]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/locking.c
Merge tag 'pm-5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[thirdparty/linux.git] / fs / btrfs / locking.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/spinlock.h>
9 #include <linux/page-flags.h>
10 #include <asm/bug.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "extent_io.h"
14 #include "locking.h"
15
16 /*
17 * Extent buffer locking
18 * =====================
19 *
20 * The locks use a custom scheme that allows to do more operations than are
21 * available fromt current locking primitives. The building blocks are still
22 * rwlock and wait queues.
23 *
24 * Required semantics:
25 *
26 * - reader/writer exclusion
27 * - writer/writer exclusion
28 * - reader/reader sharing
29 * - spinning lock semantics
30 * - blocking lock semantics
31 * - try-lock semantics for readers and writers
32 * - one level nesting, allowing read lock to be taken by the same thread that
33 * already has write lock
34 *
35 * The extent buffer locks (also called tree locks) manage access to eb data
36 * related to the storage in the b-tree (keys, items, but not the individual
37 * members of eb).
38 * We want concurrency of many readers and safe updates. The underlying locking
39 * is done by read-write spinlock and the blocking part is implemented using
40 * counters and wait queues.
41 *
42 * spinning semantics - the low-level rwlock is held so all other threads that
43 * want to take it are spinning on it.
44 *
45 * blocking semantics - the low-level rwlock is not held but the counter
46 * denotes how many times the blocking lock was held;
47 * sleeping is possible
48 *
49 * Write lock always allows only one thread to access the data.
50 *
51 *
52 * Debugging
53 * ---------
54 *
55 * There are additional state counters that are asserted in various contexts,
56 * removed from non-debug build to reduce extent_buffer size and for
57 * performance reasons.
58 *
59 *
60 * Lock nesting
61 * ------------
62 *
63 * A write operation on a tree might indirectly start a look up on the same
64 * tree. This can happen when btrfs_cow_block locks the tree and needs to
65 * lookup free extents.
66 *
67 * btrfs_cow_block
68 * ..
69 * alloc_tree_block_no_bg_flush
70 * btrfs_alloc_tree_block
71 * btrfs_reserve_extent
72 * ..
73 * load_free_space_cache
74 * ..
75 * btrfs_lookup_file_extent
76 * btrfs_search_slot
77 *
78 *
79 * Locking pattern - spinning
80 * --------------------------
81 *
82 * The simple locking scenario, the +--+ denotes the spinning section.
83 *
84 * +- btrfs_tree_lock
85 * | - extent_buffer::rwlock is held
86 * | - no heavy operations should happen, eg. IO, memory allocations, large
87 * | structure traversals
88 * +- btrfs_tree_unock
89 *
90 *
91 * Locking pattern - blocking
92 * --------------------------
93 *
94 * The blocking write uses the following scheme. The +--+ denotes the spinning
95 * section.
96 *
97 * +- btrfs_tree_lock
98 * |
99 * +- btrfs_set_lock_blocking_write
100 *
101 * - allowed: IO, memory allocations, etc.
102 *
103 * -- btrfs_tree_unlock - note, no explicit unblocking necessary
104 *
105 *
106 * Blocking read is similar.
107 *
108 * +- btrfs_tree_read_lock
109 * |
110 * +- btrfs_set_lock_blocking_read
111 *
112 * - heavy operations allowed
113 *
114 * +- btrfs_tree_read_unlock_blocking
115 * |
116 * +- btrfs_tree_read_unlock
117 *
118 */
119
120 #ifdef CONFIG_BTRFS_DEBUG
121 static inline void btrfs_assert_spinning_writers_get(struct extent_buffer *eb)
122 {
123 WARN_ON(eb->spinning_writers);
124 eb->spinning_writers++;
125 }
126
127 static inline void btrfs_assert_spinning_writers_put(struct extent_buffer *eb)
128 {
129 WARN_ON(eb->spinning_writers != 1);
130 eb->spinning_writers--;
131 }
132
133 static inline void btrfs_assert_no_spinning_writers(struct extent_buffer *eb)
134 {
135 WARN_ON(eb->spinning_writers);
136 }
137
138 static inline void btrfs_assert_spinning_readers_get(struct extent_buffer *eb)
139 {
140 atomic_inc(&eb->spinning_readers);
141 }
142
143 static inline void btrfs_assert_spinning_readers_put(struct extent_buffer *eb)
144 {
145 WARN_ON(atomic_read(&eb->spinning_readers) == 0);
146 atomic_dec(&eb->spinning_readers);
147 }
148
149 static inline void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb)
150 {
151 atomic_inc(&eb->read_locks);
152 }
153
154 static inline void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb)
155 {
156 atomic_dec(&eb->read_locks);
157 }
158
159 static inline void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
160 {
161 BUG_ON(!atomic_read(&eb->read_locks));
162 }
163
164 static inline void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb)
165 {
166 eb->write_locks++;
167 }
168
169 static inline void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb)
170 {
171 eb->write_locks--;
172 }
173
174 #else
175 static void btrfs_assert_spinning_writers_get(struct extent_buffer *eb) { }
176 static void btrfs_assert_spinning_writers_put(struct extent_buffer *eb) { }
177 static void btrfs_assert_no_spinning_writers(struct extent_buffer *eb) { }
178 static void btrfs_assert_spinning_readers_put(struct extent_buffer *eb) { }
179 static void btrfs_assert_spinning_readers_get(struct extent_buffer *eb) { }
180 static void btrfs_assert_tree_read_locked(struct extent_buffer *eb) { }
181 static void btrfs_assert_tree_read_locks_get(struct extent_buffer *eb) { }
182 static void btrfs_assert_tree_read_locks_put(struct extent_buffer *eb) { }
183 static void btrfs_assert_tree_write_locks_get(struct extent_buffer *eb) { }
184 static void btrfs_assert_tree_write_locks_put(struct extent_buffer *eb) { }
185 #endif
186
187 /*
188 * Mark already held read lock as blocking. Can be nested in write lock by the
189 * same thread.
190 *
191 * Use when there are potentially long operations ahead so other thread waiting
192 * on the lock will not actively spin but sleep instead.
193 *
194 * The rwlock is released and blocking reader counter is increased.
195 */
196 void btrfs_set_lock_blocking_read(struct extent_buffer *eb)
197 {
198 trace_btrfs_set_lock_blocking_read(eb);
199 /*
200 * No lock is required. The lock owner may change if we have a read
201 * lock, but it won't change to or away from us. If we have the write
202 * lock, we are the owner and it'll never change.
203 */
204 if (eb->lock_nested && current->pid == eb->lock_owner)
205 return;
206 btrfs_assert_tree_read_locked(eb);
207 atomic_inc(&eb->blocking_readers);
208 btrfs_assert_spinning_readers_put(eb);
209 read_unlock(&eb->lock);
210 }
211
212 /*
213 * Mark already held write lock as blocking.
214 *
215 * Use when there are potentially long operations ahead so other threads
216 * waiting on the lock will not actively spin but sleep instead.
217 *
218 * The rwlock is released and blocking writers is set.
219 */
220 void btrfs_set_lock_blocking_write(struct extent_buffer *eb)
221 {
222 trace_btrfs_set_lock_blocking_write(eb);
223 /*
224 * No lock is required. The lock owner may change if we have a read
225 * lock, but it won't change to or away from us. If we have the write
226 * lock, we are the owner and it'll never change.
227 */
228 if (eb->lock_nested && current->pid == eb->lock_owner)
229 return;
230 if (eb->blocking_writers == 0) {
231 btrfs_assert_spinning_writers_put(eb);
232 btrfs_assert_tree_locked(eb);
233 WRITE_ONCE(eb->blocking_writers, 1);
234 write_unlock(&eb->lock);
235 }
236 }
237
238 /*
239 * Lock the extent buffer for read. Wait for any writers (spinning or blocking).
240 * Can be nested in write lock by the same thread.
241 *
242 * Use when the locked section does only lightweight actions and busy waiting
243 * would be cheaper than making other threads do the wait/wake loop.
244 *
245 * The rwlock is held upon exit.
246 */
247 void btrfs_tree_read_lock(struct extent_buffer *eb)
248 {
249 u64 start_ns = 0;
250
251 if (trace_btrfs_tree_read_lock_enabled())
252 start_ns = ktime_get_ns();
253 again:
254 read_lock(&eb->lock);
255 BUG_ON(eb->blocking_writers == 0 &&
256 current->pid == eb->lock_owner);
257 if (eb->blocking_writers) {
258 if (current->pid == eb->lock_owner) {
259 /*
260 * This extent is already write-locked by our thread.
261 * We allow an additional read lock to be added because
262 * it's for the same thread. btrfs_find_all_roots()
263 * depends on this as it may be called on a partly
264 * (write-)locked tree.
265 */
266 BUG_ON(eb->lock_nested);
267 eb->lock_nested = true;
268 read_unlock(&eb->lock);
269 trace_btrfs_tree_read_lock(eb, start_ns);
270 return;
271 }
272 read_unlock(&eb->lock);
273 wait_event(eb->write_lock_wq,
274 READ_ONCE(eb->blocking_writers) == 0);
275 goto again;
276 }
277 btrfs_assert_tree_read_locks_get(eb);
278 btrfs_assert_spinning_readers_get(eb);
279 trace_btrfs_tree_read_lock(eb, start_ns);
280 }
281
282 /*
283 * Lock extent buffer for read, optimistically expecting that there are no
284 * contending blocking writers. If there are, don't wait.
285 *
286 * Return 1 if the rwlock has been taken, 0 otherwise
287 */
288 int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
289 {
290 if (READ_ONCE(eb->blocking_writers))
291 return 0;
292
293 read_lock(&eb->lock);
294 /* Refetch value after lock */
295 if (READ_ONCE(eb->blocking_writers)) {
296 read_unlock(&eb->lock);
297 return 0;
298 }
299 btrfs_assert_tree_read_locks_get(eb);
300 btrfs_assert_spinning_readers_get(eb);
301 trace_btrfs_tree_read_lock_atomic(eb);
302 return 1;
303 }
304
305 /*
306 * Try-lock for read. Don't block or wait for contending writers.
307 *
308 * Retrun 1 if the rwlock has been taken, 0 otherwise
309 */
310 int btrfs_try_tree_read_lock(struct extent_buffer *eb)
311 {
312 if (READ_ONCE(eb->blocking_writers))
313 return 0;
314
315 if (!read_trylock(&eb->lock))
316 return 0;
317
318 /* Refetch value after lock */
319 if (READ_ONCE(eb->blocking_writers)) {
320 read_unlock(&eb->lock);
321 return 0;
322 }
323 btrfs_assert_tree_read_locks_get(eb);
324 btrfs_assert_spinning_readers_get(eb);
325 trace_btrfs_try_tree_read_lock(eb);
326 return 1;
327 }
328
329 /*
330 * Try-lock for write. May block until the lock is uncontended, but does not
331 * wait until it is free.
332 *
333 * Retrun 1 if the rwlock has been taken, 0 otherwise
334 */
335 int btrfs_try_tree_write_lock(struct extent_buffer *eb)
336 {
337 if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers))
338 return 0;
339
340 write_lock(&eb->lock);
341 /* Refetch value after lock */
342 if (READ_ONCE(eb->blocking_writers) || atomic_read(&eb->blocking_readers)) {
343 write_unlock(&eb->lock);
344 return 0;
345 }
346 btrfs_assert_tree_write_locks_get(eb);
347 btrfs_assert_spinning_writers_get(eb);
348 eb->lock_owner = current->pid;
349 trace_btrfs_try_tree_write_lock(eb);
350 return 1;
351 }
352
353 /*
354 * Release read lock. Must be used only if the lock is in spinning mode. If
355 * the read lock is nested, must pair with read lock before the write unlock.
356 *
357 * The rwlock is not held upon exit.
358 */
359 void btrfs_tree_read_unlock(struct extent_buffer *eb)
360 {
361 trace_btrfs_tree_read_unlock(eb);
362 /*
363 * if we're nested, we have the write lock. No new locking
364 * is needed as long as we are the lock owner.
365 * The write unlock will do a barrier for us, and the lock_nested
366 * field only matters to the lock owner.
367 */
368 if (eb->lock_nested && current->pid == eb->lock_owner) {
369 eb->lock_nested = false;
370 return;
371 }
372 btrfs_assert_tree_read_locked(eb);
373 btrfs_assert_spinning_readers_put(eb);
374 btrfs_assert_tree_read_locks_put(eb);
375 read_unlock(&eb->lock);
376 }
377
378 /*
379 * Release read lock, previously set to blocking by a pairing call to
380 * btrfs_set_lock_blocking_read(). Can be nested in write lock by the same
381 * thread.
382 *
383 * State of rwlock is unchanged, last reader wakes waiting threads.
384 */
385 void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
386 {
387 trace_btrfs_tree_read_unlock_blocking(eb);
388 /*
389 * if we're nested, we have the write lock. No new locking
390 * is needed as long as we are the lock owner.
391 * The write unlock will do a barrier for us, and the lock_nested
392 * field only matters to the lock owner.
393 */
394 if (eb->lock_nested && current->pid == eb->lock_owner) {
395 eb->lock_nested = false;
396 return;
397 }
398 btrfs_assert_tree_read_locked(eb);
399 WARN_ON(atomic_read(&eb->blocking_readers) == 0);
400 /* atomic_dec_and_test implies a barrier */
401 if (atomic_dec_and_test(&eb->blocking_readers))
402 cond_wake_up_nomb(&eb->read_lock_wq);
403 btrfs_assert_tree_read_locks_put(eb);
404 }
405
406 /*
407 * Lock for write. Wait for all blocking and spinning readers and writers. This
408 * starts context where reader lock could be nested by the same thread.
409 *
410 * The rwlock is held for write upon exit.
411 */
412 void btrfs_tree_lock(struct extent_buffer *eb)
413 {
414 u64 start_ns = 0;
415
416 if (trace_btrfs_tree_lock_enabled())
417 start_ns = ktime_get_ns();
418
419 WARN_ON(eb->lock_owner == current->pid);
420 again:
421 wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
422 wait_event(eb->write_lock_wq, READ_ONCE(eb->blocking_writers) == 0);
423 write_lock(&eb->lock);
424 /* Refetch value after lock */
425 if (atomic_read(&eb->blocking_readers) ||
426 READ_ONCE(eb->blocking_writers)) {
427 write_unlock(&eb->lock);
428 goto again;
429 }
430 btrfs_assert_spinning_writers_get(eb);
431 btrfs_assert_tree_write_locks_get(eb);
432 eb->lock_owner = current->pid;
433 trace_btrfs_tree_lock(eb, start_ns);
434 }
435
436 /*
437 * Release the write lock, either blocking or spinning (ie. there's no need
438 * for an explicit blocking unlock, like btrfs_tree_read_unlock_blocking).
439 * This also ends the context for nesting, the read lock must have been
440 * released already.
441 *
442 * Tasks blocked and waiting are woken, rwlock is not held upon exit.
443 */
444 void btrfs_tree_unlock(struct extent_buffer *eb)
445 {
446 /*
447 * This is read both locked and unlocked but always by the same thread
448 * that already owns the lock so we don't need to use READ_ONCE
449 */
450 int blockers = eb->blocking_writers;
451
452 BUG_ON(blockers > 1);
453
454 btrfs_assert_tree_locked(eb);
455 trace_btrfs_tree_unlock(eb);
456 eb->lock_owner = 0;
457 btrfs_assert_tree_write_locks_put(eb);
458
459 if (blockers) {
460 btrfs_assert_no_spinning_writers(eb);
461 /* Unlocked write */
462 WRITE_ONCE(eb->blocking_writers, 0);
463 /*
464 * We need to order modifying blocking_writers above with
465 * actually waking up the sleepers to ensure they see the
466 * updated value of blocking_writers
467 */
468 cond_wake_up(&eb->write_lock_wq);
469 } else {
470 btrfs_assert_spinning_writers_put(eb);
471 write_unlock(&eb->lock);
472 }
473 }
474
475 /*
476 * Set all locked nodes in the path to blocking locks. This should be done
477 * before scheduling
478 */
479 void btrfs_set_path_blocking(struct btrfs_path *p)
480 {
481 int i;
482
483 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
484 if (!p->nodes[i] || !p->locks[i])
485 continue;
486 /*
487 * If we currently have a spinning reader or writer lock this
488 * will bump the count of blocking holders and drop the
489 * spinlock.
490 */
491 if (p->locks[i] == BTRFS_READ_LOCK) {
492 btrfs_set_lock_blocking_read(p->nodes[i]);
493 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
494 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
495 btrfs_set_lock_blocking_write(p->nodes[i]);
496 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
497 }
498 }
499 }
500
501 /*
502 * This releases any locks held in the path starting at level and going all the
503 * way up to the root.
504 *
505 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
506 * cases, such as COW of the block at slot zero in the node. This ignores
507 * those rules, and it should only be called when there are no more updates to
508 * be done higher up in the tree.
509 */
510 void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
511 {
512 int i;
513
514 if (path->keep_locks)
515 return;
516
517 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
518 if (!path->nodes[i])
519 continue;
520 if (!path->locks[i])
521 continue;
522 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
523 path->locks[i] = 0;
524 }
525 }
526
527 /*
528 * Loop around taking references on and locking the root node of the tree until
529 * we end up with a lock on the root node.
530 *
531 * Return: root extent buffer with write lock held
532 */
533 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
534 {
535 struct extent_buffer *eb;
536
537 while (1) {
538 eb = btrfs_root_node(root);
539 btrfs_tree_lock(eb);
540 if (eb == root->node)
541 break;
542 btrfs_tree_unlock(eb);
543 free_extent_buffer(eb);
544 }
545 return eb;
546 }
547
548 /*
549 * Loop around taking references on and locking the root node of the tree until
550 * we end up with a lock on the root node.
551 *
552 * Return: root extent buffer with read lock held
553 */
554 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
555 {
556 struct extent_buffer *eb;
557
558 while (1) {
559 eb = btrfs_root_node(root);
560 btrfs_tree_read_lock(eb);
561 if (eb == root->node)
562 break;
563 btrfs_tree_read_unlock(eb);
564 free_extent_buffer(eb);
565 }
566 return eb;
567 }
568
569 /*
570 * DREW locks
571 * ==========
572 *
573 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
574 * where you want to provide A-B exclusion but not AA or BB.
575 *
576 * Currently implementation gives more priority to reader. If a reader and a
577 * writer both race to acquire their respective sides of the lock the writer
578 * would yield its lock as soon as it detects a concurrent reader. Additionally
579 * if there are pending readers no new writers would be allowed to come in and
580 * acquire the lock.
581 */
582
583 int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
584 {
585 int ret;
586
587 ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
588 if (ret)
589 return ret;
590
591 atomic_set(&lock->readers, 0);
592 init_waitqueue_head(&lock->pending_readers);
593 init_waitqueue_head(&lock->pending_writers);
594
595 return 0;
596 }
597
598 void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
599 {
600 percpu_counter_destroy(&lock->writers);
601 }
602
603 /* Return true if acquisition is successful, false otherwise */
604 bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
605 {
606 if (atomic_read(&lock->readers))
607 return false;
608
609 percpu_counter_inc(&lock->writers);
610
611 /* Ensure writers count is updated before we check for pending readers */
612 smp_mb();
613 if (atomic_read(&lock->readers)) {
614 btrfs_drew_write_unlock(lock);
615 return false;
616 }
617
618 return true;
619 }
620
621 void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
622 {
623 while (true) {
624 if (btrfs_drew_try_write_lock(lock))
625 return;
626 wait_event(lock->pending_writers, !atomic_read(&lock->readers));
627 }
628 }
629
630 void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
631 {
632 percpu_counter_dec(&lock->writers);
633 cond_wake_up(&lock->pending_readers);
634 }
635
636 void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
637 {
638 atomic_inc(&lock->readers);
639
640 /*
641 * Ensure the pending reader count is perceieved BEFORE this reader
642 * goes to sleep in case of active writers. This guarantees new writers
643 * won't be allowed and that the current reader will be woken up when
644 * the last active writer finishes its jobs.
645 */
646 smp_mb__after_atomic();
647
648 wait_event(lock->pending_readers,
649 percpu_counter_sum(&lock->writers) == 0);
650 }
651
652 void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
653 {
654 /*
655 * atomic_dec_and_test implies a full barrier, so woken up writers
656 * are guaranteed to see the decrement
657 */
658 if (atomic_dec_and_test(&lock->readers))
659 wake_up(&lock->pending_writers);
660 }