {
4738 unlock_extent(io_tree, block_start, block_end, &cached_state);
4739 unlock_page(page);
4740 put_page(page);
4741 btrfs_start_ordered_extent(ordered);
4742 btrfs_put_ordered_extent(ordered);
4743 goto again;
4744 }
4745
4746 clear_extent_bit(&inode->io_tree, block_start, block_end,
4747 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4748 &cached_state);
4749
4750 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4751 &cached_state);
4752 if (ret) {
4753 unlock_extent(io_tree, block_start, block_end, &cached_state);
4754 goto out_unlock;
4755 }
4756
4757 if (offset != blocksize) {
4758 if (!len)
4759 len = blocksize - offset;
4760 if (front)
4761 memzero_page(page, (block_start - page_offset(page)),
4762 offset);
4763 else
4764 memzero_page(page, (block_start - page_offset(page)) + offset,
4765 len);
4766 }
4767 btrfs_page_clear_checked(fs_info, page, block_start,
4768 block_end + 1 - block_start);
4769 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4770 unlock_extent(io_tree, block_start, block_end, &cached_state);
4771
4772 if (only_release_metadata)
4773 set_extent_bit(&inode->io_tree, block_start, block_end,
4774 EXTENT_NORESERVE, NULL);
4775
4776 out_unlock:
4777 if (ret) {
4778 if (only_release_metadata)
4779 btrfs_delalloc_release_metadata(inode, blocksize, true);
4780 else
4781 btrfs_delalloc_release_space(inode, data_reserved,
4782 block_start, blocksize, true);
4783 }
4784 btrfs_delalloc_release_extents(inode, blocksize);
4785 unlock_page(page);
4786 put_page(page);
4787 out:
4788 if (only_release_metadata)
4789 btrfs_check_nocow_unlock(inode);
4790 extent_changeset_free(data_reserved);
4791 return ret;
4792 }
4793
4794 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4795 u64 offset, u64 len)
4796 {
4797 struct btrfs_fs_info *fs_info = root->fs_info;
4798 struct btrfs_trans_handle *trans;
4799 struct btrfs_drop_extents_args drop_args = { 0 };
4800 int ret;
4801
4802 /*
4803 * If NO_HOLES is enabled, we don't need to do anything.
4804 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4805 * or btrfs_update_inode() will be called, which guarantee that the next
4806 * fsync will know this inode was changed and needs to be logged.
4807 */
4808 if (btrfs_fs_incompat(fs_info, NO_HOLES))
4809 return 0;
4810
4811 /*
4812 * 1 - for the one we're dropping
4813 * 1 - for the one we're adding
4814 * 1 - for updating the inode.
4815 */
4816 trans = btrfs_start_transaction(root, 3);
4817 if (IS_ERR(trans))
4818 return PTR_ERR(trans);
4819
4820 drop_args.start = offset;
4821 drop_args.end = offset + len;
4822 drop_args.drop_cache = true;
4823
4824 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4825 if (ret) {
4826 btrfs_abort_transaction(trans, ret);
4827 btrfs_end_transaction(trans);
4828 return ret;
4829 }
4830
4831 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4832 if (ret) {
4833 btrfs_abort_transaction(trans, ret);
4834 } else {
4835 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4836 btrfs_update_inode(trans, root, inode);
4837 }
4838 btrfs_end_transaction(trans);
4839 return ret;
4840 }
4841
4842 /*
4843 * This function puts in dummy file extents for the area we're creating a hole
4844 * for. So if we are truncating this file to a larger size we need to insert
4845 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4846 * the range between oldsize and size
4847 */
4848 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4849 {
4850 struct btrfs_root *root = inode->root;
4851 struct btrfs_fs_info *fs_info = root->fs_info;
4852 struct extent_io_tree *io_tree = &inode->io_tree;
4853 struct extent_map *em = NULL;
4854 struct extent_state *cached_state = NULL;
4855 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4856 u64 block_end = ALIGN(size, fs_info->sectorsize);
4857 u64 last_byte;
4858 u64 cur_offset;
4859 u64 hole_size;
4860 int err = 0;
4861
4862 /*
4863 * If our size started in the middle of a block we need to zero out the
4864 * rest of the block before we expand the i_size, otherwise we could
4865 * expose stale data.
4866 */
4867 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4868 if (err)
4869 return err;
4870
4871 if (size <= hole_start)
4872 return 0;
4873
4874 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4875 &cached_state);
4876 cur_offset = hole_start;
4877 while (1) {
4878 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4879 block_end - cur_offset);
4880 if (IS_ERR(em)) {
4881 err = PTR_ERR(em);
4882 em = NULL;
4883 break;
4884 }
4885 last_byte = min(extent_map_end(em), block_end);
4886 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4887 hole_size = last_byte - cur_offset;
4888
4889 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4890 struct extent_map *hole_em;
4891
4892 err = maybe_insert_hole(root, inode, cur_offset,
4893 hole_size);
4894 if (err)
4895 break;
4896
4897 err = btrfs_inode_set_file_extent_range(inode,
4898 cur_offset, hole_size);
4899 if (err)
4900 break;
4901
4902 hole_em = alloc_extent_map();
4903 if (!hole_em) {
4904 btrfs_drop_extent_map_range(inode, cur_offset,
4905 cur_offset + hole_size - 1,
4906 false);
4907 btrfs_set_inode_full_sync(inode);
4908 goto next;
4909 }
4910 hole_em->start = cur_offset;
4911 hole_em->len = hole_size;
4912 hole_em->orig_start = cur_offset;
4913
4914 hole_em->block_start = EXTENT_MAP_HOLE;
4915 hole_em->block_len = 0;
4916 hole_em->orig_block_len = 0;
4917 hole_em->ram_bytes = hole_size;
4918 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4919 hole_em->generation = fs_info->generation;
4920
4921 err = btrfs_replace_extent_map_range(inode, hole_em, true);
4922 free_extent_map(hole_em);
4923 } else {
4924 err = btrfs_inode_set_file_extent_range(inode,
4925 cur_offset, hole_size);
4926 if (err)
4927 break;
4928 }
4929 next:
4930 free_extent_map(em);
4931 em = NULL;
4932 cur_offset = last_byte;
4933 if (cur_offset >= block_end)
4934 break;
4935 }
4936 free_extent_map(em);
4937 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4938 return err;
4939 }
4940
4941 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4942 {
4943 struct btrfs_root *root = BTRFS_I(inode)->root;
4944 struct btrfs_trans_handle *trans;
4945 loff_t oldsize = i_size_read(inode);
4946 loff_t newsize = attr->ia_size;
4947 int mask = attr->ia_valid;
4948 int ret;
4949
4950 /*
4951 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4952 * special case where we need to update the times despite not having
4953 * these flags set. For all other operations the VFS set these flags
4954 * explicitly if it wants a timestamp update.
4955 */
4956 if (newsize != oldsize) {
4957 inode_inc_iversion(inode);
4958 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4959 inode->i_mtime = inode_set_ctime_current(inode);
4960 }
4961 }
4962
4963 if (newsize > oldsize) {
4964 /*
4965 * Don't do an expanding truncate while snapshotting is ongoing.
4966 * This is to ensure the snapshot captures a fully consistent
4967 * state of this file - if the snapshot captures this expanding
4968 * truncation, it must capture all writes that happened before
4969 * this truncation.
4970 */
4971 btrfs_drew_write_lock(&root->snapshot_lock);
4972 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
4973 if (ret) {
4974 btrfs_drew_write_unlock(&root->snapshot_lock);
4975 return ret;
4976 }
4977
4978 trans = btrfs_start_transaction(root, 1);
4979 if (IS_ERR(trans)) {
4980 btrfs_drew_write_unlock(&root->snapshot_lock);
4981 return PTR_ERR(trans);
4982 }
4983
4984 i_size_write(inode, newsize);
4985 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
4986 pagecache_isize_extended(inode, oldsize, newsize);
4987 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4988 btrfs_drew_write_unlock(&root->snapshot_lock);
4989 btrfs_end_transaction(trans);
4990 } else {
4991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4992
4993 if (btrfs_is_zoned(fs_info)) {
4994 ret = btrfs_wait_ordered_range(inode,
4995 ALIGN(newsize, fs_info->sectorsize),
4996 (u64)-1);
4997 if (ret)
4998 return ret;
4999 }
5000
5001 /*
5002 * We're truncating a file that used to have good data down to
5003 * zero. Make sure any new writes to the file get on disk
5004 * on close.
5005 */
5006 if (newsize == 0)
5007 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5008 &BTRFS_I(inode)->runtime_flags);
5009
5010 truncate_setsize(inode, newsize);
5011
5012 inode_dio_wait(inode);
5013
5014 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5015 if (ret && inode->i_nlink) {
5016 int err;
5017
5018 /*
5019 * Truncate failed, so fix up the in-memory size. We
5020 * adjusted disk_i_size down as we removed extents, so
5021 * wait for disk_i_size to be stable and then update the
5022 * in-memory size to match.
5023 */
5024 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5025 if (err)
5026 return err;
5027 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5028 }
5029 }
5030
5031 return ret;
5032 }
5033
5034 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5035 struct iattr *attr)
5036 {
5037 struct inode *inode = d_inode(dentry);
5038 struct btrfs_root *root = BTRFS_I(inode)->root;
5039 int err;
5040
5041 if (btrfs_root_readonly(root))
5042 return -EROFS;
5043
5044 err = setattr_prepare(idmap, dentry, attr);
5045 if (err)
5046 return err;
5047
5048 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5049 err = btrfs_setsize(inode, attr);
5050 if (err)
5051 return err;
5052 }
5053
5054 if (attr->ia_valid) {
5055 setattr_copy(idmap, inode, attr);
5056 inode_inc_iversion(inode);
5057 err = btrfs_dirty_inode(BTRFS_I(inode));
5058
5059 if (!err && attr->ia_valid & ATTR_MODE)
5060 err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5061 }
5062
5063 return err;
5064 }
5065
5066 /*
5067 * While truncating the inode pages during eviction, we get the VFS
5068 * calling btrfs_invalidate_folio() against each folio of the inode. This
5069 * is slow because the calls to btrfs_invalidate_folio() result in a
5070 * huge amount of calls to lock_extent() and clear_extent_bit(),
5071 * which keep merging and splitting extent_state structures over and over,
5072 * wasting lots of time.
5073 *
5074 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5075 * skip all those expensive operations on a per folio basis and do only
5076 * the ordered io finishing, while we release here the extent_map and
5077 * extent_state structures, without the excessive merging and splitting.
5078 */
5079 static void evict_inode_truncate_pages(struct inode *inode)
5080 {
5081 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5082 struct rb_node *node;
5083
5084 ASSERT(inode->i_state & I_FREEING);
5085 truncate_inode_pages_final(&inode->i_data);
5086
5087 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5088
5089 /*
5090 * Keep looping until we have no more ranges in the io tree.
5091 * We can have ongoing bios started by readahead that have
5092 * their endio callback (extent_io.c:end_bio_extent_readpage)
5093 * still in progress (unlocked the pages in the bio but did not yet
5094 * unlocked the ranges in the io tree). Therefore this means some
5095 * ranges can still be locked and eviction started because before
5096 * submitting those bios, which are executed by a separate task (work
5097 * queue kthread), inode references (inode->i_count) were not taken
5098 * (which would be dropped in the end io callback of each bio).
5099 * Therefore here we effectively end up waiting for those bios and
5100 * anyone else holding locked ranges without having bumped the inode's
5101 * reference count - if we don't do it, when they access the inode's
5102 * io_tree to unlock a range it may be too late, leading to an
5103 * use-after-free issue.
5104 */
5105 spin_lock(&io_tree->lock);
5106 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5107 struct extent_state *state;
5108 struct extent_state *cached_state = NULL;
5109 u64 start;
5110 u64 end;
5111 unsigned state_flags;
5112
5113 node = rb_first(&io_tree->state);
5114 state = rb_entry(node, struct extent_state, rb_node);
5115 start = state->start;
5116 end = state->end;
5117 state_flags = state->state;
5118 spin_unlock(&io_tree->lock);
5119
5120 lock_extent(io_tree, start, end, &cached_state);
5121
5122 /*
5123 * If still has DELALLOC flag, the extent didn't reach disk,
5124 * and its reserved space won't be freed by delayed_ref.
5125 * So we need to free its reserved space here.
5126 * (Refer to comment in btrfs_invalidate_folio, case 2)
5127 *
5128 * Note, end is the bytenr of last byte, so we need + 1 here.
5129 */
5130 if (state_flags & EXTENT_DELALLOC)
5131 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5132 end - start + 1);
5133
5134 clear_extent_bit(io_tree, start, end,
5135 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5136 &cached_state);
5137
5138 cond_resched();
5139 spin_lock(&io_tree->lock);
5140 }
5141 spin_unlock(&io_tree->lock);
5142 }
5143
5144 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5145 struct btrfs_block_rsv *rsv)
5146 {
5147 struct btrfs_fs_info *fs_info = root->fs_info;
5148 struct btrfs_trans_handle *trans;
5149 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5150 int ret;
5151
5152 /*
5153 * Eviction should be taking place at some place safe because of our
5154 * delayed iputs. However the normal flushing code will run delayed
5155 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5156 *
5157 * We reserve the delayed_refs_extra here again because we can't use
5158 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5159 * above. We reserve our extra bit here because we generate a ton of
5160 * delayed refs activity by truncating.
5161 *
5162 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5163 * if we fail to make this reservation we can re-try without the
5164 * delayed_refs_extra so we can make some forward progress.
5165 */
5166 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5167 BTRFS_RESERVE_FLUSH_EVICT);
5168 if (ret) {
5169 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5170 BTRFS_RESERVE_FLUSH_EVICT);
5171 if (ret) {
5172 btrfs_warn(fs_info,
5173 "could not allocate space for delete; will truncate on mount");
5174 return ERR_PTR(-ENOSPC);
5175 }
5176 delayed_refs_extra = 0;
5177 }
5178
5179 trans = btrfs_join_transaction(root);
5180 if (IS_ERR(trans))
5181 return trans;
5182
5183 if (delayed_refs_extra) {
5184 trans->block_rsv = &fs_info->trans_block_rsv;
5185 trans->bytes_reserved = delayed_refs_extra;
5186 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5187 delayed_refs_extra, true);
5188 }
5189 return trans;
5190 }
5191
5192 void btrfs_evict_inode(struct inode *inode)
5193 {
5194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5195 struct btrfs_trans_handle *trans;
5196 struct btrfs_root *root = BTRFS_I(inode)->root;
5197 struct btrfs_block_rsv *rsv = NULL;
5198 int ret;
5199
5200 trace_btrfs_inode_evict(inode);
5201
5202 if (!root) {
5203 fsverity_cleanup_inode(inode);
5204 clear_inode(inode);
5205 return;
5206 }
5207
5208 evict_inode_truncate_pages(inode);
5209
5210 if (inode->i_nlink &&
5211 ((btrfs_root_refs(&root->root_item) != 0 &&
5212 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5213 btrfs_is_free_space_inode(BTRFS_I(inode))))
5214 goto out;
5215
5216 if (is_bad_inode(inode))
5217 goto out;
5218
5219 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5220 goto out;
5221
5222 if (inode->i_nlink > 0) {
5223 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5225 goto out;
5226 }
5227
5228 /*
5229 * This makes sure the inode item in tree is uptodate and the space for
5230 * the inode update is released.
5231 */
5232 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5233 if (ret)
5234 goto out;
5235
5236 /*
5237 * This drops any pending insert or delete operations we have for this
5238 * inode. We could have a delayed dir index deletion queued up, but
5239 * we're removing the inode completely so that'll be taken care of in
5240 * the truncate.
5241 */
5242 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5243
5244 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5245 if (!rsv)
5246 goto out;
5247 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5248 rsv->failfast = true;
5249
5250 btrfs_i_size_write(BTRFS_I(inode), 0);
5251
5252 while (1) {
5253 struct btrfs_truncate_control control = {
5254 .inode = BTRFS_I(inode),
5255 .ino = btrfs_ino(BTRFS_I(inode)),
5256 .new_size = 0,
5257 .min_type = 0,
5258 };
5259
5260 trans = evict_refill_and_join(root, rsv);
5261 if (IS_ERR(trans))
5262 goto out;
5263
5264 trans->block_rsv = rsv;
5265
5266 ret = btrfs_truncate_inode_items(trans, root, &control);
5267 trans->block_rsv = &fs_info->trans_block_rsv;
5268 btrfs_end_transaction(trans);
5269 /*
5270 * We have not added new delayed items for our inode after we
5271 * have flushed its delayed items, so no need to throttle on
5272 * delayed items. However we have modified extent buffers.
5273 */
5274 btrfs_btree_balance_dirty_nodelay(fs_info);
5275 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5276 goto out;
5277 else if (!ret)
5278 break;
5279 }
5280
5281 /*
5282 * Errors here aren't a big deal, it just means we leave orphan items in
5283 * the tree. They will be cleaned up on the next mount. If the inode
5284 * number gets reused, cleanup deletes the orphan item without doing
5285 * anything, and unlink reuses the existing orphan item.
5286 *
5287 * If it turns out that we are dropping too many of these, we might want
5288 * to add a mechanism for retrying these after a commit.
5289 */
5290 trans = evict_refill_and_join(root, rsv);
5291 if (!IS_ERR(trans)) {
5292 trans->block_rsv = rsv;
5293 btrfs_orphan_del(trans, BTRFS_I(inode));
5294 trans->block_rsv = &fs_info->trans_block_rsv;
5295 btrfs_end_transaction(trans);
5296 }
5297
5298 out:
5299 btrfs_free_block_rsv(fs_info, rsv);
5300 /*
5301 * If we didn't successfully delete, the orphan item will still be in
5302 * the tree and we'll retry on the next mount. Again, we might also want
5303 * to retry these periodically in the future.
5304 */
5305 btrfs_remove_delayed_node(BTRFS_I(inode));
5306 fsverity_cleanup_inode(inode);
5307 clear_inode(inode);
5308 }
5309
5310 /*
5311 * Return the key found in the dir entry in the location pointer, fill @type
5312 * with BTRFS_FT_*, and return 0.
5313 *
5314 * If no dir entries were found, returns -ENOENT.
5315 * If found a corrupted location in dir entry, returns -EUCLEAN.
5316 */
5317 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5318 struct btrfs_key *location, u8 *type)
5319 {
5320 struct btrfs_dir_item *di;
5321 struct btrfs_path *path;
5322 struct btrfs_root *root = dir->root;
5323 int ret = 0;
5324 struct fscrypt_name fname;
5325
5326 path = btrfs_alloc_path();
5327 if (!path)
5328 return -ENOMEM;
5329
5330 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5331 if (ret < 0)
5332 goto out;
5333 /*
5334 * fscrypt_setup_filename() should never return a positive value, but
5335 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5336 */
5337 ASSERT(ret == 0);
5338
5339 /* This needs to handle no-key deletions later on */
5340
5341 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5342 &fname.disk_name, 0);
5343 if (IS_ERR_OR_NULL(di)) {
5344 ret = di ? PTR_ERR(di) : -ENOENT;
5345 goto out;
5346 }
5347
5348 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5349 if (location->type != BTRFS_INODE_ITEM_KEY &&
5350 location->type != BTRFS_ROOT_ITEM_KEY) {
5351 ret = -EUCLEAN;
5352 btrfs_warn(root->fs_info,
5353 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5354 __func__, fname.disk_name.name, btrfs_ino(dir),
5355 location->objectid, location->type, location->offset);
5356 }
5357 if (!ret)
5358 *type = btrfs_dir_ftype(path->nodes[0], di);
5359 out:
5360 fscrypt_free_filename(&fname);
5361 btrfs_free_path(path);
5362 return ret;
5363 }
5364
5365 /*
5366 * when we hit a tree root in a directory, the btrfs part of the inode
5367 * needs to be changed to reflect the root directory of the tree root. This
5368 * is kind of like crossing a mount point.
5369 */
5370 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5371 struct btrfs_inode *dir,
5372 struct dentry *dentry,
5373 struct btrfs_key *location,
5374 struct btrfs_root **sub_root)
5375 {
5376 struct btrfs_path *path;
5377 struct btrfs_root *new_root;
5378 struct btrfs_root_ref *ref;
5379 struct extent_buffer *leaf;
5380 struct btrfs_key key;
5381 int ret;
5382 int err = 0;
5383 struct fscrypt_name fname;
5384
5385 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5386 if (ret)
5387 return ret;
5388
5389 path = btrfs_alloc_path();
5390 if (!path) {
5391 err = -ENOMEM;
5392 goto out;
5393 }
5394
5395 err = -ENOENT;
5396 key.objectid = dir->root->root_key.objectid;
5397 key.type = BTRFS_ROOT_REF_KEY;
5398 key.offset = location->objectid;
5399
5400 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5401 if (ret) {
5402 if (ret < 0)
5403 err = ret;
5404 goto out;
5405 }
5406
5407 leaf = path->nodes[0];
5408 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5409 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5410 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5411 goto out;
5412
5413 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5414 (unsigned long)(ref + 1), fname.disk_name.len);
5415 if (ret)
5416 goto out;
5417
5418 btrfs_release_path(path);
5419
5420 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5421 if (IS_ERR(new_root)) {
5422 err = PTR_ERR(new_root);
5423 goto out;
5424 }
5425
5426 *sub_root = new_root;
5427 location->objectid = btrfs_root_dirid(&new_root->root_item);
5428 location->type = BTRFS_INODE_ITEM_KEY;
5429 location->offset = 0;
5430 err = 0;
5431 out:
5432 btrfs_free_path(path);
5433 fscrypt_free_filename(&fname);
5434 return err;
5435 }
5436
5437 static void inode_tree_add(struct btrfs_inode *inode)
5438 {
5439 struct btrfs_root *root = inode->root;
5440 struct btrfs_inode *entry;
5441 struct rb_node **p;
5442 struct rb_node *parent;
5443 struct rb_node *new = &inode->rb_node;
5444 u64 ino = btrfs_ino(inode);
5445
5446 if (inode_unhashed(&inode->vfs_inode))
5447 return;
5448 parent = NULL;
5449 spin_lock(&root->inode_lock);
5450 p = &root->inode_tree.rb_node;
5451 while (*p) {
5452 parent = *p;
5453 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5454
5455 if (ino < btrfs_ino(entry))
5456 p = &parent->rb_left;
5457 else if (ino > btrfs_ino(entry))
5458 p = &parent->rb_right;
5459 else {
5460 WARN_ON(!(entry->vfs_inode.i_state &
5461 (I_WILL_FREE | I_FREEING)));
5462 rb_replace_node(parent, new, &root->inode_tree);
5463 RB_CLEAR_NODE(parent);
5464 spin_unlock(&root->inode_lock);
5465 return;
5466 }
5467 }
5468 rb_link_node(new, parent, p);
5469 rb_insert_color(new, &root->inode_tree);
5470 spin_unlock(&root->inode_lock);
5471 }
5472
5473 static void inode_tree_del(struct btrfs_inode *inode)
5474 {
5475 struct btrfs_root *root = inode->root;
5476 int empty = 0;
5477
5478 spin_lock(&root->inode_lock);
5479 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5480 rb_erase(&inode->rb_node, &root->inode_tree);
5481 RB_CLEAR_NODE(&inode->rb_node);
5482 empty = RB_EMPTY_ROOT(&root->inode_tree);
5483 }
5484 spin_unlock(&root->inode_lock);
5485
5486 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5487 spin_lock(&root->inode_lock);
5488 empty = RB_EMPTY_ROOT(&root->inode_tree);
5489 spin_unlock(&root->inode_lock);
5490 if (empty)
5491 btrfs_add_dead_root(root);
5492 }
5493 }
5494
5495
5496 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5497 {
5498 struct btrfs_iget_args *args = p;
5499
5500 inode->i_ino = args->ino;
5501 BTRFS_I(inode)->location.objectid = args->ino;
5502 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5503 BTRFS_I(inode)->location.offset = 0;
5504 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5505 BUG_ON(args->root && !BTRFS_I(inode)->root);
5506
5507 if (args->root && args->root == args->root->fs_info->tree_root &&
5508 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5509 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5510 &BTRFS_I(inode)->runtime_flags);
5511 return 0;
5512 }
5513
5514 static int btrfs_find_actor(struct inode *inode, void *opaque)
5515 {
5516 struct btrfs_iget_args *args = opaque;
5517
5518 return args->ino == BTRFS_I(inode)->location.objectid &&
5519 args->root == BTRFS_I(inode)->root;
5520 }
5521
5522 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5523 struct btrfs_root *root)
5524 {
5525 struct inode *inode;
5526 struct btrfs_iget_args args;
5527 unsigned long hashval = btrfs_inode_hash(ino, root);
5528
5529 args.ino = ino;
5530 args.root = root;
5531
5532 inode = iget5_locked(s, hashval, btrfs_find_actor,
5533 btrfs_init_locked_inode,
5534 (void *)&args);
5535 return inode;
5536 }
5537
5538 /*
5539 * Get an inode object given its inode number and corresponding root.
5540 * Path can be preallocated to prevent recursing back to iget through
5541 * allocator. NULL is also valid but may require an additional allocation
5542 * later.
5543 */
5544 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5545 struct btrfs_root *root, struct btrfs_path *path)
5546 {
5547 struct inode *inode;
5548
5549 inode = btrfs_iget_locked(s, ino, root);
5550 if (!inode)
5551 return ERR_PTR(-ENOMEM);
5552
5553 if (inode->i_state & I_NEW) {
5554 int ret;
5555
5556 ret = btrfs_read_locked_inode(inode, path);
5557 if (!ret) {
5558 inode_tree_add(BTRFS_I(inode));
5559 unlock_new_inode(inode);
5560 } else {
5561 iget_failed(inode);
5562 /*
5563 * ret > 0 can come from btrfs_search_slot called by
5564 * btrfs_read_locked_inode, this means the inode item
5565 * was not found.
5566 */
5567 if (ret > 0)
5568 ret = -ENOENT;
5569 inode = ERR_PTR(ret);
5570 }
5571 }
5572
5573 return inode;
5574 }
5575
5576 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5577 {
5578 return btrfs_iget_path(s, ino, root, NULL);
5579 }
5580
5581 static struct inode *new_simple_dir(struct inode *dir,
5582 struct btrfs_key *key,
5583 struct btrfs_root *root)
5584 {
5585 struct inode *inode = new_inode(dir->i_sb);
5586
5587 if (!inode)
5588 return ERR_PTR(-ENOMEM);
5589
5590 BTRFS_I(inode)->root = btrfs_grab_root(root);
5591 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5592 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5593
5594 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5595 /*
5596 * We only need lookup, the rest is read-only and there's no inode
5597 * associated with the dentry
5598 */
5599 inode->i_op = &simple_dir_inode_operations;
5600 inode->i_opflags &= ~IOP_XATTR;
5601 inode->i_fop = &simple_dir_operations;
5602 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5603 inode->i_mtime = inode_set_ctime_current(inode);
5604 inode->i_atime = dir->i_atime;
5605 BTRFS_I(inode)->i_otime = inode->i_mtime;
5606 inode->i_uid = dir->i_uid;
5607 inode->i_gid = dir->i_gid;
5608
5609 return inode;
5610 }
5611
5612 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5613 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5614 static_assert(BTRFS_FT_DIR == FT_DIR);
5615 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5616 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5617 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5618 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5619 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5620
5621 static inline u8 btrfs_inode_type(struct inode *inode)
5622 {
5623 return fs_umode_to_ftype(inode->i_mode);
5624 }
5625
5626 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5627 {
5628 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5629 struct inode *inode;
5630 struct btrfs_root *root = BTRFS_I(dir)->root;
5631 struct btrfs_root *sub_root = root;
5632 struct btrfs_key location;
5633 u8 di_type = 0;
5634 int ret = 0;
5635
5636 if (dentry->d_name.len > BTRFS_NAME_LEN)
5637 return ERR_PTR(-ENAMETOOLONG);
5638
5639 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5640 if (ret < 0)
5641 return ERR_PTR(ret);
5642
5643 if (location.type == BTRFS_INODE_ITEM_KEY) {
5644 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5645 if (IS_ERR(inode))
5646 return inode;
5647
5648 /* Do extra check against inode mode with di_type */
5649 if (btrfs_inode_type(inode) != di_type) {
5650 btrfs_crit(fs_info,
5651 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5652 inode->i_mode, btrfs_inode_type(inode),
5653 di_type);
5654 iput(inode);
5655 return ERR_PTR(-EUCLEAN);
5656 }
5657 return inode;
5658 }
5659
5660 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5661 &location, &sub_root);
5662 if (ret < 0) {
5663 if (ret != -ENOENT)
5664 inode = ERR_PTR(ret);
5665 else
5666 inode = new_simple_dir(dir, &location, root);
5667 } else {
5668 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5669 btrfs_put_root(sub_root);
5670
5671 if (IS_ERR(inode))
5672 return inode;
5673
5674 down_read(&fs_info->cleanup_work_sem);
5675 if (!sb_rdonly(inode->i_sb))
5676 ret = btrfs_orphan_cleanup(sub_root);
5677 up_read(&fs_info->cleanup_work_sem);
5678 if (ret) {
5679 iput(inode);
5680 inode = ERR_PTR(ret);
5681 }
5682 }
5683
5684 return inode;
5685 }
5686
5687 static int btrfs_dentry_delete(const struct dentry *dentry)
5688 {
5689 struct btrfs_root *root;
5690 struct inode *inode = d_inode(dentry);
5691
5692 if (!inode && !IS_ROOT(dentry))
5693 inode = d_inode(dentry->d_parent);
5694
5695 if (inode) {
5696 root = BTRFS_I(inode)->root;
5697 if (btrfs_root_refs(&root->root_item) == 0)
5698 return 1;
5699
5700 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5701 return 1;
5702 }
5703 return 0;
5704 }
5705
5706 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5707 unsigned int flags)
5708 {
5709 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5710
5711 if (inode == ERR_PTR(-ENOENT))
5712 inode = NULL;
5713 return d_splice_alias(inode, dentry);
5714 }
5715
5716 /*
5717 * Find the highest existing sequence number in a directory and then set the
5718 * in-memory index_cnt variable to the first free sequence number.
5719 */
5720 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5721 {
5722 struct btrfs_root *root = inode->root;
5723 struct btrfs_key key, found_key;
5724 struct btrfs_path *path;
5725 struct extent_buffer *leaf;
5726 int ret;
5727
5728 key.objectid = btrfs_ino(inode);
5729 key.type = BTRFS_DIR_INDEX_KEY;
5730 key.offset = (u64)-1;
5731
5732 path = btrfs_alloc_path();
5733 if (!path)
5734 return -ENOMEM;
5735
5736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5737 if (ret < 0)
5738 goto out;
5739 /* FIXME: we should be able to handle this */
5740 if (ret == 0)
5741 goto out;
5742 ret = 0;
5743
5744 if (path->slots[0] == 0) {
5745 inode->index_cnt = BTRFS_DIR_START_INDEX;
5746 goto out;
5747 }
5748
5749 path->slots[0]--;
5750
5751 leaf = path->nodes[0];
5752 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5753
5754 if (found_key.objectid != btrfs_ino(inode) ||
5755 found_key.type != BTRFS_DIR_INDEX_KEY) {
5756 inode->index_cnt = BTRFS_DIR_START_INDEX;
5757 goto out;
5758 }
5759
5760 inode->index_cnt = found_key.offset + 1;
5761 out:
5762 btrfs_free_path(path);
5763 return ret;
5764 }
5765
5766 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5767 {
5768 int ret = 0;
5769
5770 btrfs_inode_lock(dir, 0);
5771 if (dir->index_cnt == (u64)-1) {
5772 ret = btrfs_inode_delayed_dir_index_count(dir);
5773 if (ret) {
5774 ret = btrfs_set_inode_index_count(dir);
5775 if (ret)
5776 goto out;
5777 }
5778 }
5779
5780 /* index_cnt is the index number of next new entry, so decrement it. */
5781 *index = dir->index_cnt - 1;
5782 out:
5783 btrfs_inode_unlock(dir, 0);
5784
5785 return ret;
5786 }
5787
5788 /*
5789 * All this infrastructure exists because dir_emit can fault, and we are holding
5790 * the tree lock when doing readdir. For now just allocate a buffer and copy
5791 * our information into that, and then dir_emit from the buffer. This is
5792 * similar to what NFS does, only we don't keep the buffer around in pagecache
5793 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5794 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5795 * tree lock.
5796 */
5797 static int btrfs_opendir(struct inode *inode, struct file *file)
5798 {
5799 struct btrfs_file_private *private;
5800 u64 last_index;
5801 int ret;
5802
5803 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5804 if (ret)
5805 return ret;
5806
5807 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5808 if (!private)
5809 return -ENOMEM;
5810 private->last_index = last_index;
5811 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5812 if (!private->filldir_buf) {
5813 kfree(private);
5814 return -ENOMEM;
5815 }
5816 file->private_data = private;
5817 return 0;
5818 }
5819
5820 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5821 {
5822 struct btrfs_file_private *private = file->private_data;
5823 int ret;
5824
5825 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5826 &private->last_index);
5827 if (ret)
5828 return ret;
5829
5830 return generic_file_llseek(file, offset, whence);
5831 }
5832
5833 struct dir_entry {
5834 u64 ino;
5835 u64 offset;
5836 unsigned type;
5837 int name_len;
5838 };
5839
5840 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5841 {
5842 while (entries--) {
5843 struct dir_entry *entry = addr;
5844 char *name = (char *)(entry + 1);
5845
5846 ctx->pos = get_unaligned(&entry->offset);
5847 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5848 get_unaligned(&entry->ino),
5849 get_unaligned(&entry->type)))
5850 return 1;
5851 addr += sizeof(struct dir_entry) +
5852 get_unaligned(&entry->name_len);
5853 ctx->pos++;
5854 }
5855 return 0;
5856 }
5857
5858 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5859 {
5860 struct inode *inode = file_inode(file);
5861 struct btrfs_root *root = BTRFS_I(inode)->root;
5862 struct btrfs_file_private *private = file->private_data;
5863 struct btrfs_dir_item *di;
5864 struct btrfs_key key;
5865 struct btrfs_key found_key;
5866 struct btrfs_path *path;
5867 void *addr;
5868 LIST_HEAD(ins_list);
5869 LIST_HEAD(del_list);
5870 int ret;
5871 char *name_ptr;
5872 int name_len;
5873 int entries = 0;
5874 int total_len = 0;
5875 bool put = false;
5876 struct btrfs_key location;
5877
5878 if (!dir_emit_dots(file, ctx))
5879 return 0;
5880
5881 path = btrfs_alloc_path();
5882 if (!path)
5883 return -ENOMEM;
5884
5885 addr = private->filldir_buf;
5886 path->reada = READA_FORWARD;
5887
5888 put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5889 &ins_list, &del_list);
5890
5891 again:
5892 key.type = BTRFS_DIR_INDEX_KEY;
5893 key.offset = ctx->pos;
5894 key.objectid = btrfs_ino(BTRFS_I(inode));
5895
5896 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5897 struct dir_entry *entry;
5898 struct extent_buffer *leaf = path->nodes[0];
5899 u8 ftype;
5900
5901 if (found_key.objectid != key.objectid)
5902 break;
5903 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5904 break;
5905 if (found_key.offset < ctx->pos)
5906 continue;
5907 if (found_key.offset > private->last_index)
5908 break;
5909 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5910 continue;
5911 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5912 name_len = btrfs_dir_name_len(leaf, di);
5913 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5914 PAGE_SIZE) {
5915 btrfs_release_path(path);
5916 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5917 if (ret)
5918 goto nopos;
5919 addr = private->filldir_buf;
5920 entries = 0;
5921 total_len = 0;
5922 goto again;
5923 }
5924
5925 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5926 entry = addr;
5927 name_ptr = (char *)(entry + 1);
5928 read_extent_buffer(leaf, name_ptr,
5929 (unsigned long)(di + 1), name_len);
5930 put_unaligned(name_len, &entry->name_len);
5931 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5932 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5933 put_unaligned(location.objectid, &entry->ino);
5934 put_unaligned(found_key.offset, &entry->offset);
5935 entries++;
5936 addr += sizeof(struct dir_entry) + name_len;
5937 total_len += sizeof(struct dir_entry) + name_len;
5938 }
5939 /* Catch error encountered during iteration */
5940 if (ret < 0)
5941 goto err;
5942
5943 btrfs_release_path(path);
5944
5945 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5946 if (ret)
5947 goto nopos;
5948
5949 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5950 if (ret)
5951 goto nopos;
5952
5953 /*
5954 * Stop new entries from being returned after we return the last
5955 * entry.
5956 *
5957 * New directory entries are assigned a strictly increasing
5958 * offset. This means that new entries created during readdir
5959 * are *guaranteed* to be seen in the future by that readdir.
5960 * This has broken buggy programs which operate on names as
5961 * they're returned by readdir. Until we re-use freed offsets
5962 * we have this hack to stop new entries from being returned
5963 * under the assumption that they'll never reach this huge
5964 * offset.
5965 *
5966 * This is being careful not to overflow 32bit loff_t unless the
5967 * last entry requires it because doing so has broken 32bit apps
5968 * in the past.
5969 */
5970 if (ctx->pos >= INT_MAX)
5971 ctx->pos = LLONG_MAX;
5972 else
5973 ctx->pos = INT_MAX;
5974 nopos:
5975 ret = 0;
5976 err:
5977 if (put)
5978 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5979 btrfs_free_path(path);
5980 return ret;
5981 }
5982
5983 /*
5984 * This is somewhat expensive, updating the tree every time the
5985 * inode changes. But, it is most likely to find the inode in cache.
5986 * FIXME, needs more benchmarking...there are no reasons other than performance
5987 * to keep or drop this code.
5988 */
5989 static int btrfs_dirty_inode(struct btrfs_inode *inode)
5990 {
5991 struct btrfs_root *root = inode->root;
5992 struct btrfs_fs_info *fs_info = root->fs_info;
5993 struct btrfs_trans_handle *trans;
5994 int ret;
5995
5996 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
5997 return 0;
5998
5999 trans = btrfs_join_transaction(root);
6000 if (IS_ERR(trans))
6001 return PTR_ERR(trans);
6002
6003 ret = btrfs_update_inode(trans, root, inode);
6004 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6005 /* whoops, lets try again with the full transaction */
6006 btrfs_end_transaction(trans);
6007 trans = btrfs_start_transaction(root, 1);
6008 if (IS_ERR(trans))
6009 return PTR_ERR(trans);
6010
6011 ret = btrfs_update_inode(trans, root, inode);
6012 }
6013 btrfs_end_transaction(trans);
6014 if (inode->delayed_node)
6015 btrfs_balance_delayed_items(fs_info);
6016
6017 return ret;
6018 }
6019
6020 /*
6021 * This is a copy of file_update_time. We need this so we can return error on
6022 * ENOSPC for updating the inode in the case of file write and mmap writes.
6023 */
6024 static int btrfs_update_time(struct inode *inode, int flags)
6025 {
6026 struct btrfs_root *root = BTRFS_I(inode)->root;
6027 bool dirty = flags & ~S_VERSION;
6028
6029 if (btrfs_root_readonly(root))
6030 return -EROFS;
6031
6032 dirty = inode_update_timestamps(inode, flags);
6033 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6034 }
6035
6036 /*
6037 * helper to find a free sequence number in a given directory. This current
6038 * code is very simple, later versions will do smarter things in the btree
6039 */
6040 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6041 {
6042 int ret = 0;
6043
6044 if (dir->index_cnt == (u64)-1) {
6045 ret = btrfs_inode_delayed_dir_index_count(dir);
6046 if (ret) {
6047 ret = btrfs_set_inode_index_count(dir);
6048 if (ret)
6049 return ret;
6050 }
6051 }
6052
6053 *index = dir->index_cnt;
6054 dir->index_cnt++;
6055
6056 return ret;
6057 }
6058
6059 static int btrfs_insert_inode_locked(struct inode *inode)
6060 {
6061 struct btrfs_iget_args args;
6062
6063 args.ino = BTRFS_I(inode)->location.objectid;
6064 args.root = BTRFS_I(inode)->root;
6065
6066 return insert_inode_locked4(inode,
6067 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6068 btrfs_find_actor, &args);
6069 }
6070
6071 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6072 unsigned int *trans_num_items)
6073 {
6074 struct inode *dir = args->dir;
6075 struct inode *inode = args->inode;
6076 int ret;
6077
6078 if (!args->orphan) {
6079 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6080 &args->fname);
6081 if (ret)
6082 return ret;
6083 }
6084
6085 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6086 if (ret) {
6087 fscrypt_free_filename(&args->fname);
6088 return ret;
6089 }
6090
6091 /* 1 to add inode item */
6092 *trans_num_items = 1;
6093 /* 1 to add compression property */
6094 if (BTRFS_I(dir)->prop_compress)
6095 (*trans_num_items)++;
6096 /* 1 to add default ACL xattr */
6097 if (args->default_acl)
6098 (*trans_num_items)++;
6099 /* 1 to add access ACL xattr */
6100 if (args->acl)
6101 (*trans_num_items)++;
6102 #ifdef CONFIG_SECURITY
6103 /* 1 to add LSM xattr */
6104 if (dir->i_security)
6105 (*trans_num_items)++;
6106 #endif
6107 if (args->orphan) {
6108 /* 1 to add orphan item */
6109 (*trans_num_items)++;
6110 } else {
6111 /*
6112 * 1 to add dir item
6113 * 1 to add dir index
6114 * 1 to update parent inode item
6115 *
6116 * No need for 1 unit for the inode ref item because it is
6117 * inserted in a batch together with the inode item at
6118 * btrfs_create_new_inode().
6119 */
6120 *trans_num_items += 3;
6121 }
6122 return 0;
6123 }
6124
6125 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6126 {
6127 posix_acl_release(args->acl);
6128 posix_acl_release(args->default_acl);
6129 fscrypt_free_filename(&args->fname);
6130 }
6131
6132 /*
6133 * Inherit flags from the parent inode.
6134 *
6135 * Currently only the compression flags and the cow flags are inherited.
6136 */
6137 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6138 {
6139 unsigned int flags;
6140
6141 flags = dir->flags;
6142
6143 if (flags & BTRFS_INODE_NOCOMPRESS) {
6144 inode->flags &= ~BTRFS_INODE_COMPRESS;
6145 inode->flags |= BTRFS_INODE_NOCOMPRESS;
6146 } else if (flags & BTRFS_INODE_COMPRESS) {
6147 inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6148 inode->flags |= BTRFS_INODE_COMPRESS;
6149 }
6150
6151 if (flags & BTRFS_INODE_NODATACOW) {
6152 inode->flags |= BTRFS_INODE_NODATACOW;
6153 if (S_ISREG(inode->vfs_inode.i_mode))
6154 inode->flags |= BTRFS_INODE_NODATASUM;
6155 }
6156
6157 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6158 }
6159
6160 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6161 struct btrfs_new_inode_args *args)
6162 {
6163 struct inode *dir = args->dir;
6164 struct inode *inode = args->inode;
6165 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6166 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6167 struct btrfs_root *root;
6168 struct btrfs_inode_item *inode_item;
6169 struct btrfs_key *location;
6170 struct btrfs_path *path;
6171 u64 objectid;
6172 struct btrfs_inode_ref *ref;
6173 struct btrfs_key key[2];
6174 u32 sizes[2];
6175 struct btrfs_item_batch batch;
6176 unsigned long ptr;
6177 int ret;
6178
6179 path = btrfs_alloc_path();
6180 if (!path)
6181 return -ENOMEM;
6182
6183 if (!args->subvol)
6184 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6185 root = BTRFS_I(inode)->root;
6186
6187 ret = btrfs_get_free_objectid(root, &objectid);
6188 if (ret)
6189 goto out;
6190 inode->i_ino = objectid;
6191
6192 if (args->orphan) {
6193 /*
6194 * O_TMPFILE, set link count to 0, so that after this point, we
6195 * fill in an inode item with the correct link count.
6196 */
6197 set_nlink(inode, 0);
6198 } else {
6199 trace_btrfs_inode_request(dir);
6200
6201 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6202 if (ret)
6203 goto out;
6204 }
6205 /* index_cnt is ignored for everything but a dir. */
6206 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6207 BTRFS_I(inode)->generation = trans->transid;
6208 inode->i_generation = BTRFS_I(inode)->generation;
6209
6210 /*
6211 * Subvolumes don't inherit flags from their parent directory.
6212 * Originally this was probably by accident, but we probably can't
6213 * change it now without compatibility issues.
6214 */
6215 if (!args->subvol)
6216 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6217
6218 if (S_ISREG(inode->i_mode)) {
6219 if (btrfs_test_opt(fs_info, NODATASUM))
6220 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6221 if (btrfs_test_opt(fs_info, NODATACOW))
6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6223 BTRFS_INODE_NODATASUM;
6224 }
6225
6226 location = &BTRFS_I(inode)->location;
6227 location->objectid = objectid;
6228 location->offset = 0;
6229 location->type = BTRFS_INODE_ITEM_KEY;
6230
6231 ret = btrfs_insert_inode_locked(inode);
6232 if (ret < 0) {
6233 if (!args->orphan)
6234 BTRFS_I(dir)->index_cnt--;
6235 goto out;
6236 }
6237
6238 /*
6239 * We could have gotten an inode number from somebody who was fsynced
6240 * and then removed in this same transaction, so let's just set full
6241 * sync since it will be a full sync anyway and this will blow away the
6242 * old info in the log.
6243 */
6244 btrfs_set_inode_full_sync(BTRFS_I(inode));
6245
6246 key[0].objectid = objectid;
6247 key[0].type = BTRFS_INODE_ITEM_KEY;
6248 key[0].offset = 0;
6249
6250 sizes[0] = sizeof(struct btrfs_inode_item);
6251
6252 if (!args->orphan) {
6253 /*
6254 * Start new inodes with an inode_ref. This is slightly more
6255 * efficient for small numbers of hard links since they will
6256 * be packed into one item. Extended refs will kick in if we
6257 * add more hard links than can fit in the ref item.
6258 */
6259 key[1].objectid = objectid;
6260 key[1].type = BTRFS_INODE_REF_KEY;
6261 if (args->subvol) {
6262 key[1].offset = objectid;
6263 sizes[1] = 2 + sizeof(*ref);
6264 } else {
6265 key[1].offset = btrfs_ino(BTRFS_I(dir));
6266 sizes[1] = name->len + sizeof(*ref);
6267 }
6268 }
6269
6270 batch.keys = &key[0];
6271 batch.data_sizes = &sizes[0];
6272 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6273 batch.nr = args->orphan ? 1 : 2;
6274 ret = btrfs_insert_empty_items(trans, root, path, &batch);
6275 if (ret != 0) {
6276 btrfs_abort_transaction(trans, ret);
6277 goto discard;
6278 }
6279
6280 inode->i_mtime = inode_set_ctime_current(inode);
6281 inode->i_atime = inode->i_mtime;
6282 BTRFS_I(inode)->i_otime = inode->i_mtime;
6283
6284 /*
6285 * We're going to fill the inode item now, so at this point the inode
6286 * must be fully initialized.
6287 */
6288
6289 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6290 struct btrfs_inode_item);
6291 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6292 sizeof(*inode_item));
6293 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6294
6295 if (!args->orphan) {
6296 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6297 struct btrfs_inode_ref);
6298 ptr = (unsigned long)(ref + 1);
6299 if (args->subvol) {
6300 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6301 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6302 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6303 } else {
6304 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6305 name->len);
6306 btrfs_set_inode_ref_index(path->nodes[0], ref,
6307 BTRFS_I(inode)->dir_index);
6308 write_extent_buffer(path->nodes[0], name->name, ptr,
6309 name->len);
6310 }
6311 }
6312
6313 btrfs_mark_buffer_dirty(path->nodes[0]);
6314 /*
6315 * We don't need the path anymore, plus inheriting properties, adding
6316 * ACLs, security xattrs, orphan item or adding the link, will result in
6317 * allocating yet another path. So just free our path.
6318 */
6319 btrfs_free_path(path);
6320 path = NULL;
6321
6322 if (args->subvol) {
6323 struct inode *parent;
6324
6325 /*
6326 * Subvolumes inherit properties from their parent subvolume,
6327 * not the directory they were created in.
6328 */
6329 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6330 BTRFS_I(dir)->root);
6331 if (IS_ERR(parent)) {
6332 ret = PTR_ERR(parent);
6333 } else {
6334 ret = btrfs_inode_inherit_props(trans, inode, parent);
6335 iput(parent);
6336 }
6337 } else {
6338 ret = btrfs_inode_inherit_props(trans, inode, dir);
6339 }
6340 if (ret) {
6341 btrfs_err(fs_info,
6342 "error inheriting props for ino %llu (root %llu): %d",
6343 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6344 ret);
6345 }
6346
6347 /*
6348 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6349 * probably a bug.
6350 */
6351 if (!args->subvol) {
6352 ret = btrfs_init_inode_security(trans, args);
6353 if (ret) {
6354 btrfs_abort_transaction(trans, ret);
6355 goto discard;
6356 }
6357 }
6358
6359 inode_tree_add(BTRFS_I(inode));
6360
6361 trace_btrfs_inode_new(inode);
6362 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6363
6364 btrfs_update_root_times(trans, root);
6365
6366 if (args->orphan) {
6367 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6368 } else {
6369 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6370 0, BTRFS_I(inode)->dir_index);
6371 }
6372 if (ret) {
6373 btrfs_abort_transaction(trans, ret);
6374 goto discard;
6375 }
6376
6377 return 0;
6378
6379 discard:
6380 /*
6381 * discard_new_inode() calls iput(), but the caller owns the reference
6382 * to the inode.
6383 */
6384 ihold(inode);
6385 discard_new_inode(inode);
6386 out:
6387 btrfs_free_path(path);
6388 return ret;
6389 }
6390
6391 /*
6392 * utility function to add 'inode' into 'parent_inode' with
6393 * a give name and a given sequence number.
6394 * if 'add_backref' is true, also insert a backref from the
6395 * inode to the parent directory.
6396 */
6397 int btrfs_add_link(struct btrfs_trans_handle *trans,
6398 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6399 const struct fscrypt_str *name, int add_backref, u64 index)
6400 {
6401 int ret = 0;
6402 struct btrfs_key key;
6403 struct btrfs_root *root = parent_inode->root;
6404 u64 ino = btrfs_ino(inode);
6405 u64 parent_ino = btrfs_ino(parent_inode);
6406
6407 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6408 memcpy(&key, &inode->root->root_key, sizeof(key));
6409 } else {
6410 key.objectid = ino;
6411 key.type = BTRFS_INODE_ITEM_KEY;
6412 key.offset = 0;
6413 }
6414
6415 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6416 ret = btrfs_add_root_ref(trans, key.objectid,
6417 root->root_key.objectid, parent_ino,
6418 index, name);
6419 } else if (add_backref) {
6420 ret = btrfs_insert_inode_ref(trans, root, name,
6421 ino, parent_ino, index);
6422 }
6423
6424 /* Nothing to clean up yet */
6425 if (ret)
6426 return ret;
6427
6428 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6429 btrfs_inode_type(&inode->vfs_inode), index);
6430 if (ret == -EEXIST || ret == -EOVERFLOW)
6431 goto fail_dir_item;
6432 else if (ret) {
6433 btrfs_abort_transaction(trans, ret);
6434 return ret;
6435 }
6436
6437 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6438 name->len * 2);
6439 inode_inc_iversion(&parent_inode->vfs_inode);
6440 /*
6441 * If we are replaying a log tree, we do not want to update the mtime
6442 * and ctime of the parent directory with the current time, since the
6443 * log replay procedure is responsible for setting them to their correct
6444 * values (the ones it had when the fsync was done).
6445 */
6446 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6447 parent_inode->vfs_inode.i_mtime =
6448 inode_set_ctime_current(&parent_inode->vfs_inode);
6449
6450 ret = btrfs_update_inode(trans, root, parent_inode);
6451 if (ret)
6452 btrfs_abort_transaction(trans, ret);
6453 return ret;
6454
6455 fail_dir_item:
6456 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6457 u64 local_index;
6458 int err;
6459 err = btrfs_del_root_ref(trans, key.objectid,
6460 root->root_key.objectid, parent_ino,
6461 &local_index, name);
6462 if (err)
6463 btrfs_abort_transaction(trans, err);
6464 } else if (add_backref) {
6465 u64 local_index;
6466 int err;
6467
6468 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6469 &local_index);
6470 if (err)
6471 btrfs_abort_transaction(trans, err);
6472 }
6473
6474 /* Return the original error code */
6475 return ret;
6476 }
6477
6478 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6479 struct inode *inode)
6480 {
6481 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6482 struct btrfs_root *root = BTRFS_I(dir)->root;
6483 struct btrfs_new_inode_args new_inode_args = {
6484 .dir = dir,
6485 .dentry = dentry,
6486 .inode = inode,
6487 };
6488 unsigned int trans_num_items;
6489 struct btrfs_trans_handle *trans;
6490 int err;
6491
6492 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6493 if (err)
6494 goto out_inode;
6495
6496 trans = btrfs_start_transaction(root, trans_num_items);
6497 if (IS_ERR(trans)) {
6498 err = PTR_ERR(trans);
6499 goto out_new_inode_args;
6500 }
6501
6502 err = btrfs_create_new_inode(trans, &new_inode_args);
6503 if (!err)
6504 d_instantiate_new(dentry, inode);
6505
6506 btrfs_end_transaction(trans);
6507 btrfs_btree_balance_dirty(fs_info);
6508 out_new_inode_args:
6509 btrfs_new_inode_args_destroy(&new_inode_args);
6510 out_inode:
6511 if (err)
6512 iput(inode);
6513 return err;
6514 }
6515
6516 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6517 struct dentry *dentry, umode_t mode, dev_t rdev)
6518 {
6519 struct inode *inode;
6520
6521 inode = new_inode(dir->i_sb);
6522 if (!inode)
6523 return -ENOMEM;
6524 inode_init_owner(idmap, inode, dir, mode);
6525 inode->i_op = &btrfs_special_inode_operations;
6526 init_special_inode(inode, inode->i_mode, rdev);
6527 return btrfs_create_common(dir, dentry, inode);
6528 }
6529
6530 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6531 struct dentry *dentry, umode_t mode, bool excl)
6532 {
6533 struct inode *inode;
6534
6535 inode = new_inode(dir->i_sb);
6536 if (!inode)
6537 return -ENOMEM;
6538 inode_init_owner(idmap, inode, dir, mode);
6539 inode->i_fop = &btrfs_file_operations;
6540 inode->i_op = &btrfs_file_inode_operations;
6541 inode->i_mapping->a_ops = &btrfs_aops;
6542 return btrfs_create_common(dir, dentry, inode);
6543 }
6544
6545 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6546 struct dentry *dentry)
6547 {
6548 struct btrfs_trans_handle *trans = NULL;
6549 struct btrfs_root *root = BTRFS_I(dir)->root;
6550 struct inode *inode = d_inode(old_dentry);
6551 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6552 struct fscrypt_name fname;
6553 u64 index;
6554 int err;
6555 int drop_inode = 0;
6556
6557 /* do not allow sys_link's with other subvols of the same device */
6558 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6559 return -EXDEV;
6560
6561 if (inode->i_nlink >= BTRFS_LINK_MAX)
6562 return -EMLINK;
6563
6564 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6565 if (err)
6566 goto fail;
6567
6568 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6569 if (err)
6570 goto fail;
6571
6572 /*
6573 * 2 items for inode and inode ref
6574 * 2 items for dir items
6575 * 1 item for parent inode
6576 * 1 item for orphan item deletion if O_TMPFILE
6577 */
6578 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6579 if (IS_ERR(trans)) {
6580 err = PTR_ERR(trans);
6581 trans = NULL;
6582 goto fail;
6583 }
6584
6585 /* There are several dir indexes for this inode, clear the cache. */
6586 BTRFS_I(inode)->dir_index = 0ULL;
6587 inc_nlink(inode);
6588 inode_inc_iversion(inode);
6589 inode_set_ctime_current(inode);
6590 ihold(inode);
6591 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6592
6593 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6594 &fname.disk_name, 1, index);
6595
6596 if (err) {
6597 drop_inode = 1;
6598 } else {
6599 struct dentry *parent = dentry->d_parent;
6600
6601 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6602 if (err)
6603 goto fail;
6604 if (inode->i_nlink == 1) {
6605 /*
6606 * If new hard link count is 1, it's a file created
6607 * with open(2) O_TMPFILE flag.
6608 */
6609 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6610 if (err)
6611 goto fail;
6612 }
6613 d_instantiate(dentry, inode);
6614 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6615 }
6616
6617 fail:
6618 fscrypt_free_filename(&fname);
6619 if (trans)
6620 btrfs_end_transaction(trans);
6621 if (drop_inode) {
6622 inode_dec_link_count(inode);
6623 iput(inode);
6624 }
6625 btrfs_btree_balance_dirty(fs_info);
6626 return err;
6627 }
6628
6629 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6630 struct dentry *dentry, umode_t mode)
6631 {
6632 struct inode *inode;
6633
6634 inode = new_inode(dir->i_sb);
6635 if (!inode)
6636 return -ENOMEM;
6637 inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6638 inode->i_op = &btrfs_dir_inode_operations;
6639 inode->i_fop = &btrfs_dir_file_operations;
6640 return btrfs_create_common(dir, dentry, inode);
6641 }
6642
6643 static noinline int uncompress_inline(struct btrfs_path *path,
6644 struct page *page,
6645 struct btrfs_file_extent_item *item)
6646 {
6647 int ret;
6648 struct extent_buffer *leaf = path->nodes[0];
6649 char *tmp;
6650 size_t max_size;
6651 unsigned long inline_size;
6652 unsigned long ptr;
6653 int compress_type;
6654
6655 compress_type = btrfs_file_extent_compression(leaf, item);
6656 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6657 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6658 tmp = kmalloc(inline_size, GFP_NOFS);
6659 if (!tmp)
6660 return -ENOMEM;
6661 ptr = btrfs_file_extent_inline_start(item);
6662
6663 read_extent_buffer(leaf, tmp, ptr, inline_size);
6664
6665 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6666 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6667
6668 /*
6669 * decompression code contains a memset to fill in any space between the end
6670 * of the uncompressed data and the end of max_size in case the decompressed
6671 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6672 * the end of an inline extent and the beginning of the next block, so we
6673 * cover that region here.
6674 */
6675
6676 if (max_size < PAGE_SIZE)
6677 memzero_page(page, max_size, PAGE_SIZE - max_size);
6678 kfree(tmp);
6679 return ret;
6680 }
6681
6682 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6683 struct page *page)
6684 {
6685 struct btrfs_file_extent_item *fi;
6686 void *kaddr;
6687 size_t copy_size;
6688
6689 if (!page || PageUptodate(page))
6690 return 0;
6691
6692 ASSERT(page_offset(page) == 0);
6693
6694 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6695 struct btrfs_file_extent_item);
6696 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6697 return uncompress_inline(path, page, fi);
6698
6699 copy_size = min_t(u64, PAGE_SIZE,
6700 btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6701 kaddr = kmap_local_page(page);
6702 read_extent_buffer(path->nodes[0], kaddr,
6703 btrfs_file_extent_inline_start(fi), copy_size);
6704 kunmap_local(kaddr);
6705 if (copy_size < PAGE_SIZE)
6706 memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6707 return 0;
6708 }
6709
6710 /*
6711 * Lookup the first extent overlapping a range in a file.
6712 *
6713 * @inode: file to search in
6714 * @page: page to read extent data into if the extent is inline
6715 * @pg_offset: offset into @page to copy to
6716 * @start: file offset
6717 * @len: length of range starting at @start
6718 *
6719 * Return the first &struct extent_map which overlaps the given range, reading
6720 * it from the B-tree and caching it if necessary. Note that there may be more
6721 * extents which overlap the given range after the returned extent_map.
6722 *
6723 * If @page is not NULL and the extent is inline, this also reads the extent
6724 * data directly into the page and marks the extent up to date in the io_tree.
6725 *
6726 * Return: ERR_PTR on error, non-NULL extent_map on success.
6727 */
6728 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6729 struct page *page, size_t pg_offset,
6730 u64 start, u64 len)
6731 {
6732 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6733 int ret = 0;
6734 u64 extent_start = 0;
6735 u64 extent_end = 0;
6736 u64 objectid = btrfs_ino(inode);
6737 int extent_type = -1;
6738 struct btrfs_path *path = NULL;
6739 struct btrfs_root *root = inode->root;
6740 struct btrfs_file_extent_item *item;
6741 struct extent_buffer *leaf;
6742 struct btrfs_key found_key;
6743 struct extent_map *em = NULL;
6744 struct extent_map_tree *em_tree = &inode->extent_tree;
6745
6746 read_lock(&em_tree->lock);
6747 em = lookup_extent_mapping(em_tree, start, len);
6748 read_unlock(&em_tree->lock);
6749
6750 if (em) {
6751 if (em->start > start || em->start + em->len <= start)
6752 free_extent_map(em);
6753 else if (em->block_start == EXTENT_MAP_INLINE && page)
6754 free_extent_map(em);
6755 else
6756 goto out;
6757 }
6758 em = alloc_extent_map();
6759 if (!em) {
6760 ret = -ENOMEM;
6761 goto out;
6762 }
6763 em->start = EXTENT_MAP_HOLE;
6764 em->orig_start = EXTENT_MAP_HOLE;
6765 em->len = (u64)-1;
6766 em->block_len = (u64)-1;
6767
6768 path = btrfs_alloc_path();
6769 if (!path) {
6770 ret = -ENOMEM;
6771 goto out;
6772 }
6773
6774 /* Chances are we'll be called again, so go ahead and do readahead */
6775 path->reada = READA_FORWARD;
6776
6777 /*
6778 * The same explanation in load_free_space_cache applies here as well,
6779 * we only read when we're loading the free space cache, and at that
6780 * point the commit_root has everything we need.
6781 */
6782 if (btrfs_is_free_space_inode(inode)) {
6783 path->search_commit_root = 1;
6784 path->skip_locking = 1;
6785 }
6786
6787 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6788 if (ret < 0) {
6789 goto out;
6790 } else if (ret > 0) {
6791 if (path->slots[0] == 0)
6792 goto not_found;
6793 path->slots[0]--;
6794 ret = 0;
6795 }
6796
6797 leaf = path->nodes[0];
6798 item = btrfs_item_ptr(leaf, path->slots[0],
6799 struct btrfs_file_extent_item);
6800 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6801 if (found_key.objectid != objectid ||
6802 found_key.type != BTRFS_EXTENT_DATA_KEY) {
6803 /*
6804 * If we backup past the first extent we want to move forward
6805 * and see if there is an extent in front of us, otherwise we'll
6806 * say there is a hole for our whole search range which can
6807 * cause problems.
6808 */
6809 extent_end = start;
6810 goto next;
6811 }
6812
6813 extent_type = btrfs_file_extent_type(leaf, item);
6814 extent_start = found_key.offset;
6815 extent_end = btrfs_file_extent_end(path);
6816 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6817 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6818 /* Only regular file could have regular/prealloc extent */
6819 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6820 ret = -EUCLEAN;
6821 btrfs_crit(fs_info,
6822 "regular/prealloc extent found for non-regular inode %llu",
6823 btrfs_ino(inode));
6824 goto out;
6825 }
6826 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6827 extent_start);
6828 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6829 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6830 path->slots[0],
6831 extent_start);
6832 }
6833 next:
6834 if (start >= extent_end) {
6835 path->slots[0]++;
6836 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6837 ret = btrfs_next_leaf(root, path);
6838 if (ret < 0)
6839 goto out;
6840 else if (ret > 0)
6841 goto not_found;
6842
6843 leaf = path->nodes[0];
6844 }
6845 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6846 if (found_key.objectid != objectid ||
6847 found_key.type != BTRFS_EXTENT_DATA_KEY)
6848 goto not_found;
6849 if (start + len <= found_key.offset)
6850 goto not_found;
6851 if (start > found_key.offset)
6852 goto next;
6853
6854 /* New extent overlaps with existing one */
6855 em->start = start;
6856 em->orig_start = start;
6857 em->len = found_key.offset - start;
6858 em->block_start = EXTENT_MAP_HOLE;
6859 goto insert;
6860 }
6861
6862 btrfs_extent_item_to_extent_map(inode, path, item, em);
6863
6864 if (extent_type == BTRFS_FILE_EXTENT_REG ||
6865 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6866 goto insert;
6867 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6868 /*
6869 * Inline extent can only exist at file offset 0. This is
6870 * ensured by tree-checker and inline extent creation path.
6871 * Thus all members representing file offsets should be zero.
6872 */
6873 ASSERT(pg_offset == 0);
6874 ASSERT(extent_start == 0);
6875 ASSERT(em->start == 0);
6876
6877 /*
6878 * btrfs_extent_item_to_extent_map() should have properly
6879 * initialized em members already.
6880 *
6881 * Other members are not utilized for inline extents.
6882 */
6883 ASSERT(em->block_start == EXTENT_MAP_INLINE);
6884 ASSERT(em->len == fs_info->sectorsize);
6885
6886 ret = read_inline_extent(inode, path, page);
6887 if (ret < 0)
6888 goto out;
6889 goto insert;
6890 }
6891 not_found:
6892 em->start = start;
6893 em->orig_start = start;
6894 em->len = len;
6895 em->block_start = EXTENT_MAP_HOLE;
6896 insert:
6897 ret = 0;
6898 btrfs_release_path(path);
6899 if (em->start > start || extent_map_end(em) <= start) {
6900 btrfs_err(fs_info,
6901 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6902 em->start, em->len, start, len);
6903 ret = -EIO;
6904 goto out;
6905 }
6906
6907 write_lock(&em_tree->lock);
6908 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6909 write_unlock(&em_tree->lock);
6910 out:
6911 btrfs_free_path(path);
6912
6913 trace_btrfs_get_extent(root, inode, em);
6914
6915 if (ret) {
6916 free_extent_map(em);
6917 return ERR_PTR(ret);
6918 }
6919 return em;
6920 }
6921
6922 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6923 struct btrfs_dio_data *dio_data,
6924 const u64 start,
6925 const u64 len,
6926 const u64 orig_start,
6927 const u64 block_start,
6928 const u64 block_len,
6929 const u64 orig_block_len,
6930 const u64 ram_bytes,
6931 const int type)
6932 {
6933 struct extent_map *em = NULL;
6934 struct btrfs_ordered_extent *ordered;
6935
6936 if (type != BTRFS_ORDERED_NOCOW) {
6937 em = create_io_em(inode, start, len, orig_start, block_start,
6938 block_len, orig_block_len, ram_bytes,
6939 BTRFS_COMPRESS_NONE, /* compress_type */
6940 type);
6941 if (IS_ERR(em))
6942 goto out;
6943 }
6944 ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6945 block_start, block_len, 0,
6946 (1 << type) |
6947 (1 << BTRFS_ORDERED_DIRECT),
6948 BTRFS_COMPRESS_NONE);
6949 if (IS_ERR(ordered)) {
6950 if (em) {
6951 free_extent_map(em);
6952 btrfs_drop_extent_map_range(inode, start,
6953 start + len - 1, false);
6954 }
6955 em = ERR_CAST(ordered);
6956 } else {
6957 ASSERT(!dio_data->ordered);
6958 dio_data->ordered = ordered;
6959 }
6960 out:
6961
6962 return em;
6963 }
6964
6965 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6966 struct btrfs_dio_data *dio_data,
6967 u64 start, u64 len)
6968 {
6969 struct btrfs_root *root = inode->root;
6970 struct btrfs_fs_info *fs_info = root->fs_info;
6971 struct extent_map *em;
6972 struct btrfs_key ins;
6973 u64 alloc_hint;
6974 int ret;
6975
6976 alloc_hint = get_extent_allocation_hint(inode, start, len);
6977 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6978 0, alloc_hint, &ins, 1, 1);
6979 if (ret)
6980 return ERR_PTR(ret);
6981
6982 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
6983 ins.objectid, ins.offset, ins.offset,
6984 ins.offset, BTRFS_ORDERED_REGULAR);
6985 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6986 if (IS_ERR(em))
6987 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6988 1);
6989
6990 return em;
6991 }
6992
6993 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6994 {
6995 struct btrfs_block_group *block_group;
6996 bool readonly = false;
6997
6998 block_group = btrfs_lookup_block_group(fs_info, bytenr);
6999 if (!block_group || block_group->ro)
7000 readonly = true;
7001 if (block_group)
7002 btrfs_put_block_group(block_group);
7003 return readonly;
7004 }
7005
7006 /*
7007 * Check if we can do nocow write into the range [@offset, @offset + @len)
7008 *
7009 * @offset: File offset
7010 * @len: The length to write, will be updated to the nocow writeable
7011 * range
7012 * @orig_start: (optional) Return the original file offset of the file extent
7013 * @orig_len: (optional) Return the original on-disk length of the file extent
7014 * @ram_bytes: (optional) Return the ram_bytes of the file extent
7015 * @strict: if true, omit optimizations that might force us into unnecessary
7016 * cow. e.g., don't trust generation number.
7017 *
7018 * Return:
7019 * >0 and update @len if we can do nocow write
7020 * 0 if we can't do nocow write
7021 * <0 if error happened
7022 *
7023 * NOTE: This only checks the file extents, caller is responsible to wait for
7024 * any ordered extents.
7025 */
7026 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7027 u64 *orig_start, u64 *orig_block_len,
7028 u64 *ram_bytes, bool nowait, bool strict)
7029 {
7030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7031 struct can_nocow_file_extent_args nocow_args = { 0 };
7032 struct btrfs_path *path;
7033 int ret;
7034 struct extent_buffer *leaf;
7035 struct btrfs_root *root = BTRFS_I(inode)->root;
7036 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7037 struct btrfs_file_extent_item *fi;
7038 struct btrfs_key key;
7039 int found_type;
7040
7041 path = btrfs_alloc_path();
7042 if (!path)
7043 return -ENOMEM;
7044 path->nowait = nowait;
7045
7046 ret = btrfs_lookup_file_extent(NULL, root, path,
7047 btrfs_ino(BTRFS_I(inode)), offset, 0);
7048 if (ret < 0)
7049 goto out;
7050
7051 if (ret == 1) {
7052 if (path->slots[0] == 0) {
7053 /* can't find the item, must cow */
7054 ret = 0;
7055 goto out;
7056 }
7057 path->slots[0]--;
7058 }
7059 ret = 0;
7060 leaf = path->nodes[0];
7061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7062 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7063 key.type != BTRFS_EXTENT_DATA_KEY) {
7064 /* not our file or wrong item type, must cow */
7065 goto out;
7066 }
7067
7068 if (key.offset > offset) {
7069 /* Wrong offset, must cow */
7070 goto out;
7071 }
7072
7073 if (btrfs_file_extent_end(path) <= offset)
7074 goto out;
7075
7076 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7077 found_type = btrfs_file_extent_type(leaf, fi);
7078 if (ram_bytes)
7079 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7080
7081 nocow_args.start = offset;
7082 nocow_args.end = offset + *len - 1;
7083 nocow_args.strict = strict;
7084 nocow_args.free_path = true;
7085
7086 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7087 /* can_nocow_file_extent() has freed the path. */
7088 path = NULL;
7089
7090 if (ret != 1) {
7091 /* Treat errors as not being able to NOCOW. */
7092 ret = 0;
7093 goto out;
7094 }
7095
7096 ret = 0;
7097 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7098 goto out;
7099
7100 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7101 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7102 u64 range_end;
7103
7104 range_end = round_up(offset + nocow_args.num_bytes,
7105 root->fs_info->sectorsize) - 1;
7106 ret = test_range_bit(io_tree, offset, range_end,
7107 EXTENT_DELALLOC, 0, NULL);
7108 if (ret) {
7109 ret = -EAGAIN;
7110 goto out;
7111 }
7112 }
7113
7114 if (orig_start)
7115 *orig_start = key.offset - nocow_args.extent_offset;
7116 if (orig_block_len)
7117 *orig_block_len = nocow_args.disk_num_bytes;
7118
7119 *len = nocow_args.num_bytes;
7120 ret = 1;
7121 out:
7122 btrfs_free_path(path);
7123 return ret;
7124 }
7125
7126 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7127 struct extent_state **cached_state,
7128 unsigned int iomap_flags)
7129 {
7130 const bool writing = (iomap_flags & IOMAP_WRITE);
7131 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7132 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7133 struct btrfs_ordered_extent *ordered;
7134 int ret = 0;
7135
7136 while (1) {
7137 if (nowait) {
7138 if (!try_lock_extent(io_tree, lockstart, lockend,
7139 cached_state))
7140 return -EAGAIN;
7141 } else {
7142 lock_extent(io_tree, lockstart, lockend, cached_state);
7143 }
7144 /*
7145 * We're concerned with the entire range that we're going to be
7146 * doing DIO to, so we need to make sure there's no ordered
7147 * extents in this range.
7148 */
7149 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7150 lockend - lockstart + 1);
7151
7152 /*
7153 * We need to make sure there are no buffered pages in this
7154 * range either, we could have raced between the invalidate in
7155 * generic_file_direct_write and locking the extent. The
7156 * invalidate needs to happen so that reads after a write do not
7157 * get stale data.
7158 */
7159 if (!ordered &&
7160 (!writing || !filemap_range_has_page(inode->i_mapping,
7161 lockstart, lockend)))
7162 break;
7163
7164 unlock_extent(io_tree, lockstart, lockend, cached_state);
7165
7166 if (ordered) {
7167 if (nowait) {
7168 btrfs_put_ordered_extent(ordered);
7169 ret = -EAGAIN;
7170 break;
7171 }
7172 /*
7173 * If we are doing a DIO read and the ordered extent we
7174 * found is for a buffered write, we can not wait for it
7175 * to complete and retry, because if we do so we can
7176 * deadlock with concurrent buffered writes on page
7177 * locks. This happens only if our DIO read covers more
7178 * than one extent map, if at this point has already
7179 * created an ordered extent for a previous extent map
7180 * and locked its range in the inode's io tree, and a
7181 * concurrent write against that previous extent map's
7182 * range and this range started (we unlock the ranges
7183 * in the io tree only when the bios complete and
7184 * buffered writes always lock pages before attempting
7185 * to lock range in the io tree).
7186 */
7187 if (writing ||
7188 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7189 btrfs_start_ordered_extent(ordered);
7190 else
7191 ret = nowait ? -EAGAIN : -ENOTBLK;
7192 btrfs_put_ordered_extent(ordered);
7193 } else {
7194 /*
7195 * We could trigger writeback for this range (and wait
7196 * for it to complete) and then invalidate the pages for
7197 * this range (through invalidate_inode_pages2_range()),
7198 * but that can lead us to a deadlock with a concurrent
7199 * call to readahead (a buffered read or a defrag call
7200 * triggered a readahead) on a page lock due to an
7201 * ordered dio extent we created before but did not have
7202 * yet a corresponding bio submitted (whence it can not
7203 * complete), which makes readahead wait for that
7204 * ordered extent to complete while holding a lock on
7205 * that page.
7206 */
7207 ret = nowait ? -EAGAIN : -ENOTBLK;
7208 }
7209
7210 if (ret)
7211 break;
7212
7213 cond_resched();
7214 }
7215
7216 return ret;
7217 }
7218
7219 /* The callers of this must take lock_extent() */
7220 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7221 u64 len, u64 orig_start, u64 block_start,
7222 u64 block_len, u64 orig_block_len,
7223 u64 ram_bytes, int compress_type,
7224 int type)
7225 {
7226 struct extent_map *em;
7227 int ret;
7228
7229 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7230 type == BTRFS_ORDERED_COMPRESSED ||
7231 type == BTRFS_ORDERED_NOCOW ||
7232 type == BTRFS_ORDERED_REGULAR);
7233
7234 em = alloc_extent_map();
7235 if (!em)
7236 return ERR_PTR(-ENOMEM);
7237
7238 em->start = start;
7239 em->orig_start = orig_start;
7240 em->len = len;
7241 em->block_len = block_len;
7242 em->block_start = block_start;
7243 em->orig_block_len = orig_block_len;
7244 em->ram_bytes = ram_bytes;
7245 em->generation = -1;
7246 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7247 if (type == BTRFS_ORDERED_PREALLOC) {
7248 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7249 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7250 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7251 em->compress_type = compress_type;
7252 }
7253
7254 ret = btrfs_replace_extent_map_range(inode, em, true);
7255 if (ret) {
7256 free_extent_map(em);
7257 return ERR_PTR(ret);
7258 }
7259
7260 /* em got 2 refs now, callers needs to do free_extent_map once. */
7261 return em;
7262 }
7263
7264
7265 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7266 struct inode *inode,
7267 struct btrfs_dio_data *dio_data,
7268 u64 start, u64 *lenp,
7269 unsigned int iomap_flags)
7270 {
7271 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7273 struct extent_map *em = *map;
7274 int type;
7275 u64 block_start, orig_start, orig_block_len, ram_bytes;
7276 struct btrfs_block_group *bg;
7277 bool can_nocow = false;
7278 bool space_reserved = false;
7279 u64 len = *lenp;
7280 u64 prev_len;
7281 int ret = 0;
7282
7283 /*
7284 * We don't allocate a new extent in the following cases
7285 *
7286 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7287 * existing extent.
7288 * 2) The extent is marked as PREALLOC. We're good to go here and can
7289 * just use the extent.
7290 *
7291 */
7292 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7293 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7294 em->block_start != EXTENT_MAP_HOLE)) {
7295 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7296 type = BTRFS_ORDERED_PREALLOC;
7297 else
7298 type = BTRFS_ORDERED_NOCOW;
7299 len = min(len, em->len - (start - em->start));
7300 block_start = em->block_start + (start - em->start);
7301
7302 if (can_nocow_extent(inode, start, &len, &orig_start,
7303 &orig_block_len, &ram_bytes, false, false) == 1) {
7304 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7305 if (bg)
7306 can_nocow = true;
7307 }
7308 }
7309
7310 prev_len = len;
7311 if (can_nocow) {
7312 struct extent_map *em2;
7313
7314 /* We can NOCOW, so only need to reserve metadata space. */
7315 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7316 nowait);
7317 if (ret < 0) {
7318 /* Our caller expects us to free the input extent map. */
7319 free_extent_map(em);
7320 *map = NULL;
7321 btrfs_dec_nocow_writers(bg);
7322 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7323 ret = -EAGAIN;
7324 goto out;
7325 }
7326 space_reserved = true;
7327
7328 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7329 orig_start, block_start,
7330 len, orig_block_len,
7331 ram_bytes, type);
7332 btrfs_dec_nocow_writers(bg);
7333 if (type == BTRFS_ORDERED_PREALLOC) {
7334 free_extent_map(em);
7335 *map = em2;
7336 em = em2;
7337 }
7338
7339 if (IS_ERR(em2)) {
7340 ret = PTR_ERR(em2);
7341 goto out;
7342 }
7343
7344 dio_data->nocow_done = true;
7345 } else {
7346 /* Our caller expects us to free the input extent map. */
7347 free_extent_map(em);
7348 *map = NULL;
7349
7350 if (nowait) {
7351 ret = -EAGAIN;
7352 goto out;
7353 }
7354
7355 /*
7356 * If we could not allocate data space before locking the file
7357 * range and we can't do a NOCOW write, then we have to fail.
7358 */
7359 if (!dio_data->data_space_reserved) {
7360 ret = -ENOSPC;
7361 goto out;
7362 }
7363
7364 /*
7365 * We have to COW and we have already reserved data space before,
7366 * so now we reserve only metadata.
7367 */
7368 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7369 false);
7370 if (ret < 0)
7371 goto out;
7372 space_reserved = true;
7373
7374 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7375 if (IS_ERR(em)) {
7376 ret = PTR_ERR(em);
7377 goto out;
7378 }
7379 *map = em;
7380 len = min(len, em->len - (start - em->start));
7381 if (len < prev_len)
7382 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7383 prev_len - len, true);
7384 }
7385
7386 /*
7387 * We have created our ordered extent, so we can now release our reservation
7388 * for an outstanding extent.
7389 */
7390 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7391
7392 /*
7393 * Need to update the i_size under the extent lock so buffered
7394 * readers will get the updated i_size when we unlock.
7395 */
7396 if (start + len > i_size_read(inode))
7397 i_size_write(inode, start + len);
7398 out:
7399 if (ret && space_reserved) {
7400 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7401 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7402 }
7403 *lenp = len;
7404 return ret;
7405 }
7406
7407 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7408 loff_t length, unsigned int flags, struct iomap *iomap,
7409 struct iomap *srcmap)
7410 {
7411 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7412 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7413 struct extent_map *em;
7414 struct extent_state *cached_state = NULL;
7415 struct btrfs_dio_data *dio_data = iter->private;
7416 u64 lockstart, lockend;
7417 const bool write = !!(flags & IOMAP_WRITE);
7418 int ret = 0;
7419 u64 len = length;
7420 const u64 data_alloc_len = length;
7421 bool unlock_extents = false;
7422
7423 /*
7424 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7425 * we're NOWAIT we may submit a bio for a partial range and return
7426 * EIOCBQUEUED, which would result in an errant short read.
7427 *
7428 * The best way to handle this would be to allow for partial completions
7429 * of iocb's, so we could submit the partial bio, return and fault in
7430 * the rest of the pages, and then submit the io for the rest of the
7431 * range. However we don't have that currently, so simply return
7432 * -EAGAIN at this point so that the normal path is used.
7433 */
7434 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7435 return -EAGAIN;
7436
7437 /*
7438 * Cap the size of reads to that usually seen in buffered I/O as we need
7439 * to allocate a contiguous array for the checksums.
7440 */
7441 if (!write)
7442 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7443
7444 lockstart = start;
7445 lockend = start + len - 1;
7446
7447 /*
7448 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7449 * enough if we've written compressed pages to this area, so we need to
7450 * flush the dirty pages again to make absolutely sure that any
7451 * outstanding dirty pages are on disk - the first flush only starts
7452 * compression on the data, while keeping the pages locked, so by the
7453 * time the second flush returns we know bios for the compressed pages
7454 * were submitted and finished, and the pages no longer under writeback.
7455 *
7456 * If we have a NOWAIT request and we have any pages in the range that
7457 * are locked, likely due to compression still in progress, we don't want
7458 * to block on page locks. We also don't want to block on pages marked as
7459 * dirty or under writeback (same as for the non-compression case).
7460 * iomap_dio_rw() did the same check, but after that and before we got
7461 * here, mmap'ed writes may have happened or buffered reads started
7462 * (readpage() and readahead(), which lock pages), as we haven't locked
7463 * the file range yet.
7464 */
7465 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7466 &BTRFS_I(inode)->runtime_flags)) {
7467 if (flags & IOMAP_NOWAIT) {
7468 if (filemap_range_needs_writeback(inode->i_mapping,
7469 lockstart, lockend))
7470 return -EAGAIN;
7471 } else {
7472 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7473 start + length - 1);
7474 if (ret)
7475 return ret;
7476 }
7477 }
7478
7479 memset(dio_data, 0, sizeof(*dio_data));
7480
7481 /*
7482 * We always try to allocate data space and must do it before locking
7483 * the file range, to avoid deadlocks with concurrent writes to the same
7484 * range if the range has several extents and the writes don't expand the
7485 * current i_size (the inode lock is taken in shared mode). If we fail to
7486 * allocate data space here we continue and later, after locking the
7487 * file range, we fail with ENOSPC only if we figure out we can not do a
7488 * NOCOW write.
7489 */
7490 if (write && !(flags & IOMAP_NOWAIT)) {
7491 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7492 &dio_data->data_reserved,
7493 start, data_alloc_len, false);
7494 if (!ret)
7495 dio_data->data_space_reserved = true;
7496 else if (ret && !(BTRFS_I(inode)->flags &
7497 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7498 goto err;
7499 }
7500
7501 /*
7502 * If this errors out it's because we couldn't invalidate pagecache for
7503 * this range and we need to fallback to buffered IO, or we are doing a
7504 * NOWAIT read/write and we need to block.
7505 */
7506 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7507 if (ret < 0)
7508 goto err;
7509
7510 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7511 if (IS_ERR(em)) {
7512 ret = PTR_ERR(em);
7513 goto unlock_err;
7514 }
7515
7516 /*
7517 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7518 * io. INLINE is special, and we could probably kludge it in here, but
7519 * it's still buffered so for safety lets just fall back to the generic
7520 * buffered path.
7521 *
7522 * For COMPRESSED we _have_ to read the entire extent in so we can
7523 * decompress it, so there will be buffering required no matter what we
7524 * do, so go ahead and fallback to buffered.
7525 *
7526 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7527 * to buffered IO. Don't blame me, this is the price we pay for using
7528 * the generic code.
7529 */
7530 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7531 em->block_start == EXTENT_MAP_INLINE) {
7532 free_extent_map(em);
7533 /*
7534 * If we are in a NOWAIT context, return -EAGAIN in order to
7535 * fallback to buffered IO. This is not only because we can
7536 * block with buffered IO (no support for NOWAIT semantics at
7537 * the moment) but also to avoid returning short reads to user
7538 * space - this happens if we were able to read some data from
7539 * previous non-compressed extents and then when we fallback to
7540 * buffered IO, at btrfs_file_read_iter() by calling
7541 * filemap_read(), we fail to fault in pages for the read buffer,
7542 * in which case filemap_read() returns a short read (the number
7543 * of bytes previously read is > 0, so it does not return -EFAULT).
7544 */
7545 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7546 goto unlock_err;
7547 }
7548
7549 len = min(len, em->len - (start - em->start));
7550
7551 /*
7552 * If we have a NOWAIT request and the range contains multiple extents
7553 * (or a mix of extents and holes), then we return -EAGAIN to make the
7554 * caller fallback to a context where it can do a blocking (without
7555 * NOWAIT) request. This way we avoid doing partial IO and returning
7556 * success to the caller, which is not optimal for writes and for reads
7557 * it can result in unexpected behaviour for an application.
7558 *
7559 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7560 * iomap_dio_rw(), we can end up returning less data then what the caller
7561 * asked for, resulting in an unexpected, and incorrect, short read.
7562 * That is, the caller asked to read N bytes and we return less than that,
7563 * which is wrong unless we are crossing EOF. This happens if we get a
7564 * page fault error when trying to fault in pages for the buffer that is
7565 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7566 * have previously submitted bios for other extents in the range, in
7567 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7568 * those bios have completed by the time we get the page fault error,
7569 * which we return back to our caller - we should only return EIOCBQUEUED
7570 * after we have submitted bios for all the extents in the range.
7571 */
7572 if ((flags & IOMAP_NOWAIT) && len < length) {
7573 free_extent_map(em);
7574 ret = -EAGAIN;
7575 goto unlock_err;
7576 }
7577
7578 if (write) {
7579 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7580 start, &len, flags);
7581 if (ret < 0)
7582 goto unlock_err;
7583 unlock_extents = true;
7584 /* Recalc len in case the new em is smaller than requested */
7585 len = min(len, em->len - (start - em->start));
7586 if (dio_data->data_space_reserved) {
7587 u64 release_offset;
7588 u64 release_len = 0;
7589
7590 if (dio_data->nocow_done) {
7591 release_offset = start;
7592 release_len = data_alloc_len;
7593 } else if (len < data_alloc_len) {
7594 release_offset = start + len;
7595 release_len = data_alloc_len - len;
7596 }
7597
7598 if (release_len > 0)
7599 btrfs_free_reserved_data_space(BTRFS_I(inode),
7600 dio_data->data_reserved,
7601 release_offset,
7602 release_len);
7603 }
7604 } else {
7605 /*
7606 * We need to unlock only the end area that we aren't using.
7607 * The rest is going to be unlocked by the endio routine.
7608 */
7609 lockstart = start + len;
7610 if (lockstart < lockend)
7611 unlock_extents = true;
7612 }
7613
7614 if (unlock_extents)
7615 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7616 &cached_state);
7617 else
7618 free_extent_state(cached_state);
7619
7620 /*
7621 * Translate extent map information to iomap.
7622 * We trim the extents (and move the addr) even though iomap code does
7623 * that, since we have locked only the parts we are performing I/O in.
7624 */
7625 if ((em->block_start == EXTENT_MAP_HOLE) ||
7626 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7627 iomap->addr = IOMAP_NULL_ADDR;
7628 iomap->type = IOMAP_HOLE;
7629 } else {
7630 iomap->addr = em->block_start + (start - em->start);
7631 iomap->type = IOMAP_MAPPED;
7632 }
7633 iomap->offset = start;
7634 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7635 iomap->length = len;
7636 free_extent_map(em);
7637
7638 return 0;
7639
7640 unlock_err:
7641 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7642 &cached_state);
7643 err:
7644 if (dio_data->data_space_reserved) {
7645 btrfs_free_reserved_data_space(BTRFS_I(inode),
7646 dio_data->data_reserved,
7647 start, data_alloc_len);
7648 extent_changeset_free(dio_data->data_reserved);
7649 }
7650
7651 return ret;
7652 }
7653
7654 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7655 ssize_t written, unsigned int flags, struct iomap *iomap)
7656 {
7657 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7658 struct btrfs_dio_data *dio_data = iter->private;
7659 size_t submitted = dio_data->submitted;
7660 const bool write = !!(flags & IOMAP_WRITE);
7661 int ret = 0;
7662
7663 if (!write && (iomap->type == IOMAP_HOLE)) {
7664 /* If reading from a hole, unlock and return */
7665 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7666 NULL);
7667 return 0;
7668 }
7669
7670 if (submitted < length) {
7671 pos += submitted;
7672 length -= submitted;
7673 if (write)
7674 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7675 pos, length, false);
7676 else
7677 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7678 pos + length - 1, NULL);
7679 ret = -ENOTBLK;
7680 }
7681 if (write) {
7682 btrfs_put_ordered_extent(dio_data->ordered);
7683 dio_data->ordered = NULL;
7684 }
7685
7686 if (write)
7687 extent_changeset_free(dio_data->data_reserved);
7688 return ret;
7689 }
7690
7691 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7692 {
7693 struct btrfs_dio_private *dip =
7694 container_of(bbio, struct btrfs_dio_private, bbio);
7695 struct btrfs_inode *inode = bbio->inode;
7696 struct bio *bio = &bbio->bio;
7697
7698 if (bio->bi_status) {
7699 btrfs_warn(inode->root->fs_info,
7700 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7701 btrfs_ino(inode), bio->bi_opf,
7702 dip->file_offset, dip->bytes, bio->bi_status);
7703 }
7704
7705 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7706 btrfs_finish_ordered_extent(bbio->ordered, NULL,
7707 dip->file_offset, dip->bytes,
7708 !bio->bi_status);
7709 } else {
7710 unlock_extent(&inode->io_tree, dip->file_offset,
7711 dip->file_offset + dip->bytes - 1, NULL);
7712 }
7713
7714 bbio->bio.bi_private = bbio->private;
7715 iomap_dio_bio_end_io(bio);
7716 }
7717
7718 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7719 loff_t file_offset)
7720 {
7721 struct btrfs_bio *bbio = btrfs_bio(bio);
7722 struct btrfs_dio_private *dip =
7723 container_of(bbio, struct btrfs_dio_private, bbio);
7724 struct btrfs_dio_data *dio_data = iter->private;
7725
7726 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7727 btrfs_dio_end_io, bio->bi_private);
7728 bbio->inode = BTRFS_I(iter->inode);
7729 bbio->file_offset = file_offset;
7730
7731 dip->file_offset = file_offset;
7732 dip->bytes = bio->bi_iter.bi_size;
7733
7734 dio_data->submitted += bio->bi_iter.bi_size;
7735
7736 /*
7737 * Check if we are doing a partial write. If we are, we need to split
7738 * the ordered extent to match the submitted bio. Hang on to the
7739 * remaining unfinishable ordered_extent in dio_data so that it can be
7740 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7741 * remaining pages is blocked on the outstanding ordered extent.
7742 */
7743 if (iter->flags & IOMAP_WRITE) {
7744 int ret;
7745
7746 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7747 if (ret) {
7748 btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7749 file_offset, dip->bytes,
7750 !ret);
7751 bio->bi_status = errno_to_blk_status(ret);
7752 iomap_dio_bio_end_io(bio);
7753 return;
7754 }
7755 }
7756
7757 btrfs_submit_bio(bbio, 0);
7758 }
7759
7760 static const struct iomap_ops btrfs_dio_iomap_ops = {
7761 .iomap_begin = btrfs_dio_iomap_begin,
7762 .iomap_end = btrfs_dio_iomap_end,
7763 };
7764
7765 static const struct iomap_dio_ops btrfs_dio_ops = {
7766 .submit_io = btrfs_dio_submit_io,
7767 .bio_set = &btrfs_dio_bioset,
7768 };
7769
7770 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7771 {
7772 struct btrfs_dio_data data = { 0 };
7773
7774 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7775 IOMAP_DIO_PARTIAL, &data, done_before);
7776 }
7777
7778 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7779 size_t done_before)
7780 {
7781 struct btrfs_dio_data data = { 0 };
7782
7783 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7784 IOMAP_DIO_PARTIAL, &data, done_before);
7785 }
7786
7787 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7788 u64 start, u64 len)
7789 {
7790 int ret;
7791
7792 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7793 if (ret)
7794 return ret;
7795
7796 /*
7797 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7798 * file range (0 to LLONG_MAX), but that is not enough if we have
7799 * compression enabled. The first filemap_fdatawrite_range() only kicks
7800 * in the compression of data (in an async thread) and will return
7801 * before the compression is done and writeback is started. A second
7802 * filemap_fdatawrite_range() is needed to wait for the compression to
7803 * complete and writeback to start. We also need to wait for ordered
7804 * extents to complete, because our fiemap implementation uses mainly
7805 * file extent items to list the extents, searching for extent maps
7806 * only for file ranges with holes or prealloc extents to figure out
7807 * if we have delalloc in those ranges.
7808 */
7809 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7810 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7811 if (ret)
7812 return ret;
7813 }
7814
7815 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7816 }
7817
7818 static int btrfs_writepages(struct address_space *mapping,
7819 struct writeback_control *wbc)
7820 {
7821 return extent_writepages(mapping, wbc);
7822 }
7823
7824 static void btrfs_readahead(struct readahead_control *rac)
7825 {
7826 extent_readahead(rac);
7827 }
7828
7829 /*
7830 * For release_folio() and invalidate_folio() we have a race window where
7831 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7832 * If we continue to release/invalidate the page, we could cause use-after-free
7833 * for subpage spinlock. So this function is to spin and wait for subpage
7834 * spinlock.
7835 */
7836 static void wait_subpage_spinlock(struct page *page)
7837 {
7838 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7839 struct btrfs_subpage *subpage;
7840
7841 if (!btrfs_is_subpage(fs_info, page))
7842 return;
7843
7844 ASSERT(PagePrivate(page) && page->private);
7845 subpage = (struct btrfs_subpage *)page->private;
7846
7847 /*
7848 * This may look insane as we just acquire the spinlock and release it,
7849 * without doing anything. But we just want to make sure no one is
7850 * still holding the subpage spinlock.
7851 * And since the page is not dirty nor writeback, and we have page
7852 * locked, the only possible way to hold a spinlock is from the endio
7853 * function to clear page writeback.
7854 *
7855 * Here we just acquire the spinlock so that all existing callers
7856 * should exit and we're safe to release/invalidate the page.
7857 */
7858 spin_lock_irq(&subpage->lock);
7859 spin_unlock_irq(&subpage->lock);
7860 }
7861
7862 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7863 {
7864 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7865
7866 if (ret == 1) {
7867 wait_subpage_spinlock(&folio->page);
7868 clear_page_extent_mapped(&folio->page);
7869 }
7870 return ret;
7871 }
7872
7873 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7874 {
7875 if (folio_test_writeback(folio) || folio_test_dirty(folio))
7876 return false;
7877 return __btrfs_release_folio(folio, gfp_flags);
7878 }
7879
7880 #ifdef CONFIG_MIGRATION
7881 static int btrfs_migrate_folio(struct address_space *mapping,
7882 struct folio *dst, struct folio *src,
7883 enum migrate_mode mode)
7884 {
7885 int ret = filemap_migrate_folio(mapping, dst, src, mode);
7886
7887 if (ret != MIGRATEPAGE_SUCCESS)
7888 return ret;
7889
7890 if (folio_test_ordered(src)) {
7891 folio_clear_ordered(src);
7892 folio_set_ordered(dst);
7893 }
7894
7895 return MIGRATEPAGE_SUCCESS;
7896 }
7897 #else
7898 #define btrfs_migrate_folio NULL
7899 #endif
7900
7901 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7902 size_t length)
7903 {
7904 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7905 struct btrfs_fs_info *fs_info = inode->root->fs_info;
7906 struct extent_io_tree *tree = &inode->io_tree;
7907 struct extent_state *cached_state = NULL;
7908 u64 page_start = folio_pos(folio);
7909 u64 page_end = page_start + folio_size(folio) - 1;
7910 u64 cur;
7911 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7912
7913 /*
7914 * We have folio locked so no new ordered extent can be created on this
7915 * page, nor bio can be submitted for this folio.
7916 *
7917 * But already submitted bio can still be finished on this folio.
7918 * Furthermore, endio function won't skip folio which has Ordered
7919 * (Private2) already cleared, so it's possible for endio and
7920 * invalidate_folio to do the same ordered extent accounting twice
7921 * on one folio.
7922 *
7923 * So here we wait for any submitted bios to finish, so that we won't
7924 * do double ordered extent accounting on the same folio.
7925 */
7926 folio_wait_writeback(folio);
7927 wait_subpage_spinlock(&folio->page);
7928
7929 /*
7930 * For subpage case, we have call sites like
7931 * btrfs_punch_hole_lock_range() which passes range not aligned to
7932 * sectorsize.
7933 * If the range doesn't cover the full folio, we don't need to and
7934 * shouldn't clear page extent mapped, as folio->private can still
7935 * record subpage dirty bits for other part of the range.
7936 *
7937 * For cases that invalidate the full folio even the range doesn't
7938 * cover the full folio, like invalidating the last folio, we're
7939 * still safe to wait for ordered extent to finish.
7940 */
7941 if (!(offset == 0 && length == folio_size(folio))) {
7942 btrfs_release_folio(folio, GFP_NOFS);
7943 return;
7944 }
7945
7946 if (!inode_evicting)
7947 lock_extent(tree, page_start, page_end, &cached_state);
7948
7949 cur = page_start;
7950 while (cur < page_end) {
7951 struct btrfs_ordered_extent *ordered;
7952 u64 range_end;
7953 u32 range_len;
7954 u32 extra_flags = 0;
7955
7956 ordered = btrfs_lookup_first_ordered_range(inode, cur,
7957 page_end + 1 - cur);
7958 if (!ordered) {
7959 range_end = page_end;
7960 /*
7961 * No ordered extent covering this range, we are safe
7962 * to delete all extent states in the range.
7963 */
7964 extra_flags = EXTENT_CLEAR_ALL_BITS;
7965 goto next;
7966 }
7967 if (ordered->file_offset > cur) {
7968 /*
7969 * There is a range between [cur, oe->file_offset) not
7970 * covered by any ordered extent.
7971 * We are safe to delete all extent states, and handle
7972 * the ordered extent in the next iteration.
7973 */
7974 range_end = ordered->file_offset - 1;
7975 extra_flags = EXTENT_CLEAR_ALL_BITS;
7976 goto next;
7977 }
7978
7979 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7980 page_end);
7981 ASSERT(range_end + 1 - cur < U32_MAX);
7982 range_len = range_end + 1 - cur;
7983 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
7984 /*
7985 * If Ordered (Private2) is cleared, it means endio has
7986 * already been executed for the range.
7987 * We can't delete the extent states as
7988 * btrfs_finish_ordered_io() may still use some of them.
7989 */
7990 goto next;
7991 }
7992 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
7993
7994 /*
7995 * IO on this page will never be started, so we need to account
7996 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7997 * here, must leave that up for the ordered extent completion.
7998 *
7999 * This will also unlock the range for incoming
8000 * btrfs_finish_ordered_io().
8001 */
8002 if (!inode_evicting)
8003 clear_extent_bit(tree, cur, range_end,
8004 EXTENT_DELALLOC |
8005 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8006 EXTENT_DEFRAG, &cached_state);
8007
8008 spin_lock_irq(&inode->ordered_tree.lock);
8009 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8010 ordered->truncated_len = min(ordered->truncated_len,
8011 cur - ordered->file_offset);
8012 spin_unlock_irq(&inode->ordered_tree.lock);
8013
8014 /*
8015 * If the ordered extent has finished, we're safe to delete all
8016 * the extent states of the range, otherwise
8017 * btrfs_finish_ordered_io() will get executed by endio for
8018 * other pages, so we can't delete extent states.
8019 */
8020 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8021 cur, range_end + 1 - cur)) {
8022 btrfs_finish_ordered_io(ordered);
8023 /*
8024 * The ordered extent has finished, now we're again
8025 * safe to delete all extent states of the range.
8026 */
8027 extra_flags = EXTENT_CLEAR_ALL_BITS;
8028 }
8029 next:
8030 if (ordered)
8031 btrfs_put_ordered_extent(ordered);
8032 /*
8033 * Qgroup reserved space handler
8034 * Sector(s) here will be either:
8035 *
8036 * 1) Already written to disk or bio already finished
8037 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8038 * Qgroup will be handled by its qgroup_record then.
8039 * btrfs_qgroup_free_data() call will do nothing here.
8040 *
8041 * 2) Not written to disk yet
8042 * Then btrfs_qgroup_free_data() call will clear the
8043 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8044 * reserved data space.
8045 * Since the IO will never happen for this page.
8046 */
8047 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8048 if (!inode_evicting) {
8049 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8050 EXTENT_DELALLOC | EXTENT_UPTODATE |
8051 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8052 extra_flags, &cached_state);
8053 }
8054 cur = range_end + 1;
8055 }
8056 /*
8057 * We have iterated through all ordered extents of the page, the page
8058 * should not have Ordered (Private2) anymore, or the above iteration
8059 * did something wrong.
8060 */
8061 ASSERT(!folio_test_ordered(folio));
8062 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8063 if (!inode_evicting)
8064 __btrfs_release_folio(folio, GFP_NOFS);
8065 clear_page_extent_mapped(&folio->page);
8066 }
8067
8068 /*
8069 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8070 * called from a page fault handler when a page is first dirtied. Hence we must
8071 * be careful to check for EOF conditions here. We set the page up correctly
8072 * for a written page which means we get ENOSPC checking when writing into
8073 * holes and correct delalloc and unwritten extent mapping on filesystems that
8074 * support these features.
8075 *
8076 * We are not allowed to take the i_mutex here so we have to play games to
8077 * protect against truncate races as the page could now be beyond EOF. Because
8078 * truncate_setsize() writes the inode size before removing pages, once we have
8079 * the page lock we can determine safely if the page is beyond EOF. If it is not
8080 * beyond EOF, then the page is guaranteed safe against truncation until we
8081 * unlock the page.
8082 */
8083 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8084 {
8085 struct page *page = vmf->page;
8086 struct inode *inode = file_inode(vmf->vma->vm_file);
8087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8088 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8089 struct btrfs_ordered_extent *ordered;
8090 struct extent_state *cached_state = NULL;
8091 struct extent_changeset *data_reserved = NULL;
8092 unsigned long zero_start;
8093 loff_t size;
8094 vm_fault_t ret;
8095 int ret2;
8096 int reserved = 0;
8097 u64 reserved_space;
8098 u64 page_start;
8099 u64 page_end;
8100 u64 end;
8101
8102 reserved_space = PAGE_SIZE;
8103
8104 sb_start_pagefault(inode->i_sb);
8105 page_start = page_offset(page);
8106 page_end = page_start + PAGE_SIZE - 1;
8107 end = page_end;
8108
8109 /*
8110 * Reserving delalloc space after obtaining the page lock can lead to
8111 * deadlock. For example, if a dirty page is locked by this function
8112 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8113 * dirty page write out, then the btrfs_writepages() function could
8114 * end up waiting indefinitely to get a lock on the page currently
8115 * being processed by btrfs_page_mkwrite() function.
8116 */
8117 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8118 page_start, reserved_space);
8119 if (!ret2) {
8120 ret2 = file_update_time(vmf->vma->vm_file);
8121 reserved = 1;
8122 }
8123 if (ret2) {
8124 ret = vmf_error(ret2);
8125 if (reserved)
8126 goto out;
8127 goto out_noreserve;
8128 }
8129
8130 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8131 again:
8132 down_read(&BTRFS_I(inode)->i_mmap_lock);
8133 lock_page(page);
8134 size = i_size_read(inode);
8135
8136 if ((page->mapping != inode->i_mapping) ||
8137 (page_start >= size)) {
8138 /* page got truncated out from underneath us */
8139 goto out_unlock;
8140 }
8141 wait_on_page_writeback(page);
8142
8143 lock_extent(io_tree, page_start, page_end, &cached_state);
8144 ret2 = set_page_extent_mapped(page);
8145 if (ret2 < 0) {
8146 ret = vmf_error(ret2);
8147 unlock_extent(io_tree, page_start, page_end, &cached_state);
8148 goto out_unlock;
8149 }
8150
8151 /*
8152 * we can't set the delalloc bits if there are pending ordered
8153 * extents. Drop our locks and wait for them to finish
8154 */
8155 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8156 PAGE_SIZE);
8157 if (ordered) {
8158 unlock_extent(io_tree, page_start, page_end, &cached_state);
8159 unlock_page(page);
8160 up_read(&BTRFS_I(inode)->i_mmap_lock);
8161 btrfs_start_ordered_extent(ordered);
8162 btrfs_put_ordered_extent(ordered);
8163 goto again;
8164 }
8165
8166 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8167 reserved_space = round_up(size - page_start,
8168 fs_info->sectorsize);
8169 if (reserved_space < PAGE_SIZE) {
8170 end = page_start + reserved_space - 1;
8171 btrfs_delalloc_release_space(BTRFS_I(inode),
8172 data_reserved, page_start,
8173 PAGE_SIZE - reserved_space, true);
8174 }
8175 }
8176
8177 /*
8178 * page_mkwrite gets called when the page is firstly dirtied after it's
8179 * faulted in, but write(2) could also dirty a page and set delalloc
8180 * bits, thus in this case for space account reason, we still need to
8181 * clear any delalloc bits within this page range since we have to
8182 * reserve data&meta space before lock_page() (see above comments).
8183 */
8184 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8185 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8186 EXTENT_DEFRAG, &cached_state);
8187
8188 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8189 &cached_state);
8190 if (ret2) {
8191 unlock_extent(io_tree, page_start, page_end, &cached_state);
8192 ret = VM_FAULT_SIGBUS;
8193 goto out_unlock;
8194 }
8195
8196 /* page is wholly or partially inside EOF */
8197 if (page_start + PAGE_SIZE > size)
8198 zero_start = offset_in_page(size);
8199 else
8200 zero_start = PAGE_SIZE;
8201
8202 if (zero_start != PAGE_SIZE)
8203 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8204
8205 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8206 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8207 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8208
8209 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8210
8211 unlock_extent(io_tree, page_start, page_end, &cached_state);
8212 up_read(&BTRFS_I(inode)->i_mmap_lock);
8213
8214 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8215 sb_end_pagefault(inode->i_sb);
8216 extent_changeset_free(data_reserved);
8217 return VM_FAULT_LOCKED;
8218
8219 out_unlock:
8220 unlock_page(page);
8221 up_read(&BTRFS_I(inode)->i_mmap_lock);
8222 out:
8223 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8224 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8225 reserved_space, (ret != 0));
8226 out_noreserve:
8227 sb_end_pagefault(inode->i_sb);
8228 extent_changeset_free(data_reserved);
8229 return ret;
8230 }
8231
8232 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8233 {
8234 struct btrfs_truncate_control control = {
8235 .inode = inode,
8236 .ino = btrfs_ino(inode),
8237 .min_type = BTRFS_EXTENT_DATA_KEY,
8238 .clear_extent_range = true,
8239 };
8240 struct btrfs_root *root = inode->root;
8241 struct btrfs_fs_info *fs_info = root->fs_info;
8242 struct btrfs_block_rsv *rsv;
8243 int ret;
8244 struct btrfs_trans_handle *trans;
8245 u64 mask = fs_info->sectorsize - 1;
8246 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8247
8248 if (!skip_writeback) {
8249 ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8250 inode->vfs_inode.i_size & (~mask),
8251 (u64)-1);
8252 if (ret)
8253 return ret;
8254 }
8255
8256 /*
8257 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8258 * things going on here:
8259 *
8260 * 1) We need to reserve space to update our inode.
8261 *
8262 * 2) We need to have something to cache all the space that is going to
8263 * be free'd up by the truncate operation, but also have some slack
8264 * space reserved in case it uses space during the truncate (thank you
8265 * very much snapshotting).
8266 *
8267 * And we need these to be separate. The fact is we can use a lot of
8268 * space doing the truncate, and we have no earthly idea how much space
8269 * we will use, so we need the truncate reservation to be separate so it
8270 * doesn't end up using space reserved for updating the inode. We also
8271 * need to be able to stop the transaction and start a new one, which
8272 * means we need to be able to update the inode several times, and we
8273 * have no idea of knowing how many times that will be, so we can't just
8274 * reserve 1 item for the entirety of the operation, so that has to be
8275 * done separately as well.
8276 *
8277 * So that leaves us with
8278 *
8279 * 1) rsv - for the truncate reservation, which we will steal from the
8280 * transaction reservation.
8281 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8282 * updating the inode.
8283 */
8284 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8285 if (!rsv)
8286 return -ENOMEM;
8287 rsv->size = min_size;
8288 rsv->failfast = true;
8289
8290 /*
8291 * 1 for the truncate slack space
8292 * 1 for updating the inode.
8293 */
8294 trans = btrfs_start_transaction(root, 2);
8295 if (IS_ERR(trans)) {
8296 ret = PTR_ERR(trans);
8297 goto out;
8298 }
8299
8300 /* Migrate the slack space for the truncate to our reserve */
8301 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8302 min_size, false);
8303 /*
8304 * We have reserved 2 metadata units when we started the transaction and
8305 * min_size matches 1 unit, so this should never fail, but if it does,
8306 * it's not critical we just fail truncation.
8307 */
8308 if (WARN_ON(ret)) {
8309 btrfs_end_transaction(trans);
8310 goto out;
8311 }
8312
8313 trans->block_rsv = rsv;
8314
8315 while (1) {
8316 struct extent_state *cached_state = NULL;
8317 const u64 new_size = inode->vfs_inode.i_size;
8318 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8319
8320 control.new_size = new_size;
8321 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8322 /*
8323 * We want to drop from the next block forward in case this new
8324 * size is not block aligned since we will be keeping the last
8325 * block of the extent just the way it is.
8326 */
8327 btrfs_drop_extent_map_range(inode,
8328 ALIGN(new_size, fs_info->sectorsize),
8329 (u64)-1, false);
8330
8331 ret = btrfs_truncate_inode_items(trans, root, &control);
8332
8333 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8334 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8335
8336 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8337
8338 trans->block_rsv = &fs_info->trans_block_rsv;
8339 if (ret != -ENOSPC && ret != -EAGAIN)
8340 break;
8341
8342 ret = btrfs_update_inode(trans, root, inode);
8343 if (ret)
8344 break;
8345
8346 btrfs_end_transaction(trans);
8347 btrfs_btree_balance_dirty(fs_info);
8348
8349 trans = btrfs_start_transaction(root, 2);
8350 if (IS_ERR(trans)) {
8351 ret = PTR_ERR(trans);
8352 trans = NULL;
8353 break;
8354 }
8355
8356 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8357 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8358 rsv, min_size, false);
8359 /*
8360 * We have reserved 2 metadata units when we started the
8361 * transaction and min_size matches 1 unit, so this should never
8362 * fail, but if it does, it's not critical we just fail truncation.
8363 */
8364 if (WARN_ON(ret))
8365 break;
8366
8367 trans->block_rsv = rsv;
8368 }
8369
8370 /*
8371 * We can't call btrfs_truncate_block inside a trans handle as we could
8372 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8373 * know we've truncated everything except the last little bit, and can
8374 * do btrfs_truncate_block and then update the disk_i_size.
8375 */
8376 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8377 btrfs_end_transaction(trans);
8378 btrfs_btree_balance_dirty(fs_info);
8379
8380 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8381 if (ret)
8382 goto out;
8383 trans = btrfs_start_transaction(root, 1);
8384 if (IS_ERR(trans)) {
8385 ret = PTR_ERR(trans);
8386 goto out;
8387 }
8388 btrfs_inode_safe_disk_i_size_write(inode, 0);
8389 }
8390
8391 if (trans) {
8392 int ret2;
8393
8394 trans->block_rsv = &fs_info->trans_block_rsv;
8395 ret2 = btrfs_update_inode(trans, root, inode);
8396 if (ret2 && !ret)
8397 ret = ret2;
8398
8399 ret2 = btrfs_end_transaction(trans);
8400 if (ret2 && !ret)
8401 ret = ret2;
8402 btrfs_btree_balance_dirty(fs_info);
8403 }
8404 out:
8405 btrfs_free_block_rsv(fs_info, rsv);
8406 /*
8407 * So if we truncate and then write and fsync we normally would just
8408 * write the extents that changed, which is a problem if we need to
8409 * first truncate that entire inode. So set this flag so we write out
8410 * all of the extents in the inode to the sync log so we're completely
8411 * safe.
8412 *
8413 * If no extents were dropped or trimmed we don't need to force the next
8414 * fsync to truncate all the inode's items from the log and re-log them
8415 * all. This means the truncate operation did not change the file size,
8416 * or changed it to a smaller size but there was only an implicit hole
8417 * between the old i_size and the new i_size, and there were no prealloc
8418 * extents beyond i_size to drop.
8419 */
8420 if (control.extents_found > 0)
8421 btrfs_set_inode_full_sync(inode);
8422
8423 return ret;
8424 }
8425
8426 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8427 struct inode *dir)
8428 {
8429 struct inode *inode;
8430
8431 inode = new_inode(dir->i_sb);
8432 if (inode) {
8433 /*
8434 * Subvolumes don't inherit the sgid bit or the parent's gid if
8435 * the parent's sgid bit is set. This is probably a bug.
8436 */
8437 inode_init_owner(idmap, inode, NULL,
8438 S_IFDIR | (~current_umask() & S_IRWXUGO));
8439 inode->i_op = &btrfs_dir_inode_operations;
8440 inode->i_fop = &btrfs_dir_file_operations;
8441 }
8442 return inode;
8443 }
8444
8445 struct inode *btrfs_alloc_inode(struct super_block *sb)
8446 {
8447 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8448 struct btrfs_inode *ei;
8449 struct inode *inode;
8450
8451 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8452 if (!ei)
8453 return NULL;
8454
8455 ei->root = NULL;
8456 ei->generation = 0;
8457 ei->last_trans = 0;
8458 ei->last_sub_trans = 0;
8459 ei->logged_trans = 0;
8460 ei->delalloc_bytes = 0;
8461 ei->new_delalloc_bytes = 0;
8462 ei->defrag_bytes = 0;
8463 ei->disk_i_size = 0;
8464 ei->flags = 0;
8465 ei->ro_flags = 0;
8466 ei->csum_bytes = 0;
8467 ei->index_cnt = (u64)-1;
8468 ei->dir_index = 0;
8469 ei->last_unlink_trans = 0;
8470 ei->last_reflink_trans = 0;
8471 ei->last_log_commit = 0;
8472
8473 spin_lock_init(&ei->lock);
8474 ei->outstanding_extents = 0;
8475 if (sb->s_magic != BTRFS_TEST_MAGIC)
8476 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8477 BTRFS_BLOCK_RSV_DELALLOC);
8478 ei->runtime_flags = 0;
8479 ei->prop_compress = BTRFS_COMPRESS_NONE;
8480 ei->defrag_compress = BTRFS_COMPRESS_NONE;
8481
8482 ei->delayed_node = NULL;
8483
8484 ei->i_otime.tv_sec = 0;
8485 ei->i_otime.tv_nsec = 0;
8486
8487 inode = &ei->vfs_inode;
8488 extent_map_tree_init(&ei->extent_tree);
8489 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8490 ei->io_tree.inode = ei;
8491 extent_io_tree_init(fs_info, &ei->file_extent_tree,
8492 IO_TREE_INODE_FILE_EXTENT);
8493 mutex_init(&ei->log_mutex);
8494 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8495 INIT_LIST_HEAD(&ei->delalloc_inodes);
8496 INIT_LIST_HEAD(&ei->delayed_iput);
8497 RB_CLEAR_NODE(&ei->rb_node);
8498 init_rwsem(&ei->i_mmap_lock);
8499
8500 return inode;
8501 }
8502
8503 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8504 void btrfs_test_destroy_inode(struct inode *inode)
8505 {
8506 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8507 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8508 }
8509 #endif
8510
8511 void btrfs_free_inode(struct inode *inode)
8512 {
8513 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8514 }
8515
8516 void btrfs_destroy_inode(struct inode *vfs_inode)
8517 {
8518 struct btrfs_ordered_extent *ordered;
8519 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8520 struct btrfs_root *root = inode->root;
8521 bool freespace_inode;
8522
8523 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8524 WARN_ON(vfs_inode->i_data.nrpages);
8525 WARN_ON(inode->block_rsv.reserved);
8526 WARN_ON(inode->block_rsv.size);
8527 WARN_ON(inode->outstanding_extents);
8528 if (!S_ISDIR(vfs_inode->i_mode)) {
8529 WARN_ON(inode->delalloc_bytes);
8530 WARN_ON(inode->new_delalloc_bytes);
8531 }
8532 WARN_ON(inode->csum_bytes);
8533 WARN_ON(inode->defrag_bytes);
8534
8535 /*
8536 * This can happen where we create an inode, but somebody else also
8537 * created the same inode and we need to destroy the one we already
8538 * created.
8539 */
8540 if (!root)
8541 return;
8542
8543 /*
8544 * If this is a free space inode do not take the ordered extents lockdep
8545 * map.
8546 */
8547 freespace_inode = btrfs_is_free_space_inode(inode);
8548
8549 while (1) {
8550 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8551 if (!ordered)
8552 break;
8553 else {
8554 btrfs_err(root->fs_info,
8555 "found ordered extent %llu %llu on inode cleanup",
8556 ordered->file_offset, ordered->num_bytes);
8557
8558 if (!freespace_inode)
8559 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8560
8561 btrfs_remove_ordered_extent(inode, ordered);
8562 btrfs_put_ordered_extent(ordered);
8563 btrfs_put_ordered_extent(ordered);
8564 }
8565 }
8566 btrfs_qgroup_check_reserved_leak(inode);
8567 inode_tree_del(inode);
8568 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8569 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8570 btrfs_put_root(inode->root);
8571 }
8572
8573 int btrfs_drop_inode(struct inode *inode)
8574 {
8575 struct btrfs_root *root = BTRFS_I(inode)->root;
8576
8577 if (root == NULL)
8578 return 1;
8579
8580 /* the snap/subvol tree is on deleting */
8581 if (btrfs_root_refs(&root->root_item) == 0)
8582 return 1;
8583 else
8584 return generic_drop_inode(inode);
8585 }
8586
8587 static void init_once(void *foo)
8588 {
8589 struct btrfs_inode *ei = foo;
8590
8591 inode_init_once(&ei->vfs_inode);
8592 }
8593
8594 void __cold btrfs_destroy_cachep(void)
8595 {
8596 /*
8597 * Make sure all delayed rcu free inodes are flushed before we
8598 * destroy cache.
8599 */
8600 rcu_barrier();
8601 bioset_exit(&btrfs_dio_bioset);
8602 kmem_cache_destroy(btrfs_inode_cachep);
8603 }
8604
8605 int __init btrfs_init_cachep(void)
8606 {
8607 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8608 sizeof(struct btrfs_inode), 0,
8609 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8610 init_once);
8611 if (!btrfs_inode_cachep)
8612 goto fail;
8613
8614 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8615 offsetof(struct btrfs_dio_private, bbio.bio),
8616 BIOSET_NEED_BVECS))
8617 goto fail;
8618
8619 return 0;
8620 fail:
8621 btrfs_destroy_cachep();
8622 return -ENOMEM;
8623 }
8624
8625 static int btrfs_getattr(struct mnt_idmap *idmap,
8626 const struct path *path, struct kstat *stat,
8627 u32 request_mask, unsigned int flags)
8628 {
8629 u64 delalloc_bytes;
8630 u64 inode_bytes;
8631 struct inode *inode = d_inode(path->dentry);
8632 u32 blocksize = inode->i_sb->s_blocksize;
8633 u32 bi_flags = BTRFS_I(inode)->flags;
8634 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8635
8636 stat->result_mask |= STATX_BTIME;
8637 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8638 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8639 if (bi_flags & BTRFS_INODE_APPEND)
8640 stat->attributes |= STATX_ATTR_APPEND;
8641 if (bi_flags & BTRFS_INODE_COMPRESS)
8642 stat->attributes |= STATX_ATTR_COMPRESSED;
8643 if (bi_flags & BTRFS_INODE_IMMUTABLE)
8644 stat->attributes |= STATX_ATTR_IMMUTABLE;
8645 if (bi_flags & BTRFS_INODE_NODUMP)
8646 stat->attributes |= STATX_ATTR_NODUMP;
8647 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8648 stat->attributes |= STATX_ATTR_VERITY;
8649
8650 stat->attributes_mask |= (STATX_ATTR_APPEND |
8651 STATX_ATTR_COMPRESSED |
8652 STATX_ATTR_IMMUTABLE |
8653 STATX_ATTR_NODUMP);
8654
8655 generic_fillattr(idmap, request_mask, inode, stat);
8656 stat->dev = BTRFS_I(inode)->root->anon_dev;
8657
8658 spin_lock(&BTRFS_I(inode)->lock);
8659 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8660 inode_bytes = inode_get_bytes(inode);
8661 spin_unlock(&BTRFS_I(inode)->lock);
8662 stat->blocks = (ALIGN(inode_bytes, blocksize) +
8663 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8664 return 0;
8665 }
8666
8667 static int btrfs_rename_exchange(struct inode *old_dir,
8668 struct dentry *old_dentry,
8669 struct inode *new_dir,
8670 struct dentry *new_dentry)
8671 {
8672 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8673 struct btrfs_trans_handle *trans;
8674 unsigned int trans_num_items;
8675 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8676 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8677 struct inode *new_inode = new_dentry->d_inode;
8678 struct inode *old_inode = old_dentry->d_inode;
8679 struct btrfs_rename_ctx old_rename_ctx;
8680 struct btrfs_rename_ctx new_rename_ctx;
8681 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8682 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8683 u64 old_idx = 0;
8684 u64 new_idx = 0;
8685 int ret;
8686 int ret2;
8687 bool need_abort = false;
8688 struct fscrypt_name old_fname, new_fname;
8689 struct fscrypt_str *old_name, *new_name;
8690
8691 /*
8692 * For non-subvolumes allow exchange only within one subvolume, in the
8693 * same inode namespace. Two subvolumes (represented as directory) can
8694 * be exchanged as they're a logical link and have a fixed inode number.
8695 */
8696 if (root != dest &&
8697 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8698 new_ino != BTRFS_FIRST_FREE_OBJECTID))
8699 return -EXDEV;
8700
8701 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8702 if (ret)
8703 return ret;
8704
8705 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8706 if (ret) {
8707 fscrypt_free_filename(&old_fname);
8708 return ret;
8709 }
8710
8711 old_name = &old_fname.disk_name;
8712 new_name = &new_fname.disk_name;
8713
8714 /* close the race window with snapshot create/destroy ioctl */
8715 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8716 new_ino == BTRFS_FIRST_FREE_OBJECTID)
8717 down_read(&fs_info->subvol_sem);
8718
8719 /*
8720 * For each inode:
8721 * 1 to remove old dir item
8722 * 1 to remove old dir index
8723 * 1 to add new dir item
8724 * 1 to add new dir index
8725 * 1 to update parent inode
8726 *
8727 * If the parents are the same, we only need to account for one
8728 */
8729 trans_num_items = (old_dir == new_dir ? 9 : 10);
8730 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8731 /*
8732 * 1 to remove old root ref
8733 * 1 to remove old root backref
8734 * 1 to add new root ref
8735 * 1 to add new root backref
8736 */
8737 trans_num_items += 4;
8738 } else {
8739 /*
8740 * 1 to update inode item
8741 * 1 to remove old inode ref
8742 * 1 to add new inode ref
8743 */
8744 trans_num_items += 3;
8745 }
8746 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8747 trans_num_items += 4;
8748 else
8749 trans_num_items += 3;
8750 trans = btrfs_start_transaction(root, trans_num_items);
8751 if (IS_ERR(trans)) {
8752 ret = PTR_ERR(trans);
8753 goto out_notrans;
8754 }
8755
8756 if (dest != root) {
8757 ret = btrfs_record_root_in_trans(trans, dest);
8758 if (ret)
8759 goto out_fail;
8760 }
8761
8762 /*
8763 * We need to find a free sequence number both in the source and
8764 * in the destination directory for the exchange.
8765 */
8766 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8767 if (ret)
8768 goto out_fail;
8769 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8770 if (ret)
8771 goto out_fail;
8772
8773 BTRFS_I(old_inode)->dir_index = 0ULL;
8774 BTRFS_I(new_inode)->dir_index = 0ULL;
8775
8776 /* Reference for the source. */
8777 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8778 /* force full log commit if subvolume involved. */
8779 btrfs_set_log_full_commit(trans);
8780 } else {
8781 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8782 btrfs_ino(BTRFS_I(new_dir)),
8783 old_idx);
8784 if (ret)
8785 goto out_fail;
8786 need_abort = true;
8787 }
8788
8789 /* And now for the dest. */
8790 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8791 /* force full log commit if subvolume involved. */
8792 btrfs_set_log_full_commit(trans);
8793 } else {
8794 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8795 btrfs_ino(BTRFS_I(old_dir)),
8796 new_idx);
8797 if (ret) {
8798 if (need_abort)
8799 btrfs_abort_transaction(trans, ret);
8800 goto out_fail;
8801 }
8802 }
8803
8804 /* Update inode version and ctime/mtime. */
8805 inode_inc_iversion(old_dir);
8806 inode_inc_iversion(new_dir);
8807 inode_inc_iversion(old_inode);
8808 inode_inc_iversion(new_inode);
8809 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8810
8811 if (old_dentry->d_parent != new_dentry->d_parent) {
8812 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8813 BTRFS_I(old_inode), true);
8814 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8815 BTRFS_I(new_inode), true);
8816 }
8817
8818 /* src is a subvolume */
8819 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8820 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8821 } else { /* src is an inode */
8822 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8823 BTRFS_I(old_dentry->d_inode),
8824 old_name, &old_rename_ctx);
8825 if (!ret)
8826 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8827 }
8828 if (ret) {
8829 btrfs_abort_transaction(trans, ret);
8830 goto out_fail;
8831 }
8832
8833 /* dest is a subvolume */
8834 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8835 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8836 } else { /* dest is an inode */
8837 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8838 BTRFS_I(new_dentry->d_inode),
8839 new_name, &new_rename_ctx);
8840 if (!ret)
8841 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8842 }
8843 if (ret) {
8844 btrfs_abort_transaction(trans, ret);
8845 goto out_fail;
8846 }
8847
8848 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8849 new_name, 0, old_idx);
8850 if (ret) {
8851 btrfs_abort_transaction(trans, ret);
8852 goto out_fail;
8853 }
8854
8855 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8856 old_name, 0, new_idx);
8857 if (ret) {
8858 btrfs_abort_transaction(trans, ret);
8859 goto out_fail;
8860 }
8861
8862 if (old_inode->i_nlink == 1)
8863 BTRFS_I(old_inode)->dir_index = old_idx;
8864 if (new_inode->i_nlink == 1)
8865 BTRFS_I(new_inode)->dir_index = new_idx;
8866
8867 /*
8868 * Now pin the logs of the roots. We do it to ensure that no other task
8869 * can sync the logs while we are in progress with the rename, because
8870 * that could result in an inconsistency in case any of the inodes that
8871 * are part of this rename operation were logged before.
8872 */
8873 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8874 btrfs_pin_log_trans(root);
8875 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8876 btrfs_pin_log_trans(dest);
8877
8878 /* Do the log updates for all inodes. */
8879 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8880 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8881 old_rename_ctx.index, new_dentry->d_parent);
8882 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8883 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8884 new_rename_ctx.index, old_dentry->d_parent);
8885
8886 /* Now unpin the logs. */
8887 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8888 btrfs_end_log_trans(root);
8889 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8890 btrfs_end_log_trans(dest);
8891 out_fail:
8892 ret2 = btrfs_end_transaction(trans);
8893 ret = ret ? ret : ret2;
8894 out_notrans:
8895 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8896 old_ino == BTRFS_FIRST_FREE_OBJECTID)
8897 up_read(&fs_info->subvol_sem);
8898
8899 fscrypt_free_filename(&new_fname);
8900 fscrypt_free_filename(&old_fname);
8901 return ret;
8902 }
8903
8904 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8905 struct inode *dir)
8906 {
8907 struct inode *inode;
8908
8909 inode = new_inode(dir->i_sb);
8910 if (inode) {
8911 inode_init_owner(idmap, inode, dir,
8912 S_IFCHR | WHITEOUT_MODE);
8913 inode->i_op = &btrfs_special_inode_operations;
8914 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8915 }
8916 return inode;
8917 }
8918
8919 static int btrfs_rename(struct mnt_idmap *idmap,
8920 struct inode *old_dir, struct dentry *old_dentry,
8921 struct inode *new_dir, struct dentry *new_dentry,
8922 unsigned int flags)
8923 {
8924 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8925 struct btrfs_new_inode_args whiteout_args = {
8926 .dir = old_dir,
8927 .dentry = old_dentry,
8928 };
8929 struct btrfs_trans_handle *trans;
8930 unsigned int trans_num_items;
8931 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8932 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8933 struct inode *new_inode = d_inode(new_dentry);
8934 struct inode *old_inode = d_inode(old_dentry);
8935 struct btrfs_rename_ctx rename_ctx;
8936 u64 index = 0;
8937 int ret;
8938 int ret2;
8939 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8940 struct fscrypt_name old_fname, new_fname;
8941
8942 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8943 return -EPERM;
8944
8945 /* we only allow rename subvolume link between subvolumes */
8946 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8947 return -EXDEV;
8948
8949 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8950 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8951 return -ENOTEMPTY;
8952
8953 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8954 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8955 return -ENOTEMPTY;
8956
8957 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8958 if (ret)
8959 return ret;
8960
8961 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8962 if (ret) {
8963 fscrypt_free_filename(&old_fname);
8964 return ret;
8965 }
8966
8967 /* check for collisions, even if the name isn't there */
8968 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8969 if (ret) {
8970 if (ret == -EEXIST) {
8971 /* we shouldn't get
8972 * eexist without a new_inode */
8973 if (WARN_ON(!new_inode)) {
8974 goto out_fscrypt_names;
8975 }
8976 } else {
8977 /* maybe -EOVERFLOW */
8978 goto out_fscrypt_names;
8979 }
8980 }
8981 ret = 0;
8982
8983 /*
8984 * we're using rename to replace one file with another. Start IO on it
8985 * now so we don't add too much work to the end of the transaction
8986 */
8987 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8988 filemap_flush(old_inode->i_mapping);
8989
8990 if (flags & RENAME_WHITEOUT) {
8991 whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8992 if (!whiteout_args.inode) {
8993 ret = -ENOMEM;
8994 goto out_fscrypt_names;
8995 }
8996 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8997 if (ret)
8998 goto out_whiteout_inode;
8999 } else {
9000 /* 1 to update the old parent inode. */
9001 trans_num_items = 1;
9002 }
9003
9004 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9005 /* Close the race window with snapshot create/destroy ioctl */
9006 down_read(&fs_info->subvol_sem);
9007 /*
9008 * 1 to remove old root ref
9009 * 1 to remove old root backref
9010 * 1 to add new root ref
9011 * 1 to add new root backref
9012 */
9013 trans_num_items += 4;
9014 } else {
9015 /*
9016 * 1 to update inode
9017 * 1 to remove old inode ref
9018 * 1 to add new inode ref
9019 */
9020 trans_num_items += 3;
9021 }
9022 /*
9023 * 1 to remove old dir item
9024 * 1 to remove old dir index
9025 * 1 to add new dir item
9026 * 1 to add new dir index
9027 */
9028 trans_num_items += 4;
9029 /* 1 to update new parent inode if it's not the same as the old parent */
9030 if (new_dir != old_dir)
9031 trans_num_items++;
9032 if (new_inode) {
9033 /*
9034 * 1 to update inode
9035 * 1 to remove inode ref
9036 * 1 to remove dir item
9037 * 1 to remove dir index
9038 * 1 to possibly add orphan item
9039 */
9040 trans_num_items += 5;
9041 }
9042 trans = btrfs_start_transaction(root, trans_num_items);
9043 if (IS_ERR(trans)) {
9044 ret = PTR_ERR(trans);
9045 goto out_notrans;
9046 }
9047
9048 if (dest != root) {
9049 ret = btrfs_record_root_in_trans(trans, dest);
9050 if (ret)
9051 goto out_fail;
9052 }
9053
9054 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9055 if (ret)
9056 goto out_fail;
9057
9058 BTRFS_I(old_inode)->dir_index = 0ULL;
9059 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9060 /* force full log commit if subvolume involved. */
9061 btrfs_set_log_full_commit(trans);
9062 } else {
9063 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9064 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9065 index);
9066 if (ret)
9067 goto out_fail;
9068 }
9069
9070 inode_inc_iversion(old_dir);
9071 inode_inc_iversion(new_dir);
9072 inode_inc_iversion(old_inode);
9073 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9074
9075 if (old_dentry->d_parent != new_dentry->d_parent)
9076 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9077 BTRFS_I(old_inode), true);
9078
9079 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9080 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9081 } else {
9082 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9083 BTRFS_I(d_inode(old_dentry)),
9084 &old_fname.disk_name, &rename_ctx);
9085 if (!ret)
9086 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9087 }
9088 if (ret) {
9089 btrfs_abort_transaction(trans, ret);
9090 goto out_fail;
9091 }
9092
9093 if (new_inode) {
9094 inode_inc_iversion(new_inode);
9095 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9096 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9097 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9098 BUG_ON(new_inode->i_nlink == 0);
9099 } else {
9100 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9101 BTRFS_I(d_inode(new_dentry)),
9102 &new_fname.disk_name);
9103 }
9104 if (!ret && new_inode->i_nlink == 0)
9105 ret = btrfs_orphan_add(trans,
9106 BTRFS_I(d_inode(new_dentry)));
9107 if (ret) {
9108 btrfs_abort_transaction(trans, ret);
9109 goto out_fail;
9110 }
9111 }
9112
9113 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9114 &new_fname.disk_name, 0, index);
9115 if (ret) {
9116 btrfs_abort_transaction(trans, ret);
9117 goto out_fail;
9118 }
9119
9120 if (old_inode->i_nlink == 1)
9121 BTRFS_I(old_inode)->dir_index = index;
9122
9123 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9124 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9125 rename_ctx.index, new_dentry->d_parent);
9126
9127 if (flags & RENAME_WHITEOUT) {
9128 ret = btrfs_create_new_inode(trans, &whiteout_args);
9129 if (ret) {
9130 btrfs_abort_transaction(trans, ret);
9131 goto out_fail;
9132 } else {
9133 unlock_new_inode(whiteout_args.inode);
9134 iput(whiteout_args.inode);
9135 whiteout_args.inode = NULL;
9136 }
9137 }
9138 out_fail:
9139 ret2 = btrfs_end_transaction(trans);
9140 ret = ret ? ret : ret2;
9141 out_notrans:
9142 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9143 up_read(&fs_info->subvol_sem);
9144 if (flags & RENAME_WHITEOUT)
9145 btrfs_new_inode_args_destroy(&whiteout_args);
9146 out_whiteout_inode:
9147 if (flags & RENAME_WHITEOUT)
9148 iput(whiteout_args.inode);
9149 out_fscrypt_names:
9150 fscrypt_free_filename(&old_fname);
9151 fscrypt_free_filename(&new_fname);
9152 return ret;
9153 }
9154
9155 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9156 struct dentry *old_dentry, struct inode *new_dir,
9157 struct dentry *new_dentry, unsigned int flags)
9158 {
9159 int ret;
9160
9161 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9162 return -EINVAL;
9163
9164 if (flags & RENAME_EXCHANGE)
9165 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9166 new_dentry);
9167 else
9168 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9169 new_dentry, flags);
9170
9171 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9172
9173 return ret;
9174 }
9175
9176 struct btrfs_delalloc_work {
9177 struct inode *inode;
9178 struct completion completion;
9179 struct list_head list;
9180 struct btrfs_work work;
9181 };
9182
9183 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9184 {
9185 struct btrfs_delalloc_work *delalloc_work;
9186 struct inode *inode;
9187
9188 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9189 work);
9190 inode = delalloc_work->inode;
9191 filemap_flush(inode->i_mapping);
9192 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9193 &BTRFS_I(inode)->runtime_flags))
9194 filemap_flush(inode->i_mapping);
9195
9196 iput(inode);
9197 complete(&delalloc_work->completion);
9198 }
9199
9200 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9201 {
9202 struct btrfs_delalloc_work *work;
9203
9204 work = kmalloc(sizeof(*work), GFP_NOFS);
9205 if (!work)
9206 return NULL;
9207
9208 init_completion(&work->completion);
9209 INIT_LIST_HEAD(&work->list);
9210 work->inode = inode;
9211 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9212
9213 return work;
9214 }
9215
9216 /*
9217 * some fairly slow code that needs optimization. This walks the list
9218 * of all the inodes with pending delalloc and forces them to disk.
9219 */
9220 static int start_delalloc_inodes(struct btrfs_root *root,
9221 struct writeback_control *wbc, bool snapshot,
9222 bool in_reclaim_context)
9223 {
9224 struct btrfs_inode *binode;
9225 struct inode *inode;
9226 struct btrfs_delalloc_work *work, *next;
9227 LIST_HEAD(works);
9228 LIST_HEAD(splice);
9229 int ret = 0;
9230 bool full_flush = wbc->nr_to_write == LONG_MAX;
9231
9232 mutex_lock(&root->delalloc_mutex);
9233 spin_lock(&root->delalloc_lock);
9234 list_splice_init(&root->delalloc_inodes, &splice);
9235 while (!list_empty(&splice)) {
9236 binode = list_entry(splice.next, struct btrfs_inode,
9237 delalloc_inodes);
9238
9239 list_move_tail(&binode->delalloc_inodes,
9240 &root->delalloc_inodes);
9241
9242 if (in_reclaim_context &&
9243 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9244 continue;
9245
9246 inode = igrab(&binode->vfs_inode);
9247 if (!inode) {
9248 cond_resched_lock(&root->delalloc_lock);
9249 continue;
9250 }
9251 spin_unlock(&root->delalloc_lock);
9252
9253 if (snapshot)
9254 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9255 &binode->runtime_flags);
9256 if (full_flush) {
9257 work = btrfs_alloc_delalloc_work(inode);
9258 if (!work) {
9259 iput(inode);
9260 ret = -ENOMEM;
9261 goto out;
9262 }
9263 list_add_tail(&work->list, &works);
9264 btrfs_queue_work(root->fs_info->flush_workers,
9265 &work->work);
9266 } else {
9267 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9268 btrfs_add_delayed_iput(BTRFS_I(inode));
9269 if (ret || wbc->nr_to_write <= 0)
9270 goto out;
9271 }
9272 cond_resched();
9273 spin_lock(&root->delalloc_lock);
9274 }
9275 spin_unlock(&root->delalloc_lock);
9276
9277 out:
9278 list_for_each_entry_safe(work, next, &works, list) {
9279 list_del_init(&work->list);
9280 wait_for_completion(&work->completion);
9281 kfree(work);
9282 }
9283
9284 if (!list_empty(&splice)) {
9285 spin_lock(&root->delalloc_lock);
9286 list_splice_tail(&splice, &root->delalloc_inodes);
9287 spin_unlock(&root->delalloc_lock);
9288 }
9289 mutex_unlock(&root->delalloc_mutex);
9290 return ret;
9291 }
9292
9293 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9294 {
9295 struct writeback_control wbc = {
9296 .nr_to_write = LONG_MAX,
9297 .sync_mode = WB_SYNC_NONE,
9298 .range_start = 0,
9299 .range_end = LLONG_MAX,
9300 };
9301 struct btrfs_fs_info *fs_info = root->fs_info;
9302
9303 if (BTRFS_FS_ERROR(fs_info))
9304 return -EROFS;
9305
9306 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9307 }
9308
9309 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9310 bool in_reclaim_context)
9311 {
9312 struct writeback_control wbc = {
9313 .nr_to_write = nr,
9314 .sync_mode = WB_SYNC_NONE,
9315 .range_start = 0,
9316 .range_end = LLONG_MAX,
9317 };
9318 struct btrfs_root *root;
9319 LIST_HEAD(splice);
9320 int ret;
9321
9322 if (BTRFS_FS_ERROR(fs_info))
9323 return -EROFS;
9324
9325 mutex_lock(&fs_info->delalloc_root_mutex);
9326 spin_lock(&fs_info->delalloc_root_lock);
9327 list_splice_init(&fs_info->delalloc_roots, &splice);
9328 while (!list_empty(&splice)) {
9329 /*
9330 * Reset nr_to_write here so we know that we're doing a full
9331 * flush.
9332 */
9333 if (nr == LONG_MAX)
9334 wbc.nr_to_write = LONG_MAX;
9335
9336 root = list_first_entry(&splice, struct btrfs_root,
9337 delalloc_root);
9338 root = btrfs_grab_root(root);
9339 BUG_ON(!root);
9340 list_move_tail(&root->delalloc_root,
9341 &fs_info->delalloc_roots);
9342 spin_unlock(&fs_info->delalloc_root_lock);
9343
9344 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9345 btrfs_put_root(root);
9346 if (ret < 0 || wbc.nr_to_write <= 0)
9347 goto out;
9348 spin_lock(&fs_info->delalloc_root_lock);
9349 }
9350 spin_unlock(&fs_info->delalloc_root_lock);
9351
9352 ret = 0;
9353 out:
9354 if (!list_empty(&splice)) {
9355 spin_lock(&fs_info->delalloc_root_lock);
9356 list_splice_tail(&splice, &fs_info->delalloc_roots);
9357 spin_unlock(&fs_info->delalloc_root_lock);
9358 }
9359 mutex_unlock(&fs_info->delalloc_root_mutex);
9360 return ret;
9361 }
9362
9363 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9364 struct dentry *dentry, const char *symname)
9365 {
9366 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9367 struct btrfs_trans_handle *trans;
9368 struct btrfs_root *root = BTRFS_I(dir)->root;
9369 struct btrfs_path *path;
9370 struct btrfs_key key;
9371 struct inode *inode;
9372 struct btrfs_new_inode_args new_inode_args = {
9373 .dir = dir,
9374 .dentry = dentry,
9375 };
9376 unsigned int trans_num_items;
9377 int err;
9378 int name_len;
9379 int datasize;
9380 unsigned long ptr;
9381 struct btrfs_file_extent_item *ei;
9382 struct extent_buffer *leaf;
9383
9384 name_len = strlen(symname);
9385 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9386 return -ENAMETOOLONG;
9387
9388 inode = new_inode(dir->i_sb);
9389 if (!inode)
9390 return -ENOMEM;
9391 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9392 inode->i_op = &btrfs_symlink_inode_operations;
9393 inode_nohighmem(inode);
9394 inode->i_mapping->a_ops = &btrfs_aops;
9395 btrfs_i_size_write(BTRFS_I(inode), name_len);
9396 inode_set_bytes(inode, name_len);
9397
9398 new_inode_args.inode = inode;
9399 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9400 if (err)
9401 goto out_inode;
9402 /* 1 additional item for the inline extent */
9403 trans_num_items++;
9404
9405 trans = btrfs_start_transaction(root, trans_num_items);
9406 if (IS_ERR(trans)) {
9407 err = PTR_ERR(trans);
9408 goto out_new_inode_args;
9409 }
9410
9411 err = btrfs_create_new_inode(trans, &new_inode_args);
9412 if (err)
9413 goto out;
9414
9415 path = btrfs_alloc_path();
9416 if (!path) {
9417 err = -ENOMEM;
9418 btrfs_abort_transaction(trans, err);
9419 discard_new_inode(inode);
9420 inode = NULL;
9421 goto out;
9422 }
9423 key.objectid = btrfs_ino(BTRFS_I(inode));
9424 key.offset = 0;
9425 key.type = BTRFS_EXTENT_DATA_KEY;
9426 datasize = btrfs_file_extent_calc_inline_size(name_len);
9427 err = btrfs_insert_empty_item(trans, root, path, &key,
9428 datasize);
9429 if (err) {
9430 btrfs_abort_transaction(trans, err);
9431 btrfs_free_path(path);
9432 discard_new_inode(inode);
9433 inode = NULL;
9434 goto out;
9435 }
9436 leaf = path->nodes[0];
9437 ei = btrfs_item_ptr(leaf, path->slots[0],
9438 struct btrfs_file_extent_item);
9439 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9440 btrfs_set_file_extent_type(leaf, ei,
9441 BTRFS_FILE_EXTENT_INLINE);
9442 btrfs_set_file_extent_encryption(leaf, ei, 0);
9443 btrfs_set_file_extent_compression(leaf, ei, 0);
9444 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9445 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9446
9447 ptr = btrfs_file_extent_inline_start(ei);
9448 write_extent_buffer(leaf, symname, ptr, name_len);
9449 btrfs_mark_buffer_dirty(leaf);
9450 btrfs_free_path(path);
9451
9452 d_instantiate_new(dentry, inode);
9453 err = 0;
9454 out:
9455 btrfs_end_transaction(trans);
9456 btrfs_btree_balance_dirty(fs_info);
9457 out_new_inode_args:
9458 btrfs_new_inode_args_destroy(&new_inode_args);
9459 out_inode:
9460 if (err)
9461 iput(inode);
9462 return err;
9463 }
9464
9465 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9466 struct btrfs_trans_handle *trans_in,
9467 struct btrfs_inode *inode,
9468 struct btrfs_key *ins,
9469 u64 file_offset)
9470 {
9471 struct btrfs_file_extent_item stack_fi;
9472 struct btrfs_replace_extent_info extent_info;
9473 struct btrfs_trans_handle *trans = trans_in;
9474 struct btrfs_path *path;
9475 u64 start = ins->objectid;
9476 u64 len = ins->offset;
9477 int qgroup_released;
9478 int ret;
9479
9480 memset(&stack_fi, 0, sizeof(stack_fi));
9481
9482 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9483 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9484 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9485 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9486 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9487 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9488 /* Encryption and other encoding is reserved and all 0 */
9489
9490 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9491 if (qgroup_released < 0)
9492 return ERR_PTR(qgroup_released);
9493
9494 if (trans) {
9495 ret = insert_reserved_file_extent(trans, inode,
9496 file_offset, &stack_fi,
9497 true, qgroup_released);
9498 if (ret)
9499 goto free_qgroup;
9500 return trans;
9501 }
9502
9503 extent_info.disk_offset = start;
9504 extent_info.disk_len = len;
9505 extent_info.data_offset = 0;
9506 extent_info.data_len = len;
9507 extent_info.file_offset = file_offset;
9508 extent_info.extent_buf = (char *)&stack_fi;
9509 extent_info.is_new_extent = true;
9510 extent_info.update_times = true;
9511 extent_info.qgroup_reserved = qgroup_released;
9512 extent_info.insertions = 0;
9513
9514 path = btrfs_alloc_path();
9515 if (!path) {
9516 ret = -ENOMEM;
9517 goto free_qgroup;
9518 }
9519
9520 ret = btrfs_replace_file_extents(inode, path, file_offset,
9521 file_offset + len - 1, &extent_info,
9522 &trans);
9523 btrfs_free_path(path);
9524 if (ret)
9525 goto free_qgroup;
9526 return trans;
9527
9528 free_qgroup:
9529 /*
9530 * We have released qgroup data range at the beginning of the function,
9531 * and normally qgroup_released bytes will be freed when committing
9532 * transaction.
9533 * But if we error out early, we have to free what we have released
9534 * or we leak qgroup data reservation.
9535 */
9536 btrfs_qgroup_free_refroot(inode->root->fs_info,
9537 inode->root->root_key.objectid, qgroup_released,
9538 BTRFS_QGROUP_RSV_DATA);
9539 return ERR_PTR(ret);
9540 }
9541
9542 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9543 u64 start, u64 num_bytes, u64 min_size,
9544 loff_t actual_len, u64 *alloc_hint,
9545 struct btrfs_trans_handle *trans)
9546 {
9547 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9548 struct extent_map *em;
9549 struct btrfs_root *root = BTRFS_I(inode)->root;
9550 struct btrfs_key ins;
9551 u64 cur_offset = start;
9552 u64 clear_offset = start;
9553 u64 i_size;
9554 u64 cur_bytes;
9555 u64 last_alloc = (u64)-1;
9556 int ret = 0;
9557 bool own_trans = true;
9558 u64 end = start + num_bytes - 1;
9559
9560 if (trans)
9561 own_trans = false;
9562 while (num_bytes > 0) {
9563 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9564 cur_bytes = max(cur_bytes, min_size);
9565 /*
9566 * If we are severely fragmented we could end up with really
9567 * small allocations, so if the allocator is returning small
9568 * chunks lets make its job easier by only searching for those
9569 * sized chunks.
9570 */
9571 cur_bytes = min(cur_bytes, last_alloc);
9572 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9573 min_size, 0, *alloc_hint, &ins, 1, 0);
9574 if (ret)
9575 break;
9576
9577 /*
9578 * We've reserved this space, and thus converted it from
9579 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9580 * from here on out we will only need to clear our reservation
9581 * for the remaining unreserved area, so advance our
9582 * clear_offset by our extent size.
9583 */
9584 clear_offset += ins.offset;
9585
9586 last_alloc = ins.offset;
9587 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9588 &ins, cur_offset);
9589 /*
9590 * Now that we inserted the prealloc extent we can finally
9591 * decrement the number of reservations in the block group.
9592 * If we did it before, we could race with relocation and have
9593 * relocation miss the reserved extent, making it fail later.
9594 */
9595 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9596 if (IS_ERR(trans)) {
9597 ret = PTR_ERR(trans);
9598 btrfs_free_reserved_extent(fs_info, ins.objectid,
9599 ins.offset, 0);
9600 break;
9601 }
9602
9603 em = alloc_extent_map();
9604 if (!em) {
9605 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9606 cur_offset + ins.offset - 1, false);
9607 btrfs_set_inode_full_sync(BTRFS_I(inode));
9608 goto next;
9609 }
9610
9611 em->start = cur_offset;
9612 em->orig_start = cur_offset;
9613 em->len = ins.offset;
9614 em->block_start = ins.objectid;
9615 em->block_len = ins.offset;
9616 em->orig_block_len = ins.offset;
9617 em->ram_bytes = ins.offset;
9618 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9619 em->generation = trans->transid;
9620
9621 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9622 free_extent_map(em);
9623 next:
9624 num_bytes -= ins.offset;
9625 cur_offset += ins.offset;
9626 *alloc_hint = ins.objectid + ins.offset;
9627
9628 inode_inc_iversion(inode);
9629 inode_set_ctime_current(inode);
9630 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9631 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9632 (actual_len > inode->i_size) &&
9633 (cur_offset > inode->i_size)) {
9634 if (cur_offset > actual_len)
9635 i_size = actual_len;
9636 else
9637 i_size = cur_offset;
9638 i_size_write(inode, i_size);
9639 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9640 }
9641
9642 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9643
9644 if (ret) {
9645 btrfs_abort_transaction(trans, ret);
9646 if (own_trans)
9647 btrfs_end_transaction(trans);
9648 break;
9649 }
9650
9651 if (own_trans) {
9652 btrfs_end_transaction(trans);
9653 trans = NULL;
9654 }
9655 }
9656 if (clear_offset < end)
9657 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9658 end - clear_offset + 1);
9659 return ret;
9660 }
9661
9662 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9663 u64 start, u64 num_bytes, u64 min_size,
9664 loff_t actual_len, u64 *alloc_hint)
9665 {
9666 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9667 min_size, actual_len, alloc_hint,
9668 NULL);
9669 }
9670
9671 int btrfs_prealloc_file_range_trans(struct inode *inode,
9672 struct btrfs_trans_handle *trans, int mode,
9673 u64 start, u64 num_bytes, u64 min_size,
9674 loff_t actual_len, u64 *alloc_hint)
9675 {
9676 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9677 min_size, actual_len, alloc_hint, trans);
9678 }
9679
9680 static int btrfs_permission(struct mnt_idmap *idmap,
9681 struct inode *inode, int mask)
9682 {
9683 struct btrfs_root *root = BTRFS_I(inode)->root;
9684 umode_t mode = inode->i_mode;
9685
9686 if (mask & MAY_WRITE &&
9687 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9688 if (btrfs_root_readonly(root))
9689 return -EROFS;
9690 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9691 return -EACCES;
9692 }
9693 return generic_permission(idmap, inode, mask);
9694 }
9695
9696 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9697 struct file *file, umode_t mode)
9698 {
9699 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9700 struct btrfs_trans_handle *trans;
9701 struct btrfs_root *root = BTRFS_I(dir)->root;
9702 struct inode *inode;
9703 struct btrfs_new_inode_args new_inode_args = {
9704 .dir = dir,
9705 .dentry = file->f_path.dentry,
9706 .orphan = true,
9707 };
9708 unsigned int trans_num_items;
9709 int ret;
9710
9711 inode = new_inode(dir->i_sb);
9712 if (!inode)
9713 return -ENOMEM;
9714 inode_init_owner(idmap, inode, dir, mode);
9715 inode->i_fop = &btrfs_file_operations;
9716 inode->i_op = &btrfs_file_inode_operations;
9717 inode->i_mapping->a_ops = &btrfs_aops;
9718
9719 new_inode_args.inode = inode;
9720 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9721 if (ret)
9722 goto out_inode;
9723
9724 trans = btrfs_start_transaction(root, trans_num_items);
9725 if (IS_ERR(trans)) {
9726 ret = PTR_ERR(trans);
9727 goto out_new_inode_args;
9728 }
9729
9730 ret = btrfs_create_new_inode(trans, &new_inode_args);
9731
9732 /*
9733 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9734 * set it to 1 because d_tmpfile() will issue a warning if the count is
9735 * 0, through:
9736 *
9737 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9738 */
9739 set_nlink(inode, 1);
9740
9741 if (!ret) {
9742 d_tmpfile(file, inode);
9743 unlock_new_inode(inode);
9744 mark_inode_dirty(inode);
9745 }
9746
9747 btrfs_end_transaction(trans);
9748 btrfs_btree_balance_dirty(fs_info);
9749 out_new_inode_args:
9750 btrfs_new_inode_args_destroy(&new_inode_args);
9751 out_inode:
9752 if (ret)
9753 iput(inode);
9754 return finish_open_simple(file, ret);
9755 }
9756
9757 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9758 {
9759 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9760 unsigned long index = start >> PAGE_SHIFT;
9761 unsigned long end_index = end >> PAGE_SHIFT;
9762 struct page *page;
9763 u32 len;
9764
9765 ASSERT(end + 1 - start <= U32_MAX);
9766 len = end + 1 - start;
9767 while (index <= end_index) {
9768 page = find_get_page(inode->vfs_inode.i_mapping, index);
9769 ASSERT(page); /* Pages should be in the extent_io_tree */
9770
9771 btrfs_page_set_writeback(fs_info, page, start, len);
9772 put_page(page);
9773 index++;
9774 }
9775 }
9776
9777 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9778 int compress_type)
9779 {
9780 switch (compress_type) {
9781 case BTRFS_COMPRESS_NONE:
9782 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9783 case BTRFS_COMPRESS_ZLIB:
9784 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9785 case BTRFS_COMPRESS_LZO:
9786 /*
9787 * The LZO format depends on the sector size. 64K is the maximum
9788 * sector size that we support.
9789 */
9790 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9791 return -EINVAL;
9792 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9793 (fs_info->sectorsize_bits - 12);
9794 case BTRFS_COMPRESS_ZSTD:
9795 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9796 default:
9797 return -EUCLEAN;
9798 }
9799 }
9800
9801 static ssize_t btrfs_encoded_read_inline(
9802 struct kiocb *iocb,
9803 struct iov_iter *iter, u64 start,
9804 u64 lockend,
9805 struct extent_state **cached_state,
9806 u64 extent_start, size_t count,
9807 struct btrfs_ioctl_encoded_io_args *encoded,
9808 bool *unlocked)
9809 {
9810 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9811 struct btrfs_root *root = inode->root;
9812 struct btrfs_fs_info *fs_info = root->fs_info;
9813 struct extent_io_tree *io_tree = &inode->io_tree;
9814 struct btrfs_path *path;
9815 struct extent_buffer *leaf;
9816 struct btrfs_file_extent_item *item;
9817 u64 ram_bytes;
9818 unsigned long ptr;
9819 void *tmp;
9820 ssize_t ret;
9821
9822 path = btrfs_alloc_path();
9823 if (!path) {
9824 ret = -ENOMEM;
9825 goto out;
9826 }
9827 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9828 extent_start, 0);
9829 if (ret) {
9830 if (ret > 0) {
9831 /* The extent item disappeared? */
9832 ret = -EIO;
9833 }
9834 goto out;
9835 }
9836 leaf = path->nodes[0];
9837 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9838
9839 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9840 ptr = btrfs_file_extent_inline_start(item);
9841
9842 encoded->len = min_t(u64, extent_start + ram_bytes,
9843 inode->vfs_inode.i_size) - iocb->ki_pos;
9844 ret = btrfs_encoded_io_compression_from_extent(fs_info,
9845 btrfs_file_extent_compression(leaf, item));
9846 if (ret < 0)
9847 goto out;
9848 encoded->compression = ret;
9849 if (encoded->compression) {
9850 size_t inline_size;
9851
9852 inline_size = btrfs_file_extent_inline_item_len(leaf,
9853 path->slots[0]);
9854 if (inline_size > count) {
9855 ret = -ENOBUFS;
9856 goto out;
9857 }
9858 count = inline_size;
9859 encoded->unencoded_len = ram_bytes;
9860 encoded->unencoded_offset = iocb->ki_pos - extent_start;
9861 } else {
9862 count = min_t(u64, count, encoded->len);
9863 encoded->len = count;
9864 encoded->unencoded_len = count;
9865 ptr += iocb->ki_pos - extent_start;
9866 }
9867
9868 tmp = kmalloc(count, GFP_NOFS);
9869 if (!tmp) {
9870 ret = -ENOMEM;
9871 goto out;
9872 }
9873 read_extent_buffer(leaf, tmp, ptr, count);
9874 btrfs_release_path(path);
9875 unlock_extent(io_tree, start, lockend, cached_state);
9876 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9877 *unlocked = true;
9878
9879 ret = copy_to_iter(tmp, count, iter);
9880 if (ret != count)
9881 ret = -EFAULT;
9882 kfree(tmp);
9883 out:
9884 btrfs_free_path(path);
9885 return ret;
9886 }
9887
9888 struct btrfs_encoded_read_private {
9889 wait_queue_head_t wait;
9890 atomic_t pending;
9891 blk_status_t status;
9892 };
9893
9894 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9895 {
9896 struct btrfs_encoded_read_private *priv = bbio->private;
9897
9898 if (bbio->bio.bi_status) {
9899 /*
9900 * The memory barrier implied by the atomic_dec_return() here
9901 * pairs with the memory barrier implied by the
9902 * atomic_dec_return() or io_wait_event() in
9903 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9904 * write is observed before the load of status in
9905 * btrfs_encoded_read_regular_fill_pages().
9906 */
9907 WRITE_ONCE(priv->status, bbio->bio.bi_status);
9908 }
9909 if (!atomic_dec_return(&priv->pending))
9910 wake_up(&priv->wait);
9911 bio_put(&bbio->bio);
9912 }
9913
9914 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9915 u64 file_offset, u64 disk_bytenr,
9916 u64 disk_io_size, struct page **pages)
9917 {
9918 struct btrfs_fs_info *fs_info = inode->root->fs_info;
9919 struct btrfs_encoded_read_private priv = {
9920 .pending = ATOMIC_INIT(1),
9921 };
9922 unsigned long i = 0;
9923 struct btrfs_bio *bbio;
9924
9925 init_waitqueue_head(&priv.wait);
9926
9927 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9928 btrfs_encoded_read_endio, &priv);
9929 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9930 bbio->inode = inode;
9931
9932 do {
9933 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9934
9935 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9936 atomic_inc(&priv.pending);
9937 btrfs_submit_bio(bbio, 0);
9938
9939 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9940 btrfs_encoded_read_endio, &priv);
9941 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9942 bbio->inode = inode;
9943 continue;
9944 }
9945
9946 i++;
9947 disk_bytenr += bytes;
9948 disk_io_size -= bytes;
9949 } while (disk_io_size);
9950
9951 atomic_inc(&priv.pending);
9952 btrfs_submit_bio(bbio, 0);
9953
9954 if (atomic_dec_return(&priv.pending))
9955 io_wait_event(priv.wait, !atomic_read(&priv.pending));
9956 /* See btrfs_encoded_read_endio() for ordering. */
9957 return blk_status_to_errno(READ_ONCE(priv.status));
9958 }
9959
9960 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9961 struct iov_iter *iter,
9962 u64 start, u64 lockend,
9963 struct extent_state **cached_state,
9964 u64 disk_bytenr, u64 disk_io_size,
9965 size_t count, bool compressed,
9966 bool *unlocked)
9967 {
9968 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9969 struct extent_io_tree *io_tree = &inode->io_tree;
9970 struct page **pages;
9971 unsigned long nr_pages, i;
9972 u64 cur;
9973 size_t page_offset;
9974 ssize_t ret;
9975
9976 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9977 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9978 if (!pages)
9979 return -ENOMEM;
9980 ret = btrfs_alloc_page_array(nr_pages, pages);
9981 if (ret) {
9982 ret = -ENOMEM;
9983 goto out;
9984 }
9985
9986 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9987 disk_io_size, pages);
9988 if (ret)
9989 goto out;
9990
9991 unlock_extent(io_tree, start, lockend, cached_state);
9992 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9993 *unlocked = true;
9994
9995 if (compressed) {
9996 i = 0;
9997 page_offset = 0;
9998 } else {
9999 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10000 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10001 }
10002 cur = 0;
10003 while (cur < count) {
10004 size_t bytes = min_t(size_t, count - cur,
10005 PAGE_SIZE - page_offset);
10006
10007 if (copy_page_to_iter(pages[i], page_offset, bytes,
10008 iter) != bytes) {
10009 ret = -EFAULT;
10010 goto out;
10011 }
10012 i++;
10013 cur += bytes;
10014 page_offset = 0;
10015 }
10016 ret = count;
10017 out:
10018 for (i = 0; i < nr_pages; i++) {
10019 if (pages[i])
10020 __free_page(pages[i]);
10021 }
10022 kfree(pages);
10023 return ret;
10024 }
10025
10026 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10027 struct btrfs_ioctl_encoded_io_args *encoded)
10028 {
10029 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10030 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10031 struct extent_io_tree *io_tree = &inode->io_tree;
10032 ssize_t ret;
10033 size_t count = iov_iter_count(iter);
10034 u64 start, lockend, disk_bytenr, disk_io_size;
10035 struct extent_state *cached_state = NULL;
10036 struct extent_map *em;
10037 bool unlocked = false;
10038
10039 file_accessed(iocb->ki_filp);
10040
10041 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10042
10043 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10044 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10045 return 0;
10046 }
10047 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10048 /*
10049 * We don't know how long the extent containing iocb->ki_pos is, but if
10050 * it's compressed we know that it won't be longer than this.
10051 */
10052 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10053
10054 for (;;) {
10055 struct btrfs_ordered_extent *ordered;
10056
10057 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10058 lockend - start + 1);
10059 if (ret)
10060 goto out_unlock_inode;
10061 lock_extent(io_tree, start, lockend, &cached_state);
10062 ordered = btrfs_lookup_ordered_range(inode, start,
10063 lockend - start + 1);
10064 if (!ordered)
10065 break;
10066 btrfs_put_ordered_extent(ordered);
10067 unlock_extent(io_tree, start, lockend, &cached_state);
10068 cond_resched();
10069 }
10070
10071 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10072 if (IS_ERR(em)) {
10073 ret = PTR_ERR(em);
10074 goto out_unlock_extent;
10075 }
10076
10077 if (em->block_start == EXTENT_MAP_INLINE) {
10078 u64 extent_start = em->start;
10079
10080 /*
10081 * For inline extents we get everything we need out of the
10082 * extent item.
10083 */
10084 free_extent_map(em);
10085 em = NULL;
10086 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10087 &cached_state, extent_start,
10088 count, encoded, &unlocked);
10089 goto out;
10090 }
10091
10092 /*
10093 * We only want to return up to EOF even if the extent extends beyond
10094 * that.
10095 */
10096 encoded->len = min_t(u64, extent_map_end(em),
10097 inode->vfs_inode.i_size) - iocb->ki_pos;
10098 if (em->block_start == EXTENT_MAP_HOLE ||
10099 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10100 disk_bytenr = EXTENT_MAP_HOLE;
10101 count = min_t(u64, count, encoded->len);
10102 encoded->len = count;
10103 encoded->unencoded_len = count;
10104 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10105 disk_bytenr = em->block_start;
10106 /*
10107 * Bail if the buffer isn't large enough to return the whole
10108 * compressed extent.
10109 */
10110 if (em->block_len > count) {
10111 ret = -ENOBUFS;
10112 goto out_em;
10113 }
10114 disk_io_size = em->block_len;
10115 count = em->block_len;
10116 encoded->unencoded_len = em->ram_bytes;
10117 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10118 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10119 em->compress_type);
10120 if (ret < 0)
10121 goto out_em;
10122 encoded->compression = ret;
10123 } else {
10124 disk_bytenr = em->block_start + (start - em->start);
10125 if (encoded->len > count)
10126 encoded->len = count;
10127 /*
10128 * Don't read beyond what we locked. This also limits the page
10129 * allocations that we'll do.
10130 */
10131 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10132 count = start + disk_io_size - iocb->ki_pos;
10133 encoded->len = count;
10134 encoded->unencoded_len = count;
10135 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10136 }
10137 free_extent_map(em);
10138 em = NULL;
10139
10140 if (disk_bytenr == EXTENT_MAP_HOLE) {
10141 unlock_extent(io_tree, start, lockend, &cached_state);
10142 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10143 unlocked = true;
10144 ret = iov_iter_zero(count, iter);
10145 if (ret != count)
10146 ret = -EFAULT;
10147 } else {
10148 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10149 &cached_state, disk_bytenr,
10150 disk_io_size, count,
10151 encoded->compression,
10152 &unlocked);
10153 }
10154
10155 out:
10156 if (ret >= 0)
10157 iocb->ki_pos += encoded->len;
10158 out_em:
10159 free_extent_map(em);
10160 out_unlock_extent:
10161 if (!unlocked)
10162 unlock_extent(io_tree, start, lockend, &cached_state);
10163 out_unlock_inode:
10164 if (!unlocked)
10165 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10166 return ret;
10167 }
10168
10169 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10170 const struct btrfs_ioctl_encoded_io_args *encoded)
10171 {
10172 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10173 struct btrfs_root *root = inode->root;
10174 struct btrfs_fs_info *fs_info = root->fs_info;
10175 struct extent_io_tree *io_tree = &inode->io_tree;
10176 struct extent_changeset *data_reserved = NULL;
10177 struct extent_state *cached_state = NULL;
10178 struct btrfs_ordered_extent *ordered;
10179 int compression;
10180 size_t orig_count;
10181 u64 start, end;
10182 u64 num_bytes, ram_bytes, disk_num_bytes;
10183 unsigned long nr_pages, i;
10184 struct page **pages;
10185 struct btrfs_key ins;
10186 bool extent_reserved = false;
10187 struct extent_map *em;
10188 ssize_t ret;
10189
10190 switch (encoded->compression) {
10191 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10192 compression = BTRFS_COMPRESS_ZLIB;
10193 break;
10194 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10195 compression = BTRFS_COMPRESS_ZSTD;
10196 break;
10197 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10198 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10199 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10200 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10201 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10202 /* The sector size must match for LZO. */
10203 if (encoded->compression -
10204 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10205 fs_info->sectorsize_bits)
10206 return -EINVAL;
10207 compression = BTRFS_COMPRESS_LZO;
10208 break;
10209 default:
10210 return -EINVAL;
10211 }
10212 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10213 return -EINVAL;
10214
10215 orig_count = iov_iter_count(from);
10216
10217 /* The extent size must be sane. */
10218 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10219 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10220 return -EINVAL;
10221
10222 /*
10223 * The compressed data must be smaller than the decompressed data.
10224 *
10225 * It's of course possible for data to compress to larger or the same
10226 * size, but the buffered I/O path falls back to no compression for such
10227 * data, and we don't want to break any assumptions by creating these
10228 * extents.
10229 *
10230 * Note that this is less strict than the current check we have that the
10231 * compressed data must be at least one sector smaller than the
10232 * decompressed data. We only want to enforce the weaker requirement
10233 * from old kernels that it is at least one byte smaller.
10234 */
10235 if (orig_count >= encoded->unencoded_len)
10236 return -EINVAL;
10237
10238 /* The extent must start on a sector boundary. */
10239 start = iocb->ki_pos;
10240 if (!IS_ALIGNED(start, fs_info->sectorsize))
10241 return -EINVAL;
10242
10243 /*
10244 * The extent must end on a sector boundary. However, we allow a write
10245 * which ends at or extends i_size to have an unaligned length; we round
10246 * up the extent size and set i_size to the unaligned end.
10247 */
10248 if (start + encoded->len < inode->vfs_inode.i_size &&
10249 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10250 return -EINVAL;
10251
10252 /* Finally, the offset in the unencoded data must be sector-aligned. */
10253 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10254 return -EINVAL;
10255
10256 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10257 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10258 end = start + num_bytes - 1;
10259
10260 /*
10261 * If the extent cannot be inline, the compressed data on disk must be
10262 * sector-aligned. For convenience, we extend it with zeroes if it
10263 * isn't.
10264 */
10265 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10266 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10267 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10268 if (!pages)
10269 return -ENOMEM;
10270 for (i = 0; i < nr_pages; i++) {
10271 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10272 char *kaddr;
10273
10274 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10275 if (!pages[i]) {
10276 ret = -ENOMEM;
10277 goto out_pages;
10278 }
10279 kaddr = kmap_local_page(pages[i]);
10280 if (copy_from_iter(kaddr, bytes, from) != bytes) {
10281 kunmap_local(kaddr);
10282 ret = -EFAULT;
10283 goto out_pages;
10284 }
10285 if (bytes < PAGE_SIZE)
10286 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10287 kunmap_local(kaddr);
10288 }
10289
10290 for (;;) {
10291 struct btrfs_ordered_extent *ordered;
10292
10293 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10294 if (ret)
10295 goto out_pages;
10296 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10297 start >> PAGE_SHIFT,
10298 end >> PAGE_SHIFT);
10299 if (ret)
10300 goto out_pages;
10301 lock_extent(io_tree, start, end, &cached_state);
10302 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10303 if (!ordered &&
10304 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10305 break;
10306 if (ordered)
10307 btrfs_put_ordered_extent(ordered);
10308 unlock_extent(io_tree, start, end, &cached_state);
10309 cond_resched();
10310 }
10311
10312 /*
10313 * We don't use the higher-level delalloc space functions because our
10314 * num_bytes and disk_num_bytes are different.
10315 */
10316 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10317 if (ret)
10318 goto out_unlock;
10319 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10320 if (ret)
10321 goto out_free_data_space;
10322 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10323 false);
10324 if (ret)
10325 goto out_qgroup_free_data;
10326
10327 /* Try an inline extent first. */
10328 if (start == 0 && encoded->unencoded_len == encoded->len &&
10329 encoded->unencoded_offset == 0) {
10330 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10331 compression, pages, true);
10332 if (ret <= 0) {
10333 if (ret == 0)
10334 ret = orig_count;
10335 goto out_delalloc_release;
10336 }
10337 }
10338
10339 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10340 disk_num_bytes, 0, 0, &ins, 1, 1);
10341 if (ret)
10342 goto out_delalloc_release;
10343 extent_reserved = true;
10344
10345 em = create_io_em(inode, start, num_bytes,
10346 start - encoded->unencoded_offset, ins.objectid,
10347 ins.offset, ins.offset, ram_bytes, compression,
10348 BTRFS_ORDERED_COMPRESSED);
10349 if (IS_ERR(em)) {
10350 ret = PTR_ERR(em);
10351 goto out_free_reserved;
10352 }
10353 free_extent_map(em);
10354
10355 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10356 ins.objectid, ins.offset,
10357 encoded->unencoded_offset,
10358 (1 << BTRFS_ORDERED_ENCODED) |
10359 (1 << BTRFS_ORDERED_COMPRESSED),
10360 compression);
10361 if (IS_ERR(ordered)) {
10362 btrfs_drop_extent_map_range(inode, start, end, false);
10363 ret = PTR_ERR(ordered);
10364 goto out_free_reserved;
10365 }
10366 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10367
10368 if (start + encoded->len > inode->vfs_inode.i_size)
10369 i_size_write(&inode->vfs_inode, start + encoded->len);
10370
10371 unlock_extent(io_tree, start, end, &cached_state);
10372
10373 btrfs_delalloc_release_extents(inode, num_bytes);
10374
10375 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10376 ret = orig_count;
10377 goto out;
10378
10379 out_free_reserved:
10380 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10381 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10382 out_delalloc_release:
10383 btrfs_delalloc_release_extents(inode, num_bytes);
10384 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10385 out_qgroup_free_data:
10386 if (ret < 0)
10387 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10388 out_free_data_space:
10389 /*
10390 * If btrfs_reserve_extent() succeeded, then we already decremented
10391 * bytes_may_use.
10392 */
10393 if (!extent_reserved)
10394 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10395 out_unlock:
10396 unlock_extent(io_tree, start, end, &cached_state);
10397 out_pages:
10398 for (i = 0; i < nr_pages; i++) {
10399 if (pages[i])
10400 __free_page(pages[i]);
10401 }
10402 kvfree(pages);
10403 out:
10404 if (ret >= 0)
10405 iocb->ki_pos += encoded->len;
10406 return ret;
10407 }
10408
10409 #ifdef CONFIG_SWAP
10410 /*
10411 * Add an entry indicating a block group or device which is pinned by a
10412 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10413 * negative errno on failure.
10414 */
10415 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10416 bool is_block_group)
10417 {
10418 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10419 struct btrfs_swapfile_pin *sp, *entry;
10420 struct rb_node **p;
10421 struct rb_node *parent = NULL;
10422
10423 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10424 if (!sp)
10425 return -ENOMEM;
10426 sp->ptr = ptr;
10427 sp->inode = inode;
10428 sp->is_block_group = is_block_group;
10429 sp->bg_extent_count = 1;
10430
10431 spin_lock(&fs_info->swapfile_pins_lock);
10432 p = &fs_info->swapfile_pins.rb_node;
10433 while (*p) {
10434 parent = *p;
10435 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10436 if (sp->ptr < entry->ptr ||
10437 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10438 p = &(*p)->rb_left;
10439 } else if (sp->ptr > entry->ptr ||
10440 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10441 p = &(*p)->rb_right;
10442 } else {
10443 if (is_block_group)
10444 entry->bg_extent_count++;
10445 spin_unlock(&fs_info->swapfile_pins_lock);
10446 kfree(sp);
10447 return 1;
10448 }
10449 }
10450 rb_link_node(&sp->node, parent, p);
10451 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10452 spin_unlock(&fs_info->swapfile_pins_lock);
10453 return 0;
10454 }
10455
10456 /* Free all of the entries pinned by this swapfile. */
10457 static void btrfs_free_swapfile_pins(struct inode *inode)
10458 {
10459 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10460 struct btrfs_swapfile_pin *sp;
10461 struct rb_node *node, *next;
10462
10463 spin_lock(&fs_info->swapfile_pins_lock);
10464 node = rb_first(&fs_info->swapfile_pins);
10465 while (node) {
10466 next = rb_next(node);
10467 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10468 if (sp->inode == inode) {
10469 rb_erase(&sp->node, &fs_info->swapfile_pins);
10470 if (sp->is_block_group) {
10471 btrfs_dec_block_group_swap_extents(sp->ptr,
10472 sp->bg_extent_count);
10473 btrfs_put_block_group(sp->ptr);
10474 }
10475 kfree(sp);
10476 }
10477 node = next;
10478 }
10479 spin_unlock(&fs_info->swapfile_pins_lock);
10480 }
10481
10482 struct btrfs_swap_info {
10483 u64 start;
10484 u64 block_start;
10485 u64 block_len;
10486 u64 lowest_ppage;
10487 u64 highest_ppage;
10488 unsigned long nr_pages;
10489 int nr_extents;
10490 };
10491
10492 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10493 struct btrfs_swap_info *bsi)
10494 {
10495 unsigned long nr_pages;
10496 unsigned long max_pages;
10497 u64 first_ppage, first_ppage_reported, next_ppage;
10498 int ret;
10499
10500 /*
10501 * Our swapfile may have had its size extended after the swap header was
10502 * written. In that case activating the swapfile should not go beyond
10503 * the max size set in the swap header.
10504 */
10505 if (bsi->nr_pages >= sis->max)
10506 return 0;
10507
10508 max_pages = sis->max - bsi->nr_pages;
10509 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10510 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10511
10512 if (first_ppage >= next_ppage)
10513 return 0;
10514 nr_pages = next_ppage - first_ppage;
10515 nr_pages = min(nr_pages, max_pages);
10516
10517 first_ppage_reported = first_ppage;
10518 if (bsi->start == 0)
10519 first_ppage_reported++;
10520 if (bsi->lowest_ppage > first_ppage_reported)
10521 bsi->lowest_ppage = first_ppage_reported;
10522 if (bsi->highest_ppage < (next_ppage - 1))
10523 bsi->highest_ppage = next_ppage - 1;
10524
10525 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10526 if (ret < 0)
10527 return ret;
10528 bsi->nr_extents += ret;
10529 bsi->nr_pages += nr_pages;
10530 return 0;
10531 }
10532
10533 static void btrfs_swap_deactivate(struct file *file)
10534 {
10535 struct inode *inode = file_inode(file);
10536
10537 btrfs_free_swapfile_pins(inode);
10538 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10539 }
10540
10541 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10542 sector_t *span)
10543 {
10544 struct inode *inode = file_inode(file);
10545 struct btrfs_root *root = BTRFS_I(inode)->root;
10546 struct btrfs_fs_info *fs_info = root->fs_info;
10547 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10548 struct extent_state *cached_state = NULL;
10549 struct extent_map *em = NULL;
10550 struct btrfs_device *device = NULL;
10551 struct btrfs_swap_info bsi = {
10552 .lowest_ppage = (sector_t)-1ULL,
10553 };
10554 int ret = 0;
10555 u64 isize;
10556 u64 start;
10557
10558 /*
10559 * If the swap file was just created, make sure delalloc is done. If the
10560 * file changes again after this, the user is doing something stupid and
10561 * we don't really care.
10562 */
10563 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10564 if (ret)
10565 return ret;
10566
10567 /*
10568 * The inode is locked, so these flags won't change after we check them.
10569 */
10570 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10571 btrfs_warn(fs_info, "swapfile must not be compressed");
10572 return -EINVAL;
10573 }
10574 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10575 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10576 return -EINVAL;
10577 }
10578 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10579 btrfs_warn(fs_info, "swapfile must not be checksummed");
10580 return -EINVAL;
10581 }
10582
10583 /*
10584 * Balance or device remove/replace/resize can move stuff around from
10585 * under us. The exclop protection makes sure they aren't running/won't
10586 * run concurrently while we are mapping the swap extents, and
10587 * fs_info->swapfile_pins prevents them from running while the swap
10588 * file is active and moving the extents. Note that this also prevents
10589 * a concurrent device add which isn't actually necessary, but it's not
10590 * really worth the trouble to allow it.
10591 */
10592 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10593 btrfs_warn(fs_info,
10594 "cannot activate swapfile while exclusive operation is running");
10595 return -EBUSY;
10596 }
10597
10598 /*
10599 * Prevent snapshot creation while we are activating the swap file.
10600 * We do not want to race with snapshot creation. If snapshot creation
10601 * already started before we bumped nr_swapfiles from 0 to 1 and
10602 * completes before the first write into the swap file after it is
10603 * activated, than that write would fallback to COW.
10604 */
10605 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10606 btrfs_exclop_finish(fs_info);
10607 btrfs_warn(fs_info,
10608 "cannot activate swapfile because snapshot creation is in progress");
10609 return -EINVAL;
10610 }
10611 /*
10612 * Snapshots can create extents which require COW even if NODATACOW is
10613 * set. We use this counter to prevent snapshots. We must increment it
10614 * before walking the extents because we don't want a concurrent
10615 * snapshot to run after we've already checked the extents.
10616 *
10617 * It is possible that subvolume is marked for deletion but still not
10618 * removed yet. To prevent this race, we check the root status before
10619 * activating the swapfile.
10620 */
10621 spin_lock(&root->root_item_lock);
10622 if (btrfs_root_dead(root)) {
10623 spin_unlock(&root->root_item_lock);
10624
10625 btrfs_exclop_finish(fs_info);
10626 btrfs_warn(fs_info,
10627 "cannot activate swapfile because subvolume %llu is being deleted",
10628 root->root_key.objectid);
10629 return -EPERM;
10630 }
10631 atomic_inc(&root->nr_swapfiles);
10632 spin_unlock(&root->root_item_lock);
10633
10634 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10635
10636 lock_extent(io_tree, 0, isize - 1, &cached_state);
10637 start = 0;
10638 while (start < isize) {
10639 u64 logical_block_start, physical_block_start;
10640 struct btrfs_block_group *bg;
10641 u64 len = isize - start;
10642
10643 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10644 if (IS_ERR(em)) {
10645 ret = PTR_ERR(em);
10646 goto out;
10647 }
10648
10649 if (em->block_start == EXTENT_MAP_HOLE) {
10650 btrfs_warn(fs_info, "swapfile must not have holes");
10651 ret = -EINVAL;
10652 goto out;
10653 }
10654 if (em->block_start == EXTENT_MAP_INLINE) {
10655 /*
10656 * It's unlikely we'll ever actually find ourselves
10657 * here, as a file small enough to fit inline won't be
10658 * big enough to store more than the swap header, but in
10659 * case something changes in the future, let's catch it
10660 * here rather than later.
10661 */
10662 btrfs_warn(fs_info, "swapfile must not be inline");
10663 ret = -EINVAL;
10664 goto out;
10665 }
10666 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10667 btrfs_warn(fs_info, "swapfile must not be compressed");
10668 ret = -EINVAL;
10669 goto out;
10670 }
10671
10672 logical_block_start = em->block_start + (start - em->start);
10673 len = min(len, em->len - (start - em->start));
10674 free_extent_map(em);
10675 em = NULL;
10676
10677 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10678 if (ret < 0) {
10679 goto out;
10680 } else if (ret) {
10681 ret = 0;
10682 } else {
10683 btrfs_warn(fs_info,
10684 "swapfile must not be copy-on-write");
10685 ret = -EINVAL;
10686 goto out;
10687 }
10688
10689 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10690 if (IS_ERR(em)) {
10691 ret = PTR_ERR(em);
10692 goto out;
10693 }
10694
10695 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10696 btrfs_warn(fs_info,
10697 "swapfile must have single data profile");
10698 ret = -EINVAL;
10699 goto out;
10700 }
10701
10702 if (device == NULL) {
10703 device = em->map_lookup->stripes[0].dev;
10704 ret = btrfs_add_swapfile_pin(inode, device, false);
10705 if (ret == 1)
10706 ret = 0;
10707 else if (ret)
10708 goto out;
10709 } else if (device != em->map_lookup->stripes[0].dev) {
10710 btrfs_warn(fs_info, "swapfile must be on one device");
10711 ret = -EINVAL;
10712 goto out;
10713 }
10714
10715 physical_block_start = (em->map_lookup->stripes[0].physical +
10716 (logical_block_start - em->start));
10717 len = min(len, em->len - (logical_block_start - em->start));
10718 free_extent_map(em);
10719 em = NULL;
10720
10721 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10722 if (!bg) {
10723 btrfs_warn(fs_info,
10724 "could not find block group containing swapfile");
10725 ret = -EINVAL;
10726 goto out;
10727 }
10728
10729 if (!btrfs_inc_block_group_swap_extents(bg)) {
10730 btrfs_warn(fs_info,
10731 "block group for swapfile at %llu is read-only%s",
10732 bg->start,
10733 atomic_read(&fs_info->scrubs_running) ?
10734 " (scrub running)" : "");
10735 btrfs_put_block_group(bg);
10736 ret = -EINVAL;
10737 goto out;
10738 }
10739
10740 ret = btrfs_add_swapfile_pin(inode, bg, true);
10741 if (ret) {
10742 btrfs_put_block_group(bg);
10743 if (ret == 1)
10744 ret = 0;
10745 else
10746 goto out;
10747 }
10748
10749 if (bsi.block_len &&
10750 bsi.block_start + bsi.block_len == physical_block_start) {
10751 bsi.block_len += len;
10752 } else {
10753 if (bsi.block_len) {
10754 ret = btrfs_add_swap_extent(sis, &bsi);
10755 if (ret)
10756 goto out;
10757 }
10758 bsi.start = start;
10759 bsi.block_start = physical_block_start;
10760 bsi.block_len = len;
10761 }
10762
10763 start += len;
10764 }
10765
10766 if (bsi.block_len)
10767 ret = btrfs_add_swap_extent(sis, &bsi);
10768
10769 out:
10770 if (!IS_ERR_OR_NULL(em))
10771 free_extent_map(em);
10772
10773 unlock_extent(io_tree, 0, isize - 1, &cached_state);
10774
10775 if (ret)
10776 btrfs_swap_deactivate(file);
10777
10778 btrfs_drew_write_unlock(&root->snapshot_lock);
10779
10780 btrfs_exclop_finish(fs_info);
10781
10782 if (ret)
10783 return ret;
10784
10785 if (device)
10786 sis->bdev = device->bdev;
10787 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10788 sis->max = bsi.nr_pages;
10789 sis->pages = bsi.nr_pages - 1;
10790 sis->highest_bit = bsi.nr_pages - 1;
10791 return bsi.nr_extents;
10792 }
10793 #else
10794 static void btrfs_swap_deactivate(struct file *file)
10795 {
10796 }
10797
10798 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10799 sector_t *span)
10800 {
10801 return -EOPNOTSUPP;
10802 }
10803 #endif
10804
10805 /*
10806 * Update the number of bytes used in the VFS' inode. When we replace extents in
10807 * a range (clone, dedupe, fallocate's zero range), we must update the number of
10808 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10809 * always get a correct value.
10810 */
10811 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10812 const u64 add_bytes,
10813 const u64 del_bytes)
10814 {
10815 if (add_bytes == del_bytes)
10816 return;
10817
10818 spin_lock(&inode->lock);
10819 if (del_bytes > 0)
10820 inode_sub_bytes(&inode->vfs_inode, del_bytes);
10821 if (add_bytes > 0)
10822 inode_add_bytes(&inode->vfs_inode, add_bytes);
10823 spin_unlock(&inode->lock);
10824 }
10825
10826 /*
10827 * Verify that there are no ordered extents for a given file range.
10828 *
10829 * @inode: The target inode.
10830 * @start: Start offset of the file range, should be sector size aligned.
10831 * @end: End offset (inclusive) of the file range, its value +1 should be
10832 * sector size aligned.
10833 *
10834 * This should typically be used for cases where we locked an inode's VFS lock in
10835 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10836 * we have flushed all delalloc in the range, we have waited for all ordered
10837 * extents in the range to complete and finally we have locked the file range in
10838 * the inode's io_tree.
10839 */
10840 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10841 {
10842 struct btrfs_root *root = inode->root;
10843 struct btrfs_ordered_extent *ordered;
10844
10845 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10846 return;
10847
10848 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10849 if (ordered) {
10850 btrfs_err(root->fs_info,
10851 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10852 start, end, btrfs_ino(inode), root->root_key.objectid,
10853 ordered->file_offset,
10854 ordered->file_offset + ordered->num_bytes - 1);
10855 btrfs_put_ordered_extent(ordered);
10856 }
10857
10858 ASSERT(ordered == NULL);
10859 }
10860
10861 static const struct inode_operations btrfs_dir_inode_operations = {
10862 .getattr = btrfs_getattr,
10863 .lookup = btrfs_lookup,
10864 .create = btrfs_create,
10865 .unlink = btrfs_unlink,
10866 .link = btrfs_link,
10867 .mkdir = btrfs_mkdir,
10868 .rmdir = btrfs_rmdir,
10869 .rename = btrfs_rename2,
10870 .symlink = btrfs_symlink,
10871 .setattr = btrfs_setattr,
10872 .mknod = btrfs_mknod,
10873 .listxattr = btrfs_listxattr,
10874 .permission = btrfs_permission,
10875 .get_inode_acl = btrfs_get_acl,
10876 .set_acl = btrfs_set_acl,
10877 .update_time = btrfs_update_time,
10878 .tmpfile = btrfs_tmpfile,
10879 .fileattr_get = btrfs_fileattr_get,
10880 .fileattr_set = btrfs_fileattr_set,
10881 };
10882
10883 static const struct file_operations btrfs_dir_file_operations = {
10884 .llseek = btrfs_dir_llseek,
10885 .read = generic_read_dir,
10886 .iterate_shared = btrfs_real_readdir,
10887 .open = btrfs_opendir,
10888 .unlocked_ioctl = btrfs_ioctl,
10889 #ifdef CONFIG_COMPAT
10890 .compat_ioctl = btrfs_compat_ioctl,
10891 #endif
10892 .release = btrfs_release_file,
10893 .fsync = btrfs_sync_file,
10894 };
10895
10896 /*
10897 * btrfs doesn't support the bmap operation because swapfiles
10898 * use bmap to make a mapping of extents in the file. They assume
10899 * these extents won't change over the life of the file and they
10900 * use the bmap result to do IO directly to the drive.
10901 *
10902 * the btrfs bmap call would return logical addresses that aren't
10903 * suitable for IO and they also will change frequently as COW
10904 * operations happen. So, swapfile + btrfs == corruption.
10905 *
10906 * For now we're avoiding this by dropping bmap.
10907 */
10908 static const struct address_space_operations btrfs_aops = {
10909 .read_folio = btrfs_read_folio,
10910 .writepages = btrfs_writepages,
10911 .readahead = btrfs_readahead,
10912 .invalidate_folio = btrfs_invalidate_folio,
10913 .release_folio = btrfs_release_folio,
10914 .migrate_folio = btrfs_migrate_folio,
10915 .dirty_folio = filemap_dirty_folio,
10916 .error_remove_page = generic_error_remove_page,
10917 .swap_activate = btrfs_swap_activate,
10918 .swap_deactivate = btrfs_swap_deactivate,
10919 };
10920
10921 static const struct inode_operations btrfs_file_inode_operations = {
10922 .getattr = btrfs_getattr,
10923 .setattr = btrfs_setattr,
10924 .listxattr = btrfs_listxattr,
10925 .permission = btrfs_permission,
10926 .fiemap = btrfs_fiemap,
10927 .get_inode_acl = btrfs_get_acl,
10928 .set_acl = btrfs_set_acl,
10929 .update_time = btrfs_update_time,
10930 .fileattr_get = btrfs_fileattr_get,
10931 .fileattr_set = btrfs_fileattr_set,
10932 };
10933 static const struct inode_operations btrfs_special_inode_operations = {
10934 .getattr = btrfs_getattr,
10935 .setattr = btrfs_setattr,
10936 .permission = btrfs_permission,
10937 .listxattr = btrfs_listxattr,
10938 .get_inode_acl = btrfs_get_acl,
10939 .set_acl = btrfs_set_acl,
10940 .update_time = btrfs_update_time,
10941 };
10942 static const struct inode_operations btrfs_symlink_inode_operations = {
10943 .get_link = page_get_link,
10944 .getattr = btrfs_getattr,
10945 .setattr = btrfs_setattr,
10946 .permission = btrfs_permission,
10947 .listxattr = btrfs_listxattr,
10948 .update_time = btrfs_update_time,
10949 };
10950
10951 const struct dentry_operations btrfs_dentry_operations = {
10952 .d_delete = btrfs_dentry_delete,
10953 };