]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - fs/btrfs/ioctl.c
Merge tag 'for-4.15-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[thirdparty/kernel/linux.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
40 #include <linux/mm.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 #include "rcu-string.h"
56 #include "send.h"
57 #include "dev-replace.h"
58 #include "props.h"
59 #include "sysfs.h"
60 #include "qgroup.h"
61 #include "tree-log.h"
62 #include "compression.h"
63
64 #ifdef CONFIG_64BIT
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
69 */
70 struct btrfs_ioctl_timespec_32 {
71 __u64 sec;
72 __u32 nsec;
73 } __attribute__ ((__packed__));
74
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
81 __u64 flags; /* in */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
84
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
87 #endif
88
89 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
90 struct btrfs_ioctl_send_args_32 {
91 __s64 send_fd; /* in */
92 __u64 clone_sources_count; /* in */
93 compat_uptr_t clone_sources; /* in */
94 __u64 parent_root; /* in */
95 __u64 flags; /* in */
96 __u64 reserved[4]; /* in */
97 } __attribute__ ((__packed__));
98
99 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
100 struct btrfs_ioctl_send_args_32)
101 #endif
102
103 static int btrfs_clone(struct inode *src, struct inode *inode,
104 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
105 int no_time_update);
106
107 /* Mask out flags that are inappropriate for the given type of inode. */
108 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
109 {
110 if (S_ISDIR(mode))
111 return flags;
112 else if (S_ISREG(mode))
113 return flags & ~FS_DIRSYNC_FL;
114 else
115 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
116 }
117
118 /*
119 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
120 */
121 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
122 {
123 unsigned int iflags = 0;
124
125 if (flags & BTRFS_INODE_SYNC)
126 iflags |= FS_SYNC_FL;
127 if (flags & BTRFS_INODE_IMMUTABLE)
128 iflags |= FS_IMMUTABLE_FL;
129 if (flags & BTRFS_INODE_APPEND)
130 iflags |= FS_APPEND_FL;
131 if (flags & BTRFS_INODE_NODUMP)
132 iflags |= FS_NODUMP_FL;
133 if (flags & BTRFS_INODE_NOATIME)
134 iflags |= FS_NOATIME_FL;
135 if (flags & BTRFS_INODE_DIRSYNC)
136 iflags |= FS_DIRSYNC_FL;
137 if (flags & BTRFS_INODE_NODATACOW)
138 iflags |= FS_NOCOW_FL;
139
140 if (flags & BTRFS_INODE_NOCOMPRESS)
141 iflags |= FS_NOCOMP_FL;
142 else if (flags & BTRFS_INODE_COMPRESS)
143 iflags |= FS_COMPR_FL;
144
145 return iflags;
146 }
147
148 /*
149 * Update inode->i_flags based on the btrfs internal flags.
150 */
151 void btrfs_update_iflags(struct inode *inode)
152 {
153 struct btrfs_inode *ip = BTRFS_I(inode);
154 unsigned int new_fl = 0;
155
156 if (ip->flags & BTRFS_INODE_SYNC)
157 new_fl |= S_SYNC;
158 if (ip->flags & BTRFS_INODE_IMMUTABLE)
159 new_fl |= S_IMMUTABLE;
160 if (ip->flags & BTRFS_INODE_APPEND)
161 new_fl |= S_APPEND;
162 if (ip->flags & BTRFS_INODE_NOATIME)
163 new_fl |= S_NOATIME;
164 if (ip->flags & BTRFS_INODE_DIRSYNC)
165 new_fl |= S_DIRSYNC;
166
167 set_mask_bits(&inode->i_flags,
168 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
169 new_fl);
170 }
171
172 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
173 {
174 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
175 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
176
177 if (copy_to_user(arg, &flags, sizeof(flags)))
178 return -EFAULT;
179 return 0;
180 }
181
182 static int check_flags(unsigned int flags)
183 {
184 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
185 FS_NOATIME_FL | FS_NODUMP_FL | \
186 FS_SYNC_FL | FS_DIRSYNC_FL | \
187 FS_NOCOMP_FL | FS_COMPR_FL |
188 FS_NOCOW_FL))
189 return -EOPNOTSUPP;
190
191 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
192 return -EINVAL;
193
194 return 0;
195 }
196
197 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
198 {
199 struct inode *inode = file_inode(file);
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
201 struct btrfs_inode *ip = BTRFS_I(inode);
202 struct btrfs_root *root = ip->root;
203 struct btrfs_trans_handle *trans;
204 unsigned int flags, oldflags;
205 int ret;
206 u64 ip_oldflags;
207 unsigned int i_oldflags;
208 umode_t mode;
209
210 if (!inode_owner_or_capable(inode))
211 return -EPERM;
212
213 if (btrfs_root_readonly(root))
214 return -EROFS;
215
216 if (copy_from_user(&flags, arg, sizeof(flags)))
217 return -EFAULT;
218
219 ret = check_flags(flags);
220 if (ret)
221 return ret;
222
223 ret = mnt_want_write_file(file);
224 if (ret)
225 return ret;
226
227 inode_lock(inode);
228
229 ip_oldflags = ip->flags;
230 i_oldflags = inode->i_flags;
231 mode = inode->i_mode;
232
233 flags = btrfs_mask_flags(inode->i_mode, flags);
234 oldflags = btrfs_flags_to_ioctl(ip->flags);
235 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
236 if (!capable(CAP_LINUX_IMMUTABLE)) {
237 ret = -EPERM;
238 goto out_unlock;
239 }
240 }
241
242 if (flags & FS_SYNC_FL)
243 ip->flags |= BTRFS_INODE_SYNC;
244 else
245 ip->flags &= ~BTRFS_INODE_SYNC;
246 if (flags & FS_IMMUTABLE_FL)
247 ip->flags |= BTRFS_INODE_IMMUTABLE;
248 else
249 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
250 if (flags & FS_APPEND_FL)
251 ip->flags |= BTRFS_INODE_APPEND;
252 else
253 ip->flags &= ~BTRFS_INODE_APPEND;
254 if (flags & FS_NODUMP_FL)
255 ip->flags |= BTRFS_INODE_NODUMP;
256 else
257 ip->flags &= ~BTRFS_INODE_NODUMP;
258 if (flags & FS_NOATIME_FL)
259 ip->flags |= BTRFS_INODE_NOATIME;
260 else
261 ip->flags &= ~BTRFS_INODE_NOATIME;
262 if (flags & FS_DIRSYNC_FL)
263 ip->flags |= BTRFS_INODE_DIRSYNC;
264 else
265 ip->flags &= ~BTRFS_INODE_DIRSYNC;
266 if (flags & FS_NOCOW_FL) {
267 if (S_ISREG(mode)) {
268 /*
269 * It's safe to turn csums off here, no extents exist.
270 * Otherwise we want the flag to reflect the real COW
271 * status of the file and will not set it.
272 */
273 if (inode->i_size == 0)
274 ip->flags |= BTRFS_INODE_NODATACOW
275 | BTRFS_INODE_NODATASUM;
276 } else {
277 ip->flags |= BTRFS_INODE_NODATACOW;
278 }
279 } else {
280 /*
281 * Revert back under same assumptions as above
282 */
283 if (S_ISREG(mode)) {
284 if (inode->i_size == 0)
285 ip->flags &= ~(BTRFS_INODE_NODATACOW
286 | BTRFS_INODE_NODATASUM);
287 } else {
288 ip->flags &= ~BTRFS_INODE_NODATACOW;
289 }
290 }
291
292 /*
293 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
294 * flag may be changed automatically if compression code won't make
295 * things smaller.
296 */
297 if (flags & FS_NOCOMP_FL) {
298 ip->flags &= ~BTRFS_INODE_COMPRESS;
299 ip->flags |= BTRFS_INODE_NOCOMPRESS;
300
301 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
302 if (ret && ret != -ENODATA)
303 goto out_drop;
304 } else if (flags & FS_COMPR_FL) {
305 const char *comp;
306
307 ip->flags |= BTRFS_INODE_COMPRESS;
308 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
309
310 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
311 comp = "lzo";
312 else if (fs_info->compress_type == BTRFS_COMPRESS_ZLIB)
313 comp = "zlib";
314 else
315 comp = "zstd";
316 ret = btrfs_set_prop(inode, "btrfs.compression",
317 comp, strlen(comp), 0);
318 if (ret)
319 goto out_drop;
320
321 } else {
322 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
323 if (ret && ret != -ENODATA)
324 goto out_drop;
325 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
326 }
327
328 trans = btrfs_start_transaction(root, 1);
329 if (IS_ERR(trans)) {
330 ret = PTR_ERR(trans);
331 goto out_drop;
332 }
333
334 btrfs_update_iflags(inode);
335 inode_inc_iversion(inode);
336 inode->i_ctime = current_time(inode);
337 ret = btrfs_update_inode(trans, root, inode);
338
339 btrfs_end_transaction(trans);
340 out_drop:
341 if (ret) {
342 ip->flags = ip_oldflags;
343 inode->i_flags = i_oldflags;
344 }
345
346 out_unlock:
347 inode_unlock(inode);
348 mnt_drop_write_file(file);
349 return ret;
350 }
351
352 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
353 {
354 struct inode *inode = file_inode(file);
355
356 return put_user(inode->i_generation, arg);
357 }
358
359 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
360 {
361 struct inode *inode = file_inode(file);
362 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
363 struct btrfs_device *device;
364 struct request_queue *q;
365 struct fstrim_range range;
366 u64 minlen = ULLONG_MAX;
367 u64 num_devices = 0;
368 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
369 int ret;
370
371 if (!capable(CAP_SYS_ADMIN))
372 return -EPERM;
373
374 rcu_read_lock();
375 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
376 dev_list) {
377 if (!device->bdev)
378 continue;
379 q = bdev_get_queue(device->bdev);
380 if (blk_queue_discard(q)) {
381 num_devices++;
382 minlen = min_t(u64, q->limits.discard_granularity,
383 minlen);
384 }
385 }
386 rcu_read_unlock();
387
388 if (!num_devices)
389 return -EOPNOTSUPP;
390 if (copy_from_user(&range, arg, sizeof(range)))
391 return -EFAULT;
392 if (range.start > total_bytes ||
393 range.len < fs_info->sb->s_blocksize)
394 return -EINVAL;
395
396 range.len = min(range.len, total_bytes - range.start);
397 range.minlen = max(range.minlen, minlen);
398 ret = btrfs_trim_fs(fs_info, &range);
399 if (ret < 0)
400 return ret;
401
402 if (copy_to_user(arg, &range, sizeof(range)))
403 return -EFAULT;
404
405 return 0;
406 }
407
408 int btrfs_is_empty_uuid(u8 *uuid)
409 {
410 int i;
411
412 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
413 if (uuid[i])
414 return 0;
415 }
416 return 1;
417 }
418
419 static noinline int create_subvol(struct inode *dir,
420 struct dentry *dentry,
421 const char *name, int namelen,
422 u64 *async_transid,
423 struct btrfs_qgroup_inherit *inherit)
424 {
425 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
426 struct btrfs_trans_handle *trans;
427 struct btrfs_key key;
428 struct btrfs_root_item *root_item;
429 struct btrfs_inode_item *inode_item;
430 struct extent_buffer *leaf;
431 struct btrfs_root *root = BTRFS_I(dir)->root;
432 struct btrfs_root *new_root;
433 struct btrfs_block_rsv block_rsv;
434 struct timespec cur_time = current_time(dir);
435 struct inode *inode;
436 int ret;
437 int err;
438 u64 objectid;
439 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
440 u64 index = 0;
441 u64 qgroup_reserved;
442 uuid_le new_uuid;
443
444 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
445 if (!root_item)
446 return -ENOMEM;
447
448 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
449 if (ret)
450 goto fail_free;
451
452 /*
453 * Don't create subvolume whose level is not zero. Or qgroup will be
454 * screwed up since it assumes subvolume qgroup's level to be 0.
455 */
456 if (btrfs_qgroup_level(objectid)) {
457 ret = -ENOSPC;
458 goto fail_free;
459 }
460
461 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
462 /*
463 * The same as the snapshot creation, please see the comment
464 * of create_snapshot().
465 */
466 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
467 8, &qgroup_reserved, false);
468 if (ret)
469 goto fail_free;
470
471 trans = btrfs_start_transaction(root, 0);
472 if (IS_ERR(trans)) {
473 ret = PTR_ERR(trans);
474 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
475 goto fail_free;
476 }
477 trans->block_rsv = &block_rsv;
478 trans->bytes_reserved = block_rsv.size;
479
480 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
481 if (ret)
482 goto fail;
483
484 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
485 if (IS_ERR(leaf)) {
486 ret = PTR_ERR(leaf);
487 goto fail;
488 }
489
490 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
491 btrfs_set_header_bytenr(leaf, leaf->start);
492 btrfs_set_header_generation(leaf, trans->transid);
493 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
494 btrfs_set_header_owner(leaf, objectid);
495
496 write_extent_buffer_fsid(leaf, fs_info->fsid);
497 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
498 btrfs_mark_buffer_dirty(leaf);
499
500 inode_item = &root_item->inode;
501 btrfs_set_stack_inode_generation(inode_item, 1);
502 btrfs_set_stack_inode_size(inode_item, 3);
503 btrfs_set_stack_inode_nlink(inode_item, 1);
504 btrfs_set_stack_inode_nbytes(inode_item,
505 fs_info->nodesize);
506 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
507
508 btrfs_set_root_flags(root_item, 0);
509 btrfs_set_root_limit(root_item, 0);
510 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
511
512 btrfs_set_root_bytenr(root_item, leaf->start);
513 btrfs_set_root_generation(root_item, trans->transid);
514 btrfs_set_root_level(root_item, 0);
515 btrfs_set_root_refs(root_item, 1);
516 btrfs_set_root_used(root_item, leaf->len);
517 btrfs_set_root_last_snapshot(root_item, 0);
518
519 btrfs_set_root_generation_v2(root_item,
520 btrfs_root_generation(root_item));
521 uuid_le_gen(&new_uuid);
522 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
523 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
524 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
525 root_item->ctime = root_item->otime;
526 btrfs_set_root_ctransid(root_item, trans->transid);
527 btrfs_set_root_otransid(root_item, trans->transid);
528
529 btrfs_tree_unlock(leaf);
530 free_extent_buffer(leaf);
531 leaf = NULL;
532
533 btrfs_set_root_dirid(root_item, new_dirid);
534
535 key.objectid = objectid;
536 key.offset = 0;
537 key.type = BTRFS_ROOT_ITEM_KEY;
538 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
539 root_item);
540 if (ret)
541 goto fail;
542
543 key.offset = (u64)-1;
544 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
545 if (IS_ERR(new_root)) {
546 ret = PTR_ERR(new_root);
547 btrfs_abort_transaction(trans, ret);
548 goto fail;
549 }
550
551 btrfs_record_root_in_trans(trans, new_root);
552
553 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
554 if (ret) {
555 /* We potentially lose an unused inode item here */
556 btrfs_abort_transaction(trans, ret);
557 goto fail;
558 }
559
560 mutex_lock(&new_root->objectid_mutex);
561 new_root->highest_objectid = new_dirid;
562 mutex_unlock(&new_root->objectid_mutex);
563
564 /*
565 * insert the directory item
566 */
567 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
568 if (ret) {
569 btrfs_abort_transaction(trans, ret);
570 goto fail;
571 }
572
573 ret = btrfs_insert_dir_item(trans, root,
574 name, namelen, BTRFS_I(dir), &key,
575 BTRFS_FT_DIR, index);
576 if (ret) {
577 btrfs_abort_transaction(trans, ret);
578 goto fail;
579 }
580
581 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
582 ret = btrfs_update_inode(trans, root, dir);
583 BUG_ON(ret);
584
585 ret = btrfs_add_root_ref(trans, fs_info,
586 objectid, root->root_key.objectid,
587 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
588 BUG_ON(ret);
589
590 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
591 BTRFS_UUID_KEY_SUBVOL, objectid);
592 if (ret)
593 btrfs_abort_transaction(trans, ret);
594
595 fail:
596 kfree(root_item);
597 trans->block_rsv = NULL;
598 trans->bytes_reserved = 0;
599 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
600
601 if (async_transid) {
602 *async_transid = trans->transid;
603 err = btrfs_commit_transaction_async(trans, 1);
604 if (err)
605 err = btrfs_commit_transaction(trans);
606 } else {
607 err = btrfs_commit_transaction(trans);
608 }
609 if (err && !ret)
610 ret = err;
611
612 if (!ret) {
613 inode = btrfs_lookup_dentry(dir, dentry);
614 if (IS_ERR(inode))
615 return PTR_ERR(inode);
616 d_instantiate(dentry, inode);
617 }
618 return ret;
619
620 fail_free:
621 kfree(root_item);
622 return ret;
623 }
624
625 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
626 struct dentry *dentry,
627 u64 *async_transid, bool readonly,
628 struct btrfs_qgroup_inherit *inherit)
629 {
630 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
631 struct inode *inode;
632 struct btrfs_pending_snapshot *pending_snapshot;
633 struct btrfs_trans_handle *trans;
634 int ret;
635
636 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
637 return -EINVAL;
638
639 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
640 if (!pending_snapshot)
641 return -ENOMEM;
642
643 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
644 GFP_KERNEL);
645 pending_snapshot->path = btrfs_alloc_path();
646 if (!pending_snapshot->root_item || !pending_snapshot->path) {
647 ret = -ENOMEM;
648 goto free_pending;
649 }
650
651 atomic_inc(&root->will_be_snapshotted);
652 smp_mb__after_atomic();
653 /* wait for no snapshot writes */
654 wait_event(root->subv_writers->wait,
655 percpu_counter_sum(&root->subv_writers->counter) == 0);
656
657 ret = btrfs_start_delalloc_inodes(root, 0);
658 if (ret)
659 goto dec_and_free;
660
661 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
662
663 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
664 BTRFS_BLOCK_RSV_TEMP);
665 /*
666 * 1 - parent dir inode
667 * 2 - dir entries
668 * 1 - root item
669 * 2 - root ref/backref
670 * 1 - root of snapshot
671 * 1 - UUID item
672 */
673 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
674 &pending_snapshot->block_rsv, 8,
675 &pending_snapshot->qgroup_reserved,
676 false);
677 if (ret)
678 goto dec_and_free;
679
680 pending_snapshot->dentry = dentry;
681 pending_snapshot->root = root;
682 pending_snapshot->readonly = readonly;
683 pending_snapshot->dir = dir;
684 pending_snapshot->inherit = inherit;
685
686 trans = btrfs_start_transaction(root, 0);
687 if (IS_ERR(trans)) {
688 ret = PTR_ERR(trans);
689 goto fail;
690 }
691
692 spin_lock(&fs_info->trans_lock);
693 list_add(&pending_snapshot->list,
694 &trans->transaction->pending_snapshots);
695 spin_unlock(&fs_info->trans_lock);
696 if (async_transid) {
697 *async_transid = trans->transid;
698 ret = btrfs_commit_transaction_async(trans, 1);
699 if (ret)
700 ret = btrfs_commit_transaction(trans);
701 } else {
702 ret = btrfs_commit_transaction(trans);
703 }
704 if (ret)
705 goto fail;
706
707 ret = pending_snapshot->error;
708 if (ret)
709 goto fail;
710
711 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
712 if (ret)
713 goto fail;
714
715 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
716 if (IS_ERR(inode)) {
717 ret = PTR_ERR(inode);
718 goto fail;
719 }
720
721 d_instantiate(dentry, inode);
722 ret = 0;
723 fail:
724 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
725 dec_and_free:
726 if (atomic_dec_and_test(&root->will_be_snapshotted))
727 wake_up_atomic_t(&root->will_be_snapshotted);
728 free_pending:
729 kfree(pending_snapshot->root_item);
730 btrfs_free_path(pending_snapshot->path);
731 kfree(pending_snapshot);
732
733 return ret;
734 }
735
736 /* copy of may_delete in fs/namei.c()
737 * Check whether we can remove a link victim from directory dir, check
738 * whether the type of victim is right.
739 * 1. We can't do it if dir is read-only (done in permission())
740 * 2. We should have write and exec permissions on dir
741 * 3. We can't remove anything from append-only dir
742 * 4. We can't do anything with immutable dir (done in permission())
743 * 5. If the sticky bit on dir is set we should either
744 * a. be owner of dir, or
745 * b. be owner of victim, or
746 * c. have CAP_FOWNER capability
747 * 6. If the victim is append-only or immutable we can't do anything with
748 * links pointing to it.
749 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
750 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
751 * 9. We can't remove a root or mountpoint.
752 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
753 * nfs_async_unlink().
754 */
755
756 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
757 {
758 int error;
759
760 if (d_really_is_negative(victim))
761 return -ENOENT;
762
763 BUG_ON(d_inode(victim->d_parent) != dir);
764 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
765
766 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
767 if (error)
768 return error;
769 if (IS_APPEND(dir))
770 return -EPERM;
771 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
772 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
773 return -EPERM;
774 if (isdir) {
775 if (!d_is_dir(victim))
776 return -ENOTDIR;
777 if (IS_ROOT(victim))
778 return -EBUSY;
779 } else if (d_is_dir(victim))
780 return -EISDIR;
781 if (IS_DEADDIR(dir))
782 return -ENOENT;
783 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
784 return -EBUSY;
785 return 0;
786 }
787
788 /* copy of may_create in fs/namei.c() */
789 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
790 {
791 if (d_really_is_positive(child))
792 return -EEXIST;
793 if (IS_DEADDIR(dir))
794 return -ENOENT;
795 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
796 }
797
798 /*
799 * Create a new subvolume below @parent. This is largely modeled after
800 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
801 * inside this filesystem so it's quite a bit simpler.
802 */
803 static noinline int btrfs_mksubvol(const struct path *parent,
804 const char *name, int namelen,
805 struct btrfs_root *snap_src,
806 u64 *async_transid, bool readonly,
807 struct btrfs_qgroup_inherit *inherit)
808 {
809 struct inode *dir = d_inode(parent->dentry);
810 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
811 struct dentry *dentry;
812 int error;
813
814 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
815 if (error == -EINTR)
816 return error;
817
818 dentry = lookup_one_len(name, parent->dentry, namelen);
819 error = PTR_ERR(dentry);
820 if (IS_ERR(dentry))
821 goto out_unlock;
822
823 error = btrfs_may_create(dir, dentry);
824 if (error)
825 goto out_dput;
826
827 /*
828 * even if this name doesn't exist, we may get hash collisions.
829 * check for them now when we can safely fail
830 */
831 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
832 dir->i_ino, name,
833 namelen);
834 if (error)
835 goto out_dput;
836
837 down_read(&fs_info->subvol_sem);
838
839 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
840 goto out_up_read;
841
842 if (snap_src) {
843 error = create_snapshot(snap_src, dir, dentry,
844 async_transid, readonly, inherit);
845 } else {
846 error = create_subvol(dir, dentry, name, namelen,
847 async_transid, inherit);
848 }
849 if (!error)
850 fsnotify_mkdir(dir, dentry);
851 out_up_read:
852 up_read(&fs_info->subvol_sem);
853 out_dput:
854 dput(dentry);
855 out_unlock:
856 inode_unlock(dir);
857 return error;
858 }
859
860 /*
861 * When we're defragging a range, we don't want to kick it off again
862 * if it is really just waiting for delalloc to send it down.
863 * If we find a nice big extent or delalloc range for the bytes in the
864 * file you want to defrag, we return 0 to let you know to skip this
865 * part of the file
866 */
867 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
868 {
869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
870 struct extent_map *em = NULL;
871 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
872 u64 end;
873
874 read_lock(&em_tree->lock);
875 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
876 read_unlock(&em_tree->lock);
877
878 if (em) {
879 end = extent_map_end(em);
880 free_extent_map(em);
881 if (end - offset > thresh)
882 return 0;
883 }
884 /* if we already have a nice delalloc here, just stop */
885 thresh /= 2;
886 end = count_range_bits(io_tree, &offset, offset + thresh,
887 thresh, EXTENT_DELALLOC, 1);
888 if (end >= thresh)
889 return 0;
890 return 1;
891 }
892
893 /*
894 * helper function to walk through a file and find extents
895 * newer than a specific transid, and smaller than thresh.
896 *
897 * This is used by the defragging code to find new and small
898 * extents
899 */
900 static int find_new_extents(struct btrfs_root *root,
901 struct inode *inode, u64 newer_than,
902 u64 *off, u32 thresh)
903 {
904 struct btrfs_path *path;
905 struct btrfs_key min_key;
906 struct extent_buffer *leaf;
907 struct btrfs_file_extent_item *extent;
908 int type;
909 int ret;
910 u64 ino = btrfs_ino(BTRFS_I(inode));
911
912 path = btrfs_alloc_path();
913 if (!path)
914 return -ENOMEM;
915
916 min_key.objectid = ino;
917 min_key.type = BTRFS_EXTENT_DATA_KEY;
918 min_key.offset = *off;
919
920 while (1) {
921 ret = btrfs_search_forward(root, &min_key, path, newer_than);
922 if (ret != 0)
923 goto none;
924 process_slot:
925 if (min_key.objectid != ino)
926 goto none;
927 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
928 goto none;
929
930 leaf = path->nodes[0];
931 extent = btrfs_item_ptr(leaf, path->slots[0],
932 struct btrfs_file_extent_item);
933
934 type = btrfs_file_extent_type(leaf, extent);
935 if (type == BTRFS_FILE_EXTENT_REG &&
936 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
937 check_defrag_in_cache(inode, min_key.offset, thresh)) {
938 *off = min_key.offset;
939 btrfs_free_path(path);
940 return 0;
941 }
942
943 path->slots[0]++;
944 if (path->slots[0] < btrfs_header_nritems(leaf)) {
945 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
946 goto process_slot;
947 }
948
949 if (min_key.offset == (u64)-1)
950 goto none;
951
952 min_key.offset++;
953 btrfs_release_path(path);
954 }
955 none:
956 btrfs_free_path(path);
957 return -ENOENT;
958 }
959
960 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
961 {
962 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
963 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
964 struct extent_map *em;
965 u64 len = PAGE_SIZE;
966
967 /*
968 * hopefully we have this extent in the tree already, try without
969 * the full extent lock
970 */
971 read_lock(&em_tree->lock);
972 em = lookup_extent_mapping(em_tree, start, len);
973 read_unlock(&em_tree->lock);
974
975 if (!em) {
976 struct extent_state *cached = NULL;
977 u64 end = start + len - 1;
978
979 /* get the big lock and read metadata off disk */
980 lock_extent_bits(io_tree, start, end, &cached);
981 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
982 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
983
984 if (IS_ERR(em))
985 return NULL;
986 }
987
988 return em;
989 }
990
991 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
992 {
993 struct extent_map *next;
994 bool ret = true;
995
996 /* this is the last extent */
997 if (em->start + em->len >= i_size_read(inode))
998 return false;
999
1000 next = defrag_lookup_extent(inode, em->start + em->len);
1001 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1002 ret = false;
1003 else if ((em->block_start + em->block_len == next->block_start) &&
1004 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1005 ret = false;
1006
1007 free_extent_map(next);
1008 return ret;
1009 }
1010
1011 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1012 u64 *last_len, u64 *skip, u64 *defrag_end,
1013 int compress)
1014 {
1015 struct extent_map *em;
1016 int ret = 1;
1017 bool next_mergeable = true;
1018 bool prev_mergeable = true;
1019
1020 /*
1021 * make sure that once we start defragging an extent, we keep on
1022 * defragging it
1023 */
1024 if (start < *defrag_end)
1025 return 1;
1026
1027 *skip = 0;
1028
1029 em = defrag_lookup_extent(inode, start);
1030 if (!em)
1031 return 0;
1032
1033 /* this will cover holes, and inline extents */
1034 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1035 ret = 0;
1036 goto out;
1037 }
1038
1039 if (!*defrag_end)
1040 prev_mergeable = false;
1041
1042 next_mergeable = defrag_check_next_extent(inode, em);
1043 /*
1044 * we hit a real extent, if it is big or the next extent is not a
1045 * real extent, don't bother defragging it
1046 */
1047 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1048 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1049 ret = 0;
1050 out:
1051 /*
1052 * last_len ends up being a counter of how many bytes we've defragged.
1053 * every time we choose not to defrag an extent, we reset *last_len
1054 * so that the next tiny extent will force a defrag.
1055 *
1056 * The end result of this is that tiny extents before a single big
1057 * extent will force at least part of that big extent to be defragged.
1058 */
1059 if (ret) {
1060 *defrag_end = extent_map_end(em);
1061 } else {
1062 *last_len = 0;
1063 *skip = extent_map_end(em);
1064 *defrag_end = 0;
1065 }
1066
1067 free_extent_map(em);
1068 return ret;
1069 }
1070
1071 /*
1072 * it doesn't do much good to defrag one or two pages
1073 * at a time. This pulls in a nice chunk of pages
1074 * to COW and defrag.
1075 *
1076 * It also makes sure the delalloc code has enough
1077 * dirty data to avoid making new small extents as part
1078 * of the defrag
1079 *
1080 * It's a good idea to start RA on this range
1081 * before calling this.
1082 */
1083 static int cluster_pages_for_defrag(struct inode *inode,
1084 struct page **pages,
1085 unsigned long start_index,
1086 unsigned long num_pages)
1087 {
1088 unsigned long file_end;
1089 u64 isize = i_size_read(inode);
1090 u64 page_start;
1091 u64 page_end;
1092 u64 page_cnt;
1093 int ret;
1094 int i;
1095 int i_done;
1096 struct btrfs_ordered_extent *ordered;
1097 struct extent_state *cached_state = NULL;
1098 struct extent_io_tree *tree;
1099 struct extent_changeset *data_reserved = NULL;
1100 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1101
1102 file_end = (isize - 1) >> PAGE_SHIFT;
1103 if (!isize || start_index > file_end)
1104 return 0;
1105
1106 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1107
1108 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1109 start_index << PAGE_SHIFT,
1110 page_cnt << PAGE_SHIFT);
1111 if (ret)
1112 return ret;
1113 i_done = 0;
1114 tree = &BTRFS_I(inode)->io_tree;
1115
1116 /* step one, lock all the pages */
1117 for (i = 0; i < page_cnt; i++) {
1118 struct page *page;
1119 again:
1120 page = find_or_create_page(inode->i_mapping,
1121 start_index + i, mask);
1122 if (!page)
1123 break;
1124
1125 page_start = page_offset(page);
1126 page_end = page_start + PAGE_SIZE - 1;
1127 while (1) {
1128 lock_extent_bits(tree, page_start, page_end,
1129 &cached_state);
1130 ordered = btrfs_lookup_ordered_extent(inode,
1131 page_start);
1132 unlock_extent_cached(tree, page_start, page_end,
1133 &cached_state, GFP_NOFS);
1134 if (!ordered)
1135 break;
1136
1137 unlock_page(page);
1138 btrfs_start_ordered_extent(inode, ordered, 1);
1139 btrfs_put_ordered_extent(ordered);
1140 lock_page(page);
1141 /*
1142 * we unlocked the page above, so we need check if
1143 * it was released or not.
1144 */
1145 if (page->mapping != inode->i_mapping) {
1146 unlock_page(page);
1147 put_page(page);
1148 goto again;
1149 }
1150 }
1151
1152 if (!PageUptodate(page)) {
1153 btrfs_readpage(NULL, page);
1154 lock_page(page);
1155 if (!PageUptodate(page)) {
1156 unlock_page(page);
1157 put_page(page);
1158 ret = -EIO;
1159 break;
1160 }
1161 }
1162
1163 if (page->mapping != inode->i_mapping) {
1164 unlock_page(page);
1165 put_page(page);
1166 goto again;
1167 }
1168
1169 pages[i] = page;
1170 i_done++;
1171 }
1172 if (!i_done || ret)
1173 goto out;
1174
1175 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1176 goto out;
1177
1178 /*
1179 * so now we have a nice long stream of locked
1180 * and up to date pages, lets wait on them
1181 */
1182 for (i = 0; i < i_done; i++)
1183 wait_on_page_writeback(pages[i]);
1184
1185 page_start = page_offset(pages[0]);
1186 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1187
1188 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1189 page_start, page_end - 1, &cached_state);
1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1191 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1192 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1193 &cached_state, GFP_NOFS);
1194
1195 if (i_done != page_cnt) {
1196 spin_lock(&BTRFS_I(inode)->lock);
1197 BTRFS_I(inode)->outstanding_extents++;
1198 spin_unlock(&BTRFS_I(inode)->lock);
1199 btrfs_delalloc_release_space(inode, data_reserved,
1200 start_index << PAGE_SHIFT,
1201 (page_cnt - i_done) << PAGE_SHIFT);
1202 }
1203
1204
1205 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1206 &cached_state);
1207
1208 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1209 page_start, page_end - 1, &cached_state,
1210 GFP_NOFS);
1211
1212 for (i = 0; i < i_done; i++) {
1213 clear_page_dirty_for_io(pages[i]);
1214 ClearPageChecked(pages[i]);
1215 set_page_extent_mapped(pages[i]);
1216 set_page_dirty(pages[i]);
1217 unlock_page(pages[i]);
1218 put_page(pages[i]);
1219 }
1220 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1221 extent_changeset_free(data_reserved);
1222 return i_done;
1223 out:
1224 for (i = 0; i < i_done; i++) {
1225 unlock_page(pages[i]);
1226 put_page(pages[i]);
1227 }
1228 btrfs_delalloc_release_space(inode, data_reserved,
1229 start_index << PAGE_SHIFT,
1230 page_cnt << PAGE_SHIFT);
1231 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1232 extent_changeset_free(data_reserved);
1233 return ret;
1234
1235 }
1236
1237 int btrfs_defrag_file(struct inode *inode, struct file *file,
1238 struct btrfs_ioctl_defrag_range_args *range,
1239 u64 newer_than, unsigned long max_to_defrag)
1240 {
1241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1242 struct btrfs_root *root = BTRFS_I(inode)->root;
1243 struct file_ra_state *ra = NULL;
1244 unsigned long last_index;
1245 u64 isize = i_size_read(inode);
1246 u64 last_len = 0;
1247 u64 skip = 0;
1248 u64 defrag_end = 0;
1249 u64 newer_off = range->start;
1250 unsigned long i;
1251 unsigned long ra_index = 0;
1252 int ret;
1253 int defrag_count = 0;
1254 int compress_type = BTRFS_COMPRESS_ZLIB;
1255 u32 extent_thresh = range->extent_thresh;
1256 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1257 unsigned long cluster = max_cluster;
1258 u64 new_align = ~((u64)SZ_128K - 1);
1259 struct page **pages = NULL;
1260 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1261
1262 if (isize == 0)
1263 return 0;
1264
1265 if (range->start >= isize)
1266 return -EINVAL;
1267
1268 if (do_compress) {
1269 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1270 return -EINVAL;
1271 if (range->compress_type)
1272 compress_type = range->compress_type;
1273 }
1274
1275 if (extent_thresh == 0)
1276 extent_thresh = SZ_256K;
1277
1278 /*
1279 * If we were not given a file, allocate a readahead context. As
1280 * readahead is just an optimization, defrag will work without it so
1281 * we don't error out.
1282 */
1283 if (!file) {
1284 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1285 if (ra)
1286 file_ra_state_init(ra, inode->i_mapping);
1287 } else {
1288 ra = &file->f_ra;
1289 }
1290
1291 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1292 if (!pages) {
1293 ret = -ENOMEM;
1294 goto out_ra;
1295 }
1296
1297 /* find the last page to defrag */
1298 if (range->start + range->len > range->start) {
1299 last_index = min_t(u64, isize - 1,
1300 range->start + range->len - 1) >> PAGE_SHIFT;
1301 } else {
1302 last_index = (isize - 1) >> PAGE_SHIFT;
1303 }
1304
1305 if (newer_than) {
1306 ret = find_new_extents(root, inode, newer_than,
1307 &newer_off, SZ_64K);
1308 if (!ret) {
1309 range->start = newer_off;
1310 /*
1311 * we always align our defrag to help keep
1312 * the extents in the file evenly spaced
1313 */
1314 i = (newer_off & new_align) >> PAGE_SHIFT;
1315 } else
1316 goto out_ra;
1317 } else {
1318 i = range->start >> PAGE_SHIFT;
1319 }
1320 if (!max_to_defrag)
1321 max_to_defrag = last_index - i + 1;
1322
1323 /*
1324 * make writeback starts from i, so the defrag range can be
1325 * written sequentially.
1326 */
1327 if (i < inode->i_mapping->writeback_index)
1328 inode->i_mapping->writeback_index = i;
1329
1330 while (i <= last_index && defrag_count < max_to_defrag &&
1331 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1332 /*
1333 * make sure we stop running if someone unmounts
1334 * the FS
1335 */
1336 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1337 break;
1338
1339 if (btrfs_defrag_cancelled(fs_info)) {
1340 btrfs_debug(fs_info, "defrag_file cancelled");
1341 ret = -EAGAIN;
1342 break;
1343 }
1344
1345 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1346 extent_thresh, &last_len, &skip,
1347 &defrag_end, do_compress)){
1348 unsigned long next;
1349 /*
1350 * the should_defrag function tells us how much to skip
1351 * bump our counter by the suggested amount
1352 */
1353 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1354 i = max(i + 1, next);
1355 continue;
1356 }
1357
1358 if (!newer_than) {
1359 cluster = (PAGE_ALIGN(defrag_end) >>
1360 PAGE_SHIFT) - i;
1361 cluster = min(cluster, max_cluster);
1362 } else {
1363 cluster = max_cluster;
1364 }
1365
1366 if (i + cluster > ra_index) {
1367 ra_index = max(i, ra_index);
1368 if (ra)
1369 page_cache_sync_readahead(inode->i_mapping, ra,
1370 file, ra_index, cluster);
1371 ra_index += cluster;
1372 }
1373
1374 inode_lock(inode);
1375 if (do_compress)
1376 BTRFS_I(inode)->defrag_compress = compress_type;
1377 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1378 if (ret < 0) {
1379 inode_unlock(inode);
1380 goto out_ra;
1381 }
1382
1383 defrag_count += ret;
1384 balance_dirty_pages_ratelimited(inode->i_mapping);
1385 inode_unlock(inode);
1386
1387 if (newer_than) {
1388 if (newer_off == (u64)-1)
1389 break;
1390
1391 if (ret > 0)
1392 i += ret;
1393
1394 newer_off = max(newer_off + 1,
1395 (u64)i << PAGE_SHIFT);
1396
1397 ret = find_new_extents(root, inode, newer_than,
1398 &newer_off, SZ_64K);
1399 if (!ret) {
1400 range->start = newer_off;
1401 i = (newer_off & new_align) >> PAGE_SHIFT;
1402 } else {
1403 break;
1404 }
1405 } else {
1406 if (ret > 0) {
1407 i += ret;
1408 last_len += ret << PAGE_SHIFT;
1409 } else {
1410 i++;
1411 last_len = 0;
1412 }
1413 }
1414 }
1415
1416 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1417 filemap_flush(inode->i_mapping);
1418 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1419 &BTRFS_I(inode)->runtime_flags))
1420 filemap_flush(inode->i_mapping);
1421 }
1422
1423 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1424 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1425 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1426 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1427 }
1428
1429 ret = defrag_count;
1430
1431 out_ra:
1432 if (do_compress) {
1433 inode_lock(inode);
1434 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1435 inode_unlock(inode);
1436 }
1437 if (!file)
1438 kfree(ra);
1439 kfree(pages);
1440 return ret;
1441 }
1442
1443 static noinline int btrfs_ioctl_resize(struct file *file,
1444 void __user *arg)
1445 {
1446 struct inode *inode = file_inode(file);
1447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1448 u64 new_size;
1449 u64 old_size;
1450 u64 devid = 1;
1451 struct btrfs_root *root = BTRFS_I(inode)->root;
1452 struct btrfs_ioctl_vol_args *vol_args;
1453 struct btrfs_trans_handle *trans;
1454 struct btrfs_device *device = NULL;
1455 char *sizestr;
1456 char *retptr;
1457 char *devstr = NULL;
1458 int ret = 0;
1459 int mod = 0;
1460
1461 if (!capable(CAP_SYS_ADMIN))
1462 return -EPERM;
1463
1464 ret = mnt_want_write_file(file);
1465 if (ret)
1466 return ret;
1467
1468 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1469 mnt_drop_write_file(file);
1470 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1471 }
1472
1473 mutex_lock(&fs_info->volume_mutex);
1474 vol_args = memdup_user(arg, sizeof(*vol_args));
1475 if (IS_ERR(vol_args)) {
1476 ret = PTR_ERR(vol_args);
1477 goto out;
1478 }
1479
1480 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1481
1482 sizestr = vol_args->name;
1483 devstr = strchr(sizestr, ':');
1484 if (devstr) {
1485 sizestr = devstr + 1;
1486 *devstr = '\0';
1487 devstr = vol_args->name;
1488 ret = kstrtoull(devstr, 10, &devid);
1489 if (ret)
1490 goto out_free;
1491 if (!devid) {
1492 ret = -EINVAL;
1493 goto out_free;
1494 }
1495 btrfs_info(fs_info, "resizing devid %llu", devid);
1496 }
1497
1498 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1499 if (!device) {
1500 btrfs_info(fs_info, "resizer unable to find device %llu",
1501 devid);
1502 ret = -ENODEV;
1503 goto out_free;
1504 }
1505
1506 if (!device->writeable) {
1507 btrfs_info(fs_info,
1508 "resizer unable to apply on readonly device %llu",
1509 devid);
1510 ret = -EPERM;
1511 goto out_free;
1512 }
1513
1514 if (!strcmp(sizestr, "max"))
1515 new_size = device->bdev->bd_inode->i_size;
1516 else {
1517 if (sizestr[0] == '-') {
1518 mod = -1;
1519 sizestr++;
1520 } else if (sizestr[0] == '+') {
1521 mod = 1;
1522 sizestr++;
1523 }
1524 new_size = memparse(sizestr, &retptr);
1525 if (*retptr != '\0' || new_size == 0) {
1526 ret = -EINVAL;
1527 goto out_free;
1528 }
1529 }
1530
1531 if (device->is_tgtdev_for_dev_replace) {
1532 ret = -EPERM;
1533 goto out_free;
1534 }
1535
1536 old_size = btrfs_device_get_total_bytes(device);
1537
1538 if (mod < 0) {
1539 if (new_size > old_size) {
1540 ret = -EINVAL;
1541 goto out_free;
1542 }
1543 new_size = old_size - new_size;
1544 } else if (mod > 0) {
1545 if (new_size > ULLONG_MAX - old_size) {
1546 ret = -ERANGE;
1547 goto out_free;
1548 }
1549 new_size = old_size + new_size;
1550 }
1551
1552 if (new_size < SZ_256M) {
1553 ret = -EINVAL;
1554 goto out_free;
1555 }
1556 if (new_size > device->bdev->bd_inode->i_size) {
1557 ret = -EFBIG;
1558 goto out_free;
1559 }
1560
1561 new_size = round_down(new_size, fs_info->sectorsize);
1562
1563 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1564 rcu_str_deref(device->name), new_size);
1565
1566 if (new_size > old_size) {
1567 trans = btrfs_start_transaction(root, 0);
1568 if (IS_ERR(trans)) {
1569 ret = PTR_ERR(trans);
1570 goto out_free;
1571 }
1572 ret = btrfs_grow_device(trans, device, new_size);
1573 btrfs_commit_transaction(trans);
1574 } else if (new_size < old_size) {
1575 ret = btrfs_shrink_device(device, new_size);
1576 } /* equal, nothing need to do */
1577
1578 out_free:
1579 kfree(vol_args);
1580 out:
1581 mutex_unlock(&fs_info->volume_mutex);
1582 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1583 mnt_drop_write_file(file);
1584 return ret;
1585 }
1586
1587 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1588 const char *name, unsigned long fd, int subvol,
1589 u64 *transid, bool readonly,
1590 struct btrfs_qgroup_inherit *inherit)
1591 {
1592 int namelen;
1593 int ret = 0;
1594
1595 if (!S_ISDIR(file_inode(file)->i_mode))
1596 return -ENOTDIR;
1597
1598 ret = mnt_want_write_file(file);
1599 if (ret)
1600 goto out;
1601
1602 namelen = strlen(name);
1603 if (strchr(name, '/')) {
1604 ret = -EINVAL;
1605 goto out_drop_write;
1606 }
1607
1608 if (name[0] == '.' &&
1609 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1610 ret = -EEXIST;
1611 goto out_drop_write;
1612 }
1613
1614 if (subvol) {
1615 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1616 NULL, transid, readonly, inherit);
1617 } else {
1618 struct fd src = fdget(fd);
1619 struct inode *src_inode;
1620 if (!src.file) {
1621 ret = -EINVAL;
1622 goto out_drop_write;
1623 }
1624
1625 src_inode = file_inode(src.file);
1626 if (src_inode->i_sb != file_inode(file)->i_sb) {
1627 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1628 "Snapshot src from another FS");
1629 ret = -EXDEV;
1630 } else if (!inode_owner_or_capable(src_inode)) {
1631 /*
1632 * Subvolume creation is not restricted, but snapshots
1633 * are limited to own subvolumes only
1634 */
1635 ret = -EPERM;
1636 } else {
1637 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1638 BTRFS_I(src_inode)->root,
1639 transid, readonly, inherit);
1640 }
1641 fdput(src);
1642 }
1643 out_drop_write:
1644 mnt_drop_write_file(file);
1645 out:
1646 return ret;
1647 }
1648
1649 static noinline int btrfs_ioctl_snap_create(struct file *file,
1650 void __user *arg, int subvol)
1651 {
1652 struct btrfs_ioctl_vol_args *vol_args;
1653 int ret;
1654
1655 if (!S_ISDIR(file_inode(file)->i_mode))
1656 return -ENOTDIR;
1657
1658 vol_args = memdup_user(arg, sizeof(*vol_args));
1659 if (IS_ERR(vol_args))
1660 return PTR_ERR(vol_args);
1661 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1662
1663 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1664 vol_args->fd, subvol,
1665 NULL, false, NULL);
1666
1667 kfree(vol_args);
1668 return ret;
1669 }
1670
1671 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1672 void __user *arg, int subvol)
1673 {
1674 struct btrfs_ioctl_vol_args_v2 *vol_args;
1675 int ret;
1676 u64 transid = 0;
1677 u64 *ptr = NULL;
1678 bool readonly = false;
1679 struct btrfs_qgroup_inherit *inherit = NULL;
1680
1681 if (!S_ISDIR(file_inode(file)->i_mode))
1682 return -ENOTDIR;
1683
1684 vol_args = memdup_user(arg, sizeof(*vol_args));
1685 if (IS_ERR(vol_args))
1686 return PTR_ERR(vol_args);
1687 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1688
1689 if (vol_args->flags &
1690 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1691 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1692 ret = -EOPNOTSUPP;
1693 goto free_args;
1694 }
1695
1696 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1697 ptr = &transid;
1698 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1699 readonly = true;
1700 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1701 if (vol_args->size > PAGE_SIZE) {
1702 ret = -EINVAL;
1703 goto free_args;
1704 }
1705 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1706 if (IS_ERR(inherit)) {
1707 ret = PTR_ERR(inherit);
1708 goto free_args;
1709 }
1710 }
1711
1712 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1713 vol_args->fd, subvol, ptr,
1714 readonly, inherit);
1715 if (ret)
1716 goto free_inherit;
1717
1718 if (ptr && copy_to_user(arg +
1719 offsetof(struct btrfs_ioctl_vol_args_v2,
1720 transid),
1721 ptr, sizeof(*ptr)))
1722 ret = -EFAULT;
1723
1724 free_inherit:
1725 kfree(inherit);
1726 free_args:
1727 kfree(vol_args);
1728 return ret;
1729 }
1730
1731 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1732 void __user *arg)
1733 {
1734 struct inode *inode = file_inode(file);
1735 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1736 struct btrfs_root *root = BTRFS_I(inode)->root;
1737 int ret = 0;
1738 u64 flags = 0;
1739
1740 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1741 return -EINVAL;
1742
1743 down_read(&fs_info->subvol_sem);
1744 if (btrfs_root_readonly(root))
1745 flags |= BTRFS_SUBVOL_RDONLY;
1746 up_read(&fs_info->subvol_sem);
1747
1748 if (copy_to_user(arg, &flags, sizeof(flags)))
1749 ret = -EFAULT;
1750
1751 return ret;
1752 }
1753
1754 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1755 void __user *arg)
1756 {
1757 struct inode *inode = file_inode(file);
1758 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1759 struct btrfs_root *root = BTRFS_I(inode)->root;
1760 struct btrfs_trans_handle *trans;
1761 u64 root_flags;
1762 u64 flags;
1763 int ret = 0;
1764
1765 if (!inode_owner_or_capable(inode))
1766 return -EPERM;
1767
1768 ret = mnt_want_write_file(file);
1769 if (ret)
1770 goto out;
1771
1772 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1773 ret = -EINVAL;
1774 goto out_drop_write;
1775 }
1776
1777 if (copy_from_user(&flags, arg, sizeof(flags))) {
1778 ret = -EFAULT;
1779 goto out_drop_write;
1780 }
1781
1782 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1783 ret = -EINVAL;
1784 goto out_drop_write;
1785 }
1786
1787 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1788 ret = -EOPNOTSUPP;
1789 goto out_drop_write;
1790 }
1791
1792 down_write(&fs_info->subvol_sem);
1793
1794 /* nothing to do */
1795 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1796 goto out_drop_sem;
1797
1798 root_flags = btrfs_root_flags(&root->root_item);
1799 if (flags & BTRFS_SUBVOL_RDONLY) {
1800 btrfs_set_root_flags(&root->root_item,
1801 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1802 } else {
1803 /*
1804 * Block RO -> RW transition if this subvolume is involved in
1805 * send
1806 */
1807 spin_lock(&root->root_item_lock);
1808 if (root->send_in_progress == 0) {
1809 btrfs_set_root_flags(&root->root_item,
1810 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1811 spin_unlock(&root->root_item_lock);
1812 } else {
1813 spin_unlock(&root->root_item_lock);
1814 btrfs_warn(fs_info,
1815 "Attempt to set subvolume %llu read-write during send",
1816 root->root_key.objectid);
1817 ret = -EPERM;
1818 goto out_drop_sem;
1819 }
1820 }
1821
1822 trans = btrfs_start_transaction(root, 1);
1823 if (IS_ERR(trans)) {
1824 ret = PTR_ERR(trans);
1825 goto out_reset;
1826 }
1827
1828 ret = btrfs_update_root(trans, fs_info->tree_root,
1829 &root->root_key, &root->root_item);
1830 if (ret < 0) {
1831 btrfs_end_transaction(trans);
1832 goto out_reset;
1833 }
1834
1835 ret = btrfs_commit_transaction(trans);
1836
1837 out_reset:
1838 if (ret)
1839 btrfs_set_root_flags(&root->root_item, root_flags);
1840 out_drop_sem:
1841 up_write(&fs_info->subvol_sem);
1842 out_drop_write:
1843 mnt_drop_write_file(file);
1844 out:
1845 return ret;
1846 }
1847
1848 /*
1849 * helper to check if the subvolume references other subvolumes
1850 */
1851 static noinline int may_destroy_subvol(struct btrfs_root *root)
1852 {
1853 struct btrfs_fs_info *fs_info = root->fs_info;
1854 struct btrfs_path *path;
1855 struct btrfs_dir_item *di;
1856 struct btrfs_key key;
1857 u64 dir_id;
1858 int ret;
1859
1860 path = btrfs_alloc_path();
1861 if (!path)
1862 return -ENOMEM;
1863
1864 /* Make sure this root isn't set as the default subvol */
1865 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1866 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1867 dir_id, "default", 7, 0);
1868 if (di && !IS_ERR(di)) {
1869 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1870 if (key.objectid == root->root_key.objectid) {
1871 ret = -EPERM;
1872 btrfs_err(fs_info,
1873 "deleting default subvolume %llu is not allowed",
1874 key.objectid);
1875 goto out;
1876 }
1877 btrfs_release_path(path);
1878 }
1879
1880 key.objectid = root->root_key.objectid;
1881 key.type = BTRFS_ROOT_REF_KEY;
1882 key.offset = (u64)-1;
1883
1884 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1885 if (ret < 0)
1886 goto out;
1887 BUG_ON(ret == 0);
1888
1889 ret = 0;
1890 if (path->slots[0] > 0) {
1891 path->slots[0]--;
1892 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1893 if (key.objectid == root->root_key.objectid &&
1894 key.type == BTRFS_ROOT_REF_KEY)
1895 ret = -ENOTEMPTY;
1896 }
1897 out:
1898 btrfs_free_path(path);
1899 return ret;
1900 }
1901
1902 static noinline int key_in_sk(struct btrfs_key *key,
1903 struct btrfs_ioctl_search_key *sk)
1904 {
1905 struct btrfs_key test;
1906 int ret;
1907
1908 test.objectid = sk->min_objectid;
1909 test.type = sk->min_type;
1910 test.offset = sk->min_offset;
1911
1912 ret = btrfs_comp_cpu_keys(key, &test);
1913 if (ret < 0)
1914 return 0;
1915
1916 test.objectid = sk->max_objectid;
1917 test.type = sk->max_type;
1918 test.offset = sk->max_offset;
1919
1920 ret = btrfs_comp_cpu_keys(key, &test);
1921 if (ret > 0)
1922 return 0;
1923 return 1;
1924 }
1925
1926 static noinline int copy_to_sk(struct btrfs_path *path,
1927 struct btrfs_key *key,
1928 struct btrfs_ioctl_search_key *sk,
1929 size_t *buf_size,
1930 char __user *ubuf,
1931 unsigned long *sk_offset,
1932 int *num_found)
1933 {
1934 u64 found_transid;
1935 struct extent_buffer *leaf;
1936 struct btrfs_ioctl_search_header sh;
1937 struct btrfs_key test;
1938 unsigned long item_off;
1939 unsigned long item_len;
1940 int nritems;
1941 int i;
1942 int slot;
1943 int ret = 0;
1944
1945 leaf = path->nodes[0];
1946 slot = path->slots[0];
1947 nritems = btrfs_header_nritems(leaf);
1948
1949 if (btrfs_header_generation(leaf) > sk->max_transid) {
1950 i = nritems;
1951 goto advance_key;
1952 }
1953 found_transid = btrfs_header_generation(leaf);
1954
1955 for (i = slot; i < nritems; i++) {
1956 item_off = btrfs_item_ptr_offset(leaf, i);
1957 item_len = btrfs_item_size_nr(leaf, i);
1958
1959 btrfs_item_key_to_cpu(leaf, key, i);
1960 if (!key_in_sk(key, sk))
1961 continue;
1962
1963 if (sizeof(sh) + item_len > *buf_size) {
1964 if (*num_found) {
1965 ret = 1;
1966 goto out;
1967 }
1968
1969 /*
1970 * return one empty item back for v1, which does not
1971 * handle -EOVERFLOW
1972 */
1973
1974 *buf_size = sizeof(sh) + item_len;
1975 item_len = 0;
1976 ret = -EOVERFLOW;
1977 }
1978
1979 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1980 ret = 1;
1981 goto out;
1982 }
1983
1984 sh.objectid = key->objectid;
1985 sh.offset = key->offset;
1986 sh.type = key->type;
1987 sh.len = item_len;
1988 sh.transid = found_transid;
1989
1990 /* copy search result header */
1991 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1992 ret = -EFAULT;
1993 goto out;
1994 }
1995
1996 *sk_offset += sizeof(sh);
1997
1998 if (item_len) {
1999 char __user *up = ubuf + *sk_offset;
2000 /* copy the item */
2001 if (read_extent_buffer_to_user(leaf, up,
2002 item_off, item_len)) {
2003 ret = -EFAULT;
2004 goto out;
2005 }
2006
2007 *sk_offset += item_len;
2008 }
2009 (*num_found)++;
2010
2011 if (ret) /* -EOVERFLOW from above */
2012 goto out;
2013
2014 if (*num_found >= sk->nr_items) {
2015 ret = 1;
2016 goto out;
2017 }
2018 }
2019 advance_key:
2020 ret = 0;
2021 test.objectid = sk->max_objectid;
2022 test.type = sk->max_type;
2023 test.offset = sk->max_offset;
2024 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2025 ret = 1;
2026 else if (key->offset < (u64)-1)
2027 key->offset++;
2028 else if (key->type < (u8)-1) {
2029 key->offset = 0;
2030 key->type++;
2031 } else if (key->objectid < (u64)-1) {
2032 key->offset = 0;
2033 key->type = 0;
2034 key->objectid++;
2035 } else
2036 ret = 1;
2037 out:
2038 /*
2039 * 0: all items from this leaf copied, continue with next
2040 * 1: * more items can be copied, but unused buffer is too small
2041 * * all items were found
2042 * Either way, it will stops the loop which iterates to the next
2043 * leaf
2044 * -EOVERFLOW: item was to large for buffer
2045 * -EFAULT: could not copy extent buffer back to userspace
2046 */
2047 return ret;
2048 }
2049
2050 static noinline int search_ioctl(struct inode *inode,
2051 struct btrfs_ioctl_search_key *sk,
2052 size_t *buf_size,
2053 char __user *ubuf)
2054 {
2055 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2056 struct btrfs_root *root;
2057 struct btrfs_key key;
2058 struct btrfs_path *path;
2059 int ret;
2060 int num_found = 0;
2061 unsigned long sk_offset = 0;
2062
2063 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2064 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2065 return -EOVERFLOW;
2066 }
2067
2068 path = btrfs_alloc_path();
2069 if (!path)
2070 return -ENOMEM;
2071
2072 if (sk->tree_id == 0) {
2073 /* search the root of the inode that was passed */
2074 root = BTRFS_I(inode)->root;
2075 } else {
2076 key.objectid = sk->tree_id;
2077 key.type = BTRFS_ROOT_ITEM_KEY;
2078 key.offset = (u64)-1;
2079 root = btrfs_read_fs_root_no_name(info, &key);
2080 if (IS_ERR(root)) {
2081 btrfs_free_path(path);
2082 return -ENOENT;
2083 }
2084 }
2085
2086 key.objectid = sk->min_objectid;
2087 key.type = sk->min_type;
2088 key.offset = sk->min_offset;
2089
2090 while (1) {
2091 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2092 if (ret != 0) {
2093 if (ret > 0)
2094 ret = 0;
2095 goto err;
2096 }
2097 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2098 &sk_offset, &num_found);
2099 btrfs_release_path(path);
2100 if (ret)
2101 break;
2102
2103 }
2104 if (ret > 0)
2105 ret = 0;
2106 err:
2107 sk->nr_items = num_found;
2108 btrfs_free_path(path);
2109 return ret;
2110 }
2111
2112 static noinline int btrfs_ioctl_tree_search(struct file *file,
2113 void __user *argp)
2114 {
2115 struct btrfs_ioctl_search_args __user *uargs;
2116 struct btrfs_ioctl_search_key sk;
2117 struct inode *inode;
2118 int ret;
2119 size_t buf_size;
2120
2121 if (!capable(CAP_SYS_ADMIN))
2122 return -EPERM;
2123
2124 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2125
2126 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2127 return -EFAULT;
2128
2129 buf_size = sizeof(uargs->buf);
2130
2131 inode = file_inode(file);
2132 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2133
2134 /*
2135 * In the origin implementation an overflow is handled by returning a
2136 * search header with a len of zero, so reset ret.
2137 */
2138 if (ret == -EOVERFLOW)
2139 ret = 0;
2140
2141 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2142 ret = -EFAULT;
2143 return ret;
2144 }
2145
2146 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2147 void __user *argp)
2148 {
2149 struct btrfs_ioctl_search_args_v2 __user *uarg;
2150 struct btrfs_ioctl_search_args_v2 args;
2151 struct inode *inode;
2152 int ret;
2153 size_t buf_size;
2154 const size_t buf_limit = SZ_16M;
2155
2156 if (!capable(CAP_SYS_ADMIN))
2157 return -EPERM;
2158
2159 /* copy search header and buffer size */
2160 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2161 if (copy_from_user(&args, uarg, sizeof(args)))
2162 return -EFAULT;
2163
2164 buf_size = args.buf_size;
2165
2166 /* limit result size to 16MB */
2167 if (buf_size > buf_limit)
2168 buf_size = buf_limit;
2169
2170 inode = file_inode(file);
2171 ret = search_ioctl(inode, &args.key, &buf_size,
2172 (char __user *)(&uarg->buf[0]));
2173 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2174 ret = -EFAULT;
2175 else if (ret == -EOVERFLOW &&
2176 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2177 ret = -EFAULT;
2178
2179 return ret;
2180 }
2181
2182 /*
2183 * Search INODE_REFs to identify path name of 'dirid' directory
2184 * in a 'tree_id' tree. and sets path name to 'name'.
2185 */
2186 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2187 u64 tree_id, u64 dirid, char *name)
2188 {
2189 struct btrfs_root *root;
2190 struct btrfs_key key;
2191 char *ptr;
2192 int ret = -1;
2193 int slot;
2194 int len;
2195 int total_len = 0;
2196 struct btrfs_inode_ref *iref;
2197 struct extent_buffer *l;
2198 struct btrfs_path *path;
2199
2200 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2201 name[0]='\0';
2202 return 0;
2203 }
2204
2205 path = btrfs_alloc_path();
2206 if (!path)
2207 return -ENOMEM;
2208
2209 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2210
2211 key.objectid = tree_id;
2212 key.type = BTRFS_ROOT_ITEM_KEY;
2213 key.offset = (u64)-1;
2214 root = btrfs_read_fs_root_no_name(info, &key);
2215 if (IS_ERR(root)) {
2216 btrfs_err(info, "could not find root %llu", tree_id);
2217 ret = -ENOENT;
2218 goto out;
2219 }
2220
2221 key.objectid = dirid;
2222 key.type = BTRFS_INODE_REF_KEY;
2223 key.offset = (u64)-1;
2224
2225 while (1) {
2226 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2227 if (ret < 0)
2228 goto out;
2229 else if (ret > 0) {
2230 ret = btrfs_previous_item(root, path, dirid,
2231 BTRFS_INODE_REF_KEY);
2232 if (ret < 0)
2233 goto out;
2234 else if (ret > 0) {
2235 ret = -ENOENT;
2236 goto out;
2237 }
2238 }
2239
2240 l = path->nodes[0];
2241 slot = path->slots[0];
2242 btrfs_item_key_to_cpu(l, &key, slot);
2243
2244 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2245 len = btrfs_inode_ref_name_len(l, iref);
2246 ptr -= len + 1;
2247 total_len += len + 1;
2248 if (ptr < name) {
2249 ret = -ENAMETOOLONG;
2250 goto out;
2251 }
2252
2253 *(ptr + len) = '/';
2254 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2255
2256 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2257 break;
2258
2259 btrfs_release_path(path);
2260 key.objectid = key.offset;
2261 key.offset = (u64)-1;
2262 dirid = key.objectid;
2263 }
2264 memmove(name, ptr, total_len);
2265 name[total_len] = '\0';
2266 ret = 0;
2267 out:
2268 btrfs_free_path(path);
2269 return ret;
2270 }
2271
2272 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2273 void __user *argp)
2274 {
2275 struct btrfs_ioctl_ino_lookup_args *args;
2276 struct inode *inode;
2277 int ret = 0;
2278
2279 args = memdup_user(argp, sizeof(*args));
2280 if (IS_ERR(args))
2281 return PTR_ERR(args);
2282
2283 inode = file_inode(file);
2284
2285 /*
2286 * Unprivileged query to obtain the containing subvolume root id. The
2287 * path is reset so it's consistent with btrfs_search_path_in_tree.
2288 */
2289 if (args->treeid == 0)
2290 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2291
2292 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2293 args->name[0] = 0;
2294 goto out;
2295 }
2296
2297 if (!capable(CAP_SYS_ADMIN)) {
2298 ret = -EPERM;
2299 goto out;
2300 }
2301
2302 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2303 args->treeid, args->objectid,
2304 args->name);
2305
2306 out:
2307 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2308 ret = -EFAULT;
2309
2310 kfree(args);
2311 return ret;
2312 }
2313
2314 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2315 void __user *arg)
2316 {
2317 struct dentry *parent = file->f_path.dentry;
2318 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2319 struct dentry *dentry;
2320 struct inode *dir = d_inode(parent);
2321 struct inode *inode;
2322 struct btrfs_root *root = BTRFS_I(dir)->root;
2323 struct btrfs_root *dest = NULL;
2324 struct btrfs_ioctl_vol_args *vol_args;
2325 struct btrfs_trans_handle *trans;
2326 struct btrfs_block_rsv block_rsv;
2327 u64 root_flags;
2328 u64 qgroup_reserved;
2329 int namelen;
2330 int ret;
2331 int err = 0;
2332
2333 if (!S_ISDIR(dir->i_mode))
2334 return -ENOTDIR;
2335
2336 vol_args = memdup_user(arg, sizeof(*vol_args));
2337 if (IS_ERR(vol_args))
2338 return PTR_ERR(vol_args);
2339
2340 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2341 namelen = strlen(vol_args->name);
2342 if (strchr(vol_args->name, '/') ||
2343 strncmp(vol_args->name, "..", namelen) == 0) {
2344 err = -EINVAL;
2345 goto out;
2346 }
2347
2348 err = mnt_want_write_file(file);
2349 if (err)
2350 goto out;
2351
2352
2353 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2354 if (err == -EINTR)
2355 goto out_drop_write;
2356 dentry = lookup_one_len(vol_args->name, parent, namelen);
2357 if (IS_ERR(dentry)) {
2358 err = PTR_ERR(dentry);
2359 goto out_unlock_dir;
2360 }
2361
2362 if (d_really_is_negative(dentry)) {
2363 err = -ENOENT;
2364 goto out_dput;
2365 }
2366
2367 inode = d_inode(dentry);
2368 dest = BTRFS_I(inode)->root;
2369 if (!capable(CAP_SYS_ADMIN)) {
2370 /*
2371 * Regular user. Only allow this with a special mount
2372 * option, when the user has write+exec access to the
2373 * subvol root, and when rmdir(2) would have been
2374 * allowed.
2375 *
2376 * Note that this is _not_ check that the subvol is
2377 * empty or doesn't contain data that we wouldn't
2378 * otherwise be able to delete.
2379 *
2380 * Users who want to delete empty subvols should try
2381 * rmdir(2).
2382 */
2383 err = -EPERM;
2384 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2385 goto out_dput;
2386
2387 /*
2388 * Do not allow deletion if the parent dir is the same
2389 * as the dir to be deleted. That means the ioctl
2390 * must be called on the dentry referencing the root
2391 * of the subvol, not a random directory contained
2392 * within it.
2393 */
2394 err = -EINVAL;
2395 if (root == dest)
2396 goto out_dput;
2397
2398 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2399 if (err)
2400 goto out_dput;
2401 }
2402
2403 /* check if subvolume may be deleted by a user */
2404 err = btrfs_may_delete(dir, dentry, 1);
2405 if (err)
2406 goto out_dput;
2407
2408 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2409 err = -EINVAL;
2410 goto out_dput;
2411 }
2412
2413 inode_lock(inode);
2414
2415 /*
2416 * Don't allow to delete a subvolume with send in progress. This is
2417 * inside the i_mutex so the error handling that has to drop the bit
2418 * again is not run concurrently.
2419 */
2420 spin_lock(&dest->root_item_lock);
2421 root_flags = btrfs_root_flags(&dest->root_item);
2422 if (dest->send_in_progress == 0) {
2423 btrfs_set_root_flags(&dest->root_item,
2424 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2425 spin_unlock(&dest->root_item_lock);
2426 } else {
2427 spin_unlock(&dest->root_item_lock);
2428 btrfs_warn(fs_info,
2429 "Attempt to delete subvolume %llu during send",
2430 dest->root_key.objectid);
2431 err = -EPERM;
2432 goto out_unlock_inode;
2433 }
2434
2435 down_write(&fs_info->subvol_sem);
2436
2437 err = may_destroy_subvol(dest);
2438 if (err)
2439 goto out_up_write;
2440
2441 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2442 /*
2443 * One for dir inode, two for dir entries, two for root
2444 * ref/backref.
2445 */
2446 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2447 5, &qgroup_reserved, true);
2448 if (err)
2449 goto out_up_write;
2450
2451 trans = btrfs_start_transaction(root, 0);
2452 if (IS_ERR(trans)) {
2453 err = PTR_ERR(trans);
2454 goto out_release;
2455 }
2456 trans->block_rsv = &block_rsv;
2457 trans->bytes_reserved = block_rsv.size;
2458
2459 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2460
2461 ret = btrfs_unlink_subvol(trans, root, dir,
2462 dest->root_key.objectid,
2463 dentry->d_name.name,
2464 dentry->d_name.len);
2465 if (ret) {
2466 err = ret;
2467 btrfs_abort_transaction(trans, ret);
2468 goto out_end_trans;
2469 }
2470
2471 btrfs_record_root_in_trans(trans, dest);
2472
2473 memset(&dest->root_item.drop_progress, 0,
2474 sizeof(dest->root_item.drop_progress));
2475 dest->root_item.drop_level = 0;
2476 btrfs_set_root_refs(&dest->root_item, 0);
2477
2478 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2479 ret = btrfs_insert_orphan_item(trans,
2480 fs_info->tree_root,
2481 dest->root_key.objectid);
2482 if (ret) {
2483 btrfs_abort_transaction(trans, ret);
2484 err = ret;
2485 goto out_end_trans;
2486 }
2487 }
2488
2489 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2490 BTRFS_UUID_KEY_SUBVOL,
2491 dest->root_key.objectid);
2492 if (ret && ret != -ENOENT) {
2493 btrfs_abort_transaction(trans, ret);
2494 err = ret;
2495 goto out_end_trans;
2496 }
2497 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2498 ret = btrfs_uuid_tree_rem(trans, fs_info,
2499 dest->root_item.received_uuid,
2500 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2501 dest->root_key.objectid);
2502 if (ret && ret != -ENOENT) {
2503 btrfs_abort_transaction(trans, ret);
2504 err = ret;
2505 goto out_end_trans;
2506 }
2507 }
2508
2509 out_end_trans:
2510 trans->block_rsv = NULL;
2511 trans->bytes_reserved = 0;
2512 ret = btrfs_end_transaction(trans);
2513 if (ret && !err)
2514 err = ret;
2515 inode->i_flags |= S_DEAD;
2516 out_release:
2517 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2518 out_up_write:
2519 up_write(&fs_info->subvol_sem);
2520 if (err) {
2521 spin_lock(&dest->root_item_lock);
2522 root_flags = btrfs_root_flags(&dest->root_item);
2523 btrfs_set_root_flags(&dest->root_item,
2524 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2525 spin_unlock(&dest->root_item_lock);
2526 }
2527 out_unlock_inode:
2528 inode_unlock(inode);
2529 if (!err) {
2530 d_invalidate(dentry);
2531 btrfs_invalidate_inodes(dest);
2532 d_delete(dentry);
2533 ASSERT(dest->send_in_progress == 0);
2534
2535 /* the last ref */
2536 if (dest->ino_cache_inode) {
2537 iput(dest->ino_cache_inode);
2538 dest->ino_cache_inode = NULL;
2539 }
2540 }
2541 out_dput:
2542 dput(dentry);
2543 out_unlock_dir:
2544 inode_unlock(dir);
2545 out_drop_write:
2546 mnt_drop_write_file(file);
2547 out:
2548 kfree(vol_args);
2549 return err;
2550 }
2551
2552 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2553 {
2554 struct inode *inode = file_inode(file);
2555 struct btrfs_root *root = BTRFS_I(inode)->root;
2556 struct btrfs_ioctl_defrag_range_args *range;
2557 int ret;
2558
2559 ret = mnt_want_write_file(file);
2560 if (ret)
2561 return ret;
2562
2563 if (btrfs_root_readonly(root)) {
2564 ret = -EROFS;
2565 goto out;
2566 }
2567
2568 switch (inode->i_mode & S_IFMT) {
2569 case S_IFDIR:
2570 if (!capable(CAP_SYS_ADMIN)) {
2571 ret = -EPERM;
2572 goto out;
2573 }
2574 ret = btrfs_defrag_root(root);
2575 break;
2576 case S_IFREG:
2577 if (!(file->f_mode & FMODE_WRITE)) {
2578 ret = -EINVAL;
2579 goto out;
2580 }
2581
2582 range = kzalloc(sizeof(*range), GFP_KERNEL);
2583 if (!range) {
2584 ret = -ENOMEM;
2585 goto out;
2586 }
2587
2588 if (argp) {
2589 if (copy_from_user(range, argp,
2590 sizeof(*range))) {
2591 ret = -EFAULT;
2592 kfree(range);
2593 goto out;
2594 }
2595 /* compression requires us to start the IO */
2596 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2597 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2598 range->extent_thresh = (u32)-1;
2599 }
2600 } else {
2601 /* the rest are all set to zero by kzalloc */
2602 range->len = (u64)-1;
2603 }
2604 ret = btrfs_defrag_file(file_inode(file), file,
2605 range, 0, 0);
2606 if (ret > 0)
2607 ret = 0;
2608 kfree(range);
2609 break;
2610 default:
2611 ret = -EINVAL;
2612 }
2613 out:
2614 mnt_drop_write_file(file);
2615 return ret;
2616 }
2617
2618 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2619 {
2620 struct btrfs_ioctl_vol_args *vol_args;
2621 int ret;
2622
2623 if (!capable(CAP_SYS_ADMIN))
2624 return -EPERM;
2625
2626 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2627 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2628
2629 mutex_lock(&fs_info->volume_mutex);
2630 vol_args = memdup_user(arg, sizeof(*vol_args));
2631 if (IS_ERR(vol_args)) {
2632 ret = PTR_ERR(vol_args);
2633 goto out;
2634 }
2635
2636 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2637 ret = btrfs_init_new_device(fs_info, vol_args->name);
2638
2639 if (!ret)
2640 btrfs_info(fs_info, "disk added %s", vol_args->name);
2641
2642 kfree(vol_args);
2643 out:
2644 mutex_unlock(&fs_info->volume_mutex);
2645 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2646 return ret;
2647 }
2648
2649 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2650 {
2651 struct inode *inode = file_inode(file);
2652 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2653 struct btrfs_ioctl_vol_args_v2 *vol_args;
2654 int ret;
2655
2656 if (!capable(CAP_SYS_ADMIN))
2657 return -EPERM;
2658
2659 ret = mnt_want_write_file(file);
2660 if (ret)
2661 return ret;
2662
2663 vol_args = memdup_user(arg, sizeof(*vol_args));
2664 if (IS_ERR(vol_args)) {
2665 ret = PTR_ERR(vol_args);
2666 goto err_drop;
2667 }
2668
2669 /* Check for compatibility reject unknown flags */
2670 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2671 return -EOPNOTSUPP;
2672
2673 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2674 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2675 goto out;
2676 }
2677
2678 mutex_lock(&fs_info->volume_mutex);
2679 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2680 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2681 } else {
2682 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2683 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2684 }
2685 mutex_unlock(&fs_info->volume_mutex);
2686 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2687
2688 if (!ret) {
2689 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2690 btrfs_info(fs_info, "device deleted: id %llu",
2691 vol_args->devid);
2692 else
2693 btrfs_info(fs_info, "device deleted: %s",
2694 vol_args->name);
2695 }
2696 out:
2697 kfree(vol_args);
2698 err_drop:
2699 mnt_drop_write_file(file);
2700 return ret;
2701 }
2702
2703 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2704 {
2705 struct inode *inode = file_inode(file);
2706 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2707 struct btrfs_ioctl_vol_args *vol_args;
2708 int ret;
2709
2710 if (!capable(CAP_SYS_ADMIN))
2711 return -EPERM;
2712
2713 ret = mnt_want_write_file(file);
2714 if (ret)
2715 return ret;
2716
2717 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2718 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2719 goto out_drop_write;
2720 }
2721
2722 vol_args = memdup_user(arg, sizeof(*vol_args));
2723 if (IS_ERR(vol_args)) {
2724 ret = PTR_ERR(vol_args);
2725 goto out;
2726 }
2727
2728 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2729 mutex_lock(&fs_info->volume_mutex);
2730 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2731 mutex_unlock(&fs_info->volume_mutex);
2732
2733 if (!ret)
2734 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2735 kfree(vol_args);
2736 out:
2737 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2738 out_drop_write:
2739 mnt_drop_write_file(file);
2740
2741 return ret;
2742 }
2743
2744 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2745 void __user *arg)
2746 {
2747 struct btrfs_ioctl_fs_info_args *fi_args;
2748 struct btrfs_device *device;
2749 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2750 int ret = 0;
2751
2752 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2753 if (!fi_args)
2754 return -ENOMEM;
2755
2756 mutex_lock(&fs_devices->device_list_mutex);
2757 fi_args->num_devices = fs_devices->num_devices;
2758 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2759
2760 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2761 if (device->devid > fi_args->max_id)
2762 fi_args->max_id = device->devid;
2763 }
2764 mutex_unlock(&fs_devices->device_list_mutex);
2765
2766 fi_args->nodesize = fs_info->nodesize;
2767 fi_args->sectorsize = fs_info->sectorsize;
2768 fi_args->clone_alignment = fs_info->sectorsize;
2769
2770 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2771 ret = -EFAULT;
2772
2773 kfree(fi_args);
2774 return ret;
2775 }
2776
2777 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2778 void __user *arg)
2779 {
2780 struct btrfs_ioctl_dev_info_args *di_args;
2781 struct btrfs_device *dev;
2782 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2783 int ret = 0;
2784 char *s_uuid = NULL;
2785
2786 di_args = memdup_user(arg, sizeof(*di_args));
2787 if (IS_ERR(di_args))
2788 return PTR_ERR(di_args);
2789
2790 if (!btrfs_is_empty_uuid(di_args->uuid))
2791 s_uuid = di_args->uuid;
2792
2793 mutex_lock(&fs_devices->device_list_mutex);
2794 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2795
2796 if (!dev) {
2797 ret = -ENODEV;
2798 goto out;
2799 }
2800
2801 di_args->devid = dev->devid;
2802 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2803 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2804 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2805 if (dev->name) {
2806 struct rcu_string *name;
2807
2808 rcu_read_lock();
2809 name = rcu_dereference(dev->name);
2810 strncpy(di_args->path, name->str, sizeof(di_args->path));
2811 rcu_read_unlock();
2812 di_args->path[sizeof(di_args->path) - 1] = 0;
2813 } else {
2814 di_args->path[0] = '\0';
2815 }
2816
2817 out:
2818 mutex_unlock(&fs_devices->device_list_mutex);
2819 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2820 ret = -EFAULT;
2821
2822 kfree(di_args);
2823 return ret;
2824 }
2825
2826 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2827 {
2828 struct page *page;
2829
2830 page = grab_cache_page(inode->i_mapping, index);
2831 if (!page)
2832 return ERR_PTR(-ENOMEM);
2833
2834 if (!PageUptodate(page)) {
2835 int ret;
2836
2837 ret = btrfs_readpage(NULL, page);
2838 if (ret)
2839 return ERR_PTR(ret);
2840 lock_page(page);
2841 if (!PageUptodate(page)) {
2842 unlock_page(page);
2843 put_page(page);
2844 return ERR_PTR(-EIO);
2845 }
2846 if (page->mapping != inode->i_mapping) {
2847 unlock_page(page);
2848 put_page(page);
2849 return ERR_PTR(-EAGAIN);
2850 }
2851 }
2852
2853 return page;
2854 }
2855
2856 static int gather_extent_pages(struct inode *inode, struct page **pages,
2857 int num_pages, u64 off)
2858 {
2859 int i;
2860 pgoff_t index = off >> PAGE_SHIFT;
2861
2862 for (i = 0; i < num_pages; i++) {
2863 again:
2864 pages[i] = extent_same_get_page(inode, index + i);
2865 if (IS_ERR(pages[i])) {
2866 int err = PTR_ERR(pages[i]);
2867
2868 if (err == -EAGAIN)
2869 goto again;
2870 pages[i] = NULL;
2871 return err;
2872 }
2873 }
2874 return 0;
2875 }
2876
2877 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2878 bool retry_range_locking)
2879 {
2880 /*
2881 * Do any pending delalloc/csum calculations on inode, one way or
2882 * another, and lock file content.
2883 * The locking order is:
2884 *
2885 * 1) pages
2886 * 2) range in the inode's io tree
2887 */
2888 while (1) {
2889 struct btrfs_ordered_extent *ordered;
2890 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2891 ordered = btrfs_lookup_first_ordered_extent(inode,
2892 off + len - 1);
2893 if ((!ordered ||
2894 ordered->file_offset + ordered->len <= off ||
2895 ordered->file_offset >= off + len) &&
2896 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2897 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2898 if (ordered)
2899 btrfs_put_ordered_extent(ordered);
2900 break;
2901 }
2902 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2903 if (ordered)
2904 btrfs_put_ordered_extent(ordered);
2905 if (!retry_range_locking)
2906 return -EAGAIN;
2907 btrfs_wait_ordered_range(inode, off, len);
2908 }
2909 return 0;
2910 }
2911
2912 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2913 {
2914 inode_unlock(inode1);
2915 inode_unlock(inode2);
2916 }
2917
2918 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2919 {
2920 if (inode1 < inode2)
2921 swap(inode1, inode2);
2922
2923 inode_lock_nested(inode1, I_MUTEX_PARENT);
2924 inode_lock_nested(inode2, I_MUTEX_CHILD);
2925 }
2926
2927 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2928 struct inode *inode2, u64 loff2, u64 len)
2929 {
2930 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2931 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2932 }
2933
2934 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2935 struct inode *inode2, u64 loff2, u64 len,
2936 bool retry_range_locking)
2937 {
2938 int ret;
2939
2940 if (inode1 < inode2) {
2941 swap(inode1, inode2);
2942 swap(loff1, loff2);
2943 }
2944 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2945 if (ret)
2946 return ret;
2947 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2948 if (ret)
2949 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2950 loff1 + len - 1);
2951 return ret;
2952 }
2953
2954 struct cmp_pages {
2955 int num_pages;
2956 struct page **src_pages;
2957 struct page **dst_pages;
2958 };
2959
2960 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2961 {
2962 int i;
2963 struct page *pg;
2964
2965 for (i = 0; i < cmp->num_pages; i++) {
2966 pg = cmp->src_pages[i];
2967 if (pg) {
2968 unlock_page(pg);
2969 put_page(pg);
2970 }
2971 pg = cmp->dst_pages[i];
2972 if (pg) {
2973 unlock_page(pg);
2974 put_page(pg);
2975 }
2976 }
2977 kfree(cmp->src_pages);
2978 kfree(cmp->dst_pages);
2979 }
2980
2981 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2982 struct inode *dst, u64 dst_loff,
2983 u64 len, struct cmp_pages *cmp)
2984 {
2985 int ret;
2986 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2987 struct page **src_pgarr, **dst_pgarr;
2988
2989 /*
2990 * We must gather up all the pages before we initiate our
2991 * extent locking. We use an array for the page pointers. Size
2992 * of the array is bounded by len, which is in turn bounded by
2993 * BTRFS_MAX_DEDUPE_LEN.
2994 */
2995 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2996 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2997 if (!src_pgarr || !dst_pgarr) {
2998 kfree(src_pgarr);
2999 kfree(dst_pgarr);
3000 return -ENOMEM;
3001 }
3002 cmp->num_pages = num_pages;
3003 cmp->src_pages = src_pgarr;
3004 cmp->dst_pages = dst_pgarr;
3005
3006 /*
3007 * If deduping ranges in the same inode, locking rules make it mandatory
3008 * to always lock pages in ascending order to avoid deadlocks with
3009 * concurrent tasks (such as starting writeback/delalloc).
3010 */
3011 if (src == dst && dst_loff < loff) {
3012 swap(src_pgarr, dst_pgarr);
3013 swap(loff, dst_loff);
3014 }
3015
3016 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3017 if (ret)
3018 goto out;
3019
3020 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3021
3022 out:
3023 if (ret)
3024 btrfs_cmp_data_free(cmp);
3025 return ret;
3026 }
3027
3028 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3029 {
3030 int ret = 0;
3031 int i;
3032 struct page *src_page, *dst_page;
3033 unsigned int cmp_len = PAGE_SIZE;
3034 void *addr, *dst_addr;
3035
3036 i = 0;
3037 while (len) {
3038 if (len < PAGE_SIZE)
3039 cmp_len = len;
3040
3041 BUG_ON(i >= cmp->num_pages);
3042
3043 src_page = cmp->src_pages[i];
3044 dst_page = cmp->dst_pages[i];
3045 ASSERT(PageLocked(src_page));
3046 ASSERT(PageLocked(dst_page));
3047
3048 addr = kmap_atomic(src_page);
3049 dst_addr = kmap_atomic(dst_page);
3050
3051 flush_dcache_page(src_page);
3052 flush_dcache_page(dst_page);
3053
3054 if (memcmp(addr, dst_addr, cmp_len))
3055 ret = -EBADE;
3056
3057 kunmap_atomic(addr);
3058 kunmap_atomic(dst_addr);
3059
3060 if (ret)
3061 break;
3062
3063 len -= cmp_len;
3064 i++;
3065 }
3066
3067 return ret;
3068 }
3069
3070 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3071 u64 olen)
3072 {
3073 u64 len = *plen;
3074 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3075
3076 if (off + olen > inode->i_size || off + olen < off)
3077 return -EINVAL;
3078
3079 /* if we extend to eof, continue to block boundary */
3080 if (off + len == inode->i_size)
3081 *plen = len = ALIGN(inode->i_size, bs) - off;
3082
3083 /* Check that we are block aligned - btrfs_clone() requires this */
3084 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3085 return -EINVAL;
3086
3087 return 0;
3088 }
3089
3090 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3091 struct inode *dst, u64 dst_loff)
3092 {
3093 int ret;
3094 u64 len = olen;
3095 struct cmp_pages cmp;
3096 bool same_inode = (src == dst);
3097 u64 same_lock_start = 0;
3098 u64 same_lock_len = 0;
3099
3100 if (len == 0)
3101 return 0;
3102
3103 if (same_inode)
3104 inode_lock(src);
3105 else
3106 btrfs_double_inode_lock(src, dst);
3107
3108 ret = extent_same_check_offsets(src, loff, &len, olen);
3109 if (ret)
3110 goto out_unlock;
3111
3112 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3113 if (ret)
3114 goto out_unlock;
3115
3116 if (same_inode) {
3117 /*
3118 * Single inode case wants the same checks, except we
3119 * don't want our length pushed out past i_size as
3120 * comparing that data range makes no sense.
3121 *
3122 * extent_same_check_offsets() will do this for an
3123 * unaligned length at i_size, so catch it here and
3124 * reject the request.
3125 *
3126 * This effectively means we require aligned extents
3127 * for the single-inode case, whereas the other cases
3128 * allow an unaligned length so long as it ends at
3129 * i_size.
3130 */
3131 if (len != olen) {
3132 ret = -EINVAL;
3133 goto out_unlock;
3134 }
3135
3136 /* Check for overlapping ranges */
3137 if (dst_loff + len > loff && dst_loff < loff + len) {
3138 ret = -EINVAL;
3139 goto out_unlock;
3140 }
3141
3142 same_lock_start = min_t(u64, loff, dst_loff);
3143 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3144 }
3145
3146 /* don't make the dst file partly checksummed */
3147 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3148 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3149 ret = -EINVAL;
3150 goto out_unlock;
3151 }
3152
3153 again:
3154 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3155 if (ret)
3156 goto out_unlock;
3157
3158 if (same_inode)
3159 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3160 false);
3161 else
3162 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3163 false);
3164 /*
3165 * If one of the inodes has dirty pages in the respective range or
3166 * ordered extents, we need to flush dellaloc and wait for all ordered
3167 * extents in the range. We must unlock the pages and the ranges in the
3168 * io trees to avoid deadlocks when flushing delalloc (requires locking
3169 * pages) and when waiting for ordered extents to complete (they require
3170 * range locking).
3171 */
3172 if (ret == -EAGAIN) {
3173 /*
3174 * Ranges in the io trees already unlocked. Now unlock all
3175 * pages before waiting for all IO to complete.
3176 */
3177 btrfs_cmp_data_free(&cmp);
3178 if (same_inode) {
3179 btrfs_wait_ordered_range(src, same_lock_start,
3180 same_lock_len);
3181 } else {
3182 btrfs_wait_ordered_range(src, loff, len);
3183 btrfs_wait_ordered_range(dst, dst_loff, len);
3184 }
3185 goto again;
3186 }
3187 ASSERT(ret == 0);
3188 if (WARN_ON(ret)) {
3189 /* ranges in the io trees already unlocked */
3190 btrfs_cmp_data_free(&cmp);
3191 return ret;
3192 }
3193
3194 /* pass original length for comparison so we stay within i_size */
3195 ret = btrfs_cmp_data(olen, &cmp);
3196 if (ret == 0)
3197 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3198
3199 if (same_inode)
3200 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3201 same_lock_start + same_lock_len - 1);
3202 else
3203 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3204
3205 btrfs_cmp_data_free(&cmp);
3206 out_unlock:
3207 if (same_inode)
3208 inode_unlock(src);
3209 else
3210 btrfs_double_inode_unlock(src, dst);
3211
3212 return ret;
3213 }
3214
3215 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3216
3217 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3218 struct file *dst_file, u64 dst_loff)
3219 {
3220 struct inode *src = file_inode(src_file);
3221 struct inode *dst = file_inode(dst_file);
3222 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3223 ssize_t res;
3224
3225 if (olen > BTRFS_MAX_DEDUPE_LEN)
3226 olen = BTRFS_MAX_DEDUPE_LEN;
3227
3228 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3229 /*
3230 * Btrfs does not support blocksize < page_size. As a
3231 * result, btrfs_cmp_data() won't correctly handle
3232 * this situation without an update.
3233 */
3234 return -EINVAL;
3235 }
3236
3237 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3238 if (res)
3239 return res;
3240 return olen;
3241 }
3242
3243 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3244 struct inode *inode,
3245 u64 endoff,
3246 const u64 destoff,
3247 const u64 olen,
3248 int no_time_update)
3249 {
3250 struct btrfs_root *root = BTRFS_I(inode)->root;
3251 int ret;
3252
3253 inode_inc_iversion(inode);
3254 if (!no_time_update)
3255 inode->i_mtime = inode->i_ctime = current_time(inode);
3256 /*
3257 * We round up to the block size at eof when determining which
3258 * extents to clone above, but shouldn't round up the file size.
3259 */
3260 if (endoff > destoff + olen)
3261 endoff = destoff + olen;
3262 if (endoff > inode->i_size)
3263 btrfs_i_size_write(BTRFS_I(inode), endoff);
3264
3265 ret = btrfs_update_inode(trans, root, inode);
3266 if (ret) {
3267 btrfs_abort_transaction(trans, ret);
3268 btrfs_end_transaction(trans);
3269 goto out;
3270 }
3271 ret = btrfs_end_transaction(trans);
3272 out:
3273 return ret;
3274 }
3275
3276 static void clone_update_extent_map(struct btrfs_inode *inode,
3277 const struct btrfs_trans_handle *trans,
3278 const struct btrfs_path *path,
3279 const u64 hole_offset,
3280 const u64 hole_len)
3281 {
3282 struct extent_map_tree *em_tree = &inode->extent_tree;
3283 struct extent_map *em;
3284 int ret;
3285
3286 em = alloc_extent_map();
3287 if (!em) {
3288 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3289 return;
3290 }
3291
3292 if (path) {
3293 struct btrfs_file_extent_item *fi;
3294
3295 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3296 struct btrfs_file_extent_item);
3297 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3298 em->generation = -1;
3299 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3300 BTRFS_FILE_EXTENT_INLINE)
3301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3302 &inode->runtime_flags);
3303 } else {
3304 em->start = hole_offset;
3305 em->len = hole_len;
3306 em->ram_bytes = em->len;
3307 em->orig_start = hole_offset;
3308 em->block_start = EXTENT_MAP_HOLE;
3309 em->block_len = 0;
3310 em->orig_block_len = 0;
3311 em->compress_type = BTRFS_COMPRESS_NONE;
3312 em->generation = trans->transid;
3313 }
3314
3315 while (1) {
3316 write_lock(&em_tree->lock);
3317 ret = add_extent_mapping(em_tree, em, 1);
3318 write_unlock(&em_tree->lock);
3319 if (ret != -EEXIST) {
3320 free_extent_map(em);
3321 break;
3322 }
3323 btrfs_drop_extent_cache(inode, em->start,
3324 em->start + em->len - 1, 0);
3325 }
3326
3327 if (ret)
3328 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3329 }
3330
3331 /*
3332 * Make sure we do not end up inserting an inline extent into a file that has
3333 * already other (non-inline) extents. If a file has an inline extent it can
3334 * not have any other extents and the (single) inline extent must start at the
3335 * file offset 0. Failing to respect these rules will lead to file corruption,
3336 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3337 *
3338 * We can have extents that have been already written to disk or we can have
3339 * dirty ranges still in delalloc, in which case the extent maps and items are
3340 * created only when we run delalloc, and the delalloc ranges might fall outside
3341 * the range we are currently locking in the inode's io tree. So we check the
3342 * inode's i_size because of that (i_size updates are done while holding the
3343 * i_mutex, which we are holding here).
3344 * We also check to see if the inode has a size not greater than "datal" but has
3345 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3346 * protected against such concurrent fallocate calls by the i_mutex).
3347 *
3348 * If the file has no extents but a size greater than datal, do not allow the
3349 * copy because we would need turn the inline extent into a non-inline one (even
3350 * with NO_HOLES enabled). If we find our destination inode only has one inline
3351 * extent, just overwrite it with the source inline extent if its size is less
3352 * than the source extent's size, or we could copy the source inline extent's
3353 * data into the destination inode's inline extent if the later is greater then
3354 * the former.
3355 */
3356 static int clone_copy_inline_extent(struct inode *dst,
3357 struct btrfs_trans_handle *trans,
3358 struct btrfs_path *path,
3359 struct btrfs_key *new_key,
3360 const u64 drop_start,
3361 const u64 datal,
3362 const u64 skip,
3363 const u64 size,
3364 char *inline_data)
3365 {
3366 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3367 struct btrfs_root *root = BTRFS_I(dst)->root;
3368 const u64 aligned_end = ALIGN(new_key->offset + datal,
3369 fs_info->sectorsize);
3370 int ret;
3371 struct btrfs_key key;
3372
3373 if (new_key->offset > 0)
3374 return -EOPNOTSUPP;
3375
3376 key.objectid = btrfs_ino(BTRFS_I(dst));
3377 key.type = BTRFS_EXTENT_DATA_KEY;
3378 key.offset = 0;
3379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3380 if (ret < 0) {
3381 return ret;
3382 } else if (ret > 0) {
3383 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3384 ret = btrfs_next_leaf(root, path);
3385 if (ret < 0)
3386 return ret;
3387 else if (ret > 0)
3388 goto copy_inline_extent;
3389 }
3390 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3391 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3392 key.type == BTRFS_EXTENT_DATA_KEY) {
3393 ASSERT(key.offset > 0);
3394 return -EOPNOTSUPP;
3395 }
3396 } else if (i_size_read(dst) <= datal) {
3397 struct btrfs_file_extent_item *ei;
3398 u64 ext_len;
3399
3400 /*
3401 * If the file size is <= datal, make sure there are no other
3402 * extents following (can happen do to an fallocate call with
3403 * the flag FALLOC_FL_KEEP_SIZE).
3404 */
3405 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3406 struct btrfs_file_extent_item);
3407 /*
3408 * If it's an inline extent, it can not have other extents
3409 * following it.
3410 */
3411 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3412 BTRFS_FILE_EXTENT_INLINE)
3413 goto copy_inline_extent;
3414
3415 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3416 if (ext_len > aligned_end)
3417 return -EOPNOTSUPP;
3418
3419 ret = btrfs_next_item(root, path);
3420 if (ret < 0) {
3421 return ret;
3422 } else if (ret == 0) {
3423 btrfs_item_key_to_cpu(path->nodes[0], &key,
3424 path->slots[0]);
3425 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3426 key.type == BTRFS_EXTENT_DATA_KEY)
3427 return -EOPNOTSUPP;
3428 }
3429 }
3430
3431 copy_inline_extent:
3432 /*
3433 * We have no extent items, or we have an extent at offset 0 which may
3434 * or may not be inlined. All these cases are dealt the same way.
3435 */
3436 if (i_size_read(dst) > datal) {
3437 /*
3438 * If the destination inode has an inline extent...
3439 * This would require copying the data from the source inline
3440 * extent into the beginning of the destination's inline extent.
3441 * But this is really complex, both extents can be compressed
3442 * or just one of them, which would require decompressing and
3443 * re-compressing data (which could increase the new compressed
3444 * size, not allowing the compressed data to fit anymore in an
3445 * inline extent).
3446 * So just don't support this case for now (it should be rare,
3447 * we are not really saving space when cloning inline extents).
3448 */
3449 return -EOPNOTSUPP;
3450 }
3451
3452 btrfs_release_path(path);
3453 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3454 if (ret)
3455 return ret;
3456 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3457 if (ret)
3458 return ret;
3459
3460 if (skip) {
3461 const u32 start = btrfs_file_extent_calc_inline_size(0);
3462
3463 memmove(inline_data + start, inline_data + start + skip, datal);
3464 }
3465
3466 write_extent_buffer(path->nodes[0], inline_data,
3467 btrfs_item_ptr_offset(path->nodes[0],
3468 path->slots[0]),
3469 size);
3470 inode_add_bytes(dst, datal);
3471
3472 return 0;
3473 }
3474
3475 /**
3476 * btrfs_clone() - clone a range from inode file to another
3477 *
3478 * @src: Inode to clone from
3479 * @inode: Inode to clone to
3480 * @off: Offset within source to start clone from
3481 * @olen: Original length, passed by user, of range to clone
3482 * @olen_aligned: Block-aligned value of olen
3483 * @destoff: Offset within @inode to start clone
3484 * @no_time_update: Whether to update mtime/ctime on the target inode
3485 */
3486 static int btrfs_clone(struct inode *src, struct inode *inode,
3487 const u64 off, const u64 olen, const u64 olen_aligned,
3488 const u64 destoff, int no_time_update)
3489 {
3490 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3491 struct btrfs_root *root = BTRFS_I(inode)->root;
3492 struct btrfs_path *path = NULL;
3493 struct extent_buffer *leaf;
3494 struct btrfs_trans_handle *trans;
3495 char *buf = NULL;
3496 struct btrfs_key key;
3497 u32 nritems;
3498 int slot;
3499 int ret;
3500 const u64 len = olen_aligned;
3501 u64 last_dest_end = destoff;
3502
3503 ret = -ENOMEM;
3504 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3505 if (!buf)
3506 return ret;
3507
3508 path = btrfs_alloc_path();
3509 if (!path) {
3510 kvfree(buf);
3511 return ret;
3512 }
3513
3514 path->reada = READA_FORWARD;
3515 /* clone data */
3516 key.objectid = btrfs_ino(BTRFS_I(src));
3517 key.type = BTRFS_EXTENT_DATA_KEY;
3518 key.offset = off;
3519
3520 while (1) {
3521 u64 next_key_min_offset = key.offset + 1;
3522
3523 /*
3524 * note the key will change type as we walk through the
3525 * tree.
3526 */
3527 path->leave_spinning = 1;
3528 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3529 0, 0);
3530 if (ret < 0)
3531 goto out;
3532 /*
3533 * First search, if no extent item that starts at offset off was
3534 * found but the previous item is an extent item, it's possible
3535 * it might overlap our target range, therefore process it.
3536 */
3537 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3538 btrfs_item_key_to_cpu(path->nodes[0], &key,
3539 path->slots[0] - 1);
3540 if (key.type == BTRFS_EXTENT_DATA_KEY)
3541 path->slots[0]--;
3542 }
3543
3544 nritems = btrfs_header_nritems(path->nodes[0]);
3545 process_slot:
3546 if (path->slots[0] >= nritems) {
3547 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3548 if (ret < 0)
3549 goto out;
3550 if (ret > 0)
3551 break;
3552 nritems = btrfs_header_nritems(path->nodes[0]);
3553 }
3554 leaf = path->nodes[0];
3555 slot = path->slots[0];
3556
3557 btrfs_item_key_to_cpu(leaf, &key, slot);
3558 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3559 key.objectid != btrfs_ino(BTRFS_I(src)))
3560 break;
3561
3562 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3563 struct btrfs_file_extent_item *extent;
3564 int type;
3565 u32 size;
3566 struct btrfs_key new_key;
3567 u64 disko = 0, diskl = 0;
3568 u64 datao = 0, datal = 0;
3569 u8 comp;
3570 u64 drop_start;
3571
3572 extent = btrfs_item_ptr(leaf, slot,
3573 struct btrfs_file_extent_item);
3574 comp = btrfs_file_extent_compression(leaf, extent);
3575 type = btrfs_file_extent_type(leaf, extent);
3576 if (type == BTRFS_FILE_EXTENT_REG ||
3577 type == BTRFS_FILE_EXTENT_PREALLOC) {
3578 disko = btrfs_file_extent_disk_bytenr(leaf,
3579 extent);
3580 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3581 extent);
3582 datao = btrfs_file_extent_offset(leaf, extent);
3583 datal = btrfs_file_extent_num_bytes(leaf,
3584 extent);
3585 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3586 /* take upper bound, may be compressed */
3587 datal = btrfs_file_extent_ram_bytes(leaf,
3588 extent);
3589 }
3590
3591 /*
3592 * The first search might have left us at an extent
3593 * item that ends before our target range's start, can
3594 * happen if we have holes and NO_HOLES feature enabled.
3595 */
3596 if (key.offset + datal <= off) {
3597 path->slots[0]++;
3598 goto process_slot;
3599 } else if (key.offset >= off + len) {
3600 break;
3601 }
3602 next_key_min_offset = key.offset + datal;
3603 size = btrfs_item_size_nr(leaf, slot);
3604 read_extent_buffer(leaf, buf,
3605 btrfs_item_ptr_offset(leaf, slot),
3606 size);
3607
3608 btrfs_release_path(path);
3609 path->leave_spinning = 0;
3610
3611 memcpy(&new_key, &key, sizeof(new_key));
3612 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3613 if (off <= key.offset)
3614 new_key.offset = key.offset + destoff - off;
3615 else
3616 new_key.offset = destoff;
3617
3618 /*
3619 * Deal with a hole that doesn't have an extent item
3620 * that represents it (NO_HOLES feature enabled).
3621 * This hole is either in the middle of the cloning
3622 * range or at the beginning (fully overlaps it or
3623 * partially overlaps it).
3624 */
3625 if (new_key.offset != last_dest_end)
3626 drop_start = last_dest_end;
3627 else
3628 drop_start = new_key.offset;
3629
3630 /*
3631 * 1 - adjusting old extent (we may have to split it)
3632 * 1 - add new extent
3633 * 1 - inode update
3634 */
3635 trans = btrfs_start_transaction(root, 3);
3636 if (IS_ERR(trans)) {
3637 ret = PTR_ERR(trans);
3638 goto out;
3639 }
3640
3641 if (type == BTRFS_FILE_EXTENT_REG ||
3642 type == BTRFS_FILE_EXTENT_PREALLOC) {
3643 /*
3644 * a | --- range to clone ---| b
3645 * | ------------- extent ------------- |
3646 */
3647
3648 /* subtract range b */
3649 if (key.offset + datal > off + len)
3650 datal = off + len - key.offset;
3651
3652 /* subtract range a */
3653 if (off > key.offset) {
3654 datao += off - key.offset;
3655 datal -= off - key.offset;
3656 }
3657
3658 ret = btrfs_drop_extents(trans, root, inode,
3659 drop_start,
3660 new_key.offset + datal,
3661 1);
3662 if (ret) {
3663 if (ret != -EOPNOTSUPP)
3664 btrfs_abort_transaction(trans,
3665 ret);
3666 btrfs_end_transaction(trans);
3667 goto out;
3668 }
3669
3670 ret = btrfs_insert_empty_item(trans, root, path,
3671 &new_key, size);
3672 if (ret) {
3673 btrfs_abort_transaction(trans, ret);
3674 btrfs_end_transaction(trans);
3675 goto out;
3676 }
3677
3678 leaf = path->nodes[0];
3679 slot = path->slots[0];
3680 write_extent_buffer(leaf, buf,
3681 btrfs_item_ptr_offset(leaf, slot),
3682 size);
3683
3684 extent = btrfs_item_ptr(leaf, slot,
3685 struct btrfs_file_extent_item);
3686
3687 /* disko == 0 means it's a hole */
3688 if (!disko)
3689 datao = 0;
3690
3691 btrfs_set_file_extent_offset(leaf, extent,
3692 datao);
3693 btrfs_set_file_extent_num_bytes(leaf, extent,
3694 datal);
3695
3696 if (disko) {
3697 inode_add_bytes(inode, datal);
3698 ret = btrfs_inc_extent_ref(trans,
3699 root,
3700 disko, diskl, 0,
3701 root->root_key.objectid,
3702 btrfs_ino(BTRFS_I(inode)),
3703 new_key.offset - datao);
3704 if (ret) {
3705 btrfs_abort_transaction(trans,
3706 ret);
3707 btrfs_end_transaction(trans);
3708 goto out;
3709
3710 }
3711 }
3712 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3713 u64 skip = 0;
3714 u64 trim = 0;
3715
3716 if (off > key.offset) {
3717 skip = off - key.offset;
3718 new_key.offset += skip;
3719 }
3720
3721 if (key.offset + datal > off + len)
3722 trim = key.offset + datal - (off + len);
3723
3724 if (comp && (skip || trim)) {
3725 ret = -EINVAL;
3726 btrfs_end_transaction(trans);
3727 goto out;
3728 }
3729 size -= skip + trim;
3730 datal -= skip + trim;
3731
3732 ret = clone_copy_inline_extent(inode,
3733 trans, path,
3734 &new_key,
3735 drop_start,
3736 datal,
3737 skip, size, buf);
3738 if (ret) {
3739 if (ret != -EOPNOTSUPP)
3740 btrfs_abort_transaction(trans,
3741 ret);
3742 btrfs_end_transaction(trans);
3743 goto out;
3744 }
3745 leaf = path->nodes[0];
3746 slot = path->slots[0];
3747 }
3748
3749 /* If we have an implicit hole (NO_HOLES feature). */
3750 if (drop_start < new_key.offset)
3751 clone_update_extent_map(BTRFS_I(inode), trans,
3752 NULL, drop_start,
3753 new_key.offset - drop_start);
3754
3755 clone_update_extent_map(BTRFS_I(inode), trans,
3756 path, 0, 0);
3757
3758 btrfs_mark_buffer_dirty(leaf);
3759 btrfs_release_path(path);
3760
3761 last_dest_end = ALIGN(new_key.offset + datal,
3762 fs_info->sectorsize);
3763 ret = clone_finish_inode_update(trans, inode,
3764 last_dest_end,
3765 destoff, olen,
3766 no_time_update);
3767 if (ret)
3768 goto out;
3769 if (new_key.offset + datal >= destoff + len)
3770 break;
3771 }
3772 btrfs_release_path(path);
3773 key.offset = next_key_min_offset;
3774
3775 if (fatal_signal_pending(current)) {
3776 ret = -EINTR;
3777 goto out;
3778 }
3779 }
3780 ret = 0;
3781
3782 if (last_dest_end < destoff + len) {
3783 /*
3784 * We have an implicit hole (NO_HOLES feature is enabled) that
3785 * fully or partially overlaps our cloning range at its end.
3786 */
3787 btrfs_release_path(path);
3788
3789 /*
3790 * 1 - remove extent(s)
3791 * 1 - inode update
3792 */
3793 trans = btrfs_start_transaction(root, 2);
3794 if (IS_ERR(trans)) {
3795 ret = PTR_ERR(trans);
3796 goto out;
3797 }
3798 ret = btrfs_drop_extents(trans, root, inode,
3799 last_dest_end, destoff + len, 1);
3800 if (ret) {
3801 if (ret != -EOPNOTSUPP)
3802 btrfs_abort_transaction(trans, ret);
3803 btrfs_end_transaction(trans);
3804 goto out;
3805 }
3806 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3807 last_dest_end,
3808 destoff + len - last_dest_end);
3809 ret = clone_finish_inode_update(trans, inode, destoff + len,
3810 destoff, olen, no_time_update);
3811 }
3812
3813 out:
3814 btrfs_free_path(path);
3815 kvfree(buf);
3816 return ret;
3817 }
3818
3819 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3820 u64 off, u64 olen, u64 destoff)
3821 {
3822 struct inode *inode = file_inode(file);
3823 struct inode *src = file_inode(file_src);
3824 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3825 struct btrfs_root *root = BTRFS_I(inode)->root;
3826 int ret;
3827 u64 len = olen;
3828 u64 bs = fs_info->sb->s_blocksize;
3829 int same_inode = src == inode;
3830
3831 /*
3832 * TODO:
3833 * - split compressed inline extents. annoying: we need to
3834 * decompress into destination's address_space (the file offset
3835 * may change, so source mapping won't do), then recompress (or
3836 * otherwise reinsert) a subrange.
3837 *
3838 * - split destination inode's inline extents. The inline extents can
3839 * be either compressed or non-compressed.
3840 */
3841
3842 if (btrfs_root_readonly(root))
3843 return -EROFS;
3844
3845 if (file_src->f_path.mnt != file->f_path.mnt ||
3846 src->i_sb != inode->i_sb)
3847 return -EXDEV;
3848
3849 /* don't make the dst file partly checksummed */
3850 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3851 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3852 return -EINVAL;
3853
3854 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3855 return -EISDIR;
3856
3857 if (!same_inode) {
3858 btrfs_double_inode_lock(src, inode);
3859 } else {
3860 inode_lock(src);
3861 }
3862
3863 /* determine range to clone */
3864 ret = -EINVAL;
3865 if (off + len > src->i_size || off + len < off)
3866 goto out_unlock;
3867 if (len == 0)
3868 olen = len = src->i_size - off;
3869 /* if we extend to eof, continue to block boundary */
3870 if (off + len == src->i_size)
3871 len = ALIGN(src->i_size, bs) - off;
3872
3873 if (len == 0) {
3874 ret = 0;
3875 goto out_unlock;
3876 }
3877
3878 /* verify the end result is block aligned */
3879 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3880 !IS_ALIGNED(destoff, bs))
3881 goto out_unlock;
3882
3883 /* verify if ranges are overlapped within the same file */
3884 if (same_inode) {
3885 if (destoff + len > off && destoff < off + len)
3886 goto out_unlock;
3887 }
3888
3889 if (destoff > inode->i_size) {
3890 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3891 if (ret)
3892 goto out_unlock;
3893 }
3894
3895 /*
3896 * Lock the target range too. Right after we replace the file extent
3897 * items in the fs tree (which now point to the cloned data), we might
3898 * have a worker replace them with extent items relative to a write
3899 * operation that was issued before this clone operation (i.e. confront
3900 * with inode.c:btrfs_finish_ordered_io).
3901 */
3902 if (same_inode) {
3903 u64 lock_start = min_t(u64, off, destoff);
3904 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3905
3906 ret = lock_extent_range(src, lock_start, lock_len, true);
3907 } else {
3908 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3909 true);
3910 }
3911 ASSERT(ret == 0);
3912 if (WARN_ON(ret)) {
3913 /* ranges in the io trees already unlocked */
3914 goto out_unlock;
3915 }
3916
3917 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3918
3919 if (same_inode) {
3920 u64 lock_start = min_t(u64, off, destoff);
3921 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3922
3923 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3924 } else {
3925 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3926 }
3927 /*
3928 * Truncate page cache pages so that future reads will see the cloned
3929 * data immediately and not the previous data.
3930 */
3931 truncate_inode_pages_range(&inode->i_data,
3932 round_down(destoff, PAGE_SIZE),
3933 round_up(destoff + len, PAGE_SIZE) - 1);
3934 out_unlock:
3935 if (!same_inode)
3936 btrfs_double_inode_unlock(src, inode);
3937 else
3938 inode_unlock(src);
3939 return ret;
3940 }
3941
3942 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3943 struct file *dst_file, loff_t destoff, u64 len)
3944 {
3945 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3946 }
3947
3948 /*
3949 * there are many ways the trans_start and trans_end ioctls can lead
3950 * to deadlocks. They should only be used by applications that
3951 * basically own the machine, and have a very in depth understanding
3952 * of all the possible deadlocks and enospc problems.
3953 */
3954 static long btrfs_ioctl_trans_start(struct file *file)
3955 {
3956 struct inode *inode = file_inode(file);
3957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3958 struct btrfs_root *root = BTRFS_I(inode)->root;
3959 struct btrfs_trans_handle *trans;
3960 struct btrfs_file_private *private;
3961 int ret;
3962 static bool warned = false;
3963
3964 ret = -EPERM;
3965 if (!capable(CAP_SYS_ADMIN))
3966 goto out;
3967
3968 if (!warned) {
3969 btrfs_warn(fs_info,
3970 "Userspace transaction mechanism is considered "
3971 "deprecated and slated to be removed in 4.17. "
3972 "If you have a valid use case please "
3973 "speak up on the mailing list");
3974 WARN_ON(1);
3975 warned = true;
3976 }
3977
3978 ret = -EINPROGRESS;
3979 private = file->private_data;
3980 if (private && private->trans)
3981 goto out;
3982 if (!private) {
3983 private = kzalloc(sizeof(struct btrfs_file_private),
3984 GFP_KERNEL);
3985 if (!private)
3986 return -ENOMEM;
3987 file->private_data = private;
3988 }
3989
3990 ret = -EROFS;
3991 if (btrfs_root_readonly(root))
3992 goto out;
3993
3994 ret = mnt_want_write_file(file);
3995 if (ret)
3996 goto out;
3997
3998 atomic_inc(&fs_info->open_ioctl_trans);
3999
4000 ret = -ENOMEM;
4001 trans = btrfs_start_ioctl_transaction(root);
4002 if (IS_ERR(trans))
4003 goto out_drop;
4004
4005 private->trans = trans;
4006 return 0;
4007
4008 out_drop:
4009 atomic_dec(&fs_info->open_ioctl_trans);
4010 mnt_drop_write_file(file);
4011 out:
4012 return ret;
4013 }
4014
4015 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4016 {
4017 struct inode *inode = file_inode(file);
4018 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4019 struct btrfs_root *root = BTRFS_I(inode)->root;
4020 struct btrfs_root *new_root;
4021 struct btrfs_dir_item *di;
4022 struct btrfs_trans_handle *trans;
4023 struct btrfs_path *path;
4024 struct btrfs_key location;
4025 struct btrfs_disk_key disk_key;
4026 u64 objectid = 0;
4027 u64 dir_id;
4028 int ret;
4029
4030 if (!capable(CAP_SYS_ADMIN))
4031 return -EPERM;
4032
4033 ret = mnt_want_write_file(file);
4034 if (ret)
4035 return ret;
4036
4037 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4038 ret = -EFAULT;
4039 goto out;
4040 }
4041
4042 if (!objectid)
4043 objectid = BTRFS_FS_TREE_OBJECTID;
4044
4045 location.objectid = objectid;
4046 location.type = BTRFS_ROOT_ITEM_KEY;
4047 location.offset = (u64)-1;
4048
4049 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4050 if (IS_ERR(new_root)) {
4051 ret = PTR_ERR(new_root);
4052 goto out;
4053 }
4054 if (!is_fstree(new_root->objectid)) {
4055 ret = -ENOENT;
4056 goto out;
4057 }
4058
4059 path = btrfs_alloc_path();
4060 if (!path) {
4061 ret = -ENOMEM;
4062 goto out;
4063 }
4064 path->leave_spinning = 1;
4065
4066 trans = btrfs_start_transaction(root, 1);
4067 if (IS_ERR(trans)) {
4068 btrfs_free_path(path);
4069 ret = PTR_ERR(trans);
4070 goto out;
4071 }
4072
4073 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4074 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4075 dir_id, "default", 7, 1);
4076 if (IS_ERR_OR_NULL(di)) {
4077 btrfs_free_path(path);
4078 btrfs_end_transaction(trans);
4079 btrfs_err(fs_info,
4080 "Umm, you don't have the default diritem, this isn't going to work");
4081 ret = -ENOENT;
4082 goto out;
4083 }
4084
4085 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4086 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4087 btrfs_mark_buffer_dirty(path->nodes[0]);
4088 btrfs_free_path(path);
4089
4090 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4091 btrfs_end_transaction(trans);
4092 out:
4093 mnt_drop_write_file(file);
4094 return ret;
4095 }
4096
4097 void btrfs_get_block_group_info(struct list_head *groups_list,
4098 struct btrfs_ioctl_space_info *space)
4099 {
4100 struct btrfs_block_group_cache *block_group;
4101
4102 space->total_bytes = 0;
4103 space->used_bytes = 0;
4104 space->flags = 0;
4105 list_for_each_entry(block_group, groups_list, list) {
4106 space->flags = block_group->flags;
4107 space->total_bytes += block_group->key.offset;
4108 space->used_bytes +=
4109 btrfs_block_group_used(&block_group->item);
4110 }
4111 }
4112
4113 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4114 void __user *arg)
4115 {
4116 struct btrfs_ioctl_space_args space_args;
4117 struct btrfs_ioctl_space_info space;
4118 struct btrfs_ioctl_space_info *dest;
4119 struct btrfs_ioctl_space_info *dest_orig;
4120 struct btrfs_ioctl_space_info __user *user_dest;
4121 struct btrfs_space_info *info;
4122 static const u64 types[] = {
4123 BTRFS_BLOCK_GROUP_DATA,
4124 BTRFS_BLOCK_GROUP_SYSTEM,
4125 BTRFS_BLOCK_GROUP_METADATA,
4126 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4127 };
4128 int num_types = 4;
4129 int alloc_size;
4130 int ret = 0;
4131 u64 slot_count = 0;
4132 int i, c;
4133
4134 if (copy_from_user(&space_args,
4135 (struct btrfs_ioctl_space_args __user *)arg,
4136 sizeof(space_args)))
4137 return -EFAULT;
4138
4139 for (i = 0; i < num_types; i++) {
4140 struct btrfs_space_info *tmp;
4141
4142 info = NULL;
4143 rcu_read_lock();
4144 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4145 list) {
4146 if (tmp->flags == types[i]) {
4147 info = tmp;
4148 break;
4149 }
4150 }
4151 rcu_read_unlock();
4152
4153 if (!info)
4154 continue;
4155
4156 down_read(&info->groups_sem);
4157 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4158 if (!list_empty(&info->block_groups[c]))
4159 slot_count++;
4160 }
4161 up_read(&info->groups_sem);
4162 }
4163
4164 /*
4165 * Global block reserve, exported as a space_info
4166 */
4167 slot_count++;
4168
4169 /* space_slots == 0 means they are asking for a count */
4170 if (space_args.space_slots == 0) {
4171 space_args.total_spaces = slot_count;
4172 goto out;
4173 }
4174
4175 slot_count = min_t(u64, space_args.space_slots, slot_count);
4176
4177 alloc_size = sizeof(*dest) * slot_count;
4178
4179 /* we generally have at most 6 or so space infos, one for each raid
4180 * level. So, a whole page should be more than enough for everyone
4181 */
4182 if (alloc_size > PAGE_SIZE)
4183 return -ENOMEM;
4184
4185 space_args.total_spaces = 0;
4186 dest = kmalloc(alloc_size, GFP_KERNEL);
4187 if (!dest)
4188 return -ENOMEM;
4189 dest_orig = dest;
4190
4191 /* now we have a buffer to copy into */
4192 for (i = 0; i < num_types; i++) {
4193 struct btrfs_space_info *tmp;
4194
4195 if (!slot_count)
4196 break;
4197
4198 info = NULL;
4199 rcu_read_lock();
4200 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4201 list) {
4202 if (tmp->flags == types[i]) {
4203 info = tmp;
4204 break;
4205 }
4206 }
4207 rcu_read_unlock();
4208
4209 if (!info)
4210 continue;
4211 down_read(&info->groups_sem);
4212 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4213 if (!list_empty(&info->block_groups[c])) {
4214 btrfs_get_block_group_info(
4215 &info->block_groups[c], &space);
4216 memcpy(dest, &space, sizeof(space));
4217 dest++;
4218 space_args.total_spaces++;
4219 slot_count--;
4220 }
4221 if (!slot_count)
4222 break;
4223 }
4224 up_read(&info->groups_sem);
4225 }
4226
4227 /*
4228 * Add global block reserve
4229 */
4230 if (slot_count) {
4231 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4232
4233 spin_lock(&block_rsv->lock);
4234 space.total_bytes = block_rsv->size;
4235 space.used_bytes = block_rsv->size - block_rsv->reserved;
4236 spin_unlock(&block_rsv->lock);
4237 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4238 memcpy(dest, &space, sizeof(space));
4239 space_args.total_spaces++;
4240 }
4241
4242 user_dest = (struct btrfs_ioctl_space_info __user *)
4243 (arg + sizeof(struct btrfs_ioctl_space_args));
4244
4245 if (copy_to_user(user_dest, dest_orig, alloc_size))
4246 ret = -EFAULT;
4247
4248 kfree(dest_orig);
4249 out:
4250 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4251 ret = -EFAULT;
4252
4253 return ret;
4254 }
4255
4256 /*
4257 * there are many ways the trans_start and trans_end ioctls can lead
4258 * to deadlocks. They should only be used by applications that
4259 * basically own the machine, and have a very in depth understanding
4260 * of all the possible deadlocks and enospc problems.
4261 */
4262 long btrfs_ioctl_trans_end(struct file *file)
4263 {
4264 struct inode *inode = file_inode(file);
4265 struct btrfs_root *root = BTRFS_I(inode)->root;
4266 struct btrfs_file_private *private = file->private_data;
4267
4268 if (!private || !private->trans)
4269 return -EINVAL;
4270
4271 btrfs_end_transaction(private->trans);
4272 private->trans = NULL;
4273
4274 atomic_dec(&root->fs_info->open_ioctl_trans);
4275
4276 mnt_drop_write_file(file);
4277 return 0;
4278 }
4279
4280 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4281 void __user *argp)
4282 {
4283 struct btrfs_trans_handle *trans;
4284 u64 transid;
4285 int ret;
4286
4287 trans = btrfs_attach_transaction_barrier(root);
4288 if (IS_ERR(trans)) {
4289 if (PTR_ERR(trans) != -ENOENT)
4290 return PTR_ERR(trans);
4291
4292 /* No running transaction, don't bother */
4293 transid = root->fs_info->last_trans_committed;
4294 goto out;
4295 }
4296 transid = trans->transid;
4297 ret = btrfs_commit_transaction_async(trans, 0);
4298 if (ret) {
4299 btrfs_end_transaction(trans);
4300 return ret;
4301 }
4302 out:
4303 if (argp)
4304 if (copy_to_user(argp, &transid, sizeof(transid)))
4305 return -EFAULT;
4306 return 0;
4307 }
4308
4309 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4310 void __user *argp)
4311 {
4312 u64 transid;
4313
4314 if (argp) {
4315 if (copy_from_user(&transid, argp, sizeof(transid)))
4316 return -EFAULT;
4317 } else {
4318 transid = 0; /* current trans */
4319 }
4320 return btrfs_wait_for_commit(fs_info, transid);
4321 }
4322
4323 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4324 {
4325 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4326 struct btrfs_ioctl_scrub_args *sa;
4327 int ret;
4328
4329 if (!capable(CAP_SYS_ADMIN))
4330 return -EPERM;
4331
4332 sa = memdup_user(arg, sizeof(*sa));
4333 if (IS_ERR(sa))
4334 return PTR_ERR(sa);
4335
4336 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4337 ret = mnt_want_write_file(file);
4338 if (ret)
4339 goto out;
4340 }
4341
4342 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4343 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4344 0);
4345
4346 if (copy_to_user(arg, sa, sizeof(*sa)))
4347 ret = -EFAULT;
4348
4349 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4350 mnt_drop_write_file(file);
4351 out:
4352 kfree(sa);
4353 return ret;
4354 }
4355
4356 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4357 {
4358 if (!capable(CAP_SYS_ADMIN))
4359 return -EPERM;
4360
4361 return btrfs_scrub_cancel(fs_info);
4362 }
4363
4364 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4365 void __user *arg)
4366 {
4367 struct btrfs_ioctl_scrub_args *sa;
4368 int ret;
4369
4370 if (!capable(CAP_SYS_ADMIN))
4371 return -EPERM;
4372
4373 sa = memdup_user(arg, sizeof(*sa));
4374 if (IS_ERR(sa))
4375 return PTR_ERR(sa);
4376
4377 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4378
4379 if (copy_to_user(arg, sa, sizeof(*sa)))
4380 ret = -EFAULT;
4381
4382 kfree(sa);
4383 return ret;
4384 }
4385
4386 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4387 void __user *arg)
4388 {
4389 struct btrfs_ioctl_get_dev_stats *sa;
4390 int ret;
4391
4392 sa = memdup_user(arg, sizeof(*sa));
4393 if (IS_ERR(sa))
4394 return PTR_ERR(sa);
4395
4396 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4397 kfree(sa);
4398 return -EPERM;
4399 }
4400
4401 ret = btrfs_get_dev_stats(fs_info, sa);
4402
4403 if (copy_to_user(arg, sa, sizeof(*sa)))
4404 ret = -EFAULT;
4405
4406 kfree(sa);
4407 return ret;
4408 }
4409
4410 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4411 void __user *arg)
4412 {
4413 struct btrfs_ioctl_dev_replace_args *p;
4414 int ret;
4415
4416 if (!capable(CAP_SYS_ADMIN))
4417 return -EPERM;
4418
4419 p = memdup_user(arg, sizeof(*p));
4420 if (IS_ERR(p))
4421 return PTR_ERR(p);
4422
4423 switch (p->cmd) {
4424 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4425 if (sb_rdonly(fs_info->sb)) {
4426 ret = -EROFS;
4427 goto out;
4428 }
4429 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4430 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4431 } else {
4432 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4433 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4434 }
4435 break;
4436 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4437 btrfs_dev_replace_status(fs_info, p);
4438 ret = 0;
4439 break;
4440 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4441 ret = btrfs_dev_replace_cancel(fs_info, p);
4442 break;
4443 default:
4444 ret = -EINVAL;
4445 break;
4446 }
4447
4448 if (copy_to_user(arg, p, sizeof(*p)))
4449 ret = -EFAULT;
4450 out:
4451 kfree(p);
4452 return ret;
4453 }
4454
4455 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4456 {
4457 int ret = 0;
4458 int i;
4459 u64 rel_ptr;
4460 int size;
4461 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4462 struct inode_fs_paths *ipath = NULL;
4463 struct btrfs_path *path;
4464
4465 if (!capable(CAP_DAC_READ_SEARCH))
4466 return -EPERM;
4467
4468 path = btrfs_alloc_path();
4469 if (!path) {
4470 ret = -ENOMEM;
4471 goto out;
4472 }
4473
4474 ipa = memdup_user(arg, sizeof(*ipa));
4475 if (IS_ERR(ipa)) {
4476 ret = PTR_ERR(ipa);
4477 ipa = NULL;
4478 goto out;
4479 }
4480
4481 size = min_t(u32, ipa->size, 4096);
4482 ipath = init_ipath(size, root, path);
4483 if (IS_ERR(ipath)) {
4484 ret = PTR_ERR(ipath);
4485 ipath = NULL;
4486 goto out;
4487 }
4488
4489 ret = paths_from_inode(ipa->inum, ipath);
4490 if (ret < 0)
4491 goto out;
4492
4493 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4494 rel_ptr = ipath->fspath->val[i] -
4495 (u64)(unsigned long)ipath->fspath->val;
4496 ipath->fspath->val[i] = rel_ptr;
4497 }
4498
4499 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4500 ipath->fspath, size);
4501 if (ret) {
4502 ret = -EFAULT;
4503 goto out;
4504 }
4505
4506 out:
4507 btrfs_free_path(path);
4508 free_ipath(ipath);
4509 kfree(ipa);
4510
4511 return ret;
4512 }
4513
4514 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4515 {
4516 struct btrfs_data_container *inodes = ctx;
4517 const size_t c = 3 * sizeof(u64);
4518
4519 if (inodes->bytes_left >= c) {
4520 inodes->bytes_left -= c;
4521 inodes->val[inodes->elem_cnt] = inum;
4522 inodes->val[inodes->elem_cnt + 1] = offset;
4523 inodes->val[inodes->elem_cnt + 2] = root;
4524 inodes->elem_cnt += 3;
4525 } else {
4526 inodes->bytes_missing += c - inodes->bytes_left;
4527 inodes->bytes_left = 0;
4528 inodes->elem_missed += 3;
4529 }
4530
4531 return 0;
4532 }
4533
4534 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4535 void __user *arg, int version)
4536 {
4537 int ret = 0;
4538 int size;
4539 struct btrfs_ioctl_logical_ino_args *loi;
4540 struct btrfs_data_container *inodes = NULL;
4541 struct btrfs_path *path = NULL;
4542 bool ignore_offset;
4543
4544 if (!capable(CAP_SYS_ADMIN))
4545 return -EPERM;
4546
4547 loi = memdup_user(arg, sizeof(*loi));
4548 if (IS_ERR(loi))
4549 return PTR_ERR(loi);
4550
4551 if (version == 1) {
4552 ignore_offset = false;
4553 size = min_t(u32, loi->size, SZ_64K);
4554 } else {
4555 /* All reserved bits must be 0 for now */
4556 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4557 ret = -EINVAL;
4558 goto out_loi;
4559 }
4560 /* Only accept flags we have defined so far */
4561 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4562 ret = -EINVAL;
4563 goto out_loi;
4564 }
4565 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4566 size = min_t(u32, loi->size, SZ_16M);
4567 }
4568
4569 path = btrfs_alloc_path();
4570 if (!path) {
4571 ret = -ENOMEM;
4572 goto out;
4573 }
4574
4575 inodes = init_data_container(size);
4576 if (IS_ERR(inodes)) {
4577 ret = PTR_ERR(inodes);
4578 inodes = NULL;
4579 goto out;
4580 }
4581
4582 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4583 build_ino_list, inodes, ignore_offset);
4584 if (ret == -EINVAL)
4585 ret = -ENOENT;
4586 if (ret < 0)
4587 goto out;
4588
4589 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4590 size);
4591 if (ret)
4592 ret = -EFAULT;
4593
4594 out:
4595 btrfs_free_path(path);
4596 kvfree(inodes);
4597 out_loi:
4598 kfree(loi);
4599
4600 return ret;
4601 }
4602
4603 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4604 struct btrfs_ioctl_balance_args *bargs)
4605 {
4606 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4607
4608 bargs->flags = bctl->flags;
4609
4610 if (atomic_read(&fs_info->balance_running))
4611 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4612 if (atomic_read(&fs_info->balance_pause_req))
4613 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4614 if (atomic_read(&fs_info->balance_cancel_req))
4615 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4616
4617 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4618 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4619 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4620
4621 if (lock) {
4622 spin_lock(&fs_info->balance_lock);
4623 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4624 spin_unlock(&fs_info->balance_lock);
4625 } else {
4626 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4627 }
4628 }
4629
4630 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4631 {
4632 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4633 struct btrfs_fs_info *fs_info = root->fs_info;
4634 struct btrfs_ioctl_balance_args *bargs;
4635 struct btrfs_balance_control *bctl;
4636 bool need_unlock; /* for mut. excl. ops lock */
4637 int ret;
4638
4639 if (!capable(CAP_SYS_ADMIN))
4640 return -EPERM;
4641
4642 ret = mnt_want_write_file(file);
4643 if (ret)
4644 return ret;
4645
4646 again:
4647 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4648 mutex_lock(&fs_info->volume_mutex);
4649 mutex_lock(&fs_info->balance_mutex);
4650 need_unlock = true;
4651 goto locked;
4652 }
4653
4654 /*
4655 * mut. excl. ops lock is locked. Three possibilities:
4656 * (1) some other op is running
4657 * (2) balance is running
4658 * (3) balance is paused -- special case (think resume)
4659 */
4660 mutex_lock(&fs_info->balance_mutex);
4661 if (fs_info->balance_ctl) {
4662 /* this is either (2) or (3) */
4663 if (!atomic_read(&fs_info->balance_running)) {
4664 mutex_unlock(&fs_info->balance_mutex);
4665 if (!mutex_trylock(&fs_info->volume_mutex))
4666 goto again;
4667 mutex_lock(&fs_info->balance_mutex);
4668
4669 if (fs_info->balance_ctl &&
4670 !atomic_read(&fs_info->balance_running)) {
4671 /* this is (3) */
4672 need_unlock = false;
4673 goto locked;
4674 }
4675
4676 mutex_unlock(&fs_info->balance_mutex);
4677 mutex_unlock(&fs_info->volume_mutex);
4678 goto again;
4679 } else {
4680 /* this is (2) */
4681 mutex_unlock(&fs_info->balance_mutex);
4682 ret = -EINPROGRESS;
4683 goto out;
4684 }
4685 } else {
4686 /* this is (1) */
4687 mutex_unlock(&fs_info->balance_mutex);
4688 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4689 goto out;
4690 }
4691
4692 locked:
4693 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4694
4695 if (arg) {
4696 bargs = memdup_user(arg, sizeof(*bargs));
4697 if (IS_ERR(bargs)) {
4698 ret = PTR_ERR(bargs);
4699 goto out_unlock;
4700 }
4701
4702 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4703 if (!fs_info->balance_ctl) {
4704 ret = -ENOTCONN;
4705 goto out_bargs;
4706 }
4707
4708 bctl = fs_info->balance_ctl;
4709 spin_lock(&fs_info->balance_lock);
4710 bctl->flags |= BTRFS_BALANCE_RESUME;
4711 spin_unlock(&fs_info->balance_lock);
4712
4713 goto do_balance;
4714 }
4715 } else {
4716 bargs = NULL;
4717 }
4718
4719 if (fs_info->balance_ctl) {
4720 ret = -EINPROGRESS;
4721 goto out_bargs;
4722 }
4723
4724 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4725 if (!bctl) {
4726 ret = -ENOMEM;
4727 goto out_bargs;
4728 }
4729
4730 bctl->fs_info = fs_info;
4731 if (arg) {
4732 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4733 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4734 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4735
4736 bctl->flags = bargs->flags;
4737 } else {
4738 /* balance everything - no filters */
4739 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4740 }
4741
4742 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4743 ret = -EINVAL;
4744 goto out_bctl;
4745 }
4746
4747 do_balance:
4748 /*
4749 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4750 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4751 * or, if restriper was paused all the way until unmount, in
4752 * free_fs_info. The flag is cleared in __cancel_balance.
4753 */
4754 need_unlock = false;
4755
4756 ret = btrfs_balance(bctl, bargs);
4757 bctl = NULL;
4758
4759 if (arg) {
4760 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4761 ret = -EFAULT;
4762 }
4763
4764 out_bctl:
4765 kfree(bctl);
4766 out_bargs:
4767 kfree(bargs);
4768 out_unlock:
4769 mutex_unlock(&fs_info->balance_mutex);
4770 mutex_unlock(&fs_info->volume_mutex);
4771 if (need_unlock)
4772 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4773 out:
4774 mnt_drop_write_file(file);
4775 return ret;
4776 }
4777
4778 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4779 {
4780 if (!capable(CAP_SYS_ADMIN))
4781 return -EPERM;
4782
4783 switch (cmd) {
4784 case BTRFS_BALANCE_CTL_PAUSE:
4785 return btrfs_pause_balance(fs_info);
4786 case BTRFS_BALANCE_CTL_CANCEL:
4787 return btrfs_cancel_balance(fs_info);
4788 }
4789
4790 return -EINVAL;
4791 }
4792
4793 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4794 void __user *arg)
4795 {
4796 struct btrfs_ioctl_balance_args *bargs;
4797 int ret = 0;
4798
4799 if (!capable(CAP_SYS_ADMIN))
4800 return -EPERM;
4801
4802 mutex_lock(&fs_info->balance_mutex);
4803 if (!fs_info->balance_ctl) {
4804 ret = -ENOTCONN;
4805 goto out;
4806 }
4807
4808 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4809 if (!bargs) {
4810 ret = -ENOMEM;
4811 goto out;
4812 }
4813
4814 update_ioctl_balance_args(fs_info, 1, bargs);
4815
4816 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4817 ret = -EFAULT;
4818
4819 kfree(bargs);
4820 out:
4821 mutex_unlock(&fs_info->balance_mutex);
4822 return ret;
4823 }
4824
4825 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4826 {
4827 struct inode *inode = file_inode(file);
4828 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4829 struct btrfs_ioctl_quota_ctl_args *sa;
4830 struct btrfs_trans_handle *trans = NULL;
4831 int ret;
4832 int err;
4833
4834 if (!capable(CAP_SYS_ADMIN))
4835 return -EPERM;
4836
4837 ret = mnt_want_write_file(file);
4838 if (ret)
4839 return ret;
4840
4841 sa = memdup_user(arg, sizeof(*sa));
4842 if (IS_ERR(sa)) {
4843 ret = PTR_ERR(sa);
4844 goto drop_write;
4845 }
4846
4847 down_write(&fs_info->subvol_sem);
4848 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4849 if (IS_ERR(trans)) {
4850 ret = PTR_ERR(trans);
4851 goto out;
4852 }
4853
4854 switch (sa->cmd) {
4855 case BTRFS_QUOTA_CTL_ENABLE:
4856 ret = btrfs_quota_enable(trans, fs_info);
4857 break;
4858 case BTRFS_QUOTA_CTL_DISABLE:
4859 ret = btrfs_quota_disable(trans, fs_info);
4860 break;
4861 default:
4862 ret = -EINVAL;
4863 break;
4864 }
4865
4866 err = btrfs_commit_transaction(trans);
4867 if (err && !ret)
4868 ret = err;
4869 out:
4870 kfree(sa);
4871 up_write(&fs_info->subvol_sem);
4872 drop_write:
4873 mnt_drop_write_file(file);
4874 return ret;
4875 }
4876
4877 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4878 {
4879 struct inode *inode = file_inode(file);
4880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4881 struct btrfs_root *root = BTRFS_I(inode)->root;
4882 struct btrfs_ioctl_qgroup_assign_args *sa;
4883 struct btrfs_trans_handle *trans;
4884 int ret;
4885 int err;
4886
4887 if (!capable(CAP_SYS_ADMIN))
4888 return -EPERM;
4889
4890 ret = mnt_want_write_file(file);
4891 if (ret)
4892 return ret;
4893
4894 sa = memdup_user(arg, sizeof(*sa));
4895 if (IS_ERR(sa)) {
4896 ret = PTR_ERR(sa);
4897 goto drop_write;
4898 }
4899
4900 trans = btrfs_join_transaction(root);
4901 if (IS_ERR(trans)) {
4902 ret = PTR_ERR(trans);
4903 goto out;
4904 }
4905
4906 if (sa->assign) {
4907 ret = btrfs_add_qgroup_relation(trans, fs_info,
4908 sa->src, sa->dst);
4909 } else {
4910 ret = btrfs_del_qgroup_relation(trans, fs_info,
4911 sa->src, sa->dst);
4912 }
4913
4914 /* update qgroup status and info */
4915 err = btrfs_run_qgroups(trans, fs_info);
4916 if (err < 0)
4917 btrfs_handle_fs_error(fs_info, err,
4918 "failed to update qgroup status and info");
4919 err = btrfs_end_transaction(trans);
4920 if (err && !ret)
4921 ret = err;
4922
4923 out:
4924 kfree(sa);
4925 drop_write:
4926 mnt_drop_write_file(file);
4927 return ret;
4928 }
4929
4930 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4931 {
4932 struct inode *inode = file_inode(file);
4933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4934 struct btrfs_root *root = BTRFS_I(inode)->root;
4935 struct btrfs_ioctl_qgroup_create_args *sa;
4936 struct btrfs_trans_handle *trans;
4937 int ret;
4938 int err;
4939
4940 if (!capable(CAP_SYS_ADMIN))
4941 return -EPERM;
4942
4943 ret = mnt_want_write_file(file);
4944 if (ret)
4945 return ret;
4946
4947 sa = memdup_user(arg, sizeof(*sa));
4948 if (IS_ERR(sa)) {
4949 ret = PTR_ERR(sa);
4950 goto drop_write;
4951 }
4952
4953 if (!sa->qgroupid) {
4954 ret = -EINVAL;
4955 goto out;
4956 }
4957
4958 trans = btrfs_join_transaction(root);
4959 if (IS_ERR(trans)) {
4960 ret = PTR_ERR(trans);
4961 goto out;
4962 }
4963
4964 if (sa->create) {
4965 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4966 } else {
4967 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4968 }
4969
4970 err = btrfs_end_transaction(trans);
4971 if (err && !ret)
4972 ret = err;
4973
4974 out:
4975 kfree(sa);
4976 drop_write:
4977 mnt_drop_write_file(file);
4978 return ret;
4979 }
4980
4981 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4982 {
4983 struct inode *inode = file_inode(file);
4984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4985 struct btrfs_root *root = BTRFS_I(inode)->root;
4986 struct btrfs_ioctl_qgroup_limit_args *sa;
4987 struct btrfs_trans_handle *trans;
4988 int ret;
4989 int err;
4990 u64 qgroupid;
4991
4992 if (!capable(CAP_SYS_ADMIN))
4993 return -EPERM;
4994
4995 ret = mnt_want_write_file(file);
4996 if (ret)
4997 return ret;
4998
4999 sa = memdup_user(arg, sizeof(*sa));
5000 if (IS_ERR(sa)) {
5001 ret = PTR_ERR(sa);
5002 goto drop_write;
5003 }
5004
5005 trans = btrfs_join_transaction(root);
5006 if (IS_ERR(trans)) {
5007 ret = PTR_ERR(trans);
5008 goto out;
5009 }
5010
5011 qgroupid = sa->qgroupid;
5012 if (!qgroupid) {
5013 /* take the current subvol as qgroup */
5014 qgroupid = root->root_key.objectid;
5015 }
5016
5017 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5018
5019 err = btrfs_end_transaction(trans);
5020 if (err && !ret)
5021 ret = err;
5022
5023 out:
5024 kfree(sa);
5025 drop_write:
5026 mnt_drop_write_file(file);
5027 return ret;
5028 }
5029
5030 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5031 {
5032 struct inode *inode = file_inode(file);
5033 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5034 struct btrfs_ioctl_quota_rescan_args *qsa;
5035 int ret;
5036
5037 if (!capable(CAP_SYS_ADMIN))
5038 return -EPERM;
5039
5040 ret = mnt_want_write_file(file);
5041 if (ret)
5042 return ret;
5043
5044 qsa = memdup_user(arg, sizeof(*qsa));
5045 if (IS_ERR(qsa)) {
5046 ret = PTR_ERR(qsa);
5047 goto drop_write;
5048 }
5049
5050 if (qsa->flags) {
5051 ret = -EINVAL;
5052 goto out;
5053 }
5054
5055 ret = btrfs_qgroup_rescan(fs_info);
5056
5057 out:
5058 kfree(qsa);
5059 drop_write:
5060 mnt_drop_write_file(file);
5061 return ret;
5062 }
5063
5064 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5065 {
5066 struct inode *inode = file_inode(file);
5067 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5068 struct btrfs_ioctl_quota_rescan_args *qsa;
5069 int ret = 0;
5070
5071 if (!capable(CAP_SYS_ADMIN))
5072 return -EPERM;
5073
5074 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5075 if (!qsa)
5076 return -ENOMEM;
5077
5078 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5079 qsa->flags = 1;
5080 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5081 }
5082
5083 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5084 ret = -EFAULT;
5085
5086 kfree(qsa);
5087 return ret;
5088 }
5089
5090 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5091 {
5092 struct inode *inode = file_inode(file);
5093 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5094
5095 if (!capable(CAP_SYS_ADMIN))
5096 return -EPERM;
5097
5098 return btrfs_qgroup_wait_for_completion(fs_info, true);
5099 }
5100
5101 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5102 struct btrfs_ioctl_received_subvol_args *sa)
5103 {
5104 struct inode *inode = file_inode(file);
5105 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5106 struct btrfs_root *root = BTRFS_I(inode)->root;
5107 struct btrfs_root_item *root_item = &root->root_item;
5108 struct btrfs_trans_handle *trans;
5109 struct timespec ct = current_time(inode);
5110 int ret = 0;
5111 int received_uuid_changed;
5112
5113 if (!inode_owner_or_capable(inode))
5114 return -EPERM;
5115
5116 ret = mnt_want_write_file(file);
5117 if (ret < 0)
5118 return ret;
5119
5120 down_write(&fs_info->subvol_sem);
5121
5122 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5123 ret = -EINVAL;
5124 goto out;
5125 }
5126
5127 if (btrfs_root_readonly(root)) {
5128 ret = -EROFS;
5129 goto out;
5130 }
5131
5132 /*
5133 * 1 - root item
5134 * 2 - uuid items (received uuid + subvol uuid)
5135 */
5136 trans = btrfs_start_transaction(root, 3);
5137 if (IS_ERR(trans)) {
5138 ret = PTR_ERR(trans);
5139 trans = NULL;
5140 goto out;
5141 }
5142
5143 sa->rtransid = trans->transid;
5144 sa->rtime.sec = ct.tv_sec;
5145 sa->rtime.nsec = ct.tv_nsec;
5146
5147 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5148 BTRFS_UUID_SIZE);
5149 if (received_uuid_changed &&
5150 !btrfs_is_empty_uuid(root_item->received_uuid))
5151 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5152 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5153 root->root_key.objectid);
5154 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5155 btrfs_set_root_stransid(root_item, sa->stransid);
5156 btrfs_set_root_rtransid(root_item, sa->rtransid);
5157 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5158 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5159 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5160 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5161
5162 ret = btrfs_update_root(trans, fs_info->tree_root,
5163 &root->root_key, &root->root_item);
5164 if (ret < 0) {
5165 btrfs_end_transaction(trans);
5166 goto out;
5167 }
5168 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5169 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5170 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5171 root->root_key.objectid);
5172 if (ret < 0 && ret != -EEXIST) {
5173 btrfs_abort_transaction(trans, ret);
5174 btrfs_end_transaction(trans);
5175 goto out;
5176 }
5177 }
5178 ret = btrfs_commit_transaction(trans);
5179 out:
5180 up_write(&fs_info->subvol_sem);
5181 mnt_drop_write_file(file);
5182 return ret;
5183 }
5184
5185 #ifdef CONFIG_64BIT
5186 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5187 void __user *arg)
5188 {
5189 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5190 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5191 int ret = 0;
5192
5193 args32 = memdup_user(arg, sizeof(*args32));
5194 if (IS_ERR(args32))
5195 return PTR_ERR(args32);
5196
5197 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5198 if (!args64) {
5199 ret = -ENOMEM;
5200 goto out;
5201 }
5202
5203 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5204 args64->stransid = args32->stransid;
5205 args64->rtransid = args32->rtransid;
5206 args64->stime.sec = args32->stime.sec;
5207 args64->stime.nsec = args32->stime.nsec;
5208 args64->rtime.sec = args32->rtime.sec;
5209 args64->rtime.nsec = args32->rtime.nsec;
5210 args64->flags = args32->flags;
5211
5212 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5213 if (ret)
5214 goto out;
5215
5216 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5217 args32->stransid = args64->stransid;
5218 args32->rtransid = args64->rtransid;
5219 args32->stime.sec = args64->stime.sec;
5220 args32->stime.nsec = args64->stime.nsec;
5221 args32->rtime.sec = args64->rtime.sec;
5222 args32->rtime.nsec = args64->rtime.nsec;
5223 args32->flags = args64->flags;
5224
5225 ret = copy_to_user(arg, args32, sizeof(*args32));
5226 if (ret)
5227 ret = -EFAULT;
5228
5229 out:
5230 kfree(args32);
5231 kfree(args64);
5232 return ret;
5233 }
5234 #endif
5235
5236 static long btrfs_ioctl_set_received_subvol(struct file *file,
5237 void __user *arg)
5238 {
5239 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5240 int ret = 0;
5241
5242 sa = memdup_user(arg, sizeof(*sa));
5243 if (IS_ERR(sa))
5244 return PTR_ERR(sa);
5245
5246 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5247
5248 if (ret)
5249 goto out;
5250
5251 ret = copy_to_user(arg, sa, sizeof(*sa));
5252 if (ret)
5253 ret = -EFAULT;
5254
5255 out:
5256 kfree(sa);
5257 return ret;
5258 }
5259
5260 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5261 {
5262 struct inode *inode = file_inode(file);
5263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5264 size_t len;
5265 int ret;
5266 char label[BTRFS_LABEL_SIZE];
5267
5268 spin_lock(&fs_info->super_lock);
5269 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5270 spin_unlock(&fs_info->super_lock);
5271
5272 len = strnlen(label, BTRFS_LABEL_SIZE);
5273
5274 if (len == BTRFS_LABEL_SIZE) {
5275 btrfs_warn(fs_info,
5276 "label is too long, return the first %zu bytes",
5277 --len);
5278 }
5279
5280 ret = copy_to_user(arg, label, len);
5281
5282 return ret ? -EFAULT : 0;
5283 }
5284
5285 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5286 {
5287 struct inode *inode = file_inode(file);
5288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5289 struct btrfs_root *root = BTRFS_I(inode)->root;
5290 struct btrfs_super_block *super_block = fs_info->super_copy;
5291 struct btrfs_trans_handle *trans;
5292 char label[BTRFS_LABEL_SIZE];
5293 int ret;
5294
5295 if (!capable(CAP_SYS_ADMIN))
5296 return -EPERM;
5297
5298 if (copy_from_user(label, arg, sizeof(label)))
5299 return -EFAULT;
5300
5301 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5302 btrfs_err(fs_info,
5303 "unable to set label with more than %d bytes",
5304 BTRFS_LABEL_SIZE - 1);
5305 return -EINVAL;
5306 }
5307
5308 ret = mnt_want_write_file(file);
5309 if (ret)
5310 return ret;
5311
5312 trans = btrfs_start_transaction(root, 0);
5313 if (IS_ERR(trans)) {
5314 ret = PTR_ERR(trans);
5315 goto out_unlock;
5316 }
5317
5318 spin_lock(&fs_info->super_lock);
5319 strcpy(super_block->label, label);
5320 spin_unlock(&fs_info->super_lock);
5321 ret = btrfs_commit_transaction(trans);
5322
5323 out_unlock:
5324 mnt_drop_write_file(file);
5325 return ret;
5326 }
5327
5328 #define INIT_FEATURE_FLAGS(suffix) \
5329 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5330 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5331 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5332
5333 int btrfs_ioctl_get_supported_features(void __user *arg)
5334 {
5335 static const struct btrfs_ioctl_feature_flags features[3] = {
5336 INIT_FEATURE_FLAGS(SUPP),
5337 INIT_FEATURE_FLAGS(SAFE_SET),
5338 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5339 };
5340
5341 if (copy_to_user(arg, &features, sizeof(features)))
5342 return -EFAULT;
5343
5344 return 0;
5345 }
5346
5347 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5348 {
5349 struct inode *inode = file_inode(file);
5350 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5351 struct btrfs_super_block *super_block = fs_info->super_copy;
5352 struct btrfs_ioctl_feature_flags features;
5353
5354 features.compat_flags = btrfs_super_compat_flags(super_block);
5355 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5356 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5357
5358 if (copy_to_user(arg, &features, sizeof(features)))
5359 return -EFAULT;
5360
5361 return 0;
5362 }
5363
5364 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5365 enum btrfs_feature_set set,
5366 u64 change_mask, u64 flags, u64 supported_flags,
5367 u64 safe_set, u64 safe_clear)
5368 {
5369 const char *type = btrfs_feature_set_names[set];
5370 char *names;
5371 u64 disallowed, unsupported;
5372 u64 set_mask = flags & change_mask;
5373 u64 clear_mask = ~flags & change_mask;
5374
5375 unsupported = set_mask & ~supported_flags;
5376 if (unsupported) {
5377 names = btrfs_printable_features(set, unsupported);
5378 if (names) {
5379 btrfs_warn(fs_info,
5380 "this kernel does not support the %s feature bit%s",
5381 names, strchr(names, ',') ? "s" : "");
5382 kfree(names);
5383 } else
5384 btrfs_warn(fs_info,
5385 "this kernel does not support %s bits 0x%llx",
5386 type, unsupported);
5387 return -EOPNOTSUPP;
5388 }
5389
5390 disallowed = set_mask & ~safe_set;
5391 if (disallowed) {
5392 names = btrfs_printable_features(set, disallowed);
5393 if (names) {
5394 btrfs_warn(fs_info,
5395 "can't set the %s feature bit%s while mounted",
5396 names, strchr(names, ',') ? "s" : "");
5397 kfree(names);
5398 } else
5399 btrfs_warn(fs_info,
5400 "can't set %s bits 0x%llx while mounted",
5401 type, disallowed);
5402 return -EPERM;
5403 }
5404
5405 disallowed = clear_mask & ~safe_clear;
5406 if (disallowed) {
5407 names = btrfs_printable_features(set, disallowed);
5408 if (names) {
5409 btrfs_warn(fs_info,
5410 "can't clear the %s feature bit%s while mounted",
5411 names, strchr(names, ',') ? "s" : "");
5412 kfree(names);
5413 } else
5414 btrfs_warn(fs_info,
5415 "can't clear %s bits 0x%llx while mounted",
5416 type, disallowed);
5417 return -EPERM;
5418 }
5419
5420 return 0;
5421 }
5422
5423 #define check_feature(fs_info, change_mask, flags, mask_base) \
5424 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5425 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5426 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5427 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5428
5429 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5430 {
5431 struct inode *inode = file_inode(file);
5432 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5433 struct btrfs_root *root = BTRFS_I(inode)->root;
5434 struct btrfs_super_block *super_block = fs_info->super_copy;
5435 struct btrfs_ioctl_feature_flags flags[2];
5436 struct btrfs_trans_handle *trans;
5437 u64 newflags;
5438 int ret;
5439
5440 if (!capable(CAP_SYS_ADMIN))
5441 return -EPERM;
5442
5443 if (copy_from_user(flags, arg, sizeof(flags)))
5444 return -EFAULT;
5445
5446 /* Nothing to do */
5447 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5448 !flags[0].incompat_flags)
5449 return 0;
5450
5451 ret = check_feature(fs_info, flags[0].compat_flags,
5452 flags[1].compat_flags, COMPAT);
5453 if (ret)
5454 return ret;
5455
5456 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5457 flags[1].compat_ro_flags, COMPAT_RO);
5458 if (ret)
5459 return ret;
5460
5461 ret = check_feature(fs_info, flags[0].incompat_flags,
5462 flags[1].incompat_flags, INCOMPAT);
5463 if (ret)
5464 return ret;
5465
5466 ret = mnt_want_write_file(file);
5467 if (ret)
5468 return ret;
5469
5470 trans = btrfs_start_transaction(root, 0);
5471 if (IS_ERR(trans)) {
5472 ret = PTR_ERR(trans);
5473 goto out_drop_write;
5474 }
5475
5476 spin_lock(&fs_info->super_lock);
5477 newflags = btrfs_super_compat_flags(super_block);
5478 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5479 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5480 btrfs_set_super_compat_flags(super_block, newflags);
5481
5482 newflags = btrfs_super_compat_ro_flags(super_block);
5483 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5484 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5485 btrfs_set_super_compat_ro_flags(super_block, newflags);
5486
5487 newflags = btrfs_super_incompat_flags(super_block);
5488 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5489 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5490 btrfs_set_super_incompat_flags(super_block, newflags);
5491 spin_unlock(&fs_info->super_lock);
5492
5493 ret = btrfs_commit_transaction(trans);
5494 out_drop_write:
5495 mnt_drop_write_file(file);
5496
5497 return ret;
5498 }
5499
5500 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5501 {
5502 struct btrfs_ioctl_send_args *arg;
5503 int ret;
5504
5505 if (compat) {
5506 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5507 struct btrfs_ioctl_send_args_32 args32;
5508
5509 ret = copy_from_user(&args32, argp, sizeof(args32));
5510 if (ret)
5511 return -EFAULT;
5512 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5513 if (!arg)
5514 return -ENOMEM;
5515 arg->send_fd = args32.send_fd;
5516 arg->clone_sources_count = args32.clone_sources_count;
5517 arg->clone_sources = compat_ptr(args32.clone_sources);
5518 arg->parent_root = args32.parent_root;
5519 arg->flags = args32.flags;
5520 memcpy(arg->reserved, args32.reserved,
5521 sizeof(args32.reserved));
5522 #else
5523 return -ENOTTY;
5524 #endif
5525 } else {
5526 arg = memdup_user(argp, sizeof(*arg));
5527 if (IS_ERR(arg))
5528 return PTR_ERR(arg);
5529 }
5530 ret = btrfs_ioctl_send(file, arg);
5531 kfree(arg);
5532 return ret;
5533 }
5534
5535 long btrfs_ioctl(struct file *file, unsigned int
5536 cmd, unsigned long arg)
5537 {
5538 struct inode *inode = file_inode(file);
5539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5540 struct btrfs_root *root = BTRFS_I(inode)->root;
5541 void __user *argp = (void __user *)arg;
5542
5543 switch (cmd) {
5544 case FS_IOC_GETFLAGS:
5545 return btrfs_ioctl_getflags(file, argp);
5546 case FS_IOC_SETFLAGS:
5547 return btrfs_ioctl_setflags(file, argp);
5548 case FS_IOC_GETVERSION:
5549 return btrfs_ioctl_getversion(file, argp);
5550 case FITRIM:
5551 return btrfs_ioctl_fitrim(file, argp);
5552 case BTRFS_IOC_SNAP_CREATE:
5553 return btrfs_ioctl_snap_create(file, argp, 0);
5554 case BTRFS_IOC_SNAP_CREATE_V2:
5555 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5556 case BTRFS_IOC_SUBVOL_CREATE:
5557 return btrfs_ioctl_snap_create(file, argp, 1);
5558 case BTRFS_IOC_SUBVOL_CREATE_V2:
5559 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5560 case BTRFS_IOC_SNAP_DESTROY:
5561 return btrfs_ioctl_snap_destroy(file, argp);
5562 case BTRFS_IOC_SUBVOL_GETFLAGS:
5563 return btrfs_ioctl_subvol_getflags(file, argp);
5564 case BTRFS_IOC_SUBVOL_SETFLAGS:
5565 return btrfs_ioctl_subvol_setflags(file, argp);
5566 case BTRFS_IOC_DEFAULT_SUBVOL:
5567 return btrfs_ioctl_default_subvol(file, argp);
5568 case BTRFS_IOC_DEFRAG:
5569 return btrfs_ioctl_defrag(file, NULL);
5570 case BTRFS_IOC_DEFRAG_RANGE:
5571 return btrfs_ioctl_defrag(file, argp);
5572 case BTRFS_IOC_RESIZE:
5573 return btrfs_ioctl_resize(file, argp);
5574 case BTRFS_IOC_ADD_DEV:
5575 return btrfs_ioctl_add_dev(fs_info, argp);
5576 case BTRFS_IOC_RM_DEV:
5577 return btrfs_ioctl_rm_dev(file, argp);
5578 case BTRFS_IOC_RM_DEV_V2:
5579 return btrfs_ioctl_rm_dev_v2(file, argp);
5580 case BTRFS_IOC_FS_INFO:
5581 return btrfs_ioctl_fs_info(fs_info, argp);
5582 case BTRFS_IOC_DEV_INFO:
5583 return btrfs_ioctl_dev_info(fs_info, argp);
5584 case BTRFS_IOC_BALANCE:
5585 return btrfs_ioctl_balance(file, NULL);
5586 case BTRFS_IOC_TRANS_START:
5587 return btrfs_ioctl_trans_start(file);
5588 case BTRFS_IOC_TRANS_END:
5589 return btrfs_ioctl_trans_end(file);
5590 case BTRFS_IOC_TREE_SEARCH:
5591 return btrfs_ioctl_tree_search(file, argp);
5592 case BTRFS_IOC_TREE_SEARCH_V2:
5593 return btrfs_ioctl_tree_search_v2(file, argp);
5594 case BTRFS_IOC_INO_LOOKUP:
5595 return btrfs_ioctl_ino_lookup(file, argp);
5596 case BTRFS_IOC_INO_PATHS:
5597 return btrfs_ioctl_ino_to_path(root, argp);
5598 case BTRFS_IOC_LOGICAL_INO:
5599 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5600 case BTRFS_IOC_LOGICAL_INO_V2:
5601 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5602 case BTRFS_IOC_SPACE_INFO:
5603 return btrfs_ioctl_space_info(fs_info, argp);
5604 case BTRFS_IOC_SYNC: {
5605 int ret;
5606
5607 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5608 if (ret)
5609 return ret;
5610 ret = btrfs_sync_fs(inode->i_sb, 1);
5611 /*
5612 * The transaction thread may want to do more work,
5613 * namely it pokes the cleaner kthread that will start
5614 * processing uncleaned subvols.
5615 */
5616 wake_up_process(fs_info->transaction_kthread);
5617 return ret;
5618 }
5619 case BTRFS_IOC_START_SYNC:
5620 return btrfs_ioctl_start_sync(root, argp);
5621 case BTRFS_IOC_WAIT_SYNC:
5622 return btrfs_ioctl_wait_sync(fs_info, argp);
5623 case BTRFS_IOC_SCRUB:
5624 return btrfs_ioctl_scrub(file, argp);
5625 case BTRFS_IOC_SCRUB_CANCEL:
5626 return btrfs_ioctl_scrub_cancel(fs_info);
5627 case BTRFS_IOC_SCRUB_PROGRESS:
5628 return btrfs_ioctl_scrub_progress(fs_info, argp);
5629 case BTRFS_IOC_BALANCE_V2:
5630 return btrfs_ioctl_balance(file, argp);
5631 case BTRFS_IOC_BALANCE_CTL:
5632 return btrfs_ioctl_balance_ctl(fs_info, arg);
5633 case BTRFS_IOC_BALANCE_PROGRESS:
5634 return btrfs_ioctl_balance_progress(fs_info, argp);
5635 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5636 return btrfs_ioctl_set_received_subvol(file, argp);
5637 #ifdef CONFIG_64BIT
5638 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5639 return btrfs_ioctl_set_received_subvol_32(file, argp);
5640 #endif
5641 case BTRFS_IOC_SEND:
5642 return _btrfs_ioctl_send(file, argp, false);
5643 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5644 case BTRFS_IOC_SEND_32:
5645 return _btrfs_ioctl_send(file, argp, true);
5646 #endif
5647 case BTRFS_IOC_GET_DEV_STATS:
5648 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5649 case BTRFS_IOC_QUOTA_CTL:
5650 return btrfs_ioctl_quota_ctl(file, argp);
5651 case BTRFS_IOC_QGROUP_ASSIGN:
5652 return btrfs_ioctl_qgroup_assign(file, argp);
5653 case BTRFS_IOC_QGROUP_CREATE:
5654 return btrfs_ioctl_qgroup_create(file, argp);
5655 case BTRFS_IOC_QGROUP_LIMIT:
5656 return btrfs_ioctl_qgroup_limit(file, argp);
5657 case BTRFS_IOC_QUOTA_RESCAN:
5658 return btrfs_ioctl_quota_rescan(file, argp);
5659 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5660 return btrfs_ioctl_quota_rescan_status(file, argp);
5661 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5662 return btrfs_ioctl_quota_rescan_wait(file, argp);
5663 case BTRFS_IOC_DEV_REPLACE:
5664 return btrfs_ioctl_dev_replace(fs_info, argp);
5665 case BTRFS_IOC_GET_FSLABEL:
5666 return btrfs_ioctl_get_fslabel(file, argp);
5667 case BTRFS_IOC_SET_FSLABEL:
5668 return btrfs_ioctl_set_fslabel(file, argp);
5669 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5670 return btrfs_ioctl_get_supported_features(argp);
5671 case BTRFS_IOC_GET_FEATURES:
5672 return btrfs_ioctl_get_features(file, argp);
5673 case BTRFS_IOC_SET_FEATURES:
5674 return btrfs_ioctl_set_features(file, argp);
5675 }
5676
5677 return -ENOTTY;
5678 }
5679
5680 #ifdef CONFIG_COMPAT
5681 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5682 {
5683 /*
5684 * These all access 32-bit values anyway so no further
5685 * handling is necessary.
5686 */
5687 switch (cmd) {
5688 case FS_IOC32_GETFLAGS:
5689 cmd = FS_IOC_GETFLAGS;
5690 break;
5691 case FS_IOC32_SETFLAGS:
5692 cmd = FS_IOC_SETFLAGS;
5693 break;
5694 case FS_IOC32_GETVERSION:
5695 cmd = FS_IOC_GETVERSION;
5696 break;
5697 }
5698
5699 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5700 }
5701 #endif