]> git.ipfire.org Git - people/arne_f/kernel.git/blob - fs/btrfs/ioctl.c
btrfs: clone: use vmalloc only as fallback for nodesize bufer
[people/arne_f/kernel.git] / fs / btrfs / ioctl.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 #include "tree-log.h"
63 #include "compression.h"
64
65 #ifdef CONFIG_64BIT
66 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
67 * structures are incorrect, as the timespec structure from userspace
68 * is 4 bytes too small. We define these alternatives here to teach
69 * the kernel about the 32-bit struct packing.
70 */
71 struct btrfs_ioctl_timespec_32 {
72 __u64 sec;
73 __u32 nsec;
74 } __attribute__ ((__packed__));
75
76 struct btrfs_ioctl_received_subvol_args_32 {
77 char uuid[BTRFS_UUID_SIZE]; /* in */
78 __u64 stransid; /* in */
79 __u64 rtransid; /* out */
80 struct btrfs_ioctl_timespec_32 stime; /* in */
81 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 flags; /* in */
83 __u64 reserved[16]; /* in */
84 } __attribute__ ((__packed__));
85
86 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
87 struct btrfs_ioctl_received_subvol_args_32)
88 #endif
89
90
91 static int btrfs_clone(struct inode *src, struct inode *inode,
92 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
93 int no_time_update);
94
95 /* Mask out flags that are inappropriate for the given type of inode. */
96 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
97 {
98 if (S_ISDIR(mode))
99 return flags;
100 else if (S_ISREG(mode))
101 return flags & ~FS_DIRSYNC_FL;
102 else
103 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
104 }
105
106 /*
107 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
108 */
109 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
110 {
111 unsigned int iflags = 0;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127
128 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
129 iflags |= FS_COMPR_FL;
130 else if (flags & BTRFS_INODE_NOCOMPRESS)
131 iflags |= FS_NOCOMP_FL;
132
133 return iflags;
134 }
135
136 /*
137 * Update inode->i_flags based on the btrfs internal flags.
138 */
139 void btrfs_update_iflags(struct inode *inode)
140 {
141 struct btrfs_inode *ip = BTRFS_I(inode);
142 unsigned int new_fl = 0;
143
144 if (ip->flags & BTRFS_INODE_SYNC)
145 new_fl |= S_SYNC;
146 if (ip->flags & BTRFS_INODE_IMMUTABLE)
147 new_fl |= S_IMMUTABLE;
148 if (ip->flags & BTRFS_INODE_APPEND)
149 new_fl |= S_APPEND;
150 if (ip->flags & BTRFS_INODE_NOATIME)
151 new_fl |= S_NOATIME;
152 if (ip->flags & BTRFS_INODE_DIRSYNC)
153 new_fl |= S_DIRSYNC;
154
155 set_mask_bits(&inode->i_flags,
156 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
157 new_fl);
158 }
159
160 /*
161 * Inherit flags from the parent inode.
162 *
163 * Currently only the compression flags and the cow flags are inherited.
164 */
165 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
166 {
167 unsigned int flags;
168
169 if (!dir)
170 return;
171
172 flags = BTRFS_I(dir)->flags;
173
174 if (flags & BTRFS_INODE_NOCOMPRESS) {
175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
176 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
177 } else if (flags & BTRFS_INODE_COMPRESS) {
178 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
179 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
180 }
181
182 if (flags & BTRFS_INODE_NODATACOW) {
183 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
184 if (S_ISREG(inode->i_mode))
185 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
186 }
187
188 btrfs_update_iflags(inode);
189 }
190
191 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
192 {
193 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
194 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
195
196 if (copy_to_user(arg, &flags, sizeof(flags)))
197 return -EFAULT;
198 return 0;
199 }
200
201 static int check_flags(unsigned int flags)
202 {
203 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
204 FS_NOATIME_FL | FS_NODUMP_FL | \
205 FS_SYNC_FL | FS_DIRSYNC_FL | \
206 FS_NOCOMP_FL | FS_COMPR_FL |
207 FS_NOCOW_FL))
208 return -EOPNOTSUPP;
209
210 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
211 return -EINVAL;
212
213 return 0;
214 }
215
216 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
217 {
218 struct inode *inode = file_inode(file);
219 struct btrfs_inode *ip = BTRFS_I(inode);
220 struct btrfs_root *root = ip->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int flags, oldflags;
223 int ret;
224 u64 ip_oldflags;
225 unsigned int i_oldflags;
226 umode_t mode;
227
228 if (!inode_owner_or_capable(inode))
229 return -EPERM;
230
231 if (btrfs_root_readonly(root))
232 return -EROFS;
233
234 if (copy_from_user(&flags, arg, sizeof(flags)))
235 return -EFAULT;
236
237 ret = check_flags(flags);
238 if (ret)
239 return ret;
240
241 ret = mnt_want_write_file(file);
242 if (ret)
243 return ret;
244
245 inode_lock(inode);
246
247 ip_oldflags = ip->flags;
248 i_oldflags = inode->i_flags;
249 mode = inode->i_mode;
250
251 flags = btrfs_mask_flags(inode->i_mode, flags);
252 oldflags = btrfs_flags_to_ioctl(ip->flags);
253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
254 if (!capable(CAP_LINUX_IMMUTABLE)) {
255 ret = -EPERM;
256 goto out_unlock;
257 }
258 }
259
260 if (flags & FS_SYNC_FL)
261 ip->flags |= BTRFS_INODE_SYNC;
262 else
263 ip->flags &= ~BTRFS_INODE_SYNC;
264 if (flags & FS_IMMUTABLE_FL)
265 ip->flags |= BTRFS_INODE_IMMUTABLE;
266 else
267 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
268 if (flags & FS_APPEND_FL)
269 ip->flags |= BTRFS_INODE_APPEND;
270 else
271 ip->flags &= ~BTRFS_INODE_APPEND;
272 if (flags & FS_NODUMP_FL)
273 ip->flags |= BTRFS_INODE_NODUMP;
274 else
275 ip->flags &= ~BTRFS_INODE_NODUMP;
276 if (flags & FS_NOATIME_FL)
277 ip->flags |= BTRFS_INODE_NOATIME;
278 else
279 ip->flags &= ~BTRFS_INODE_NOATIME;
280 if (flags & FS_DIRSYNC_FL)
281 ip->flags |= BTRFS_INODE_DIRSYNC;
282 else
283 ip->flags &= ~BTRFS_INODE_DIRSYNC;
284 if (flags & FS_NOCOW_FL) {
285 if (S_ISREG(mode)) {
286 /*
287 * It's safe to turn csums off here, no extents exist.
288 * Otherwise we want the flag to reflect the real COW
289 * status of the file and will not set it.
290 */
291 if (inode->i_size == 0)
292 ip->flags |= BTRFS_INODE_NODATACOW
293 | BTRFS_INODE_NODATASUM;
294 } else {
295 ip->flags |= BTRFS_INODE_NODATACOW;
296 }
297 } else {
298 /*
299 * Revert back under same assuptions as above
300 */
301 if (S_ISREG(mode)) {
302 if (inode->i_size == 0)
303 ip->flags &= ~(BTRFS_INODE_NODATACOW
304 | BTRFS_INODE_NODATASUM);
305 } else {
306 ip->flags &= ~BTRFS_INODE_NODATACOW;
307 }
308 }
309
310 /*
311 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
312 * flag may be changed automatically if compression code won't make
313 * things smaller.
314 */
315 if (flags & FS_NOCOMP_FL) {
316 ip->flags &= ~BTRFS_INODE_COMPRESS;
317 ip->flags |= BTRFS_INODE_NOCOMPRESS;
318
319 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
320 if (ret && ret != -ENODATA)
321 goto out_drop;
322 } else if (flags & FS_COMPR_FL) {
323 const char *comp;
324
325 ip->flags |= BTRFS_INODE_COMPRESS;
326 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
327
328 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
329 comp = "lzo";
330 else
331 comp = "zlib";
332 ret = btrfs_set_prop(inode, "btrfs.compression",
333 comp, strlen(comp), 0);
334 if (ret)
335 goto out_drop;
336
337 } else {
338 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
339 if (ret && ret != -ENODATA)
340 goto out_drop;
341 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
342 }
343
344 trans = btrfs_start_transaction(root, 1);
345 if (IS_ERR(trans)) {
346 ret = PTR_ERR(trans);
347 goto out_drop;
348 }
349
350 btrfs_update_iflags(inode);
351 inode_inc_iversion(inode);
352 inode->i_ctime = current_fs_time(inode->i_sb);
353 ret = btrfs_update_inode(trans, root, inode);
354
355 btrfs_end_transaction(trans, root);
356 out_drop:
357 if (ret) {
358 ip->flags = ip_oldflags;
359 inode->i_flags = i_oldflags;
360 }
361
362 out_unlock:
363 inode_unlock(inode);
364 mnt_drop_write_file(file);
365 return ret;
366 }
367
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 struct inode *inode = file_inode(file);
371
372 return put_user(inode->i_generation, arg);
373 }
374
375 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
376 {
377 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
378 struct btrfs_device *device;
379 struct request_queue *q;
380 struct fstrim_range range;
381 u64 minlen = ULLONG_MAX;
382 u64 num_devices = 0;
383 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
384 int ret;
385
386 if (!capable(CAP_SYS_ADMIN))
387 return -EPERM;
388
389 rcu_read_lock();
390 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
391 dev_list) {
392 if (!device->bdev)
393 continue;
394 q = bdev_get_queue(device->bdev);
395 if (blk_queue_discard(q)) {
396 num_devices++;
397 minlen = min((u64)q->limits.discard_granularity,
398 minlen);
399 }
400 }
401 rcu_read_unlock();
402
403 if (!num_devices)
404 return -EOPNOTSUPP;
405 if (copy_from_user(&range, arg, sizeof(range)))
406 return -EFAULT;
407 if (range.start > total_bytes ||
408 range.len < fs_info->sb->s_blocksize)
409 return -EINVAL;
410
411 range.len = min(range.len, total_bytes - range.start);
412 range.minlen = max(range.minlen, minlen);
413 ret = btrfs_trim_fs(fs_info->tree_root, &range);
414 if (ret < 0)
415 return ret;
416
417 if (copy_to_user(arg, &range, sizeof(range)))
418 return -EFAULT;
419
420 return 0;
421 }
422
423 int btrfs_is_empty_uuid(u8 *uuid)
424 {
425 int i;
426
427 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
428 if (uuid[i])
429 return 0;
430 }
431 return 1;
432 }
433
434 static noinline int create_subvol(struct inode *dir,
435 struct dentry *dentry,
436 char *name, int namelen,
437 u64 *async_transid,
438 struct btrfs_qgroup_inherit *inherit)
439 {
440 struct btrfs_trans_handle *trans;
441 struct btrfs_key key;
442 struct btrfs_root_item root_item;
443 struct btrfs_inode_item *inode_item;
444 struct extent_buffer *leaf;
445 struct btrfs_root *root = BTRFS_I(dir)->root;
446 struct btrfs_root *new_root;
447 struct btrfs_block_rsv block_rsv;
448 struct timespec cur_time = current_fs_time(dir->i_sb);
449 struct inode *inode;
450 int ret;
451 int err;
452 u64 objectid;
453 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
454 u64 index = 0;
455 u64 qgroup_reserved;
456 uuid_le new_uuid;
457
458 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
459 if (ret)
460 return ret;
461
462 /*
463 * Don't create subvolume whose level is not zero. Or qgroup will be
464 * screwed up since it assume subvolme qgroup's level to be 0.
465 */
466 if (btrfs_qgroup_level(objectid))
467 return -ENOSPC;
468
469 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
470 /*
471 * The same as the snapshot creation, please see the comment
472 * of create_snapshot().
473 */
474 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
475 8, &qgroup_reserved, false);
476 if (ret)
477 return ret;
478
479 trans = btrfs_start_transaction(root, 0);
480 if (IS_ERR(trans)) {
481 ret = PTR_ERR(trans);
482 btrfs_subvolume_release_metadata(root, &block_rsv,
483 qgroup_reserved);
484 return ret;
485 }
486 trans->block_rsv = &block_rsv;
487 trans->bytes_reserved = block_rsv.size;
488
489 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
490 if (ret)
491 goto fail;
492
493 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
494 if (IS_ERR(leaf)) {
495 ret = PTR_ERR(leaf);
496 goto fail;
497 }
498
499 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
500 btrfs_set_header_bytenr(leaf, leaf->start);
501 btrfs_set_header_generation(leaf, trans->transid);
502 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
503 btrfs_set_header_owner(leaf, objectid);
504
505 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
506 BTRFS_FSID_SIZE);
507 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
508 btrfs_header_chunk_tree_uuid(leaf),
509 BTRFS_UUID_SIZE);
510 btrfs_mark_buffer_dirty(leaf);
511
512 memset(&root_item, 0, sizeof(root_item));
513
514 inode_item = &root_item.inode;
515 btrfs_set_stack_inode_generation(inode_item, 1);
516 btrfs_set_stack_inode_size(inode_item, 3);
517 btrfs_set_stack_inode_nlink(inode_item, 1);
518 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
519 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
520
521 btrfs_set_root_flags(&root_item, 0);
522 btrfs_set_root_limit(&root_item, 0);
523 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
524
525 btrfs_set_root_bytenr(&root_item, leaf->start);
526 btrfs_set_root_generation(&root_item, trans->transid);
527 btrfs_set_root_level(&root_item, 0);
528 btrfs_set_root_refs(&root_item, 1);
529 btrfs_set_root_used(&root_item, leaf->len);
530 btrfs_set_root_last_snapshot(&root_item, 0);
531
532 btrfs_set_root_generation_v2(&root_item,
533 btrfs_root_generation(&root_item));
534 uuid_le_gen(&new_uuid);
535 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
536 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
537 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
538 root_item.ctime = root_item.otime;
539 btrfs_set_root_ctransid(&root_item, trans->transid);
540 btrfs_set_root_otransid(&root_item, trans->transid);
541
542 btrfs_tree_unlock(leaf);
543 free_extent_buffer(leaf);
544 leaf = NULL;
545
546 btrfs_set_root_dirid(&root_item, new_dirid);
547
548 key.objectid = objectid;
549 key.offset = 0;
550 key.type = BTRFS_ROOT_ITEM_KEY;
551 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
552 &root_item);
553 if (ret)
554 goto fail;
555
556 key.offset = (u64)-1;
557 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
558 if (IS_ERR(new_root)) {
559 ret = PTR_ERR(new_root);
560 btrfs_abort_transaction(trans, root, ret);
561 goto fail;
562 }
563
564 btrfs_record_root_in_trans(trans, new_root);
565
566 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
567 if (ret) {
568 /* We potentially lose an unused inode item here */
569 btrfs_abort_transaction(trans, root, ret);
570 goto fail;
571 }
572
573 mutex_lock(&new_root->objectid_mutex);
574 new_root->highest_objectid = new_dirid;
575 mutex_unlock(&new_root->objectid_mutex);
576
577 /*
578 * insert the directory item
579 */
580 ret = btrfs_set_inode_index(dir, &index);
581 if (ret) {
582 btrfs_abort_transaction(trans, root, ret);
583 goto fail;
584 }
585
586 ret = btrfs_insert_dir_item(trans, root,
587 name, namelen, dir, &key,
588 BTRFS_FT_DIR, index);
589 if (ret) {
590 btrfs_abort_transaction(trans, root, ret);
591 goto fail;
592 }
593
594 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
595 ret = btrfs_update_inode(trans, root, dir);
596 BUG_ON(ret);
597
598 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
599 objectid, root->root_key.objectid,
600 btrfs_ino(dir), index, name, namelen);
601 BUG_ON(ret);
602
603 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
604 root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
605 objectid);
606 if (ret)
607 btrfs_abort_transaction(trans, root, ret);
608
609 fail:
610 trans->block_rsv = NULL;
611 trans->bytes_reserved = 0;
612 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
613
614 if (async_transid) {
615 *async_transid = trans->transid;
616 err = btrfs_commit_transaction_async(trans, root, 1);
617 if (err)
618 err = btrfs_commit_transaction(trans, root);
619 } else {
620 err = btrfs_commit_transaction(trans, root);
621 }
622 if (err && !ret)
623 ret = err;
624
625 if (!ret) {
626 inode = btrfs_lookup_dentry(dir, dentry);
627 if (IS_ERR(inode))
628 return PTR_ERR(inode);
629 d_instantiate(dentry, inode);
630 }
631 return ret;
632 }
633
634 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
635 {
636 s64 writers;
637 DEFINE_WAIT(wait);
638
639 do {
640 prepare_to_wait(&root->subv_writers->wait, &wait,
641 TASK_UNINTERRUPTIBLE);
642
643 writers = percpu_counter_sum(&root->subv_writers->counter);
644 if (writers)
645 schedule();
646
647 finish_wait(&root->subv_writers->wait, &wait);
648 } while (writers);
649 }
650
651 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
652 struct dentry *dentry, char *name, int namelen,
653 u64 *async_transid, bool readonly,
654 struct btrfs_qgroup_inherit *inherit)
655 {
656 struct inode *inode;
657 struct btrfs_pending_snapshot *pending_snapshot;
658 struct btrfs_trans_handle *trans;
659 int ret;
660
661 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
662 return -EINVAL;
663
664 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
665 if (!pending_snapshot)
666 return -ENOMEM;
667
668 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
669 GFP_NOFS);
670 pending_snapshot->path = btrfs_alloc_path();
671 if (!pending_snapshot->root_item || !pending_snapshot->path) {
672 ret = -ENOMEM;
673 goto free_pending;
674 }
675
676 atomic_inc(&root->will_be_snapshoted);
677 smp_mb__after_atomic();
678 btrfs_wait_for_no_snapshoting_writes(root);
679
680 ret = btrfs_start_delalloc_inodes(root, 0);
681 if (ret)
682 goto dec_and_free;
683
684 btrfs_wait_ordered_extents(root, -1);
685
686 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
687 BTRFS_BLOCK_RSV_TEMP);
688 /*
689 * 1 - parent dir inode
690 * 2 - dir entries
691 * 1 - root item
692 * 2 - root ref/backref
693 * 1 - root of snapshot
694 * 1 - UUID item
695 */
696 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
697 &pending_snapshot->block_rsv, 8,
698 &pending_snapshot->qgroup_reserved,
699 false);
700 if (ret)
701 goto dec_and_free;
702
703 pending_snapshot->dentry = dentry;
704 pending_snapshot->root = root;
705 pending_snapshot->readonly = readonly;
706 pending_snapshot->dir = dir;
707 pending_snapshot->inherit = inherit;
708
709 trans = btrfs_start_transaction(root, 0);
710 if (IS_ERR(trans)) {
711 ret = PTR_ERR(trans);
712 goto fail;
713 }
714
715 spin_lock(&root->fs_info->trans_lock);
716 list_add(&pending_snapshot->list,
717 &trans->transaction->pending_snapshots);
718 spin_unlock(&root->fs_info->trans_lock);
719 if (async_transid) {
720 *async_transid = trans->transid;
721 ret = btrfs_commit_transaction_async(trans,
722 root->fs_info->extent_root, 1);
723 if (ret)
724 ret = btrfs_commit_transaction(trans, root);
725 } else {
726 ret = btrfs_commit_transaction(trans,
727 root->fs_info->extent_root);
728 }
729 if (ret)
730 goto fail;
731
732 ret = pending_snapshot->error;
733 if (ret)
734 goto fail;
735
736 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
737 if (ret)
738 goto fail;
739
740 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
741 if (IS_ERR(inode)) {
742 ret = PTR_ERR(inode);
743 goto fail;
744 }
745
746 d_instantiate(dentry, inode);
747 ret = 0;
748 fail:
749 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
750 &pending_snapshot->block_rsv,
751 pending_snapshot->qgroup_reserved);
752 dec_and_free:
753 if (atomic_dec_and_test(&root->will_be_snapshoted))
754 wake_up_atomic_t(&root->will_be_snapshoted);
755 free_pending:
756 kfree(pending_snapshot->root_item);
757 btrfs_free_path(pending_snapshot->path);
758 kfree(pending_snapshot);
759
760 return ret;
761 }
762
763 /* copy of may_delete in fs/namei.c()
764 * Check whether we can remove a link victim from directory dir, check
765 * whether the type of victim is right.
766 * 1. We can't do it if dir is read-only (done in permission())
767 * 2. We should have write and exec permissions on dir
768 * 3. We can't remove anything from append-only dir
769 * 4. We can't do anything with immutable dir (done in permission())
770 * 5. If the sticky bit on dir is set we should either
771 * a. be owner of dir, or
772 * b. be owner of victim, or
773 * c. have CAP_FOWNER capability
774 * 6. If the victim is append-only or immutable we can't do antyhing with
775 * links pointing to it.
776 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
777 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
778 * 9. We can't remove a root or mountpoint.
779 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
780 * nfs_async_unlink().
781 */
782
783 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
784 {
785 int error;
786
787 if (d_really_is_negative(victim))
788 return -ENOENT;
789
790 BUG_ON(d_inode(victim->d_parent) != dir);
791 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
792
793 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
794 if (error)
795 return error;
796 if (IS_APPEND(dir))
797 return -EPERM;
798 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
799 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
800 return -EPERM;
801 if (isdir) {
802 if (!d_is_dir(victim))
803 return -ENOTDIR;
804 if (IS_ROOT(victim))
805 return -EBUSY;
806 } else if (d_is_dir(victim))
807 return -EISDIR;
808 if (IS_DEADDIR(dir))
809 return -ENOENT;
810 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
811 return -EBUSY;
812 return 0;
813 }
814
815 /* copy of may_create in fs/namei.c() */
816 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
817 {
818 if (d_really_is_positive(child))
819 return -EEXIST;
820 if (IS_DEADDIR(dir))
821 return -ENOENT;
822 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
823 }
824
825 /*
826 * Create a new subvolume below @parent. This is largely modeled after
827 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
828 * inside this filesystem so it's quite a bit simpler.
829 */
830 static noinline int btrfs_mksubvol(struct path *parent,
831 char *name, int namelen,
832 struct btrfs_root *snap_src,
833 u64 *async_transid, bool readonly,
834 struct btrfs_qgroup_inherit *inherit)
835 {
836 struct inode *dir = d_inode(parent->dentry);
837 struct dentry *dentry;
838 int error;
839
840 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
841 if (error == -EINTR)
842 return error;
843
844 dentry = lookup_one_len(name, parent->dentry, namelen);
845 error = PTR_ERR(dentry);
846 if (IS_ERR(dentry))
847 goto out_unlock;
848
849 error = btrfs_may_create(dir, dentry);
850 if (error)
851 goto out_dput;
852
853 /*
854 * even if this name doesn't exist, we may get hash collisions.
855 * check for them now when we can safely fail
856 */
857 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
858 dir->i_ino, name,
859 namelen);
860 if (error)
861 goto out_dput;
862
863 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
864
865 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
866 goto out_up_read;
867
868 if (snap_src) {
869 error = create_snapshot(snap_src, dir, dentry, name, namelen,
870 async_transid, readonly, inherit);
871 } else {
872 error = create_subvol(dir, dentry, name, namelen,
873 async_transid, inherit);
874 }
875 if (!error)
876 fsnotify_mkdir(dir, dentry);
877 out_up_read:
878 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
879 out_dput:
880 dput(dentry);
881 out_unlock:
882 inode_unlock(dir);
883 return error;
884 }
885
886 /*
887 * When we're defragging a range, we don't want to kick it off again
888 * if it is really just waiting for delalloc to send it down.
889 * If we find a nice big extent or delalloc range for the bytes in the
890 * file you want to defrag, we return 0 to let you know to skip this
891 * part of the file
892 */
893 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
894 {
895 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
896 struct extent_map *em = NULL;
897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
898 u64 end;
899
900 read_lock(&em_tree->lock);
901 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
902 read_unlock(&em_tree->lock);
903
904 if (em) {
905 end = extent_map_end(em);
906 free_extent_map(em);
907 if (end - offset > thresh)
908 return 0;
909 }
910 /* if we already have a nice delalloc here, just stop */
911 thresh /= 2;
912 end = count_range_bits(io_tree, &offset, offset + thresh,
913 thresh, EXTENT_DELALLOC, 1);
914 if (end >= thresh)
915 return 0;
916 return 1;
917 }
918
919 /*
920 * helper function to walk through a file and find extents
921 * newer than a specific transid, and smaller than thresh.
922 *
923 * This is used by the defragging code to find new and small
924 * extents
925 */
926 static int find_new_extents(struct btrfs_root *root,
927 struct inode *inode, u64 newer_than,
928 u64 *off, u32 thresh)
929 {
930 struct btrfs_path *path;
931 struct btrfs_key min_key;
932 struct extent_buffer *leaf;
933 struct btrfs_file_extent_item *extent;
934 int type;
935 int ret;
936 u64 ino = btrfs_ino(inode);
937
938 path = btrfs_alloc_path();
939 if (!path)
940 return -ENOMEM;
941
942 min_key.objectid = ino;
943 min_key.type = BTRFS_EXTENT_DATA_KEY;
944 min_key.offset = *off;
945
946 while (1) {
947 ret = btrfs_search_forward(root, &min_key, path, newer_than);
948 if (ret != 0)
949 goto none;
950 process_slot:
951 if (min_key.objectid != ino)
952 goto none;
953 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
954 goto none;
955
956 leaf = path->nodes[0];
957 extent = btrfs_item_ptr(leaf, path->slots[0],
958 struct btrfs_file_extent_item);
959
960 type = btrfs_file_extent_type(leaf, extent);
961 if (type == BTRFS_FILE_EXTENT_REG &&
962 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
963 check_defrag_in_cache(inode, min_key.offset, thresh)) {
964 *off = min_key.offset;
965 btrfs_free_path(path);
966 return 0;
967 }
968
969 path->slots[0]++;
970 if (path->slots[0] < btrfs_header_nritems(leaf)) {
971 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
972 goto process_slot;
973 }
974
975 if (min_key.offset == (u64)-1)
976 goto none;
977
978 min_key.offset++;
979 btrfs_release_path(path);
980 }
981 none:
982 btrfs_free_path(path);
983 return -ENOENT;
984 }
985
986 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
987 {
988 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
989 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
990 struct extent_map *em;
991 u64 len = PAGE_SIZE;
992
993 /*
994 * hopefully we have this extent in the tree already, try without
995 * the full extent lock
996 */
997 read_lock(&em_tree->lock);
998 em = lookup_extent_mapping(em_tree, start, len);
999 read_unlock(&em_tree->lock);
1000
1001 if (!em) {
1002 struct extent_state *cached = NULL;
1003 u64 end = start + len - 1;
1004
1005 /* get the big lock and read metadata off disk */
1006 lock_extent_bits(io_tree, start, end, &cached);
1007 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1008 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1009
1010 if (IS_ERR(em))
1011 return NULL;
1012 }
1013
1014 return em;
1015 }
1016
1017 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1018 {
1019 struct extent_map *next;
1020 bool ret = true;
1021
1022 /* this is the last extent */
1023 if (em->start + em->len >= i_size_read(inode))
1024 return false;
1025
1026 next = defrag_lookup_extent(inode, em->start + em->len);
1027 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1028 ret = false;
1029 else if ((em->block_start + em->block_len == next->block_start) &&
1030 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1031 ret = false;
1032
1033 free_extent_map(next);
1034 return ret;
1035 }
1036
1037 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1038 u64 *last_len, u64 *skip, u64 *defrag_end,
1039 int compress)
1040 {
1041 struct extent_map *em;
1042 int ret = 1;
1043 bool next_mergeable = true;
1044 bool prev_mergeable = true;
1045
1046 /*
1047 * make sure that once we start defragging an extent, we keep on
1048 * defragging it
1049 */
1050 if (start < *defrag_end)
1051 return 1;
1052
1053 *skip = 0;
1054
1055 em = defrag_lookup_extent(inode, start);
1056 if (!em)
1057 return 0;
1058
1059 /* this will cover holes, and inline extents */
1060 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1061 ret = 0;
1062 goto out;
1063 }
1064
1065 if (!*defrag_end)
1066 prev_mergeable = false;
1067
1068 next_mergeable = defrag_check_next_extent(inode, em);
1069 /*
1070 * we hit a real extent, if it is big or the next extent is not a
1071 * real extent, don't bother defragging it
1072 */
1073 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1074 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1075 ret = 0;
1076 out:
1077 /*
1078 * last_len ends up being a counter of how many bytes we've defragged.
1079 * every time we choose not to defrag an extent, we reset *last_len
1080 * so that the next tiny extent will force a defrag.
1081 *
1082 * The end result of this is that tiny extents before a single big
1083 * extent will force at least part of that big extent to be defragged.
1084 */
1085 if (ret) {
1086 *defrag_end = extent_map_end(em);
1087 } else {
1088 *last_len = 0;
1089 *skip = extent_map_end(em);
1090 *defrag_end = 0;
1091 }
1092
1093 free_extent_map(em);
1094 return ret;
1095 }
1096
1097 /*
1098 * it doesn't do much good to defrag one or two pages
1099 * at a time. This pulls in a nice chunk of pages
1100 * to COW and defrag.
1101 *
1102 * It also makes sure the delalloc code has enough
1103 * dirty data to avoid making new small extents as part
1104 * of the defrag
1105 *
1106 * It's a good idea to start RA on this range
1107 * before calling this.
1108 */
1109 static int cluster_pages_for_defrag(struct inode *inode,
1110 struct page **pages,
1111 unsigned long start_index,
1112 unsigned long num_pages)
1113 {
1114 unsigned long file_end;
1115 u64 isize = i_size_read(inode);
1116 u64 page_start;
1117 u64 page_end;
1118 u64 page_cnt;
1119 int ret;
1120 int i;
1121 int i_done;
1122 struct btrfs_ordered_extent *ordered;
1123 struct extent_state *cached_state = NULL;
1124 struct extent_io_tree *tree;
1125 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1126
1127 file_end = (isize - 1) >> PAGE_SHIFT;
1128 if (!isize || start_index > file_end)
1129 return 0;
1130
1131 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1132
1133 ret = btrfs_delalloc_reserve_space(inode,
1134 start_index << PAGE_SHIFT,
1135 page_cnt << PAGE_SHIFT);
1136 if (ret)
1137 return ret;
1138 i_done = 0;
1139 tree = &BTRFS_I(inode)->io_tree;
1140
1141 /* step one, lock all the pages */
1142 for (i = 0; i < page_cnt; i++) {
1143 struct page *page;
1144 again:
1145 page = find_or_create_page(inode->i_mapping,
1146 start_index + i, mask);
1147 if (!page)
1148 break;
1149
1150 page_start = page_offset(page);
1151 page_end = page_start + PAGE_SIZE - 1;
1152 while (1) {
1153 lock_extent_bits(tree, page_start, page_end,
1154 &cached_state);
1155 ordered = btrfs_lookup_ordered_extent(inode,
1156 page_start);
1157 unlock_extent_cached(tree, page_start, page_end,
1158 &cached_state, GFP_NOFS);
1159 if (!ordered)
1160 break;
1161
1162 unlock_page(page);
1163 btrfs_start_ordered_extent(inode, ordered, 1);
1164 btrfs_put_ordered_extent(ordered);
1165 lock_page(page);
1166 /*
1167 * we unlocked the page above, so we need check if
1168 * it was released or not.
1169 */
1170 if (page->mapping != inode->i_mapping) {
1171 unlock_page(page);
1172 put_page(page);
1173 goto again;
1174 }
1175 }
1176
1177 if (!PageUptodate(page)) {
1178 btrfs_readpage(NULL, page);
1179 lock_page(page);
1180 if (!PageUptodate(page)) {
1181 unlock_page(page);
1182 put_page(page);
1183 ret = -EIO;
1184 break;
1185 }
1186 }
1187
1188 if (page->mapping != inode->i_mapping) {
1189 unlock_page(page);
1190 put_page(page);
1191 goto again;
1192 }
1193
1194 pages[i] = page;
1195 i_done++;
1196 }
1197 if (!i_done || ret)
1198 goto out;
1199
1200 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1201 goto out;
1202
1203 /*
1204 * so now we have a nice long stream of locked
1205 * and up to date pages, lets wait on them
1206 */
1207 for (i = 0; i < i_done; i++)
1208 wait_on_page_writeback(pages[i]);
1209
1210 page_start = page_offset(pages[0]);
1211 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1212
1213 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1214 page_start, page_end - 1, &cached_state);
1215 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1216 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1217 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1218 &cached_state, GFP_NOFS);
1219
1220 if (i_done != page_cnt) {
1221 spin_lock(&BTRFS_I(inode)->lock);
1222 BTRFS_I(inode)->outstanding_extents++;
1223 spin_unlock(&BTRFS_I(inode)->lock);
1224 btrfs_delalloc_release_space(inode,
1225 start_index << PAGE_SHIFT,
1226 (page_cnt - i_done) << PAGE_SHIFT);
1227 }
1228
1229
1230 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1231 &cached_state, GFP_NOFS);
1232
1233 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1234 page_start, page_end - 1, &cached_state,
1235 GFP_NOFS);
1236
1237 for (i = 0; i < i_done; i++) {
1238 clear_page_dirty_for_io(pages[i]);
1239 ClearPageChecked(pages[i]);
1240 set_page_extent_mapped(pages[i]);
1241 set_page_dirty(pages[i]);
1242 unlock_page(pages[i]);
1243 put_page(pages[i]);
1244 }
1245 return i_done;
1246 out:
1247 for (i = 0; i < i_done; i++) {
1248 unlock_page(pages[i]);
1249 put_page(pages[i]);
1250 }
1251 btrfs_delalloc_release_space(inode,
1252 start_index << PAGE_SHIFT,
1253 page_cnt << PAGE_SHIFT);
1254 return ret;
1255
1256 }
1257
1258 int btrfs_defrag_file(struct inode *inode, struct file *file,
1259 struct btrfs_ioctl_defrag_range_args *range,
1260 u64 newer_than, unsigned long max_to_defrag)
1261 {
1262 struct btrfs_root *root = BTRFS_I(inode)->root;
1263 struct file_ra_state *ra = NULL;
1264 unsigned long last_index;
1265 u64 isize = i_size_read(inode);
1266 u64 last_len = 0;
1267 u64 skip = 0;
1268 u64 defrag_end = 0;
1269 u64 newer_off = range->start;
1270 unsigned long i;
1271 unsigned long ra_index = 0;
1272 int ret;
1273 int defrag_count = 0;
1274 int compress_type = BTRFS_COMPRESS_ZLIB;
1275 u32 extent_thresh = range->extent_thresh;
1276 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1277 unsigned long cluster = max_cluster;
1278 u64 new_align = ~((u64)SZ_128K - 1);
1279 struct page **pages = NULL;
1280
1281 if (isize == 0)
1282 return 0;
1283
1284 if (range->start >= isize)
1285 return -EINVAL;
1286
1287 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1288 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1289 return -EINVAL;
1290 if (range->compress_type)
1291 compress_type = range->compress_type;
1292 }
1293
1294 if (extent_thresh == 0)
1295 extent_thresh = SZ_256K;
1296
1297 /*
1298 * if we were not given a file, allocate a readahead
1299 * context
1300 */
1301 if (!file) {
1302 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1303 if (!ra)
1304 return -ENOMEM;
1305 file_ra_state_init(ra, inode->i_mapping);
1306 } else {
1307 ra = &file->f_ra;
1308 }
1309
1310 pages = kmalloc_array(max_cluster, sizeof(struct page *),
1311 GFP_NOFS);
1312 if (!pages) {
1313 ret = -ENOMEM;
1314 goto out_ra;
1315 }
1316
1317 /* find the last page to defrag */
1318 if (range->start + range->len > range->start) {
1319 last_index = min_t(u64, isize - 1,
1320 range->start + range->len - 1) >> PAGE_SHIFT;
1321 } else {
1322 last_index = (isize - 1) >> PAGE_SHIFT;
1323 }
1324
1325 if (newer_than) {
1326 ret = find_new_extents(root, inode, newer_than,
1327 &newer_off, SZ_64K);
1328 if (!ret) {
1329 range->start = newer_off;
1330 /*
1331 * we always align our defrag to help keep
1332 * the extents in the file evenly spaced
1333 */
1334 i = (newer_off & new_align) >> PAGE_SHIFT;
1335 } else
1336 goto out_ra;
1337 } else {
1338 i = range->start >> PAGE_SHIFT;
1339 }
1340 if (!max_to_defrag)
1341 max_to_defrag = last_index - i + 1;
1342
1343 /*
1344 * make writeback starts from i, so the defrag range can be
1345 * written sequentially.
1346 */
1347 if (i < inode->i_mapping->writeback_index)
1348 inode->i_mapping->writeback_index = i;
1349
1350 while (i <= last_index && defrag_count < max_to_defrag &&
1351 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1352 /*
1353 * make sure we stop running if someone unmounts
1354 * the FS
1355 */
1356 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1357 break;
1358
1359 if (btrfs_defrag_cancelled(root->fs_info)) {
1360 btrfs_debug(root->fs_info, "defrag_file cancelled");
1361 ret = -EAGAIN;
1362 break;
1363 }
1364
1365 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1366 extent_thresh, &last_len, &skip,
1367 &defrag_end, range->flags &
1368 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1369 unsigned long next;
1370 /*
1371 * the should_defrag function tells us how much to skip
1372 * bump our counter by the suggested amount
1373 */
1374 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1375 i = max(i + 1, next);
1376 continue;
1377 }
1378
1379 if (!newer_than) {
1380 cluster = (PAGE_ALIGN(defrag_end) >>
1381 PAGE_SHIFT) - i;
1382 cluster = min(cluster, max_cluster);
1383 } else {
1384 cluster = max_cluster;
1385 }
1386
1387 if (i + cluster > ra_index) {
1388 ra_index = max(i, ra_index);
1389 btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1390 cluster);
1391 ra_index += cluster;
1392 }
1393
1394 inode_lock(inode);
1395 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1396 BTRFS_I(inode)->force_compress = compress_type;
1397 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1398 if (ret < 0) {
1399 inode_unlock(inode);
1400 goto out_ra;
1401 }
1402
1403 defrag_count += ret;
1404 balance_dirty_pages_ratelimited(inode->i_mapping);
1405 inode_unlock(inode);
1406
1407 if (newer_than) {
1408 if (newer_off == (u64)-1)
1409 break;
1410
1411 if (ret > 0)
1412 i += ret;
1413
1414 newer_off = max(newer_off + 1,
1415 (u64)i << PAGE_SHIFT);
1416
1417 ret = find_new_extents(root, inode, newer_than,
1418 &newer_off, SZ_64K);
1419 if (!ret) {
1420 range->start = newer_off;
1421 i = (newer_off & new_align) >> PAGE_SHIFT;
1422 } else {
1423 break;
1424 }
1425 } else {
1426 if (ret > 0) {
1427 i += ret;
1428 last_len += ret << PAGE_SHIFT;
1429 } else {
1430 i++;
1431 last_len = 0;
1432 }
1433 }
1434 }
1435
1436 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1437 filemap_flush(inode->i_mapping);
1438 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1439 &BTRFS_I(inode)->runtime_flags))
1440 filemap_flush(inode->i_mapping);
1441 }
1442
1443 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1444 /* the filemap_flush will queue IO into the worker threads, but
1445 * we have to make sure the IO is actually started and that
1446 * ordered extents get created before we return
1447 */
1448 atomic_inc(&root->fs_info->async_submit_draining);
1449 while (atomic_read(&root->fs_info->nr_async_submits) ||
1450 atomic_read(&root->fs_info->async_delalloc_pages)) {
1451 wait_event(root->fs_info->async_submit_wait,
1452 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1453 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1454 }
1455 atomic_dec(&root->fs_info->async_submit_draining);
1456 }
1457
1458 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1459 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1460 }
1461
1462 ret = defrag_count;
1463
1464 out_ra:
1465 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1466 inode_lock(inode);
1467 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1468 inode_unlock(inode);
1469 }
1470 if (!file)
1471 kfree(ra);
1472 kfree(pages);
1473 return ret;
1474 }
1475
1476 static noinline int btrfs_ioctl_resize(struct file *file,
1477 void __user *arg)
1478 {
1479 u64 new_size;
1480 u64 old_size;
1481 u64 devid = 1;
1482 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1483 struct btrfs_ioctl_vol_args *vol_args;
1484 struct btrfs_trans_handle *trans;
1485 struct btrfs_device *device = NULL;
1486 char *sizestr;
1487 char *retptr;
1488 char *devstr = NULL;
1489 int ret = 0;
1490 int mod = 0;
1491
1492 if (!capable(CAP_SYS_ADMIN))
1493 return -EPERM;
1494
1495 ret = mnt_want_write_file(file);
1496 if (ret)
1497 return ret;
1498
1499 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1500 1)) {
1501 mnt_drop_write_file(file);
1502 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1503 }
1504
1505 mutex_lock(&root->fs_info->volume_mutex);
1506 vol_args = memdup_user(arg, sizeof(*vol_args));
1507 if (IS_ERR(vol_args)) {
1508 ret = PTR_ERR(vol_args);
1509 goto out;
1510 }
1511
1512 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1513
1514 sizestr = vol_args->name;
1515 devstr = strchr(sizestr, ':');
1516 if (devstr) {
1517 sizestr = devstr + 1;
1518 *devstr = '\0';
1519 devstr = vol_args->name;
1520 ret = kstrtoull(devstr, 10, &devid);
1521 if (ret)
1522 goto out_free;
1523 if (!devid) {
1524 ret = -EINVAL;
1525 goto out_free;
1526 }
1527 btrfs_info(root->fs_info, "resizing devid %llu", devid);
1528 }
1529
1530 device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1531 if (!device) {
1532 btrfs_info(root->fs_info, "resizer unable to find device %llu",
1533 devid);
1534 ret = -ENODEV;
1535 goto out_free;
1536 }
1537
1538 if (!device->writeable) {
1539 btrfs_info(root->fs_info,
1540 "resizer unable to apply on readonly device %llu",
1541 devid);
1542 ret = -EPERM;
1543 goto out_free;
1544 }
1545
1546 if (!strcmp(sizestr, "max"))
1547 new_size = device->bdev->bd_inode->i_size;
1548 else {
1549 if (sizestr[0] == '-') {
1550 mod = -1;
1551 sizestr++;
1552 } else if (sizestr[0] == '+') {
1553 mod = 1;
1554 sizestr++;
1555 }
1556 new_size = memparse(sizestr, &retptr);
1557 if (*retptr != '\0' || new_size == 0) {
1558 ret = -EINVAL;
1559 goto out_free;
1560 }
1561 }
1562
1563 if (device->is_tgtdev_for_dev_replace) {
1564 ret = -EPERM;
1565 goto out_free;
1566 }
1567
1568 old_size = btrfs_device_get_total_bytes(device);
1569
1570 if (mod < 0) {
1571 if (new_size > old_size) {
1572 ret = -EINVAL;
1573 goto out_free;
1574 }
1575 new_size = old_size - new_size;
1576 } else if (mod > 0) {
1577 if (new_size > ULLONG_MAX - old_size) {
1578 ret = -ERANGE;
1579 goto out_free;
1580 }
1581 new_size = old_size + new_size;
1582 }
1583
1584 if (new_size < SZ_256M) {
1585 ret = -EINVAL;
1586 goto out_free;
1587 }
1588 if (new_size > device->bdev->bd_inode->i_size) {
1589 ret = -EFBIG;
1590 goto out_free;
1591 }
1592
1593 new_size = div_u64(new_size, root->sectorsize);
1594 new_size *= root->sectorsize;
1595
1596 btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1597 rcu_str_deref(device->name), new_size);
1598
1599 if (new_size > old_size) {
1600 trans = btrfs_start_transaction(root, 0);
1601 if (IS_ERR(trans)) {
1602 ret = PTR_ERR(trans);
1603 goto out_free;
1604 }
1605 ret = btrfs_grow_device(trans, device, new_size);
1606 btrfs_commit_transaction(trans, root);
1607 } else if (new_size < old_size) {
1608 ret = btrfs_shrink_device(device, new_size);
1609 } /* equal, nothing need to do */
1610
1611 out_free:
1612 kfree(vol_args);
1613 out:
1614 mutex_unlock(&root->fs_info->volume_mutex);
1615 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1616 mnt_drop_write_file(file);
1617 return ret;
1618 }
1619
1620 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1621 char *name, unsigned long fd, int subvol,
1622 u64 *transid, bool readonly,
1623 struct btrfs_qgroup_inherit *inherit)
1624 {
1625 int namelen;
1626 int ret = 0;
1627
1628 ret = mnt_want_write_file(file);
1629 if (ret)
1630 goto out;
1631
1632 namelen = strlen(name);
1633 if (strchr(name, '/')) {
1634 ret = -EINVAL;
1635 goto out_drop_write;
1636 }
1637
1638 if (name[0] == '.' &&
1639 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1640 ret = -EEXIST;
1641 goto out_drop_write;
1642 }
1643
1644 if (subvol) {
1645 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1646 NULL, transid, readonly, inherit);
1647 } else {
1648 struct fd src = fdget(fd);
1649 struct inode *src_inode;
1650 if (!src.file) {
1651 ret = -EINVAL;
1652 goto out_drop_write;
1653 }
1654
1655 src_inode = file_inode(src.file);
1656 if (src_inode->i_sb != file_inode(file)->i_sb) {
1657 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1658 "Snapshot src from another FS");
1659 ret = -EXDEV;
1660 } else if (!inode_owner_or_capable(src_inode)) {
1661 /*
1662 * Subvolume creation is not restricted, but snapshots
1663 * are limited to own subvolumes only
1664 */
1665 ret = -EPERM;
1666 } else {
1667 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1668 BTRFS_I(src_inode)->root,
1669 transid, readonly, inherit);
1670 }
1671 fdput(src);
1672 }
1673 out_drop_write:
1674 mnt_drop_write_file(file);
1675 out:
1676 return ret;
1677 }
1678
1679 static noinline int btrfs_ioctl_snap_create(struct file *file,
1680 void __user *arg, int subvol)
1681 {
1682 struct btrfs_ioctl_vol_args *vol_args;
1683 int ret;
1684
1685 vol_args = memdup_user(arg, sizeof(*vol_args));
1686 if (IS_ERR(vol_args))
1687 return PTR_ERR(vol_args);
1688 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1689
1690 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1691 vol_args->fd, subvol,
1692 NULL, false, NULL);
1693
1694 kfree(vol_args);
1695 return ret;
1696 }
1697
1698 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1699 void __user *arg, int subvol)
1700 {
1701 struct btrfs_ioctl_vol_args_v2 *vol_args;
1702 int ret;
1703 u64 transid = 0;
1704 u64 *ptr = NULL;
1705 bool readonly = false;
1706 struct btrfs_qgroup_inherit *inherit = NULL;
1707
1708 vol_args = memdup_user(arg, sizeof(*vol_args));
1709 if (IS_ERR(vol_args))
1710 return PTR_ERR(vol_args);
1711 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1712
1713 if (vol_args->flags &
1714 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1715 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1716 ret = -EOPNOTSUPP;
1717 goto free_args;
1718 }
1719
1720 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1721 ptr = &transid;
1722 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1723 readonly = true;
1724 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1725 if (vol_args->size > PAGE_SIZE) {
1726 ret = -EINVAL;
1727 goto free_args;
1728 }
1729 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1730 if (IS_ERR(inherit)) {
1731 ret = PTR_ERR(inherit);
1732 goto free_args;
1733 }
1734 }
1735
1736 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1737 vol_args->fd, subvol, ptr,
1738 readonly, inherit);
1739 if (ret)
1740 goto free_inherit;
1741
1742 if (ptr && copy_to_user(arg +
1743 offsetof(struct btrfs_ioctl_vol_args_v2,
1744 transid),
1745 ptr, sizeof(*ptr)))
1746 ret = -EFAULT;
1747
1748 free_inherit:
1749 kfree(inherit);
1750 free_args:
1751 kfree(vol_args);
1752 return ret;
1753 }
1754
1755 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1756 void __user *arg)
1757 {
1758 struct inode *inode = file_inode(file);
1759 struct btrfs_root *root = BTRFS_I(inode)->root;
1760 int ret = 0;
1761 u64 flags = 0;
1762
1763 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1764 return -EINVAL;
1765
1766 down_read(&root->fs_info->subvol_sem);
1767 if (btrfs_root_readonly(root))
1768 flags |= BTRFS_SUBVOL_RDONLY;
1769 up_read(&root->fs_info->subvol_sem);
1770
1771 if (copy_to_user(arg, &flags, sizeof(flags)))
1772 ret = -EFAULT;
1773
1774 return ret;
1775 }
1776
1777 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1778 void __user *arg)
1779 {
1780 struct inode *inode = file_inode(file);
1781 struct btrfs_root *root = BTRFS_I(inode)->root;
1782 struct btrfs_trans_handle *trans;
1783 u64 root_flags;
1784 u64 flags;
1785 int ret = 0;
1786
1787 if (!inode_owner_or_capable(inode))
1788 return -EPERM;
1789
1790 ret = mnt_want_write_file(file);
1791 if (ret)
1792 goto out;
1793
1794 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1795 ret = -EINVAL;
1796 goto out_drop_write;
1797 }
1798
1799 if (copy_from_user(&flags, arg, sizeof(flags))) {
1800 ret = -EFAULT;
1801 goto out_drop_write;
1802 }
1803
1804 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1805 ret = -EINVAL;
1806 goto out_drop_write;
1807 }
1808
1809 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1810 ret = -EOPNOTSUPP;
1811 goto out_drop_write;
1812 }
1813
1814 down_write(&root->fs_info->subvol_sem);
1815
1816 /* nothing to do */
1817 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1818 goto out_drop_sem;
1819
1820 root_flags = btrfs_root_flags(&root->root_item);
1821 if (flags & BTRFS_SUBVOL_RDONLY) {
1822 btrfs_set_root_flags(&root->root_item,
1823 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1824 } else {
1825 /*
1826 * Block RO -> RW transition if this subvolume is involved in
1827 * send
1828 */
1829 spin_lock(&root->root_item_lock);
1830 if (root->send_in_progress == 0) {
1831 btrfs_set_root_flags(&root->root_item,
1832 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1833 spin_unlock(&root->root_item_lock);
1834 } else {
1835 spin_unlock(&root->root_item_lock);
1836 btrfs_warn(root->fs_info,
1837 "Attempt to set subvolume %llu read-write during send",
1838 root->root_key.objectid);
1839 ret = -EPERM;
1840 goto out_drop_sem;
1841 }
1842 }
1843
1844 trans = btrfs_start_transaction(root, 1);
1845 if (IS_ERR(trans)) {
1846 ret = PTR_ERR(trans);
1847 goto out_reset;
1848 }
1849
1850 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1851 &root->root_key, &root->root_item);
1852
1853 btrfs_commit_transaction(trans, root);
1854 out_reset:
1855 if (ret)
1856 btrfs_set_root_flags(&root->root_item, root_flags);
1857 out_drop_sem:
1858 up_write(&root->fs_info->subvol_sem);
1859 out_drop_write:
1860 mnt_drop_write_file(file);
1861 out:
1862 return ret;
1863 }
1864
1865 /*
1866 * helper to check if the subvolume references other subvolumes
1867 */
1868 static noinline int may_destroy_subvol(struct btrfs_root *root)
1869 {
1870 struct btrfs_path *path;
1871 struct btrfs_dir_item *di;
1872 struct btrfs_key key;
1873 u64 dir_id;
1874 int ret;
1875
1876 path = btrfs_alloc_path();
1877 if (!path)
1878 return -ENOMEM;
1879
1880 /* Make sure this root isn't set as the default subvol */
1881 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1882 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1883 dir_id, "default", 7, 0);
1884 if (di && !IS_ERR(di)) {
1885 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1886 if (key.objectid == root->root_key.objectid) {
1887 ret = -EPERM;
1888 btrfs_err(root->fs_info, "deleting default subvolume "
1889 "%llu is not allowed", key.objectid);
1890 goto out;
1891 }
1892 btrfs_release_path(path);
1893 }
1894
1895 key.objectid = root->root_key.objectid;
1896 key.type = BTRFS_ROOT_REF_KEY;
1897 key.offset = (u64)-1;
1898
1899 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1900 &key, path, 0, 0);
1901 if (ret < 0)
1902 goto out;
1903 BUG_ON(ret == 0);
1904
1905 ret = 0;
1906 if (path->slots[0] > 0) {
1907 path->slots[0]--;
1908 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1909 if (key.objectid == root->root_key.objectid &&
1910 key.type == BTRFS_ROOT_REF_KEY)
1911 ret = -ENOTEMPTY;
1912 }
1913 out:
1914 btrfs_free_path(path);
1915 return ret;
1916 }
1917
1918 static noinline int key_in_sk(struct btrfs_key *key,
1919 struct btrfs_ioctl_search_key *sk)
1920 {
1921 struct btrfs_key test;
1922 int ret;
1923
1924 test.objectid = sk->min_objectid;
1925 test.type = sk->min_type;
1926 test.offset = sk->min_offset;
1927
1928 ret = btrfs_comp_cpu_keys(key, &test);
1929 if (ret < 0)
1930 return 0;
1931
1932 test.objectid = sk->max_objectid;
1933 test.type = sk->max_type;
1934 test.offset = sk->max_offset;
1935
1936 ret = btrfs_comp_cpu_keys(key, &test);
1937 if (ret > 0)
1938 return 0;
1939 return 1;
1940 }
1941
1942 static noinline int copy_to_sk(struct btrfs_root *root,
1943 struct btrfs_path *path,
1944 struct btrfs_key *key,
1945 struct btrfs_ioctl_search_key *sk,
1946 size_t *buf_size,
1947 char __user *ubuf,
1948 unsigned long *sk_offset,
1949 int *num_found)
1950 {
1951 u64 found_transid;
1952 struct extent_buffer *leaf;
1953 struct btrfs_ioctl_search_header sh;
1954 struct btrfs_key test;
1955 unsigned long item_off;
1956 unsigned long item_len;
1957 int nritems;
1958 int i;
1959 int slot;
1960 int ret = 0;
1961
1962 leaf = path->nodes[0];
1963 slot = path->slots[0];
1964 nritems = btrfs_header_nritems(leaf);
1965
1966 if (btrfs_header_generation(leaf) > sk->max_transid) {
1967 i = nritems;
1968 goto advance_key;
1969 }
1970 found_transid = btrfs_header_generation(leaf);
1971
1972 for (i = slot; i < nritems; i++) {
1973 item_off = btrfs_item_ptr_offset(leaf, i);
1974 item_len = btrfs_item_size_nr(leaf, i);
1975
1976 btrfs_item_key_to_cpu(leaf, key, i);
1977 if (!key_in_sk(key, sk))
1978 continue;
1979
1980 if (sizeof(sh) + item_len > *buf_size) {
1981 if (*num_found) {
1982 ret = 1;
1983 goto out;
1984 }
1985
1986 /*
1987 * return one empty item back for v1, which does not
1988 * handle -EOVERFLOW
1989 */
1990
1991 *buf_size = sizeof(sh) + item_len;
1992 item_len = 0;
1993 ret = -EOVERFLOW;
1994 }
1995
1996 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1997 ret = 1;
1998 goto out;
1999 }
2000
2001 sh.objectid = key->objectid;
2002 sh.offset = key->offset;
2003 sh.type = key->type;
2004 sh.len = item_len;
2005 sh.transid = found_transid;
2006
2007 /* copy search result header */
2008 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2009 ret = -EFAULT;
2010 goto out;
2011 }
2012
2013 *sk_offset += sizeof(sh);
2014
2015 if (item_len) {
2016 char __user *up = ubuf + *sk_offset;
2017 /* copy the item */
2018 if (read_extent_buffer_to_user(leaf, up,
2019 item_off, item_len)) {
2020 ret = -EFAULT;
2021 goto out;
2022 }
2023
2024 *sk_offset += item_len;
2025 }
2026 (*num_found)++;
2027
2028 if (ret) /* -EOVERFLOW from above */
2029 goto out;
2030
2031 if (*num_found >= sk->nr_items) {
2032 ret = 1;
2033 goto out;
2034 }
2035 }
2036 advance_key:
2037 ret = 0;
2038 test.objectid = sk->max_objectid;
2039 test.type = sk->max_type;
2040 test.offset = sk->max_offset;
2041 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2042 ret = 1;
2043 else if (key->offset < (u64)-1)
2044 key->offset++;
2045 else if (key->type < (u8)-1) {
2046 key->offset = 0;
2047 key->type++;
2048 } else if (key->objectid < (u64)-1) {
2049 key->offset = 0;
2050 key->type = 0;
2051 key->objectid++;
2052 } else
2053 ret = 1;
2054 out:
2055 /*
2056 * 0: all items from this leaf copied, continue with next
2057 * 1: * more items can be copied, but unused buffer is too small
2058 * * all items were found
2059 * Either way, it will stops the loop which iterates to the next
2060 * leaf
2061 * -EOVERFLOW: item was to large for buffer
2062 * -EFAULT: could not copy extent buffer back to userspace
2063 */
2064 return ret;
2065 }
2066
2067 static noinline int search_ioctl(struct inode *inode,
2068 struct btrfs_ioctl_search_key *sk,
2069 size_t *buf_size,
2070 char __user *ubuf)
2071 {
2072 struct btrfs_root *root;
2073 struct btrfs_key key;
2074 struct btrfs_path *path;
2075 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2076 int ret;
2077 int num_found = 0;
2078 unsigned long sk_offset = 0;
2079
2080 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2081 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2082 return -EOVERFLOW;
2083 }
2084
2085 path = btrfs_alloc_path();
2086 if (!path)
2087 return -ENOMEM;
2088
2089 if (sk->tree_id == 0) {
2090 /* search the root of the inode that was passed */
2091 root = BTRFS_I(inode)->root;
2092 } else {
2093 key.objectid = sk->tree_id;
2094 key.type = BTRFS_ROOT_ITEM_KEY;
2095 key.offset = (u64)-1;
2096 root = btrfs_read_fs_root_no_name(info, &key);
2097 if (IS_ERR(root)) {
2098 btrfs_free_path(path);
2099 return -ENOENT;
2100 }
2101 }
2102
2103 key.objectid = sk->min_objectid;
2104 key.type = sk->min_type;
2105 key.offset = sk->min_offset;
2106
2107 while (1) {
2108 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2109 if (ret != 0) {
2110 if (ret > 0)
2111 ret = 0;
2112 goto err;
2113 }
2114 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2115 &sk_offset, &num_found);
2116 btrfs_release_path(path);
2117 if (ret)
2118 break;
2119
2120 }
2121 if (ret > 0)
2122 ret = 0;
2123 err:
2124 sk->nr_items = num_found;
2125 btrfs_free_path(path);
2126 return ret;
2127 }
2128
2129 static noinline int btrfs_ioctl_tree_search(struct file *file,
2130 void __user *argp)
2131 {
2132 struct btrfs_ioctl_search_args __user *uargs;
2133 struct btrfs_ioctl_search_key sk;
2134 struct inode *inode;
2135 int ret;
2136 size_t buf_size;
2137
2138 if (!capable(CAP_SYS_ADMIN))
2139 return -EPERM;
2140
2141 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2142
2143 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2144 return -EFAULT;
2145
2146 buf_size = sizeof(uargs->buf);
2147
2148 inode = file_inode(file);
2149 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2150
2151 /*
2152 * In the origin implementation an overflow is handled by returning a
2153 * search header with a len of zero, so reset ret.
2154 */
2155 if (ret == -EOVERFLOW)
2156 ret = 0;
2157
2158 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2159 ret = -EFAULT;
2160 return ret;
2161 }
2162
2163 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2164 void __user *argp)
2165 {
2166 struct btrfs_ioctl_search_args_v2 __user *uarg;
2167 struct btrfs_ioctl_search_args_v2 args;
2168 struct inode *inode;
2169 int ret;
2170 size_t buf_size;
2171 const size_t buf_limit = SZ_16M;
2172
2173 if (!capable(CAP_SYS_ADMIN))
2174 return -EPERM;
2175
2176 /* copy search header and buffer size */
2177 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2178 if (copy_from_user(&args, uarg, sizeof(args)))
2179 return -EFAULT;
2180
2181 buf_size = args.buf_size;
2182
2183 if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2184 return -EOVERFLOW;
2185
2186 /* limit result size to 16MB */
2187 if (buf_size > buf_limit)
2188 buf_size = buf_limit;
2189
2190 inode = file_inode(file);
2191 ret = search_ioctl(inode, &args.key, &buf_size,
2192 (char *)(&uarg->buf[0]));
2193 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2194 ret = -EFAULT;
2195 else if (ret == -EOVERFLOW &&
2196 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2197 ret = -EFAULT;
2198
2199 return ret;
2200 }
2201
2202 /*
2203 * Search INODE_REFs to identify path name of 'dirid' directory
2204 * in a 'tree_id' tree. and sets path name to 'name'.
2205 */
2206 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2207 u64 tree_id, u64 dirid, char *name)
2208 {
2209 struct btrfs_root *root;
2210 struct btrfs_key key;
2211 char *ptr;
2212 int ret = -1;
2213 int slot;
2214 int len;
2215 int total_len = 0;
2216 struct btrfs_inode_ref *iref;
2217 struct extent_buffer *l;
2218 struct btrfs_path *path;
2219
2220 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2221 name[0]='\0';
2222 return 0;
2223 }
2224
2225 path = btrfs_alloc_path();
2226 if (!path)
2227 return -ENOMEM;
2228
2229 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2230
2231 key.objectid = tree_id;
2232 key.type = BTRFS_ROOT_ITEM_KEY;
2233 key.offset = (u64)-1;
2234 root = btrfs_read_fs_root_no_name(info, &key);
2235 if (IS_ERR(root)) {
2236 btrfs_err(info, "could not find root %llu", tree_id);
2237 ret = -ENOENT;
2238 goto out;
2239 }
2240
2241 key.objectid = dirid;
2242 key.type = BTRFS_INODE_REF_KEY;
2243 key.offset = (u64)-1;
2244
2245 while (1) {
2246 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2247 if (ret < 0)
2248 goto out;
2249 else if (ret > 0) {
2250 ret = btrfs_previous_item(root, path, dirid,
2251 BTRFS_INODE_REF_KEY);
2252 if (ret < 0)
2253 goto out;
2254 else if (ret > 0) {
2255 ret = -ENOENT;
2256 goto out;
2257 }
2258 }
2259
2260 l = path->nodes[0];
2261 slot = path->slots[0];
2262 btrfs_item_key_to_cpu(l, &key, slot);
2263
2264 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2265 len = btrfs_inode_ref_name_len(l, iref);
2266 ptr -= len + 1;
2267 total_len += len + 1;
2268 if (ptr < name) {
2269 ret = -ENAMETOOLONG;
2270 goto out;
2271 }
2272
2273 *(ptr + len) = '/';
2274 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2275
2276 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2277 break;
2278
2279 btrfs_release_path(path);
2280 key.objectid = key.offset;
2281 key.offset = (u64)-1;
2282 dirid = key.objectid;
2283 }
2284 memmove(name, ptr, total_len);
2285 name[total_len] = '\0';
2286 ret = 0;
2287 out:
2288 btrfs_free_path(path);
2289 return ret;
2290 }
2291
2292 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2293 void __user *argp)
2294 {
2295 struct btrfs_ioctl_ino_lookup_args *args;
2296 struct inode *inode;
2297 int ret = 0;
2298
2299 args = memdup_user(argp, sizeof(*args));
2300 if (IS_ERR(args))
2301 return PTR_ERR(args);
2302
2303 inode = file_inode(file);
2304
2305 /*
2306 * Unprivileged query to obtain the containing subvolume root id. The
2307 * path is reset so it's consistent with btrfs_search_path_in_tree.
2308 */
2309 if (args->treeid == 0)
2310 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2311
2312 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2313 args->name[0] = 0;
2314 goto out;
2315 }
2316
2317 if (!capable(CAP_SYS_ADMIN)) {
2318 ret = -EPERM;
2319 goto out;
2320 }
2321
2322 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2323 args->treeid, args->objectid,
2324 args->name);
2325
2326 out:
2327 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2328 ret = -EFAULT;
2329
2330 kfree(args);
2331 return ret;
2332 }
2333
2334 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2335 void __user *arg)
2336 {
2337 struct dentry *parent = file->f_path.dentry;
2338 struct dentry *dentry;
2339 struct inode *dir = d_inode(parent);
2340 struct inode *inode;
2341 struct btrfs_root *root = BTRFS_I(dir)->root;
2342 struct btrfs_root *dest = NULL;
2343 struct btrfs_ioctl_vol_args *vol_args;
2344 struct btrfs_trans_handle *trans;
2345 struct btrfs_block_rsv block_rsv;
2346 u64 root_flags;
2347 u64 qgroup_reserved;
2348 int namelen;
2349 int ret;
2350 int err = 0;
2351
2352 vol_args = memdup_user(arg, sizeof(*vol_args));
2353 if (IS_ERR(vol_args))
2354 return PTR_ERR(vol_args);
2355
2356 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2357 namelen = strlen(vol_args->name);
2358 if (strchr(vol_args->name, '/') ||
2359 strncmp(vol_args->name, "..", namelen) == 0) {
2360 err = -EINVAL;
2361 goto out;
2362 }
2363
2364 err = mnt_want_write_file(file);
2365 if (err)
2366 goto out;
2367
2368
2369 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2370 if (err == -EINTR)
2371 goto out_drop_write;
2372 dentry = lookup_one_len(vol_args->name, parent, namelen);
2373 if (IS_ERR(dentry)) {
2374 err = PTR_ERR(dentry);
2375 goto out_unlock_dir;
2376 }
2377
2378 if (d_really_is_negative(dentry)) {
2379 err = -ENOENT;
2380 goto out_dput;
2381 }
2382
2383 inode = d_inode(dentry);
2384 dest = BTRFS_I(inode)->root;
2385 if (!capable(CAP_SYS_ADMIN)) {
2386 /*
2387 * Regular user. Only allow this with a special mount
2388 * option, when the user has write+exec access to the
2389 * subvol root, and when rmdir(2) would have been
2390 * allowed.
2391 *
2392 * Note that this is _not_ check that the subvol is
2393 * empty or doesn't contain data that we wouldn't
2394 * otherwise be able to delete.
2395 *
2396 * Users who want to delete empty subvols should try
2397 * rmdir(2).
2398 */
2399 err = -EPERM;
2400 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2401 goto out_dput;
2402
2403 /*
2404 * Do not allow deletion if the parent dir is the same
2405 * as the dir to be deleted. That means the ioctl
2406 * must be called on the dentry referencing the root
2407 * of the subvol, not a random directory contained
2408 * within it.
2409 */
2410 err = -EINVAL;
2411 if (root == dest)
2412 goto out_dput;
2413
2414 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2415 if (err)
2416 goto out_dput;
2417 }
2418
2419 /* check if subvolume may be deleted by a user */
2420 err = btrfs_may_delete(dir, dentry, 1);
2421 if (err)
2422 goto out_dput;
2423
2424 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2425 err = -EINVAL;
2426 goto out_dput;
2427 }
2428
2429 inode_lock(inode);
2430
2431 /*
2432 * Don't allow to delete a subvolume with send in progress. This is
2433 * inside the i_mutex so the error handling that has to drop the bit
2434 * again is not run concurrently.
2435 */
2436 spin_lock(&dest->root_item_lock);
2437 root_flags = btrfs_root_flags(&dest->root_item);
2438 if (dest->send_in_progress == 0) {
2439 btrfs_set_root_flags(&dest->root_item,
2440 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2441 spin_unlock(&dest->root_item_lock);
2442 } else {
2443 spin_unlock(&dest->root_item_lock);
2444 btrfs_warn(root->fs_info,
2445 "Attempt to delete subvolume %llu during send",
2446 dest->root_key.objectid);
2447 err = -EPERM;
2448 goto out_unlock_inode;
2449 }
2450
2451 down_write(&root->fs_info->subvol_sem);
2452
2453 err = may_destroy_subvol(dest);
2454 if (err)
2455 goto out_up_write;
2456
2457 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2458 /*
2459 * One for dir inode, two for dir entries, two for root
2460 * ref/backref.
2461 */
2462 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2463 5, &qgroup_reserved, true);
2464 if (err)
2465 goto out_up_write;
2466
2467 trans = btrfs_start_transaction(root, 0);
2468 if (IS_ERR(trans)) {
2469 err = PTR_ERR(trans);
2470 goto out_release;
2471 }
2472 trans->block_rsv = &block_rsv;
2473 trans->bytes_reserved = block_rsv.size;
2474
2475 btrfs_record_snapshot_destroy(trans, dir);
2476
2477 ret = btrfs_unlink_subvol(trans, root, dir,
2478 dest->root_key.objectid,
2479 dentry->d_name.name,
2480 dentry->d_name.len);
2481 if (ret) {
2482 err = ret;
2483 btrfs_abort_transaction(trans, root, ret);
2484 goto out_end_trans;
2485 }
2486
2487 btrfs_record_root_in_trans(trans, dest);
2488
2489 memset(&dest->root_item.drop_progress, 0,
2490 sizeof(dest->root_item.drop_progress));
2491 dest->root_item.drop_level = 0;
2492 btrfs_set_root_refs(&dest->root_item, 0);
2493
2494 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2495 ret = btrfs_insert_orphan_item(trans,
2496 root->fs_info->tree_root,
2497 dest->root_key.objectid);
2498 if (ret) {
2499 btrfs_abort_transaction(trans, root, ret);
2500 err = ret;
2501 goto out_end_trans;
2502 }
2503 }
2504
2505 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2506 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2507 dest->root_key.objectid);
2508 if (ret && ret != -ENOENT) {
2509 btrfs_abort_transaction(trans, root, ret);
2510 err = ret;
2511 goto out_end_trans;
2512 }
2513 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2514 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2515 dest->root_item.received_uuid,
2516 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2517 dest->root_key.objectid);
2518 if (ret && ret != -ENOENT) {
2519 btrfs_abort_transaction(trans, root, ret);
2520 err = ret;
2521 goto out_end_trans;
2522 }
2523 }
2524
2525 out_end_trans:
2526 trans->block_rsv = NULL;
2527 trans->bytes_reserved = 0;
2528 ret = btrfs_end_transaction(trans, root);
2529 if (ret && !err)
2530 err = ret;
2531 inode->i_flags |= S_DEAD;
2532 out_release:
2533 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2534 out_up_write:
2535 up_write(&root->fs_info->subvol_sem);
2536 if (err) {
2537 spin_lock(&dest->root_item_lock);
2538 root_flags = btrfs_root_flags(&dest->root_item);
2539 btrfs_set_root_flags(&dest->root_item,
2540 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2541 spin_unlock(&dest->root_item_lock);
2542 }
2543 out_unlock_inode:
2544 inode_unlock(inode);
2545 if (!err) {
2546 d_invalidate(dentry);
2547 btrfs_invalidate_inodes(dest);
2548 d_delete(dentry);
2549 ASSERT(dest->send_in_progress == 0);
2550
2551 /* the last ref */
2552 if (dest->ino_cache_inode) {
2553 iput(dest->ino_cache_inode);
2554 dest->ino_cache_inode = NULL;
2555 }
2556 }
2557 out_dput:
2558 dput(dentry);
2559 out_unlock_dir:
2560 inode_unlock(dir);
2561 out_drop_write:
2562 mnt_drop_write_file(file);
2563 out:
2564 kfree(vol_args);
2565 return err;
2566 }
2567
2568 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2569 {
2570 struct inode *inode = file_inode(file);
2571 struct btrfs_root *root = BTRFS_I(inode)->root;
2572 struct btrfs_ioctl_defrag_range_args *range;
2573 int ret;
2574
2575 ret = mnt_want_write_file(file);
2576 if (ret)
2577 return ret;
2578
2579 if (btrfs_root_readonly(root)) {
2580 ret = -EROFS;
2581 goto out;
2582 }
2583
2584 switch (inode->i_mode & S_IFMT) {
2585 case S_IFDIR:
2586 if (!capable(CAP_SYS_ADMIN)) {
2587 ret = -EPERM;
2588 goto out;
2589 }
2590 ret = btrfs_defrag_root(root);
2591 if (ret)
2592 goto out;
2593 ret = btrfs_defrag_root(root->fs_info->extent_root);
2594 break;
2595 case S_IFREG:
2596 if (!(file->f_mode & FMODE_WRITE)) {
2597 ret = -EINVAL;
2598 goto out;
2599 }
2600
2601 range = kzalloc(sizeof(*range), GFP_KERNEL);
2602 if (!range) {
2603 ret = -ENOMEM;
2604 goto out;
2605 }
2606
2607 if (argp) {
2608 if (copy_from_user(range, argp,
2609 sizeof(*range))) {
2610 ret = -EFAULT;
2611 kfree(range);
2612 goto out;
2613 }
2614 /* compression requires us to start the IO */
2615 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2616 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2617 range->extent_thresh = (u32)-1;
2618 }
2619 } else {
2620 /* the rest are all set to zero by kzalloc */
2621 range->len = (u64)-1;
2622 }
2623 ret = btrfs_defrag_file(file_inode(file), file,
2624 range, 0, 0);
2625 if (ret > 0)
2626 ret = 0;
2627 kfree(range);
2628 break;
2629 default:
2630 ret = -EINVAL;
2631 }
2632 out:
2633 mnt_drop_write_file(file);
2634 return ret;
2635 }
2636
2637 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2638 {
2639 struct btrfs_ioctl_vol_args *vol_args;
2640 int ret;
2641
2642 if (!capable(CAP_SYS_ADMIN))
2643 return -EPERM;
2644
2645 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2646 1)) {
2647 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2648 }
2649
2650 mutex_lock(&root->fs_info->volume_mutex);
2651 vol_args = memdup_user(arg, sizeof(*vol_args));
2652 if (IS_ERR(vol_args)) {
2653 ret = PTR_ERR(vol_args);
2654 goto out;
2655 }
2656
2657 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2658 ret = btrfs_init_new_device(root, vol_args->name);
2659
2660 if (!ret)
2661 btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2662
2663 kfree(vol_args);
2664 out:
2665 mutex_unlock(&root->fs_info->volume_mutex);
2666 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2667 return ret;
2668 }
2669
2670 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2671 {
2672 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2673 struct btrfs_ioctl_vol_args *vol_args;
2674 int ret;
2675
2676 if (!capable(CAP_SYS_ADMIN))
2677 return -EPERM;
2678
2679 ret = mnt_want_write_file(file);
2680 if (ret)
2681 return ret;
2682
2683 vol_args = memdup_user(arg, sizeof(*vol_args));
2684 if (IS_ERR(vol_args)) {
2685 ret = PTR_ERR(vol_args);
2686 goto err_drop;
2687 }
2688
2689 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2690
2691 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2692 1)) {
2693 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2694 goto out;
2695 }
2696
2697 mutex_lock(&root->fs_info->volume_mutex);
2698 ret = btrfs_rm_device(root, vol_args->name);
2699 mutex_unlock(&root->fs_info->volume_mutex);
2700 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2701
2702 if (!ret)
2703 btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2704
2705 out:
2706 kfree(vol_args);
2707 err_drop:
2708 mnt_drop_write_file(file);
2709 return ret;
2710 }
2711
2712 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2713 {
2714 struct btrfs_ioctl_fs_info_args *fi_args;
2715 struct btrfs_device *device;
2716 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2717 int ret = 0;
2718
2719 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2720 if (!fi_args)
2721 return -ENOMEM;
2722
2723 mutex_lock(&fs_devices->device_list_mutex);
2724 fi_args->num_devices = fs_devices->num_devices;
2725 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2726
2727 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2728 if (device->devid > fi_args->max_id)
2729 fi_args->max_id = device->devid;
2730 }
2731 mutex_unlock(&fs_devices->device_list_mutex);
2732
2733 fi_args->nodesize = root->fs_info->super_copy->nodesize;
2734 fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2735 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2736
2737 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2738 ret = -EFAULT;
2739
2740 kfree(fi_args);
2741 return ret;
2742 }
2743
2744 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2745 {
2746 struct btrfs_ioctl_dev_info_args *di_args;
2747 struct btrfs_device *dev;
2748 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2749 int ret = 0;
2750 char *s_uuid = NULL;
2751
2752 di_args = memdup_user(arg, sizeof(*di_args));
2753 if (IS_ERR(di_args))
2754 return PTR_ERR(di_args);
2755
2756 if (!btrfs_is_empty_uuid(di_args->uuid))
2757 s_uuid = di_args->uuid;
2758
2759 mutex_lock(&fs_devices->device_list_mutex);
2760 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2761
2762 if (!dev) {
2763 ret = -ENODEV;
2764 goto out;
2765 }
2766
2767 di_args->devid = dev->devid;
2768 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2769 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2770 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2771 if (dev->name) {
2772 struct rcu_string *name;
2773
2774 rcu_read_lock();
2775 name = rcu_dereference(dev->name);
2776 strncpy(di_args->path, name->str, sizeof(di_args->path));
2777 rcu_read_unlock();
2778 di_args->path[sizeof(di_args->path) - 1] = 0;
2779 } else {
2780 di_args->path[0] = '\0';
2781 }
2782
2783 out:
2784 mutex_unlock(&fs_devices->device_list_mutex);
2785 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2786 ret = -EFAULT;
2787
2788 kfree(di_args);
2789 return ret;
2790 }
2791
2792 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2793 {
2794 struct page *page;
2795
2796 page = grab_cache_page(inode->i_mapping, index);
2797 if (!page)
2798 return ERR_PTR(-ENOMEM);
2799
2800 if (!PageUptodate(page)) {
2801 int ret;
2802
2803 ret = btrfs_readpage(NULL, page);
2804 if (ret)
2805 return ERR_PTR(ret);
2806 lock_page(page);
2807 if (!PageUptodate(page)) {
2808 unlock_page(page);
2809 put_page(page);
2810 return ERR_PTR(-EIO);
2811 }
2812 if (page->mapping != inode->i_mapping) {
2813 unlock_page(page);
2814 put_page(page);
2815 return ERR_PTR(-EAGAIN);
2816 }
2817 }
2818
2819 return page;
2820 }
2821
2822 static int gather_extent_pages(struct inode *inode, struct page **pages,
2823 int num_pages, u64 off)
2824 {
2825 int i;
2826 pgoff_t index = off >> PAGE_SHIFT;
2827
2828 for (i = 0; i < num_pages; i++) {
2829 again:
2830 pages[i] = extent_same_get_page(inode, index + i);
2831 if (IS_ERR(pages[i])) {
2832 int err = PTR_ERR(pages[i]);
2833
2834 if (err == -EAGAIN)
2835 goto again;
2836 pages[i] = NULL;
2837 return err;
2838 }
2839 }
2840 return 0;
2841 }
2842
2843 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2844 bool retry_range_locking)
2845 {
2846 /*
2847 * Do any pending delalloc/csum calculations on inode, one way or
2848 * another, and lock file content.
2849 * The locking order is:
2850 *
2851 * 1) pages
2852 * 2) range in the inode's io tree
2853 */
2854 while (1) {
2855 struct btrfs_ordered_extent *ordered;
2856 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2857 ordered = btrfs_lookup_first_ordered_extent(inode,
2858 off + len - 1);
2859 if ((!ordered ||
2860 ordered->file_offset + ordered->len <= off ||
2861 ordered->file_offset >= off + len) &&
2862 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2863 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2864 if (ordered)
2865 btrfs_put_ordered_extent(ordered);
2866 break;
2867 }
2868 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2869 if (ordered)
2870 btrfs_put_ordered_extent(ordered);
2871 if (!retry_range_locking)
2872 return -EAGAIN;
2873 btrfs_wait_ordered_range(inode, off, len);
2874 }
2875 return 0;
2876 }
2877
2878 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2879 {
2880 inode_unlock(inode1);
2881 inode_unlock(inode2);
2882 }
2883
2884 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2885 {
2886 if (inode1 < inode2)
2887 swap(inode1, inode2);
2888
2889 inode_lock_nested(inode1, I_MUTEX_PARENT);
2890 inode_lock_nested(inode2, I_MUTEX_CHILD);
2891 }
2892
2893 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2894 struct inode *inode2, u64 loff2, u64 len)
2895 {
2896 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2897 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2898 }
2899
2900 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2901 struct inode *inode2, u64 loff2, u64 len,
2902 bool retry_range_locking)
2903 {
2904 int ret;
2905
2906 if (inode1 < inode2) {
2907 swap(inode1, inode2);
2908 swap(loff1, loff2);
2909 }
2910 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2911 if (ret)
2912 return ret;
2913 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2914 if (ret)
2915 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2916 loff1 + len - 1);
2917 return ret;
2918 }
2919
2920 struct cmp_pages {
2921 int num_pages;
2922 struct page **src_pages;
2923 struct page **dst_pages;
2924 };
2925
2926 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2927 {
2928 int i;
2929 struct page *pg;
2930
2931 for (i = 0; i < cmp->num_pages; i++) {
2932 pg = cmp->src_pages[i];
2933 if (pg) {
2934 unlock_page(pg);
2935 put_page(pg);
2936 }
2937 pg = cmp->dst_pages[i];
2938 if (pg) {
2939 unlock_page(pg);
2940 put_page(pg);
2941 }
2942 }
2943 kfree(cmp->src_pages);
2944 kfree(cmp->dst_pages);
2945 }
2946
2947 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2948 struct inode *dst, u64 dst_loff,
2949 u64 len, struct cmp_pages *cmp)
2950 {
2951 int ret;
2952 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2953 struct page **src_pgarr, **dst_pgarr;
2954
2955 /*
2956 * We must gather up all the pages before we initiate our
2957 * extent locking. We use an array for the page pointers. Size
2958 * of the array is bounded by len, which is in turn bounded by
2959 * BTRFS_MAX_DEDUPE_LEN.
2960 */
2961 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2962 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2963 if (!src_pgarr || !dst_pgarr) {
2964 kfree(src_pgarr);
2965 kfree(dst_pgarr);
2966 return -ENOMEM;
2967 }
2968 cmp->num_pages = num_pages;
2969 cmp->src_pages = src_pgarr;
2970 cmp->dst_pages = dst_pgarr;
2971
2972 ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2973 if (ret)
2974 goto out;
2975
2976 ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2977
2978 out:
2979 if (ret)
2980 btrfs_cmp_data_free(cmp);
2981 return 0;
2982 }
2983
2984 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2985 u64 dst_loff, u64 len, struct cmp_pages *cmp)
2986 {
2987 int ret = 0;
2988 int i;
2989 struct page *src_page, *dst_page;
2990 unsigned int cmp_len = PAGE_SIZE;
2991 void *addr, *dst_addr;
2992
2993 i = 0;
2994 while (len) {
2995 if (len < PAGE_SIZE)
2996 cmp_len = len;
2997
2998 BUG_ON(i >= cmp->num_pages);
2999
3000 src_page = cmp->src_pages[i];
3001 dst_page = cmp->dst_pages[i];
3002 ASSERT(PageLocked(src_page));
3003 ASSERT(PageLocked(dst_page));
3004
3005 addr = kmap_atomic(src_page);
3006 dst_addr = kmap_atomic(dst_page);
3007
3008 flush_dcache_page(src_page);
3009 flush_dcache_page(dst_page);
3010
3011 if (memcmp(addr, dst_addr, cmp_len))
3012 ret = -EBADE;
3013
3014 kunmap_atomic(addr);
3015 kunmap_atomic(dst_addr);
3016
3017 if (ret)
3018 break;
3019
3020 len -= cmp_len;
3021 i++;
3022 }
3023
3024 return ret;
3025 }
3026
3027 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3028 u64 olen)
3029 {
3030 u64 len = *plen;
3031 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3032
3033 if (off + olen > inode->i_size || off + olen < off)
3034 return -EINVAL;
3035
3036 /* if we extend to eof, continue to block boundary */
3037 if (off + len == inode->i_size)
3038 *plen = len = ALIGN(inode->i_size, bs) - off;
3039
3040 /* Check that we are block aligned - btrfs_clone() requires this */
3041 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3042 return -EINVAL;
3043
3044 return 0;
3045 }
3046
3047 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3048 struct inode *dst, u64 dst_loff)
3049 {
3050 int ret;
3051 u64 len = olen;
3052 struct cmp_pages cmp;
3053 int same_inode = 0;
3054 u64 same_lock_start = 0;
3055 u64 same_lock_len = 0;
3056
3057 if (src == dst)
3058 same_inode = 1;
3059
3060 if (len == 0)
3061 return 0;
3062
3063 if (same_inode) {
3064 inode_lock(src);
3065
3066 ret = extent_same_check_offsets(src, loff, &len, olen);
3067 if (ret)
3068 goto out_unlock;
3069 ret = extent_same_check_offsets(src, dst_loff, &len, olen);
3070 if (ret)
3071 goto out_unlock;
3072
3073 /*
3074 * Single inode case wants the same checks, except we
3075 * don't want our length pushed out past i_size as
3076 * comparing that data range makes no sense.
3077 *
3078 * extent_same_check_offsets() will do this for an
3079 * unaligned length at i_size, so catch it here and
3080 * reject the request.
3081 *
3082 * This effectively means we require aligned extents
3083 * for the single-inode case, whereas the other cases
3084 * allow an unaligned length so long as it ends at
3085 * i_size.
3086 */
3087 if (len != olen) {
3088 ret = -EINVAL;
3089 goto out_unlock;
3090 }
3091
3092 /* Check for overlapping ranges */
3093 if (dst_loff + len > loff && dst_loff < loff + len) {
3094 ret = -EINVAL;
3095 goto out_unlock;
3096 }
3097
3098 same_lock_start = min_t(u64, loff, dst_loff);
3099 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3100 } else {
3101 btrfs_double_inode_lock(src, dst);
3102
3103 ret = extent_same_check_offsets(src, loff, &len, olen);
3104 if (ret)
3105 goto out_unlock;
3106
3107 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3108 if (ret)
3109 goto out_unlock;
3110 }
3111
3112 /* don't make the dst file partly checksummed */
3113 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3114 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3115 ret = -EINVAL;
3116 goto out_unlock;
3117 }
3118
3119 again:
3120 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3121 if (ret)
3122 goto out_unlock;
3123
3124 if (same_inode)
3125 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3126 false);
3127 else
3128 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3129 false);
3130 /*
3131 * If one of the inodes has dirty pages in the respective range or
3132 * ordered extents, we need to flush dellaloc and wait for all ordered
3133 * extents in the range. We must unlock the pages and the ranges in the
3134 * io trees to avoid deadlocks when flushing delalloc (requires locking
3135 * pages) and when waiting for ordered extents to complete (they require
3136 * range locking).
3137 */
3138 if (ret == -EAGAIN) {
3139 /*
3140 * Ranges in the io trees already unlocked. Now unlock all
3141 * pages before waiting for all IO to complete.
3142 */
3143 btrfs_cmp_data_free(&cmp);
3144 if (same_inode) {
3145 btrfs_wait_ordered_range(src, same_lock_start,
3146 same_lock_len);
3147 } else {
3148 btrfs_wait_ordered_range(src, loff, len);
3149 btrfs_wait_ordered_range(dst, dst_loff, len);
3150 }
3151 goto again;
3152 }
3153 ASSERT(ret == 0);
3154 if (WARN_ON(ret)) {
3155 /* ranges in the io trees already unlocked */
3156 btrfs_cmp_data_free(&cmp);
3157 return ret;
3158 }
3159
3160 /* pass original length for comparison so we stay within i_size */
3161 ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3162 if (ret == 0)
3163 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3164
3165 if (same_inode)
3166 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3167 same_lock_start + same_lock_len - 1);
3168 else
3169 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3170
3171 btrfs_cmp_data_free(&cmp);
3172 out_unlock:
3173 if (same_inode)
3174 inode_unlock(src);
3175 else
3176 btrfs_double_inode_unlock(src, dst);
3177
3178 return ret;
3179 }
3180
3181 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3182
3183 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3184 struct file *dst_file, u64 dst_loff)
3185 {
3186 struct inode *src = file_inode(src_file);
3187 struct inode *dst = file_inode(dst_file);
3188 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3189 ssize_t res;
3190
3191 if (olen > BTRFS_MAX_DEDUPE_LEN)
3192 olen = BTRFS_MAX_DEDUPE_LEN;
3193
3194 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3195 /*
3196 * Btrfs does not support blocksize < page_size. As a
3197 * result, btrfs_cmp_data() won't correctly handle
3198 * this situation without an update.
3199 */
3200 return -EINVAL;
3201 }
3202
3203 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3204 if (res)
3205 return res;
3206 return olen;
3207 }
3208
3209 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3210 struct inode *inode,
3211 u64 endoff,
3212 const u64 destoff,
3213 const u64 olen,
3214 int no_time_update)
3215 {
3216 struct btrfs_root *root = BTRFS_I(inode)->root;
3217 int ret;
3218
3219 inode_inc_iversion(inode);
3220 if (!no_time_update)
3221 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
3222 /*
3223 * We round up to the block size at eof when determining which
3224 * extents to clone above, but shouldn't round up the file size.
3225 */
3226 if (endoff > destoff + olen)
3227 endoff = destoff + olen;
3228 if (endoff > inode->i_size)
3229 btrfs_i_size_write(inode, endoff);
3230
3231 ret = btrfs_update_inode(trans, root, inode);
3232 if (ret) {
3233 btrfs_abort_transaction(trans, root, ret);
3234 btrfs_end_transaction(trans, root);
3235 goto out;
3236 }
3237 ret = btrfs_end_transaction(trans, root);
3238 out:
3239 return ret;
3240 }
3241
3242 static void clone_update_extent_map(struct inode *inode,
3243 const struct btrfs_trans_handle *trans,
3244 const struct btrfs_path *path,
3245 const u64 hole_offset,
3246 const u64 hole_len)
3247 {
3248 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3249 struct extent_map *em;
3250 int ret;
3251
3252 em = alloc_extent_map();
3253 if (!em) {
3254 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3255 &BTRFS_I(inode)->runtime_flags);
3256 return;
3257 }
3258
3259 if (path) {
3260 struct btrfs_file_extent_item *fi;
3261
3262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 struct btrfs_file_extent_item);
3264 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3265 em->generation = -1;
3266 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3267 BTRFS_FILE_EXTENT_INLINE)
3268 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3269 &BTRFS_I(inode)->runtime_flags);
3270 } else {
3271 em->start = hole_offset;
3272 em->len = hole_len;
3273 em->ram_bytes = em->len;
3274 em->orig_start = hole_offset;
3275 em->block_start = EXTENT_MAP_HOLE;
3276 em->block_len = 0;
3277 em->orig_block_len = 0;
3278 em->compress_type = BTRFS_COMPRESS_NONE;
3279 em->generation = trans->transid;
3280 }
3281
3282 while (1) {
3283 write_lock(&em_tree->lock);
3284 ret = add_extent_mapping(em_tree, em, 1);
3285 write_unlock(&em_tree->lock);
3286 if (ret != -EEXIST) {
3287 free_extent_map(em);
3288 break;
3289 }
3290 btrfs_drop_extent_cache(inode, em->start,
3291 em->start + em->len - 1, 0);
3292 }
3293
3294 if (ret)
3295 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3296 &BTRFS_I(inode)->runtime_flags);
3297 }
3298
3299 /*
3300 * Make sure we do not end up inserting an inline extent into a file that has
3301 * already other (non-inline) extents. If a file has an inline extent it can
3302 * not have any other extents and the (single) inline extent must start at the
3303 * file offset 0. Failing to respect these rules will lead to file corruption,
3304 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3305 *
3306 * We can have extents that have been already written to disk or we can have
3307 * dirty ranges still in delalloc, in which case the extent maps and items are
3308 * created only when we run delalloc, and the delalloc ranges might fall outside
3309 * the range we are currently locking in the inode's io tree. So we check the
3310 * inode's i_size because of that (i_size updates are done while holding the
3311 * i_mutex, which we are holding here).
3312 * We also check to see if the inode has a size not greater than "datal" but has
3313 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3314 * protected against such concurrent fallocate calls by the i_mutex).
3315 *
3316 * If the file has no extents but a size greater than datal, do not allow the
3317 * copy because we would need turn the inline extent into a non-inline one (even
3318 * with NO_HOLES enabled). If we find our destination inode only has one inline
3319 * extent, just overwrite it with the source inline extent if its size is less
3320 * than the source extent's size, or we could copy the source inline extent's
3321 * data into the destination inode's inline extent if the later is greater then
3322 * the former.
3323 */
3324 static int clone_copy_inline_extent(struct inode *src,
3325 struct inode *dst,
3326 struct btrfs_trans_handle *trans,
3327 struct btrfs_path *path,
3328 struct btrfs_key *new_key,
3329 const u64 drop_start,
3330 const u64 datal,
3331 const u64 skip,
3332 const u64 size,
3333 char *inline_data)
3334 {
3335 struct btrfs_root *root = BTRFS_I(dst)->root;
3336 const u64 aligned_end = ALIGN(new_key->offset + datal,
3337 root->sectorsize);
3338 int ret;
3339 struct btrfs_key key;
3340
3341 if (new_key->offset > 0)
3342 return -EOPNOTSUPP;
3343
3344 key.objectid = btrfs_ino(dst);
3345 key.type = BTRFS_EXTENT_DATA_KEY;
3346 key.offset = 0;
3347 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 if (ret < 0) {
3349 return ret;
3350 } else if (ret > 0) {
3351 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3352 ret = btrfs_next_leaf(root, path);
3353 if (ret < 0)
3354 return ret;
3355 else if (ret > 0)
3356 goto copy_inline_extent;
3357 }
3358 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3359 if (key.objectid == btrfs_ino(dst) &&
3360 key.type == BTRFS_EXTENT_DATA_KEY) {
3361 ASSERT(key.offset > 0);
3362 return -EOPNOTSUPP;
3363 }
3364 } else if (i_size_read(dst) <= datal) {
3365 struct btrfs_file_extent_item *ei;
3366 u64 ext_len;
3367
3368 /*
3369 * If the file size is <= datal, make sure there are no other
3370 * extents following (can happen do to an fallocate call with
3371 * the flag FALLOC_FL_KEEP_SIZE).
3372 */
3373 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374 struct btrfs_file_extent_item);
3375 /*
3376 * If it's an inline extent, it can not have other extents
3377 * following it.
3378 */
3379 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3380 BTRFS_FILE_EXTENT_INLINE)
3381 goto copy_inline_extent;
3382
3383 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3384 if (ext_len > aligned_end)
3385 return -EOPNOTSUPP;
3386
3387 ret = btrfs_next_item(root, path);
3388 if (ret < 0) {
3389 return ret;
3390 } else if (ret == 0) {
3391 btrfs_item_key_to_cpu(path->nodes[0], &key,
3392 path->slots[0]);
3393 if (key.objectid == btrfs_ino(dst) &&
3394 key.type == BTRFS_EXTENT_DATA_KEY)
3395 return -EOPNOTSUPP;
3396 }
3397 }
3398
3399 copy_inline_extent:
3400 /*
3401 * We have no extent items, or we have an extent at offset 0 which may
3402 * or may not be inlined. All these cases are dealt the same way.
3403 */
3404 if (i_size_read(dst) > datal) {
3405 /*
3406 * If the destination inode has an inline extent...
3407 * This would require copying the data from the source inline
3408 * extent into the beginning of the destination's inline extent.
3409 * But this is really complex, both extents can be compressed
3410 * or just one of them, which would require decompressing and
3411 * re-compressing data (which could increase the new compressed
3412 * size, not allowing the compressed data to fit anymore in an
3413 * inline extent).
3414 * So just don't support this case for now (it should be rare,
3415 * we are not really saving space when cloning inline extents).
3416 */
3417 return -EOPNOTSUPP;
3418 }
3419
3420 btrfs_release_path(path);
3421 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3422 if (ret)
3423 return ret;
3424 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3425 if (ret)
3426 return ret;
3427
3428 if (skip) {
3429 const u32 start = btrfs_file_extent_calc_inline_size(0);
3430
3431 memmove(inline_data + start, inline_data + start + skip, datal);
3432 }
3433
3434 write_extent_buffer(path->nodes[0], inline_data,
3435 btrfs_item_ptr_offset(path->nodes[0],
3436 path->slots[0]),
3437 size);
3438 inode_add_bytes(dst, datal);
3439
3440 return 0;
3441 }
3442
3443 /**
3444 * btrfs_clone() - clone a range from inode file to another
3445 *
3446 * @src: Inode to clone from
3447 * @inode: Inode to clone to
3448 * @off: Offset within source to start clone from
3449 * @olen: Original length, passed by user, of range to clone
3450 * @olen_aligned: Block-aligned value of olen
3451 * @destoff: Offset within @inode to start clone
3452 * @no_time_update: Whether to update mtime/ctime on the target inode
3453 */
3454 static int btrfs_clone(struct inode *src, struct inode *inode,
3455 const u64 off, const u64 olen, const u64 olen_aligned,
3456 const u64 destoff, int no_time_update)
3457 {
3458 struct btrfs_root *root = BTRFS_I(inode)->root;
3459 struct btrfs_path *path = NULL;
3460 struct extent_buffer *leaf;
3461 struct btrfs_trans_handle *trans;
3462 char *buf = NULL;
3463 struct btrfs_key key;
3464 u32 nritems;
3465 int slot;
3466 int ret;
3467 const u64 len = olen_aligned;
3468 u64 last_dest_end = destoff;
3469
3470 ret = -ENOMEM;
3471 buf = kmalloc(root->nodesize, GFP_KERNEL | __GFP_NOWARN);
3472 if (!buf) {
3473 buf = vmalloc(root->nodesize);
3474 if (!buf)
3475 return ret;
3476 }
3477
3478 path = btrfs_alloc_path();
3479 if (!path) {
3480 kvfree(buf);
3481 return ret;
3482 }
3483
3484 path->reada = READA_FORWARD;
3485 /* clone data */
3486 key.objectid = btrfs_ino(src);
3487 key.type = BTRFS_EXTENT_DATA_KEY;
3488 key.offset = off;
3489
3490 while (1) {
3491 u64 next_key_min_offset = key.offset + 1;
3492
3493 /*
3494 * note the key will change type as we walk through the
3495 * tree.
3496 */
3497 path->leave_spinning = 1;
3498 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3499 0, 0);
3500 if (ret < 0)
3501 goto out;
3502 /*
3503 * First search, if no extent item that starts at offset off was
3504 * found but the previous item is an extent item, it's possible
3505 * it might overlap our target range, therefore process it.
3506 */
3507 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3508 btrfs_item_key_to_cpu(path->nodes[0], &key,
3509 path->slots[0] - 1);
3510 if (key.type == BTRFS_EXTENT_DATA_KEY)
3511 path->slots[0]--;
3512 }
3513
3514 nritems = btrfs_header_nritems(path->nodes[0]);
3515 process_slot:
3516 if (path->slots[0] >= nritems) {
3517 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3518 if (ret < 0)
3519 goto out;
3520 if (ret > 0)
3521 break;
3522 nritems = btrfs_header_nritems(path->nodes[0]);
3523 }
3524 leaf = path->nodes[0];
3525 slot = path->slots[0];
3526
3527 btrfs_item_key_to_cpu(leaf, &key, slot);
3528 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3529 key.objectid != btrfs_ino(src))
3530 break;
3531
3532 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3533 struct btrfs_file_extent_item *extent;
3534 int type;
3535 u32 size;
3536 struct btrfs_key new_key;
3537 u64 disko = 0, diskl = 0;
3538 u64 datao = 0, datal = 0;
3539 u8 comp;
3540 u64 drop_start;
3541
3542 extent = btrfs_item_ptr(leaf, slot,
3543 struct btrfs_file_extent_item);
3544 comp = btrfs_file_extent_compression(leaf, extent);
3545 type = btrfs_file_extent_type(leaf, extent);
3546 if (type == BTRFS_FILE_EXTENT_REG ||
3547 type == BTRFS_FILE_EXTENT_PREALLOC) {
3548 disko = btrfs_file_extent_disk_bytenr(leaf,
3549 extent);
3550 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3551 extent);
3552 datao = btrfs_file_extent_offset(leaf, extent);
3553 datal = btrfs_file_extent_num_bytes(leaf,
3554 extent);
3555 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3556 /* take upper bound, may be compressed */
3557 datal = btrfs_file_extent_ram_bytes(leaf,
3558 extent);
3559 }
3560
3561 /*
3562 * The first search might have left us at an extent
3563 * item that ends before our target range's start, can
3564 * happen if we have holes and NO_HOLES feature enabled.
3565 */
3566 if (key.offset + datal <= off) {
3567 path->slots[0]++;
3568 goto process_slot;
3569 } else if (key.offset >= off + len) {
3570 break;
3571 }
3572 next_key_min_offset = key.offset + datal;
3573 size = btrfs_item_size_nr(leaf, slot);
3574 read_extent_buffer(leaf, buf,
3575 btrfs_item_ptr_offset(leaf, slot),
3576 size);
3577
3578 btrfs_release_path(path);
3579 path->leave_spinning = 0;
3580
3581 memcpy(&new_key, &key, sizeof(new_key));
3582 new_key.objectid = btrfs_ino(inode);
3583 if (off <= key.offset)
3584 new_key.offset = key.offset + destoff - off;
3585 else
3586 new_key.offset = destoff;
3587
3588 /*
3589 * Deal with a hole that doesn't have an extent item
3590 * that represents it (NO_HOLES feature enabled).
3591 * This hole is either in the middle of the cloning
3592 * range or at the beginning (fully overlaps it or
3593 * partially overlaps it).
3594 */
3595 if (new_key.offset != last_dest_end)
3596 drop_start = last_dest_end;
3597 else
3598 drop_start = new_key.offset;
3599
3600 /*
3601 * 1 - adjusting old extent (we may have to split it)
3602 * 1 - add new extent
3603 * 1 - inode update
3604 */
3605 trans = btrfs_start_transaction(root, 3);
3606 if (IS_ERR(trans)) {
3607 ret = PTR_ERR(trans);
3608 goto out;
3609 }
3610
3611 if (type == BTRFS_FILE_EXTENT_REG ||
3612 type == BTRFS_FILE_EXTENT_PREALLOC) {
3613 /*
3614 * a | --- range to clone ---| b
3615 * | ------------- extent ------------- |
3616 */
3617
3618 /* subtract range b */
3619 if (key.offset + datal > off + len)
3620 datal = off + len - key.offset;
3621
3622 /* subtract range a */
3623 if (off > key.offset) {
3624 datao += off - key.offset;
3625 datal -= off - key.offset;
3626 }
3627
3628 ret = btrfs_drop_extents(trans, root, inode,
3629 drop_start,
3630 new_key.offset + datal,
3631 1);
3632 if (ret) {
3633 if (ret != -EOPNOTSUPP)
3634 btrfs_abort_transaction(trans,
3635 root, ret);
3636 btrfs_end_transaction(trans, root);
3637 goto out;
3638 }
3639
3640 ret = btrfs_insert_empty_item(trans, root, path,
3641 &new_key, size);
3642 if (ret) {
3643 btrfs_abort_transaction(trans, root,
3644 ret);
3645 btrfs_end_transaction(trans, root);
3646 goto out;
3647 }
3648
3649 leaf = path->nodes[0];
3650 slot = path->slots[0];
3651 write_extent_buffer(leaf, buf,
3652 btrfs_item_ptr_offset(leaf, slot),
3653 size);
3654
3655 extent = btrfs_item_ptr(leaf, slot,
3656 struct btrfs_file_extent_item);
3657
3658 /* disko == 0 means it's a hole */
3659 if (!disko)
3660 datao = 0;
3661
3662 btrfs_set_file_extent_offset(leaf, extent,
3663 datao);
3664 btrfs_set_file_extent_num_bytes(leaf, extent,
3665 datal);
3666
3667 if (disko) {
3668 inode_add_bytes(inode, datal);
3669 ret = btrfs_inc_extent_ref(trans, root,
3670 disko, diskl, 0,
3671 root->root_key.objectid,
3672 btrfs_ino(inode),
3673 new_key.offset - datao);
3674 if (ret) {
3675 btrfs_abort_transaction(trans,
3676 root,
3677 ret);
3678 btrfs_end_transaction(trans,
3679 root);
3680 goto out;
3681
3682 }
3683 }
3684 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3685 u64 skip = 0;
3686 u64 trim = 0;
3687
3688 if (off > key.offset) {
3689 skip = off - key.offset;
3690 new_key.offset += skip;
3691 }
3692
3693 if (key.offset + datal > off + len)
3694 trim = key.offset + datal - (off + len);
3695
3696 if (comp && (skip || trim)) {
3697 ret = -EINVAL;
3698 btrfs_end_transaction(trans, root);
3699 goto out;
3700 }
3701 size -= skip + trim;
3702 datal -= skip + trim;
3703
3704 ret = clone_copy_inline_extent(src, inode,
3705 trans, path,
3706 &new_key,
3707 drop_start,
3708 datal,
3709 skip, size, buf);
3710 if (ret) {
3711 if (ret != -EOPNOTSUPP)
3712 btrfs_abort_transaction(trans,
3713 root,
3714 ret);
3715 btrfs_end_transaction(trans, root);
3716 goto out;
3717 }
3718 leaf = path->nodes[0];
3719 slot = path->slots[0];
3720 }
3721
3722 /* If we have an implicit hole (NO_HOLES feature). */
3723 if (drop_start < new_key.offset)
3724 clone_update_extent_map(inode, trans,
3725 NULL, drop_start,
3726 new_key.offset - drop_start);
3727
3728 clone_update_extent_map(inode, trans, path, 0, 0);
3729
3730 btrfs_mark_buffer_dirty(leaf);
3731 btrfs_release_path(path);
3732
3733 last_dest_end = ALIGN(new_key.offset + datal,
3734 root->sectorsize);
3735 ret = clone_finish_inode_update(trans, inode,
3736 last_dest_end,
3737 destoff, olen,
3738 no_time_update);
3739 if (ret)
3740 goto out;
3741 if (new_key.offset + datal >= destoff + len)
3742 break;
3743 }
3744 btrfs_release_path(path);
3745 key.offset = next_key_min_offset;
3746 }
3747 ret = 0;
3748
3749 if (last_dest_end < destoff + len) {
3750 /*
3751 * We have an implicit hole (NO_HOLES feature is enabled) that
3752 * fully or partially overlaps our cloning range at its end.
3753 */
3754 btrfs_release_path(path);
3755
3756 /*
3757 * 1 - remove extent(s)
3758 * 1 - inode update
3759 */
3760 trans = btrfs_start_transaction(root, 2);
3761 if (IS_ERR(trans)) {
3762 ret = PTR_ERR(trans);
3763 goto out;
3764 }
3765 ret = btrfs_drop_extents(trans, root, inode,
3766 last_dest_end, destoff + len, 1);
3767 if (ret) {
3768 if (ret != -EOPNOTSUPP)
3769 btrfs_abort_transaction(trans, root, ret);
3770 btrfs_end_transaction(trans, root);
3771 goto out;
3772 }
3773 clone_update_extent_map(inode, trans, NULL, last_dest_end,
3774 destoff + len - last_dest_end);
3775 ret = clone_finish_inode_update(trans, inode, destoff + len,
3776 destoff, olen, no_time_update);
3777 }
3778
3779 out:
3780 btrfs_free_path(path);
3781 kvfree(buf);
3782 return ret;
3783 }
3784
3785 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3786 u64 off, u64 olen, u64 destoff)
3787 {
3788 struct inode *inode = file_inode(file);
3789 struct inode *src = file_inode(file_src);
3790 struct btrfs_root *root = BTRFS_I(inode)->root;
3791 int ret;
3792 u64 len = olen;
3793 u64 bs = root->fs_info->sb->s_blocksize;
3794 int same_inode = src == inode;
3795
3796 /*
3797 * TODO:
3798 * - split compressed inline extents. annoying: we need to
3799 * decompress into destination's address_space (the file offset
3800 * may change, so source mapping won't do), then recompress (or
3801 * otherwise reinsert) a subrange.
3802 *
3803 * - split destination inode's inline extents. The inline extents can
3804 * be either compressed or non-compressed.
3805 */
3806
3807 if (btrfs_root_readonly(root))
3808 return -EROFS;
3809
3810 if (file_src->f_path.mnt != file->f_path.mnt ||
3811 src->i_sb != inode->i_sb)
3812 return -EXDEV;
3813
3814 /* don't make the dst file partly checksummed */
3815 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3816 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3817 return -EINVAL;
3818
3819 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3820 return -EISDIR;
3821
3822 if (!same_inode) {
3823 btrfs_double_inode_lock(src, inode);
3824 } else {
3825 inode_lock(src);
3826 }
3827
3828 /* determine range to clone */
3829 ret = -EINVAL;
3830 if (off + len > src->i_size || off + len < off)
3831 goto out_unlock;
3832 if (len == 0)
3833 olen = len = src->i_size - off;
3834 /* if we extend to eof, continue to block boundary */
3835 if (off + len == src->i_size)
3836 len = ALIGN(src->i_size, bs) - off;
3837
3838 if (len == 0) {
3839 ret = 0;
3840 goto out_unlock;
3841 }
3842
3843 /* verify the end result is block aligned */
3844 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3845 !IS_ALIGNED(destoff, bs))
3846 goto out_unlock;
3847
3848 /* verify if ranges are overlapped within the same file */
3849 if (same_inode) {
3850 if (destoff + len > off && destoff < off + len)
3851 goto out_unlock;
3852 }
3853
3854 if (destoff > inode->i_size) {
3855 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3856 if (ret)
3857 goto out_unlock;
3858 }
3859
3860 /*
3861 * Lock the target range too. Right after we replace the file extent
3862 * items in the fs tree (which now point to the cloned data), we might
3863 * have a worker replace them with extent items relative to a write
3864 * operation that was issued before this clone operation (i.e. confront
3865 * with inode.c:btrfs_finish_ordered_io).
3866 */
3867 if (same_inode) {
3868 u64 lock_start = min_t(u64, off, destoff);
3869 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3870
3871 ret = lock_extent_range(src, lock_start, lock_len, true);
3872 } else {
3873 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3874 true);
3875 }
3876 ASSERT(ret == 0);
3877 if (WARN_ON(ret)) {
3878 /* ranges in the io trees already unlocked */
3879 goto out_unlock;
3880 }
3881
3882 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3883
3884 if (same_inode) {
3885 u64 lock_start = min_t(u64, off, destoff);
3886 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3887
3888 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3889 } else {
3890 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3891 }
3892 /*
3893 * Truncate page cache pages so that future reads will see the cloned
3894 * data immediately and not the previous data.
3895 */
3896 truncate_inode_pages_range(&inode->i_data,
3897 round_down(destoff, PAGE_SIZE),
3898 round_up(destoff + len, PAGE_SIZE) - 1);
3899 out_unlock:
3900 if (!same_inode)
3901 btrfs_double_inode_unlock(src, inode);
3902 else
3903 inode_unlock(src);
3904 return ret;
3905 }
3906
3907 ssize_t btrfs_copy_file_range(struct file *file_in, loff_t pos_in,
3908 struct file *file_out, loff_t pos_out,
3909 size_t len, unsigned int flags)
3910 {
3911 ssize_t ret;
3912
3913 ret = btrfs_clone_files(file_out, file_in, pos_in, len, pos_out);
3914 if (ret == 0)
3915 ret = len;
3916 return ret;
3917 }
3918
3919 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3920 struct file *dst_file, loff_t destoff, u64 len)
3921 {
3922 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3923 }
3924
3925 /*
3926 * there are many ways the trans_start and trans_end ioctls can lead
3927 * to deadlocks. They should only be used by applications that
3928 * basically own the machine, and have a very in depth understanding
3929 * of all the possible deadlocks and enospc problems.
3930 */
3931 static long btrfs_ioctl_trans_start(struct file *file)
3932 {
3933 struct inode *inode = file_inode(file);
3934 struct btrfs_root *root = BTRFS_I(inode)->root;
3935 struct btrfs_trans_handle *trans;
3936 int ret;
3937
3938 ret = -EPERM;
3939 if (!capable(CAP_SYS_ADMIN))
3940 goto out;
3941
3942 ret = -EINPROGRESS;
3943 if (file->private_data)
3944 goto out;
3945
3946 ret = -EROFS;
3947 if (btrfs_root_readonly(root))
3948 goto out;
3949
3950 ret = mnt_want_write_file(file);
3951 if (ret)
3952 goto out;
3953
3954 atomic_inc(&root->fs_info->open_ioctl_trans);
3955
3956 ret = -ENOMEM;
3957 trans = btrfs_start_ioctl_transaction(root);
3958 if (IS_ERR(trans))
3959 goto out_drop;
3960
3961 file->private_data = trans;
3962 return 0;
3963
3964 out_drop:
3965 atomic_dec(&root->fs_info->open_ioctl_trans);
3966 mnt_drop_write_file(file);
3967 out:
3968 return ret;
3969 }
3970
3971 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3972 {
3973 struct inode *inode = file_inode(file);
3974 struct btrfs_root *root = BTRFS_I(inode)->root;
3975 struct btrfs_root *new_root;
3976 struct btrfs_dir_item *di;
3977 struct btrfs_trans_handle *trans;
3978 struct btrfs_path *path;
3979 struct btrfs_key location;
3980 struct btrfs_disk_key disk_key;
3981 u64 objectid = 0;
3982 u64 dir_id;
3983 int ret;
3984
3985 if (!capable(CAP_SYS_ADMIN))
3986 return -EPERM;
3987
3988 ret = mnt_want_write_file(file);
3989 if (ret)
3990 return ret;
3991
3992 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3993 ret = -EFAULT;
3994 goto out;
3995 }
3996
3997 if (!objectid)
3998 objectid = BTRFS_FS_TREE_OBJECTID;
3999
4000 location.objectid = objectid;
4001 location.type = BTRFS_ROOT_ITEM_KEY;
4002 location.offset = (u64)-1;
4003
4004 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4005 if (IS_ERR(new_root)) {
4006 ret = PTR_ERR(new_root);
4007 goto out;
4008 }
4009
4010 path = btrfs_alloc_path();
4011 if (!path) {
4012 ret = -ENOMEM;
4013 goto out;
4014 }
4015 path->leave_spinning = 1;
4016
4017 trans = btrfs_start_transaction(root, 1);
4018 if (IS_ERR(trans)) {
4019 btrfs_free_path(path);
4020 ret = PTR_ERR(trans);
4021 goto out;
4022 }
4023
4024 dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4025 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4026 dir_id, "default", 7, 1);
4027 if (IS_ERR_OR_NULL(di)) {
4028 btrfs_free_path(path);
4029 btrfs_end_transaction(trans, root);
4030 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4031 "item, this isn't going to work");
4032 ret = -ENOENT;
4033 goto out;
4034 }
4035
4036 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4037 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4038 btrfs_mark_buffer_dirty(path->nodes[0]);
4039 btrfs_free_path(path);
4040
4041 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4042 btrfs_end_transaction(trans, root);
4043 out:
4044 mnt_drop_write_file(file);
4045 return ret;
4046 }
4047
4048 void btrfs_get_block_group_info(struct list_head *groups_list,
4049 struct btrfs_ioctl_space_info *space)
4050 {
4051 struct btrfs_block_group_cache *block_group;
4052
4053 space->total_bytes = 0;
4054 space->used_bytes = 0;
4055 space->flags = 0;
4056 list_for_each_entry(block_group, groups_list, list) {
4057 space->flags = block_group->flags;
4058 space->total_bytes += block_group->key.offset;
4059 space->used_bytes +=
4060 btrfs_block_group_used(&block_group->item);
4061 }
4062 }
4063
4064 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4065 {
4066 struct btrfs_ioctl_space_args space_args;
4067 struct btrfs_ioctl_space_info space;
4068 struct btrfs_ioctl_space_info *dest;
4069 struct btrfs_ioctl_space_info *dest_orig;
4070 struct btrfs_ioctl_space_info __user *user_dest;
4071 struct btrfs_space_info *info;
4072 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4073 BTRFS_BLOCK_GROUP_SYSTEM,
4074 BTRFS_BLOCK_GROUP_METADATA,
4075 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4076 int num_types = 4;
4077 int alloc_size;
4078 int ret = 0;
4079 u64 slot_count = 0;
4080 int i, c;
4081
4082 if (copy_from_user(&space_args,
4083 (struct btrfs_ioctl_space_args __user *)arg,
4084 sizeof(space_args)))
4085 return -EFAULT;
4086
4087 for (i = 0; i < num_types; i++) {
4088 struct btrfs_space_info *tmp;
4089
4090 info = NULL;
4091 rcu_read_lock();
4092 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4093 list) {
4094 if (tmp->flags == types[i]) {
4095 info = tmp;
4096 break;
4097 }
4098 }
4099 rcu_read_unlock();
4100
4101 if (!info)
4102 continue;
4103
4104 down_read(&info->groups_sem);
4105 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4106 if (!list_empty(&info->block_groups[c]))
4107 slot_count++;
4108 }
4109 up_read(&info->groups_sem);
4110 }
4111
4112 /*
4113 * Global block reserve, exported as a space_info
4114 */
4115 slot_count++;
4116
4117 /* space_slots == 0 means they are asking for a count */
4118 if (space_args.space_slots == 0) {
4119 space_args.total_spaces = slot_count;
4120 goto out;
4121 }
4122
4123 slot_count = min_t(u64, space_args.space_slots, slot_count);
4124
4125 alloc_size = sizeof(*dest) * slot_count;
4126
4127 /* we generally have at most 6 or so space infos, one for each raid
4128 * level. So, a whole page should be more than enough for everyone
4129 */
4130 if (alloc_size > PAGE_SIZE)
4131 return -ENOMEM;
4132
4133 space_args.total_spaces = 0;
4134 dest = kmalloc(alloc_size, GFP_KERNEL);
4135 if (!dest)
4136 return -ENOMEM;
4137 dest_orig = dest;
4138
4139 /* now we have a buffer to copy into */
4140 for (i = 0; i < num_types; i++) {
4141 struct btrfs_space_info *tmp;
4142
4143 if (!slot_count)
4144 break;
4145
4146 info = NULL;
4147 rcu_read_lock();
4148 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4149 list) {
4150 if (tmp->flags == types[i]) {
4151 info = tmp;
4152 break;
4153 }
4154 }
4155 rcu_read_unlock();
4156
4157 if (!info)
4158 continue;
4159 down_read(&info->groups_sem);
4160 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4161 if (!list_empty(&info->block_groups[c])) {
4162 btrfs_get_block_group_info(
4163 &info->block_groups[c], &space);
4164 memcpy(dest, &space, sizeof(space));
4165 dest++;
4166 space_args.total_spaces++;
4167 slot_count--;
4168 }
4169 if (!slot_count)
4170 break;
4171 }
4172 up_read(&info->groups_sem);
4173 }
4174
4175 /*
4176 * Add global block reserve
4177 */
4178 if (slot_count) {
4179 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4180
4181 spin_lock(&block_rsv->lock);
4182 space.total_bytes = block_rsv->size;
4183 space.used_bytes = block_rsv->size - block_rsv->reserved;
4184 spin_unlock(&block_rsv->lock);
4185 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4186 memcpy(dest, &space, sizeof(space));
4187 space_args.total_spaces++;
4188 }
4189
4190 user_dest = (struct btrfs_ioctl_space_info __user *)
4191 (arg + sizeof(struct btrfs_ioctl_space_args));
4192
4193 if (copy_to_user(user_dest, dest_orig, alloc_size))
4194 ret = -EFAULT;
4195
4196 kfree(dest_orig);
4197 out:
4198 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4199 ret = -EFAULT;
4200
4201 return ret;
4202 }
4203
4204 /*
4205 * there are many ways the trans_start and trans_end ioctls can lead
4206 * to deadlocks. They should only be used by applications that
4207 * basically own the machine, and have a very in depth understanding
4208 * of all the possible deadlocks and enospc problems.
4209 */
4210 long btrfs_ioctl_trans_end(struct file *file)
4211 {
4212 struct inode *inode = file_inode(file);
4213 struct btrfs_root *root = BTRFS_I(inode)->root;
4214 struct btrfs_trans_handle *trans;
4215
4216 trans = file->private_data;
4217 if (!trans)
4218 return -EINVAL;
4219 file->private_data = NULL;
4220
4221 btrfs_end_transaction(trans, root);
4222
4223 atomic_dec(&root->fs_info->open_ioctl_trans);
4224
4225 mnt_drop_write_file(file);
4226 return 0;
4227 }
4228
4229 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4230 void __user *argp)
4231 {
4232 struct btrfs_trans_handle *trans;
4233 u64 transid;
4234 int ret;
4235
4236 trans = btrfs_attach_transaction_barrier(root);
4237 if (IS_ERR(trans)) {
4238 if (PTR_ERR(trans) != -ENOENT)
4239 return PTR_ERR(trans);
4240
4241 /* No running transaction, don't bother */
4242 transid = root->fs_info->last_trans_committed;
4243 goto out;
4244 }
4245 transid = trans->transid;
4246 ret = btrfs_commit_transaction_async(trans, root, 0);
4247 if (ret) {
4248 btrfs_end_transaction(trans, root);
4249 return ret;
4250 }
4251 out:
4252 if (argp)
4253 if (copy_to_user(argp, &transid, sizeof(transid)))
4254 return -EFAULT;
4255 return 0;
4256 }
4257
4258 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4259 void __user *argp)
4260 {
4261 u64 transid;
4262
4263 if (argp) {
4264 if (copy_from_user(&transid, argp, sizeof(transid)))
4265 return -EFAULT;
4266 } else {
4267 transid = 0; /* current trans */
4268 }
4269 return btrfs_wait_for_commit(root, transid);
4270 }
4271
4272 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4273 {
4274 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4275 struct btrfs_ioctl_scrub_args *sa;
4276 int ret;
4277
4278 if (!capable(CAP_SYS_ADMIN))
4279 return -EPERM;
4280
4281 sa = memdup_user(arg, sizeof(*sa));
4282 if (IS_ERR(sa))
4283 return PTR_ERR(sa);
4284
4285 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4286 ret = mnt_want_write_file(file);
4287 if (ret)
4288 goto out;
4289 }
4290
4291 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4292 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4293 0);
4294
4295 if (copy_to_user(arg, sa, sizeof(*sa)))
4296 ret = -EFAULT;
4297
4298 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4299 mnt_drop_write_file(file);
4300 out:
4301 kfree(sa);
4302 return ret;
4303 }
4304
4305 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4306 {
4307 if (!capable(CAP_SYS_ADMIN))
4308 return -EPERM;
4309
4310 return btrfs_scrub_cancel(root->fs_info);
4311 }
4312
4313 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4314 void __user *arg)
4315 {
4316 struct btrfs_ioctl_scrub_args *sa;
4317 int ret;
4318
4319 if (!capable(CAP_SYS_ADMIN))
4320 return -EPERM;
4321
4322 sa = memdup_user(arg, sizeof(*sa));
4323 if (IS_ERR(sa))
4324 return PTR_ERR(sa);
4325
4326 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4327
4328 if (copy_to_user(arg, sa, sizeof(*sa)))
4329 ret = -EFAULT;
4330
4331 kfree(sa);
4332 return ret;
4333 }
4334
4335 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4336 void __user *arg)
4337 {
4338 struct btrfs_ioctl_get_dev_stats *sa;
4339 int ret;
4340
4341 sa = memdup_user(arg, sizeof(*sa));
4342 if (IS_ERR(sa))
4343 return PTR_ERR(sa);
4344
4345 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4346 kfree(sa);
4347 return -EPERM;
4348 }
4349
4350 ret = btrfs_get_dev_stats(root, sa);
4351
4352 if (copy_to_user(arg, sa, sizeof(*sa)))
4353 ret = -EFAULT;
4354
4355 kfree(sa);
4356 return ret;
4357 }
4358
4359 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4360 {
4361 struct btrfs_ioctl_dev_replace_args *p;
4362 int ret;
4363
4364 if (!capable(CAP_SYS_ADMIN))
4365 return -EPERM;
4366
4367 p = memdup_user(arg, sizeof(*p));
4368 if (IS_ERR(p))
4369 return PTR_ERR(p);
4370
4371 switch (p->cmd) {
4372 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4373 if (root->fs_info->sb->s_flags & MS_RDONLY) {
4374 ret = -EROFS;
4375 goto out;
4376 }
4377 if (atomic_xchg(
4378 &root->fs_info->mutually_exclusive_operation_running,
4379 1)) {
4380 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4381 } else {
4382 ret = btrfs_dev_replace_start(root, p);
4383 atomic_set(
4384 &root->fs_info->mutually_exclusive_operation_running,
4385 0);
4386 }
4387 break;
4388 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4389 btrfs_dev_replace_status(root->fs_info, p);
4390 ret = 0;
4391 break;
4392 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4393 ret = btrfs_dev_replace_cancel(root->fs_info, p);
4394 break;
4395 default:
4396 ret = -EINVAL;
4397 break;
4398 }
4399
4400 if (copy_to_user(arg, p, sizeof(*p)))
4401 ret = -EFAULT;
4402 out:
4403 kfree(p);
4404 return ret;
4405 }
4406
4407 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4408 {
4409 int ret = 0;
4410 int i;
4411 u64 rel_ptr;
4412 int size;
4413 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4414 struct inode_fs_paths *ipath = NULL;
4415 struct btrfs_path *path;
4416
4417 if (!capable(CAP_DAC_READ_SEARCH))
4418 return -EPERM;
4419
4420 path = btrfs_alloc_path();
4421 if (!path) {
4422 ret = -ENOMEM;
4423 goto out;
4424 }
4425
4426 ipa = memdup_user(arg, sizeof(*ipa));
4427 if (IS_ERR(ipa)) {
4428 ret = PTR_ERR(ipa);
4429 ipa = NULL;
4430 goto out;
4431 }
4432
4433 size = min_t(u32, ipa->size, 4096);
4434 ipath = init_ipath(size, root, path);
4435 if (IS_ERR(ipath)) {
4436 ret = PTR_ERR(ipath);
4437 ipath = NULL;
4438 goto out;
4439 }
4440
4441 ret = paths_from_inode(ipa->inum, ipath);
4442 if (ret < 0)
4443 goto out;
4444
4445 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4446 rel_ptr = ipath->fspath->val[i] -
4447 (u64)(unsigned long)ipath->fspath->val;
4448 ipath->fspath->val[i] = rel_ptr;
4449 }
4450
4451 ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4452 (void *)(unsigned long)ipath->fspath, size);
4453 if (ret) {
4454 ret = -EFAULT;
4455 goto out;
4456 }
4457
4458 out:
4459 btrfs_free_path(path);
4460 free_ipath(ipath);
4461 kfree(ipa);
4462
4463 return ret;
4464 }
4465
4466 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4467 {
4468 struct btrfs_data_container *inodes = ctx;
4469 const size_t c = 3 * sizeof(u64);
4470
4471 if (inodes->bytes_left >= c) {
4472 inodes->bytes_left -= c;
4473 inodes->val[inodes->elem_cnt] = inum;
4474 inodes->val[inodes->elem_cnt + 1] = offset;
4475 inodes->val[inodes->elem_cnt + 2] = root;
4476 inodes->elem_cnt += 3;
4477 } else {
4478 inodes->bytes_missing += c - inodes->bytes_left;
4479 inodes->bytes_left = 0;
4480 inodes->elem_missed += 3;
4481 }
4482
4483 return 0;
4484 }
4485
4486 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4487 void __user *arg)
4488 {
4489 int ret = 0;
4490 int size;
4491 struct btrfs_ioctl_logical_ino_args *loi;
4492 struct btrfs_data_container *inodes = NULL;
4493 struct btrfs_path *path = NULL;
4494
4495 if (!capable(CAP_SYS_ADMIN))
4496 return -EPERM;
4497
4498 loi = memdup_user(arg, sizeof(*loi));
4499 if (IS_ERR(loi)) {
4500 ret = PTR_ERR(loi);
4501 loi = NULL;
4502 goto out;
4503 }
4504
4505 path = btrfs_alloc_path();
4506 if (!path) {
4507 ret = -ENOMEM;
4508 goto out;
4509 }
4510
4511 size = min_t(u32, loi->size, SZ_64K);
4512 inodes = init_data_container(size);
4513 if (IS_ERR(inodes)) {
4514 ret = PTR_ERR(inodes);
4515 inodes = NULL;
4516 goto out;
4517 }
4518
4519 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4520 build_ino_list, inodes);
4521 if (ret == -EINVAL)
4522 ret = -ENOENT;
4523 if (ret < 0)
4524 goto out;
4525
4526 ret = copy_to_user((void *)(unsigned long)loi->inodes,
4527 (void *)(unsigned long)inodes, size);
4528 if (ret)
4529 ret = -EFAULT;
4530
4531 out:
4532 btrfs_free_path(path);
4533 vfree(inodes);
4534 kfree(loi);
4535
4536 return ret;
4537 }
4538
4539 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4540 struct btrfs_ioctl_balance_args *bargs)
4541 {
4542 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4543
4544 bargs->flags = bctl->flags;
4545
4546 if (atomic_read(&fs_info->balance_running))
4547 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4548 if (atomic_read(&fs_info->balance_pause_req))
4549 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4550 if (atomic_read(&fs_info->balance_cancel_req))
4551 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4552
4553 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4554 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4555 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4556
4557 if (lock) {
4558 spin_lock(&fs_info->balance_lock);
4559 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4560 spin_unlock(&fs_info->balance_lock);
4561 } else {
4562 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4563 }
4564 }
4565
4566 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4567 {
4568 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4569 struct btrfs_fs_info *fs_info = root->fs_info;
4570 struct btrfs_ioctl_balance_args *bargs;
4571 struct btrfs_balance_control *bctl;
4572 bool need_unlock; /* for mut. excl. ops lock */
4573 int ret;
4574
4575 if (!capable(CAP_SYS_ADMIN))
4576 return -EPERM;
4577
4578 ret = mnt_want_write_file(file);
4579 if (ret)
4580 return ret;
4581
4582 again:
4583 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4584 mutex_lock(&fs_info->volume_mutex);
4585 mutex_lock(&fs_info->balance_mutex);
4586 need_unlock = true;
4587 goto locked;
4588 }
4589
4590 /*
4591 * mut. excl. ops lock is locked. Three possibilites:
4592 * (1) some other op is running
4593 * (2) balance is running
4594 * (3) balance is paused -- special case (think resume)
4595 */
4596 mutex_lock(&fs_info->balance_mutex);
4597 if (fs_info->balance_ctl) {
4598 /* this is either (2) or (3) */
4599 if (!atomic_read(&fs_info->balance_running)) {
4600 mutex_unlock(&fs_info->balance_mutex);
4601 if (!mutex_trylock(&fs_info->volume_mutex))
4602 goto again;
4603 mutex_lock(&fs_info->balance_mutex);
4604
4605 if (fs_info->balance_ctl &&
4606 !atomic_read(&fs_info->balance_running)) {
4607 /* this is (3) */
4608 need_unlock = false;
4609 goto locked;
4610 }
4611
4612 mutex_unlock(&fs_info->balance_mutex);
4613 mutex_unlock(&fs_info->volume_mutex);
4614 goto again;
4615 } else {
4616 /* this is (2) */
4617 mutex_unlock(&fs_info->balance_mutex);
4618 ret = -EINPROGRESS;
4619 goto out;
4620 }
4621 } else {
4622 /* this is (1) */
4623 mutex_unlock(&fs_info->balance_mutex);
4624 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4625 goto out;
4626 }
4627
4628 locked:
4629 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4630
4631 if (arg) {
4632 bargs = memdup_user(arg, sizeof(*bargs));
4633 if (IS_ERR(bargs)) {
4634 ret = PTR_ERR(bargs);
4635 goto out_unlock;
4636 }
4637
4638 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4639 if (!fs_info->balance_ctl) {
4640 ret = -ENOTCONN;
4641 goto out_bargs;
4642 }
4643
4644 bctl = fs_info->balance_ctl;
4645 spin_lock(&fs_info->balance_lock);
4646 bctl->flags |= BTRFS_BALANCE_RESUME;
4647 spin_unlock(&fs_info->balance_lock);
4648
4649 goto do_balance;
4650 }
4651 } else {
4652 bargs = NULL;
4653 }
4654
4655 if (fs_info->balance_ctl) {
4656 ret = -EINPROGRESS;
4657 goto out_bargs;
4658 }
4659
4660 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4661 if (!bctl) {
4662 ret = -ENOMEM;
4663 goto out_bargs;
4664 }
4665
4666 bctl->fs_info = fs_info;
4667 if (arg) {
4668 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4669 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4670 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4671
4672 bctl->flags = bargs->flags;
4673 } else {
4674 /* balance everything - no filters */
4675 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4676 }
4677
4678 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4679 ret = -EINVAL;
4680 goto out_bctl;
4681 }
4682
4683 do_balance:
4684 /*
4685 * Ownership of bctl and mutually_exclusive_operation_running
4686 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4687 * or, if restriper was paused all the way until unmount, in
4688 * free_fs_info. mutually_exclusive_operation_running is
4689 * cleared in __cancel_balance.
4690 */
4691 need_unlock = false;
4692
4693 ret = btrfs_balance(bctl, bargs);
4694 bctl = NULL;
4695
4696 if (arg) {
4697 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4698 ret = -EFAULT;
4699 }
4700
4701 out_bctl:
4702 kfree(bctl);
4703 out_bargs:
4704 kfree(bargs);
4705 out_unlock:
4706 mutex_unlock(&fs_info->balance_mutex);
4707 mutex_unlock(&fs_info->volume_mutex);
4708 if (need_unlock)
4709 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4710 out:
4711 mnt_drop_write_file(file);
4712 return ret;
4713 }
4714
4715 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4716 {
4717 if (!capable(CAP_SYS_ADMIN))
4718 return -EPERM;
4719
4720 switch (cmd) {
4721 case BTRFS_BALANCE_CTL_PAUSE:
4722 return btrfs_pause_balance(root->fs_info);
4723 case BTRFS_BALANCE_CTL_CANCEL:
4724 return btrfs_cancel_balance(root->fs_info);
4725 }
4726
4727 return -EINVAL;
4728 }
4729
4730 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4731 void __user *arg)
4732 {
4733 struct btrfs_fs_info *fs_info = root->fs_info;
4734 struct btrfs_ioctl_balance_args *bargs;
4735 int ret = 0;
4736
4737 if (!capable(CAP_SYS_ADMIN))
4738 return -EPERM;
4739
4740 mutex_lock(&fs_info->balance_mutex);
4741 if (!fs_info->balance_ctl) {
4742 ret = -ENOTCONN;
4743 goto out;
4744 }
4745
4746 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4747 if (!bargs) {
4748 ret = -ENOMEM;
4749 goto out;
4750 }
4751
4752 update_ioctl_balance_args(fs_info, 1, bargs);
4753
4754 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4755 ret = -EFAULT;
4756
4757 kfree(bargs);
4758 out:
4759 mutex_unlock(&fs_info->balance_mutex);
4760 return ret;
4761 }
4762
4763 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4764 {
4765 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4766 struct btrfs_ioctl_quota_ctl_args *sa;
4767 struct btrfs_trans_handle *trans = NULL;
4768 int ret;
4769 int err;
4770
4771 if (!capable(CAP_SYS_ADMIN))
4772 return -EPERM;
4773
4774 ret = mnt_want_write_file(file);
4775 if (ret)
4776 return ret;
4777
4778 sa = memdup_user(arg, sizeof(*sa));
4779 if (IS_ERR(sa)) {
4780 ret = PTR_ERR(sa);
4781 goto drop_write;
4782 }
4783
4784 down_write(&root->fs_info->subvol_sem);
4785 trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4786 if (IS_ERR(trans)) {
4787 ret = PTR_ERR(trans);
4788 goto out;
4789 }
4790
4791 switch (sa->cmd) {
4792 case BTRFS_QUOTA_CTL_ENABLE:
4793 ret = btrfs_quota_enable(trans, root->fs_info);
4794 break;
4795 case BTRFS_QUOTA_CTL_DISABLE:
4796 ret = btrfs_quota_disable(trans, root->fs_info);
4797 break;
4798 default:
4799 ret = -EINVAL;
4800 break;
4801 }
4802
4803 err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4804 if (err && !ret)
4805 ret = err;
4806 out:
4807 kfree(sa);
4808 up_write(&root->fs_info->subvol_sem);
4809 drop_write:
4810 mnt_drop_write_file(file);
4811 return ret;
4812 }
4813
4814 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4815 {
4816 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4817 struct btrfs_ioctl_qgroup_assign_args *sa;
4818 struct btrfs_trans_handle *trans;
4819 int ret;
4820 int err;
4821
4822 if (!capable(CAP_SYS_ADMIN))
4823 return -EPERM;
4824
4825 ret = mnt_want_write_file(file);
4826 if (ret)
4827 return ret;
4828
4829 sa = memdup_user(arg, sizeof(*sa));
4830 if (IS_ERR(sa)) {
4831 ret = PTR_ERR(sa);
4832 goto drop_write;
4833 }
4834
4835 trans = btrfs_join_transaction(root);
4836 if (IS_ERR(trans)) {
4837 ret = PTR_ERR(trans);
4838 goto out;
4839 }
4840
4841 /* FIXME: check if the IDs really exist */
4842 if (sa->assign) {
4843 ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4844 sa->src, sa->dst);
4845 } else {
4846 ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4847 sa->src, sa->dst);
4848 }
4849
4850 /* update qgroup status and info */
4851 err = btrfs_run_qgroups(trans, root->fs_info);
4852 if (err < 0)
4853 btrfs_std_error(root->fs_info, ret,
4854 "failed to update qgroup status and info\n");
4855 err = btrfs_end_transaction(trans, root);
4856 if (err && !ret)
4857 ret = err;
4858
4859 out:
4860 kfree(sa);
4861 drop_write:
4862 mnt_drop_write_file(file);
4863 return ret;
4864 }
4865
4866 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4867 {
4868 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4869 struct btrfs_ioctl_qgroup_create_args *sa;
4870 struct btrfs_trans_handle *trans;
4871 int ret;
4872 int err;
4873
4874 if (!capable(CAP_SYS_ADMIN))
4875 return -EPERM;
4876
4877 ret = mnt_want_write_file(file);
4878 if (ret)
4879 return ret;
4880
4881 sa = memdup_user(arg, sizeof(*sa));
4882 if (IS_ERR(sa)) {
4883 ret = PTR_ERR(sa);
4884 goto drop_write;
4885 }
4886
4887 if (!sa->qgroupid) {
4888 ret = -EINVAL;
4889 goto out;
4890 }
4891
4892 trans = btrfs_join_transaction(root);
4893 if (IS_ERR(trans)) {
4894 ret = PTR_ERR(trans);
4895 goto out;
4896 }
4897
4898 /* FIXME: check if the IDs really exist */
4899 if (sa->create) {
4900 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4901 } else {
4902 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4903 }
4904
4905 err = btrfs_end_transaction(trans, root);
4906 if (err && !ret)
4907 ret = err;
4908
4909 out:
4910 kfree(sa);
4911 drop_write:
4912 mnt_drop_write_file(file);
4913 return ret;
4914 }
4915
4916 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4917 {
4918 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4919 struct btrfs_ioctl_qgroup_limit_args *sa;
4920 struct btrfs_trans_handle *trans;
4921 int ret;
4922 int err;
4923 u64 qgroupid;
4924
4925 if (!capable(CAP_SYS_ADMIN))
4926 return -EPERM;
4927
4928 ret = mnt_want_write_file(file);
4929 if (ret)
4930 return ret;
4931
4932 sa = memdup_user(arg, sizeof(*sa));
4933 if (IS_ERR(sa)) {
4934 ret = PTR_ERR(sa);
4935 goto drop_write;
4936 }
4937
4938 trans = btrfs_join_transaction(root);
4939 if (IS_ERR(trans)) {
4940 ret = PTR_ERR(trans);
4941 goto out;
4942 }
4943
4944 qgroupid = sa->qgroupid;
4945 if (!qgroupid) {
4946 /* take the current subvol as qgroup */
4947 qgroupid = root->root_key.objectid;
4948 }
4949
4950 /* FIXME: check if the IDs really exist */
4951 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4952
4953 err = btrfs_end_transaction(trans, root);
4954 if (err && !ret)
4955 ret = err;
4956
4957 out:
4958 kfree(sa);
4959 drop_write:
4960 mnt_drop_write_file(file);
4961 return ret;
4962 }
4963
4964 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4965 {
4966 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4967 struct btrfs_ioctl_quota_rescan_args *qsa;
4968 int ret;
4969
4970 if (!capable(CAP_SYS_ADMIN))
4971 return -EPERM;
4972
4973 ret = mnt_want_write_file(file);
4974 if (ret)
4975 return ret;
4976
4977 qsa = memdup_user(arg, sizeof(*qsa));
4978 if (IS_ERR(qsa)) {
4979 ret = PTR_ERR(qsa);
4980 goto drop_write;
4981 }
4982
4983 if (qsa->flags) {
4984 ret = -EINVAL;
4985 goto out;
4986 }
4987
4988 ret = btrfs_qgroup_rescan(root->fs_info);
4989
4990 out:
4991 kfree(qsa);
4992 drop_write:
4993 mnt_drop_write_file(file);
4994 return ret;
4995 }
4996
4997 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4998 {
4999 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5000 struct btrfs_ioctl_quota_rescan_args *qsa;
5001 int ret = 0;
5002
5003 if (!capable(CAP_SYS_ADMIN))
5004 return -EPERM;
5005
5006 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5007 if (!qsa)
5008 return -ENOMEM;
5009
5010 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5011 qsa->flags = 1;
5012 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5013 }
5014
5015 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5016 ret = -EFAULT;
5017
5018 kfree(qsa);
5019 return ret;
5020 }
5021
5022 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5023 {
5024 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5025
5026 if (!capable(CAP_SYS_ADMIN))
5027 return -EPERM;
5028
5029 return btrfs_qgroup_wait_for_completion(root->fs_info);
5030 }
5031
5032 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5033 struct btrfs_ioctl_received_subvol_args *sa)
5034 {
5035 struct inode *inode = file_inode(file);
5036 struct btrfs_root *root = BTRFS_I(inode)->root;
5037 struct btrfs_root_item *root_item = &root->root_item;
5038 struct btrfs_trans_handle *trans;
5039 struct timespec ct = current_fs_time(inode->i_sb);
5040 int ret = 0;
5041 int received_uuid_changed;
5042
5043 if (!inode_owner_or_capable(inode))
5044 return -EPERM;
5045
5046 ret = mnt_want_write_file(file);
5047 if (ret < 0)
5048 return ret;
5049
5050 down_write(&root->fs_info->subvol_sem);
5051
5052 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5053 ret = -EINVAL;
5054 goto out;
5055 }
5056
5057 if (btrfs_root_readonly(root)) {
5058 ret = -EROFS;
5059 goto out;
5060 }
5061
5062 /*
5063 * 1 - root item
5064 * 2 - uuid items (received uuid + subvol uuid)
5065 */
5066 trans = btrfs_start_transaction(root, 3);
5067 if (IS_ERR(trans)) {
5068 ret = PTR_ERR(trans);
5069 trans = NULL;
5070 goto out;
5071 }
5072
5073 sa->rtransid = trans->transid;
5074 sa->rtime.sec = ct.tv_sec;
5075 sa->rtime.nsec = ct.tv_nsec;
5076
5077 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5078 BTRFS_UUID_SIZE);
5079 if (received_uuid_changed &&
5080 !btrfs_is_empty_uuid(root_item->received_uuid))
5081 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5082 root_item->received_uuid,
5083 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5084 root->root_key.objectid);
5085 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5086 btrfs_set_root_stransid(root_item, sa->stransid);
5087 btrfs_set_root_rtransid(root_item, sa->rtransid);
5088 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5089 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5090 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5091 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5092
5093 ret = btrfs_update_root(trans, root->fs_info->tree_root,
5094 &root->root_key, &root->root_item);
5095 if (ret < 0) {
5096 btrfs_end_transaction(trans, root);
5097 goto out;
5098 }
5099 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5100 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5101 sa->uuid,
5102 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5103 root->root_key.objectid);
5104 if (ret < 0 && ret != -EEXIST) {
5105 btrfs_abort_transaction(trans, root, ret);
5106 goto out;
5107 }
5108 }
5109 ret = btrfs_commit_transaction(trans, root);
5110 if (ret < 0) {
5111 btrfs_abort_transaction(trans, root, ret);
5112 goto out;
5113 }
5114
5115 out:
5116 up_write(&root->fs_info->subvol_sem);
5117 mnt_drop_write_file(file);
5118 return ret;
5119 }
5120
5121 #ifdef CONFIG_64BIT
5122 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5123 void __user *arg)
5124 {
5125 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5126 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5127 int ret = 0;
5128
5129 args32 = memdup_user(arg, sizeof(*args32));
5130 if (IS_ERR(args32)) {
5131 ret = PTR_ERR(args32);
5132 args32 = NULL;
5133 goto out;
5134 }
5135
5136 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5137 if (!args64) {
5138 ret = -ENOMEM;
5139 goto out;
5140 }
5141
5142 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5143 args64->stransid = args32->stransid;
5144 args64->rtransid = args32->rtransid;
5145 args64->stime.sec = args32->stime.sec;
5146 args64->stime.nsec = args32->stime.nsec;
5147 args64->rtime.sec = args32->rtime.sec;
5148 args64->rtime.nsec = args32->rtime.nsec;
5149 args64->flags = args32->flags;
5150
5151 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5152 if (ret)
5153 goto out;
5154
5155 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5156 args32->stransid = args64->stransid;
5157 args32->rtransid = args64->rtransid;
5158 args32->stime.sec = args64->stime.sec;
5159 args32->stime.nsec = args64->stime.nsec;
5160 args32->rtime.sec = args64->rtime.sec;
5161 args32->rtime.nsec = args64->rtime.nsec;
5162 args32->flags = args64->flags;
5163
5164 ret = copy_to_user(arg, args32, sizeof(*args32));
5165 if (ret)
5166 ret = -EFAULT;
5167
5168 out:
5169 kfree(args32);
5170 kfree(args64);
5171 return ret;
5172 }
5173 #endif
5174
5175 static long btrfs_ioctl_set_received_subvol(struct file *file,
5176 void __user *arg)
5177 {
5178 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5179 int ret = 0;
5180
5181 sa = memdup_user(arg, sizeof(*sa));
5182 if (IS_ERR(sa)) {
5183 ret = PTR_ERR(sa);
5184 sa = NULL;
5185 goto out;
5186 }
5187
5188 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5189
5190 if (ret)
5191 goto out;
5192
5193 ret = copy_to_user(arg, sa, sizeof(*sa));
5194 if (ret)
5195 ret = -EFAULT;
5196
5197 out:
5198 kfree(sa);
5199 return ret;
5200 }
5201
5202 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5203 {
5204 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5205 size_t len;
5206 int ret;
5207 char label[BTRFS_LABEL_SIZE];
5208
5209 spin_lock(&root->fs_info->super_lock);
5210 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5211 spin_unlock(&root->fs_info->super_lock);
5212
5213 len = strnlen(label, BTRFS_LABEL_SIZE);
5214
5215 if (len == BTRFS_LABEL_SIZE) {
5216 btrfs_warn(root->fs_info,
5217 "label is too long, return the first %zu bytes", --len);
5218 }
5219
5220 ret = copy_to_user(arg, label, len);
5221
5222 return ret ? -EFAULT : 0;
5223 }
5224
5225 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5226 {
5227 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5228 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5229 struct btrfs_trans_handle *trans;
5230 char label[BTRFS_LABEL_SIZE];
5231 int ret;
5232
5233 if (!capable(CAP_SYS_ADMIN))
5234 return -EPERM;
5235
5236 if (copy_from_user(label, arg, sizeof(label)))
5237 return -EFAULT;
5238
5239 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5240 btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5241 BTRFS_LABEL_SIZE - 1);
5242 return -EINVAL;
5243 }
5244
5245 ret = mnt_want_write_file(file);
5246 if (ret)
5247 return ret;
5248
5249 trans = btrfs_start_transaction(root, 0);
5250 if (IS_ERR(trans)) {
5251 ret = PTR_ERR(trans);
5252 goto out_unlock;
5253 }
5254
5255 spin_lock(&root->fs_info->super_lock);
5256 strcpy(super_block->label, label);
5257 spin_unlock(&root->fs_info->super_lock);
5258 ret = btrfs_commit_transaction(trans, root);
5259
5260 out_unlock:
5261 mnt_drop_write_file(file);
5262 return ret;
5263 }
5264
5265 #define INIT_FEATURE_FLAGS(suffix) \
5266 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5267 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5268 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5269
5270 int btrfs_ioctl_get_supported_features(void __user *arg)
5271 {
5272 static const struct btrfs_ioctl_feature_flags features[3] = {
5273 INIT_FEATURE_FLAGS(SUPP),
5274 INIT_FEATURE_FLAGS(SAFE_SET),
5275 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5276 };
5277
5278 if (copy_to_user(arg, &features, sizeof(features)))
5279 return -EFAULT;
5280
5281 return 0;
5282 }
5283
5284 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5285 {
5286 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5287 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5288 struct btrfs_ioctl_feature_flags features;
5289
5290 features.compat_flags = btrfs_super_compat_flags(super_block);
5291 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5292 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5293
5294 if (copy_to_user(arg, &features, sizeof(features)))
5295 return -EFAULT;
5296
5297 return 0;
5298 }
5299
5300 static int check_feature_bits(struct btrfs_root *root,
5301 enum btrfs_feature_set set,
5302 u64 change_mask, u64 flags, u64 supported_flags,
5303 u64 safe_set, u64 safe_clear)
5304 {
5305 const char *type = btrfs_feature_set_names[set];
5306 char *names;
5307 u64 disallowed, unsupported;
5308 u64 set_mask = flags & change_mask;
5309 u64 clear_mask = ~flags & change_mask;
5310
5311 unsupported = set_mask & ~supported_flags;
5312 if (unsupported) {
5313 names = btrfs_printable_features(set, unsupported);
5314 if (names) {
5315 btrfs_warn(root->fs_info,
5316 "this kernel does not support the %s feature bit%s",
5317 names, strchr(names, ',') ? "s" : "");
5318 kfree(names);
5319 } else
5320 btrfs_warn(root->fs_info,
5321 "this kernel does not support %s bits 0x%llx",
5322 type, unsupported);
5323 return -EOPNOTSUPP;
5324 }
5325
5326 disallowed = set_mask & ~safe_set;
5327 if (disallowed) {
5328 names = btrfs_printable_features(set, disallowed);
5329 if (names) {
5330 btrfs_warn(root->fs_info,
5331 "can't set the %s feature bit%s while mounted",
5332 names, strchr(names, ',') ? "s" : "");
5333 kfree(names);
5334 } else
5335 btrfs_warn(root->fs_info,
5336 "can't set %s bits 0x%llx while mounted",
5337 type, disallowed);
5338 return -EPERM;
5339 }
5340
5341 disallowed = clear_mask & ~safe_clear;
5342 if (disallowed) {
5343 names = btrfs_printable_features(set, disallowed);
5344 if (names) {
5345 btrfs_warn(root->fs_info,
5346 "can't clear the %s feature bit%s while mounted",
5347 names, strchr(names, ',') ? "s" : "");
5348 kfree(names);
5349 } else
5350 btrfs_warn(root->fs_info,
5351 "can't clear %s bits 0x%llx while mounted",
5352 type, disallowed);
5353 return -EPERM;
5354 }
5355
5356 return 0;
5357 }
5358
5359 #define check_feature(root, change_mask, flags, mask_base) \
5360 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5361 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5362 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5363 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5364
5365 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5366 {
5367 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5368 struct btrfs_super_block *super_block = root->fs_info->super_copy;
5369 struct btrfs_ioctl_feature_flags flags[2];
5370 struct btrfs_trans_handle *trans;
5371 u64 newflags;
5372 int ret;
5373
5374 if (!capable(CAP_SYS_ADMIN))
5375 return -EPERM;
5376
5377 if (copy_from_user(flags, arg, sizeof(flags)))
5378 return -EFAULT;
5379
5380 /* Nothing to do */
5381 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5382 !flags[0].incompat_flags)
5383 return 0;
5384
5385 ret = check_feature(root, flags[0].compat_flags,
5386 flags[1].compat_flags, COMPAT);
5387 if (ret)
5388 return ret;
5389
5390 ret = check_feature(root, flags[0].compat_ro_flags,
5391 flags[1].compat_ro_flags, COMPAT_RO);
5392 if (ret)
5393 return ret;
5394
5395 ret = check_feature(root, flags[0].incompat_flags,
5396 flags[1].incompat_flags, INCOMPAT);
5397 if (ret)
5398 return ret;
5399
5400 trans = btrfs_start_transaction(root, 0);
5401 if (IS_ERR(trans))
5402 return PTR_ERR(trans);
5403
5404 spin_lock(&root->fs_info->super_lock);
5405 newflags = btrfs_super_compat_flags(super_block);
5406 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5407 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5408 btrfs_set_super_compat_flags(super_block, newflags);
5409
5410 newflags = btrfs_super_compat_ro_flags(super_block);
5411 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5412 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5413 btrfs_set_super_compat_ro_flags(super_block, newflags);
5414
5415 newflags = btrfs_super_incompat_flags(super_block);
5416 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5417 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5418 btrfs_set_super_incompat_flags(super_block, newflags);
5419 spin_unlock(&root->fs_info->super_lock);
5420
5421 return btrfs_commit_transaction(trans, root);
5422 }
5423
5424 long btrfs_ioctl(struct file *file, unsigned int
5425 cmd, unsigned long arg)
5426 {
5427 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5428 void __user *argp = (void __user *)arg;
5429
5430 switch (cmd) {
5431 case FS_IOC_GETFLAGS:
5432 return btrfs_ioctl_getflags(file, argp);
5433 case FS_IOC_SETFLAGS:
5434 return btrfs_ioctl_setflags(file, argp);
5435 case FS_IOC_GETVERSION:
5436 return btrfs_ioctl_getversion(file, argp);
5437 case FITRIM:
5438 return btrfs_ioctl_fitrim(file, argp);
5439 case BTRFS_IOC_SNAP_CREATE:
5440 return btrfs_ioctl_snap_create(file, argp, 0);
5441 case BTRFS_IOC_SNAP_CREATE_V2:
5442 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5443 case BTRFS_IOC_SUBVOL_CREATE:
5444 return btrfs_ioctl_snap_create(file, argp, 1);
5445 case BTRFS_IOC_SUBVOL_CREATE_V2:
5446 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5447 case BTRFS_IOC_SNAP_DESTROY:
5448 return btrfs_ioctl_snap_destroy(file, argp);
5449 case BTRFS_IOC_SUBVOL_GETFLAGS:
5450 return btrfs_ioctl_subvol_getflags(file, argp);
5451 case BTRFS_IOC_SUBVOL_SETFLAGS:
5452 return btrfs_ioctl_subvol_setflags(file, argp);
5453 case BTRFS_IOC_DEFAULT_SUBVOL:
5454 return btrfs_ioctl_default_subvol(file, argp);
5455 case BTRFS_IOC_DEFRAG:
5456 return btrfs_ioctl_defrag(file, NULL);
5457 case BTRFS_IOC_DEFRAG_RANGE:
5458 return btrfs_ioctl_defrag(file, argp);
5459 case BTRFS_IOC_RESIZE:
5460 return btrfs_ioctl_resize(file, argp);
5461 case BTRFS_IOC_ADD_DEV:
5462 return btrfs_ioctl_add_dev(root, argp);
5463 case BTRFS_IOC_RM_DEV:
5464 return btrfs_ioctl_rm_dev(file, argp);
5465 case BTRFS_IOC_FS_INFO:
5466 return btrfs_ioctl_fs_info(root, argp);
5467 case BTRFS_IOC_DEV_INFO:
5468 return btrfs_ioctl_dev_info(root, argp);
5469 case BTRFS_IOC_BALANCE:
5470 return btrfs_ioctl_balance(file, NULL);
5471 case BTRFS_IOC_TRANS_START:
5472 return btrfs_ioctl_trans_start(file);
5473 case BTRFS_IOC_TRANS_END:
5474 return btrfs_ioctl_trans_end(file);
5475 case BTRFS_IOC_TREE_SEARCH:
5476 return btrfs_ioctl_tree_search(file, argp);
5477 case BTRFS_IOC_TREE_SEARCH_V2:
5478 return btrfs_ioctl_tree_search_v2(file, argp);
5479 case BTRFS_IOC_INO_LOOKUP:
5480 return btrfs_ioctl_ino_lookup(file, argp);
5481 case BTRFS_IOC_INO_PATHS:
5482 return btrfs_ioctl_ino_to_path(root, argp);
5483 case BTRFS_IOC_LOGICAL_INO:
5484 return btrfs_ioctl_logical_to_ino(root, argp);
5485 case BTRFS_IOC_SPACE_INFO:
5486 return btrfs_ioctl_space_info(root, argp);
5487 case BTRFS_IOC_SYNC: {
5488 int ret;
5489
5490 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5491 if (ret)
5492 return ret;
5493 ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5494 /*
5495 * The transaction thread may want to do more work,
5496 * namely it pokes the cleaner ktread that will start
5497 * processing uncleaned subvols.
5498 */
5499 wake_up_process(root->fs_info->transaction_kthread);
5500 return ret;
5501 }
5502 case BTRFS_IOC_START_SYNC:
5503 return btrfs_ioctl_start_sync(root, argp);
5504 case BTRFS_IOC_WAIT_SYNC:
5505 return btrfs_ioctl_wait_sync(root, argp);
5506 case BTRFS_IOC_SCRUB:
5507 return btrfs_ioctl_scrub(file, argp);
5508 case BTRFS_IOC_SCRUB_CANCEL:
5509 return btrfs_ioctl_scrub_cancel(root, argp);
5510 case BTRFS_IOC_SCRUB_PROGRESS:
5511 return btrfs_ioctl_scrub_progress(root, argp);
5512 case BTRFS_IOC_BALANCE_V2:
5513 return btrfs_ioctl_balance(file, argp);
5514 case BTRFS_IOC_BALANCE_CTL:
5515 return btrfs_ioctl_balance_ctl(root, arg);
5516 case BTRFS_IOC_BALANCE_PROGRESS:
5517 return btrfs_ioctl_balance_progress(root, argp);
5518 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5519 return btrfs_ioctl_set_received_subvol(file, argp);
5520 #ifdef CONFIG_64BIT
5521 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5522 return btrfs_ioctl_set_received_subvol_32(file, argp);
5523 #endif
5524 case BTRFS_IOC_SEND:
5525 return btrfs_ioctl_send(file, argp);
5526 case BTRFS_IOC_GET_DEV_STATS:
5527 return btrfs_ioctl_get_dev_stats(root, argp);
5528 case BTRFS_IOC_QUOTA_CTL:
5529 return btrfs_ioctl_quota_ctl(file, argp);
5530 case BTRFS_IOC_QGROUP_ASSIGN:
5531 return btrfs_ioctl_qgroup_assign(file, argp);
5532 case BTRFS_IOC_QGROUP_CREATE:
5533 return btrfs_ioctl_qgroup_create(file, argp);
5534 case BTRFS_IOC_QGROUP_LIMIT:
5535 return btrfs_ioctl_qgroup_limit(file, argp);
5536 case BTRFS_IOC_QUOTA_RESCAN:
5537 return btrfs_ioctl_quota_rescan(file, argp);
5538 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5539 return btrfs_ioctl_quota_rescan_status(file, argp);
5540 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5541 return btrfs_ioctl_quota_rescan_wait(file, argp);
5542 case BTRFS_IOC_DEV_REPLACE:
5543 return btrfs_ioctl_dev_replace(root, argp);
5544 case BTRFS_IOC_GET_FSLABEL:
5545 return btrfs_ioctl_get_fslabel(file, argp);
5546 case BTRFS_IOC_SET_FSLABEL:
5547 return btrfs_ioctl_set_fslabel(file, argp);
5548 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5549 return btrfs_ioctl_get_supported_features(argp);
5550 case BTRFS_IOC_GET_FEATURES:
5551 return btrfs_ioctl_get_features(file, argp);
5552 case BTRFS_IOC_SET_FEATURES:
5553 return btrfs_ioctl_set_features(file, argp);
5554 }
5555
5556 return -ENOTTY;
5557 }
5558
5559 #ifdef CONFIG_COMPAT
5560 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5561 {
5562 switch (cmd) {
5563 case FS_IOC32_GETFLAGS:
5564 cmd = FS_IOC_GETFLAGS;
5565 break;
5566 case FS_IOC32_SETFLAGS:
5567 cmd = FS_IOC_SETFLAGS;
5568 break;
5569 case FS_IOC32_GETVERSION:
5570 cmd = FS_IOC_GETVERSION;
5571 break;
5572 default:
5573 return -ENOIOCTLCMD;
5574 }
5575
5576 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5577 }
5578 #endif