]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/ioctl.c
ceaf8b33d572df391ad7c998b245233cad031970
[thirdparty/linux.git] / fs / btrfs / ioctl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include <linux/sched/xacct.h>
32 #include "ctree.h"
33 #include "disk-io.h"
34 #include "export.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "block-group.h"
49 #include "fs.h"
50 #include "accessors.h"
51 #include "extent-tree.h"
52 #include "root-tree.h"
53 #include "defrag.h"
54 #include "dir-item.h"
55 #include "uuid-tree.h"
56 #include "ioctl.h"
57 #include "file.h"
58 #include "scrub.h"
59 #include "super.h"
60
61 #ifdef CONFIG_64BIT
62 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63 * structures are incorrect, as the timespec structure from userspace
64 * is 4 bytes too small. We define these alternatives here to teach
65 * the kernel about the 32-bit struct packing.
66 */
67 struct btrfs_ioctl_timespec_32 {
68 __u64 sec;
69 __u32 nsec;
70 } __attribute__ ((__packed__));
71
72 struct btrfs_ioctl_received_subvol_args_32 {
73 char uuid[BTRFS_UUID_SIZE]; /* in */
74 __u64 stransid; /* in */
75 __u64 rtransid; /* out */
76 struct btrfs_ioctl_timespec_32 stime; /* in */
77 struct btrfs_ioctl_timespec_32 rtime; /* out */
78 __u64 flags; /* in */
79 __u64 reserved[16]; /* in */
80 } __attribute__ ((__packed__));
81
82 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 struct btrfs_ioctl_received_subvol_args_32)
84 #endif
85
86 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87 struct btrfs_ioctl_send_args_32 {
88 __s64 send_fd; /* in */
89 __u64 clone_sources_count; /* in */
90 compat_uptr_t clone_sources; /* in */
91 __u64 parent_root; /* in */
92 __u64 flags; /* in */
93 __u32 version; /* in */
94 __u8 reserved[28]; /* in */
95 } __attribute__ ((__packed__));
96
97 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 struct btrfs_ioctl_send_args_32)
99
100 struct btrfs_ioctl_encoded_io_args_32 {
101 compat_uptr_t iov;
102 compat_ulong_t iovcnt;
103 __s64 offset;
104 __u64 flags;
105 __u64 len;
106 __u64 unencoded_len;
107 __u64 unencoded_offset;
108 __u32 compression;
109 __u32 encryption;
110 __u8 reserved[64];
111 };
112
113 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 struct btrfs_ioctl_encoded_io_args_32)
115 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 struct btrfs_ioctl_encoded_io_args_32)
117 #endif
118
119 /* Mask out flags that are inappropriate for the given type of inode. */
120 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121 unsigned int flags)
122 {
123 if (S_ISDIR(inode->i_mode))
124 return flags;
125 else if (S_ISREG(inode->i_mode))
126 return flags & ~FS_DIRSYNC_FL;
127 else
128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129 }
130
131 /*
132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133 * ioctl.
134 */
135 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136 {
137 unsigned int iflags = 0;
138 u32 flags = binode->flags;
139 u32 ro_flags = binode->ro_flags;
140
141 if (flags & BTRFS_INODE_SYNC)
142 iflags |= FS_SYNC_FL;
143 if (flags & BTRFS_INODE_IMMUTABLE)
144 iflags |= FS_IMMUTABLE_FL;
145 if (flags & BTRFS_INODE_APPEND)
146 iflags |= FS_APPEND_FL;
147 if (flags & BTRFS_INODE_NODUMP)
148 iflags |= FS_NODUMP_FL;
149 if (flags & BTRFS_INODE_NOATIME)
150 iflags |= FS_NOATIME_FL;
151 if (flags & BTRFS_INODE_DIRSYNC)
152 iflags |= FS_DIRSYNC_FL;
153 if (flags & BTRFS_INODE_NODATACOW)
154 iflags |= FS_NOCOW_FL;
155 if (ro_flags & BTRFS_INODE_RO_VERITY)
156 iflags |= FS_VERITY_FL;
157
158 if (flags & BTRFS_INODE_NOCOMPRESS)
159 iflags |= FS_NOCOMP_FL;
160 else if (flags & BTRFS_INODE_COMPRESS)
161 iflags |= FS_COMPR_FL;
162
163 return iflags;
164 }
165
166 /*
167 * Update inode->i_flags based on the btrfs internal flags.
168 */
169 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170 {
171 struct btrfs_inode *binode = BTRFS_I(inode);
172 unsigned int new_fl = 0;
173
174 if (binode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (binode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (binode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (binode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190 }
191
192 /*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
196 static int check_fsflags(unsigned int old_flags, unsigned int flags)
197 {
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219 }
220
221 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223 {
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228 }
229
230 /*
231 * Set flags/xflags from the internal inode flags. The remaining items of
232 * fsxattr are zeroed.
233 */
234 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
235 {
236 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
237
238 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
239 return 0;
240 }
241
242 int btrfs_fileattr_set(struct mnt_idmap *idmap,
243 struct dentry *dentry, struct fileattr *fa)
244 {
245 struct inode *inode = d_inode(dentry);
246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247 struct btrfs_inode *binode = BTRFS_I(inode);
248 struct btrfs_root *root = binode->root;
249 struct btrfs_trans_handle *trans;
250 unsigned int fsflags, old_fsflags;
251 int ret;
252 const char *comp = NULL;
253 u32 binode_flags;
254
255 if (btrfs_root_readonly(root))
256 return -EROFS;
257
258 if (fileattr_has_fsx(fa))
259 return -EOPNOTSUPP;
260
261 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
262 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
263 ret = check_fsflags(old_fsflags, fsflags);
264 if (ret)
265 return ret;
266
267 ret = check_fsflags_compatible(fs_info, fsflags);
268 if (ret)
269 return ret;
270
271 binode_flags = binode->flags;
272 if (fsflags & FS_SYNC_FL)
273 binode_flags |= BTRFS_INODE_SYNC;
274 else
275 binode_flags &= ~BTRFS_INODE_SYNC;
276 if (fsflags & FS_IMMUTABLE_FL)
277 binode_flags |= BTRFS_INODE_IMMUTABLE;
278 else
279 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
280 if (fsflags & FS_APPEND_FL)
281 binode_flags |= BTRFS_INODE_APPEND;
282 else
283 binode_flags &= ~BTRFS_INODE_APPEND;
284 if (fsflags & FS_NODUMP_FL)
285 binode_flags |= BTRFS_INODE_NODUMP;
286 else
287 binode_flags &= ~BTRFS_INODE_NODUMP;
288 if (fsflags & FS_NOATIME_FL)
289 binode_flags |= BTRFS_INODE_NOATIME;
290 else
291 binode_flags &= ~BTRFS_INODE_NOATIME;
292
293 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
294 if (!fa->flags_valid) {
295 /* 1 item for the inode */
296 trans = btrfs_start_transaction(root, 1);
297 if (IS_ERR(trans))
298 return PTR_ERR(trans);
299 goto update_flags;
300 }
301
302 if (fsflags & FS_DIRSYNC_FL)
303 binode_flags |= BTRFS_INODE_DIRSYNC;
304 else
305 binode_flags &= ~BTRFS_INODE_DIRSYNC;
306 if (fsflags & FS_NOCOW_FL) {
307 if (S_ISREG(inode->i_mode)) {
308 /*
309 * It's safe to turn csums off here, no extents exist.
310 * Otherwise we want the flag to reflect the real COW
311 * status of the file and will not set it.
312 */
313 if (inode->i_size == 0)
314 binode_flags |= BTRFS_INODE_NODATACOW |
315 BTRFS_INODE_NODATASUM;
316 } else {
317 binode_flags |= BTRFS_INODE_NODATACOW;
318 }
319 } else {
320 /*
321 * Revert back under same assumptions as above
322 */
323 if (S_ISREG(inode->i_mode)) {
324 if (inode->i_size == 0)
325 binode_flags &= ~(BTRFS_INODE_NODATACOW |
326 BTRFS_INODE_NODATASUM);
327 } else {
328 binode_flags &= ~BTRFS_INODE_NODATACOW;
329 }
330 }
331
332 /*
333 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
334 * flag may be changed automatically if compression code won't make
335 * things smaller.
336 */
337 if (fsflags & FS_NOCOMP_FL) {
338 binode_flags &= ~BTRFS_INODE_COMPRESS;
339 binode_flags |= BTRFS_INODE_NOCOMPRESS;
340 } else if (fsflags & FS_COMPR_FL) {
341
342 if (IS_SWAPFILE(inode))
343 return -ETXTBSY;
344
345 binode_flags |= BTRFS_INODE_COMPRESS;
346 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
347
348 comp = btrfs_compress_type2str(fs_info->compress_type);
349 if (!comp || comp[0] == 0)
350 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
351 } else {
352 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
353 }
354
355 /*
356 * 1 for inode item
357 * 2 for properties
358 */
359 trans = btrfs_start_transaction(root, 3);
360 if (IS_ERR(trans))
361 return PTR_ERR(trans);
362
363 if (comp) {
364 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
365 strlen(comp), 0);
366 if (ret) {
367 btrfs_abort_transaction(trans, ret);
368 goto out_end_trans;
369 }
370 } else {
371 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
372 0, 0);
373 if (ret && ret != -ENODATA) {
374 btrfs_abort_transaction(trans, ret);
375 goto out_end_trans;
376 }
377 }
378
379 update_flags:
380 binode->flags = binode_flags;
381 btrfs_sync_inode_flags_to_i_flags(inode);
382 inode_inc_iversion(inode);
383 inode_set_ctime_current(inode);
384 ret = btrfs_update_inode(trans, BTRFS_I(inode));
385
386 out_end_trans:
387 btrfs_end_transaction(trans);
388 return ret;
389 }
390
391 /*
392 * Start exclusive operation @type, return true on success
393 */
394 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
395 enum btrfs_exclusive_operation type)
396 {
397 bool ret = false;
398
399 spin_lock(&fs_info->super_lock);
400 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
401 fs_info->exclusive_operation = type;
402 ret = true;
403 }
404 spin_unlock(&fs_info->super_lock);
405
406 return ret;
407 }
408
409 /*
410 * Conditionally allow to enter the exclusive operation in case it's compatible
411 * with the running one. This must be paired with btrfs_exclop_start_unlock and
412 * btrfs_exclop_finish.
413 *
414 * Compatibility:
415 * - the same type is already running
416 * - when trying to add a device and balance has been paused
417 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
418 * must check the condition first that would allow none -> @type
419 */
420 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
421 enum btrfs_exclusive_operation type)
422 {
423 spin_lock(&fs_info->super_lock);
424 if (fs_info->exclusive_operation == type ||
425 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
426 type == BTRFS_EXCLOP_DEV_ADD))
427 return true;
428
429 spin_unlock(&fs_info->super_lock);
430 return false;
431 }
432
433 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
434 {
435 spin_unlock(&fs_info->super_lock);
436 }
437
438 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
439 {
440 spin_lock(&fs_info->super_lock);
441 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
442 spin_unlock(&fs_info->super_lock);
443 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
444 }
445
446 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
447 enum btrfs_exclusive_operation op)
448 {
449 switch (op) {
450 case BTRFS_EXCLOP_BALANCE_PAUSED:
451 spin_lock(&fs_info->super_lock);
452 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
453 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
454 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
455 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
456 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
457 spin_unlock(&fs_info->super_lock);
458 break;
459 case BTRFS_EXCLOP_BALANCE:
460 spin_lock(&fs_info->super_lock);
461 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
462 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
463 spin_unlock(&fs_info->super_lock);
464 break;
465 default:
466 btrfs_warn(fs_info,
467 "invalid exclop balance operation %d requested", op);
468 }
469 }
470
471 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
472 {
473 return put_user(inode->i_generation, arg);
474 }
475
476 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
477 void __user *arg)
478 {
479 struct btrfs_device *device;
480 struct fstrim_range range;
481 u64 minlen = ULLONG_MAX;
482 u64 num_devices = 0;
483 int ret;
484
485 if (!capable(CAP_SYS_ADMIN))
486 return -EPERM;
487
488 /*
489 * btrfs_trim_block_group() depends on space cache, which is not
490 * available in zoned filesystem. So, disallow fitrim on a zoned
491 * filesystem for now.
492 */
493 if (btrfs_is_zoned(fs_info))
494 return -EOPNOTSUPP;
495
496 /*
497 * If the fs is mounted with nologreplay, which requires it to be
498 * mounted in RO mode as well, we can not allow discard on free space
499 * inside block groups, because log trees refer to extents that are not
500 * pinned in a block group's free space cache (pinning the extents is
501 * precisely the first phase of replaying a log tree).
502 */
503 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
504 return -EROFS;
505
506 rcu_read_lock();
507 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
508 dev_list) {
509 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
510 continue;
511 num_devices++;
512 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
513 minlen);
514 }
515 rcu_read_unlock();
516
517 if (!num_devices)
518 return -EOPNOTSUPP;
519 if (copy_from_user(&range, arg, sizeof(range)))
520 return -EFAULT;
521
522 /*
523 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
524 * block group is in the logical address space, which can be any
525 * sectorsize aligned bytenr in the range [0, U64_MAX].
526 */
527 if (range.len < fs_info->sectorsize)
528 return -EINVAL;
529
530 range.minlen = max(range.minlen, minlen);
531 ret = btrfs_trim_fs(fs_info, &range);
532 if (ret < 0)
533 return ret;
534
535 if (copy_to_user(arg, &range, sizeof(range)))
536 return -EFAULT;
537
538 return 0;
539 }
540
541 int __pure btrfs_is_empty_uuid(u8 *uuid)
542 {
543 int i;
544
545 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
546 if (uuid[i])
547 return 0;
548 }
549 return 1;
550 }
551
552 /*
553 * Calculate the number of transaction items to reserve for creating a subvolume
554 * or snapshot, not including the inode, directory entries, or parent directory.
555 */
556 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
557 {
558 /*
559 * 1 to add root block
560 * 1 to add root item
561 * 1 to add root ref
562 * 1 to add root backref
563 * 1 to add UUID item
564 * 1 to add qgroup info
565 * 1 to add qgroup limit
566 *
567 * Ideally the last two would only be accounted if qgroups are enabled,
568 * but that can change between now and the time we would insert them.
569 */
570 unsigned int num_items = 7;
571
572 if (inherit) {
573 /* 2 to add qgroup relations for each inherited qgroup */
574 num_items += 2 * inherit->num_qgroups;
575 }
576 return num_items;
577 }
578
579 static noinline int create_subvol(struct mnt_idmap *idmap,
580 struct inode *dir, struct dentry *dentry,
581 struct btrfs_qgroup_inherit *inherit)
582 {
583 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
584 struct btrfs_trans_handle *trans;
585 struct btrfs_key key;
586 struct btrfs_root_item *root_item;
587 struct btrfs_inode_item *inode_item;
588 struct extent_buffer *leaf;
589 struct btrfs_root *root = BTRFS_I(dir)->root;
590 struct btrfs_root *new_root;
591 struct btrfs_block_rsv block_rsv;
592 struct timespec64 cur_time = current_time(dir);
593 struct btrfs_new_inode_args new_inode_args = {
594 .dir = dir,
595 .dentry = dentry,
596 .subvol = true,
597 };
598 unsigned int trans_num_items;
599 int ret;
600 dev_t anon_dev;
601 u64 objectid;
602
603 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
604 if (!root_item)
605 return -ENOMEM;
606
607 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
608 if (ret)
609 goto out_root_item;
610
611 /*
612 * Don't create subvolume whose level is not zero. Or qgroup will be
613 * screwed up since it assumes subvolume qgroup's level to be 0.
614 */
615 if (btrfs_qgroup_level(objectid)) {
616 ret = -ENOSPC;
617 goto out_root_item;
618 }
619
620 ret = get_anon_bdev(&anon_dev);
621 if (ret < 0)
622 goto out_root_item;
623
624 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
625 if (!new_inode_args.inode) {
626 ret = -ENOMEM;
627 goto out_anon_dev;
628 }
629 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
630 if (ret)
631 goto out_inode;
632 trans_num_items += create_subvol_num_items(inherit);
633
634 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
635 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
636 trans_num_items, false);
637 if (ret)
638 goto out_new_inode_args;
639
640 trans = btrfs_start_transaction(root, 0);
641 if (IS_ERR(trans)) {
642 ret = PTR_ERR(trans);
643 btrfs_subvolume_release_metadata(root, &block_rsv);
644 goto out_new_inode_args;
645 }
646 trans->block_rsv = &block_rsv;
647 trans->bytes_reserved = block_rsv.size;
648 /* Tree log can't currently deal with an inode which is a new root. */
649 btrfs_set_log_full_commit(trans);
650
651 ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
652 if (ret)
653 goto out;
654
655 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
656 0, BTRFS_NESTING_NORMAL);
657 if (IS_ERR(leaf)) {
658 ret = PTR_ERR(leaf);
659 goto out;
660 }
661
662 btrfs_mark_buffer_dirty(trans, leaf);
663
664 inode_item = &root_item->inode;
665 btrfs_set_stack_inode_generation(inode_item, 1);
666 btrfs_set_stack_inode_size(inode_item, 3);
667 btrfs_set_stack_inode_nlink(inode_item, 1);
668 btrfs_set_stack_inode_nbytes(inode_item,
669 fs_info->nodesize);
670 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
671
672 btrfs_set_root_flags(root_item, 0);
673 btrfs_set_root_limit(root_item, 0);
674 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
675
676 btrfs_set_root_bytenr(root_item, leaf->start);
677 btrfs_set_root_generation(root_item, trans->transid);
678 btrfs_set_root_level(root_item, 0);
679 btrfs_set_root_refs(root_item, 1);
680 btrfs_set_root_used(root_item, leaf->len);
681 btrfs_set_root_last_snapshot(root_item, 0);
682
683 btrfs_set_root_generation_v2(root_item,
684 btrfs_root_generation(root_item));
685 generate_random_guid(root_item->uuid);
686 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
687 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
688 root_item->ctime = root_item->otime;
689 btrfs_set_root_ctransid(root_item, trans->transid);
690 btrfs_set_root_otransid(root_item, trans->transid);
691
692 btrfs_tree_unlock(leaf);
693
694 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
695
696 key.objectid = objectid;
697 key.offset = 0;
698 key.type = BTRFS_ROOT_ITEM_KEY;
699 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
700 root_item);
701 if (ret) {
702 /*
703 * Since we don't abort the transaction in this case, free the
704 * tree block so that we don't leak space and leave the
705 * filesystem in an inconsistent state (an extent item in the
706 * extent tree with a backreference for a root that does not
707 * exists).
708 */
709 btrfs_tree_lock(leaf);
710 btrfs_clear_buffer_dirty(trans, leaf);
711 btrfs_tree_unlock(leaf);
712 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
713 free_extent_buffer(leaf);
714 goto out;
715 }
716
717 free_extent_buffer(leaf);
718 leaf = NULL;
719
720 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
721 if (IS_ERR(new_root)) {
722 ret = PTR_ERR(new_root);
723 btrfs_abort_transaction(trans, ret);
724 goto out;
725 }
726 /* anon_dev is owned by new_root now. */
727 anon_dev = 0;
728 BTRFS_I(new_inode_args.inode)->root = new_root;
729 /* ... and new_root is owned by new_inode_args.inode now. */
730
731 ret = btrfs_record_root_in_trans(trans, new_root);
732 if (ret) {
733 btrfs_abort_transaction(trans, ret);
734 goto out;
735 }
736
737 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
738 BTRFS_UUID_KEY_SUBVOL, objectid);
739 if (ret) {
740 btrfs_abort_transaction(trans, ret);
741 goto out;
742 }
743
744 ret = btrfs_create_new_inode(trans, &new_inode_args);
745 if (ret) {
746 btrfs_abort_transaction(trans, ret);
747 goto out;
748 }
749
750 d_instantiate_new(dentry, new_inode_args.inode);
751 new_inode_args.inode = NULL;
752
753 out:
754 trans->block_rsv = NULL;
755 trans->bytes_reserved = 0;
756 btrfs_subvolume_release_metadata(root, &block_rsv);
757
758 btrfs_end_transaction(trans);
759 out_new_inode_args:
760 btrfs_new_inode_args_destroy(&new_inode_args);
761 out_inode:
762 iput(new_inode_args.inode);
763 out_anon_dev:
764 if (anon_dev)
765 free_anon_bdev(anon_dev);
766 out_root_item:
767 kfree(root_item);
768 return ret;
769 }
770
771 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
772 struct dentry *dentry, bool readonly,
773 struct btrfs_qgroup_inherit *inherit)
774 {
775 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
776 struct inode *inode;
777 struct btrfs_pending_snapshot *pending_snapshot;
778 unsigned int trans_num_items;
779 struct btrfs_trans_handle *trans;
780 int ret;
781
782 /* We do not support snapshotting right now. */
783 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
784 btrfs_warn(fs_info,
785 "extent tree v2 doesn't support snapshotting yet");
786 return -EOPNOTSUPP;
787 }
788
789 if (btrfs_root_refs(&root->root_item) == 0)
790 return -ENOENT;
791
792 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
793 return -EINVAL;
794
795 if (atomic_read(&root->nr_swapfiles)) {
796 btrfs_warn(fs_info,
797 "cannot snapshot subvolume with active swapfile");
798 return -ETXTBSY;
799 }
800
801 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
802 if (!pending_snapshot)
803 return -ENOMEM;
804
805 ret = get_anon_bdev(&pending_snapshot->anon_dev);
806 if (ret < 0)
807 goto free_pending;
808 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
809 GFP_KERNEL);
810 pending_snapshot->path = btrfs_alloc_path();
811 if (!pending_snapshot->root_item || !pending_snapshot->path) {
812 ret = -ENOMEM;
813 goto free_pending;
814 }
815
816 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
817 BTRFS_BLOCK_RSV_TEMP);
818 /*
819 * 1 to add dir item
820 * 1 to add dir index
821 * 1 to update parent inode item
822 */
823 trans_num_items = create_subvol_num_items(inherit) + 3;
824 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
825 &pending_snapshot->block_rsv,
826 trans_num_items, false);
827 if (ret)
828 goto free_pending;
829
830 pending_snapshot->dentry = dentry;
831 pending_snapshot->root = root;
832 pending_snapshot->readonly = readonly;
833 pending_snapshot->dir = dir;
834 pending_snapshot->inherit = inherit;
835
836 trans = btrfs_start_transaction(root, 0);
837 if (IS_ERR(trans)) {
838 ret = PTR_ERR(trans);
839 goto fail;
840 }
841
842 trans->pending_snapshot = pending_snapshot;
843
844 ret = btrfs_commit_transaction(trans);
845 if (ret)
846 goto fail;
847
848 ret = pending_snapshot->error;
849 if (ret)
850 goto fail;
851
852 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
853 if (ret)
854 goto fail;
855
856 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
857 if (IS_ERR(inode)) {
858 ret = PTR_ERR(inode);
859 goto fail;
860 }
861
862 d_instantiate(dentry, inode);
863 ret = 0;
864 pending_snapshot->anon_dev = 0;
865 fail:
866 /* Prevent double freeing of anon_dev */
867 if (ret && pending_snapshot->snap)
868 pending_snapshot->snap->anon_dev = 0;
869 btrfs_put_root(pending_snapshot->snap);
870 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
871 free_pending:
872 if (pending_snapshot->anon_dev)
873 free_anon_bdev(pending_snapshot->anon_dev);
874 kfree(pending_snapshot->root_item);
875 btrfs_free_path(pending_snapshot->path);
876 kfree(pending_snapshot);
877
878 return ret;
879 }
880
881 /* copy of may_delete in fs/namei.c()
882 * Check whether we can remove a link victim from directory dir, check
883 * whether the type of victim is right.
884 * 1. We can't do it if dir is read-only (done in permission())
885 * 2. We should have write and exec permissions on dir
886 * 3. We can't remove anything from append-only dir
887 * 4. We can't do anything with immutable dir (done in permission())
888 * 5. If the sticky bit on dir is set we should either
889 * a. be owner of dir, or
890 * b. be owner of victim, or
891 * c. have CAP_FOWNER capability
892 * 6. If the victim is append-only or immutable we can't do anything with
893 * links pointing to it.
894 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
895 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
896 * 9. We can't remove a root or mountpoint.
897 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
898 * nfs_async_unlink().
899 */
900
901 static int btrfs_may_delete(struct mnt_idmap *idmap,
902 struct inode *dir, struct dentry *victim, int isdir)
903 {
904 int error;
905
906 if (d_really_is_negative(victim))
907 return -ENOENT;
908
909 BUG_ON(d_inode(victim->d_parent) != dir);
910 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
911
912 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
913 if (error)
914 return error;
915 if (IS_APPEND(dir))
916 return -EPERM;
917 if (check_sticky(idmap, dir, d_inode(victim)) ||
918 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
919 IS_SWAPFILE(d_inode(victim)))
920 return -EPERM;
921 if (isdir) {
922 if (!d_is_dir(victim))
923 return -ENOTDIR;
924 if (IS_ROOT(victim))
925 return -EBUSY;
926 } else if (d_is_dir(victim))
927 return -EISDIR;
928 if (IS_DEADDIR(dir))
929 return -ENOENT;
930 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
931 return -EBUSY;
932 return 0;
933 }
934
935 /* copy of may_create in fs/namei.c() */
936 static inline int btrfs_may_create(struct mnt_idmap *idmap,
937 struct inode *dir, struct dentry *child)
938 {
939 if (d_really_is_positive(child))
940 return -EEXIST;
941 if (IS_DEADDIR(dir))
942 return -ENOENT;
943 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
944 return -EOVERFLOW;
945 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
946 }
947
948 /*
949 * Create a new subvolume below @parent. This is largely modeled after
950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
951 * inside this filesystem so it's quite a bit simpler.
952 */
953 static noinline int btrfs_mksubvol(const struct path *parent,
954 struct mnt_idmap *idmap,
955 const char *name, int namelen,
956 struct btrfs_root *snap_src,
957 bool readonly,
958 struct btrfs_qgroup_inherit *inherit)
959 {
960 struct inode *dir = d_inode(parent->dentry);
961 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
962 struct dentry *dentry;
963 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
964 int error;
965
966 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
967 if (error == -EINTR)
968 return error;
969
970 dentry = lookup_one(idmap, name, parent->dentry, namelen);
971 error = PTR_ERR(dentry);
972 if (IS_ERR(dentry))
973 goto out_unlock;
974
975 error = btrfs_may_create(idmap, dir, dentry);
976 if (error)
977 goto out_dput;
978
979 /*
980 * even if this name doesn't exist, we may get hash collisions.
981 * check for them now when we can safely fail
982 */
983 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
984 dir->i_ino, &name_str);
985 if (error)
986 goto out_dput;
987
988 down_read(&fs_info->subvol_sem);
989
990 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
991 goto out_up_read;
992
993 if (snap_src)
994 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
995 else
996 error = create_subvol(idmap, dir, dentry, inherit);
997
998 if (!error)
999 fsnotify_mkdir(dir, dentry);
1000 out_up_read:
1001 up_read(&fs_info->subvol_sem);
1002 out_dput:
1003 dput(dentry);
1004 out_unlock:
1005 btrfs_inode_unlock(BTRFS_I(dir), 0);
1006 return error;
1007 }
1008
1009 static noinline int btrfs_mksnapshot(const struct path *parent,
1010 struct mnt_idmap *idmap,
1011 const char *name, int namelen,
1012 struct btrfs_root *root,
1013 bool readonly,
1014 struct btrfs_qgroup_inherit *inherit)
1015 {
1016 int ret;
1017 bool snapshot_force_cow = false;
1018
1019 /*
1020 * Force new buffered writes to reserve space even when NOCOW is
1021 * possible. This is to avoid later writeback (running dealloc) to
1022 * fallback to COW mode and unexpectedly fail with ENOSPC.
1023 */
1024 btrfs_drew_read_lock(&root->snapshot_lock);
1025
1026 ret = btrfs_start_delalloc_snapshot(root, false);
1027 if (ret)
1028 goto out;
1029
1030 /*
1031 * All previous writes have started writeback in NOCOW mode, so now
1032 * we force future writes to fallback to COW mode during snapshot
1033 * creation.
1034 */
1035 atomic_inc(&root->snapshot_force_cow);
1036 snapshot_force_cow = true;
1037
1038 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1039
1040 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1041 root, readonly, inherit);
1042 out:
1043 if (snapshot_force_cow)
1044 atomic_dec(&root->snapshot_force_cow);
1045 btrfs_drew_read_unlock(&root->snapshot_lock);
1046 return ret;
1047 }
1048
1049 /*
1050 * Try to start exclusive operation @type or cancel it if it's running.
1051 *
1052 * Return:
1053 * 0 - normal mode, newly claimed op started
1054 * >0 - normal mode, something else is running,
1055 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1056 * ECANCELED - cancel mode, successful cancel
1057 * ENOTCONN - cancel mode, operation not running anymore
1058 */
1059 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1060 enum btrfs_exclusive_operation type, bool cancel)
1061 {
1062 if (!cancel) {
1063 /* Start normal op */
1064 if (!btrfs_exclop_start(fs_info, type))
1065 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1066 /* Exclusive operation is now claimed */
1067 return 0;
1068 }
1069
1070 /* Cancel running op */
1071 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1072 /*
1073 * This blocks any exclop finish from setting it to NONE, so we
1074 * request cancellation. Either it runs and we will wait for it,
1075 * or it has finished and no waiting will happen.
1076 */
1077 atomic_inc(&fs_info->reloc_cancel_req);
1078 btrfs_exclop_start_unlock(fs_info);
1079
1080 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1081 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1082 TASK_INTERRUPTIBLE);
1083
1084 return -ECANCELED;
1085 }
1086
1087 /* Something else is running or none */
1088 return -ENOTCONN;
1089 }
1090
1091 static noinline int btrfs_ioctl_resize(struct file *file,
1092 void __user *arg)
1093 {
1094 BTRFS_DEV_LOOKUP_ARGS(args);
1095 struct inode *inode = file_inode(file);
1096 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1097 u64 new_size;
1098 u64 old_size;
1099 u64 devid = 1;
1100 struct btrfs_root *root = BTRFS_I(inode)->root;
1101 struct btrfs_ioctl_vol_args *vol_args;
1102 struct btrfs_trans_handle *trans;
1103 struct btrfs_device *device = NULL;
1104 char *sizestr;
1105 char *retptr;
1106 char *devstr = NULL;
1107 int ret = 0;
1108 int mod = 0;
1109 bool cancel;
1110
1111 if (!capable(CAP_SYS_ADMIN))
1112 return -EPERM;
1113
1114 ret = mnt_want_write_file(file);
1115 if (ret)
1116 return ret;
1117
1118 /*
1119 * Read the arguments before checking exclusivity to be able to
1120 * distinguish regular resize and cancel
1121 */
1122 vol_args = memdup_user(arg, sizeof(*vol_args));
1123 if (IS_ERR(vol_args)) {
1124 ret = PTR_ERR(vol_args);
1125 goto out_drop;
1126 }
1127 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1128 sizestr = vol_args->name;
1129 cancel = (strcmp("cancel", sizestr) == 0);
1130 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1131 if (ret)
1132 goto out_free;
1133 /* Exclusive operation is now claimed */
1134
1135 devstr = strchr(sizestr, ':');
1136 if (devstr) {
1137 sizestr = devstr + 1;
1138 *devstr = '\0';
1139 devstr = vol_args->name;
1140 ret = kstrtoull(devstr, 10, &devid);
1141 if (ret)
1142 goto out_finish;
1143 if (!devid) {
1144 ret = -EINVAL;
1145 goto out_finish;
1146 }
1147 btrfs_info(fs_info, "resizing devid %llu", devid);
1148 }
1149
1150 args.devid = devid;
1151 device = btrfs_find_device(fs_info->fs_devices, &args);
1152 if (!device) {
1153 btrfs_info(fs_info, "resizer unable to find device %llu",
1154 devid);
1155 ret = -ENODEV;
1156 goto out_finish;
1157 }
1158
1159 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1160 btrfs_info(fs_info,
1161 "resizer unable to apply on readonly device %llu",
1162 devid);
1163 ret = -EPERM;
1164 goto out_finish;
1165 }
1166
1167 if (!strcmp(sizestr, "max"))
1168 new_size = bdev_nr_bytes(device->bdev);
1169 else {
1170 if (sizestr[0] == '-') {
1171 mod = -1;
1172 sizestr++;
1173 } else if (sizestr[0] == '+') {
1174 mod = 1;
1175 sizestr++;
1176 }
1177 new_size = memparse(sizestr, &retptr);
1178 if (*retptr != '\0' || new_size == 0) {
1179 ret = -EINVAL;
1180 goto out_finish;
1181 }
1182 }
1183
1184 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1185 ret = -EPERM;
1186 goto out_finish;
1187 }
1188
1189 old_size = btrfs_device_get_total_bytes(device);
1190
1191 if (mod < 0) {
1192 if (new_size > old_size) {
1193 ret = -EINVAL;
1194 goto out_finish;
1195 }
1196 new_size = old_size - new_size;
1197 } else if (mod > 0) {
1198 if (new_size > ULLONG_MAX - old_size) {
1199 ret = -ERANGE;
1200 goto out_finish;
1201 }
1202 new_size = old_size + new_size;
1203 }
1204
1205 if (new_size < SZ_256M) {
1206 ret = -EINVAL;
1207 goto out_finish;
1208 }
1209 if (new_size > bdev_nr_bytes(device->bdev)) {
1210 ret = -EFBIG;
1211 goto out_finish;
1212 }
1213
1214 new_size = round_down(new_size, fs_info->sectorsize);
1215
1216 if (new_size > old_size) {
1217 trans = btrfs_start_transaction(root, 0);
1218 if (IS_ERR(trans)) {
1219 ret = PTR_ERR(trans);
1220 goto out_finish;
1221 }
1222 ret = btrfs_grow_device(trans, device, new_size);
1223 btrfs_commit_transaction(trans);
1224 } else if (new_size < old_size) {
1225 ret = btrfs_shrink_device(device, new_size);
1226 } /* equal, nothing need to do */
1227
1228 if (ret == 0 && new_size != old_size)
1229 btrfs_info_in_rcu(fs_info,
1230 "resize device %s (devid %llu) from %llu to %llu",
1231 btrfs_dev_name(device), device->devid,
1232 old_size, new_size);
1233 out_finish:
1234 btrfs_exclop_finish(fs_info);
1235 out_free:
1236 kfree(vol_args);
1237 out_drop:
1238 mnt_drop_write_file(file);
1239 return ret;
1240 }
1241
1242 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1243 struct mnt_idmap *idmap,
1244 const char *name, unsigned long fd, int subvol,
1245 bool readonly,
1246 struct btrfs_qgroup_inherit *inherit)
1247 {
1248 int namelen;
1249 int ret = 0;
1250
1251 if (!S_ISDIR(file_inode(file)->i_mode))
1252 return -ENOTDIR;
1253
1254 ret = mnt_want_write_file(file);
1255 if (ret)
1256 goto out;
1257
1258 namelen = strlen(name);
1259 if (strchr(name, '/')) {
1260 ret = -EINVAL;
1261 goto out_drop_write;
1262 }
1263
1264 if (name[0] == '.' &&
1265 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1266 ret = -EEXIST;
1267 goto out_drop_write;
1268 }
1269
1270 if (subvol) {
1271 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1272 namelen, NULL, readonly, inherit);
1273 } else {
1274 struct fd src = fdget(fd);
1275 struct inode *src_inode;
1276 if (!src.file) {
1277 ret = -EINVAL;
1278 goto out_drop_write;
1279 }
1280
1281 src_inode = file_inode(src.file);
1282 if (src_inode->i_sb != file_inode(file)->i_sb) {
1283 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1284 "Snapshot src from another FS");
1285 ret = -EXDEV;
1286 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1287 /*
1288 * Subvolume creation is not restricted, but snapshots
1289 * are limited to own subvolumes only
1290 */
1291 ret = -EPERM;
1292 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1293 /*
1294 * Snapshots must be made with the src_inode referring
1295 * to the subvolume inode, otherwise the permission
1296 * checking above is useless because we may have
1297 * permission on a lower directory but not the subvol
1298 * itself.
1299 */
1300 ret = -EINVAL;
1301 } else {
1302 ret = btrfs_mksnapshot(&file->f_path, idmap,
1303 name, namelen,
1304 BTRFS_I(src_inode)->root,
1305 readonly, inherit);
1306 }
1307 fdput(src);
1308 }
1309 out_drop_write:
1310 mnt_drop_write_file(file);
1311 out:
1312 return ret;
1313 }
1314
1315 static noinline int btrfs_ioctl_snap_create(struct file *file,
1316 void __user *arg, int subvol)
1317 {
1318 struct btrfs_ioctl_vol_args *vol_args;
1319 int ret;
1320
1321 if (!S_ISDIR(file_inode(file)->i_mode))
1322 return -ENOTDIR;
1323
1324 vol_args = memdup_user(arg, sizeof(*vol_args));
1325 if (IS_ERR(vol_args))
1326 return PTR_ERR(vol_args);
1327 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1328
1329 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1330 vol_args->name, vol_args->fd, subvol,
1331 false, NULL);
1332
1333 kfree(vol_args);
1334 return ret;
1335 }
1336
1337 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1338 void __user *arg, int subvol)
1339 {
1340 struct btrfs_ioctl_vol_args_v2 *vol_args;
1341 int ret;
1342 bool readonly = false;
1343 struct btrfs_qgroup_inherit *inherit = NULL;
1344
1345 if (!S_ISDIR(file_inode(file)->i_mode))
1346 return -ENOTDIR;
1347
1348 vol_args = memdup_user(arg, sizeof(*vol_args));
1349 if (IS_ERR(vol_args))
1350 return PTR_ERR(vol_args);
1351 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1352
1353 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1354 ret = -EOPNOTSUPP;
1355 goto free_args;
1356 }
1357
1358 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1359 readonly = true;
1360 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1361 u64 nums;
1362
1363 if (vol_args->size < sizeof(*inherit) ||
1364 vol_args->size > PAGE_SIZE) {
1365 ret = -EINVAL;
1366 goto free_args;
1367 }
1368 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1369 if (IS_ERR(inherit)) {
1370 ret = PTR_ERR(inherit);
1371 goto free_args;
1372 }
1373
1374 if (inherit->num_qgroups > PAGE_SIZE ||
1375 inherit->num_ref_copies > PAGE_SIZE ||
1376 inherit->num_excl_copies > PAGE_SIZE) {
1377 ret = -EINVAL;
1378 goto free_inherit;
1379 }
1380
1381 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1382 2 * inherit->num_excl_copies;
1383 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1384 ret = -EINVAL;
1385 goto free_inherit;
1386 }
1387 }
1388
1389 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1390 vol_args->name, vol_args->fd, subvol,
1391 readonly, inherit);
1392 if (ret)
1393 goto free_inherit;
1394 free_inherit:
1395 kfree(inherit);
1396 free_args:
1397 kfree(vol_args);
1398 return ret;
1399 }
1400
1401 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1402 void __user *arg)
1403 {
1404 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1405 struct btrfs_root *root = BTRFS_I(inode)->root;
1406 int ret = 0;
1407 u64 flags = 0;
1408
1409 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1410 return -EINVAL;
1411
1412 down_read(&fs_info->subvol_sem);
1413 if (btrfs_root_readonly(root))
1414 flags |= BTRFS_SUBVOL_RDONLY;
1415 up_read(&fs_info->subvol_sem);
1416
1417 if (copy_to_user(arg, &flags, sizeof(flags)))
1418 ret = -EFAULT;
1419
1420 return ret;
1421 }
1422
1423 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1424 void __user *arg)
1425 {
1426 struct inode *inode = file_inode(file);
1427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1428 struct btrfs_root *root = BTRFS_I(inode)->root;
1429 struct btrfs_trans_handle *trans;
1430 u64 root_flags;
1431 u64 flags;
1432 int ret = 0;
1433
1434 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1435 return -EPERM;
1436
1437 ret = mnt_want_write_file(file);
1438 if (ret)
1439 goto out;
1440
1441 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1442 ret = -EINVAL;
1443 goto out_drop_write;
1444 }
1445
1446 if (copy_from_user(&flags, arg, sizeof(flags))) {
1447 ret = -EFAULT;
1448 goto out_drop_write;
1449 }
1450
1451 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1452 ret = -EOPNOTSUPP;
1453 goto out_drop_write;
1454 }
1455
1456 down_write(&fs_info->subvol_sem);
1457
1458 /* nothing to do */
1459 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1460 goto out_drop_sem;
1461
1462 root_flags = btrfs_root_flags(&root->root_item);
1463 if (flags & BTRFS_SUBVOL_RDONLY) {
1464 btrfs_set_root_flags(&root->root_item,
1465 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1466 } else {
1467 /*
1468 * Block RO -> RW transition if this subvolume is involved in
1469 * send
1470 */
1471 spin_lock(&root->root_item_lock);
1472 if (root->send_in_progress == 0) {
1473 btrfs_set_root_flags(&root->root_item,
1474 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1475 spin_unlock(&root->root_item_lock);
1476 } else {
1477 spin_unlock(&root->root_item_lock);
1478 btrfs_warn(fs_info,
1479 "Attempt to set subvolume %llu read-write during send",
1480 root->root_key.objectid);
1481 ret = -EPERM;
1482 goto out_drop_sem;
1483 }
1484 }
1485
1486 trans = btrfs_start_transaction(root, 1);
1487 if (IS_ERR(trans)) {
1488 ret = PTR_ERR(trans);
1489 goto out_reset;
1490 }
1491
1492 ret = btrfs_update_root(trans, fs_info->tree_root,
1493 &root->root_key, &root->root_item);
1494 if (ret < 0) {
1495 btrfs_end_transaction(trans);
1496 goto out_reset;
1497 }
1498
1499 ret = btrfs_commit_transaction(trans);
1500
1501 out_reset:
1502 if (ret)
1503 btrfs_set_root_flags(&root->root_item, root_flags);
1504 out_drop_sem:
1505 up_write(&fs_info->subvol_sem);
1506 out_drop_write:
1507 mnt_drop_write_file(file);
1508 out:
1509 return ret;
1510 }
1511
1512 static noinline int key_in_sk(struct btrfs_key *key,
1513 struct btrfs_ioctl_search_key *sk)
1514 {
1515 struct btrfs_key test;
1516 int ret;
1517
1518 test.objectid = sk->min_objectid;
1519 test.type = sk->min_type;
1520 test.offset = sk->min_offset;
1521
1522 ret = btrfs_comp_cpu_keys(key, &test);
1523 if (ret < 0)
1524 return 0;
1525
1526 test.objectid = sk->max_objectid;
1527 test.type = sk->max_type;
1528 test.offset = sk->max_offset;
1529
1530 ret = btrfs_comp_cpu_keys(key, &test);
1531 if (ret > 0)
1532 return 0;
1533 return 1;
1534 }
1535
1536 static noinline int copy_to_sk(struct btrfs_path *path,
1537 struct btrfs_key *key,
1538 struct btrfs_ioctl_search_key *sk,
1539 u64 *buf_size,
1540 char __user *ubuf,
1541 unsigned long *sk_offset,
1542 int *num_found)
1543 {
1544 u64 found_transid;
1545 struct extent_buffer *leaf;
1546 struct btrfs_ioctl_search_header sh;
1547 struct btrfs_key test;
1548 unsigned long item_off;
1549 unsigned long item_len;
1550 int nritems;
1551 int i;
1552 int slot;
1553 int ret = 0;
1554
1555 leaf = path->nodes[0];
1556 slot = path->slots[0];
1557 nritems = btrfs_header_nritems(leaf);
1558
1559 if (btrfs_header_generation(leaf) > sk->max_transid) {
1560 i = nritems;
1561 goto advance_key;
1562 }
1563 found_transid = btrfs_header_generation(leaf);
1564
1565 for (i = slot; i < nritems; i++) {
1566 item_off = btrfs_item_ptr_offset(leaf, i);
1567 item_len = btrfs_item_size(leaf, i);
1568
1569 btrfs_item_key_to_cpu(leaf, key, i);
1570 if (!key_in_sk(key, sk))
1571 continue;
1572
1573 if (sizeof(sh) + item_len > *buf_size) {
1574 if (*num_found) {
1575 ret = 1;
1576 goto out;
1577 }
1578
1579 /*
1580 * return one empty item back for v1, which does not
1581 * handle -EOVERFLOW
1582 */
1583
1584 *buf_size = sizeof(sh) + item_len;
1585 item_len = 0;
1586 ret = -EOVERFLOW;
1587 }
1588
1589 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1590 ret = 1;
1591 goto out;
1592 }
1593
1594 sh.objectid = key->objectid;
1595 sh.offset = key->offset;
1596 sh.type = key->type;
1597 sh.len = item_len;
1598 sh.transid = found_transid;
1599
1600 /*
1601 * Copy search result header. If we fault then loop again so we
1602 * can fault in the pages and -EFAULT there if there's a
1603 * problem. Otherwise we'll fault and then copy the buffer in
1604 * properly this next time through
1605 */
1606 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1607 ret = 0;
1608 goto out;
1609 }
1610
1611 *sk_offset += sizeof(sh);
1612
1613 if (item_len) {
1614 char __user *up = ubuf + *sk_offset;
1615 /*
1616 * Copy the item, same behavior as above, but reset the
1617 * * sk_offset so we copy the full thing again.
1618 */
1619 if (read_extent_buffer_to_user_nofault(leaf, up,
1620 item_off, item_len)) {
1621 ret = 0;
1622 *sk_offset -= sizeof(sh);
1623 goto out;
1624 }
1625
1626 *sk_offset += item_len;
1627 }
1628 (*num_found)++;
1629
1630 if (ret) /* -EOVERFLOW from above */
1631 goto out;
1632
1633 if (*num_found >= sk->nr_items) {
1634 ret = 1;
1635 goto out;
1636 }
1637 }
1638 advance_key:
1639 ret = 0;
1640 test.objectid = sk->max_objectid;
1641 test.type = sk->max_type;
1642 test.offset = sk->max_offset;
1643 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1644 ret = 1;
1645 else if (key->offset < (u64)-1)
1646 key->offset++;
1647 else if (key->type < (u8)-1) {
1648 key->offset = 0;
1649 key->type++;
1650 } else if (key->objectid < (u64)-1) {
1651 key->offset = 0;
1652 key->type = 0;
1653 key->objectid++;
1654 } else
1655 ret = 1;
1656 out:
1657 /*
1658 * 0: all items from this leaf copied, continue with next
1659 * 1: * more items can be copied, but unused buffer is too small
1660 * * all items were found
1661 * Either way, it will stops the loop which iterates to the next
1662 * leaf
1663 * -EOVERFLOW: item was to large for buffer
1664 * -EFAULT: could not copy extent buffer back to userspace
1665 */
1666 return ret;
1667 }
1668
1669 static noinline int search_ioctl(struct inode *inode,
1670 struct btrfs_ioctl_search_key *sk,
1671 u64 *buf_size,
1672 char __user *ubuf)
1673 {
1674 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
1675 struct btrfs_root *root;
1676 struct btrfs_key key;
1677 struct btrfs_path *path;
1678 int ret;
1679 int num_found = 0;
1680 unsigned long sk_offset = 0;
1681
1682 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1683 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1684 return -EOVERFLOW;
1685 }
1686
1687 path = btrfs_alloc_path();
1688 if (!path)
1689 return -ENOMEM;
1690
1691 if (sk->tree_id == 0) {
1692 /* search the root of the inode that was passed */
1693 root = btrfs_grab_root(BTRFS_I(inode)->root);
1694 } else {
1695 root = btrfs_get_fs_root(info, sk->tree_id, true);
1696 if (IS_ERR(root)) {
1697 btrfs_free_path(path);
1698 return PTR_ERR(root);
1699 }
1700 }
1701
1702 key.objectid = sk->min_objectid;
1703 key.type = sk->min_type;
1704 key.offset = sk->min_offset;
1705
1706 while (1) {
1707 ret = -EFAULT;
1708 /*
1709 * Ensure that the whole user buffer is faulted in at sub-page
1710 * granularity, otherwise the loop may live-lock.
1711 */
1712 if (fault_in_subpage_writeable(ubuf + sk_offset,
1713 *buf_size - sk_offset))
1714 break;
1715
1716 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1717 if (ret != 0) {
1718 if (ret > 0)
1719 ret = 0;
1720 goto err;
1721 }
1722 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1723 &sk_offset, &num_found);
1724 btrfs_release_path(path);
1725 if (ret)
1726 break;
1727
1728 }
1729 if (ret > 0)
1730 ret = 0;
1731 err:
1732 sk->nr_items = num_found;
1733 btrfs_put_root(root);
1734 btrfs_free_path(path);
1735 return ret;
1736 }
1737
1738 static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1739 void __user *argp)
1740 {
1741 struct btrfs_ioctl_search_args __user *uargs = argp;
1742 struct btrfs_ioctl_search_key sk;
1743 int ret;
1744 u64 buf_size;
1745
1746 if (!capable(CAP_SYS_ADMIN))
1747 return -EPERM;
1748
1749 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1750 return -EFAULT;
1751
1752 buf_size = sizeof(uargs->buf);
1753
1754 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1755
1756 /*
1757 * In the origin implementation an overflow is handled by returning a
1758 * search header with a len of zero, so reset ret.
1759 */
1760 if (ret == -EOVERFLOW)
1761 ret = 0;
1762
1763 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1764 ret = -EFAULT;
1765 return ret;
1766 }
1767
1768 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1769 void __user *argp)
1770 {
1771 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1772 struct btrfs_ioctl_search_args_v2 args;
1773 int ret;
1774 u64 buf_size;
1775 const u64 buf_limit = SZ_16M;
1776
1777 if (!capable(CAP_SYS_ADMIN))
1778 return -EPERM;
1779
1780 /* copy search header and buffer size */
1781 if (copy_from_user(&args, uarg, sizeof(args)))
1782 return -EFAULT;
1783
1784 buf_size = args.buf_size;
1785
1786 /* limit result size to 16MB */
1787 if (buf_size > buf_limit)
1788 buf_size = buf_limit;
1789
1790 ret = search_ioctl(inode, &args.key, &buf_size,
1791 (char __user *)(&uarg->buf[0]));
1792 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1793 ret = -EFAULT;
1794 else if (ret == -EOVERFLOW &&
1795 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1796 ret = -EFAULT;
1797
1798 return ret;
1799 }
1800
1801 /*
1802 * Search INODE_REFs to identify path name of 'dirid' directory
1803 * in a 'tree_id' tree. and sets path name to 'name'.
1804 */
1805 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1806 u64 tree_id, u64 dirid, char *name)
1807 {
1808 struct btrfs_root *root;
1809 struct btrfs_key key;
1810 char *ptr;
1811 int ret = -1;
1812 int slot;
1813 int len;
1814 int total_len = 0;
1815 struct btrfs_inode_ref *iref;
1816 struct extent_buffer *l;
1817 struct btrfs_path *path;
1818
1819 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1820 name[0]='\0';
1821 return 0;
1822 }
1823
1824 path = btrfs_alloc_path();
1825 if (!path)
1826 return -ENOMEM;
1827
1828 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1829
1830 root = btrfs_get_fs_root(info, tree_id, true);
1831 if (IS_ERR(root)) {
1832 ret = PTR_ERR(root);
1833 root = NULL;
1834 goto out;
1835 }
1836
1837 key.objectid = dirid;
1838 key.type = BTRFS_INODE_REF_KEY;
1839 key.offset = (u64)-1;
1840
1841 while (1) {
1842 ret = btrfs_search_backwards(root, &key, path);
1843 if (ret < 0)
1844 goto out;
1845 else if (ret > 0) {
1846 ret = -ENOENT;
1847 goto out;
1848 }
1849
1850 l = path->nodes[0];
1851 slot = path->slots[0];
1852
1853 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1854 len = btrfs_inode_ref_name_len(l, iref);
1855 ptr -= len + 1;
1856 total_len += len + 1;
1857 if (ptr < name) {
1858 ret = -ENAMETOOLONG;
1859 goto out;
1860 }
1861
1862 *(ptr + len) = '/';
1863 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1864
1865 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1866 break;
1867
1868 btrfs_release_path(path);
1869 key.objectid = key.offset;
1870 key.offset = (u64)-1;
1871 dirid = key.objectid;
1872 }
1873 memmove(name, ptr, total_len);
1874 name[total_len] = '\0';
1875 ret = 0;
1876 out:
1877 btrfs_put_root(root);
1878 btrfs_free_path(path);
1879 return ret;
1880 }
1881
1882 static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1883 struct inode *inode,
1884 struct btrfs_ioctl_ino_lookup_user_args *args)
1885 {
1886 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1887 struct super_block *sb = inode->i_sb;
1888 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1889 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1890 u64 dirid = args->dirid;
1891 unsigned long item_off;
1892 unsigned long item_len;
1893 struct btrfs_inode_ref *iref;
1894 struct btrfs_root_ref *rref;
1895 struct btrfs_root *root = NULL;
1896 struct btrfs_path *path;
1897 struct btrfs_key key, key2;
1898 struct extent_buffer *leaf;
1899 struct inode *temp_inode;
1900 char *ptr;
1901 int slot;
1902 int len;
1903 int total_len = 0;
1904 int ret;
1905
1906 path = btrfs_alloc_path();
1907 if (!path)
1908 return -ENOMEM;
1909
1910 /*
1911 * If the bottom subvolume does not exist directly under upper_limit,
1912 * construct the path in from the bottom up.
1913 */
1914 if (dirid != upper_limit.objectid) {
1915 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1916
1917 root = btrfs_get_fs_root(fs_info, treeid, true);
1918 if (IS_ERR(root)) {
1919 ret = PTR_ERR(root);
1920 goto out;
1921 }
1922
1923 key.objectid = dirid;
1924 key.type = BTRFS_INODE_REF_KEY;
1925 key.offset = (u64)-1;
1926 while (1) {
1927 ret = btrfs_search_backwards(root, &key, path);
1928 if (ret < 0)
1929 goto out_put;
1930 else if (ret > 0) {
1931 ret = -ENOENT;
1932 goto out_put;
1933 }
1934
1935 leaf = path->nodes[0];
1936 slot = path->slots[0];
1937
1938 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1939 len = btrfs_inode_ref_name_len(leaf, iref);
1940 ptr -= len + 1;
1941 total_len += len + 1;
1942 if (ptr < args->path) {
1943 ret = -ENAMETOOLONG;
1944 goto out_put;
1945 }
1946
1947 *(ptr + len) = '/';
1948 read_extent_buffer(leaf, ptr,
1949 (unsigned long)(iref + 1), len);
1950
1951 /* Check the read+exec permission of this directory */
1952 ret = btrfs_previous_item(root, path, dirid,
1953 BTRFS_INODE_ITEM_KEY);
1954 if (ret < 0) {
1955 goto out_put;
1956 } else if (ret > 0) {
1957 ret = -ENOENT;
1958 goto out_put;
1959 }
1960
1961 leaf = path->nodes[0];
1962 slot = path->slots[0];
1963 btrfs_item_key_to_cpu(leaf, &key2, slot);
1964 if (key2.objectid != dirid) {
1965 ret = -ENOENT;
1966 goto out_put;
1967 }
1968
1969 /*
1970 * We don't need the path anymore, so release it and
1971 * avoid deadlocks and lockdep warnings in case
1972 * btrfs_iget() needs to lookup the inode from its root
1973 * btree and lock the same leaf.
1974 */
1975 btrfs_release_path(path);
1976 temp_inode = btrfs_iget(sb, key2.objectid, root);
1977 if (IS_ERR(temp_inode)) {
1978 ret = PTR_ERR(temp_inode);
1979 goto out_put;
1980 }
1981 ret = inode_permission(idmap, temp_inode,
1982 MAY_READ | MAY_EXEC);
1983 iput(temp_inode);
1984 if (ret) {
1985 ret = -EACCES;
1986 goto out_put;
1987 }
1988
1989 if (key.offset == upper_limit.objectid)
1990 break;
1991 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
1992 ret = -EACCES;
1993 goto out_put;
1994 }
1995
1996 key.objectid = key.offset;
1997 key.offset = (u64)-1;
1998 dirid = key.objectid;
1999 }
2000
2001 memmove(args->path, ptr, total_len);
2002 args->path[total_len] = '\0';
2003 btrfs_put_root(root);
2004 root = NULL;
2005 btrfs_release_path(path);
2006 }
2007
2008 /* Get the bottom subvolume's name from ROOT_REF */
2009 key.objectid = treeid;
2010 key.type = BTRFS_ROOT_REF_KEY;
2011 key.offset = args->treeid;
2012 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2013 if (ret < 0) {
2014 goto out;
2015 } else if (ret > 0) {
2016 ret = -ENOENT;
2017 goto out;
2018 }
2019
2020 leaf = path->nodes[0];
2021 slot = path->slots[0];
2022 btrfs_item_key_to_cpu(leaf, &key, slot);
2023
2024 item_off = btrfs_item_ptr_offset(leaf, slot);
2025 item_len = btrfs_item_size(leaf, slot);
2026 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2027 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2028 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2029 ret = -EINVAL;
2030 goto out;
2031 }
2032
2033 /* Copy subvolume's name */
2034 item_off += sizeof(struct btrfs_root_ref);
2035 item_len -= sizeof(struct btrfs_root_ref);
2036 read_extent_buffer(leaf, args->name, item_off, item_len);
2037 args->name[item_len] = 0;
2038
2039 out_put:
2040 btrfs_put_root(root);
2041 out:
2042 btrfs_free_path(path);
2043 return ret;
2044 }
2045
2046 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2047 void __user *argp)
2048 {
2049 struct btrfs_ioctl_ino_lookup_args *args;
2050 int ret = 0;
2051
2052 args = memdup_user(argp, sizeof(*args));
2053 if (IS_ERR(args))
2054 return PTR_ERR(args);
2055
2056 /*
2057 * Unprivileged query to obtain the containing subvolume root id. The
2058 * path is reset so it's consistent with btrfs_search_path_in_tree.
2059 */
2060 if (args->treeid == 0)
2061 args->treeid = root->root_key.objectid;
2062
2063 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2064 args->name[0] = 0;
2065 goto out;
2066 }
2067
2068 if (!capable(CAP_SYS_ADMIN)) {
2069 ret = -EPERM;
2070 goto out;
2071 }
2072
2073 ret = btrfs_search_path_in_tree(root->fs_info,
2074 args->treeid, args->objectid,
2075 args->name);
2076
2077 out:
2078 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2079 ret = -EFAULT;
2080
2081 kfree(args);
2082 return ret;
2083 }
2084
2085 /*
2086 * Version of ino_lookup ioctl (unprivileged)
2087 *
2088 * The main differences from ino_lookup ioctl are:
2089 *
2090 * 1. Read + Exec permission will be checked using inode_permission() during
2091 * path construction. -EACCES will be returned in case of failure.
2092 * 2. Path construction will be stopped at the inode number which corresponds
2093 * to the fd with which this ioctl is called. If constructed path does not
2094 * exist under fd's inode, -EACCES will be returned.
2095 * 3. The name of bottom subvolume is also searched and filled.
2096 */
2097 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2098 {
2099 struct btrfs_ioctl_ino_lookup_user_args *args;
2100 struct inode *inode;
2101 int ret;
2102
2103 args = memdup_user(argp, sizeof(*args));
2104 if (IS_ERR(args))
2105 return PTR_ERR(args);
2106
2107 inode = file_inode(file);
2108
2109 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2110 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2111 /*
2112 * The subvolume does not exist under fd with which this is
2113 * called
2114 */
2115 kfree(args);
2116 return -EACCES;
2117 }
2118
2119 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2120
2121 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2122 ret = -EFAULT;
2123
2124 kfree(args);
2125 return ret;
2126 }
2127
2128 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2129 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2130 {
2131 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2132 struct btrfs_fs_info *fs_info;
2133 struct btrfs_root *root;
2134 struct btrfs_path *path;
2135 struct btrfs_key key;
2136 struct btrfs_root_item *root_item;
2137 struct btrfs_root_ref *rref;
2138 struct extent_buffer *leaf;
2139 unsigned long item_off;
2140 unsigned long item_len;
2141 int slot;
2142 int ret = 0;
2143
2144 path = btrfs_alloc_path();
2145 if (!path)
2146 return -ENOMEM;
2147
2148 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2149 if (!subvol_info) {
2150 btrfs_free_path(path);
2151 return -ENOMEM;
2152 }
2153
2154 fs_info = BTRFS_I(inode)->root->fs_info;
2155
2156 /* Get root_item of inode's subvolume */
2157 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2158 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2159 if (IS_ERR(root)) {
2160 ret = PTR_ERR(root);
2161 goto out_free;
2162 }
2163 root_item = &root->root_item;
2164
2165 subvol_info->treeid = key.objectid;
2166
2167 subvol_info->generation = btrfs_root_generation(root_item);
2168 subvol_info->flags = btrfs_root_flags(root_item);
2169
2170 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2171 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2172 BTRFS_UUID_SIZE);
2173 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2174 BTRFS_UUID_SIZE);
2175
2176 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2177 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2178 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2179
2180 subvol_info->otransid = btrfs_root_otransid(root_item);
2181 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2182 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2183
2184 subvol_info->stransid = btrfs_root_stransid(root_item);
2185 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2186 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2187
2188 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2189 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2190 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2191
2192 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2193 /* Search root tree for ROOT_BACKREF of this subvolume */
2194 key.type = BTRFS_ROOT_BACKREF_KEY;
2195 key.offset = 0;
2196 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2197 if (ret < 0) {
2198 goto out;
2199 } else if (path->slots[0] >=
2200 btrfs_header_nritems(path->nodes[0])) {
2201 ret = btrfs_next_leaf(fs_info->tree_root, path);
2202 if (ret < 0) {
2203 goto out;
2204 } else if (ret > 0) {
2205 ret = -EUCLEAN;
2206 goto out;
2207 }
2208 }
2209
2210 leaf = path->nodes[0];
2211 slot = path->slots[0];
2212 btrfs_item_key_to_cpu(leaf, &key, slot);
2213 if (key.objectid == subvol_info->treeid &&
2214 key.type == BTRFS_ROOT_BACKREF_KEY) {
2215 subvol_info->parent_id = key.offset;
2216
2217 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2218 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2219
2220 item_off = btrfs_item_ptr_offset(leaf, slot)
2221 + sizeof(struct btrfs_root_ref);
2222 item_len = btrfs_item_size(leaf, slot)
2223 - sizeof(struct btrfs_root_ref);
2224 read_extent_buffer(leaf, subvol_info->name,
2225 item_off, item_len);
2226 } else {
2227 ret = -ENOENT;
2228 goto out;
2229 }
2230 }
2231
2232 btrfs_free_path(path);
2233 path = NULL;
2234 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2235 ret = -EFAULT;
2236
2237 out:
2238 btrfs_put_root(root);
2239 out_free:
2240 btrfs_free_path(path);
2241 kfree(subvol_info);
2242 return ret;
2243 }
2244
2245 /*
2246 * Return ROOT_REF information of the subvolume containing this inode
2247 * except the subvolume name.
2248 */
2249 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2250 void __user *argp)
2251 {
2252 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2253 struct btrfs_root_ref *rref;
2254 struct btrfs_path *path;
2255 struct btrfs_key key;
2256 struct extent_buffer *leaf;
2257 u64 objectid;
2258 int slot;
2259 int ret;
2260 u8 found;
2261
2262 path = btrfs_alloc_path();
2263 if (!path)
2264 return -ENOMEM;
2265
2266 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2267 if (IS_ERR(rootrefs)) {
2268 btrfs_free_path(path);
2269 return PTR_ERR(rootrefs);
2270 }
2271
2272 objectid = root->root_key.objectid;
2273 key.objectid = objectid;
2274 key.type = BTRFS_ROOT_REF_KEY;
2275 key.offset = rootrefs->min_treeid;
2276 found = 0;
2277
2278 root = root->fs_info->tree_root;
2279 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2280 if (ret < 0) {
2281 goto out;
2282 } else if (path->slots[0] >=
2283 btrfs_header_nritems(path->nodes[0])) {
2284 ret = btrfs_next_leaf(root, path);
2285 if (ret < 0) {
2286 goto out;
2287 } else if (ret > 0) {
2288 ret = -EUCLEAN;
2289 goto out;
2290 }
2291 }
2292 while (1) {
2293 leaf = path->nodes[0];
2294 slot = path->slots[0];
2295
2296 btrfs_item_key_to_cpu(leaf, &key, slot);
2297 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2298 ret = 0;
2299 goto out;
2300 }
2301
2302 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2303 ret = -EOVERFLOW;
2304 goto out;
2305 }
2306
2307 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2308 rootrefs->rootref[found].treeid = key.offset;
2309 rootrefs->rootref[found].dirid =
2310 btrfs_root_ref_dirid(leaf, rref);
2311 found++;
2312
2313 ret = btrfs_next_item(root, path);
2314 if (ret < 0) {
2315 goto out;
2316 } else if (ret > 0) {
2317 ret = -EUCLEAN;
2318 goto out;
2319 }
2320 }
2321
2322 out:
2323 btrfs_free_path(path);
2324
2325 if (!ret || ret == -EOVERFLOW) {
2326 rootrefs->num_items = found;
2327 /* update min_treeid for next search */
2328 if (found)
2329 rootrefs->min_treeid =
2330 rootrefs->rootref[found - 1].treeid + 1;
2331 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2332 ret = -EFAULT;
2333 }
2334
2335 kfree(rootrefs);
2336
2337 return ret;
2338 }
2339
2340 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2341 void __user *arg,
2342 bool destroy_v2)
2343 {
2344 struct dentry *parent = file->f_path.dentry;
2345 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2346 struct dentry *dentry;
2347 struct inode *dir = d_inode(parent);
2348 struct inode *inode;
2349 struct btrfs_root *root = BTRFS_I(dir)->root;
2350 struct btrfs_root *dest = NULL;
2351 struct btrfs_ioctl_vol_args *vol_args = NULL;
2352 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2353 struct mnt_idmap *idmap = file_mnt_idmap(file);
2354 char *subvol_name, *subvol_name_ptr = NULL;
2355 int subvol_namelen;
2356 int err = 0;
2357 bool destroy_parent = false;
2358
2359 /* We don't support snapshots with extent tree v2 yet. */
2360 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2361 btrfs_err(fs_info,
2362 "extent tree v2 doesn't support snapshot deletion yet");
2363 return -EOPNOTSUPP;
2364 }
2365
2366 if (destroy_v2) {
2367 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2368 if (IS_ERR(vol_args2))
2369 return PTR_ERR(vol_args2);
2370
2371 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2372 err = -EOPNOTSUPP;
2373 goto out;
2374 }
2375
2376 /*
2377 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2378 * name, same as v1 currently does.
2379 */
2380 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2381 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2382 subvol_name = vol_args2->name;
2383
2384 err = mnt_want_write_file(file);
2385 if (err)
2386 goto out;
2387 } else {
2388 struct inode *old_dir;
2389
2390 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2391 err = -EINVAL;
2392 goto out;
2393 }
2394
2395 err = mnt_want_write_file(file);
2396 if (err)
2397 goto out;
2398
2399 dentry = btrfs_get_dentry(fs_info->sb,
2400 BTRFS_FIRST_FREE_OBJECTID,
2401 vol_args2->subvolid, 0);
2402 if (IS_ERR(dentry)) {
2403 err = PTR_ERR(dentry);
2404 goto out_drop_write;
2405 }
2406
2407 /*
2408 * Change the default parent since the subvolume being
2409 * deleted can be outside of the current mount point.
2410 */
2411 parent = btrfs_get_parent(dentry);
2412
2413 /*
2414 * At this point dentry->d_name can point to '/' if the
2415 * subvolume we want to destroy is outsite of the
2416 * current mount point, so we need to release the
2417 * current dentry and execute the lookup to return a new
2418 * one with ->d_name pointing to the
2419 * <mount point>/subvol_name.
2420 */
2421 dput(dentry);
2422 if (IS_ERR(parent)) {
2423 err = PTR_ERR(parent);
2424 goto out_drop_write;
2425 }
2426 old_dir = dir;
2427 dir = d_inode(parent);
2428
2429 /*
2430 * If v2 was used with SPEC_BY_ID, a new parent was
2431 * allocated since the subvolume can be outside of the
2432 * current mount point. Later on we need to release this
2433 * new parent dentry.
2434 */
2435 destroy_parent = true;
2436
2437 /*
2438 * On idmapped mounts, deletion via subvolid is
2439 * restricted to subvolumes that are immediate
2440 * ancestors of the inode referenced by the file
2441 * descriptor in the ioctl. Otherwise the idmapping
2442 * could potentially be abused to delete subvolumes
2443 * anywhere in the filesystem the user wouldn't be able
2444 * to delete without an idmapped mount.
2445 */
2446 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2447 err = -EOPNOTSUPP;
2448 goto free_parent;
2449 }
2450
2451 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2452 fs_info, vol_args2->subvolid);
2453 if (IS_ERR(subvol_name_ptr)) {
2454 err = PTR_ERR(subvol_name_ptr);
2455 goto free_parent;
2456 }
2457 /* subvol_name_ptr is already nul terminated */
2458 subvol_name = (char *)kbasename(subvol_name_ptr);
2459 }
2460 } else {
2461 vol_args = memdup_user(arg, sizeof(*vol_args));
2462 if (IS_ERR(vol_args))
2463 return PTR_ERR(vol_args);
2464
2465 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2466 subvol_name = vol_args->name;
2467
2468 err = mnt_want_write_file(file);
2469 if (err)
2470 goto out;
2471 }
2472
2473 subvol_namelen = strlen(subvol_name);
2474
2475 if (strchr(subvol_name, '/') ||
2476 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2477 err = -EINVAL;
2478 goto free_subvol_name;
2479 }
2480
2481 if (!S_ISDIR(dir->i_mode)) {
2482 err = -ENOTDIR;
2483 goto free_subvol_name;
2484 }
2485
2486 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2487 if (err == -EINTR)
2488 goto free_subvol_name;
2489 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2490 if (IS_ERR(dentry)) {
2491 err = PTR_ERR(dentry);
2492 goto out_unlock_dir;
2493 }
2494
2495 if (d_really_is_negative(dentry)) {
2496 err = -ENOENT;
2497 goto out_dput;
2498 }
2499
2500 inode = d_inode(dentry);
2501 dest = BTRFS_I(inode)->root;
2502 if (!capable(CAP_SYS_ADMIN)) {
2503 /*
2504 * Regular user. Only allow this with a special mount
2505 * option, when the user has write+exec access to the
2506 * subvol root, and when rmdir(2) would have been
2507 * allowed.
2508 *
2509 * Note that this is _not_ check that the subvol is
2510 * empty or doesn't contain data that we wouldn't
2511 * otherwise be able to delete.
2512 *
2513 * Users who want to delete empty subvols should try
2514 * rmdir(2).
2515 */
2516 err = -EPERM;
2517 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2518 goto out_dput;
2519
2520 /*
2521 * Do not allow deletion if the parent dir is the same
2522 * as the dir to be deleted. That means the ioctl
2523 * must be called on the dentry referencing the root
2524 * of the subvol, not a random directory contained
2525 * within it.
2526 */
2527 err = -EINVAL;
2528 if (root == dest)
2529 goto out_dput;
2530
2531 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2532 if (err)
2533 goto out_dput;
2534 }
2535
2536 /* check if subvolume may be deleted by a user */
2537 err = btrfs_may_delete(idmap, dir, dentry, 1);
2538 if (err)
2539 goto out_dput;
2540
2541 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2542 err = -EINVAL;
2543 goto out_dput;
2544 }
2545
2546 btrfs_inode_lock(BTRFS_I(inode), 0);
2547 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2548 btrfs_inode_unlock(BTRFS_I(inode), 0);
2549 if (!err)
2550 d_delete_notify(dir, dentry);
2551
2552 out_dput:
2553 dput(dentry);
2554 out_unlock_dir:
2555 btrfs_inode_unlock(BTRFS_I(dir), 0);
2556 free_subvol_name:
2557 kfree(subvol_name_ptr);
2558 free_parent:
2559 if (destroy_parent)
2560 dput(parent);
2561 out_drop_write:
2562 mnt_drop_write_file(file);
2563 out:
2564 kfree(vol_args2);
2565 kfree(vol_args);
2566 return err;
2567 }
2568
2569 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2570 {
2571 struct inode *inode = file_inode(file);
2572 struct btrfs_root *root = BTRFS_I(inode)->root;
2573 struct btrfs_ioctl_defrag_range_args range = {0};
2574 int ret;
2575
2576 ret = mnt_want_write_file(file);
2577 if (ret)
2578 return ret;
2579
2580 if (btrfs_root_readonly(root)) {
2581 ret = -EROFS;
2582 goto out;
2583 }
2584
2585 switch (inode->i_mode & S_IFMT) {
2586 case S_IFDIR:
2587 if (!capable(CAP_SYS_ADMIN)) {
2588 ret = -EPERM;
2589 goto out;
2590 }
2591 ret = btrfs_defrag_root(root);
2592 break;
2593 case S_IFREG:
2594 /*
2595 * Note that this does not check the file descriptor for write
2596 * access. This prevents defragmenting executables that are
2597 * running and allows defrag on files open in read-only mode.
2598 */
2599 if (!capable(CAP_SYS_ADMIN) &&
2600 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2601 ret = -EPERM;
2602 goto out;
2603 }
2604
2605 if (argp) {
2606 if (copy_from_user(&range, argp, sizeof(range))) {
2607 ret = -EFAULT;
2608 goto out;
2609 }
2610 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2611 ret = -EOPNOTSUPP;
2612 goto out;
2613 }
2614 /* compression requires us to start the IO */
2615 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2616 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2617 range.extent_thresh = (u32)-1;
2618 }
2619 } else {
2620 /* the rest are all set to zero by kzalloc */
2621 range.len = (u64)-1;
2622 }
2623 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2624 &range, BTRFS_OLDEST_GENERATION, 0);
2625 if (ret > 0)
2626 ret = 0;
2627 break;
2628 default:
2629 ret = -EINVAL;
2630 }
2631 out:
2632 mnt_drop_write_file(file);
2633 return ret;
2634 }
2635
2636 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2637 {
2638 struct btrfs_ioctl_vol_args *vol_args;
2639 bool restore_op = false;
2640 int ret;
2641
2642 if (!capable(CAP_SYS_ADMIN))
2643 return -EPERM;
2644
2645 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2646 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2647 return -EINVAL;
2648 }
2649
2650 if (fs_info->fs_devices->temp_fsid) {
2651 btrfs_err(fs_info,
2652 "device add not supported on cloned temp-fsid mount");
2653 return -EINVAL;
2654 }
2655
2656 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2657 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2658 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2659
2660 /*
2661 * We can do the device add because we have a paused balanced,
2662 * change the exclusive op type and remember we should bring
2663 * back the paused balance
2664 */
2665 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2666 btrfs_exclop_start_unlock(fs_info);
2667 restore_op = true;
2668 }
2669
2670 vol_args = memdup_user(arg, sizeof(*vol_args));
2671 if (IS_ERR(vol_args)) {
2672 ret = PTR_ERR(vol_args);
2673 goto out;
2674 }
2675
2676 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2677 ret = btrfs_init_new_device(fs_info, vol_args->name);
2678
2679 if (!ret)
2680 btrfs_info(fs_info, "disk added %s", vol_args->name);
2681
2682 kfree(vol_args);
2683 out:
2684 if (restore_op)
2685 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2686 else
2687 btrfs_exclop_finish(fs_info);
2688 return ret;
2689 }
2690
2691 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2692 {
2693 BTRFS_DEV_LOOKUP_ARGS(args);
2694 struct inode *inode = file_inode(file);
2695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2696 struct btrfs_ioctl_vol_args_v2 *vol_args;
2697 struct bdev_handle *bdev_handle = NULL;
2698 int ret;
2699 bool cancel = false;
2700
2701 if (!capable(CAP_SYS_ADMIN))
2702 return -EPERM;
2703
2704 vol_args = memdup_user(arg, sizeof(*vol_args));
2705 if (IS_ERR(vol_args))
2706 return PTR_ERR(vol_args);
2707
2708 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2709 ret = -EOPNOTSUPP;
2710 goto out;
2711 }
2712
2713 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2714 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2715 args.devid = vol_args->devid;
2716 } else if (!strcmp("cancel", vol_args->name)) {
2717 cancel = true;
2718 } else {
2719 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2720 if (ret)
2721 goto out;
2722 }
2723
2724 ret = mnt_want_write_file(file);
2725 if (ret)
2726 goto out;
2727
2728 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2729 cancel);
2730 if (ret)
2731 goto err_drop;
2732
2733 /* Exclusive operation is now claimed */
2734 ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2735
2736 btrfs_exclop_finish(fs_info);
2737
2738 if (!ret) {
2739 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2740 btrfs_info(fs_info, "device deleted: id %llu",
2741 vol_args->devid);
2742 else
2743 btrfs_info(fs_info, "device deleted: %s",
2744 vol_args->name);
2745 }
2746 err_drop:
2747 mnt_drop_write_file(file);
2748 if (bdev_handle)
2749 bdev_release(bdev_handle);
2750 out:
2751 btrfs_put_dev_args_from_path(&args);
2752 kfree(vol_args);
2753 return ret;
2754 }
2755
2756 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2757 {
2758 BTRFS_DEV_LOOKUP_ARGS(args);
2759 struct inode *inode = file_inode(file);
2760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2761 struct btrfs_ioctl_vol_args *vol_args;
2762 struct bdev_handle *bdev_handle = NULL;
2763 int ret;
2764 bool cancel = false;
2765
2766 if (!capable(CAP_SYS_ADMIN))
2767 return -EPERM;
2768
2769 vol_args = memdup_user(arg, sizeof(*vol_args));
2770 if (IS_ERR(vol_args))
2771 return PTR_ERR(vol_args);
2772
2773 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2774 if (!strcmp("cancel", vol_args->name)) {
2775 cancel = true;
2776 } else {
2777 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2778 if (ret)
2779 goto out;
2780 }
2781
2782 ret = mnt_want_write_file(file);
2783 if (ret)
2784 goto out;
2785
2786 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2787 cancel);
2788 if (ret == 0) {
2789 ret = btrfs_rm_device(fs_info, &args, &bdev_handle);
2790 if (!ret)
2791 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2792 btrfs_exclop_finish(fs_info);
2793 }
2794
2795 mnt_drop_write_file(file);
2796 if (bdev_handle)
2797 bdev_release(bdev_handle);
2798 out:
2799 btrfs_put_dev_args_from_path(&args);
2800 kfree(vol_args);
2801 return ret;
2802 }
2803
2804 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2805 void __user *arg)
2806 {
2807 struct btrfs_ioctl_fs_info_args *fi_args;
2808 struct btrfs_device *device;
2809 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2810 u64 flags_in;
2811 int ret = 0;
2812
2813 fi_args = memdup_user(arg, sizeof(*fi_args));
2814 if (IS_ERR(fi_args))
2815 return PTR_ERR(fi_args);
2816
2817 flags_in = fi_args->flags;
2818 memset(fi_args, 0, sizeof(*fi_args));
2819
2820 rcu_read_lock();
2821 fi_args->num_devices = fs_devices->num_devices;
2822
2823 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2824 if (device->devid > fi_args->max_id)
2825 fi_args->max_id = device->devid;
2826 }
2827 rcu_read_unlock();
2828
2829 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2830 fi_args->nodesize = fs_info->nodesize;
2831 fi_args->sectorsize = fs_info->sectorsize;
2832 fi_args->clone_alignment = fs_info->sectorsize;
2833
2834 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2835 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2836 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2837 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2838 }
2839
2840 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2841 fi_args->generation = btrfs_get_fs_generation(fs_info);
2842 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2843 }
2844
2845 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2846 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2847 sizeof(fi_args->metadata_uuid));
2848 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2849 }
2850
2851 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2852 ret = -EFAULT;
2853
2854 kfree(fi_args);
2855 return ret;
2856 }
2857
2858 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2859 void __user *arg)
2860 {
2861 BTRFS_DEV_LOOKUP_ARGS(args);
2862 struct btrfs_ioctl_dev_info_args *di_args;
2863 struct btrfs_device *dev;
2864 int ret = 0;
2865
2866 di_args = memdup_user(arg, sizeof(*di_args));
2867 if (IS_ERR(di_args))
2868 return PTR_ERR(di_args);
2869
2870 args.devid = di_args->devid;
2871 if (!btrfs_is_empty_uuid(di_args->uuid))
2872 args.uuid = di_args->uuid;
2873
2874 rcu_read_lock();
2875 dev = btrfs_find_device(fs_info->fs_devices, &args);
2876 if (!dev) {
2877 ret = -ENODEV;
2878 goto out;
2879 }
2880
2881 di_args->devid = dev->devid;
2882 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2883 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2884 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2885 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2886 if (dev->name)
2887 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2888 else
2889 di_args->path[0] = '\0';
2890
2891 out:
2892 rcu_read_unlock();
2893 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2894 ret = -EFAULT;
2895
2896 kfree(di_args);
2897 return ret;
2898 }
2899
2900 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2901 {
2902 struct inode *inode = file_inode(file);
2903 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2904 struct btrfs_root *root = BTRFS_I(inode)->root;
2905 struct btrfs_root *new_root;
2906 struct btrfs_dir_item *di;
2907 struct btrfs_trans_handle *trans;
2908 struct btrfs_path *path = NULL;
2909 struct btrfs_disk_key disk_key;
2910 struct fscrypt_str name = FSTR_INIT("default", 7);
2911 u64 objectid = 0;
2912 u64 dir_id;
2913 int ret;
2914
2915 if (!capable(CAP_SYS_ADMIN))
2916 return -EPERM;
2917
2918 ret = mnt_want_write_file(file);
2919 if (ret)
2920 return ret;
2921
2922 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2923 ret = -EFAULT;
2924 goto out;
2925 }
2926
2927 if (!objectid)
2928 objectid = BTRFS_FS_TREE_OBJECTID;
2929
2930 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2931 if (IS_ERR(new_root)) {
2932 ret = PTR_ERR(new_root);
2933 goto out;
2934 }
2935 if (!is_fstree(new_root->root_key.objectid)) {
2936 ret = -ENOENT;
2937 goto out_free;
2938 }
2939
2940 path = btrfs_alloc_path();
2941 if (!path) {
2942 ret = -ENOMEM;
2943 goto out_free;
2944 }
2945
2946 trans = btrfs_start_transaction(root, 1);
2947 if (IS_ERR(trans)) {
2948 ret = PTR_ERR(trans);
2949 goto out_free;
2950 }
2951
2952 dir_id = btrfs_super_root_dir(fs_info->super_copy);
2953 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
2954 dir_id, &name, 1);
2955 if (IS_ERR_OR_NULL(di)) {
2956 btrfs_release_path(path);
2957 btrfs_end_transaction(trans);
2958 btrfs_err(fs_info,
2959 "Umm, you don't have the default diritem, this isn't going to work");
2960 ret = -ENOENT;
2961 goto out_free;
2962 }
2963
2964 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2965 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2966 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
2967 btrfs_release_path(path);
2968
2969 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
2970 btrfs_end_transaction(trans);
2971 out_free:
2972 btrfs_put_root(new_root);
2973 btrfs_free_path(path);
2974 out:
2975 mnt_drop_write_file(file);
2976 return ret;
2977 }
2978
2979 static void get_block_group_info(struct list_head *groups_list,
2980 struct btrfs_ioctl_space_info *space)
2981 {
2982 struct btrfs_block_group *block_group;
2983
2984 space->total_bytes = 0;
2985 space->used_bytes = 0;
2986 space->flags = 0;
2987 list_for_each_entry(block_group, groups_list, list) {
2988 space->flags = block_group->flags;
2989 space->total_bytes += block_group->length;
2990 space->used_bytes += block_group->used;
2991 }
2992 }
2993
2994 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
2995 void __user *arg)
2996 {
2997 struct btrfs_ioctl_space_args space_args = { 0 };
2998 struct btrfs_ioctl_space_info space;
2999 struct btrfs_ioctl_space_info *dest;
3000 struct btrfs_ioctl_space_info *dest_orig;
3001 struct btrfs_ioctl_space_info __user *user_dest;
3002 struct btrfs_space_info *info;
3003 static const u64 types[] = {
3004 BTRFS_BLOCK_GROUP_DATA,
3005 BTRFS_BLOCK_GROUP_SYSTEM,
3006 BTRFS_BLOCK_GROUP_METADATA,
3007 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3008 };
3009 int num_types = 4;
3010 int alloc_size;
3011 int ret = 0;
3012 u64 slot_count = 0;
3013 int i, c;
3014
3015 if (copy_from_user(&space_args,
3016 (struct btrfs_ioctl_space_args __user *)arg,
3017 sizeof(space_args)))
3018 return -EFAULT;
3019
3020 for (i = 0; i < num_types; i++) {
3021 struct btrfs_space_info *tmp;
3022
3023 info = NULL;
3024 list_for_each_entry(tmp, &fs_info->space_info, list) {
3025 if (tmp->flags == types[i]) {
3026 info = tmp;
3027 break;
3028 }
3029 }
3030
3031 if (!info)
3032 continue;
3033
3034 down_read(&info->groups_sem);
3035 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3036 if (!list_empty(&info->block_groups[c]))
3037 slot_count++;
3038 }
3039 up_read(&info->groups_sem);
3040 }
3041
3042 /*
3043 * Global block reserve, exported as a space_info
3044 */
3045 slot_count++;
3046
3047 /* space_slots == 0 means they are asking for a count */
3048 if (space_args.space_slots == 0) {
3049 space_args.total_spaces = slot_count;
3050 goto out;
3051 }
3052
3053 slot_count = min_t(u64, space_args.space_slots, slot_count);
3054
3055 alloc_size = sizeof(*dest) * slot_count;
3056
3057 /* we generally have at most 6 or so space infos, one for each raid
3058 * level. So, a whole page should be more than enough for everyone
3059 */
3060 if (alloc_size > PAGE_SIZE)
3061 return -ENOMEM;
3062
3063 space_args.total_spaces = 0;
3064 dest = kmalloc(alloc_size, GFP_KERNEL);
3065 if (!dest)
3066 return -ENOMEM;
3067 dest_orig = dest;
3068
3069 /* now we have a buffer to copy into */
3070 for (i = 0; i < num_types; i++) {
3071 struct btrfs_space_info *tmp;
3072
3073 if (!slot_count)
3074 break;
3075
3076 info = NULL;
3077 list_for_each_entry(tmp, &fs_info->space_info, list) {
3078 if (tmp->flags == types[i]) {
3079 info = tmp;
3080 break;
3081 }
3082 }
3083
3084 if (!info)
3085 continue;
3086 down_read(&info->groups_sem);
3087 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3088 if (!list_empty(&info->block_groups[c])) {
3089 get_block_group_info(&info->block_groups[c],
3090 &space);
3091 memcpy(dest, &space, sizeof(space));
3092 dest++;
3093 space_args.total_spaces++;
3094 slot_count--;
3095 }
3096 if (!slot_count)
3097 break;
3098 }
3099 up_read(&info->groups_sem);
3100 }
3101
3102 /*
3103 * Add global block reserve
3104 */
3105 if (slot_count) {
3106 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3107
3108 spin_lock(&block_rsv->lock);
3109 space.total_bytes = block_rsv->size;
3110 space.used_bytes = block_rsv->size - block_rsv->reserved;
3111 spin_unlock(&block_rsv->lock);
3112 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3113 memcpy(dest, &space, sizeof(space));
3114 space_args.total_spaces++;
3115 }
3116
3117 user_dest = (struct btrfs_ioctl_space_info __user *)
3118 (arg + sizeof(struct btrfs_ioctl_space_args));
3119
3120 if (copy_to_user(user_dest, dest_orig, alloc_size))
3121 ret = -EFAULT;
3122
3123 kfree(dest_orig);
3124 out:
3125 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3126 ret = -EFAULT;
3127
3128 return ret;
3129 }
3130
3131 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3132 void __user *argp)
3133 {
3134 struct btrfs_trans_handle *trans;
3135 u64 transid;
3136
3137 /*
3138 * Start orphan cleanup here for the given root in case it hasn't been
3139 * started already by other means. Errors are handled in the other
3140 * functions during transaction commit.
3141 */
3142 btrfs_orphan_cleanup(root);
3143
3144 trans = btrfs_attach_transaction_barrier(root);
3145 if (IS_ERR(trans)) {
3146 if (PTR_ERR(trans) != -ENOENT)
3147 return PTR_ERR(trans);
3148
3149 /* No running transaction, don't bother */
3150 transid = btrfs_get_last_trans_committed(root->fs_info);
3151 goto out;
3152 }
3153 transid = trans->transid;
3154 btrfs_commit_transaction_async(trans);
3155 out:
3156 if (argp)
3157 if (copy_to_user(argp, &transid, sizeof(transid)))
3158 return -EFAULT;
3159 return 0;
3160 }
3161
3162 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3163 void __user *argp)
3164 {
3165 /* By default wait for the current transaction. */
3166 u64 transid = 0;
3167
3168 if (argp)
3169 if (copy_from_user(&transid, argp, sizeof(transid)))
3170 return -EFAULT;
3171
3172 return btrfs_wait_for_commit(fs_info, transid);
3173 }
3174
3175 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3176 {
3177 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3178 struct btrfs_ioctl_scrub_args *sa;
3179 int ret;
3180
3181 if (!capable(CAP_SYS_ADMIN))
3182 return -EPERM;
3183
3184 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3185 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3186 return -EINVAL;
3187 }
3188
3189 sa = memdup_user(arg, sizeof(*sa));
3190 if (IS_ERR(sa))
3191 return PTR_ERR(sa);
3192
3193 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3194 ret = -EOPNOTSUPP;
3195 goto out;
3196 }
3197
3198 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3199 ret = mnt_want_write_file(file);
3200 if (ret)
3201 goto out;
3202 }
3203
3204 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3205 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3206 0);
3207
3208 /*
3209 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3210 * error. This is important as it allows user space to know how much
3211 * progress scrub has done. For example, if scrub is canceled we get
3212 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3213 * space. Later user space can inspect the progress from the structure
3214 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3215 * previously (btrfs-progs does this).
3216 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3217 * then return -EFAULT to signal the structure was not copied or it may
3218 * be corrupt and unreliable due to a partial copy.
3219 */
3220 if (copy_to_user(arg, sa, sizeof(*sa)))
3221 ret = -EFAULT;
3222
3223 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3224 mnt_drop_write_file(file);
3225 out:
3226 kfree(sa);
3227 return ret;
3228 }
3229
3230 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3231 {
3232 if (!capable(CAP_SYS_ADMIN))
3233 return -EPERM;
3234
3235 return btrfs_scrub_cancel(fs_info);
3236 }
3237
3238 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3239 void __user *arg)
3240 {
3241 struct btrfs_ioctl_scrub_args *sa;
3242 int ret;
3243
3244 if (!capable(CAP_SYS_ADMIN))
3245 return -EPERM;
3246
3247 sa = memdup_user(arg, sizeof(*sa));
3248 if (IS_ERR(sa))
3249 return PTR_ERR(sa);
3250
3251 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3252
3253 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3254 ret = -EFAULT;
3255
3256 kfree(sa);
3257 return ret;
3258 }
3259
3260 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3261 void __user *arg)
3262 {
3263 struct btrfs_ioctl_get_dev_stats *sa;
3264 int ret;
3265
3266 sa = memdup_user(arg, sizeof(*sa));
3267 if (IS_ERR(sa))
3268 return PTR_ERR(sa);
3269
3270 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3271 kfree(sa);
3272 return -EPERM;
3273 }
3274
3275 ret = btrfs_get_dev_stats(fs_info, sa);
3276
3277 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3278 ret = -EFAULT;
3279
3280 kfree(sa);
3281 return ret;
3282 }
3283
3284 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3285 void __user *arg)
3286 {
3287 struct btrfs_ioctl_dev_replace_args *p;
3288 int ret;
3289
3290 if (!capable(CAP_SYS_ADMIN))
3291 return -EPERM;
3292
3293 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3294 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3295 return -EINVAL;
3296 }
3297
3298 p = memdup_user(arg, sizeof(*p));
3299 if (IS_ERR(p))
3300 return PTR_ERR(p);
3301
3302 switch (p->cmd) {
3303 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3304 if (sb_rdonly(fs_info->sb)) {
3305 ret = -EROFS;
3306 goto out;
3307 }
3308 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3309 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3310 } else {
3311 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3312 btrfs_exclop_finish(fs_info);
3313 }
3314 break;
3315 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3316 btrfs_dev_replace_status(fs_info, p);
3317 ret = 0;
3318 break;
3319 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3320 p->result = btrfs_dev_replace_cancel(fs_info);
3321 ret = 0;
3322 break;
3323 default:
3324 ret = -EINVAL;
3325 break;
3326 }
3327
3328 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3329 ret = -EFAULT;
3330 out:
3331 kfree(p);
3332 return ret;
3333 }
3334
3335 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3336 {
3337 int ret = 0;
3338 int i;
3339 u64 rel_ptr;
3340 int size;
3341 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3342 struct inode_fs_paths *ipath = NULL;
3343 struct btrfs_path *path;
3344
3345 if (!capable(CAP_DAC_READ_SEARCH))
3346 return -EPERM;
3347
3348 path = btrfs_alloc_path();
3349 if (!path) {
3350 ret = -ENOMEM;
3351 goto out;
3352 }
3353
3354 ipa = memdup_user(arg, sizeof(*ipa));
3355 if (IS_ERR(ipa)) {
3356 ret = PTR_ERR(ipa);
3357 ipa = NULL;
3358 goto out;
3359 }
3360
3361 size = min_t(u32, ipa->size, 4096);
3362 ipath = init_ipath(size, root, path);
3363 if (IS_ERR(ipath)) {
3364 ret = PTR_ERR(ipath);
3365 ipath = NULL;
3366 goto out;
3367 }
3368
3369 ret = paths_from_inode(ipa->inum, ipath);
3370 if (ret < 0)
3371 goto out;
3372
3373 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3374 rel_ptr = ipath->fspath->val[i] -
3375 (u64)(unsigned long)ipath->fspath->val;
3376 ipath->fspath->val[i] = rel_ptr;
3377 }
3378
3379 btrfs_free_path(path);
3380 path = NULL;
3381 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3382 ipath->fspath, size);
3383 if (ret) {
3384 ret = -EFAULT;
3385 goto out;
3386 }
3387
3388 out:
3389 btrfs_free_path(path);
3390 free_ipath(ipath);
3391 kfree(ipa);
3392
3393 return ret;
3394 }
3395
3396 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3397 void __user *arg, int version)
3398 {
3399 int ret = 0;
3400 int size;
3401 struct btrfs_ioctl_logical_ino_args *loi;
3402 struct btrfs_data_container *inodes = NULL;
3403 struct btrfs_path *path = NULL;
3404 bool ignore_offset;
3405
3406 if (!capable(CAP_SYS_ADMIN))
3407 return -EPERM;
3408
3409 loi = memdup_user(arg, sizeof(*loi));
3410 if (IS_ERR(loi))
3411 return PTR_ERR(loi);
3412
3413 if (version == 1) {
3414 ignore_offset = false;
3415 size = min_t(u32, loi->size, SZ_64K);
3416 } else {
3417 /* All reserved bits must be 0 for now */
3418 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3419 ret = -EINVAL;
3420 goto out_loi;
3421 }
3422 /* Only accept flags we have defined so far */
3423 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3424 ret = -EINVAL;
3425 goto out_loi;
3426 }
3427 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3428 size = min_t(u32, loi->size, SZ_16M);
3429 }
3430
3431 inodes = init_data_container(size);
3432 if (IS_ERR(inodes)) {
3433 ret = PTR_ERR(inodes);
3434 goto out_loi;
3435 }
3436
3437 path = btrfs_alloc_path();
3438 if (!path) {
3439 ret = -ENOMEM;
3440 goto out;
3441 }
3442 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3443 inodes, ignore_offset);
3444 btrfs_free_path(path);
3445 if (ret == -EINVAL)
3446 ret = -ENOENT;
3447 if (ret < 0)
3448 goto out;
3449
3450 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3451 size);
3452 if (ret)
3453 ret = -EFAULT;
3454
3455 out:
3456 kvfree(inodes);
3457 out_loi:
3458 kfree(loi);
3459
3460 return ret;
3461 }
3462
3463 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3464 struct btrfs_ioctl_balance_args *bargs)
3465 {
3466 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3467
3468 bargs->flags = bctl->flags;
3469
3470 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3471 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3472 if (atomic_read(&fs_info->balance_pause_req))
3473 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3474 if (atomic_read(&fs_info->balance_cancel_req))
3475 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3476
3477 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3478 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3479 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3480
3481 spin_lock(&fs_info->balance_lock);
3482 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3483 spin_unlock(&fs_info->balance_lock);
3484 }
3485
3486 /*
3487 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3488 * required.
3489 *
3490 * @fs_info: the filesystem
3491 * @excl_acquired: ptr to boolean value which is set to false in case balance
3492 * is being resumed
3493 *
3494 * Return 0 on success in which case both fs_info::balance is acquired as well
3495 * as exclusive ops are blocked. In case of failure return an error code.
3496 */
3497 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3498 {
3499 int ret;
3500
3501 /*
3502 * Exclusive operation is locked. Three possibilities:
3503 * (1) some other op is running
3504 * (2) balance is running
3505 * (3) balance is paused -- special case (think resume)
3506 */
3507 while (1) {
3508 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3509 *excl_acquired = true;
3510 mutex_lock(&fs_info->balance_mutex);
3511 return 0;
3512 }
3513
3514 mutex_lock(&fs_info->balance_mutex);
3515 if (fs_info->balance_ctl) {
3516 /* This is either (2) or (3) */
3517 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3518 /* This is (2) */
3519 ret = -EINPROGRESS;
3520 goto out_failure;
3521
3522 } else {
3523 mutex_unlock(&fs_info->balance_mutex);
3524 /*
3525 * Lock released to allow other waiters to
3526 * continue, we'll reexamine the status again.
3527 */
3528 mutex_lock(&fs_info->balance_mutex);
3529
3530 if (fs_info->balance_ctl &&
3531 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3532 /* This is (3) */
3533 *excl_acquired = false;
3534 return 0;
3535 }
3536 }
3537 } else {
3538 /* This is (1) */
3539 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3540 goto out_failure;
3541 }
3542
3543 mutex_unlock(&fs_info->balance_mutex);
3544 }
3545
3546 out_failure:
3547 mutex_unlock(&fs_info->balance_mutex);
3548 *excl_acquired = false;
3549 return ret;
3550 }
3551
3552 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3553 {
3554 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3555 struct btrfs_fs_info *fs_info = root->fs_info;
3556 struct btrfs_ioctl_balance_args *bargs;
3557 struct btrfs_balance_control *bctl;
3558 bool need_unlock = true;
3559 int ret;
3560
3561 if (!capable(CAP_SYS_ADMIN))
3562 return -EPERM;
3563
3564 ret = mnt_want_write_file(file);
3565 if (ret)
3566 return ret;
3567
3568 bargs = memdup_user(arg, sizeof(*bargs));
3569 if (IS_ERR(bargs)) {
3570 ret = PTR_ERR(bargs);
3571 bargs = NULL;
3572 goto out;
3573 }
3574
3575 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3576 if (ret)
3577 goto out;
3578
3579 lockdep_assert_held(&fs_info->balance_mutex);
3580
3581 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3582 if (!fs_info->balance_ctl) {
3583 ret = -ENOTCONN;
3584 goto out_unlock;
3585 }
3586
3587 bctl = fs_info->balance_ctl;
3588 spin_lock(&fs_info->balance_lock);
3589 bctl->flags |= BTRFS_BALANCE_RESUME;
3590 spin_unlock(&fs_info->balance_lock);
3591 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3592
3593 goto do_balance;
3594 }
3595
3596 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3597 ret = -EINVAL;
3598 goto out_unlock;
3599 }
3600
3601 if (fs_info->balance_ctl) {
3602 ret = -EINPROGRESS;
3603 goto out_unlock;
3604 }
3605
3606 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3607 if (!bctl) {
3608 ret = -ENOMEM;
3609 goto out_unlock;
3610 }
3611
3612 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3613 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3614 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3615
3616 bctl->flags = bargs->flags;
3617 do_balance:
3618 /*
3619 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3620 * bctl is freed in reset_balance_state, or, if restriper was paused
3621 * all the way until unmount, in free_fs_info. The flag should be
3622 * cleared after reset_balance_state.
3623 */
3624 need_unlock = false;
3625
3626 ret = btrfs_balance(fs_info, bctl, bargs);
3627 bctl = NULL;
3628
3629 if (ret == 0 || ret == -ECANCELED) {
3630 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3631 ret = -EFAULT;
3632 }
3633
3634 kfree(bctl);
3635 out_unlock:
3636 mutex_unlock(&fs_info->balance_mutex);
3637 if (need_unlock)
3638 btrfs_exclop_finish(fs_info);
3639 out:
3640 mnt_drop_write_file(file);
3641 kfree(bargs);
3642 return ret;
3643 }
3644
3645 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3646 {
3647 if (!capable(CAP_SYS_ADMIN))
3648 return -EPERM;
3649
3650 switch (cmd) {
3651 case BTRFS_BALANCE_CTL_PAUSE:
3652 return btrfs_pause_balance(fs_info);
3653 case BTRFS_BALANCE_CTL_CANCEL:
3654 return btrfs_cancel_balance(fs_info);
3655 }
3656
3657 return -EINVAL;
3658 }
3659
3660 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3661 void __user *arg)
3662 {
3663 struct btrfs_ioctl_balance_args *bargs;
3664 int ret = 0;
3665
3666 if (!capable(CAP_SYS_ADMIN))
3667 return -EPERM;
3668
3669 mutex_lock(&fs_info->balance_mutex);
3670 if (!fs_info->balance_ctl) {
3671 ret = -ENOTCONN;
3672 goto out;
3673 }
3674
3675 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3676 if (!bargs) {
3677 ret = -ENOMEM;
3678 goto out;
3679 }
3680
3681 btrfs_update_ioctl_balance_args(fs_info, bargs);
3682
3683 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3684 ret = -EFAULT;
3685
3686 kfree(bargs);
3687 out:
3688 mutex_unlock(&fs_info->balance_mutex);
3689 return ret;
3690 }
3691
3692 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3693 {
3694 struct inode *inode = file_inode(file);
3695 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3696 struct btrfs_ioctl_quota_ctl_args *sa;
3697 int ret;
3698
3699 if (!capable(CAP_SYS_ADMIN))
3700 return -EPERM;
3701
3702 ret = mnt_want_write_file(file);
3703 if (ret)
3704 return ret;
3705
3706 sa = memdup_user(arg, sizeof(*sa));
3707 if (IS_ERR(sa)) {
3708 ret = PTR_ERR(sa);
3709 goto drop_write;
3710 }
3711
3712 down_write(&fs_info->subvol_sem);
3713
3714 switch (sa->cmd) {
3715 case BTRFS_QUOTA_CTL_ENABLE:
3716 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3717 ret = btrfs_quota_enable(fs_info, sa);
3718 break;
3719 case BTRFS_QUOTA_CTL_DISABLE:
3720 ret = btrfs_quota_disable(fs_info);
3721 break;
3722 default:
3723 ret = -EINVAL;
3724 break;
3725 }
3726
3727 kfree(sa);
3728 up_write(&fs_info->subvol_sem);
3729 drop_write:
3730 mnt_drop_write_file(file);
3731 return ret;
3732 }
3733
3734 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3735 {
3736 struct inode *inode = file_inode(file);
3737 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3738 struct btrfs_root *root = BTRFS_I(inode)->root;
3739 struct btrfs_ioctl_qgroup_assign_args *sa;
3740 struct btrfs_trans_handle *trans;
3741 int ret;
3742 int err;
3743
3744 if (!capable(CAP_SYS_ADMIN))
3745 return -EPERM;
3746
3747 ret = mnt_want_write_file(file);
3748 if (ret)
3749 return ret;
3750
3751 sa = memdup_user(arg, sizeof(*sa));
3752 if (IS_ERR(sa)) {
3753 ret = PTR_ERR(sa);
3754 goto drop_write;
3755 }
3756
3757 trans = btrfs_join_transaction(root);
3758 if (IS_ERR(trans)) {
3759 ret = PTR_ERR(trans);
3760 goto out;
3761 }
3762
3763 if (sa->assign) {
3764 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3765 } else {
3766 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3767 }
3768
3769 /* update qgroup status and info */
3770 mutex_lock(&fs_info->qgroup_ioctl_lock);
3771 err = btrfs_run_qgroups(trans);
3772 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3773 if (err < 0)
3774 btrfs_handle_fs_error(fs_info, err,
3775 "failed to update qgroup status and info");
3776 err = btrfs_end_transaction(trans);
3777 if (err && !ret)
3778 ret = err;
3779
3780 out:
3781 kfree(sa);
3782 drop_write:
3783 mnt_drop_write_file(file);
3784 return ret;
3785 }
3786
3787 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3788 {
3789 struct inode *inode = file_inode(file);
3790 struct btrfs_root *root = BTRFS_I(inode)->root;
3791 struct btrfs_ioctl_qgroup_create_args *sa;
3792 struct btrfs_trans_handle *trans;
3793 int ret;
3794 int err;
3795
3796 if (!capable(CAP_SYS_ADMIN))
3797 return -EPERM;
3798
3799 ret = mnt_want_write_file(file);
3800 if (ret)
3801 return ret;
3802
3803 sa = memdup_user(arg, sizeof(*sa));
3804 if (IS_ERR(sa)) {
3805 ret = PTR_ERR(sa);
3806 goto drop_write;
3807 }
3808
3809 if (!sa->qgroupid) {
3810 ret = -EINVAL;
3811 goto out;
3812 }
3813
3814 if (sa->create && is_fstree(sa->qgroupid)) {
3815 ret = -EINVAL;
3816 goto out;
3817 }
3818
3819 trans = btrfs_join_transaction(root);
3820 if (IS_ERR(trans)) {
3821 ret = PTR_ERR(trans);
3822 goto out;
3823 }
3824
3825 if (sa->create) {
3826 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3827 } else {
3828 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3829 }
3830
3831 err = btrfs_end_transaction(trans);
3832 if (err && !ret)
3833 ret = err;
3834
3835 out:
3836 kfree(sa);
3837 drop_write:
3838 mnt_drop_write_file(file);
3839 return ret;
3840 }
3841
3842 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3843 {
3844 struct inode *inode = file_inode(file);
3845 struct btrfs_root *root = BTRFS_I(inode)->root;
3846 struct btrfs_ioctl_qgroup_limit_args *sa;
3847 struct btrfs_trans_handle *trans;
3848 int ret;
3849 int err;
3850 u64 qgroupid;
3851
3852 if (!capable(CAP_SYS_ADMIN))
3853 return -EPERM;
3854
3855 ret = mnt_want_write_file(file);
3856 if (ret)
3857 return ret;
3858
3859 sa = memdup_user(arg, sizeof(*sa));
3860 if (IS_ERR(sa)) {
3861 ret = PTR_ERR(sa);
3862 goto drop_write;
3863 }
3864
3865 trans = btrfs_join_transaction(root);
3866 if (IS_ERR(trans)) {
3867 ret = PTR_ERR(trans);
3868 goto out;
3869 }
3870
3871 qgroupid = sa->qgroupid;
3872 if (!qgroupid) {
3873 /* take the current subvol as qgroup */
3874 qgroupid = root->root_key.objectid;
3875 }
3876
3877 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3878
3879 err = btrfs_end_transaction(trans);
3880 if (err && !ret)
3881 ret = err;
3882
3883 out:
3884 kfree(sa);
3885 drop_write:
3886 mnt_drop_write_file(file);
3887 return ret;
3888 }
3889
3890 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3891 {
3892 struct inode *inode = file_inode(file);
3893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3894 struct btrfs_ioctl_quota_rescan_args *qsa;
3895 int ret;
3896
3897 if (!capable(CAP_SYS_ADMIN))
3898 return -EPERM;
3899
3900 ret = mnt_want_write_file(file);
3901 if (ret)
3902 return ret;
3903
3904 qsa = memdup_user(arg, sizeof(*qsa));
3905 if (IS_ERR(qsa)) {
3906 ret = PTR_ERR(qsa);
3907 goto drop_write;
3908 }
3909
3910 if (qsa->flags) {
3911 ret = -EINVAL;
3912 goto out;
3913 }
3914
3915 ret = btrfs_qgroup_rescan(fs_info);
3916
3917 out:
3918 kfree(qsa);
3919 drop_write:
3920 mnt_drop_write_file(file);
3921 return ret;
3922 }
3923
3924 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
3925 void __user *arg)
3926 {
3927 struct btrfs_ioctl_quota_rescan_args qsa = {0};
3928
3929 if (!capable(CAP_SYS_ADMIN))
3930 return -EPERM;
3931
3932 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
3933 qsa.flags = 1;
3934 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
3935 }
3936
3937 if (copy_to_user(arg, &qsa, sizeof(qsa)))
3938 return -EFAULT;
3939
3940 return 0;
3941 }
3942
3943 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
3944 void __user *arg)
3945 {
3946 if (!capable(CAP_SYS_ADMIN))
3947 return -EPERM;
3948
3949 return btrfs_qgroup_wait_for_completion(fs_info, true);
3950 }
3951
3952 static long _btrfs_ioctl_set_received_subvol(struct file *file,
3953 struct mnt_idmap *idmap,
3954 struct btrfs_ioctl_received_subvol_args *sa)
3955 {
3956 struct inode *inode = file_inode(file);
3957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3958 struct btrfs_root *root = BTRFS_I(inode)->root;
3959 struct btrfs_root_item *root_item = &root->root_item;
3960 struct btrfs_trans_handle *trans;
3961 struct timespec64 ct = current_time(inode);
3962 int ret = 0;
3963 int received_uuid_changed;
3964
3965 if (!inode_owner_or_capable(idmap, inode))
3966 return -EPERM;
3967
3968 ret = mnt_want_write_file(file);
3969 if (ret < 0)
3970 return ret;
3971
3972 down_write(&fs_info->subvol_sem);
3973
3974 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3975 ret = -EINVAL;
3976 goto out;
3977 }
3978
3979 if (btrfs_root_readonly(root)) {
3980 ret = -EROFS;
3981 goto out;
3982 }
3983
3984 /*
3985 * 1 - root item
3986 * 2 - uuid items (received uuid + subvol uuid)
3987 */
3988 trans = btrfs_start_transaction(root, 3);
3989 if (IS_ERR(trans)) {
3990 ret = PTR_ERR(trans);
3991 trans = NULL;
3992 goto out;
3993 }
3994
3995 sa->rtransid = trans->transid;
3996 sa->rtime.sec = ct.tv_sec;
3997 sa->rtime.nsec = ct.tv_nsec;
3998
3999 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4000 BTRFS_UUID_SIZE);
4001 if (received_uuid_changed &&
4002 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4003 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4004 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4005 root->root_key.objectid);
4006 if (ret && ret != -ENOENT) {
4007 btrfs_abort_transaction(trans, ret);
4008 btrfs_end_transaction(trans);
4009 goto out;
4010 }
4011 }
4012 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4013 btrfs_set_root_stransid(root_item, sa->stransid);
4014 btrfs_set_root_rtransid(root_item, sa->rtransid);
4015 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4016 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4017 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4018 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4019
4020 ret = btrfs_update_root(trans, fs_info->tree_root,
4021 &root->root_key, &root->root_item);
4022 if (ret < 0) {
4023 btrfs_end_transaction(trans);
4024 goto out;
4025 }
4026 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4027 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4028 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4029 root->root_key.objectid);
4030 if (ret < 0 && ret != -EEXIST) {
4031 btrfs_abort_transaction(trans, ret);
4032 btrfs_end_transaction(trans);
4033 goto out;
4034 }
4035 }
4036 ret = btrfs_commit_transaction(trans);
4037 out:
4038 up_write(&fs_info->subvol_sem);
4039 mnt_drop_write_file(file);
4040 return ret;
4041 }
4042
4043 #ifdef CONFIG_64BIT
4044 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4045 void __user *arg)
4046 {
4047 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4048 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4049 int ret = 0;
4050
4051 args32 = memdup_user(arg, sizeof(*args32));
4052 if (IS_ERR(args32))
4053 return PTR_ERR(args32);
4054
4055 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4056 if (!args64) {
4057 ret = -ENOMEM;
4058 goto out;
4059 }
4060
4061 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4062 args64->stransid = args32->stransid;
4063 args64->rtransid = args32->rtransid;
4064 args64->stime.sec = args32->stime.sec;
4065 args64->stime.nsec = args32->stime.nsec;
4066 args64->rtime.sec = args32->rtime.sec;
4067 args64->rtime.nsec = args32->rtime.nsec;
4068 args64->flags = args32->flags;
4069
4070 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4071 if (ret)
4072 goto out;
4073
4074 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4075 args32->stransid = args64->stransid;
4076 args32->rtransid = args64->rtransid;
4077 args32->stime.sec = args64->stime.sec;
4078 args32->stime.nsec = args64->stime.nsec;
4079 args32->rtime.sec = args64->rtime.sec;
4080 args32->rtime.nsec = args64->rtime.nsec;
4081 args32->flags = args64->flags;
4082
4083 ret = copy_to_user(arg, args32, sizeof(*args32));
4084 if (ret)
4085 ret = -EFAULT;
4086
4087 out:
4088 kfree(args32);
4089 kfree(args64);
4090 return ret;
4091 }
4092 #endif
4093
4094 static long btrfs_ioctl_set_received_subvol(struct file *file,
4095 void __user *arg)
4096 {
4097 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4098 int ret = 0;
4099
4100 sa = memdup_user(arg, sizeof(*sa));
4101 if (IS_ERR(sa))
4102 return PTR_ERR(sa);
4103
4104 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4105
4106 if (ret)
4107 goto out;
4108
4109 ret = copy_to_user(arg, sa, sizeof(*sa));
4110 if (ret)
4111 ret = -EFAULT;
4112
4113 out:
4114 kfree(sa);
4115 return ret;
4116 }
4117
4118 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4119 void __user *arg)
4120 {
4121 size_t len;
4122 int ret;
4123 char label[BTRFS_LABEL_SIZE];
4124
4125 spin_lock(&fs_info->super_lock);
4126 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4127 spin_unlock(&fs_info->super_lock);
4128
4129 len = strnlen(label, BTRFS_LABEL_SIZE);
4130
4131 if (len == BTRFS_LABEL_SIZE) {
4132 btrfs_warn(fs_info,
4133 "label is too long, return the first %zu bytes",
4134 --len);
4135 }
4136
4137 ret = copy_to_user(arg, label, len);
4138
4139 return ret ? -EFAULT : 0;
4140 }
4141
4142 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4143 {
4144 struct inode *inode = file_inode(file);
4145 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4146 struct btrfs_root *root = BTRFS_I(inode)->root;
4147 struct btrfs_super_block *super_block = fs_info->super_copy;
4148 struct btrfs_trans_handle *trans;
4149 char label[BTRFS_LABEL_SIZE];
4150 int ret;
4151
4152 if (!capable(CAP_SYS_ADMIN))
4153 return -EPERM;
4154
4155 if (copy_from_user(label, arg, sizeof(label)))
4156 return -EFAULT;
4157
4158 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4159 btrfs_err(fs_info,
4160 "unable to set label with more than %d bytes",
4161 BTRFS_LABEL_SIZE - 1);
4162 return -EINVAL;
4163 }
4164
4165 ret = mnt_want_write_file(file);
4166 if (ret)
4167 return ret;
4168
4169 trans = btrfs_start_transaction(root, 0);
4170 if (IS_ERR(trans)) {
4171 ret = PTR_ERR(trans);
4172 goto out_unlock;
4173 }
4174
4175 spin_lock(&fs_info->super_lock);
4176 strcpy(super_block->label, label);
4177 spin_unlock(&fs_info->super_lock);
4178 ret = btrfs_commit_transaction(trans);
4179
4180 out_unlock:
4181 mnt_drop_write_file(file);
4182 return ret;
4183 }
4184
4185 #define INIT_FEATURE_FLAGS(suffix) \
4186 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4187 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4188 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4189
4190 int btrfs_ioctl_get_supported_features(void __user *arg)
4191 {
4192 static const struct btrfs_ioctl_feature_flags features[3] = {
4193 INIT_FEATURE_FLAGS(SUPP),
4194 INIT_FEATURE_FLAGS(SAFE_SET),
4195 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4196 };
4197
4198 if (copy_to_user(arg, &features, sizeof(features)))
4199 return -EFAULT;
4200
4201 return 0;
4202 }
4203
4204 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4205 void __user *arg)
4206 {
4207 struct btrfs_super_block *super_block = fs_info->super_copy;
4208 struct btrfs_ioctl_feature_flags features;
4209
4210 features.compat_flags = btrfs_super_compat_flags(super_block);
4211 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4212 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4213
4214 if (copy_to_user(arg, &features, sizeof(features)))
4215 return -EFAULT;
4216
4217 return 0;
4218 }
4219
4220 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4221 enum btrfs_feature_set set,
4222 u64 change_mask, u64 flags, u64 supported_flags,
4223 u64 safe_set, u64 safe_clear)
4224 {
4225 const char *type = btrfs_feature_set_name(set);
4226 char *names;
4227 u64 disallowed, unsupported;
4228 u64 set_mask = flags & change_mask;
4229 u64 clear_mask = ~flags & change_mask;
4230
4231 unsupported = set_mask & ~supported_flags;
4232 if (unsupported) {
4233 names = btrfs_printable_features(set, unsupported);
4234 if (names) {
4235 btrfs_warn(fs_info,
4236 "this kernel does not support the %s feature bit%s",
4237 names, strchr(names, ',') ? "s" : "");
4238 kfree(names);
4239 } else
4240 btrfs_warn(fs_info,
4241 "this kernel does not support %s bits 0x%llx",
4242 type, unsupported);
4243 return -EOPNOTSUPP;
4244 }
4245
4246 disallowed = set_mask & ~safe_set;
4247 if (disallowed) {
4248 names = btrfs_printable_features(set, disallowed);
4249 if (names) {
4250 btrfs_warn(fs_info,
4251 "can't set the %s feature bit%s while mounted",
4252 names, strchr(names, ',') ? "s" : "");
4253 kfree(names);
4254 } else
4255 btrfs_warn(fs_info,
4256 "can't set %s bits 0x%llx while mounted",
4257 type, disallowed);
4258 return -EPERM;
4259 }
4260
4261 disallowed = clear_mask & ~safe_clear;
4262 if (disallowed) {
4263 names = btrfs_printable_features(set, disallowed);
4264 if (names) {
4265 btrfs_warn(fs_info,
4266 "can't clear the %s feature bit%s while mounted",
4267 names, strchr(names, ',') ? "s" : "");
4268 kfree(names);
4269 } else
4270 btrfs_warn(fs_info,
4271 "can't clear %s bits 0x%llx while mounted",
4272 type, disallowed);
4273 return -EPERM;
4274 }
4275
4276 return 0;
4277 }
4278
4279 #define check_feature(fs_info, change_mask, flags, mask_base) \
4280 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4281 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4282 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4283 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4284
4285 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4286 {
4287 struct inode *inode = file_inode(file);
4288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4289 struct btrfs_root *root = BTRFS_I(inode)->root;
4290 struct btrfs_super_block *super_block = fs_info->super_copy;
4291 struct btrfs_ioctl_feature_flags flags[2];
4292 struct btrfs_trans_handle *trans;
4293 u64 newflags;
4294 int ret;
4295
4296 if (!capable(CAP_SYS_ADMIN))
4297 return -EPERM;
4298
4299 if (copy_from_user(flags, arg, sizeof(flags)))
4300 return -EFAULT;
4301
4302 /* Nothing to do */
4303 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4304 !flags[0].incompat_flags)
4305 return 0;
4306
4307 ret = check_feature(fs_info, flags[0].compat_flags,
4308 flags[1].compat_flags, COMPAT);
4309 if (ret)
4310 return ret;
4311
4312 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4313 flags[1].compat_ro_flags, COMPAT_RO);
4314 if (ret)
4315 return ret;
4316
4317 ret = check_feature(fs_info, flags[0].incompat_flags,
4318 flags[1].incompat_flags, INCOMPAT);
4319 if (ret)
4320 return ret;
4321
4322 ret = mnt_want_write_file(file);
4323 if (ret)
4324 return ret;
4325
4326 trans = btrfs_start_transaction(root, 0);
4327 if (IS_ERR(trans)) {
4328 ret = PTR_ERR(trans);
4329 goto out_drop_write;
4330 }
4331
4332 spin_lock(&fs_info->super_lock);
4333 newflags = btrfs_super_compat_flags(super_block);
4334 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4335 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4336 btrfs_set_super_compat_flags(super_block, newflags);
4337
4338 newflags = btrfs_super_compat_ro_flags(super_block);
4339 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4340 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4341 btrfs_set_super_compat_ro_flags(super_block, newflags);
4342
4343 newflags = btrfs_super_incompat_flags(super_block);
4344 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4345 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4346 btrfs_set_super_incompat_flags(super_block, newflags);
4347 spin_unlock(&fs_info->super_lock);
4348
4349 ret = btrfs_commit_transaction(trans);
4350 out_drop_write:
4351 mnt_drop_write_file(file);
4352
4353 return ret;
4354 }
4355
4356 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4357 {
4358 struct btrfs_ioctl_send_args *arg;
4359 int ret;
4360
4361 if (compat) {
4362 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4363 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4364
4365 ret = copy_from_user(&args32, argp, sizeof(args32));
4366 if (ret)
4367 return -EFAULT;
4368 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4369 if (!arg)
4370 return -ENOMEM;
4371 arg->send_fd = args32.send_fd;
4372 arg->clone_sources_count = args32.clone_sources_count;
4373 arg->clone_sources = compat_ptr(args32.clone_sources);
4374 arg->parent_root = args32.parent_root;
4375 arg->flags = args32.flags;
4376 arg->version = args32.version;
4377 memcpy(arg->reserved, args32.reserved,
4378 sizeof(args32.reserved));
4379 #else
4380 return -ENOTTY;
4381 #endif
4382 } else {
4383 arg = memdup_user(argp, sizeof(*arg));
4384 if (IS_ERR(arg))
4385 return PTR_ERR(arg);
4386 }
4387 ret = btrfs_ioctl_send(inode, arg);
4388 kfree(arg);
4389 return ret;
4390 }
4391
4392 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4393 bool compat)
4394 {
4395 struct btrfs_ioctl_encoded_io_args args = { 0 };
4396 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4397 flags);
4398 size_t copy_end;
4399 struct iovec iovstack[UIO_FASTIOV];
4400 struct iovec *iov = iovstack;
4401 struct iov_iter iter;
4402 loff_t pos;
4403 struct kiocb kiocb;
4404 ssize_t ret;
4405
4406 if (!capable(CAP_SYS_ADMIN)) {
4407 ret = -EPERM;
4408 goto out_acct;
4409 }
4410
4411 if (compat) {
4412 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4413 struct btrfs_ioctl_encoded_io_args_32 args32;
4414
4415 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4416 flags);
4417 if (copy_from_user(&args32, argp, copy_end)) {
4418 ret = -EFAULT;
4419 goto out_acct;
4420 }
4421 args.iov = compat_ptr(args32.iov);
4422 args.iovcnt = args32.iovcnt;
4423 args.offset = args32.offset;
4424 args.flags = args32.flags;
4425 #else
4426 return -ENOTTY;
4427 #endif
4428 } else {
4429 copy_end = copy_end_kernel;
4430 if (copy_from_user(&args, argp, copy_end)) {
4431 ret = -EFAULT;
4432 goto out_acct;
4433 }
4434 }
4435 if (args.flags != 0) {
4436 ret = -EINVAL;
4437 goto out_acct;
4438 }
4439
4440 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4441 &iov, &iter);
4442 if (ret < 0)
4443 goto out_acct;
4444
4445 if (iov_iter_count(&iter) == 0) {
4446 ret = 0;
4447 goto out_iov;
4448 }
4449 pos = args.offset;
4450 ret = rw_verify_area(READ, file, &pos, args.len);
4451 if (ret < 0)
4452 goto out_iov;
4453
4454 init_sync_kiocb(&kiocb, file);
4455 kiocb.ki_pos = pos;
4456
4457 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4458 if (ret >= 0) {
4459 fsnotify_access(file);
4460 if (copy_to_user(argp + copy_end,
4461 (char *)&args + copy_end_kernel,
4462 sizeof(args) - copy_end_kernel))
4463 ret = -EFAULT;
4464 }
4465
4466 out_iov:
4467 kfree(iov);
4468 out_acct:
4469 if (ret > 0)
4470 add_rchar(current, ret);
4471 inc_syscr(current);
4472 return ret;
4473 }
4474
4475 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4476 {
4477 struct btrfs_ioctl_encoded_io_args args;
4478 struct iovec iovstack[UIO_FASTIOV];
4479 struct iovec *iov = iovstack;
4480 struct iov_iter iter;
4481 loff_t pos;
4482 struct kiocb kiocb;
4483 ssize_t ret;
4484
4485 if (!capable(CAP_SYS_ADMIN)) {
4486 ret = -EPERM;
4487 goto out_acct;
4488 }
4489
4490 if (!(file->f_mode & FMODE_WRITE)) {
4491 ret = -EBADF;
4492 goto out_acct;
4493 }
4494
4495 if (compat) {
4496 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4497 struct btrfs_ioctl_encoded_io_args_32 args32;
4498
4499 if (copy_from_user(&args32, argp, sizeof(args32))) {
4500 ret = -EFAULT;
4501 goto out_acct;
4502 }
4503 args.iov = compat_ptr(args32.iov);
4504 args.iovcnt = args32.iovcnt;
4505 args.offset = args32.offset;
4506 args.flags = args32.flags;
4507 args.len = args32.len;
4508 args.unencoded_len = args32.unencoded_len;
4509 args.unencoded_offset = args32.unencoded_offset;
4510 args.compression = args32.compression;
4511 args.encryption = args32.encryption;
4512 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4513 #else
4514 return -ENOTTY;
4515 #endif
4516 } else {
4517 if (copy_from_user(&args, argp, sizeof(args))) {
4518 ret = -EFAULT;
4519 goto out_acct;
4520 }
4521 }
4522
4523 ret = -EINVAL;
4524 if (args.flags != 0)
4525 goto out_acct;
4526 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4527 goto out_acct;
4528 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4529 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4530 goto out_acct;
4531 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4532 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4533 goto out_acct;
4534 if (args.unencoded_offset > args.unencoded_len)
4535 goto out_acct;
4536 if (args.len > args.unencoded_len - args.unencoded_offset)
4537 goto out_acct;
4538
4539 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4540 &iov, &iter);
4541 if (ret < 0)
4542 goto out_acct;
4543
4544 if (iov_iter_count(&iter) == 0) {
4545 ret = 0;
4546 goto out_iov;
4547 }
4548 pos = args.offset;
4549 ret = rw_verify_area(WRITE, file, &pos, args.len);
4550 if (ret < 0)
4551 goto out_iov;
4552
4553 init_sync_kiocb(&kiocb, file);
4554 ret = kiocb_set_rw_flags(&kiocb, 0);
4555 if (ret)
4556 goto out_iov;
4557 kiocb.ki_pos = pos;
4558
4559 file_start_write(file);
4560
4561 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4562 if (ret > 0)
4563 fsnotify_modify(file);
4564
4565 file_end_write(file);
4566 out_iov:
4567 kfree(iov);
4568 out_acct:
4569 if (ret > 0)
4570 add_wchar(current, ret);
4571 inc_syscw(current);
4572 return ret;
4573 }
4574
4575 long btrfs_ioctl(struct file *file, unsigned int
4576 cmd, unsigned long arg)
4577 {
4578 struct inode *inode = file_inode(file);
4579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4580 struct btrfs_root *root = BTRFS_I(inode)->root;
4581 void __user *argp = (void __user *)arg;
4582
4583 switch (cmd) {
4584 case FS_IOC_GETVERSION:
4585 return btrfs_ioctl_getversion(inode, argp);
4586 case FS_IOC_GETFSLABEL:
4587 return btrfs_ioctl_get_fslabel(fs_info, argp);
4588 case FS_IOC_SETFSLABEL:
4589 return btrfs_ioctl_set_fslabel(file, argp);
4590 case FITRIM:
4591 return btrfs_ioctl_fitrim(fs_info, argp);
4592 case BTRFS_IOC_SNAP_CREATE:
4593 return btrfs_ioctl_snap_create(file, argp, 0);
4594 case BTRFS_IOC_SNAP_CREATE_V2:
4595 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4596 case BTRFS_IOC_SUBVOL_CREATE:
4597 return btrfs_ioctl_snap_create(file, argp, 1);
4598 case BTRFS_IOC_SUBVOL_CREATE_V2:
4599 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4600 case BTRFS_IOC_SNAP_DESTROY:
4601 return btrfs_ioctl_snap_destroy(file, argp, false);
4602 case BTRFS_IOC_SNAP_DESTROY_V2:
4603 return btrfs_ioctl_snap_destroy(file, argp, true);
4604 case BTRFS_IOC_SUBVOL_GETFLAGS:
4605 return btrfs_ioctl_subvol_getflags(inode, argp);
4606 case BTRFS_IOC_SUBVOL_SETFLAGS:
4607 return btrfs_ioctl_subvol_setflags(file, argp);
4608 case BTRFS_IOC_DEFAULT_SUBVOL:
4609 return btrfs_ioctl_default_subvol(file, argp);
4610 case BTRFS_IOC_DEFRAG:
4611 return btrfs_ioctl_defrag(file, NULL);
4612 case BTRFS_IOC_DEFRAG_RANGE:
4613 return btrfs_ioctl_defrag(file, argp);
4614 case BTRFS_IOC_RESIZE:
4615 return btrfs_ioctl_resize(file, argp);
4616 case BTRFS_IOC_ADD_DEV:
4617 return btrfs_ioctl_add_dev(fs_info, argp);
4618 case BTRFS_IOC_RM_DEV:
4619 return btrfs_ioctl_rm_dev(file, argp);
4620 case BTRFS_IOC_RM_DEV_V2:
4621 return btrfs_ioctl_rm_dev_v2(file, argp);
4622 case BTRFS_IOC_FS_INFO:
4623 return btrfs_ioctl_fs_info(fs_info, argp);
4624 case BTRFS_IOC_DEV_INFO:
4625 return btrfs_ioctl_dev_info(fs_info, argp);
4626 case BTRFS_IOC_TREE_SEARCH:
4627 return btrfs_ioctl_tree_search(inode, argp);
4628 case BTRFS_IOC_TREE_SEARCH_V2:
4629 return btrfs_ioctl_tree_search_v2(inode, argp);
4630 case BTRFS_IOC_INO_LOOKUP:
4631 return btrfs_ioctl_ino_lookup(root, argp);
4632 case BTRFS_IOC_INO_PATHS:
4633 return btrfs_ioctl_ino_to_path(root, argp);
4634 case BTRFS_IOC_LOGICAL_INO:
4635 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4636 case BTRFS_IOC_LOGICAL_INO_V2:
4637 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4638 case BTRFS_IOC_SPACE_INFO:
4639 return btrfs_ioctl_space_info(fs_info, argp);
4640 case BTRFS_IOC_SYNC: {
4641 int ret;
4642
4643 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4644 if (ret)
4645 return ret;
4646 ret = btrfs_sync_fs(inode->i_sb, 1);
4647 /*
4648 * The transaction thread may want to do more work,
4649 * namely it pokes the cleaner kthread that will start
4650 * processing uncleaned subvols.
4651 */
4652 wake_up_process(fs_info->transaction_kthread);
4653 return ret;
4654 }
4655 case BTRFS_IOC_START_SYNC:
4656 return btrfs_ioctl_start_sync(root, argp);
4657 case BTRFS_IOC_WAIT_SYNC:
4658 return btrfs_ioctl_wait_sync(fs_info, argp);
4659 case BTRFS_IOC_SCRUB:
4660 return btrfs_ioctl_scrub(file, argp);
4661 case BTRFS_IOC_SCRUB_CANCEL:
4662 return btrfs_ioctl_scrub_cancel(fs_info);
4663 case BTRFS_IOC_SCRUB_PROGRESS:
4664 return btrfs_ioctl_scrub_progress(fs_info, argp);
4665 case BTRFS_IOC_BALANCE_V2:
4666 return btrfs_ioctl_balance(file, argp);
4667 case BTRFS_IOC_BALANCE_CTL:
4668 return btrfs_ioctl_balance_ctl(fs_info, arg);
4669 case BTRFS_IOC_BALANCE_PROGRESS:
4670 return btrfs_ioctl_balance_progress(fs_info, argp);
4671 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4672 return btrfs_ioctl_set_received_subvol(file, argp);
4673 #ifdef CONFIG_64BIT
4674 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4675 return btrfs_ioctl_set_received_subvol_32(file, argp);
4676 #endif
4677 case BTRFS_IOC_SEND:
4678 return _btrfs_ioctl_send(inode, argp, false);
4679 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4680 case BTRFS_IOC_SEND_32:
4681 return _btrfs_ioctl_send(inode, argp, true);
4682 #endif
4683 case BTRFS_IOC_GET_DEV_STATS:
4684 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4685 case BTRFS_IOC_QUOTA_CTL:
4686 return btrfs_ioctl_quota_ctl(file, argp);
4687 case BTRFS_IOC_QGROUP_ASSIGN:
4688 return btrfs_ioctl_qgroup_assign(file, argp);
4689 case BTRFS_IOC_QGROUP_CREATE:
4690 return btrfs_ioctl_qgroup_create(file, argp);
4691 case BTRFS_IOC_QGROUP_LIMIT:
4692 return btrfs_ioctl_qgroup_limit(file, argp);
4693 case BTRFS_IOC_QUOTA_RESCAN:
4694 return btrfs_ioctl_quota_rescan(file, argp);
4695 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4696 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4697 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4698 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4699 case BTRFS_IOC_DEV_REPLACE:
4700 return btrfs_ioctl_dev_replace(fs_info, argp);
4701 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4702 return btrfs_ioctl_get_supported_features(argp);
4703 case BTRFS_IOC_GET_FEATURES:
4704 return btrfs_ioctl_get_features(fs_info, argp);
4705 case BTRFS_IOC_SET_FEATURES:
4706 return btrfs_ioctl_set_features(file, argp);
4707 case BTRFS_IOC_GET_SUBVOL_INFO:
4708 return btrfs_ioctl_get_subvol_info(inode, argp);
4709 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4710 return btrfs_ioctl_get_subvol_rootref(root, argp);
4711 case BTRFS_IOC_INO_LOOKUP_USER:
4712 return btrfs_ioctl_ino_lookup_user(file, argp);
4713 case FS_IOC_ENABLE_VERITY:
4714 return fsverity_ioctl_enable(file, (const void __user *)argp);
4715 case FS_IOC_MEASURE_VERITY:
4716 return fsverity_ioctl_measure(file, argp);
4717 case BTRFS_IOC_ENCODED_READ:
4718 return btrfs_ioctl_encoded_read(file, argp, false);
4719 case BTRFS_IOC_ENCODED_WRITE:
4720 return btrfs_ioctl_encoded_write(file, argp, false);
4721 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4722 case BTRFS_IOC_ENCODED_READ_32:
4723 return btrfs_ioctl_encoded_read(file, argp, true);
4724 case BTRFS_IOC_ENCODED_WRITE_32:
4725 return btrfs_ioctl_encoded_write(file, argp, true);
4726 #endif
4727 }
4728
4729 return -ENOTTY;
4730 }
4731
4732 #ifdef CONFIG_COMPAT
4733 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4734 {
4735 /*
4736 * These all access 32-bit values anyway so no further
4737 * handling is necessary.
4738 */
4739 switch (cmd) {
4740 case FS_IOC32_GETVERSION:
4741 cmd = FS_IOC_GETVERSION;
4742 break;
4743 }
4744
4745 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4746 }
4747 #endif