]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/relocation.c
Merge tag 'kvm-x86-docs-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39
40 /*
41 * Relocation overview
42 *
43 * [What does relocation do]
44 *
45 * The objective of relocation is to relocate all extents of the target block
46 * group to other block groups.
47 * This is utilized by resize (shrink only), profile converting, compacting
48 * space, or balance routine to spread chunks over devices.
49 *
50 * Before | After
51 * ------------------------------------------------------------------
52 * BG A: 10 data extents | BG A: deleted
53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
55 *
56 * [How does relocation work]
57 *
58 * 1. Mark the target block group read-only
59 * New extents won't be allocated from the target block group.
60 *
61 * 2.1 Record each extent in the target block group
62 * To build a proper map of extents to be relocated.
63 *
64 * 2.2 Build data reloc tree and reloc trees
65 * Data reloc tree will contain an inode, recording all newly relocated
66 * data extents.
67 * There will be only one data reloc tree for one data block group.
68 *
69 * Reloc tree will be a special snapshot of its source tree, containing
70 * relocated tree blocks.
71 * Each tree referring to a tree block in target block group will get its
72 * reloc tree built.
73 *
74 * 2.3 Swap source tree with its corresponding reloc tree
75 * Each involved tree only refers to new extents after swap.
76 *
77 * 3. Cleanup reloc trees and data reloc tree.
78 * As old extents in the target block group are still referenced by reloc
79 * trees, we need to clean them up before really freeing the target block
80 * group.
81 *
82 * The main complexity is in steps 2.2 and 2.3.
83 *
84 * The entry point of relocation is relocate_block_group() function.
85 */
86
87 #define RELOCATION_RESERVED_NODES 256
88 /*
89 * map address of tree root to tree
90 */
91 struct mapping_node {
92 struct {
93 struct rb_node rb_node;
94 u64 bytenr;
95 }; /* Use rb_simle_node for search/insert */
96 void *data;
97 };
98
99 struct mapping_tree {
100 struct rb_root rb_root;
101 spinlock_t lock;
102 };
103
104 /*
105 * present a tree block to process
106 */
107 struct tree_block {
108 struct {
109 struct rb_node rb_node;
110 u64 bytenr;
111 }; /* Use rb_simple_node for search/insert */
112 u64 owner;
113 struct btrfs_key key;
114 unsigned int level:8;
115 unsigned int key_ready:1;
116 };
117
118 #define MAX_EXTENTS 128
119
120 struct file_extent_cluster {
121 u64 start;
122 u64 end;
123 u64 boundary[MAX_EXTENTS];
124 unsigned int nr;
125 };
126
127 struct reloc_control {
128 /* block group to relocate */
129 struct btrfs_block_group *block_group;
130 /* extent tree */
131 struct btrfs_root *extent_root;
132 /* inode for moving data */
133 struct inode *data_inode;
134
135 struct btrfs_block_rsv *block_rsv;
136
137 struct btrfs_backref_cache backref_cache;
138
139 struct file_extent_cluster cluster;
140 /* tree blocks have been processed */
141 struct extent_io_tree processed_blocks;
142 /* map start of tree root to corresponding reloc tree */
143 struct mapping_tree reloc_root_tree;
144 /* list of reloc trees */
145 struct list_head reloc_roots;
146 /* list of subvolume trees that get relocated */
147 struct list_head dirty_subvol_roots;
148 /* size of metadata reservation for merging reloc trees */
149 u64 merging_rsv_size;
150 /* size of relocated tree nodes */
151 u64 nodes_relocated;
152 /* reserved size for block group relocation*/
153 u64 reserved_bytes;
154
155 u64 search_start;
156 u64 extents_found;
157
158 unsigned int stage:8;
159 unsigned int create_reloc_tree:1;
160 unsigned int merge_reloc_tree:1;
161 unsigned int found_file_extent:1;
162 };
163
164 /* stages of data relocation */
165 #define MOVE_DATA_EXTENTS 0
166 #define UPDATE_DATA_PTRS 1
167
168 static void mark_block_processed(struct reloc_control *rc,
169 struct btrfs_backref_node *node)
170 {
171 u32 blocksize;
172
173 if (node->level == 0 ||
174 in_range(node->bytenr, rc->block_group->start,
175 rc->block_group->length)) {
176 blocksize = rc->extent_root->fs_info->nodesize;
177 set_extent_bit(&rc->processed_blocks, node->bytenr,
178 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179 }
180 node->processed = 1;
181 }
182
183
184 static void mapping_tree_init(struct mapping_tree *tree)
185 {
186 tree->rb_root = RB_ROOT;
187 spin_lock_init(&tree->lock);
188 }
189
190 /*
191 * walk up backref nodes until reach node presents tree root
192 */
193 static struct btrfs_backref_node *walk_up_backref(
194 struct btrfs_backref_node *node,
195 struct btrfs_backref_edge *edges[], int *index)
196 {
197 struct btrfs_backref_edge *edge;
198 int idx = *index;
199
200 while (!list_empty(&node->upper)) {
201 edge = list_entry(node->upper.next,
202 struct btrfs_backref_edge, list[LOWER]);
203 edges[idx++] = edge;
204 node = edge->node[UPPER];
205 }
206 BUG_ON(node->detached);
207 *index = idx;
208 return node;
209 }
210
211 /*
212 * walk down backref nodes to find start of next reference path
213 */
214 static struct btrfs_backref_node *walk_down_backref(
215 struct btrfs_backref_edge *edges[], int *index)
216 {
217 struct btrfs_backref_edge *edge;
218 struct btrfs_backref_node *lower;
219 int idx = *index;
220
221 while (idx > 0) {
222 edge = edges[idx - 1];
223 lower = edge->node[LOWER];
224 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225 idx--;
226 continue;
227 }
228 edge = list_entry(edge->list[LOWER].next,
229 struct btrfs_backref_edge, list[LOWER]);
230 edges[idx - 1] = edge;
231 *index = idx;
232 return edge->node[UPPER];
233 }
234 *index = 0;
235 return NULL;
236 }
237
238 static void update_backref_node(struct btrfs_backref_cache *cache,
239 struct btrfs_backref_node *node, u64 bytenr)
240 {
241 struct rb_node *rb_node;
242 rb_erase(&node->rb_node, &cache->rb_root);
243 node->bytenr = bytenr;
244 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245 if (rb_node)
246 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247 }
248
249 /*
250 * update backref cache after a transaction commit
251 */
252 static int update_backref_cache(struct btrfs_trans_handle *trans,
253 struct btrfs_backref_cache *cache)
254 {
255 struct btrfs_backref_node *node;
256 int level = 0;
257
258 if (cache->last_trans == 0) {
259 cache->last_trans = trans->transid;
260 return 0;
261 }
262
263 if (cache->last_trans == trans->transid)
264 return 0;
265
266 /*
267 * detached nodes are used to avoid unnecessary backref
268 * lookup. transaction commit changes the extent tree.
269 * so the detached nodes are no longer useful.
270 */
271 while (!list_empty(&cache->detached)) {
272 node = list_entry(cache->detached.next,
273 struct btrfs_backref_node, list);
274 btrfs_backref_cleanup_node(cache, node);
275 }
276
277 while (!list_empty(&cache->changed)) {
278 node = list_entry(cache->changed.next,
279 struct btrfs_backref_node, list);
280 list_del_init(&node->list);
281 BUG_ON(node->pending);
282 update_backref_node(cache, node, node->new_bytenr);
283 }
284
285 /*
286 * some nodes can be left in the pending list if there were
287 * errors during processing the pending nodes.
288 */
289 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290 list_for_each_entry(node, &cache->pending[level], list) {
291 BUG_ON(!node->pending);
292 if (node->bytenr == node->new_bytenr)
293 continue;
294 update_backref_node(cache, node, node->new_bytenr);
295 }
296 }
297
298 cache->last_trans = 0;
299 return 1;
300 }
301
302 static bool reloc_root_is_dead(struct btrfs_root *root)
303 {
304 /*
305 * Pair with set_bit/clear_bit in clean_dirty_subvols and
306 * btrfs_update_reloc_root. We need to see the updated bit before
307 * trying to access reloc_root
308 */
309 smp_rmb();
310 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311 return true;
312 return false;
313 }
314
315 /*
316 * Check if this subvolume tree has valid reloc tree.
317 *
318 * Reloc tree after swap is considered dead, thus not considered as valid.
319 * This is enough for most callers, as they don't distinguish dead reloc root
320 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
321 * special case.
322 */
323 static bool have_reloc_root(struct btrfs_root *root)
324 {
325 if (reloc_root_is_dead(root))
326 return false;
327 if (!root->reloc_root)
328 return false;
329 return true;
330 }
331
332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333 {
334 struct btrfs_root *reloc_root;
335
336 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337 return 0;
338
339 /* This root has been merged with its reloc tree, we can ignore it */
340 if (reloc_root_is_dead(root))
341 return 1;
342
343 reloc_root = root->reloc_root;
344 if (!reloc_root)
345 return 0;
346
347 if (btrfs_header_generation(reloc_root->commit_root) ==
348 root->fs_info->running_transaction->transid)
349 return 0;
350 /*
351 * if there is reloc tree and it was created in previous
352 * transaction backref lookup can find the reloc tree,
353 * so backref node for the fs tree root is useless for
354 * relocation.
355 */
356 return 1;
357 }
358
359 /*
360 * find reloc tree by address of tree root
361 */
362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363 {
364 struct reloc_control *rc = fs_info->reloc_ctl;
365 struct rb_node *rb_node;
366 struct mapping_node *node;
367 struct btrfs_root *root = NULL;
368
369 ASSERT(rc);
370 spin_lock(&rc->reloc_root_tree.lock);
371 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372 if (rb_node) {
373 node = rb_entry(rb_node, struct mapping_node, rb_node);
374 root = node->data;
375 }
376 spin_unlock(&rc->reloc_root_tree.lock);
377 return btrfs_grab_root(root);
378 }
379
380 /*
381 * For useless nodes, do two major clean ups:
382 *
383 * - Cleanup the children edges and nodes
384 * If child node is also orphan (no parent) during cleanup, then the child
385 * node will also be cleaned up.
386 *
387 * - Freeing up leaves (level 0), keeps nodes detached
388 * For nodes, the node is still cached as "detached"
389 *
390 * Return false if @node is not in the @useless_nodes list.
391 * Return true if @node is in the @useless_nodes list.
392 */
393 static bool handle_useless_nodes(struct reloc_control *rc,
394 struct btrfs_backref_node *node)
395 {
396 struct btrfs_backref_cache *cache = &rc->backref_cache;
397 struct list_head *useless_node = &cache->useless_node;
398 bool ret = false;
399
400 while (!list_empty(useless_node)) {
401 struct btrfs_backref_node *cur;
402
403 cur = list_first_entry(useless_node, struct btrfs_backref_node,
404 list);
405 list_del_init(&cur->list);
406
407 /* Only tree root nodes can be added to @useless_nodes */
408 ASSERT(list_empty(&cur->upper));
409
410 if (cur == node)
411 ret = true;
412
413 /* The node is the lowest node */
414 if (cur->lowest) {
415 list_del_init(&cur->lower);
416 cur->lowest = 0;
417 }
418
419 /* Cleanup the lower edges */
420 while (!list_empty(&cur->lower)) {
421 struct btrfs_backref_edge *edge;
422 struct btrfs_backref_node *lower;
423
424 edge = list_entry(cur->lower.next,
425 struct btrfs_backref_edge, list[UPPER]);
426 list_del(&edge->list[UPPER]);
427 list_del(&edge->list[LOWER]);
428 lower = edge->node[LOWER];
429 btrfs_backref_free_edge(cache, edge);
430
431 /* Child node is also orphan, queue for cleanup */
432 if (list_empty(&lower->upper))
433 list_add(&lower->list, useless_node);
434 }
435 /* Mark this block processed for relocation */
436 mark_block_processed(rc, cur);
437
438 /*
439 * Backref nodes for tree leaves are deleted from the cache.
440 * Backref nodes for upper level tree blocks are left in the
441 * cache to avoid unnecessary backref lookup.
442 */
443 if (cur->level > 0) {
444 list_add(&cur->list, &cache->detached);
445 cur->detached = 1;
446 } else {
447 rb_erase(&cur->rb_node, &cache->rb_root);
448 btrfs_backref_free_node(cache, cur);
449 }
450 }
451 return ret;
452 }
453
454 /*
455 * Build backref tree for a given tree block. Root of the backref tree
456 * corresponds the tree block, leaves of the backref tree correspond roots of
457 * b-trees that reference the tree block.
458 *
459 * The basic idea of this function is check backrefs of a given block to find
460 * upper level blocks that reference the block, and then check backrefs of
461 * these upper level blocks recursively. The recursion stops when tree root is
462 * reached or backrefs for the block is cached.
463 *
464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465 * all upper level blocks that directly/indirectly reference the block are also
466 * cached.
467 */
468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469 struct btrfs_trans_handle *trans,
470 struct reloc_control *rc, struct btrfs_key *node_key,
471 int level, u64 bytenr)
472 {
473 struct btrfs_backref_iter *iter;
474 struct btrfs_backref_cache *cache = &rc->backref_cache;
475 /* For searching parent of TREE_BLOCK_REF */
476 struct btrfs_path *path;
477 struct btrfs_backref_node *cur;
478 struct btrfs_backref_node *node = NULL;
479 struct btrfs_backref_edge *edge;
480 int ret;
481 int err = 0;
482
483 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
484 if (!iter)
485 return ERR_PTR(-ENOMEM);
486 path = btrfs_alloc_path();
487 if (!path) {
488 err = -ENOMEM;
489 goto out;
490 }
491
492 node = btrfs_backref_alloc_node(cache, bytenr, level);
493 if (!node) {
494 err = -ENOMEM;
495 goto out;
496 }
497
498 node->lowest = 1;
499 cur = node;
500
501 /* Breadth-first search to build backref cache */
502 do {
503 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
504 node_key, cur);
505 if (ret < 0) {
506 err = ret;
507 goto out;
508 }
509 edge = list_first_entry_or_null(&cache->pending_edge,
510 struct btrfs_backref_edge, list[UPPER]);
511 /*
512 * The pending list isn't empty, take the first block to
513 * process
514 */
515 if (edge) {
516 list_del_init(&edge->list[UPPER]);
517 cur = edge->node[UPPER];
518 }
519 } while (edge);
520
521 /* Finish the upper linkage of newly added edges/nodes */
522 ret = btrfs_backref_finish_upper_links(cache, node);
523 if (ret < 0) {
524 err = ret;
525 goto out;
526 }
527
528 if (handle_useless_nodes(rc, node))
529 node = NULL;
530 out:
531 btrfs_backref_iter_free(iter);
532 btrfs_free_path(path);
533 if (err) {
534 btrfs_backref_error_cleanup(cache, node);
535 return ERR_PTR(err);
536 }
537 ASSERT(!node || !node->detached);
538 ASSERT(list_empty(&cache->useless_node) &&
539 list_empty(&cache->pending_edge));
540 return node;
541 }
542
543 /*
544 * helper to add backref node for the newly created snapshot.
545 * the backref node is created by cloning backref node that
546 * corresponds to root of source tree
547 */
548 static int clone_backref_node(struct btrfs_trans_handle *trans,
549 struct reloc_control *rc,
550 struct btrfs_root *src,
551 struct btrfs_root *dest)
552 {
553 struct btrfs_root *reloc_root = src->reloc_root;
554 struct btrfs_backref_cache *cache = &rc->backref_cache;
555 struct btrfs_backref_node *node = NULL;
556 struct btrfs_backref_node *new_node;
557 struct btrfs_backref_edge *edge;
558 struct btrfs_backref_edge *new_edge;
559 struct rb_node *rb_node;
560
561 if (cache->last_trans > 0)
562 update_backref_cache(trans, cache);
563
564 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
565 if (rb_node) {
566 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
567 if (node->detached)
568 node = NULL;
569 else
570 BUG_ON(node->new_bytenr != reloc_root->node->start);
571 }
572
573 if (!node) {
574 rb_node = rb_simple_search(&cache->rb_root,
575 reloc_root->commit_root->start);
576 if (rb_node) {
577 node = rb_entry(rb_node, struct btrfs_backref_node,
578 rb_node);
579 BUG_ON(node->detached);
580 }
581 }
582
583 if (!node)
584 return 0;
585
586 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
587 node->level);
588 if (!new_node)
589 return -ENOMEM;
590
591 new_node->lowest = node->lowest;
592 new_node->checked = 1;
593 new_node->root = btrfs_grab_root(dest);
594 ASSERT(new_node->root);
595
596 if (!node->lowest) {
597 list_for_each_entry(edge, &node->lower, list[UPPER]) {
598 new_edge = btrfs_backref_alloc_edge(cache);
599 if (!new_edge)
600 goto fail;
601
602 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
603 new_node, LINK_UPPER);
604 }
605 } else {
606 list_add_tail(&new_node->lower, &cache->leaves);
607 }
608
609 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
610 &new_node->rb_node);
611 if (rb_node)
612 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
613
614 if (!new_node->lowest) {
615 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
616 list_add_tail(&new_edge->list[LOWER],
617 &new_edge->node[LOWER]->upper);
618 }
619 }
620 return 0;
621 fail:
622 while (!list_empty(&new_node->lower)) {
623 new_edge = list_entry(new_node->lower.next,
624 struct btrfs_backref_edge, list[UPPER]);
625 list_del(&new_edge->list[UPPER]);
626 btrfs_backref_free_edge(cache, new_edge);
627 }
628 btrfs_backref_free_node(cache, new_node);
629 return -ENOMEM;
630 }
631
632 /*
633 * helper to add 'address of tree root -> reloc tree' mapping
634 */
635 static int __must_check __add_reloc_root(struct btrfs_root *root)
636 {
637 struct btrfs_fs_info *fs_info = root->fs_info;
638 struct rb_node *rb_node;
639 struct mapping_node *node;
640 struct reloc_control *rc = fs_info->reloc_ctl;
641
642 node = kmalloc(sizeof(*node), GFP_NOFS);
643 if (!node)
644 return -ENOMEM;
645
646 node->bytenr = root->commit_root->start;
647 node->data = root;
648
649 spin_lock(&rc->reloc_root_tree.lock);
650 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
651 node->bytenr, &node->rb_node);
652 spin_unlock(&rc->reloc_root_tree.lock);
653 if (rb_node) {
654 btrfs_err(fs_info,
655 "Duplicate root found for start=%llu while inserting into relocation tree",
656 node->bytenr);
657 return -EEXIST;
658 }
659
660 list_add_tail(&root->root_list, &rc->reloc_roots);
661 return 0;
662 }
663
664 /*
665 * helper to delete the 'address of tree root -> reloc tree'
666 * mapping
667 */
668 static void __del_reloc_root(struct btrfs_root *root)
669 {
670 struct btrfs_fs_info *fs_info = root->fs_info;
671 struct rb_node *rb_node;
672 struct mapping_node *node = NULL;
673 struct reloc_control *rc = fs_info->reloc_ctl;
674 bool put_ref = false;
675
676 if (rc && root->node) {
677 spin_lock(&rc->reloc_root_tree.lock);
678 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
679 root->commit_root->start);
680 if (rb_node) {
681 node = rb_entry(rb_node, struct mapping_node, rb_node);
682 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
683 RB_CLEAR_NODE(&node->rb_node);
684 }
685 spin_unlock(&rc->reloc_root_tree.lock);
686 ASSERT(!node || (struct btrfs_root *)node->data == root);
687 }
688
689 /*
690 * We only put the reloc root here if it's on the list. There's a lot
691 * of places where the pattern is to splice the rc->reloc_roots, process
692 * the reloc roots, and then add the reloc root back onto
693 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
694 * list we don't want the reference being dropped, because the guy
695 * messing with the list is in charge of the reference.
696 */
697 spin_lock(&fs_info->trans_lock);
698 if (!list_empty(&root->root_list)) {
699 put_ref = true;
700 list_del_init(&root->root_list);
701 }
702 spin_unlock(&fs_info->trans_lock);
703 if (put_ref)
704 btrfs_put_root(root);
705 kfree(node);
706 }
707
708 /*
709 * helper to update the 'address of tree root -> reloc tree'
710 * mapping
711 */
712 static int __update_reloc_root(struct btrfs_root *root)
713 {
714 struct btrfs_fs_info *fs_info = root->fs_info;
715 struct rb_node *rb_node;
716 struct mapping_node *node = NULL;
717 struct reloc_control *rc = fs_info->reloc_ctl;
718
719 spin_lock(&rc->reloc_root_tree.lock);
720 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
721 root->commit_root->start);
722 if (rb_node) {
723 node = rb_entry(rb_node, struct mapping_node, rb_node);
724 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
725 }
726 spin_unlock(&rc->reloc_root_tree.lock);
727
728 if (!node)
729 return 0;
730 BUG_ON((struct btrfs_root *)node->data != root);
731
732 spin_lock(&rc->reloc_root_tree.lock);
733 node->bytenr = root->node->start;
734 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
735 node->bytenr, &node->rb_node);
736 spin_unlock(&rc->reloc_root_tree.lock);
737 if (rb_node)
738 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
739 return 0;
740 }
741
742 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 objectid)
744 {
745 struct btrfs_fs_info *fs_info = root->fs_info;
746 struct btrfs_root *reloc_root;
747 struct extent_buffer *eb;
748 struct btrfs_root_item *root_item;
749 struct btrfs_key root_key;
750 int ret = 0;
751 bool must_abort = false;
752
753 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
754 if (!root_item)
755 return ERR_PTR(-ENOMEM);
756
757 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
758 root_key.type = BTRFS_ROOT_ITEM_KEY;
759 root_key.offset = objectid;
760
761 if (root->root_key.objectid == objectid) {
762 u64 commit_root_gen;
763
764 /* called by btrfs_init_reloc_root */
765 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
766 BTRFS_TREE_RELOC_OBJECTID);
767 if (ret)
768 goto fail;
769
770 /*
771 * Set the last_snapshot field to the generation of the commit
772 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
773 * correctly (returns true) when the relocation root is created
774 * either inside the critical section of a transaction commit
775 * (through transaction.c:qgroup_account_snapshot()) and when
776 * it's created before the transaction commit is started.
777 */
778 commit_root_gen = btrfs_header_generation(root->commit_root);
779 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
780 } else {
781 /*
782 * called by btrfs_reloc_post_snapshot_hook.
783 * the source tree is a reloc tree, all tree blocks
784 * modified after it was created have RELOC flag
785 * set in their headers. so it's OK to not update
786 * the 'last_snapshot'.
787 */
788 ret = btrfs_copy_root(trans, root, root->node, &eb,
789 BTRFS_TREE_RELOC_OBJECTID);
790 if (ret)
791 goto fail;
792 }
793
794 /*
795 * We have changed references at this point, we must abort the
796 * transaction if anything fails.
797 */
798 must_abort = true;
799
800 memcpy(root_item, &root->root_item, sizeof(*root_item));
801 btrfs_set_root_bytenr(root_item, eb->start);
802 btrfs_set_root_level(root_item, btrfs_header_level(eb));
803 btrfs_set_root_generation(root_item, trans->transid);
804
805 if (root->root_key.objectid == objectid) {
806 btrfs_set_root_refs(root_item, 0);
807 memset(&root_item->drop_progress, 0,
808 sizeof(struct btrfs_disk_key));
809 btrfs_set_root_drop_level(root_item, 0);
810 }
811
812 btrfs_tree_unlock(eb);
813 free_extent_buffer(eb);
814
815 ret = btrfs_insert_root(trans, fs_info->tree_root,
816 &root_key, root_item);
817 if (ret)
818 goto fail;
819
820 kfree(root_item);
821
822 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
823 if (IS_ERR(reloc_root)) {
824 ret = PTR_ERR(reloc_root);
825 goto abort;
826 }
827 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
828 reloc_root->last_trans = trans->transid;
829 return reloc_root;
830 fail:
831 kfree(root_item);
832 abort:
833 if (must_abort)
834 btrfs_abort_transaction(trans, ret);
835 return ERR_PTR(ret);
836 }
837
838 /*
839 * create reloc tree for a given fs tree. reloc tree is just a
840 * snapshot of the fs tree with special root objectid.
841 *
842 * The reloc_root comes out of here with two references, one for
843 * root->reloc_root, and another for being on the rc->reloc_roots list.
844 */
845 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
846 struct btrfs_root *root)
847 {
848 struct btrfs_fs_info *fs_info = root->fs_info;
849 struct btrfs_root *reloc_root;
850 struct reloc_control *rc = fs_info->reloc_ctl;
851 struct btrfs_block_rsv *rsv;
852 int clear_rsv = 0;
853 int ret;
854
855 if (!rc)
856 return 0;
857
858 /*
859 * The subvolume has reloc tree but the swap is finished, no need to
860 * create/update the dead reloc tree
861 */
862 if (reloc_root_is_dead(root))
863 return 0;
864
865 /*
866 * This is subtle but important. We do not do
867 * record_root_in_transaction for reloc roots, instead we record their
868 * corresponding fs root, and then here we update the last trans for the
869 * reloc root. This means that we have to do this for the entire life
870 * of the reloc root, regardless of which stage of the relocation we are
871 * in.
872 */
873 if (root->reloc_root) {
874 reloc_root = root->reloc_root;
875 reloc_root->last_trans = trans->transid;
876 return 0;
877 }
878
879 /*
880 * We are merging reloc roots, we do not need new reloc trees. Also
881 * reloc trees never need their own reloc tree.
882 */
883 if (!rc->create_reloc_tree ||
884 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
885 return 0;
886
887 if (!trans->reloc_reserved) {
888 rsv = trans->block_rsv;
889 trans->block_rsv = rc->block_rsv;
890 clear_rsv = 1;
891 }
892 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
893 if (clear_rsv)
894 trans->block_rsv = rsv;
895 if (IS_ERR(reloc_root))
896 return PTR_ERR(reloc_root);
897
898 ret = __add_reloc_root(reloc_root);
899 ASSERT(ret != -EEXIST);
900 if (ret) {
901 /* Pairs with create_reloc_root */
902 btrfs_put_root(reloc_root);
903 return ret;
904 }
905 root->reloc_root = btrfs_grab_root(reloc_root);
906 return 0;
907 }
908
909 /*
910 * update root item of reloc tree
911 */
912 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
913 struct btrfs_root *root)
914 {
915 struct btrfs_fs_info *fs_info = root->fs_info;
916 struct btrfs_root *reloc_root;
917 struct btrfs_root_item *root_item;
918 int ret;
919
920 if (!have_reloc_root(root))
921 return 0;
922
923 reloc_root = root->reloc_root;
924 root_item = &reloc_root->root_item;
925
926 /*
927 * We are probably ok here, but __del_reloc_root() will drop its ref of
928 * the root. We have the ref for root->reloc_root, but just in case
929 * hold it while we update the reloc root.
930 */
931 btrfs_grab_root(reloc_root);
932
933 /* root->reloc_root will stay until current relocation finished */
934 if (fs_info->reloc_ctl->merge_reloc_tree &&
935 btrfs_root_refs(root_item) == 0) {
936 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
937 /*
938 * Mark the tree as dead before we change reloc_root so
939 * have_reloc_root will not touch it from now on.
940 */
941 smp_wmb();
942 __del_reloc_root(reloc_root);
943 }
944
945 if (reloc_root->commit_root != reloc_root->node) {
946 __update_reloc_root(reloc_root);
947 btrfs_set_root_node(root_item, reloc_root->node);
948 free_extent_buffer(reloc_root->commit_root);
949 reloc_root->commit_root = btrfs_root_node(reloc_root);
950 }
951
952 ret = btrfs_update_root(trans, fs_info->tree_root,
953 &reloc_root->root_key, root_item);
954 btrfs_put_root(reloc_root);
955 return ret;
956 }
957
958 /*
959 * helper to find first cached inode with inode number >= objectid
960 * in a subvolume
961 */
962 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
963 {
964 struct rb_node *node;
965 struct rb_node *prev;
966 struct btrfs_inode *entry;
967 struct inode *inode;
968
969 spin_lock(&root->inode_lock);
970 again:
971 node = root->inode_tree.rb_node;
972 prev = NULL;
973 while (node) {
974 prev = node;
975 entry = rb_entry(node, struct btrfs_inode, rb_node);
976
977 if (objectid < btrfs_ino(entry))
978 node = node->rb_left;
979 else if (objectid > btrfs_ino(entry))
980 node = node->rb_right;
981 else
982 break;
983 }
984 if (!node) {
985 while (prev) {
986 entry = rb_entry(prev, struct btrfs_inode, rb_node);
987 if (objectid <= btrfs_ino(entry)) {
988 node = prev;
989 break;
990 }
991 prev = rb_next(prev);
992 }
993 }
994 while (node) {
995 entry = rb_entry(node, struct btrfs_inode, rb_node);
996 inode = igrab(&entry->vfs_inode);
997 if (inode) {
998 spin_unlock(&root->inode_lock);
999 return inode;
1000 }
1001
1002 objectid = btrfs_ino(entry) + 1;
1003 if (cond_resched_lock(&root->inode_lock))
1004 goto again;
1005
1006 node = rb_next(node);
1007 }
1008 spin_unlock(&root->inode_lock);
1009 return NULL;
1010 }
1011
1012 /*
1013 * get new location of data
1014 */
1015 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1016 u64 bytenr, u64 num_bytes)
1017 {
1018 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1019 struct btrfs_path *path;
1020 struct btrfs_file_extent_item *fi;
1021 struct extent_buffer *leaf;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027
1028 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1029 ret = btrfs_lookup_file_extent(NULL, root, path,
1030 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1031 if (ret < 0)
1032 goto out;
1033 if (ret > 0) {
1034 ret = -ENOENT;
1035 goto out;
1036 }
1037
1038 leaf = path->nodes[0];
1039 fi = btrfs_item_ptr(leaf, path->slots[0],
1040 struct btrfs_file_extent_item);
1041
1042 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1043 btrfs_file_extent_compression(leaf, fi) ||
1044 btrfs_file_extent_encryption(leaf, fi) ||
1045 btrfs_file_extent_other_encoding(leaf, fi));
1046
1047 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1048 ret = -EINVAL;
1049 goto out;
1050 }
1051
1052 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1053 ret = 0;
1054 out:
1055 btrfs_free_path(path);
1056 return ret;
1057 }
1058
1059 /*
1060 * update file extent items in the tree leaf to point to
1061 * the new locations.
1062 */
1063 static noinline_for_stack
1064 int replace_file_extents(struct btrfs_trans_handle *trans,
1065 struct reloc_control *rc,
1066 struct btrfs_root *root,
1067 struct extent_buffer *leaf)
1068 {
1069 struct btrfs_fs_info *fs_info = root->fs_info;
1070 struct btrfs_key key;
1071 struct btrfs_file_extent_item *fi;
1072 struct inode *inode = NULL;
1073 u64 parent;
1074 u64 bytenr;
1075 u64 new_bytenr = 0;
1076 u64 num_bytes;
1077 u64 end;
1078 u32 nritems;
1079 u32 i;
1080 int ret = 0;
1081 int first = 1;
1082 int dirty = 0;
1083
1084 if (rc->stage != UPDATE_DATA_PTRS)
1085 return 0;
1086
1087 /* reloc trees always use full backref */
1088 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1089 parent = leaf->start;
1090 else
1091 parent = 0;
1092
1093 nritems = btrfs_header_nritems(leaf);
1094 for (i = 0; i < nritems; i++) {
1095 struct btrfs_ref ref = { 0 };
1096
1097 cond_resched();
1098 btrfs_item_key_to_cpu(leaf, &key, i);
1099 if (key.type != BTRFS_EXTENT_DATA_KEY)
1100 continue;
1101 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1102 if (btrfs_file_extent_type(leaf, fi) ==
1103 BTRFS_FILE_EXTENT_INLINE)
1104 continue;
1105 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1107 if (bytenr == 0)
1108 continue;
1109 if (!in_range(bytenr, rc->block_group->start,
1110 rc->block_group->length))
1111 continue;
1112
1113 /*
1114 * if we are modifying block in fs tree, wait for read_folio
1115 * to complete and drop the extent cache
1116 */
1117 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1118 if (first) {
1119 inode = find_next_inode(root, key.objectid);
1120 first = 0;
1121 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1122 btrfs_add_delayed_iput(BTRFS_I(inode));
1123 inode = find_next_inode(root, key.objectid);
1124 }
1125 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1126 struct extent_state *cached_state = NULL;
1127
1128 end = key.offset +
1129 btrfs_file_extent_num_bytes(leaf, fi);
1130 WARN_ON(!IS_ALIGNED(key.offset,
1131 fs_info->sectorsize));
1132 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1133 end--;
1134 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1135 key.offset, end,
1136 &cached_state);
1137 if (!ret)
1138 continue;
1139
1140 btrfs_drop_extent_map_range(BTRFS_I(inode),
1141 key.offset, end, true);
1142 unlock_extent(&BTRFS_I(inode)->io_tree,
1143 key.offset, end, &cached_state);
1144 }
1145 }
1146
1147 ret = get_new_location(rc->data_inode, &new_bytenr,
1148 bytenr, num_bytes);
1149 if (ret) {
1150 /*
1151 * Don't have to abort since we've not changed anything
1152 * in the file extent yet.
1153 */
1154 break;
1155 }
1156
1157 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1158 dirty = 1;
1159
1160 key.offset -= btrfs_file_extent_offset(leaf, fi);
1161 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1162 num_bytes, parent);
1163 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1164 key.objectid, key.offset,
1165 root->root_key.objectid, false);
1166 ret = btrfs_inc_extent_ref(trans, &ref);
1167 if (ret) {
1168 btrfs_abort_transaction(trans, ret);
1169 break;
1170 }
1171
1172 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1173 num_bytes, parent);
1174 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1175 key.objectid, key.offset,
1176 root->root_key.objectid, false);
1177 ret = btrfs_free_extent(trans, &ref);
1178 if (ret) {
1179 btrfs_abort_transaction(trans, ret);
1180 break;
1181 }
1182 }
1183 if (dirty)
1184 btrfs_mark_buffer_dirty(leaf);
1185 if (inode)
1186 btrfs_add_delayed_iput(BTRFS_I(inode));
1187 return ret;
1188 }
1189
1190 static noinline_for_stack
1191 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1192 struct btrfs_path *path, int level)
1193 {
1194 struct btrfs_disk_key key1;
1195 struct btrfs_disk_key key2;
1196 btrfs_node_key(eb, &key1, slot);
1197 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1198 return memcmp(&key1, &key2, sizeof(key1));
1199 }
1200
1201 /*
1202 * try to replace tree blocks in fs tree with the new blocks
1203 * in reloc tree. tree blocks haven't been modified since the
1204 * reloc tree was create can be replaced.
1205 *
1206 * if a block was replaced, level of the block + 1 is returned.
1207 * if no block got replaced, 0 is returned. if there are other
1208 * errors, a negative error number is returned.
1209 */
1210 static noinline_for_stack
1211 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1212 struct btrfs_root *dest, struct btrfs_root *src,
1213 struct btrfs_path *path, struct btrfs_key *next_key,
1214 int lowest_level, int max_level)
1215 {
1216 struct btrfs_fs_info *fs_info = dest->fs_info;
1217 struct extent_buffer *eb;
1218 struct extent_buffer *parent;
1219 struct btrfs_ref ref = { 0 };
1220 struct btrfs_key key;
1221 u64 old_bytenr;
1222 u64 new_bytenr;
1223 u64 old_ptr_gen;
1224 u64 new_ptr_gen;
1225 u64 last_snapshot;
1226 u32 blocksize;
1227 int cow = 0;
1228 int level;
1229 int ret;
1230 int slot;
1231
1232 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1233 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1234
1235 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1236 again:
1237 slot = path->slots[lowest_level];
1238 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1239
1240 eb = btrfs_lock_root_node(dest);
1241 level = btrfs_header_level(eb);
1242
1243 if (level < lowest_level) {
1244 btrfs_tree_unlock(eb);
1245 free_extent_buffer(eb);
1246 return 0;
1247 }
1248
1249 if (cow) {
1250 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1251 BTRFS_NESTING_COW);
1252 if (ret) {
1253 btrfs_tree_unlock(eb);
1254 free_extent_buffer(eb);
1255 return ret;
1256 }
1257 }
1258
1259 if (next_key) {
1260 next_key->objectid = (u64)-1;
1261 next_key->type = (u8)-1;
1262 next_key->offset = (u64)-1;
1263 }
1264
1265 parent = eb;
1266 while (1) {
1267 level = btrfs_header_level(parent);
1268 ASSERT(level >= lowest_level);
1269
1270 ret = btrfs_bin_search(parent, 0, &key, &slot);
1271 if (ret < 0)
1272 break;
1273 if (ret && slot > 0)
1274 slot--;
1275
1276 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1277 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1278
1279 old_bytenr = btrfs_node_blockptr(parent, slot);
1280 blocksize = fs_info->nodesize;
1281 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1282
1283 if (level <= max_level) {
1284 eb = path->nodes[level];
1285 new_bytenr = btrfs_node_blockptr(eb,
1286 path->slots[level]);
1287 new_ptr_gen = btrfs_node_ptr_generation(eb,
1288 path->slots[level]);
1289 } else {
1290 new_bytenr = 0;
1291 new_ptr_gen = 0;
1292 }
1293
1294 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1295 ret = level;
1296 break;
1297 }
1298
1299 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1300 memcmp_node_keys(parent, slot, path, level)) {
1301 if (level <= lowest_level) {
1302 ret = 0;
1303 break;
1304 }
1305
1306 eb = btrfs_read_node_slot(parent, slot);
1307 if (IS_ERR(eb)) {
1308 ret = PTR_ERR(eb);
1309 break;
1310 }
1311 btrfs_tree_lock(eb);
1312 if (cow) {
1313 ret = btrfs_cow_block(trans, dest, eb, parent,
1314 slot, &eb,
1315 BTRFS_NESTING_COW);
1316 if (ret) {
1317 btrfs_tree_unlock(eb);
1318 free_extent_buffer(eb);
1319 break;
1320 }
1321 }
1322
1323 btrfs_tree_unlock(parent);
1324 free_extent_buffer(parent);
1325
1326 parent = eb;
1327 continue;
1328 }
1329
1330 if (!cow) {
1331 btrfs_tree_unlock(parent);
1332 free_extent_buffer(parent);
1333 cow = 1;
1334 goto again;
1335 }
1336
1337 btrfs_node_key_to_cpu(path->nodes[level], &key,
1338 path->slots[level]);
1339 btrfs_release_path(path);
1340
1341 path->lowest_level = level;
1342 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1343 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1344 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1345 path->lowest_level = 0;
1346 if (ret) {
1347 if (ret > 0)
1348 ret = -ENOENT;
1349 break;
1350 }
1351
1352 /*
1353 * Info qgroup to trace both subtrees.
1354 *
1355 * We must trace both trees.
1356 * 1) Tree reloc subtree
1357 * If not traced, we will leak data numbers
1358 * 2) Fs subtree
1359 * If not traced, we will double count old data
1360 *
1361 * We don't scan the subtree right now, but only record
1362 * the swapped tree blocks.
1363 * The real subtree rescan is delayed until we have new
1364 * CoW on the subtree root node before transaction commit.
1365 */
1366 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1367 rc->block_group, parent, slot,
1368 path->nodes[level], path->slots[level],
1369 last_snapshot);
1370 if (ret < 0)
1371 break;
1372 /*
1373 * swap blocks in fs tree and reloc tree.
1374 */
1375 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1376 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1377 btrfs_mark_buffer_dirty(parent);
1378
1379 btrfs_set_node_blockptr(path->nodes[level],
1380 path->slots[level], old_bytenr);
1381 btrfs_set_node_ptr_generation(path->nodes[level],
1382 path->slots[level], old_ptr_gen);
1383 btrfs_mark_buffer_dirty(path->nodes[level]);
1384
1385 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1386 blocksize, path->nodes[level]->start);
1387 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1388 0, true);
1389 ret = btrfs_inc_extent_ref(trans, &ref);
1390 if (ret) {
1391 btrfs_abort_transaction(trans, ret);
1392 break;
1393 }
1394 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1395 blocksize, 0);
1396 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1397 true);
1398 ret = btrfs_inc_extent_ref(trans, &ref);
1399 if (ret) {
1400 btrfs_abort_transaction(trans, ret);
1401 break;
1402 }
1403
1404 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1405 blocksize, path->nodes[level]->start);
1406 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1407 0, true);
1408 ret = btrfs_free_extent(trans, &ref);
1409 if (ret) {
1410 btrfs_abort_transaction(trans, ret);
1411 break;
1412 }
1413
1414 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1415 blocksize, 0);
1416 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1417 0, true);
1418 ret = btrfs_free_extent(trans, &ref);
1419 if (ret) {
1420 btrfs_abort_transaction(trans, ret);
1421 break;
1422 }
1423
1424 btrfs_unlock_up_safe(path, 0);
1425
1426 ret = level;
1427 break;
1428 }
1429 btrfs_tree_unlock(parent);
1430 free_extent_buffer(parent);
1431 return ret;
1432 }
1433
1434 /*
1435 * helper to find next relocated block in reloc tree
1436 */
1437 static noinline_for_stack
1438 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1439 int *level)
1440 {
1441 struct extent_buffer *eb;
1442 int i;
1443 u64 last_snapshot;
1444 u32 nritems;
1445
1446 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1447
1448 for (i = 0; i < *level; i++) {
1449 free_extent_buffer(path->nodes[i]);
1450 path->nodes[i] = NULL;
1451 }
1452
1453 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1454 eb = path->nodes[i];
1455 nritems = btrfs_header_nritems(eb);
1456 while (path->slots[i] + 1 < nritems) {
1457 path->slots[i]++;
1458 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1459 last_snapshot)
1460 continue;
1461
1462 *level = i;
1463 return 0;
1464 }
1465 free_extent_buffer(path->nodes[i]);
1466 path->nodes[i] = NULL;
1467 }
1468 return 1;
1469 }
1470
1471 /*
1472 * walk down reloc tree to find relocated block of lowest level
1473 */
1474 static noinline_for_stack
1475 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1476 int *level)
1477 {
1478 struct extent_buffer *eb = NULL;
1479 int i;
1480 u64 ptr_gen = 0;
1481 u64 last_snapshot;
1482 u32 nritems;
1483
1484 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1485
1486 for (i = *level; i > 0; i--) {
1487 eb = path->nodes[i];
1488 nritems = btrfs_header_nritems(eb);
1489 while (path->slots[i] < nritems) {
1490 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1491 if (ptr_gen > last_snapshot)
1492 break;
1493 path->slots[i]++;
1494 }
1495 if (path->slots[i] >= nritems) {
1496 if (i == *level)
1497 break;
1498 *level = i + 1;
1499 return 0;
1500 }
1501 if (i == 1) {
1502 *level = i;
1503 return 0;
1504 }
1505
1506 eb = btrfs_read_node_slot(eb, path->slots[i]);
1507 if (IS_ERR(eb))
1508 return PTR_ERR(eb);
1509 BUG_ON(btrfs_header_level(eb) != i - 1);
1510 path->nodes[i - 1] = eb;
1511 path->slots[i - 1] = 0;
1512 }
1513 return 1;
1514 }
1515
1516 /*
1517 * invalidate extent cache for file extents whose key in range of
1518 * [min_key, max_key)
1519 */
1520 static int invalidate_extent_cache(struct btrfs_root *root,
1521 struct btrfs_key *min_key,
1522 struct btrfs_key *max_key)
1523 {
1524 struct btrfs_fs_info *fs_info = root->fs_info;
1525 struct inode *inode = NULL;
1526 u64 objectid;
1527 u64 start, end;
1528 u64 ino;
1529
1530 objectid = min_key->objectid;
1531 while (1) {
1532 struct extent_state *cached_state = NULL;
1533
1534 cond_resched();
1535 iput(inode);
1536
1537 if (objectid > max_key->objectid)
1538 break;
1539
1540 inode = find_next_inode(root, objectid);
1541 if (!inode)
1542 break;
1543 ino = btrfs_ino(BTRFS_I(inode));
1544
1545 if (ino > max_key->objectid) {
1546 iput(inode);
1547 break;
1548 }
1549
1550 objectid = ino + 1;
1551 if (!S_ISREG(inode->i_mode))
1552 continue;
1553
1554 if (unlikely(min_key->objectid == ino)) {
1555 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1556 continue;
1557 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1558 start = 0;
1559 else {
1560 start = min_key->offset;
1561 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1562 }
1563 } else {
1564 start = 0;
1565 }
1566
1567 if (unlikely(max_key->objectid == ino)) {
1568 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1569 continue;
1570 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1571 end = (u64)-1;
1572 } else {
1573 if (max_key->offset == 0)
1574 continue;
1575 end = max_key->offset;
1576 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1577 end--;
1578 }
1579 } else {
1580 end = (u64)-1;
1581 }
1582
1583 /* the lock_extent waits for read_folio to complete */
1584 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1585 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1586 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1587 }
1588 return 0;
1589 }
1590
1591 static int find_next_key(struct btrfs_path *path, int level,
1592 struct btrfs_key *key)
1593
1594 {
1595 while (level < BTRFS_MAX_LEVEL) {
1596 if (!path->nodes[level])
1597 break;
1598 if (path->slots[level] + 1 <
1599 btrfs_header_nritems(path->nodes[level])) {
1600 btrfs_node_key_to_cpu(path->nodes[level], key,
1601 path->slots[level] + 1);
1602 return 0;
1603 }
1604 level++;
1605 }
1606 return 1;
1607 }
1608
1609 /*
1610 * Insert current subvolume into reloc_control::dirty_subvol_roots
1611 */
1612 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1613 struct reloc_control *rc,
1614 struct btrfs_root *root)
1615 {
1616 struct btrfs_root *reloc_root = root->reloc_root;
1617 struct btrfs_root_item *reloc_root_item;
1618 int ret;
1619
1620 /* @root must be a subvolume tree root with a valid reloc tree */
1621 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1622 ASSERT(reloc_root);
1623
1624 reloc_root_item = &reloc_root->root_item;
1625 memset(&reloc_root_item->drop_progress, 0,
1626 sizeof(reloc_root_item->drop_progress));
1627 btrfs_set_root_drop_level(reloc_root_item, 0);
1628 btrfs_set_root_refs(reloc_root_item, 0);
1629 ret = btrfs_update_reloc_root(trans, root);
1630 if (ret)
1631 return ret;
1632
1633 if (list_empty(&root->reloc_dirty_list)) {
1634 btrfs_grab_root(root);
1635 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1636 }
1637
1638 return 0;
1639 }
1640
1641 static int clean_dirty_subvols(struct reloc_control *rc)
1642 {
1643 struct btrfs_root *root;
1644 struct btrfs_root *next;
1645 int ret = 0;
1646 int ret2;
1647
1648 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1649 reloc_dirty_list) {
1650 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1651 /* Merged subvolume, cleanup its reloc root */
1652 struct btrfs_root *reloc_root = root->reloc_root;
1653
1654 list_del_init(&root->reloc_dirty_list);
1655 root->reloc_root = NULL;
1656 /*
1657 * Need barrier to ensure clear_bit() only happens after
1658 * root->reloc_root = NULL. Pairs with have_reloc_root.
1659 */
1660 smp_wmb();
1661 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1662 if (reloc_root) {
1663 /*
1664 * btrfs_drop_snapshot drops our ref we hold for
1665 * ->reloc_root. If it fails however we must
1666 * drop the ref ourselves.
1667 */
1668 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1669 if (ret2 < 0) {
1670 btrfs_put_root(reloc_root);
1671 if (!ret)
1672 ret = ret2;
1673 }
1674 }
1675 btrfs_put_root(root);
1676 } else {
1677 /* Orphan reloc tree, just clean it up */
1678 ret2 = btrfs_drop_snapshot(root, 0, 1);
1679 if (ret2 < 0) {
1680 btrfs_put_root(root);
1681 if (!ret)
1682 ret = ret2;
1683 }
1684 }
1685 }
1686 return ret;
1687 }
1688
1689 /*
1690 * merge the relocated tree blocks in reloc tree with corresponding
1691 * fs tree.
1692 */
1693 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1694 struct btrfs_root *root)
1695 {
1696 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1697 struct btrfs_key key;
1698 struct btrfs_key next_key;
1699 struct btrfs_trans_handle *trans = NULL;
1700 struct btrfs_root *reloc_root;
1701 struct btrfs_root_item *root_item;
1702 struct btrfs_path *path;
1703 struct extent_buffer *leaf;
1704 int reserve_level;
1705 int level;
1706 int max_level;
1707 int replaced = 0;
1708 int ret = 0;
1709 u32 min_reserved;
1710
1711 path = btrfs_alloc_path();
1712 if (!path)
1713 return -ENOMEM;
1714 path->reada = READA_FORWARD;
1715
1716 reloc_root = root->reloc_root;
1717 root_item = &reloc_root->root_item;
1718
1719 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1720 level = btrfs_root_level(root_item);
1721 atomic_inc(&reloc_root->node->refs);
1722 path->nodes[level] = reloc_root->node;
1723 path->slots[level] = 0;
1724 } else {
1725 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1726
1727 level = btrfs_root_drop_level(root_item);
1728 BUG_ON(level == 0);
1729 path->lowest_level = level;
1730 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1731 path->lowest_level = 0;
1732 if (ret < 0) {
1733 btrfs_free_path(path);
1734 return ret;
1735 }
1736
1737 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1738 path->slots[level]);
1739 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1740
1741 btrfs_unlock_up_safe(path, 0);
1742 }
1743
1744 /*
1745 * In merge_reloc_root(), we modify the upper level pointer to swap the
1746 * tree blocks between reloc tree and subvolume tree. Thus for tree
1747 * block COW, we COW at most from level 1 to root level for each tree.
1748 *
1749 * Thus the needed metadata size is at most root_level * nodesize,
1750 * and * 2 since we have two trees to COW.
1751 */
1752 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1753 min_reserved = fs_info->nodesize * reserve_level * 2;
1754 memset(&next_key, 0, sizeof(next_key));
1755
1756 while (1) {
1757 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1758 min_reserved,
1759 BTRFS_RESERVE_FLUSH_LIMIT);
1760 if (ret)
1761 goto out;
1762 trans = btrfs_start_transaction(root, 0);
1763 if (IS_ERR(trans)) {
1764 ret = PTR_ERR(trans);
1765 trans = NULL;
1766 goto out;
1767 }
1768
1769 /*
1770 * At this point we no longer have a reloc_control, so we can't
1771 * depend on btrfs_init_reloc_root to update our last_trans.
1772 *
1773 * But that's ok, we started the trans handle on our
1774 * corresponding fs_root, which means it's been added to the
1775 * dirty list. At commit time we'll still call
1776 * btrfs_update_reloc_root() and update our root item
1777 * appropriately.
1778 */
1779 reloc_root->last_trans = trans->transid;
1780 trans->block_rsv = rc->block_rsv;
1781
1782 replaced = 0;
1783 max_level = level;
1784
1785 ret = walk_down_reloc_tree(reloc_root, path, &level);
1786 if (ret < 0)
1787 goto out;
1788 if (ret > 0)
1789 break;
1790
1791 if (!find_next_key(path, level, &key) &&
1792 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1793 ret = 0;
1794 } else {
1795 ret = replace_path(trans, rc, root, reloc_root, path,
1796 &next_key, level, max_level);
1797 }
1798 if (ret < 0)
1799 goto out;
1800 if (ret > 0) {
1801 level = ret;
1802 btrfs_node_key_to_cpu(path->nodes[level], &key,
1803 path->slots[level]);
1804 replaced = 1;
1805 }
1806
1807 ret = walk_up_reloc_tree(reloc_root, path, &level);
1808 if (ret > 0)
1809 break;
1810
1811 BUG_ON(level == 0);
1812 /*
1813 * save the merging progress in the drop_progress.
1814 * this is OK since root refs == 1 in this case.
1815 */
1816 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1817 path->slots[level]);
1818 btrfs_set_root_drop_level(root_item, level);
1819
1820 btrfs_end_transaction_throttle(trans);
1821 trans = NULL;
1822
1823 btrfs_btree_balance_dirty(fs_info);
1824
1825 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1826 invalidate_extent_cache(root, &key, &next_key);
1827 }
1828
1829 /*
1830 * handle the case only one block in the fs tree need to be
1831 * relocated and the block is tree root.
1832 */
1833 leaf = btrfs_lock_root_node(root);
1834 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1835 BTRFS_NESTING_COW);
1836 btrfs_tree_unlock(leaf);
1837 free_extent_buffer(leaf);
1838 out:
1839 btrfs_free_path(path);
1840
1841 if (ret == 0) {
1842 ret = insert_dirty_subvol(trans, rc, root);
1843 if (ret)
1844 btrfs_abort_transaction(trans, ret);
1845 }
1846
1847 if (trans)
1848 btrfs_end_transaction_throttle(trans);
1849
1850 btrfs_btree_balance_dirty(fs_info);
1851
1852 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1853 invalidate_extent_cache(root, &key, &next_key);
1854
1855 return ret;
1856 }
1857
1858 static noinline_for_stack
1859 int prepare_to_merge(struct reloc_control *rc, int err)
1860 {
1861 struct btrfs_root *root = rc->extent_root;
1862 struct btrfs_fs_info *fs_info = root->fs_info;
1863 struct btrfs_root *reloc_root;
1864 struct btrfs_trans_handle *trans;
1865 LIST_HEAD(reloc_roots);
1866 u64 num_bytes = 0;
1867 int ret;
1868
1869 mutex_lock(&fs_info->reloc_mutex);
1870 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1871 rc->merging_rsv_size += rc->nodes_relocated * 2;
1872 mutex_unlock(&fs_info->reloc_mutex);
1873
1874 again:
1875 if (!err) {
1876 num_bytes = rc->merging_rsv_size;
1877 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1878 BTRFS_RESERVE_FLUSH_ALL);
1879 if (ret)
1880 err = ret;
1881 }
1882
1883 trans = btrfs_join_transaction(rc->extent_root);
1884 if (IS_ERR(trans)) {
1885 if (!err)
1886 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1887 num_bytes, NULL);
1888 return PTR_ERR(trans);
1889 }
1890
1891 if (!err) {
1892 if (num_bytes != rc->merging_rsv_size) {
1893 btrfs_end_transaction(trans);
1894 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1895 num_bytes, NULL);
1896 goto again;
1897 }
1898 }
1899
1900 rc->merge_reloc_tree = 1;
1901
1902 while (!list_empty(&rc->reloc_roots)) {
1903 reloc_root = list_entry(rc->reloc_roots.next,
1904 struct btrfs_root, root_list);
1905 list_del_init(&reloc_root->root_list);
1906
1907 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1908 false);
1909 if (IS_ERR(root)) {
1910 /*
1911 * Even if we have an error we need this reloc root
1912 * back on our list so we can clean up properly.
1913 */
1914 list_add(&reloc_root->root_list, &reloc_roots);
1915 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1916 if (!err)
1917 err = PTR_ERR(root);
1918 break;
1919 }
1920
1921 if (unlikely(root->reloc_root != reloc_root)) {
1922 if (root->reloc_root) {
1923 btrfs_err(fs_info,
1924 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1925 root->root_key.objectid,
1926 root->reloc_root->root_key.objectid,
1927 root->reloc_root->root_key.type,
1928 root->reloc_root->root_key.offset,
1929 btrfs_root_generation(
1930 &root->reloc_root->root_item),
1931 reloc_root->root_key.objectid,
1932 reloc_root->root_key.type,
1933 reloc_root->root_key.offset,
1934 btrfs_root_generation(
1935 &reloc_root->root_item));
1936 } else {
1937 btrfs_err(fs_info,
1938 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1939 root->root_key.objectid,
1940 reloc_root->root_key.objectid,
1941 reloc_root->root_key.type,
1942 reloc_root->root_key.offset,
1943 btrfs_root_generation(
1944 &reloc_root->root_item));
1945 }
1946 list_add(&reloc_root->root_list, &reloc_roots);
1947 btrfs_put_root(root);
1948 btrfs_abort_transaction(trans, -EUCLEAN);
1949 if (!err)
1950 err = -EUCLEAN;
1951 break;
1952 }
1953
1954 /*
1955 * set reference count to 1, so btrfs_recover_relocation
1956 * knows it should resumes merging
1957 */
1958 if (!err)
1959 btrfs_set_root_refs(&reloc_root->root_item, 1);
1960 ret = btrfs_update_reloc_root(trans, root);
1961
1962 /*
1963 * Even if we have an error we need this reloc root back on our
1964 * list so we can clean up properly.
1965 */
1966 list_add(&reloc_root->root_list, &reloc_roots);
1967 btrfs_put_root(root);
1968
1969 if (ret) {
1970 btrfs_abort_transaction(trans, ret);
1971 if (!err)
1972 err = ret;
1973 break;
1974 }
1975 }
1976
1977 list_splice(&reloc_roots, &rc->reloc_roots);
1978
1979 if (!err)
1980 err = btrfs_commit_transaction(trans);
1981 else
1982 btrfs_end_transaction(trans);
1983 return err;
1984 }
1985
1986 static noinline_for_stack
1987 void free_reloc_roots(struct list_head *list)
1988 {
1989 struct btrfs_root *reloc_root, *tmp;
1990
1991 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1992 __del_reloc_root(reloc_root);
1993 }
1994
1995 static noinline_for_stack
1996 void merge_reloc_roots(struct reloc_control *rc)
1997 {
1998 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1999 struct btrfs_root *root;
2000 struct btrfs_root *reloc_root;
2001 LIST_HEAD(reloc_roots);
2002 int found = 0;
2003 int ret = 0;
2004 again:
2005 root = rc->extent_root;
2006
2007 /*
2008 * this serializes us with btrfs_record_root_in_transaction,
2009 * we have to make sure nobody is in the middle of
2010 * adding their roots to the list while we are
2011 * doing this splice
2012 */
2013 mutex_lock(&fs_info->reloc_mutex);
2014 list_splice_init(&rc->reloc_roots, &reloc_roots);
2015 mutex_unlock(&fs_info->reloc_mutex);
2016
2017 while (!list_empty(&reloc_roots)) {
2018 found = 1;
2019 reloc_root = list_entry(reloc_roots.next,
2020 struct btrfs_root, root_list);
2021
2022 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2023 false);
2024 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2025 if (WARN_ON(IS_ERR(root))) {
2026 /*
2027 * For recovery we read the fs roots on mount,
2028 * and if we didn't find the root then we marked
2029 * the reloc root as a garbage root. For normal
2030 * relocation obviously the root should exist in
2031 * memory. However there's no reason we can't
2032 * handle the error properly here just in case.
2033 */
2034 ret = PTR_ERR(root);
2035 goto out;
2036 }
2037 if (WARN_ON(root->reloc_root != reloc_root)) {
2038 /*
2039 * This can happen if on-disk metadata has some
2040 * corruption, e.g. bad reloc tree key offset.
2041 */
2042 ret = -EINVAL;
2043 goto out;
2044 }
2045 ret = merge_reloc_root(rc, root);
2046 btrfs_put_root(root);
2047 if (ret) {
2048 if (list_empty(&reloc_root->root_list))
2049 list_add_tail(&reloc_root->root_list,
2050 &reloc_roots);
2051 goto out;
2052 }
2053 } else {
2054 if (!IS_ERR(root)) {
2055 if (root->reloc_root == reloc_root) {
2056 root->reloc_root = NULL;
2057 btrfs_put_root(reloc_root);
2058 }
2059 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2060 &root->state);
2061 btrfs_put_root(root);
2062 }
2063
2064 list_del_init(&reloc_root->root_list);
2065 /* Don't forget to queue this reloc root for cleanup */
2066 list_add_tail(&reloc_root->reloc_dirty_list,
2067 &rc->dirty_subvol_roots);
2068 }
2069 }
2070
2071 if (found) {
2072 found = 0;
2073 goto again;
2074 }
2075 out:
2076 if (ret) {
2077 btrfs_handle_fs_error(fs_info, ret, NULL);
2078 free_reloc_roots(&reloc_roots);
2079
2080 /* new reloc root may be added */
2081 mutex_lock(&fs_info->reloc_mutex);
2082 list_splice_init(&rc->reloc_roots, &reloc_roots);
2083 mutex_unlock(&fs_info->reloc_mutex);
2084 free_reloc_roots(&reloc_roots);
2085 }
2086
2087 /*
2088 * We used to have
2089 *
2090 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2091 *
2092 * here, but it's wrong. If we fail to start the transaction in
2093 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2094 * have actually been removed from the reloc_root_tree rb tree. This is
2095 * fine because we're bailing here, and we hold a reference on the root
2096 * for the list that holds it, so these roots will be cleaned up when we
2097 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2098 * will be cleaned up on unmount.
2099 *
2100 * The remaining nodes will be cleaned up by free_reloc_control.
2101 */
2102 }
2103
2104 static void free_block_list(struct rb_root *blocks)
2105 {
2106 struct tree_block *block;
2107 struct rb_node *rb_node;
2108 while ((rb_node = rb_first(blocks))) {
2109 block = rb_entry(rb_node, struct tree_block, rb_node);
2110 rb_erase(rb_node, blocks);
2111 kfree(block);
2112 }
2113 }
2114
2115 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *reloc_root)
2117 {
2118 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2119 struct btrfs_root *root;
2120 int ret;
2121
2122 if (reloc_root->last_trans == trans->transid)
2123 return 0;
2124
2125 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2126
2127 /*
2128 * This should succeed, since we can't have a reloc root without having
2129 * already looked up the actual root and created the reloc root for this
2130 * root.
2131 *
2132 * However if there's some sort of corruption where we have a ref to a
2133 * reloc root without a corresponding root this could return ENOENT.
2134 */
2135 if (IS_ERR(root)) {
2136 ASSERT(0);
2137 return PTR_ERR(root);
2138 }
2139 if (root->reloc_root != reloc_root) {
2140 ASSERT(0);
2141 btrfs_err(fs_info,
2142 "root %llu has two reloc roots associated with it",
2143 reloc_root->root_key.offset);
2144 btrfs_put_root(root);
2145 return -EUCLEAN;
2146 }
2147 ret = btrfs_record_root_in_trans(trans, root);
2148 btrfs_put_root(root);
2149
2150 return ret;
2151 }
2152
2153 static noinline_for_stack
2154 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2155 struct reloc_control *rc,
2156 struct btrfs_backref_node *node,
2157 struct btrfs_backref_edge *edges[])
2158 {
2159 struct btrfs_backref_node *next;
2160 struct btrfs_root *root;
2161 int index = 0;
2162 int ret;
2163
2164 next = node;
2165 while (1) {
2166 cond_resched();
2167 next = walk_up_backref(next, edges, &index);
2168 root = next->root;
2169
2170 /*
2171 * If there is no root, then our references for this block are
2172 * incomplete, as we should be able to walk all the way up to a
2173 * block that is owned by a root.
2174 *
2175 * This path is only for SHAREABLE roots, so if we come upon a
2176 * non-SHAREABLE root then we have backrefs that resolve
2177 * improperly.
2178 *
2179 * Both of these cases indicate file system corruption, or a bug
2180 * in the backref walking code.
2181 */
2182 if (!root) {
2183 ASSERT(0);
2184 btrfs_err(trans->fs_info,
2185 "bytenr %llu doesn't have a backref path ending in a root",
2186 node->bytenr);
2187 return ERR_PTR(-EUCLEAN);
2188 }
2189 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2190 ASSERT(0);
2191 btrfs_err(trans->fs_info,
2192 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2193 node->bytenr);
2194 return ERR_PTR(-EUCLEAN);
2195 }
2196
2197 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2198 ret = record_reloc_root_in_trans(trans, root);
2199 if (ret)
2200 return ERR_PTR(ret);
2201 break;
2202 }
2203
2204 ret = btrfs_record_root_in_trans(trans, root);
2205 if (ret)
2206 return ERR_PTR(ret);
2207 root = root->reloc_root;
2208
2209 /*
2210 * We could have raced with another thread which failed, so
2211 * root->reloc_root may not be set, return ENOENT in this case.
2212 */
2213 if (!root)
2214 return ERR_PTR(-ENOENT);
2215
2216 if (next->new_bytenr != root->node->start) {
2217 /*
2218 * We just created the reloc root, so we shouldn't have
2219 * ->new_bytenr set and this shouldn't be in the changed
2220 * list. If it is then we have multiple roots pointing
2221 * at the same bytenr which indicates corruption, or
2222 * we've made a mistake in the backref walking code.
2223 */
2224 ASSERT(next->new_bytenr == 0);
2225 ASSERT(list_empty(&next->list));
2226 if (next->new_bytenr || !list_empty(&next->list)) {
2227 btrfs_err(trans->fs_info,
2228 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2229 node->bytenr, next->bytenr);
2230 return ERR_PTR(-EUCLEAN);
2231 }
2232
2233 next->new_bytenr = root->node->start;
2234 btrfs_put_root(next->root);
2235 next->root = btrfs_grab_root(root);
2236 ASSERT(next->root);
2237 list_add_tail(&next->list,
2238 &rc->backref_cache.changed);
2239 mark_block_processed(rc, next);
2240 break;
2241 }
2242
2243 WARN_ON(1);
2244 root = NULL;
2245 next = walk_down_backref(edges, &index);
2246 if (!next || next->level <= node->level)
2247 break;
2248 }
2249 if (!root) {
2250 /*
2251 * This can happen if there's fs corruption or if there's a bug
2252 * in the backref lookup code.
2253 */
2254 ASSERT(0);
2255 return ERR_PTR(-ENOENT);
2256 }
2257
2258 next = node;
2259 /* setup backref node path for btrfs_reloc_cow_block */
2260 while (1) {
2261 rc->backref_cache.path[next->level] = next;
2262 if (--index < 0)
2263 break;
2264 next = edges[index]->node[UPPER];
2265 }
2266 return root;
2267 }
2268
2269 /*
2270 * Select a tree root for relocation.
2271 *
2272 * Return NULL if the block is not shareable. We should use do_relocation() in
2273 * this case.
2274 *
2275 * Return a tree root pointer if the block is shareable.
2276 * Return -ENOENT if the block is root of reloc tree.
2277 */
2278 static noinline_for_stack
2279 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2280 {
2281 struct btrfs_backref_node *next;
2282 struct btrfs_root *root;
2283 struct btrfs_root *fs_root = NULL;
2284 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2285 int index = 0;
2286
2287 next = node;
2288 while (1) {
2289 cond_resched();
2290 next = walk_up_backref(next, edges, &index);
2291 root = next->root;
2292
2293 /*
2294 * This can occur if we have incomplete extent refs leading all
2295 * the way up a particular path, in this case return -EUCLEAN.
2296 */
2297 if (!root)
2298 return ERR_PTR(-EUCLEAN);
2299
2300 /* No other choice for non-shareable tree */
2301 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2302 return root;
2303
2304 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2305 fs_root = root;
2306
2307 if (next != node)
2308 return NULL;
2309
2310 next = walk_down_backref(edges, &index);
2311 if (!next || next->level <= node->level)
2312 break;
2313 }
2314
2315 if (!fs_root)
2316 return ERR_PTR(-ENOENT);
2317 return fs_root;
2318 }
2319
2320 static noinline_for_stack
2321 u64 calcu_metadata_size(struct reloc_control *rc,
2322 struct btrfs_backref_node *node, int reserve)
2323 {
2324 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2325 struct btrfs_backref_node *next = node;
2326 struct btrfs_backref_edge *edge;
2327 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2328 u64 num_bytes = 0;
2329 int index = 0;
2330
2331 BUG_ON(reserve && node->processed);
2332
2333 while (next) {
2334 cond_resched();
2335 while (1) {
2336 if (next->processed && (reserve || next != node))
2337 break;
2338
2339 num_bytes += fs_info->nodesize;
2340
2341 if (list_empty(&next->upper))
2342 break;
2343
2344 edge = list_entry(next->upper.next,
2345 struct btrfs_backref_edge, list[LOWER]);
2346 edges[index++] = edge;
2347 next = edge->node[UPPER];
2348 }
2349 next = walk_down_backref(edges, &index);
2350 }
2351 return num_bytes;
2352 }
2353
2354 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2355 struct reloc_control *rc,
2356 struct btrfs_backref_node *node)
2357 {
2358 struct btrfs_root *root = rc->extent_root;
2359 struct btrfs_fs_info *fs_info = root->fs_info;
2360 u64 num_bytes;
2361 int ret;
2362 u64 tmp;
2363
2364 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2365
2366 trans->block_rsv = rc->block_rsv;
2367 rc->reserved_bytes += num_bytes;
2368
2369 /*
2370 * We are under a transaction here so we can only do limited flushing.
2371 * If we get an enospc just kick back -EAGAIN so we know to drop the
2372 * transaction and try to refill when we can flush all the things.
2373 */
2374 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2375 BTRFS_RESERVE_FLUSH_LIMIT);
2376 if (ret) {
2377 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2378 while (tmp <= rc->reserved_bytes)
2379 tmp <<= 1;
2380 /*
2381 * only one thread can access block_rsv at this point,
2382 * so we don't need hold lock to protect block_rsv.
2383 * we expand more reservation size here to allow enough
2384 * space for relocation and we will return earlier in
2385 * enospc case.
2386 */
2387 rc->block_rsv->size = tmp + fs_info->nodesize *
2388 RELOCATION_RESERVED_NODES;
2389 return -EAGAIN;
2390 }
2391
2392 return 0;
2393 }
2394
2395 /*
2396 * relocate a block tree, and then update pointers in upper level
2397 * blocks that reference the block to point to the new location.
2398 *
2399 * if called by link_to_upper, the block has already been relocated.
2400 * in that case this function just updates pointers.
2401 */
2402 static int do_relocation(struct btrfs_trans_handle *trans,
2403 struct reloc_control *rc,
2404 struct btrfs_backref_node *node,
2405 struct btrfs_key *key,
2406 struct btrfs_path *path, int lowest)
2407 {
2408 struct btrfs_backref_node *upper;
2409 struct btrfs_backref_edge *edge;
2410 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2411 struct btrfs_root *root;
2412 struct extent_buffer *eb;
2413 u32 blocksize;
2414 u64 bytenr;
2415 int slot;
2416 int ret = 0;
2417
2418 /*
2419 * If we are lowest then this is the first time we're processing this
2420 * block, and thus shouldn't have an eb associated with it yet.
2421 */
2422 ASSERT(!lowest || !node->eb);
2423
2424 path->lowest_level = node->level + 1;
2425 rc->backref_cache.path[node->level] = node;
2426 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2427 struct btrfs_ref ref = { 0 };
2428
2429 cond_resched();
2430
2431 upper = edge->node[UPPER];
2432 root = select_reloc_root(trans, rc, upper, edges);
2433 if (IS_ERR(root)) {
2434 ret = PTR_ERR(root);
2435 goto next;
2436 }
2437
2438 if (upper->eb && !upper->locked) {
2439 if (!lowest) {
2440 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2441 if (ret < 0)
2442 goto next;
2443 BUG_ON(ret);
2444 bytenr = btrfs_node_blockptr(upper->eb, slot);
2445 if (node->eb->start == bytenr)
2446 goto next;
2447 }
2448 btrfs_backref_drop_node_buffer(upper);
2449 }
2450
2451 if (!upper->eb) {
2452 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2453 if (ret) {
2454 if (ret > 0)
2455 ret = -ENOENT;
2456
2457 btrfs_release_path(path);
2458 break;
2459 }
2460
2461 if (!upper->eb) {
2462 upper->eb = path->nodes[upper->level];
2463 path->nodes[upper->level] = NULL;
2464 } else {
2465 BUG_ON(upper->eb != path->nodes[upper->level]);
2466 }
2467
2468 upper->locked = 1;
2469 path->locks[upper->level] = 0;
2470
2471 slot = path->slots[upper->level];
2472 btrfs_release_path(path);
2473 } else {
2474 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2475 if (ret < 0)
2476 goto next;
2477 BUG_ON(ret);
2478 }
2479
2480 bytenr = btrfs_node_blockptr(upper->eb, slot);
2481 if (lowest) {
2482 if (bytenr != node->bytenr) {
2483 btrfs_err(root->fs_info,
2484 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2485 bytenr, node->bytenr, slot,
2486 upper->eb->start);
2487 ret = -EIO;
2488 goto next;
2489 }
2490 } else {
2491 if (node->eb->start == bytenr)
2492 goto next;
2493 }
2494
2495 blocksize = root->fs_info->nodesize;
2496 eb = btrfs_read_node_slot(upper->eb, slot);
2497 if (IS_ERR(eb)) {
2498 ret = PTR_ERR(eb);
2499 goto next;
2500 }
2501 btrfs_tree_lock(eb);
2502
2503 if (!node->eb) {
2504 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2505 slot, &eb, BTRFS_NESTING_COW);
2506 btrfs_tree_unlock(eb);
2507 free_extent_buffer(eb);
2508 if (ret < 0)
2509 goto next;
2510 /*
2511 * We've just COWed this block, it should have updated
2512 * the correct backref node entry.
2513 */
2514 ASSERT(node->eb == eb);
2515 } else {
2516 btrfs_set_node_blockptr(upper->eb, slot,
2517 node->eb->start);
2518 btrfs_set_node_ptr_generation(upper->eb, slot,
2519 trans->transid);
2520 btrfs_mark_buffer_dirty(upper->eb);
2521
2522 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2523 node->eb->start, blocksize,
2524 upper->eb->start);
2525 btrfs_init_tree_ref(&ref, node->level,
2526 btrfs_header_owner(upper->eb),
2527 root->root_key.objectid, false);
2528 ret = btrfs_inc_extent_ref(trans, &ref);
2529 if (!ret)
2530 ret = btrfs_drop_subtree(trans, root, eb,
2531 upper->eb);
2532 if (ret)
2533 btrfs_abort_transaction(trans, ret);
2534 }
2535 next:
2536 if (!upper->pending)
2537 btrfs_backref_drop_node_buffer(upper);
2538 else
2539 btrfs_backref_unlock_node_buffer(upper);
2540 if (ret)
2541 break;
2542 }
2543
2544 if (!ret && node->pending) {
2545 btrfs_backref_drop_node_buffer(node);
2546 list_move_tail(&node->list, &rc->backref_cache.changed);
2547 node->pending = 0;
2548 }
2549
2550 path->lowest_level = 0;
2551
2552 /*
2553 * We should have allocated all of our space in the block rsv and thus
2554 * shouldn't ENOSPC.
2555 */
2556 ASSERT(ret != -ENOSPC);
2557 return ret;
2558 }
2559
2560 static int link_to_upper(struct btrfs_trans_handle *trans,
2561 struct reloc_control *rc,
2562 struct btrfs_backref_node *node,
2563 struct btrfs_path *path)
2564 {
2565 struct btrfs_key key;
2566
2567 btrfs_node_key_to_cpu(node->eb, &key, 0);
2568 return do_relocation(trans, rc, node, &key, path, 0);
2569 }
2570
2571 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2572 struct reloc_control *rc,
2573 struct btrfs_path *path, int err)
2574 {
2575 LIST_HEAD(list);
2576 struct btrfs_backref_cache *cache = &rc->backref_cache;
2577 struct btrfs_backref_node *node;
2578 int level;
2579 int ret;
2580
2581 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2582 while (!list_empty(&cache->pending[level])) {
2583 node = list_entry(cache->pending[level].next,
2584 struct btrfs_backref_node, list);
2585 list_move_tail(&node->list, &list);
2586 BUG_ON(!node->pending);
2587
2588 if (!err) {
2589 ret = link_to_upper(trans, rc, node, path);
2590 if (ret < 0)
2591 err = ret;
2592 }
2593 }
2594 list_splice_init(&list, &cache->pending[level]);
2595 }
2596 return err;
2597 }
2598
2599 /*
2600 * mark a block and all blocks directly/indirectly reference the block
2601 * as processed.
2602 */
2603 static void update_processed_blocks(struct reloc_control *rc,
2604 struct btrfs_backref_node *node)
2605 {
2606 struct btrfs_backref_node *next = node;
2607 struct btrfs_backref_edge *edge;
2608 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2609 int index = 0;
2610
2611 while (next) {
2612 cond_resched();
2613 while (1) {
2614 if (next->processed)
2615 break;
2616
2617 mark_block_processed(rc, next);
2618
2619 if (list_empty(&next->upper))
2620 break;
2621
2622 edge = list_entry(next->upper.next,
2623 struct btrfs_backref_edge, list[LOWER]);
2624 edges[index++] = edge;
2625 next = edge->node[UPPER];
2626 }
2627 next = walk_down_backref(edges, &index);
2628 }
2629 }
2630
2631 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2632 {
2633 u32 blocksize = rc->extent_root->fs_info->nodesize;
2634
2635 if (test_range_bit(&rc->processed_blocks, bytenr,
2636 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2637 return 1;
2638 return 0;
2639 }
2640
2641 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2642 struct tree_block *block)
2643 {
2644 struct btrfs_tree_parent_check check = {
2645 .level = block->level,
2646 .owner_root = block->owner,
2647 .transid = block->key.offset
2648 };
2649 struct extent_buffer *eb;
2650
2651 eb = read_tree_block(fs_info, block->bytenr, &check);
2652 if (IS_ERR(eb))
2653 return PTR_ERR(eb);
2654 if (!extent_buffer_uptodate(eb)) {
2655 free_extent_buffer(eb);
2656 return -EIO;
2657 }
2658 if (block->level == 0)
2659 btrfs_item_key_to_cpu(eb, &block->key, 0);
2660 else
2661 btrfs_node_key_to_cpu(eb, &block->key, 0);
2662 free_extent_buffer(eb);
2663 block->key_ready = 1;
2664 return 0;
2665 }
2666
2667 /*
2668 * helper function to relocate a tree block
2669 */
2670 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2671 struct reloc_control *rc,
2672 struct btrfs_backref_node *node,
2673 struct btrfs_key *key,
2674 struct btrfs_path *path)
2675 {
2676 struct btrfs_root *root;
2677 int ret = 0;
2678
2679 if (!node)
2680 return 0;
2681
2682 /*
2683 * If we fail here we want to drop our backref_node because we are going
2684 * to start over and regenerate the tree for it.
2685 */
2686 ret = reserve_metadata_space(trans, rc, node);
2687 if (ret)
2688 goto out;
2689
2690 BUG_ON(node->processed);
2691 root = select_one_root(node);
2692 if (IS_ERR(root)) {
2693 ret = PTR_ERR(root);
2694
2695 /* See explanation in select_one_root for the -EUCLEAN case. */
2696 ASSERT(ret == -ENOENT);
2697 if (ret == -ENOENT) {
2698 ret = 0;
2699 update_processed_blocks(rc, node);
2700 }
2701 goto out;
2702 }
2703
2704 if (root) {
2705 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2706 /*
2707 * This block was the root block of a root, and this is
2708 * the first time we're processing the block and thus it
2709 * should not have had the ->new_bytenr modified and
2710 * should have not been included on the changed list.
2711 *
2712 * However in the case of corruption we could have
2713 * multiple refs pointing to the same block improperly,
2714 * and thus we would trip over these checks. ASSERT()
2715 * for the developer case, because it could indicate a
2716 * bug in the backref code, however error out for a
2717 * normal user in the case of corruption.
2718 */
2719 ASSERT(node->new_bytenr == 0);
2720 ASSERT(list_empty(&node->list));
2721 if (node->new_bytenr || !list_empty(&node->list)) {
2722 btrfs_err(root->fs_info,
2723 "bytenr %llu has improper references to it",
2724 node->bytenr);
2725 ret = -EUCLEAN;
2726 goto out;
2727 }
2728 ret = btrfs_record_root_in_trans(trans, root);
2729 if (ret)
2730 goto out;
2731 /*
2732 * Another thread could have failed, need to check if we
2733 * have reloc_root actually set.
2734 */
2735 if (!root->reloc_root) {
2736 ret = -ENOENT;
2737 goto out;
2738 }
2739 root = root->reloc_root;
2740 node->new_bytenr = root->node->start;
2741 btrfs_put_root(node->root);
2742 node->root = btrfs_grab_root(root);
2743 ASSERT(node->root);
2744 list_add_tail(&node->list, &rc->backref_cache.changed);
2745 } else {
2746 path->lowest_level = node->level;
2747 if (root == root->fs_info->chunk_root)
2748 btrfs_reserve_chunk_metadata(trans, false);
2749 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2750 btrfs_release_path(path);
2751 if (root == root->fs_info->chunk_root)
2752 btrfs_trans_release_chunk_metadata(trans);
2753 if (ret > 0)
2754 ret = 0;
2755 }
2756 if (!ret)
2757 update_processed_blocks(rc, node);
2758 } else {
2759 ret = do_relocation(trans, rc, node, key, path, 1);
2760 }
2761 out:
2762 if (ret || node->level == 0 || node->cowonly)
2763 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2764 return ret;
2765 }
2766
2767 /*
2768 * relocate a list of blocks
2769 */
2770 static noinline_for_stack
2771 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2772 struct reloc_control *rc, struct rb_root *blocks)
2773 {
2774 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2775 struct btrfs_backref_node *node;
2776 struct btrfs_path *path;
2777 struct tree_block *block;
2778 struct tree_block *next;
2779 int ret;
2780 int err = 0;
2781
2782 path = btrfs_alloc_path();
2783 if (!path) {
2784 err = -ENOMEM;
2785 goto out_free_blocks;
2786 }
2787
2788 /* Kick in readahead for tree blocks with missing keys */
2789 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2790 if (!block->key_ready)
2791 btrfs_readahead_tree_block(fs_info, block->bytenr,
2792 block->owner, 0,
2793 block->level);
2794 }
2795
2796 /* Get first keys */
2797 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2798 if (!block->key_ready) {
2799 err = get_tree_block_key(fs_info, block);
2800 if (err)
2801 goto out_free_path;
2802 }
2803 }
2804
2805 /* Do tree relocation */
2806 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2807 node = build_backref_tree(trans, rc, &block->key,
2808 block->level, block->bytenr);
2809 if (IS_ERR(node)) {
2810 err = PTR_ERR(node);
2811 goto out;
2812 }
2813
2814 ret = relocate_tree_block(trans, rc, node, &block->key,
2815 path);
2816 if (ret < 0) {
2817 err = ret;
2818 break;
2819 }
2820 }
2821 out:
2822 err = finish_pending_nodes(trans, rc, path, err);
2823
2824 out_free_path:
2825 btrfs_free_path(path);
2826 out_free_blocks:
2827 free_block_list(blocks);
2828 return err;
2829 }
2830
2831 static noinline_for_stack int prealloc_file_extent_cluster(
2832 struct btrfs_inode *inode,
2833 struct file_extent_cluster *cluster)
2834 {
2835 u64 alloc_hint = 0;
2836 u64 start;
2837 u64 end;
2838 u64 offset = inode->index_cnt;
2839 u64 num_bytes;
2840 int nr;
2841 int ret = 0;
2842 u64 i_size = i_size_read(&inode->vfs_inode);
2843 u64 prealloc_start = cluster->start - offset;
2844 u64 prealloc_end = cluster->end - offset;
2845 u64 cur_offset = prealloc_start;
2846
2847 /*
2848 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2849 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2850 * btrfs_do_readpage() call of previously relocated file cluster.
2851 *
2852 * If the current cluster starts in the above range, btrfs_do_readpage()
2853 * will skip the read, and relocate_one_page() will later writeback
2854 * the padding zeros as new data, causing data corruption.
2855 *
2856 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2857 */
2858 if (!PAGE_ALIGNED(i_size)) {
2859 struct address_space *mapping = inode->vfs_inode.i_mapping;
2860 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2861 const u32 sectorsize = fs_info->sectorsize;
2862 struct page *page;
2863
2864 ASSERT(sectorsize < PAGE_SIZE);
2865 ASSERT(IS_ALIGNED(i_size, sectorsize));
2866
2867 /*
2868 * Subpage can't handle page with DIRTY but without UPTODATE
2869 * bit as it can lead to the following deadlock:
2870 *
2871 * btrfs_read_folio()
2872 * | Page already *locked*
2873 * |- btrfs_lock_and_flush_ordered_range()
2874 * |- btrfs_start_ordered_extent()
2875 * |- extent_write_cache_pages()
2876 * |- lock_page()
2877 * We try to lock the page we already hold.
2878 *
2879 * Here we just writeback the whole data reloc inode, so that
2880 * we will be ensured to have no dirty range in the page, and
2881 * are safe to clear the uptodate bits.
2882 *
2883 * This shouldn't cause too much overhead, as we need to write
2884 * the data back anyway.
2885 */
2886 ret = filemap_write_and_wait(mapping);
2887 if (ret < 0)
2888 return ret;
2889
2890 clear_extent_bits(&inode->io_tree, i_size,
2891 round_up(i_size, PAGE_SIZE) - 1,
2892 EXTENT_UPTODATE);
2893 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2894 /*
2895 * If page is freed we don't need to do anything then, as we
2896 * will re-read the whole page anyway.
2897 */
2898 if (page) {
2899 btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2900 round_up(i_size, PAGE_SIZE) - i_size);
2901 unlock_page(page);
2902 put_page(page);
2903 }
2904 }
2905
2906 BUG_ON(cluster->start != cluster->boundary[0]);
2907 ret = btrfs_alloc_data_chunk_ondemand(inode,
2908 prealloc_end + 1 - prealloc_start);
2909 if (ret)
2910 return ret;
2911
2912 btrfs_inode_lock(inode, 0);
2913 for (nr = 0; nr < cluster->nr; nr++) {
2914 struct extent_state *cached_state = NULL;
2915
2916 start = cluster->boundary[nr] - offset;
2917 if (nr + 1 < cluster->nr)
2918 end = cluster->boundary[nr + 1] - 1 - offset;
2919 else
2920 end = cluster->end - offset;
2921
2922 lock_extent(&inode->io_tree, start, end, &cached_state);
2923 num_bytes = end + 1 - start;
2924 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2925 num_bytes, num_bytes,
2926 end + 1, &alloc_hint);
2927 cur_offset = end + 1;
2928 unlock_extent(&inode->io_tree, start, end, &cached_state);
2929 if (ret)
2930 break;
2931 }
2932 btrfs_inode_unlock(inode, 0);
2933
2934 if (cur_offset < prealloc_end)
2935 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2936 prealloc_end + 1 - cur_offset);
2937 return ret;
2938 }
2939
2940 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2941 u64 start, u64 end, u64 block_start)
2942 {
2943 struct extent_map *em;
2944 struct extent_state *cached_state = NULL;
2945 int ret = 0;
2946
2947 em = alloc_extent_map();
2948 if (!em)
2949 return -ENOMEM;
2950
2951 em->start = start;
2952 em->len = end + 1 - start;
2953 em->block_len = em->len;
2954 em->block_start = block_start;
2955 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2956
2957 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2958 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2959 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2960 free_extent_map(em);
2961
2962 return ret;
2963 }
2964
2965 /*
2966 * Allow error injection to test balance/relocation cancellation
2967 */
2968 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2969 {
2970 return atomic_read(&fs_info->balance_cancel_req) ||
2971 atomic_read(&fs_info->reloc_cancel_req) ||
2972 fatal_signal_pending(current);
2973 }
2974 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2975
2976 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2977 int cluster_nr)
2978 {
2979 /* Last extent, use cluster end directly */
2980 if (cluster_nr >= cluster->nr - 1)
2981 return cluster->end;
2982
2983 /* Use next boundary start*/
2984 return cluster->boundary[cluster_nr + 1] - 1;
2985 }
2986
2987 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2988 struct file_extent_cluster *cluster,
2989 int *cluster_nr, unsigned long page_index)
2990 {
2991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992 u64 offset = BTRFS_I(inode)->index_cnt;
2993 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2994 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2995 struct page *page;
2996 u64 page_start;
2997 u64 page_end;
2998 u64 cur;
2999 int ret;
3000
3001 ASSERT(page_index <= last_index);
3002 page = find_lock_page(inode->i_mapping, page_index);
3003 if (!page) {
3004 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3005 page_index, last_index + 1 - page_index);
3006 page = find_or_create_page(inode->i_mapping, page_index, mask);
3007 if (!page)
3008 return -ENOMEM;
3009 }
3010
3011 if (PageReadahead(page))
3012 page_cache_async_readahead(inode->i_mapping, ra, NULL,
3013 page_folio(page), page_index,
3014 last_index + 1 - page_index);
3015
3016 if (!PageUptodate(page)) {
3017 btrfs_read_folio(NULL, page_folio(page));
3018 lock_page(page);
3019 if (!PageUptodate(page)) {
3020 ret = -EIO;
3021 goto release_page;
3022 }
3023 }
3024
3025 /*
3026 * We could have lost page private when we dropped the lock to read the
3027 * page above, make sure we set_page_extent_mapped here so we have any
3028 * of the subpage blocksize stuff we need in place.
3029 */
3030 ret = set_page_extent_mapped(page);
3031 if (ret < 0)
3032 goto release_page;
3033
3034 page_start = page_offset(page);
3035 page_end = page_start + PAGE_SIZE - 1;
3036
3037 /*
3038 * Start from the cluster, as for subpage case, the cluster can start
3039 * inside the page.
3040 */
3041 cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3042 while (cur <= page_end) {
3043 struct extent_state *cached_state = NULL;
3044 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3045 u64 extent_end = get_cluster_boundary_end(cluster,
3046 *cluster_nr) - offset;
3047 u64 clamped_start = max(page_start, extent_start);
3048 u64 clamped_end = min(page_end, extent_end);
3049 u32 clamped_len = clamped_end + 1 - clamped_start;
3050
3051 /* Reserve metadata for this range */
3052 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3053 clamped_len, clamped_len,
3054 false);
3055 if (ret)
3056 goto release_page;
3057
3058 /* Mark the range delalloc and dirty for later writeback */
3059 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3060 &cached_state);
3061 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3062 clamped_end, 0, &cached_state);
3063 if (ret) {
3064 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3065 clamped_start, clamped_end,
3066 EXTENT_LOCKED | EXTENT_BOUNDARY,
3067 &cached_state);
3068 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3069 clamped_len, true);
3070 btrfs_delalloc_release_extents(BTRFS_I(inode),
3071 clamped_len);
3072 goto release_page;
3073 }
3074 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3075
3076 /*
3077 * Set the boundary if it's inside the page.
3078 * Data relocation requires the destination extents to have the
3079 * same size as the source.
3080 * EXTENT_BOUNDARY bit prevents current extent from being merged
3081 * with previous extent.
3082 */
3083 if (in_range(cluster->boundary[*cluster_nr] - offset,
3084 page_start, PAGE_SIZE)) {
3085 u64 boundary_start = cluster->boundary[*cluster_nr] -
3086 offset;
3087 u64 boundary_end = boundary_start +
3088 fs_info->sectorsize - 1;
3089
3090 set_extent_bit(&BTRFS_I(inode)->io_tree,
3091 boundary_start, boundary_end,
3092 EXTENT_BOUNDARY, NULL);
3093 }
3094 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3095 &cached_state);
3096 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3097 cur += clamped_len;
3098
3099 /* Crossed extent end, go to next extent */
3100 if (cur >= extent_end) {
3101 (*cluster_nr)++;
3102 /* Just finished the last extent of the cluster, exit. */
3103 if (*cluster_nr >= cluster->nr)
3104 break;
3105 }
3106 }
3107 unlock_page(page);
3108 put_page(page);
3109
3110 balance_dirty_pages_ratelimited(inode->i_mapping);
3111 btrfs_throttle(fs_info);
3112 if (btrfs_should_cancel_balance(fs_info))
3113 ret = -ECANCELED;
3114 return ret;
3115
3116 release_page:
3117 unlock_page(page);
3118 put_page(page);
3119 return ret;
3120 }
3121
3122 static int relocate_file_extent_cluster(struct inode *inode,
3123 struct file_extent_cluster *cluster)
3124 {
3125 u64 offset = BTRFS_I(inode)->index_cnt;
3126 unsigned long index;
3127 unsigned long last_index;
3128 struct file_ra_state *ra;
3129 int cluster_nr = 0;
3130 int ret = 0;
3131
3132 if (!cluster->nr)
3133 return 0;
3134
3135 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3136 if (!ra)
3137 return -ENOMEM;
3138
3139 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3140 if (ret)
3141 goto out;
3142
3143 file_ra_state_init(ra, inode->i_mapping);
3144
3145 ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3146 cluster->end - offset, cluster->start);
3147 if (ret)
3148 goto out;
3149
3150 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3151 for (index = (cluster->start - offset) >> PAGE_SHIFT;
3152 index <= last_index && !ret; index++)
3153 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3154 if (ret == 0)
3155 WARN_ON(cluster_nr != cluster->nr);
3156 out:
3157 kfree(ra);
3158 return ret;
3159 }
3160
3161 static noinline_for_stack
3162 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3163 struct file_extent_cluster *cluster)
3164 {
3165 int ret;
3166
3167 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3168 ret = relocate_file_extent_cluster(inode, cluster);
3169 if (ret)
3170 return ret;
3171 cluster->nr = 0;
3172 }
3173
3174 if (!cluster->nr)
3175 cluster->start = extent_key->objectid;
3176 else
3177 BUG_ON(cluster->nr >= MAX_EXTENTS);
3178 cluster->end = extent_key->objectid + extent_key->offset - 1;
3179 cluster->boundary[cluster->nr] = extent_key->objectid;
3180 cluster->nr++;
3181
3182 if (cluster->nr >= MAX_EXTENTS) {
3183 ret = relocate_file_extent_cluster(inode, cluster);
3184 if (ret)
3185 return ret;
3186 cluster->nr = 0;
3187 }
3188 return 0;
3189 }
3190
3191 /*
3192 * helper to add a tree block to the list.
3193 * the major work is getting the generation and level of the block
3194 */
3195 static int add_tree_block(struct reloc_control *rc,
3196 struct btrfs_key *extent_key,
3197 struct btrfs_path *path,
3198 struct rb_root *blocks)
3199 {
3200 struct extent_buffer *eb;
3201 struct btrfs_extent_item *ei;
3202 struct btrfs_tree_block_info *bi;
3203 struct tree_block *block;
3204 struct rb_node *rb_node;
3205 u32 item_size;
3206 int level = -1;
3207 u64 generation;
3208 u64 owner = 0;
3209
3210 eb = path->nodes[0];
3211 item_size = btrfs_item_size(eb, path->slots[0]);
3212
3213 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3214 item_size >= sizeof(*ei) + sizeof(*bi)) {
3215 unsigned long ptr = 0, end;
3216
3217 ei = btrfs_item_ptr(eb, path->slots[0],
3218 struct btrfs_extent_item);
3219 end = (unsigned long)ei + item_size;
3220 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3221 bi = (struct btrfs_tree_block_info *)(ei + 1);
3222 level = btrfs_tree_block_level(eb, bi);
3223 ptr = (unsigned long)(bi + 1);
3224 } else {
3225 level = (int)extent_key->offset;
3226 ptr = (unsigned long)(ei + 1);
3227 }
3228 generation = btrfs_extent_generation(eb, ei);
3229
3230 /*
3231 * We're reading random blocks without knowing their owner ahead
3232 * of time. This is ok most of the time, as all reloc roots and
3233 * fs roots have the same lock type. However normal trees do
3234 * not, and the only way to know ahead of time is to read the
3235 * inline ref offset. We know it's an fs root if
3236 *
3237 * 1. There's more than one ref.
3238 * 2. There's a SHARED_DATA_REF_KEY set.
3239 * 3. FULL_BACKREF is set on the flags.
3240 *
3241 * Otherwise it's safe to assume that the ref offset == the
3242 * owner of this block, so we can use that when calling
3243 * read_tree_block.
3244 */
3245 if (btrfs_extent_refs(eb, ei) == 1 &&
3246 !(btrfs_extent_flags(eb, ei) &
3247 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3248 ptr < end) {
3249 struct btrfs_extent_inline_ref *iref;
3250 int type;
3251
3252 iref = (struct btrfs_extent_inline_ref *)ptr;
3253 type = btrfs_get_extent_inline_ref_type(eb, iref,
3254 BTRFS_REF_TYPE_BLOCK);
3255 if (type == BTRFS_REF_TYPE_INVALID)
3256 return -EINVAL;
3257 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3258 owner = btrfs_extent_inline_ref_offset(eb, iref);
3259 }
3260 } else {
3261 btrfs_print_leaf(eb);
3262 btrfs_err(rc->block_group->fs_info,
3263 "unrecognized tree backref at tree block %llu slot %u",
3264 eb->start, path->slots[0]);
3265 btrfs_release_path(path);
3266 return -EUCLEAN;
3267 }
3268
3269 btrfs_release_path(path);
3270
3271 BUG_ON(level == -1);
3272
3273 block = kmalloc(sizeof(*block), GFP_NOFS);
3274 if (!block)
3275 return -ENOMEM;
3276
3277 block->bytenr = extent_key->objectid;
3278 block->key.objectid = rc->extent_root->fs_info->nodesize;
3279 block->key.offset = generation;
3280 block->level = level;
3281 block->key_ready = 0;
3282 block->owner = owner;
3283
3284 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3285 if (rb_node)
3286 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3287 -EEXIST);
3288
3289 return 0;
3290 }
3291
3292 /*
3293 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3294 */
3295 static int __add_tree_block(struct reloc_control *rc,
3296 u64 bytenr, u32 blocksize,
3297 struct rb_root *blocks)
3298 {
3299 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3300 struct btrfs_path *path;
3301 struct btrfs_key key;
3302 int ret;
3303 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3304
3305 if (tree_block_processed(bytenr, rc))
3306 return 0;
3307
3308 if (rb_simple_search(blocks, bytenr))
3309 return 0;
3310
3311 path = btrfs_alloc_path();
3312 if (!path)
3313 return -ENOMEM;
3314 again:
3315 key.objectid = bytenr;
3316 if (skinny) {
3317 key.type = BTRFS_METADATA_ITEM_KEY;
3318 key.offset = (u64)-1;
3319 } else {
3320 key.type = BTRFS_EXTENT_ITEM_KEY;
3321 key.offset = blocksize;
3322 }
3323
3324 path->search_commit_root = 1;
3325 path->skip_locking = 1;
3326 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3327 if (ret < 0)
3328 goto out;
3329
3330 if (ret > 0 && skinny) {
3331 if (path->slots[0]) {
3332 path->slots[0]--;
3333 btrfs_item_key_to_cpu(path->nodes[0], &key,
3334 path->slots[0]);
3335 if (key.objectid == bytenr &&
3336 (key.type == BTRFS_METADATA_ITEM_KEY ||
3337 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3338 key.offset == blocksize)))
3339 ret = 0;
3340 }
3341
3342 if (ret) {
3343 skinny = false;
3344 btrfs_release_path(path);
3345 goto again;
3346 }
3347 }
3348 if (ret) {
3349 ASSERT(ret == 1);
3350 btrfs_print_leaf(path->nodes[0]);
3351 btrfs_err(fs_info,
3352 "tree block extent item (%llu) is not found in extent tree",
3353 bytenr);
3354 WARN_ON(1);
3355 ret = -EINVAL;
3356 goto out;
3357 }
3358
3359 ret = add_tree_block(rc, &key, path, blocks);
3360 out:
3361 btrfs_free_path(path);
3362 return ret;
3363 }
3364
3365 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3366 struct btrfs_block_group *block_group,
3367 struct inode *inode,
3368 u64 ino)
3369 {
3370 struct btrfs_root *root = fs_info->tree_root;
3371 struct btrfs_trans_handle *trans;
3372 int ret = 0;
3373
3374 if (inode)
3375 goto truncate;
3376
3377 inode = btrfs_iget(fs_info->sb, ino, root);
3378 if (IS_ERR(inode))
3379 return -ENOENT;
3380
3381 truncate:
3382 ret = btrfs_check_trunc_cache_free_space(fs_info,
3383 &fs_info->global_block_rsv);
3384 if (ret)
3385 goto out;
3386
3387 trans = btrfs_join_transaction(root);
3388 if (IS_ERR(trans)) {
3389 ret = PTR_ERR(trans);
3390 goto out;
3391 }
3392
3393 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3394
3395 btrfs_end_transaction(trans);
3396 btrfs_btree_balance_dirty(fs_info);
3397 out:
3398 iput(inode);
3399 return ret;
3400 }
3401
3402 /*
3403 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3404 * cache inode, to avoid free space cache data extent blocking data relocation.
3405 */
3406 static int delete_v1_space_cache(struct extent_buffer *leaf,
3407 struct btrfs_block_group *block_group,
3408 u64 data_bytenr)
3409 {
3410 u64 space_cache_ino;
3411 struct btrfs_file_extent_item *ei;
3412 struct btrfs_key key;
3413 bool found = false;
3414 int i;
3415 int ret;
3416
3417 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3418 return 0;
3419
3420 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3421 u8 type;
3422
3423 btrfs_item_key_to_cpu(leaf, &key, i);
3424 if (key.type != BTRFS_EXTENT_DATA_KEY)
3425 continue;
3426 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3427 type = btrfs_file_extent_type(leaf, ei);
3428
3429 if ((type == BTRFS_FILE_EXTENT_REG ||
3430 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3431 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3432 found = true;
3433 space_cache_ino = key.objectid;
3434 break;
3435 }
3436 }
3437 if (!found)
3438 return -ENOENT;
3439 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3440 space_cache_ino);
3441 return ret;
3442 }
3443
3444 /*
3445 * helper to find all tree blocks that reference a given data extent
3446 */
3447 static noinline_for_stack
3448 int add_data_references(struct reloc_control *rc,
3449 struct btrfs_key *extent_key,
3450 struct btrfs_path *path,
3451 struct rb_root *blocks)
3452 {
3453 struct btrfs_backref_walk_ctx ctx = { 0 };
3454 struct ulist_iterator leaf_uiter;
3455 struct ulist_node *ref_node = NULL;
3456 const u32 blocksize = rc->extent_root->fs_info->nodesize;
3457 int ret = 0;
3458
3459 btrfs_release_path(path);
3460
3461 ctx.bytenr = extent_key->objectid;
3462 ctx.skip_inode_ref_list = true;
3463 ctx.fs_info = rc->extent_root->fs_info;
3464
3465 ret = btrfs_find_all_leafs(&ctx);
3466 if (ret < 0)
3467 return ret;
3468
3469 ULIST_ITER_INIT(&leaf_uiter);
3470 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3471 struct btrfs_tree_parent_check check = { 0 };
3472 struct extent_buffer *eb;
3473
3474 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3475 if (IS_ERR(eb)) {
3476 ret = PTR_ERR(eb);
3477 break;
3478 }
3479 ret = delete_v1_space_cache(eb, rc->block_group,
3480 extent_key->objectid);
3481 free_extent_buffer(eb);
3482 if (ret < 0)
3483 break;
3484 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3485 if (ret < 0)
3486 break;
3487 }
3488 if (ret < 0)
3489 free_block_list(blocks);
3490 ulist_free(ctx.refs);
3491 return ret;
3492 }
3493
3494 /*
3495 * helper to find next unprocessed extent
3496 */
3497 static noinline_for_stack
3498 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3499 struct btrfs_key *extent_key)
3500 {
3501 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3502 struct btrfs_key key;
3503 struct extent_buffer *leaf;
3504 u64 start, end, last;
3505 int ret;
3506
3507 last = rc->block_group->start + rc->block_group->length;
3508 while (1) {
3509 bool block_found;
3510
3511 cond_resched();
3512 if (rc->search_start >= last) {
3513 ret = 1;
3514 break;
3515 }
3516
3517 key.objectid = rc->search_start;
3518 key.type = BTRFS_EXTENT_ITEM_KEY;
3519 key.offset = 0;
3520
3521 path->search_commit_root = 1;
3522 path->skip_locking = 1;
3523 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3524 0, 0);
3525 if (ret < 0)
3526 break;
3527 next:
3528 leaf = path->nodes[0];
3529 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3530 ret = btrfs_next_leaf(rc->extent_root, path);
3531 if (ret != 0)
3532 break;
3533 leaf = path->nodes[0];
3534 }
3535
3536 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3537 if (key.objectid >= last) {
3538 ret = 1;
3539 break;
3540 }
3541
3542 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3543 key.type != BTRFS_METADATA_ITEM_KEY) {
3544 path->slots[0]++;
3545 goto next;
3546 }
3547
3548 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3549 key.objectid + key.offset <= rc->search_start) {
3550 path->slots[0]++;
3551 goto next;
3552 }
3553
3554 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3555 key.objectid + fs_info->nodesize <=
3556 rc->search_start) {
3557 path->slots[0]++;
3558 goto next;
3559 }
3560
3561 block_found = find_first_extent_bit(&rc->processed_blocks,
3562 key.objectid, &start, &end,
3563 EXTENT_DIRTY, NULL);
3564
3565 if (block_found && start <= key.objectid) {
3566 btrfs_release_path(path);
3567 rc->search_start = end + 1;
3568 } else {
3569 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3570 rc->search_start = key.objectid + key.offset;
3571 else
3572 rc->search_start = key.objectid +
3573 fs_info->nodesize;
3574 memcpy(extent_key, &key, sizeof(key));
3575 return 0;
3576 }
3577 }
3578 btrfs_release_path(path);
3579 return ret;
3580 }
3581
3582 static void set_reloc_control(struct reloc_control *rc)
3583 {
3584 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3585
3586 mutex_lock(&fs_info->reloc_mutex);
3587 fs_info->reloc_ctl = rc;
3588 mutex_unlock(&fs_info->reloc_mutex);
3589 }
3590
3591 static void unset_reloc_control(struct reloc_control *rc)
3592 {
3593 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3594
3595 mutex_lock(&fs_info->reloc_mutex);
3596 fs_info->reloc_ctl = NULL;
3597 mutex_unlock(&fs_info->reloc_mutex);
3598 }
3599
3600 static noinline_for_stack
3601 int prepare_to_relocate(struct reloc_control *rc)
3602 {
3603 struct btrfs_trans_handle *trans;
3604 int ret;
3605
3606 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3607 BTRFS_BLOCK_RSV_TEMP);
3608 if (!rc->block_rsv)
3609 return -ENOMEM;
3610
3611 memset(&rc->cluster, 0, sizeof(rc->cluster));
3612 rc->search_start = rc->block_group->start;
3613 rc->extents_found = 0;
3614 rc->nodes_relocated = 0;
3615 rc->merging_rsv_size = 0;
3616 rc->reserved_bytes = 0;
3617 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3618 RELOCATION_RESERVED_NODES;
3619 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3620 rc->block_rsv, rc->block_rsv->size,
3621 BTRFS_RESERVE_FLUSH_ALL);
3622 if (ret)
3623 return ret;
3624
3625 rc->create_reloc_tree = 1;
3626 set_reloc_control(rc);
3627
3628 trans = btrfs_join_transaction(rc->extent_root);
3629 if (IS_ERR(trans)) {
3630 unset_reloc_control(rc);
3631 /*
3632 * extent tree is not a ref_cow tree and has no reloc_root to
3633 * cleanup. And callers are responsible to free the above
3634 * block rsv.
3635 */
3636 return PTR_ERR(trans);
3637 }
3638
3639 ret = btrfs_commit_transaction(trans);
3640 if (ret)
3641 unset_reloc_control(rc);
3642
3643 return ret;
3644 }
3645
3646 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3647 {
3648 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3649 struct rb_root blocks = RB_ROOT;
3650 struct btrfs_key key;
3651 struct btrfs_trans_handle *trans = NULL;
3652 struct btrfs_path *path;
3653 struct btrfs_extent_item *ei;
3654 u64 flags;
3655 int ret;
3656 int err = 0;
3657 int progress = 0;
3658
3659 path = btrfs_alloc_path();
3660 if (!path)
3661 return -ENOMEM;
3662 path->reada = READA_FORWARD;
3663
3664 ret = prepare_to_relocate(rc);
3665 if (ret) {
3666 err = ret;
3667 goto out_free;
3668 }
3669
3670 while (1) {
3671 rc->reserved_bytes = 0;
3672 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3673 rc->block_rsv->size,
3674 BTRFS_RESERVE_FLUSH_ALL);
3675 if (ret) {
3676 err = ret;
3677 break;
3678 }
3679 progress++;
3680 trans = btrfs_start_transaction(rc->extent_root, 0);
3681 if (IS_ERR(trans)) {
3682 err = PTR_ERR(trans);
3683 trans = NULL;
3684 break;
3685 }
3686 restart:
3687 if (update_backref_cache(trans, &rc->backref_cache)) {
3688 btrfs_end_transaction(trans);
3689 trans = NULL;
3690 continue;
3691 }
3692
3693 ret = find_next_extent(rc, path, &key);
3694 if (ret < 0)
3695 err = ret;
3696 if (ret != 0)
3697 break;
3698
3699 rc->extents_found++;
3700
3701 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3702 struct btrfs_extent_item);
3703 flags = btrfs_extent_flags(path->nodes[0], ei);
3704
3705 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3706 ret = add_tree_block(rc, &key, path, &blocks);
3707 } else if (rc->stage == UPDATE_DATA_PTRS &&
3708 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3709 ret = add_data_references(rc, &key, path, &blocks);
3710 } else {
3711 btrfs_release_path(path);
3712 ret = 0;
3713 }
3714 if (ret < 0) {
3715 err = ret;
3716 break;
3717 }
3718
3719 if (!RB_EMPTY_ROOT(&blocks)) {
3720 ret = relocate_tree_blocks(trans, rc, &blocks);
3721 if (ret < 0) {
3722 if (ret != -EAGAIN) {
3723 err = ret;
3724 break;
3725 }
3726 rc->extents_found--;
3727 rc->search_start = key.objectid;
3728 }
3729 }
3730
3731 btrfs_end_transaction_throttle(trans);
3732 btrfs_btree_balance_dirty(fs_info);
3733 trans = NULL;
3734
3735 if (rc->stage == MOVE_DATA_EXTENTS &&
3736 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3737 rc->found_file_extent = 1;
3738 ret = relocate_data_extent(rc->data_inode,
3739 &key, &rc->cluster);
3740 if (ret < 0) {
3741 err = ret;
3742 break;
3743 }
3744 }
3745 if (btrfs_should_cancel_balance(fs_info)) {
3746 err = -ECANCELED;
3747 break;
3748 }
3749 }
3750 if (trans && progress && err == -ENOSPC) {
3751 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3752 if (ret == 1) {
3753 err = 0;
3754 progress = 0;
3755 goto restart;
3756 }
3757 }
3758
3759 btrfs_release_path(path);
3760 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3761
3762 if (trans) {
3763 btrfs_end_transaction_throttle(trans);
3764 btrfs_btree_balance_dirty(fs_info);
3765 }
3766
3767 if (!err) {
3768 ret = relocate_file_extent_cluster(rc->data_inode,
3769 &rc->cluster);
3770 if (ret < 0)
3771 err = ret;
3772 }
3773
3774 rc->create_reloc_tree = 0;
3775 set_reloc_control(rc);
3776
3777 btrfs_backref_release_cache(&rc->backref_cache);
3778 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3779
3780 /*
3781 * Even in the case when the relocation is cancelled, we should all go
3782 * through prepare_to_merge() and merge_reloc_roots().
3783 *
3784 * For error (including cancelled balance), prepare_to_merge() will
3785 * mark all reloc trees orphan, then queue them for cleanup in
3786 * merge_reloc_roots()
3787 */
3788 err = prepare_to_merge(rc, err);
3789
3790 merge_reloc_roots(rc);
3791
3792 rc->merge_reloc_tree = 0;
3793 unset_reloc_control(rc);
3794 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3795
3796 /* get rid of pinned extents */
3797 trans = btrfs_join_transaction(rc->extent_root);
3798 if (IS_ERR(trans)) {
3799 err = PTR_ERR(trans);
3800 goto out_free;
3801 }
3802 ret = btrfs_commit_transaction(trans);
3803 if (ret && !err)
3804 err = ret;
3805 out_free:
3806 ret = clean_dirty_subvols(rc);
3807 if (ret < 0 && !err)
3808 err = ret;
3809 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3810 btrfs_free_path(path);
3811 return err;
3812 }
3813
3814 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3815 struct btrfs_root *root, u64 objectid)
3816 {
3817 struct btrfs_path *path;
3818 struct btrfs_inode_item *item;
3819 struct extent_buffer *leaf;
3820 int ret;
3821
3822 path = btrfs_alloc_path();
3823 if (!path)
3824 return -ENOMEM;
3825
3826 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3827 if (ret)
3828 goto out;
3829
3830 leaf = path->nodes[0];
3831 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3832 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3833 btrfs_set_inode_generation(leaf, item, 1);
3834 btrfs_set_inode_size(leaf, item, 0);
3835 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3836 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3837 BTRFS_INODE_PREALLOC);
3838 btrfs_mark_buffer_dirty(leaf);
3839 out:
3840 btrfs_free_path(path);
3841 return ret;
3842 }
3843
3844 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3845 struct btrfs_root *root, u64 objectid)
3846 {
3847 struct btrfs_path *path;
3848 struct btrfs_key key;
3849 int ret = 0;
3850
3851 path = btrfs_alloc_path();
3852 if (!path) {
3853 ret = -ENOMEM;
3854 goto out;
3855 }
3856
3857 key.objectid = objectid;
3858 key.type = BTRFS_INODE_ITEM_KEY;
3859 key.offset = 0;
3860 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3861 if (ret) {
3862 if (ret > 0)
3863 ret = -ENOENT;
3864 goto out;
3865 }
3866 ret = btrfs_del_item(trans, root, path);
3867 out:
3868 if (ret)
3869 btrfs_abort_transaction(trans, ret);
3870 btrfs_free_path(path);
3871 }
3872
3873 /*
3874 * helper to create inode for data relocation.
3875 * the inode is in data relocation tree and its link count is 0
3876 */
3877 static noinline_for_stack
3878 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3879 struct btrfs_block_group *group)
3880 {
3881 struct inode *inode = NULL;
3882 struct btrfs_trans_handle *trans;
3883 struct btrfs_root *root;
3884 u64 objectid;
3885 int err = 0;
3886
3887 root = btrfs_grab_root(fs_info->data_reloc_root);
3888 trans = btrfs_start_transaction(root, 6);
3889 if (IS_ERR(trans)) {
3890 btrfs_put_root(root);
3891 return ERR_CAST(trans);
3892 }
3893
3894 err = btrfs_get_free_objectid(root, &objectid);
3895 if (err)
3896 goto out;
3897
3898 err = __insert_orphan_inode(trans, root, objectid);
3899 if (err)
3900 goto out;
3901
3902 inode = btrfs_iget(fs_info->sb, objectid, root);
3903 if (IS_ERR(inode)) {
3904 delete_orphan_inode(trans, root, objectid);
3905 err = PTR_ERR(inode);
3906 inode = NULL;
3907 goto out;
3908 }
3909 BTRFS_I(inode)->index_cnt = group->start;
3910
3911 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3912 out:
3913 btrfs_put_root(root);
3914 btrfs_end_transaction(trans);
3915 btrfs_btree_balance_dirty(fs_info);
3916 if (err) {
3917 iput(inode);
3918 inode = ERR_PTR(err);
3919 }
3920 return inode;
3921 }
3922
3923 /*
3924 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3925 * has been requested meanwhile and don't start in that case.
3926 *
3927 * Return:
3928 * 0 success
3929 * -EINPROGRESS operation is already in progress, that's probably a bug
3930 * -ECANCELED cancellation request was set before the operation started
3931 */
3932 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3933 {
3934 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3935 /* This should not happen */
3936 btrfs_err(fs_info, "reloc already running, cannot start");
3937 return -EINPROGRESS;
3938 }
3939
3940 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3941 btrfs_info(fs_info, "chunk relocation canceled on start");
3942 /*
3943 * On cancel, clear all requests but let the caller mark
3944 * the end after cleanup operations.
3945 */
3946 atomic_set(&fs_info->reloc_cancel_req, 0);
3947 return -ECANCELED;
3948 }
3949 return 0;
3950 }
3951
3952 /*
3953 * Mark end of chunk relocation that is cancellable and wake any waiters.
3954 */
3955 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3956 {
3957 /* Requested after start, clear bit first so any waiters can continue */
3958 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3959 btrfs_info(fs_info, "chunk relocation canceled during operation");
3960 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3961 atomic_set(&fs_info->reloc_cancel_req, 0);
3962 }
3963
3964 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3965 {
3966 struct reloc_control *rc;
3967
3968 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3969 if (!rc)
3970 return NULL;
3971
3972 INIT_LIST_HEAD(&rc->reloc_roots);
3973 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3974 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3975 mapping_tree_init(&rc->reloc_root_tree);
3976 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3977 return rc;
3978 }
3979
3980 static void free_reloc_control(struct reloc_control *rc)
3981 {
3982 struct mapping_node *node, *tmp;
3983
3984 free_reloc_roots(&rc->reloc_roots);
3985 rbtree_postorder_for_each_entry_safe(node, tmp,
3986 &rc->reloc_root_tree.rb_root, rb_node)
3987 kfree(node);
3988
3989 kfree(rc);
3990 }
3991
3992 /*
3993 * Print the block group being relocated
3994 */
3995 static void describe_relocation(struct btrfs_fs_info *fs_info,
3996 struct btrfs_block_group *block_group)
3997 {
3998 char buf[128] = {'\0'};
3999
4000 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4001
4002 btrfs_info(fs_info,
4003 "relocating block group %llu flags %s",
4004 block_group->start, buf);
4005 }
4006
4007 static const char *stage_to_string(int stage)
4008 {
4009 if (stage == MOVE_DATA_EXTENTS)
4010 return "move data extents";
4011 if (stage == UPDATE_DATA_PTRS)
4012 return "update data pointers";
4013 return "unknown";
4014 }
4015
4016 /*
4017 * function to relocate all extents in a block group.
4018 */
4019 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4020 {
4021 struct btrfs_block_group *bg;
4022 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4023 struct reloc_control *rc;
4024 struct inode *inode;
4025 struct btrfs_path *path;
4026 int ret;
4027 int rw = 0;
4028 int err = 0;
4029
4030 /*
4031 * This only gets set if we had a half-deleted snapshot on mount. We
4032 * cannot allow relocation to start while we're still trying to clean up
4033 * these pending deletions.
4034 */
4035 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4036 if (ret)
4037 return ret;
4038
4039 /* We may have been woken up by close_ctree, so bail if we're closing. */
4040 if (btrfs_fs_closing(fs_info))
4041 return -EINTR;
4042
4043 bg = btrfs_lookup_block_group(fs_info, group_start);
4044 if (!bg)
4045 return -ENOENT;
4046
4047 /*
4048 * Relocation of a data block group creates ordered extents. Without
4049 * sb_start_write(), we can freeze the filesystem while unfinished
4050 * ordered extents are left. Such ordered extents can cause a deadlock
4051 * e.g. when syncfs() is waiting for their completion but they can't
4052 * finish because they block when joining a transaction, due to the
4053 * fact that the freeze locks are being held in write mode.
4054 */
4055 if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4056 ASSERT(sb_write_started(fs_info->sb));
4057
4058 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4059 btrfs_put_block_group(bg);
4060 return -ETXTBSY;
4061 }
4062
4063 rc = alloc_reloc_control(fs_info);
4064 if (!rc) {
4065 btrfs_put_block_group(bg);
4066 return -ENOMEM;
4067 }
4068
4069 ret = reloc_chunk_start(fs_info);
4070 if (ret < 0) {
4071 err = ret;
4072 goto out_put_bg;
4073 }
4074
4075 rc->extent_root = extent_root;
4076 rc->block_group = bg;
4077
4078 ret = btrfs_inc_block_group_ro(rc->block_group, true);
4079 if (ret) {
4080 err = ret;
4081 goto out;
4082 }
4083 rw = 1;
4084
4085 path = btrfs_alloc_path();
4086 if (!path) {
4087 err = -ENOMEM;
4088 goto out;
4089 }
4090
4091 inode = lookup_free_space_inode(rc->block_group, path);
4092 btrfs_free_path(path);
4093
4094 if (!IS_ERR(inode))
4095 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4096 else
4097 ret = PTR_ERR(inode);
4098
4099 if (ret && ret != -ENOENT) {
4100 err = ret;
4101 goto out;
4102 }
4103
4104 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4105 if (IS_ERR(rc->data_inode)) {
4106 err = PTR_ERR(rc->data_inode);
4107 rc->data_inode = NULL;
4108 goto out;
4109 }
4110
4111 describe_relocation(fs_info, rc->block_group);
4112
4113 btrfs_wait_block_group_reservations(rc->block_group);
4114 btrfs_wait_nocow_writers(rc->block_group);
4115 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4116 rc->block_group->start,
4117 rc->block_group->length);
4118
4119 ret = btrfs_zone_finish(rc->block_group);
4120 WARN_ON(ret && ret != -EAGAIN);
4121
4122 while (1) {
4123 int finishes_stage;
4124
4125 mutex_lock(&fs_info->cleaner_mutex);
4126 ret = relocate_block_group(rc);
4127 mutex_unlock(&fs_info->cleaner_mutex);
4128 if (ret < 0)
4129 err = ret;
4130
4131 finishes_stage = rc->stage;
4132 /*
4133 * We may have gotten ENOSPC after we already dirtied some
4134 * extents. If writeout happens while we're relocating a
4135 * different block group we could end up hitting the
4136 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4137 * btrfs_reloc_cow_block. Make sure we write everything out
4138 * properly so we don't trip over this problem, and then break
4139 * out of the loop if we hit an error.
4140 */
4141 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4142 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4143 (u64)-1);
4144 if (ret)
4145 err = ret;
4146 invalidate_mapping_pages(rc->data_inode->i_mapping,
4147 0, -1);
4148 rc->stage = UPDATE_DATA_PTRS;
4149 }
4150
4151 if (err < 0)
4152 goto out;
4153
4154 if (rc->extents_found == 0)
4155 break;
4156
4157 btrfs_info(fs_info, "found %llu extents, stage: %s",
4158 rc->extents_found, stage_to_string(finishes_stage));
4159 }
4160
4161 WARN_ON(rc->block_group->pinned > 0);
4162 WARN_ON(rc->block_group->reserved > 0);
4163 WARN_ON(rc->block_group->used > 0);
4164 out:
4165 if (err && rw)
4166 btrfs_dec_block_group_ro(rc->block_group);
4167 iput(rc->data_inode);
4168 out_put_bg:
4169 btrfs_put_block_group(bg);
4170 reloc_chunk_end(fs_info);
4171 free_reloc_control(rc);
4172 return err;
4173 }
4174
4175 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4176 {
4177 struct btrfs_fs_info *fs_info = root->fs_info;
4178 struct btrfs_trans_handle *trans;
4179 int ret, err;
4180
4181 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4182 if (IS_ERR(trans))
4183 return PTR_ERR(trans);
4184
4185 memset(&root->root_item.drop_progress, 0,
4186 sizeof(root->root_item.drop_progress));
4187 btrfs_set_root_drop_level(&root->root_item, 0);
4188 btrfs_set_root_refs(&root->root_item, 0);
4189 ret = btrfs_update_root(trans, fs_info->tree_root,
4190 &root->root_key, &root->root_item);
4191
4192 err = btrfs_end_transaction(trans);
4193 if (err)
4194 return err;
4195 return ret;
4196 }
4197
4198 /*
4199 * recover relocation interrupted by system crash.
4200 *
4201 * this function resumes merging reloc trees with corresponding fs trees.
4202 * this is important for keeping the sharing of tree blocks
4203 */
4204 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4205 {
4206 LIST_HEAD(reloc_roots);
4207 struct btrfs_key key;
4208 struct btrfs_root *fs_root;
4209 struct btrfs_root *reloc_root;
4210 struct btrfs_path *path;
4211 struct extent_buffer *leaf;
4212 struct reloc_control *rc = NULL;
4213 struct btrfs_trans_handle *trans;
4214 int ret;
4215 int err = 0;
4216
4217 path = btrfs_alloc_path();
4218 if (!path)
4219 return -ENOMEM;
4220 path->reada = READA_BACK;
4221
4222 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4223 key.type = BTRFS_ROOT_ITEM_KEY;
4224 key.offset = (u64)-1;
4225
4226 while (1) {
4227 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4228 path, 0, 0);
4229 if (ret < 0) {
4230 err = ret;
4231 goto out;
4232 }
4233 if (ret > 0) {
4234 if (path->slots[0] == 0)
4235 break;
4236 path->slots[0]--;
4237 }
4238 leaf = path->nodes[0];
4239 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4240 btrfs_release_path(path);
4241
4242 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4243 key.type != BTRFS_ROOT_ITEM_KEY)
4244 break;
4245
4246 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4247 if (IS_ERR(reloc_root)) {
4248 err = PTR_ERR(reloc_root);
4249 goto out;
4250 }
4251
4252 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4253 list_add(&reloc_root->root_list, &reloc_roots);
4254
4255 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4256 fs_root = btrfs_get_fs_root(fs_info,
4257 reloc_root->root_key.offset, false);
4258 if (IS_ERR(fs_root)) {
4259 ret = PTR_ERR(fs_root);
4260 if (ret != -ENOENT) {
4261 err = ret;
4262 goto out;
4263 }
4264 ret = mark_garbage_root(reloc_root);
4265 if (ret < 0) {
4266 err = ret;
4267 goto out;
4268 }
4269 } else {
4270 btrfs_put_root(fs_root);
4271 }
4272 }
4273
4274 if (key.offset == 0)
4275 break;
4276
4277 key.offset--;
4278 }
4279 btrfs_release_path(path);
4280
4281 if (list_empty(&reloc_roots))
4282 goto out;
4283
4284 rc = alloc_reloc_control(fs_info);
4285 if (!rc) {
4286 err = -ENOMEM;
4287 goto out;
4288 }
4289
4290 ret = reloc_chunk_start(fs_info);
4291 if (ret < 0) {
4292 err = ret;
4293 goto out_end;
4294 }
4295
4296 rc->extent_root = btrfs_extent_root(fs_info, 0);
4297
4298 set_reloc_control(rc);
4299
4300 trans = btrfs_join_transaction(rc->extent_root);
4301 if (IS_ERR(trans)) {
4302 err = PTR_ERR(trans);
4303 goto out_unset;
4304 }
4305
4306 rc->merge_reloc_tree = 1;
4307
4308 while (!list_empty(&reloc_roots)) {
4309 reloc_root = list_entry(reloc_roots.next,
4310 struct btrfs_root, root_list);
4311 list_del(&reloc_root->root_list);
4312
4313 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4314 list_add_tail(&reloc_root->root_list,
4315 &rc->reloc_roots);
4316 continue;
4317 }
4318
4319 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4320 false);
4321 if (IS_ERR(fs_root)) {
4322 err = PTR_ERR(fs_root);
4323 list_add_tail(&reloc_root->root_list, &reloc_roots);
4324 btrfs_end_transaction(trans);
4325 goto out_unset;
4326 }
4327
4328 err = __add_reloc_root(reloc_root);
4329 ASSERT(err != -EEXIST);
4330 if (err) {
4331 list_add_tail(&reloc_root->root_list, &reloc_roots);
4332 btrfs_put_root(fs_root);
4333 btrfs_end_transaction(trans);
4334 goto out_unset;
4335 }
4336 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4337 btrfs_put_root(fs_root);
4338 }
4339
4340 err = btrfs_commit_transaction(trans);
4341 if (err)
4342 goto out_unset;
4343
4344 merge_reloc_roots(rc);
4345
4346 unset_reloc_control(rc);
4347
4348 trans = btrfs_join_transaction(rc->extent_root);
4349 if (IS_ERR(trans)) {
4350 err = PTR_ERR(trans);
4351 goto out_clean;
4352 }
4353 err = btrfs_commit_transaction(trans);
4354 out_clean:
4355 ret = clean_dirty_subvols(rc);
4356 if (ret < 0 && !err)
4357 err = ret;
4358 out_unset:
4359 unset_reloc_control(rc);
4360 out_end:
4361 reloc_chunk_end(fs_info);
4362 free_reloc_control(rc);
4363 out:
4364 free_reloc_roots(&reloc_roots);
4365
4366 btrfs_free_path(path);
4367
4368 if (err == 0) {
4369 /* cleanup orphan inode in data relocation tree */
4370 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4371 ASSERT(fs_root);
4372 err = btrfs_orphan_cleanup(fs_root);
4373 btrfs_put_root(fs_root);
4374 }
4375 return err;
4376 }
4377
4378 /*
4379 * helper to add ordered checksum for data relocation.
4380 *
4381 * cloning checksum properly handles the nodatasum extents.
4382 * it also saves CPU time to re-calculate the checksum.
4383 */
4384 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4385 {
4386 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4387 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4388 u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4389 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4390 LIST_HEAD(list);
4391 int ret;
4392
4393 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4394 disk_bytenr + ordered->num_bytes - 1,
4395 &list, 0, false);
4396 if (ret)
4397 return ret;
4398
4399 while (!list_empty(&list)) {
4400 struct btrfs_ordered_sum *sums =
4401 list_entry(list.next, struct btrfs_ordered_sum, list);
4402
4403 list_del_init(&sums->list);
4404
4405 /*
4406 * We need to offset the new_bytenr based on where the csum is.
4407 * We need to do this because we will read in entire prealloc
4408 * extents but we may have written to say the middle of the
4409 * prealloc extent, so we need to make sure the csum goes with
4410 * the right disk offset.
4411 *
4412 * We can do this because the data reloc inode refers strictly
4413 * to the on disk bytes, so we don't have to worry about
4414 * disk_len vs real len like with real inodes since it's all
4415 * disk length.
4416 */
4417 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4418 btrfs_add_ordered_sum(ordered, sums);
4419 }
4420
4421 return 0;
4422 }
4423
4424 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4425 struct btrfs_root *root, struct extent_buffer *buf,
4426 struct extent_buffer *cow)
4427 {
4428 struct btrfs_fs_info *fs_info = root->fs_info;
4429 struct reloc_control *rc;
4430 struct btrfs_backref_node *node;
4431 int first_cow = 0;
4432 int level;
4433 int ret = 0;
4434
4435 rc = fs_info->reloc_ctl;
4436 if (!rc)
4437 return 0;
4438
4439 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4440
4441 level = btrfs_header_level(buf);
4442 if (btrfs_header_generation(buf) <=
4443 btrfs_root_last_snapshot(&root->root_item))
4444 first_cow = 1;
4445
4446 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4447 rc->create_reloc_tree) {
4448 WARN_ON(!first_cow && level == 0);
4449
4450 node = rc->backref_cache.path[level];
4451 BUG_ON(node->bytenr != buf->start &&
4452 node->new_bytenr != buf->start);
4453
4454 btrfs_backref_drop_node_buffer(node);
4455 atomic_inc(&cow->refs);
4456 node->eb = cow;
4457 node->new_bytenr = cow->start;
4458
4459 if (!node->pending) {
4460 list_move_tail(&node->list,
4461 &rc->backref_cache.pending[level]);
4462 node->pending = 1;
4463 }
4464
4465 if (first_cow)
4466 mark_block_processed(rc, node);
4467
4468 if (first_cow && level > 0)
4469 rc->nodes_relocated += buf->len;
4470 }
4471
4472 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4473 ret = replace_file_extents(trans, rc, root, cow);
4474 return ret;
4475 }
4476
4477 /*
4478 * called before creating snapshot. it calculates metadata reservation
4479 * required for relocating tree blocks in the snapshot
4480 */
4481 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4482 u64 *bytes_to_reserve)
4483 {
4484 struct btrfs_root *root = pending->root;
4485 struct reloc_control *rc = root->fs_info->reloc_ctl;
4486
4487 if (!rc || !have_reloc_root(root))
4488 return;
4489
4490 if (!rc->merge_reloc_tree)
4491 return;
4492
4493 root = root->reloc_root;
4494 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4495 /*
4496 * relocation is in the stage of merging trees. the space
4497 * used by merging a reloc tree is twice the size of
4498 * relocated tree nodes in the worst case. half for cowing
4499 * the reloc tree, half for cowing the fs tree. the space
4500 * used by cowing the reloc tree will be freed after the
4501 * tree is dropped. if we create snapshot, cowing the fs
4502 * tree may use more space than it frees. so we need
4503 * reserve extra space.
4504 */
4505 *bytes_to_reserve += rc->nodes_relocated;
4506 }
4507
4508 /*
4509 * called after snapshot is created. migrate block reservation
4510 * and create reloc root for the newly created snapshot
4511 *
4512 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4513 * references held on the reloc_root, one for root->reloc_root and one for
4514 * rc->reloc_roots.
4515 */
4516 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4517 struct btrfs_pending_snapshot *pending)
4518 {
4519 struct btrfs_root *root = pending->root;
4520 struct btrfs_root *reloc_root;
4521 struct btrfs_root *new_root;
4522 struct reloc_control *rc = root->fs_info->reloc_ctl;
4523 int ret;
4524
4525 if (!rc || !have_reloc_root(root))
4526 return 0;
4527
4528 rc = root->fs_info->reloc_ctl;
4529 rc->merging_rsv_size += rc->nodes_relocated;
4530
4531 if (rc->merge_reloc_tree) {
4532 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4533 rc->block_rsv,
4534 rc->nodes_relocated, true);
4535 if (ret)
4536 return ret;
4537 }
4538
4539 new_root = pending->snap;
4540 reloc_root = create_reloc_root(trans, root->reloc_root,
4541 new_root->root_key.objectid);
4542 if (IS_ERR(reloc_root))
4543 return PTR_ERR(reloc_root);
4544
4545 ret = __add_reloc_root(reloc_root);
4546 ASSERT(ret != -EEXIST);
4547 if (ret) {
4548 /* Pairs with create_reloc_root */
4549 btrfs_put_root(reloc_root);
4550 return ret;
4551 }
4552 new_root->reloc_root = btrfs_grab_root(reloc_root);
4553
4554 if (rc->create_reloc_tree)
4555 ret = clone_backref_node(trans, rc, root, reloc_root);
4556 return ret;
4557 }
4558
4559 /*
4560 * Get the current bytenr for the block group which is being relocated.
4561 *
4562 * Return U64_MAX if no running relocation.
4563 */
4564 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4565 {
4566 u64 logical = U64_MAX;
4567
4568 lockdep_assert_held(&fs_info->reloc_mutex);
4569
4570 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4571 logical = fs_info->reloc_ctl->block_group->start;
4572 return logical;
4573 }