]> git.ipfire.org Git - people/ms/linux.git/blob - fs/btrfs/send.c
Merge tag 'soc-fixes-6.0-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[people/ms/linux.git] / fs / btrfs / send.c
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
29
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37
38 static int g_verbose = 0;
39
40 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
41
42 /*
43 * A fs_path is a helper to dynamically build path names with unknown size.
44 * It reallocates the internal buffer on demand.
45 * It allows fast adding of path elements on the right side (normal path) and
46 * fast adding to the left side (reversed path). A reversed path can also be
47 * unreversed if needed.
48 */
49 struct fs_path {
50 union {
51 struct {
52 char *start;
53 char *end;
54
55 char *buf;
56 unsigned short buf_len:15;
57 unsigned short reversed:1;
58 char inline_buf[];
59 };
60 /*
61 * Average path length does not exceed 200 bytes, we'll have
62 * better packing in the slab and higher chance to satisfy
63 * a allocation later during send.
64 */
65 char pad[256];
66 };
67 };
68 #define FS_PATH_INLINE_SIZE \
69 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
70
71
72 /* reused for each extent */
73 struct clone_root {
74 struct btrfs_root *root;
75 u64 ino;
76 u64 offset;
77
78 u64 found_refs;
79 };
80
81 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
82 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
83
84 struct send_ctx {
85 struct file *send_filp;
86 loff_t send_off;
87 char *send_buf;
88 u32 send_size;
89 u32 send_max_size;
90 u64 total_send_size;
91 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
92 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
93
94 struct btrfs_root *send_root;
95 struct btrfs_root *parent_root;
96 struct clone_root *clone_roots;
97 int clone_roots_cnt;
98
99 /* current state of the compare_tree call */
100 struct btrfs_path *left_path;
101 struct btrfs_path *right_path;
102 struct btrfs_key *cmp_key;
103
104 /*
105 * infos of the currently processed inode. In case of deleted inodes,
106 * these are the values from the deleted inode.
107 */
108 u64 cur_ino;
109 u64 cur_inode_gen;
110 int cur_inode_new;
111 int cur_inode_new_gen;
112 int cur_inode_deleted;
113 u64 cur_inode_size;
114 u64 cur_inode_mode;
115 u64 cur_inode_rdev;
116 u64 cur_inode_last_extent;
117
118 u64 send_progress;
119
120 struct list_head new_refs;
121 struct list_head deleted_refs;
122
123 struct radix_tree_root name_cache;
124 struct list_head name_cache_list;
125 int name_cache_size;
126
127 struct file_ra_state ra;
128
129 char *read_buf;
130
131 /*
132 * We process inodes by their increasing order, so if before an
133 * incremental send we reverse the parent/child relationship of
134 * directories such that a directory with a lower inode number was
135 * the parent of a directory with a higher inode number, and the one
136 * becoming the new parent got renamed too, we can't rename/move the
137 * directory with lower inode number when we finish processing it - we
138 * must process the directory with higher inode number first, then
139 * rename/move it and then rename/move the directory with lower inode
140 * number. Example follows.
141 *
142 * Tree state when the first send was performed:
143 *
144 * .
145 * |-- a (ino 257)
146 * |-- b (ino 258)
147 * |
148 * |
149 * |-- c (ino 259)
150 * | |-- d (ino 260)
151 * |
152 * |-- c2 (ino 261)
153 *
154 * Tree state when the second (incremental) send is performed:
155 *
156 * .
157 * |-- a (ino 257)
158 * |-- b (ino 258)
159 * |-- c2 (ino 261)
160 * |-- d2 (ino 260)
161 * |-- cc (ino 259)
162 *
163 * The sequence of steps that lead to the second state was:
164 *
165 * mv /a/b/c/d /a/b/c2/d2
166 * mv /a/b/c /a/b/c2/d2/cc
167 *
168 * "c" has lower inode number, but we can't move it (2nd mv operation)
169 * before we move "d", which has higher inode number.
170 *
171 * So we just memorize which move/rename operations must be performed
172 * later when their respective parent is processed and moved/renamed.
173 */
174
175 /* Indexed by parent directory inode number. */
176 struct rb_root pending_dir_moves;
177
178 /*
179 * Reverse index, indexed by the inode number of a directory that
180 * is waiting for the move/rename of its immediate parent before its
181 * own move/rename can be performed.
182 */
183 struct rb_root waiting_dir_moves;
184
185 /*
186 * A directory that is going to be rm'ed might have a child directory
187 * which is in the pending directory moves index above. In this case,
188 * the directory can only be removed after the move/rename of its child
189 * is performed. Example:
190 *
191 * Parent snapshot:
192 *
193 * . (ino 256)
194 * |-- a/ (ino 257)
195 * |-- b/ (ino 258)
196 * |-- c/ (ino 259)
197 * | |-- x/ (ino 260)
198 * |
199 * |-- y/ (ino 261)
200 *
201 * Send snapshot:
202 *
203 * . (ino 256)
204 * |-- a/ (ino 257)
205 * |-- b/ (ino 258)
206 * |-- YY/ (ino 261)
207 * |-- x/ (ino 260)
208 *
209 * Sequence of steps that lead to the send snapshot:
210 * rm -f /a/b/c/foo.txt
211 * mv /a/b/y /a/b/YY
212 * mv /a/b/c/x /a/b/YY
213 * rmdir /a/b/c
214 *
215 * When the child is processed, its move/rename is delayed until its
216 * parent is processed (as explained above), but all other operations
217 * like update utimes, chown, chgrp, etc, are performed and the paths
218 * that it uses for those operations must use the orphanized name of
219 * its parent (the directory we're going to rm later), so we need to
220 * memorize that name.
221 *
222 * Indexed by the inode number of the directory to be deleted.
223 */
224 struct rb_root orphan_dirs;
225 };
226
227 struct pending_dir_move {
228 struct rb_node node;
229 struct list_head list;
230 u64 parent_ino;
231 u64 ino;
232 u64 gen;
233 bool is_orphan;
234 struct list_head update_refs;
235 };
236
237 struct waiting_dir_move {
238 struct rb_node node;
239 u64 ino;
240 /*
241 * There might be some directory that could not be removed because it
242 * was waiting for this directory inode to be moved first. Therefore
243 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
244 */
245 u64 rmdir_ino;
246 bool orphanized;
247 };
248
249 struct orphan_dir_info {
250 struct rb_node node;
251 u64 ino;
252 u64 gen;
253 };
254
255 struct name_cache_entry {
256 struct list_head list;
257 /*
258 * radix_tree has only 32bit entries but we need to handle 64bit inums.
259 * We use the lower 32bit of the 64bit inum to store it in the tree. If
260 * more then one inum would fall into the same entry, we use radix_list
261 * to store the additional entries. radix_list is also used to store
262 * entries where two entries have the same inum but different
263 * generations.
264 */
265 struct list_head radix_list;
266 u64 ino;
267 u64 gen;
268 u64 parent_ino;
269 u64 parent_gen;
270 int ret;
271 int need_later_update;
272 int name_len;
273 char name[];
274 };
275
276 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
277
278 static struct waiting_dir_move *
279 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
280
281 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
282
283 static int need_send_hole(struct send_ctx *sctx)
284 {
285 return (sctx->parent_root && !sctx->cur_inode_new &&
286 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
287 S_ISREG(sctx->cur_inode_mode));
288 }
289
290 static void fs_path_reset(struct fs_path *p)
291 {
292 if (p->reversed) {
293 p->start = p->buf + p->buf_len - 1;
294 p->end = p->start;
295 *p->start = 0;
296 } else {
297 p->start = p->buf;
298 p->end = p->start;
299 *p->start = 0;
300 }
301 }
302
303 static struct fs_path *fs_path_alloc(void)
304 {
305 struct fs_path *p;
306
307 p = kmalloc(sizeof(*p), GFP_NOFS);
308 if (!p)
309 return NULL;
310 p->reversed = 0;
311 p->buf = p->inline_buf;
312 p->buf_len = FS_PATH_INLINE_SIZE;
313 fs_path_reset(p);
314 return p;
315 }
316
317 static struct fs_path *fs_path_alloc_reversed(void)
318 {
319 struct fs_path *p;
320
321 p = fs_path_alloc();
322 if (!p)
323 return NULL;
324 p->reversed = 1;
325 fs_path_reset(p);
326 return p;
327 }
328
329 static void fs_path_free(struct fs_path *p)
330 {
331 if (!p)
332 return;
333 if (p->buf != p->inline_buf)
334 kfree(p->buf);
335 kfree(p);
336 }
337
338 static int fs_path_len(struct fs_path *p)
339 {
340 return p->end - p->start;
341 }
342
343 static int fs_path_ensure_buf(struct fs_path *p, int len)
344 {
345 char *tmp_buf;
346 int path_len;
347 int old_buf_len;
348
349 len++;
350
351 if (p->buf_len >= len)
352 return 0;
353
354 if (len > PATH_MAX) {
355 WARN_ON(1);
356 return -ENOMEM;
357 }
358
359 path_len = p->end - p->start;
360 old_buf_len = p->buf_len;
361
362 /*
363 * First time the inline_buf does not suffice
364 */
365 if (p->buf == p->inline_buf) {
366 tmp_buf = kmalloc(len, GFP_NOFS);
367 if (tmp_buf)
368 memcpy(tmp_buf, p->buf, old_buf_len);
369 } else {
370 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
371 }
372 if (!tmp_buf)
373 return -ENOMEM;
374 p->buf = tmp_buf;
375 /*
376 * The real size of the buffer is bigger, this will let the fast path
377 * happen most of the time
378 */
379 p->buf_len = ksize(p->buf);
380
381 if (p->reversed) {
382 tmp_buf = p->buf + old_buf_len - path_len - 1;
383 p->end = p->buf + p->buf_len - 1;
384 p->start = p->end - path_len;
385 memmove(p->start, tmp_buf, path_len + 1);
386 } else {
387 p->start = p->buf;
388 p->end = p->start + path_len;
389 }
390 return 0;
391 }
392
393 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
394 char **prepared)
395 {
396 int ret;
397 int new_len;
398
399 new_len = p->end - p->start + name_len;
400 if (p->start != p->end)
401 new_len++;
402 ret = fs_path_ensure_buf(p, new_len);
403 if (ret < 0)
404 goto out;
405
406 if (p->reversed) {
407 if (p->start != p->end)
408 *--p->start = '/';
409 p->start -= name_len;
410 *prepared = p->start;
411 } else {
412 if (p->start != p->end)
413 *p->end++ = '/';
414 *prepared = p->end;
415 p->end += name_len;
416 *p->end = 0;
417 }
418
419 out:
420 return ret;
421 }
422
423 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
424 {
425 int ret;
426 char *prepared;
427
428 ret = fs_path_prepare_for_add(p, name_len, &prepared);
429 if (ret < 0)
430 goto out;
431 memcpy(prepared, name, name_len);
432
433 out:
434 return ret;
435 }
436
437 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
438 {
439 int ret;
440 char *prepared;
441
442 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
443 if (ret < 0)
444 goto out;
445 memcpy(prepared, p2->start, p2->end - p2->start);
446
447 out:
448 return ret;
449 }
450
451 static int fs_path_add_from_extent_buffer(struct fs_path *p,
452 struct extent_buffer *eb,
453 unsigned long off, int len)
454 {
455 int ret;
456 char *prepared;
457
458 ret = fs_path_prepare_for_add(p, len, &prepared);
459 if (ret < 0)
460 goto out;
461
462 read_extent_buffer(eb, prepared, off, len);
463
464 out:
465 return ret;
466 }
467
468 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
469 {
470 int ret;
471
472 p->reversed = from->reversed;
473 fs_path_reset(p);
474
475 ret = fs_path_add_path(p, from);
476
477 return ret;
478 }
479
480
481 static void fs_path_unreverse(struct fs_path *p)
482 {
483 char *tmp;
484 int len;
485
486 if (!p->reversed)
487 return;
488
489 tmp = p->start;
490 len = p->end - p->start;
491 p->start = p->buf;
492 p->end = p->start + len;
493 memmove(p->start, tmp, len + 1);
494 p->reversed = 0;
495 }
496
497 static struct btrfs_path *alloc_path_for_send(void)
498 {
499 struct btrfs_path *path;
500
501 path = btrfs_alloc_path();
502 if (!path)
503 return NULL;
504 path->search_commit_root = 1;
505 path->skip_locking = 1;
506 path->need_commit_sem = 1;
507 return path;
508 }
509
510 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
511 {
512 int ret;
513 mm_segment_t old_fs;
514 u32 pos = 0;
515
516 old_fs = get_fs();
517 set_fs(KERNEL_DS);
518
519 while (pos < len) {
520 ret = vfs_write(filp, (__force const char __user *)buf + pos,
521 len - pos, off);
522 /* TODO handle that correctly */
523 /*if (ret == -ERESTARTSYS) {
524 continue;
525 }*/
526 if (ret < 0)
527 goto out;
528 if (ret == 0) {
529 ret = -EIO;
530 goto out;
531 }
532 pos += ret;
533 }
534
535 ret = 0;
536
537 out:
538 set_fs(old_fs);
539 return ret;
540 }
541
542 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
543 {
544 struct btrfs_tlv_header *hdr;
545 int total_len = sizeof(*hdr) + len;
546 int left = sctx->send_max_size - sctx->send_size;
547
548 if (unlikely(left < total_len))
549 return -EOVERFLOW;
550
551 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
552 hdr->tlv_type = cpu_to_le16(attr);
553 hdr->tlv_len = cpu_to_le16(len);
554 memcpy(hdr + 1, data, len);
555 sctx->send_size += total_len;
556
557 return 0;
558 }
559
560 #define TLV_PUT_DEFINE_INT(bits) \
561 static int tlv_put_u##bits(struct send_ctx *sctx, \
562 u##bits attr, u##bits value) \
563 { \
564 __le##bits __tmp = cpu_to_le##bits(value); \
565 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
566 }
567
568 TLV_PUT_DEFINE_INT(64)
569
570 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
571 const char *str, int len)
572 {
573 if (len == -1)
574 len = strlen(str);
575 return tlv_put(sctx, attr, str, len);
576 }
577
578 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
579 const u8 *uuid)
580 {
581 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
582 }
583
584 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
585 struct extent_buffer *eb,
586 struct btrfs_timespec *ts)
587 {
588 struct btrfs_timespec bts;
589 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
590 return tlv_put(sctx, attr, &bts, sizeof(bts));
591 }
592
593
594 #define TLV_PUT(sctx, attrtype, attrlen, data) \
595 do { \
596 ret = tlv_put(sctx, attrtype, attrlen, data); \
597 if (ret < 0) \
598 goto tlv_put_failure; \
599 } while (0)
600
601 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
602 do { \
603 ret = tlv_put_u##bits(sctx, attrtype, value); \
604 if (ret < 0) \
605 goto tlv_put_failure; \
606 } while (0)
607
608 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
609 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
610 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
611 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
612 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
613 do { \
614 ret = tlv_put_string(sctx, attrtype, str, len); \
615 if (ret < 0) \
616 goto tlv_put_failure; \
617 } while (0)
618 #define TLV_PUT_PATH(sctx, attrtype, p) \
619 do { \
620 ret = tlv_put_string(sctx, attrtype, p->start, \
621 p->end - p->start); \
622 if (ret < 0) \
623 goto tlv_put_failure; \
624 } while(0)
625 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
626 do { \
627 ret = tlv_put_uuid(sctx, attrtype, uuid); \
628 if (ret < 0) \
629 goto tlv_put_failure; \
630 } while (0)
631 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
632 do { \
633 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
634 if (ret < 0) \
635 goto tlv_put_failure; \
636 } while (0)
637
638 static int send_header(struct send_ctx *sctx)
639 {
640 struct btrfs_stream_header hdr;
641
642 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
643 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
644
645 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
646 &sctx->send_off);
647 }
648
649 /*
650 * For each command/item we want to send to userspace, we call this function.
651 */
652 static int begin_cmd(struct send_ctx *sctx, int cmd)
653 {
654 struct btrfs_cmd_header *hdr;
655
656 if (WARN_ON(!sctx->send_buf))
657 return -EINVAL;
658
659 BUG_ON(sctx->send_size);
660
661 sctx->send_size += sizeof(*hdr);
662 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
663 hdr->cmd = cpu_to_le16(cmd);
664
665 return 0;
666 }
667
668 static int send_cmd(struct send_ctx *sctx)
669 {
670 int ret;
671 struct btrfs_cmd_header *hdr;
672 u32 crc;
673
674 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
675 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
676 hdr->crc = 0;
677
678 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
679 hdr->crc = cpu_to_le32(crc);
680
681 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
682 &sctx->send_off);
683
684 sctx->total_send_size += sctx->send_size;
685 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
686 sctx->send_size = 0;
687
688 return ret;
689 }
690
691 /*
692 * Sends a move instruction to user space
693 */
694 static int send_rename(struct send_ctx *sctx,
695 struct fs_path *from, struct fs_path *to)
696 {
697 int ret;
698
699 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
700
701 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
702 if (ret < 0)
703 goto out;
704
705 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
707
708 ret = send_cmd(sctx);
709
710 tlv_put_failure:
711 out:
712 return ret;
713 }
714
715 /*
716 * Sends a link instruction to user space
717 */
718 static int send_link(struct send_ctx *sctx,
719 struct fs_path *path, struct fs_path *lnk)
720 {
721 int ret;
722
723 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
724
725 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
726 if (ret < 0)
727 goto out;
728
729 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
731
732 ret = send_cmd(sctx);
733
734 tlv_put_failure:
735 out:
736 return ret;
737 }
738
739 /*
740 * Sends an unlink instruction to user space
741 */
742 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
743 {
744 int ret;
745
746 verbose_printk("btrfs: send_unlink %s\n", path->start);
747
748 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
749 if (ret < 0)
750 goto out;
751
752 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
753
754 ret = send_cmd(sctx);
755
756 tlv_put_failure:
757 out:
758 return ret;
759 }
760
761 /*
762 * Sends a rmdir instruction to user space
763 */
764 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
765 {
766 int ret;
767
768 verbose_printk("btrfs: send_rmdir %s\n", path->start);
769
770 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
771 if (ret < 0)
772 goto out;
773
774 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
775
776 ret = send_cmd(sctx);
777
778 tlv_put_failure:
779 out:
780 return ret;
781 }
782
783 /*
784 * Helper function to retrieve some fields from an inode item.
785 */
786 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
787 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
788 u64 *gid, u64 *rdev)
789 {
790 int ret;
791 struct btrfs_inode_item *ii;
792 struct btrfs_key key;
793
794 key.objectid = ino;
795 key.type = BTRFS_INODE_ITEM_KEY;
796 key.offset = 0;
797 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
798 if (ret) {
799 if (ret > 0)
800 ret = -ENOENT;
801 return ret;
802 }
803
804 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
805 struct btrfs_inode_item);
806 if (size)
807 *size = btrfs_inode_size(path->nodes[0], ii);
808 if (gen)
809 *gen = btrfs_inode_generation(path->nodes[0], ii);
810 if (mode)
811 *mode = btrfs_inode_mode(path->nodes[0], ii);
812 if (uid)
813 *uid = btrfs_inode_uid(path->nodes[0], ii);
814 if (gid)
815 *gid = btrfs_inode_gid(path->nodes[0], ii);
816 if (rdev)
817 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
818
819 return ret;
820 }
821
822 static int get_inode_info(struct btrfs_root *root,
823 u64 ino, u64 *size, u64 *gen,
824 u64 *mode, u64 *uid, u64 *gid,
825 u64 *rdev)
826 {
827 struct btrfs_path *path;
828 int ret;
829
830 path = alloc_path_for_send();
831 if (!path)
832 return -ENOMEM;
833 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
834 rdev);
835 btrfs_free_path(path);
836 return ret;
837 }
838
839 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
840 struct fs_path *p,
841 void *ctx);
842
843 /*
844 * Helper function to iterate the entries in ONE btrfs_inode_ref or
845 * btrfs_inode_extref.
846 * The iterate callback may return a non zero value to stop iteration. This can
847 * be a negative value for error codes or 1 to simply stop it.
848 *
849 * path must point to the INODE_REF or INODE_EXTREF when called.
850 */
851 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
852 struct btrfs_key *found_key, int resolve,
853 iterate_inode_ref_t iterate, void *ctx)
854 {
855 struct extent_buffer *eb = path->nodes[0];
856 struct btrfs_item *item;
857 struct btrfs_inode_ref *iref;
858 struct btrfs_inode_extref *extref;
859 struct btrfs_path *tmp_path;
860 struct fs_path *p;
861 u32 cur = 0;
862 u32 total;
863 int slot = path->slots[0];
864 u32 name_len;
865 char *start;
866 int ret = 0;
867 int num = 0;
868 int index;
869 u64 dir;
870 unsigned long name_off;
871 unsigned long elem_size;
872 unsigned long ptr;
873
874 p = fs_path_alloc_reversed();
875 if (!p)
876 return -ENOMEM;
877
878 tmp_path = alloc_path_for_send();
879 if (!tmp_path) {
880 fs_path_free(p);
881 return -ENOMEM;
882 }
883
884
885 if (found_key->type == BTRFS_INODE_REF_KEY) {
886 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
887 struct btrfs_inode_ref);
888 item = btrfs_item_nr(slot);
889 total = btrfs_item_size(eb, item);
890 elem_size = sizeof(*iref);
891 } else {
892 ptr = btrfs_item_ptr_offset(eb, slot);
893 total = btrfs_item_size_nr(eb, slot);
894 elem_size = sizeof(*extref);
895 }
896
897 while (cur < total) {
898 fs_path_reset(p);
899
900 if (found_key->type == BTRFS_INODE_REF_KEY) {
901 iref = (struct btrfs_inode_ref *)(ptr + cur);
902 name_len = btrfs_inode_ref_name_len(eb, iref);
903 name_off = (unsigned long)(iref + 1);
904 index = btrfs_inode_ref_index(eb, iref);
905 dir = found_key->offset;
906 } else {
907 extref = (struct btrfs_inode_extref *)(ptr + cur);
908 name_len = btrfs_inode_extref_name_len(eb, extref);
909 name_off = (unsigned long)&extref->name;
910 index = btrfs_inode_extref_index(eb, extref);
911 dir = btrfs_inode_extref_parent(eb, extref);
912 }
913
914 if (resolve) {
915 start = btrfs_ref_to_path(root, tmp_path, name_len,
916 name_off, eb, dir,
917 p->buf, p->buf_len);
918 if (IS_ERR(start)) {
919 ret = PTR_ERR(start);
920 goto out;
921 }
922 if (start < p->buf) {
923 /* overflow , try again with larger buffer */
924 ret = fs_path_ensure_buf(p,
925 p->buf_len + p->buf - start);
926 if (ret < 0)
927 goto out;
928 start = btrfs_ref_to_path(root, tmp_path,
929 name_len, name_off,
930 eb, dir,
931 p->buf, p->buf_len);
932 if (IS_ERR(start)) {
933 ret = PTR_ERR(start);
934 goto out;
935 }
936 BUG_ON(start < p->buf);
937 }
938 p->start = start;
939 } else {
940 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
941 name_len);
942 if (ret < 0)
943 goto out;
944 }
945
946 cur += elem_size + name_len;
947 ret = iterate(num, dir, index, p, ctx);
948 if (ret)
949 goto out;
950 num++;
951 }
952
953 out:
954 btrfs_free_path(tmp_path);
955 fs_path_free(p);
956 return ret;
957 }
958
959 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
960 const char *name, int name_len,
961 const char *data, int data_len,
962 u8 type, void *ctx);
963
964 /*
965 * Helper function to iterate the entries in ONE btrfs_dir_item.
966 * The iterate callback may return a non zero value to stop iteration. This can
967 * be a negative value for error codes or 1 to simply stop it.
968 *
969 * path must point to the dir item when called.
970 */
971 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
972 struct btrfs_key *found_key,
973 iterate_dir_item_t iterate, void *ctx)
974 {
975 int ret = 0;
976 struct extent_buffer *eb;
977 struct btrfs_item *item;
978 struct btrfs_dir_item *di;
979 struct btrfs_key di_key;
980 char *buf = NULL;
981 int buf_len;
982 u32 name_len;
983 u32 data_len;
984 u32 cur;
985 u32 len;
986 u32 total;
987 int slot;
988 int num;
989 u8 type;
990
991 /*
992 * Start with a small buffer (1 page). If later we end up needing more
993 * space, which can happen for xattrs on a fs with a leaf size greater
994 * then the page size, attempt to increase the buffer. Typically xattr
995 * values are small.
996 */
997 buf_len = PATH_MAX;
998 buf = kmalloc(buf_len, GFP_NOFS);
999 if (!buf) {
1000 ret = -ENOMEM;
1001 goto out;
1002 }
1003
1004 eb = path->nodes[0];
1005 slot = path->slots[0];
1006 item = btrfs_item_nr(slot);
1007 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1008 cur = 0;
1009 len = 0;
1010 total = btrfs_item_size(eb, item);
1011
1012 num = 0;
1013 while (cur < total) {
1014 name_len = btrfs_dir_name_len(eb, di);
1015 data_len = btrfs_dir_data_len(eb, di);
1016 type = btrfs_dir_type(eb, di);
1017 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1018
1019 if (type == BTRFS_FT_XATTR) {
1020 if (name_len > XATTR_NAME_MAX) {
1021 ret = -ENAMETOOLONG;
1022 goto out;
1023 }
1024 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1025 ret = -E2BIG;
1026 goto out;
1027 }
1028 } else {
1029 /*
1030 * Path too long
1031 */
1032 if (name_len + data_len > PATH_MAX) {
1033 ret = -ENAMETOOLONG;
1034 goto out;
1035 }
1036 }
1037
1038 if (name_len + data_len > buf_len) {
1039 buf_len = name_len + data_len;
1040 if (is_vmalloc_addr(buf)) {
1041 vfree(buf);
1042 buf = NULL;
1043 } else {
1044 char *tmp = krealloc(buf, buf_len,
1045 GFP_NOFS | __GFP_NOWARN);
1046
1047 if (!tmp)
1048 kfree(buf);
1049 buf = tmp;
1050 }
1051 if (!buf) {
1052 buf = vmalloc(buf_len);
1053 if (!buf) {
1054 ret = -ENOMEM;
1055 goto out;
1056 }
1057 }
1058 }
1059
1060 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1061 name_len + data_len);
1062
1063 len = sizeof(*di) + name_len + data_len;
1064 di = (struct btrfs_dir_item *)((char *)di + len);
1065 cur += len;
1066
1067 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1068 data_len, type, ctx);
1069 if (ret < 0)
1070 goto out;
1071 if (ret) {
1072 ret = 0;
1073 goto out;
1074 }
1075
1076 num++;
1077 }
1078
1079 out:
1080 kvfree(buf);
1081 return ret;
1082 }
1083
1084 static int __copy_first_ref(int num, u64 dir, int index,
1085 struct fs_path *p, void *ctx)
1086 {
1087 int ret;
1088 struct fs_path *pt = ctx;
1089
1090 ret = fs_path_copy(pt, p);
1091 if (ret < 0)
1092 return ret;
1093
1094 /* we want the first only */
1095 return 1;
1096 }
1097
1098 /*
1099 * Retrieve the first path of an inode. If an inode has more then one
1100 * ref/hardlink, this is ignored.
1101 */
1102 static int get_inode_path(struct btrfs_root *root,
1103 u64 ino, struct fs_path *path)
1104 {
1105 int ret;
1106 struct btrfs_key key, found_key;
1107 struct btrfs_path *p;
1108
1109 p = alloc_path_for_send();
1110 if (!p)
1111 return -ENOMEM;
1112
1113 fs_path_reset(path);
1114
1115 key.objectid = ino;
1116 key.type = BTRFS_INODE_REF_KEY;
1117 key.offset = 0;
1118
1119 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1120 if (ret < 0)
1121 goto out;
1122 if (ret) {
1123 ret = 1;
1124 goto out;
1125 }
1126 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1127 if (found_key.objectid != ino ||
1128 (found_key.type != BTRFS_INODE_REF_KEY &&
1129 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1130 ret = -ENOENT;
1131 goto out;
1132 }
1133
1134 ret = iterate_inode_ref(root, p, &found_key, 1,
1135 __copy_first_ref, path);
1136 if (ret < 0)
1137 goto out;
1138 ret = 0;
1139
1140 out:
1141 btrfs_free_path(p);
1142 return ret;
1143 }
1144
1145 struct backref_ctx {
1146 struct send_ctx *sctx;
1147
1148 struct btrfs_path *path;
1149 /* number of total found references */
1150 u64 found;
1151
1152 /*
1153 * used for clones found in send_root. clones found behind cur_objectid
1154 * and cur_offset are not considered as allowed clones.
1155 */
1156 u64 cur_objectid;
1157 u64 cur_offset;
1158
1159 /* may be truncated in case it's the last extent in a file */
1160 u64 extent_len;
1161
1162 /* data offset in the file extent item */
1163 u64 data_offset;
1164
1165 /* Just to check for bugs in backref resolving */
1166 int found_itself;
1167 };
1168
1169 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1170 {
1171 u64 root = (u64)(uintptr_t)key;
1172 struct clone_root *cr = (struct clone_root *)elt;
1173
1174 if (root < cr->root->objectid)
1175 return -1;
1176 if (root > cr->root->objectid)
1177 return 1;
1178 return 0;
1179 }
1180
1181 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1182 {
1183 struct clone_root *cr1 = (struct clone_root *)e1;
1184 struct clone_root *cr2 = (struct clone_root *)e2;
1185
1186 if (cr1->root->objectid < cr2->root->objectid)
1187 return -1;
1188 if (cr1->root->objectid > cr2->root->objectid)
1189 return 1;
1190 return 0;
1191 }
1192
1193 /*
1194 * Called for every backref that is found for the current extent.
1195 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1196 */
1197 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1198 {
1199 struct backref_ctx *bctx = ctx_;
1200 struct clone_root *found;
1201 int ret;
1202 u64 i_size;
1203
1204 /* First check if the root is in the list of accepted clone sources */
1205 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1206 bctx->sctx->clone_roots_cnt,
1207 sizeof(struct clone_root),
1208 __clone_root_cmp_bsearch);
1209 if (!found)
1210 return 0;
1211
1212 if (found->root == bctx->sctx->send_root &&
1213 ino == bctx->cur_objectid &&
1214 offset == bctx->cur_offset) {
1215 bctx->found_itself = 1;
1216 }
1217
1218 /*
1219 * There are inodes that have extents that lie behind its i_size. Don't
1220 * accept clones from these extents.
1221 */
1222 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1223 NULL, NULL, NULL);
1224 btrfs_release_path(bctx->path);
1225 if (ret < 0)
1226 return ret;
1227
1228 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1229 return 0;
1230
1231 /*
1232 * Make sure we don't consider clones from send_root that are
1233 * behind the current inode/offset.
1234 */
1235 if (found->root == bctx->sctx->send_root) {
1236 /*
1237 * TODO for the moment we don't accept clones from the inode
1238 * that is currently send. We may change this when
1239 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1240 * file.
1241 */
1242 if (ino >= bctx->cur_objectid)
1243 return 0;
1244 #if 0
1245 if (ino > bctx->cur_objectid)
1246 return 0;
1247 if (offset + bctx->extent_len > bctx->cur_offset)
1248 return 0;
1249 #endif
1250 }
1251
1252 bctx->found++;
1253 found->found_refs++;
1254 if (ino < found->ino) {
1255 found->ino = ino;
1256 found->offset = offset;
1257 } else if (found->ino == ino) {
1258 /*
1259 * same extent found more then once in the same file.
1260 */
1261 if (found->offset > offset + bctx->extent_len)
1262 found->offset = offset;
1263 }
1264
1265 return 0;
1266 }
1267
1268 /*
1269 * Given an inode, offset and extent item, it finds a good clone for a clone
1270 * instruction. Returns -ENOENT when none could be found. The function makes
1271 * sure that the returned clone is usable at the point where sending is at the
1272 * moment. This means, that no clones are accepted which lie behind the current
1273 * inode+offset.
1274 *
1275 * path must point to the extent item when called.
1276 */
1277 static int find_extent_clone(struct send_ctx *sctx,
1278 struct btrfs_path *path,
1279 u64 ino, u64 data_offset,
1280 u64 ino_size,
1281 struct clone_root **found)
1282 {
1283 int ret;
1284 int extent_type;
1285 u64 logical;
1286 u64 disk_byte;
1287 u64 num_bytes;
1288 u64 extent_item_pos;
1289 u64 flags = 0;
1290 struct btrfs_file_extent_item *fi;
1291 struct extent_buffer *eb = path->nodes[0];
1292 struct backref_ctx *backref_ctx = NULL;
1293 struct clone_root *cur_clone_root;
1294 struct btrfs_key found_key;
1295 struct btrfs_path *tmp_path;
1296 int compressed;
1297 u32 i;
1298
1299 tmp_path = alloc_path_for_send();
1300 if (!tmp_path)
1301 return -ENOMEM;
1302
1303 /* We only use this path under the commit sem */
1304 tmp_path->need_commit_sem = 0;
1305
1306 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1307 if (!backref_ctx) {
1308 ret = -ENOMEM;
1309 goto out;
1310 }
1311
1312 backref_ctx->path = tmp_path;
1313
1314 if (data_offset >= ino_size) {
1315 /*
1316 * There may be extents that lie behind the file's size.
1317 * I at least had this in combination with snapshotting while
1318 * writing large files.
1319 */
1320 ret = 0;
1321 goto out;
1322 }
1323
1324 fi = btrfs_item_ptr(eb, path->slots[0],
1325 struct btrfs_file_extent_item);
1326 extent_type = btrfs_file_extent_type(eb, fi);
1327 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1328 ret = -ENOENT;
1329 goto out;
1330 }
1331 compressed = btrfs_file_extent_compression(eb, fi);
1332
1333 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1334 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1335 if (disk_byte == 0) {
1336 ret = -ENOENT;
1337 goto out;
1338 }
1339 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1340
1341 down_read(&sctx->send_root->fs_info->commit_root_sem);
1342 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1343 &found_key, &flags);
1344 up_read(&sctx->send_root->fs_info->commit_root_sem);
1345 btrfs_release_path(tmp_path);
1346
1347 if (ret < 0)
1348 goto out;
1349 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1350 ret = -EIO;
1351 goto out;
1352 }
1353
1354 /*
1355 * Setup the clone roots.
1356 */
1357 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1358 cur_clone_root = sctx->clone_roots + i;
1359 cur_clone_root->ino = (u64)-1;
1360 cur_clone_root->offset = 0;
1361 cur_clone_root->found_refs = 0;
1362 }
1363
1364 backref_ctx->sctx = sctx;
1365 backref_ctx->found = 0;
1366 backref_ctx->cur_objectid = ino;
1367 backref_ctx->cur_offset = data_offset;
1368 backref_ctx->found_itself = 0;
1369 backref_ctx->extent_len = num_bytes;
1370 /*
1371 * For non-compressed extents iterate_extent_inodes() gives us extent
1372 * offsets that already take into account the data offset, but not for
1373 * compressed extents, since the offset is logical and not relative to
1374 * the physical extent locations. We must take this into account to
1375 * avoid sending clone offsets that go beyond the source file's size,
1376 * which would result in the clone ioctl failing with -EINVAL on the
1377 * receiving end.
1378 */
1379 if (compressed == BTRFS_COMPRESS_NONE)
1380 backref_ctx->data_offset = 0;
1381 else
1382 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1383
1384 /*
1385 * The last extent of a file may be too large due to page alignment.
1386 * We need to adjust extent_len in this case so that the checks in
1387 * __iterate_backrefs work.
1388 */
1389 if (data_offset + num_bytes >= ino_size)
1390 backref_ctx->extent_len = ino_size - data_offset;
1391
1392 /*
1393 * Now collect all backrefs.
1394 */
1395 if (compressed == BTRFS_COMPRESS_NONE)
1396 extent_item_pos = logical - found_key.objectid;
1397 else
1398 extent_item_pos = 0;
1399 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1400 found_key.objectid, extent_item_pos, 1,
1401 __iterate_backrefs, backref_ctx);
1402
1403 if (ret < 0)
1404 goto out;
1405
1406 if (!backref_ctx->found_itself) {
1407 /* found a bug in backref code? */
1408 ret = -EIO;
1409 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1410 "send_root. inode=%llu, offset=%llu, "
1411 "disk_byte=%llu found extent=%llu",
1412 ino, data_offset, disk_byte, found_key.objectid);
1413 goto out;
1414 }
1415
1416 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1417 "ino=%llu, "
1418 "num_bytes=%llu, logical=%llu\n",
1419 data_offset, ino, num_bytes, logical);
1420
1421 if (!backref_ctx->found)
1422 verbose_printk("btrfs: no clones found\n");
1423
1424 cur_clone_root = NULL;
1425 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1426 if (sctx->clone_roots[i].found_refs) {
1427 if (!cur_clone_root)
1428 cur_clone_root = sctx->clone_roots + i;
1429 else if (sctx->clone_roots[i].root == sctx->send_root)
1430 /* prefer clones from send_root over others */
1431 cur_clone_root = sctx->clone_roots + i;
1432 }
1433
1434 }
1435
1436 if (cur_clone_root) {
1437 *found = cur_clone_root;
1438 ret = 0;
1439 } else {
1440 ret = -ENOENT;
1441 }
1442
1443 out:
1444 btrfs_free_path(tmp_path);
1445 kfree(backref_ctx);
1446 return ret;
1447 }
1448
1449 static int read_symlink(struct btrfs_root *root,
1450 u64 ino,
1451 struct fs_path *dest)
1452 {
1453 int ret;
1454 struct btrfs_path *path;
1455 struct btrfs_key key;
1456 struct btrfs_file_extent_item *ei;
1457 u8 type;
1458 u8 compression;
1459 unsigned long off;
1460 int len;
1461
1462 path = alloc_path_for_send();
1463 if (!path)
1464 return -ENOMEM;
1465
1466 key.objectid = ino;
1467 key.type = BTRFS_EXTENT_DATA_KEY;
1468 key.offset = 0;
1469 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1470 if (ret < 0)
1471 goto out;
1472 BUG_ON(ret);
1473
1474 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1475 struct btrfs_file_extent_item);
1476 type = btrfs_file_extent_type(path->nodes[0], ei);
1477 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1478 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1479 BUG_ON(compression);
1480
1481 off = btrfs_file_extent_inline_start(ei);
1482 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1483
1484 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1485
1486 out:
1487 btrfs_free_path(path);
1488 return ret;
1489 }
1490
1491 /*
1492 * Helper function to generate a file name that is unique in the root of
1493 * send_root and parent_root. This is used to generate names for orphan inodes.
1494 */
1495 static int gen_unique_name(struct send_ctx *sctx,
1496 u64 ino, u64 gen,
1497 struct fs_path *dest)
1498 {
1499 int ret = 0;
1500 struct btrfs_path *path;
1501 struct btrfs_dir_item *di;
1502 char tmp[64];
1503 int len;
1504 u64 idx = 0;
1505
1506 path = alloc_path_for_send();
1507 if (!path)
1508 return -ENOMEM;
1509
1510 while (1) {
1511 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1512 ino, gen, idx);
1513 ASSERT(len < sizeof(tmp));
1514
1515 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1516 path, BTRFS_FIRST_FREE_OBJECTID,
1517 tmp, strlen(tmp), 0);
1518 btrfs_release_path(path);
1519 if (IS_ERR(di)) {
1520 ret = PTR_ERR(di);
1521 goto out;
1522 }
1523 if (di) {
1524 /* not unique, try again */
1525 idx++;
1526 continue;
1527 }
1528
1529 if (!sctx->parent_root) {
1530 /* unique */
1531 ret = 0;
1532 break;
1533 }
1534
1535 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1536 path, BTRFS_FIRST_FREE_OBJECTID,
1537 tmp, strlen(tmp), 0);
1538 btrfs_release_path(path);
1539 if (IS_ERR(di)) {
1540 ret = PTR_ERR(di);
1541 goto out;
1542 }
1543 if (di) {
1544 /* not unique, try again */
1545 idx++;
1546 continue;
1547 }
1548 /* unique */
1549 break;
1550 }
1551
1552 ret = fs_path_add(dest, tmp, strlen(tmp));
1553
1554 out:
1555 btrfs_free_path(path);
1556 return ret;
1557 }
1558
1559 enum inode_state {
1560 inode_state_no_change,
1561 inode_state_will_create,
1562 inode_state_did_create,
1563 inode_state_will_delete,
1564 inode_state_did_delete,
1565 };
1566
1567 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1568 {
1569 int ret;
1570 int left_ret;
1571 int right_ret;
1572 u64 left_gen;
1573 u64 right_gen;
1574
1575 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1576 NULL, NULL);
1577 if (ret < 0 && ret != -ENOENT)
1578 goto out;
1579 left_ret = ret;
1580
1581 if (!sctx->parent_root) {
1582 right_ret = -ENOENT;
1583 } else {
1584 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1585 NULL, NULL, NULL, NULL);
1586 if (ret < 0 && ret != -ENOENT)
1587 goto out;
1588 right_ret = ret;
1589 }
1590
1591 if (!left_ret && !right_ret) {
1592 if (left_gen == gen && right_gen == gen) {
1593 ret = inode_state_no_change;
1594 } else if (left_gen == gen) {
1595 if (ino < sctx->send_progress)
1596 ret = inode_state_did_create;
1597 else
1598 ret = inode_state_will_create;
1599 } else if (right_gen == gen) {
1600 if (ino < sctx->send_progress)
1601 ret = inode_state_did_delete;
1602 else
1603 ret = inode_state_will_delete;
1604 } else {
1605 ret = -ENOENT;
1606 }
1607 } else if (!left_ret) {
1608 if (left_gen == gen) {
1609 if (ino < sctx->send_progress)
1610 ret = inode_state_did_create;
1611 else
1612 ret = inode_state_will_create;
1613 } else {
1614 ret = -ENOENT;
1615 }
1616 } else if (!right_ret) {
1617 if (right_gen == gen) {
1618 if (ino < sctx->send_progress)
1619 ret = inode_state_did_delete;
1620 else
1621 ret = inode_state_will_delete;
1622 } else {
1623 ret = -ENOENT;
1624 }
1625 } else {
1626 ret = -ENOENT;
1627 }
1628
1629 out:
1630 return ret;
1631 }
1632
1633 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1634 {
1635 int ret;
1636
1637 ret = get_cur_inode_state(sctx, ino, gen);
1638 if (ret < 0)
1639 goto out;
1640
1641 if (ret == inode_state_no_change ||
1642 ret == inode_state_did_create ||
1643 ret == inode_state_will_delete)
1644 ret = 1;
1645 else
1646 ret = 0;
1647
1648 out:
1649 return ret;
1650 }
1651
1652 /*
1653 * Helper function to lookup a dir item in a dir.
1654 */
1655 static int lookup_dir_item_inode(struct btrfs_root *root,
1656 u64 dir, const char *name, int name_len,
1657 u64 *found_inode,
1658 u8 *found_type)
1659 {
1660 int ret = 0;
1661 struct btrfs_dir_item *di;
1662 struct btrfs_key key;
1663 struct btrfs_path *path;
1664
1665 path = alloc_path_for_send();
1666 if (!path)
1667 return -ENOMEM;
1668
1669 di = btrfs_lookup_dir_item(NULL, root, path,
1670 dir, name, name_len, 0);
1671 if (!di) {
1672 ret = -ENOENT;
1673 goto out;
1674 }
1675 if (IS_ERR(di)) {
1676 ret = PTR_ERR(di);
1677 goto out;
1678 }
1679 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1680 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1681 ret = -ENOENT;
1682 goto out;
1683 }
1684 *found_inode = key.objectid;
1685 *found_type = btrfs_dir_type(path->nodes[0], di);
1686
1687 out:
1688 btrfs_free_path(path);
1689 return ret;
1690 }
1691
1692 /*
1693 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1694 * generation of the parent dir and the name of the dir entry.
1695 */
1696 static int get_first_ref(struct btrfs_root *root, u64 ino,
1697 u64 *dir, u64 *dir_gen, struct fs_path *name)
1698 {
1699 int ret;
1700 struct btrfs_key key;
1701 struct btrfs_key found_key;
1702 struct btrfs_path *path;
1703 int len;
1704 u64 parent_dir;
1705
1706 path = alloc_path_for_send();
1707 if (!path)
1708 return -ENOMEM;
1709
1710 key.objectid = ino;
1711 key.type = BTRFS_INODE_REF_KEY;
1712 key.offset = 0;
1713
1714 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1715 if (ret < 0)
1716 goto out;
1717 if (!ret)
1718 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1719 path->slots[0]);
1720 if (ret || found_key.objectid != ino ||
1721 (found_key.type != BTRFS_INODE_REF_KEY &&
1722 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1723 ret = -ENOENT;
1724 goto out;
1725 }
1726
1727 if (found_key.type == BTRFS_INODE_REF_KEY) {
1728 struct btrfs_inode_ref *iref;
1729 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1730 struct btrfs_inode_ref);
1731 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1732 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1733 (unsigned long)(iref + 1),
1734 len);
1735 parent_dir = found_key.offset;
1736 } else {
1737 struct btrfs_inode_extref *extref;
1738 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1739 struct btrfs_inode_extref);
1740 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1741 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1742 (unsigned long)&extref->name, len);
1743 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1744 }
1745 if (ret < 0)
1746 goto out;
1747 btrfs_release_path(path);
1748
1749 if (dir_gen) {
1750 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1751 NULL, NULL, NULL);
1752 if (ret < 0)
1753 goto out;
1754 }
1755
1756 *dir = parent_dir;
1757
1758 out:
1759 btrfs_free_path(path);
1760 return ret;
1761 }
1762
1763 static int is_first_ref(struct btrfs_root *root,
1764 u64 ino, u64 dir,
1765 const char *name, int name_len)
1766 {
1767 int ret;
1768 struct fs_path *tmp_name;
1769 u64 tmp_dir;
1770
1771 tmp_name = fs_path_alloc();
1772 if (!tmp_name)
1773 return -ENOMEM;
1774
1775 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1776 if (ret < 0)
1777 goto out;
1778
1779 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1780 ret = 0;
1781 goto out;
1782 }
1783
1784 ret = !memcmp(tmp_name->start, name, name_len);
1785
1786 out:
1787 fs_path_free(tmp_name);
1788 return ret;
1789 }
1790
1791 /*
1792 * Used by process_recorded_refs to determine if a new ref would overwrite an
1793 * already existing ref. In case it detects an overwrite, it returns the
1794 * inode/gen in who_ino/who_gen.
1795 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1796 * to make sure later references to the overwritten inode are possible.
1797 * Orphanizing is however only required for the first ref of an inode.
1798 * process_recorded_refs does an additional is_first_ref check to see if
1799 * orphanizing is really required.
1800 */
1801 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1802 const char *name, int name_len,
1803 u64 *who_ino, u64 *who_gen)
1804 {
1805 int ret = 0;
1806 u64 gen;
1807 u64 other_inode = 0;
1808 u8 other_type = 0;
1809
1810 if (!sctx->parent_root)
1811 goto out;
1812
1813 ret = is_inode_existent(sctx, dir, dir_gen);
1814 if (ret <= 0)
1815 goto out;
1816
1817 /*
1818 * If we have a parent root we need to verify that the parent dir was
1819 * not delted and then re-created, if it was then we have no overwrite
1820 * and we can just unlink this entry.
1821 */
1822 if (sctx->parent_root) {
1823 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1824 NULL, NULL, NULL);
1825 if (ret < 0 && ret != -ENOENT)
1826 goto out;
1827 if (ret) {
1828 ret = 0;
1829 goto out;
1830 }
1831 if (gen != dir_gen)
1832 goto out;
1833 }
1834
1835 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1836 &other_inode, &other_type);
1837 if (ret < 0 && ret != -ENOENT)
1838 goto out;
1839 if (ret) {
1840 ret = 0;
1841 goto out;
1842 }
1843
1844 /*
1845 * Check if the overwritten ref was already processed. If yes, the ref
1846 * was already unlinked/moved, so we can safely assume that we will not
1847 * overwrite anything at this point in time.
1848 */
1849 if (other_inode > sctx->send_progress) {
1850 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1851 who_gen, NULL, NULL, NULL, NULL);
1852 if (ret < 0)
1853 goto out;
1854
1855 ret = 1;
1856 *who_ino = other_inode;
1857 } else {
1858 ret = 0;
1859 }
1860
1861 out:
1862 return ret;
1863 }
1864
1865 /*
1866 * Checks if the ref was overwritten by an already processed inode. This is
1867 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1868 * thus the orphan name needs be used.
1869 * process_recorded_refs also uses it to avoid unlinking of refs that were
1870 * overwritten.
1871 */
1872 static int did_overwrite_ref(struct send_ctx *sctx,
1873 u64 dir, u64 dir_gen,
1874 u64 ino, u64 ino_gen,
1875 const char *name, int name_len)
1876 {
1877 int ret = 0;
1878 u64 gen;
1879 u64 ow_inode;
1880 u8 other_type;
1881
1882 if (!sctx->parent_root)
1883 goto out;
1884
1885 ret = is_inode_existent(sctx, dir, dir_gen);
1886 if (ret <= 0)
1887 goto out;
1888
1889 /* check if the ref was overwritten by another ref */
1890 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1891 &ow_inode, &other_type);
1892 if (ret < 0 && ret != -ENOENT)
1893 goto out;
1894 if (ret) {
1895 /* was never and will never be overwritten */
1896 ret = 0;
1897 goto out;
1898 }
1899
1900 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1901 NULL, NULL);
1902 if (ret < 0)
1903 goto out;
1904
1905 if (ow_inode == ino && gen == ino_gen) {
1906 ret = 0;
1907 goto out;
1908 }
1909
1910 /*
1911 * We know that it is or will be overwritten. Check this now.
1912 * The current inode being processed might have been the one that caused
1913 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1914 * the current inode being processed.
1915 */
1916 if ((ow_inode < sctx->send_progress) ||
1917 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1918 gen == sctx->cur_inode_gen))
1919 ret = 1;
1920 else
1921 ret = 0;
1922
1923 out:
1924 return ret;
1925 }
1926
1927 /*
1928 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1929 * that got overwritten. This is used by process_recorded_refs to determine
1930 * if it has to use the path as returned by get_cur_path or the orphan name.
1931 */
1932 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1933 {
1934 int ret = 0;
1935 struct fs_path *name = NULL;
1936 u64 dir;
1937 u64 dir_gen;
1938
1939 if (!sctx->parent_root)
1940 goto out;
1941
1942 name = fs_path_alloc();
1943 if (!name)
1944 return -ENOMEM;
1945
1946 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1947 if (ret < 0)
1948 goto out;
1949
1950 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1951 name->start, fs_path_len(name));
1952
1953 out:
1954 fs_path_free(name);
1955 return ret;
1956 }
1957
1958 /*
1959 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1960 * so we need to do some special handling in case we have clashes. This function
1961 * takes care of this with the help of name_cache_entry::radix_list.
1962 * In case of error, nce is kfreed.
1963 */
1964 static int name_cache_insert(struct send_ctx *sctx,
1965 struct name_cache_entry *nce)
1966 {
1967 int ret = 0;
1968 struct list_head *nce_head;
1969
1970 nce_head = radix_tree_lookup(&sctx->name_cache,
1971 (unsigned long)nce->ino);
1972 if (!nce_head) {
1973 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1974 if (!nce_head) {
1975 kfree(nce);
1976 return -ENOMEM;
1977 }
1978 INIT_LIST_HEAD(nce_head);
1979
1980 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1981 if (ret < 0) {
1982 kfree(nce_head);
1983 kfree(nce);
1984 return ret;
1985 }
1986 }
1987 list_add_tail(&nce->radix_list, nce_head);
1988 list_add_tail(&nce->list, &sctx->name_cache_list);
1989 sctx->name_cache_size++;
1990
1991 return ret;
1992 }
1993
1994 static void name_cache_delete(struct send_ctx *sctx,
1995 struct name_cache_entry *nce)
1996 {
1997 struct list_head *nce_head;
1998
1999 nce_head = radix_tree_lookup(&sctx->name_cache,
2000 (unsigned long)nce->ino);
2001 if (!nce_head) {
2002 btrfs_err(sctx->send_root->fs_info,
2003 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2004 nce->ino, sctx->name_cache_size);
2005 }
2006
2007 list_del(&nce->radix_list);
2008 list_del(&nce->list);
2009 sctx->name_cache_size--;
2010
2011 /*
2012 * We may not get to the final release of nce_head if the lookup fails
2013 */
2014 if (nce_head && list_empty(nce_head)) {
2015 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2016 kfree(nce_head);
2017 }
2018 }
2019
2020 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2021 u64 ino, u64 gen)
2022 {
2023 struct list_head *nce_head;
2024 struct name_cache_entry *cur;
2025
2026 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2027 if (!nce_head)
2028 return NULL;
2029
2030 list_for_each_entry(cur, nce_head, radix_list) {
2031 if (cur->ino == ino && cur->gen == gen)
2032 return cur;
2033 }
2034 return NULL;
2035 }
2036
2037 /*
2038 * Removes the entry from the list and adds it back to the end. This marks the
2039 * entry as recently used so that name_cache_clean_unused does not remove it.
2040 */
2041 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2042 {
2043 list_del(&nce->list);
2044 list_add_tail(&nce->list, &sctx->name_cache_list);
2045 }
2046
2047 /*
2048 * Remove some entries from the beginning of name_cache_list.
2049 */
2050 static void name_cache_clean_unused(struct send_ctx *sctx)
2051 {
2052 struct name_cache_entry *nce;
2053
2054 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2055 return;
2056
2057 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2058 nce = list_entry(sctx->name_cache_list.next,
2059 struct name_cache_entry, list);
2060 name_cache_delete(sctx, nce);
2061 kfree(nce);
2062 }
2063 }
2064
2065 static void name_cache_free(struct send_ctx *sctx)
2066 {
2067 struct name_cache_entry *nce;
2068
2069 while (!list_empty(&sctx->name_cache_list)) {
2070 nce = list_entry(sctx->name_cache_list.next,
2071 struct name_cache_entry, list);
2072 name_cache_delete(sctx, nce);
2073 kfree(nce);
2074 }
2075 }
2076
2077 /*
2078 * Used by get_cur_path for each ref up to the root.
2079 * Returns 0 if it succeeded.
2080 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2081 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2082 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2083 * Returns <0 in case of error.
2084 */
2085 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2086 u64 ino, u64 gen,
2087 u64 *parent_ino,
2088 u64 *parent_gen,
2089 struct fs_path *dest)
2090 {
2091 int ret;
2092 int nce_ret;
2093 struct name_cache_entry *nce = NULL;
2094
2095 /*
2096 * First check if we already did a call to this function with the same
2097 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2098 * return the cached result.
2099 */
2100 nce = name_cache_search(sctx, ino, gen);
2101 if (nce) {
2102 if (ino < sctx->send_progress && nce->need_later_update) {
2103 name_cache_delete(sctx, nce);
2104 kfree(nce);
2105 nce = NULL;
2106 } else {
2107 name_cache_used(sctx, nce);
2108 *parent_ino = nce->parent_ino;
2109 *parent_gen = nce->parent_gen;
2110 ret = fs_path_add(dest, nce->name, nce->name_len);
2111 if (ret < 0)
2112 goto out;
2113 ret = nce->ret;
2114 goto out;
2115 }
2116 }
2117
2118 /*
2119 * If the inode is not existent yet, add the orphan name and return 1.
2120 * This should only happen for the parent dir that we determine in
2121 * __record_new_ref
2122 */
2123 ret = is_inode_existent(sctx, ino, gen);
2124 if (ret < 0)
2125 goto out;
2126
2127 if (!ret) {
2128 ret = gen_unique_name(sctx, ino, gen, dest);
2129 if (ret < 0)
2130 goto out;
2131 ret = 1;
2132 goto out_cache;
2133 }
2134
2135 /*
2136 * Depending on whether the inode was already processed or not, use
2137 * send_root or parent_root for ref lookup.
2138 */
2139 if (ino < sctx->send_progress)
2140 ret = get_first_ref(sctx->send_root, ino,
2141 parent_ino, parent_gen, dest);
2142 else
2143 ret = get_first_ref(sctx->parent_root, ino,
2144 parent_ino, parent_gen, dest);
2145 if (ret < 0)
2146 goto out;
2147
2148 /*
2149 * Check if the ref was overwritten by an inode's ref that was processed
2150 * earlier. If yes, treat as orphan and return 1.
2151 */
2152 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2153 dest->start, dest->end - dest->start);
2154 if (ret < 0)
2155 goto out;
2156 if (ret) {
2157 fs_path_reset(dest);
2158 ret = gen_unique_name(sctx, ino, gen, dest);
2159 if (ret < 0)
2160 goto out;
2161 ret = 1;
2162 }
2163
2164 out_cache:
2165 /*
2166 * Store the result of the lookup in the name cache.
2167 */
2168 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2169 if (!nce) {
2170 ret = -ENOMEM;
2171 goto out;
2172 }
2173
2174 nce->ino = ino;
2175 nce->gen = gen;
2176 nce->parent_ino = *parent_ino;
2177 nce->parent_gen = *parent_gen;
2178 nce->name_len = fs_path_len(dest);
2179 nce->ret = ret;
2180 strcpy(nce->name, dest->start);
2181
2182 if (ino < sctx->send_progress)
2183 nce->need_later_update = 0;
2184 else
2185 nce->need_later_update = 1;
2186
2187 nce_ret = name_cache_insert(sctx, nce);
2188 if (nce_ret < 0)
2189 ret = nce_ret;
2190 name_cache_clean_unused(sctx);
2191
2192 out:
2193 return ret;
2194 }
2195
2196 /*
2197 * Magic happens here. This function returns the first ref to an inode as it
2198 * would look like while receiving the stream at this point in time.
2199 * We walk the path up to the root. For every inode in between, we check if it
2200 * was already processed/sent. If yes, we continue with the parent as found
2201 * in send_root. If not, we continue with the parent as found in parent_root.
2202 * If we encounter an inode that was deleted at this point in time, we use the
2203 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2204 * that were not created yet and overwritten inodes/refs.
2205 *
2206 * When do we have have orphan inodes:
2207 * 1. When an inode is freshly created and thus no valid refs are available yet
2208 * 2. When a directory lost all it's refs (deleted) but still has dir items
2209 * inside which were not processed yet (pending for move/delete). If anyone
2210 * tried to get the path to the dir items, it would get a path inside that
2211 * orphan directory.
2212 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2213 * of an unprocessed inode. If in that case the first ref would be
2214 * overwritten, the overwritten inode gets "orphanized". Later when we
2215 * process this overwritten inode, it is restored at a new place by moving
2216 * the orphan inode.
2217 *
2218 * sctx->send_progress tells this function at which point in time receiving
2219 * would be.
2220 */
2221 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2222 struct fs_path *dest)
2223 {
2224 int ret = 0;
2225 struct fs_path *name = NULL;
2226 u64 parent_inode = 0;
2227 u64 parent_gen = 0;
2228 int stop = 0;
2229
2230 name = fs_path_alloc();
2231 if (!name) {
2232 ret = -ENOMEM;
2233 goto out;
2234 }
2235
2236 dest->reversed = 1;
2237 fs_path_reset(dest);
2238
2239 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2240 struct waiting_dir_move *wdm;
2241
2242 fs_path_reset(name);
2243
2244 if (is_waiting_for_rm(sctx, ino)) {
2245 ret = gen_unique_name(sctx, ino, gen, name);
2246 if (ret < 0)
2247 goto out;
2248 ret = fs_path_add_path(dest, name);
2249 break;
2250 }
2251
2252 wdm = get_waiting_dir_move(sctx, ino);
2253 if (wdm && wdm->orphanized) {
2254 ret = gen_unique_name(sctx, ino, gen, name);
2255 stop = 1;
2256 } else if (wdm) {
2257 ret = get_first_ref(sctx->parent_root, ino,
2258 &parent_inode, &parent_gen, name);
2259 } else {
2260 ret = __get_cur_name_and_parent(sctx, ino, gen,
2261 &parent_inode,
2262 &parent_gen, name);
2263 if (ret)
2264 stop = 1;
2265 }
2266
2267 if (ret < 0)
2268 goto out;
2269
2270 ret = fs_path_add_path(dest, name);
2271 if (ret < 0)
2272 goto out;
2273
2274 ino = parent_inode;
2275 gen = parent_gen;
2276 }
2277
2278 out:
2279 fs_path_free(name);
2280 if (!ret)
2281 fs_path_unreverse(dest);
2282 return ret;
2283 }
2284
2285 /*
2286 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2287 */
2288 static int send_subvol_begin(struct send_ctx *sctx)
2289 {
2290 int ret;
2291 struct btrfs_root *send_root = sctx->send_root;
2292 struct btrfs_root *parent_root = sctx->parent_root;
2293 struct btrfs_path *path;
2294 struct btrfs_key key;
2295 struct btrfs_root_ref *ref;
2296 struct extent_buffer *leaf;
2297 char *name = NULL;
2298 int namelen;
2299
2300 path = btrfs_alloc_path();
2301 if (!path)
2302 return -ENOMEM;
2303
2304 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2305 if (!name) {
2306 btrfs_free_path(path);
2307 return -ENOMEM;
2308 }
2309
2310 key.objectid = send_root->objectid;
2311 key.type = BTRFS_ROOT_BACKREF_KEY;
2312 key.offset = 0;
2313
2314 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2315 &key, path, 1, 0);
2316 if (ret < 0)
2317 goto out;
2318 if (ret) {
2319 ret = -ENOENT;
2320 goto out;
2321 }
2322
2323 leaf = path->nodes[0];
2324 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2325 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2326 key.objectid != send_root->objectid) {
2327 ret = -ENOENT;
2328 goto out;
2329 }
2330 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2331 namelen = btrfs_root_ref_name_len(leaf, ref);
2332 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2333 btrfs_release_path(path);
2334
2335 if (parent_root) {
2336 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2337 if (ret < 0)
2338 goto out;
2339 } else {
2340 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2341 if (ret < 0)
2342 goto out;
2343 }
2344
2345 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2346
2347 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2348 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2349 sctx->send_root->root_item.received_uuid);
2350 else
2351 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2352 sctx->send_root->root_item.uuid);
2353
2354 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2355 le64_to_cpu(sctx->send_root->root_item.ctransid));
2356 if (parent_root) {
2357 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2358 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2359 parent_root->root_item.received_uuid);
2360 else
2361 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2362 parent_root->root_item.uuid);
2363 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2364 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2365 }
2366
2367 ret = send_cmd(sctx);
2368
2369 tlv_put_failure:
2370 out:
2371 btrfs_free_path(path);
2372 kfree(name);
2373 return ret;
2374 }
2375
2376 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2377 {
2378 int ret = 0;
2379 struct fs_path *p;
2380
2381 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2382
2383 p = fs_path_alloc();
2384 if (!p)
2385 return -ENOMEM;
2386
2387 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2388 if (ret < 0)
2389 goto out;
2390
2391 ret = get_cur_path(sctx, ino, gen, p);
2392 if (ret < 0)
2393 goto out;
2394 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2395 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2396
2397 ret = send_cmd(sctx);
2398
2399 tlv_put_failure:
2400 out:
2401 fs_path_free(p);
2402 return ret;
2403 }
2404
2405 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2406 {
2407 int ret = 0;
2408 struct fs_path *p;
2409
2410 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2411
2412 p = fs_path_alloc();
2413 if (!p)
2414 return -ENOMEM;
2415
2416 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2417 if (ret < 0)
2418 goto out;
2419
2420 ret = get_cur_path(sctx, ino, gen, p);
2421 if (ret < 0)
2422 goto out;
2423 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2424 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2425
2426 ret = send_cmd(sctx);
2427
2428 tlv_put_failure:
2429 out:
2430 fs_path_free(p);
2431 return ret;
2432 }
2433
2434 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2435 {
2436 int ret = 0;
2437 struct fs_path *p;
2438
2439 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2440
2441 p = fs_path_alloc();
2442 if (!p)
2443 return -ENOMEM;
2444
2445 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2446 if (ret < 0)
2447 goto out;
2448
2449 ret = get_cur_path(sctx, ino, gen, p);
2450 if (ret < 0)
2451 goto out;
2452 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2453 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2454 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2455
2456 ret = send_cmd(sctx);
2457
2458 tlv_put_failure:
2459 out:
2460 fs_path_free(p);
2461 return ret;
2462 }
2463
2464 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2465 {
2466 int ret = 0;
2467 struct fs_path *p = NULL;
2468 struct btrfs_inode_item *ii;
2469 struct btrfs_path *path = NULL;
2470 struct extent_buffer *eb;
2471 struct btrfs_key key;
2472 int slot;
2473
2474 verbose_printk("btrfs: send_utimes %llu\n", ino);
2475
2476 p = fs_path_alloc();
2477 if (!p)
2478 return -ENOMEM;
2479
2480 path = alloc_path_for_send();
2481 if (!path) {
2482 ret = -ENOMEM;
2483 goto out;
2484 }
2485
2486 key.objectid = ino;
2487 key.type = BTRFS_INODE_ITEM_KEY;
2488 key.offset = 0;
2489 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2490 if (ret < 0)
2491 goto out;
2492
2493 eb = path->nodes[0];
2494 slot = path->slots[0];
2495 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2496
2497 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2498 if (ret < 0)
2499 goto out;
2500
2501 ret = get_cur_path(sctx, ino, gen, p);
2502 if (ret < 0)
2503 goto out;
2504 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2505 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2506 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2507 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2508 /* TODO Add otime support when the otime patches get into upstream */
2509
2510 ret = send_cmd(sctx);
2511
2512 tlv_put_failure:
2513 out:
2514 fs_path_free(p);
2515 btrfs_free_path(path);
2516 return ret;
2517 }
2518
2519 /*
2520 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2521 * a valid path yet because we did not process the refs yet. So, the inode
2522 * is created as orphan.
2523 */
2524 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2525 {
2526 int ret = 0;
2527 struct fs_path *p;
2528 int cmd;
2529 u64 gen;
2530 u64 mode;
2531 u64 rdev;
2532
2533 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2534
2535 p = fs_path_alloc();
2536 if (!p)
2537 return -ENOMEM;
2538
2539 if (ino != sctx->cur_ino) {
2540 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2541 NULL, NULL, &rdev);
2542 if (ret < 0)
2543 goto out;
2544 } else {
2545 gen = sctx->cur_inode_gen;
2546 mode = sctx->cur_inode_mode;
2547 rdev = sctx->cur_inode_rdev;
2548 }
2549
2550 if (S_ISREG(mode)) {
2551 cmd = BTRFS_SEND_C_MKFILE;
2552 } else if (S_ISDIR(mode)) {
2553 cmd = BTRFS_SEND_C_MKDIR;
2554 } else if (S_ISLNK(mode)) {
2555 cmd = BTRFS_SEND_C_SYMLINK;
2556 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2557 cmd = BTRFS_SEND_C_MKNOD;
2558 } else if (S_ISFIFO(mode)) {
2559 cmd = BTRFS_SEND_C_MKFIFO;
2560 } else if (S_ISSOCK(mode)) {
2561 cmd = BTRFS_SEND_C_MKSOCK;
2562 } else {
2563 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2564 (int)(mode & S_IFMT));
2565 ret = -ENOTSUPP;
2566 goto out;
2567 }
2568
2569 ret = begin_cmd(sctx, cmd);
2570 if (ret < 0)
2571 goto out;
2572
2573 ret = gen_unique_name(sctx, ino, gen, p);
2574 if (ret < 0)
2575 goto out;
2576
2577 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2578 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2579
2580 if (S_ISLNK(mode)) {
2581 fs_path_reset(p);
2582 ret = read_symlink(sctx->send_root, ino, p);
2583 if (ret < 0)
2584 goto out;
2585 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2586 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2587 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2588 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2589 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2590 }
2591
2592 ret = send_cmd(sctx);
2593 if (ret < 0)
2594 goto out;
2595
2596
2597 tlv_put_failure:
2598 out:
2599 fs_path_free(p);
2600 return ret;
2601 }
2602
2603 /*
2604 * We need some special handling for inodes that get processed before the parent
2605 * directory got created. See process_recorded_refs for details.
2606 * This function does the check if we already created the dir out of order.
2607 */
2608 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2609 {
2610 int ret = 0;
2611 struct btrfs_path *path = NULL;
2612 struct btrfs_key key;
2613 struct btrfs_key found_key;
2614 struct btrfs_key di_key;
2615 struct extent_buffer *eb;
2616 struct btrfs_dir_item *di;
2617 int slot;
2618
2619 path = alloc_path_for_send();
2620 if (!path) {
2621 ret = -ENOMEM;
2622 goto out;
2623 }
2624
2625 key.objectid = dir;
2626 key.type = BTRFS_DIR_INDEX_KEY;
2627 key.offset = 0;
2628 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2629 if (ret < 0)
2630 goto out;
2631
2632 while (1) {
2633 eb = path->nodes[0];
2634 slot = path->slots[0];
2635 if (slot >= btrfs_header_nritems(eb)) {
2636 ret = btrfs_next_leaf(sctx->send_root, path);
2637 if (ret < 0) {
2638 goto out;
2639 } else if (ret > 0) {
2640 ret = 0;
2641 break;
2642 }
2643 continue;
2644 }
2645
2646 btrfs_item_key_to_cpu(eb, &found_key, slot);
2647 if (found_key.objectid != key.objectid ||
2648 found_key.type != key.type) {
2649 ret = 0;
2650 goto out;
2651 }
2652
2653 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2654 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2655
2656 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2657 di_key.objectid < sctx->send_progress) {
2658 ret = 1;
2659 goto out;
2660 }
2661
2662 path->slots[0]++;
2663 }
2664
2665 out:
2666 btrfs_free_path(path);
2667 return ret;
2668 }
2669
2670 /*
2671 * Only creates the inode if it is:
2672 * 1. Not a directory
2673 * 2. Or a directory which was not created already due to out of order
2674 * directories. See did_create_dir and process_recorded_refs for details.
2675 */
2676 static int send_create_inode_if_needed(struct send_ctx *sctx)
2677 {
2678 int ret;
2679
2680 if (S_ISDIR(sctx->cur_inode_mode)) {
2681 ret = did_create_dir(sctx, sctx->cur_ino);
2682 if (ret < 0)
2683 goto out;
2684 if (ret) {
2685 ret = 0;
2686 goto out;
2687 }
2688 }
2689
2690 ret = send_create_inode(sctx, sctx->cur_ino);
2691 if (ret < 0)
2692 goto out;
2693
2694 out:
2695 return ret;
2696 }
2697
2698 struct recorded_ref {
2699 struct list_head list;
2700 char *dir_path;
2701 char *name;
2702 struct fs_path *full_path;
2703 u64 dir;
2704 u64 dir_gen;
2705 int dir_path_len;
2706 int name_len;
2707 };
2708
2709 /*
2710 * We need to process new refs before deleted refs, but compare_tree gives us
2711 * everything mixed. So we first record all refs and later process them.
2712 * This function is a helper to record one ref.
2713 */
2714 static int __record_ref(struct list_head *head, u64 dir,
2715 u64 dir_gen, struct fs_path *path)
2716 {
2717 struct recorded_ref *ref;
2718
2719 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2720 if (!ref)
2721 return -ENOMEM;
2722
2723 ref->dir = dir;
2724 ref->dir_gen = dir_gen;
2725 ref->full_path = path;
2726
2727 ref->name = (char *)kbasename(ref->full_path->start);
2728 ref->name_len = ref->full_path->end - ref->name;
2729 ref->dir_path = ref->full_path->start;
2730 if (ref->name == ref->full_path->start)
2731 ref->dir_path_len = 0;
2732 else
2733 ref->dir_path_len = ref->full_path->end -
2734 ref->full_path->start - 1 - ref->name_len;
2735
2736 list_add_tail(&ref->list, head);
2737 return 0;
2738 }
2739
2740 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2741 {
2742 struct recorded_ref *new;
2743
2744 new = kmalloc(sizeof(*ref), GFP_NOFS);
2745 if (!new)
2746 return -ENOMEM;
2747
2748 new->dir = ref->dir;
2749 new->dir_gen = ref->dir_gen;
2750 new->full_path = NULL;
2751 INIT_LIST_HEAD(&new->list);
2752 list_add_tail(&new->list, list);
2753 return 0;
2754 }
2755
2756 static void __free_recorded_refs(struct list_head *head)
2757 {
2758 struct recorded_ref *cur;
2759
2760 while (!list_empty(head)) {
2761 cur = list_entry(head->next, struct recorded_ref, list);
2762 fs_path_free(cur->full_path);
2763 list_del(&cur->list);
2764 kfree(cur);
2765 }
2766 }
2767
2768 static void free_recorded_refs(struct send_ctx *sctx)
2769 {
2770 __free_recorded_refs(&sctx->new_refs);
2771 __free_recorded_refs(&sctx->deleted_refs);
2772 }
2773
2774 /*
2775 * Renames/moves a file/dir to its orphan name. Used when the first
2776 * ref of an unprocessed inode gets overwritten and for all non empty
2777 * directories.
2778 */
2779 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2780 struct fs_path *path)
2781 {
2782 int ret;
2783 struct fs_path *orphan;
2784
2785 orphan = fs_path_alloc();
2786 if (!orphan)
2787 return -ENOMEM;
2788
2789 ret = gen_unique_name(sctx, ino, gen, orphan);
2790 if (ret < 0)
2791 goto out;
2792
2793 ret = send_rename(sctx, path, orphan);
2794
2795 out:
2796 fs_path_free(orphan);
2797 return ret;
2798 }
2799
2800 static struct orphan_dir_info *
2801 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2802 {
2803 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2804 struct rb_node *parent = NULL;
2805 struct orphan_dir_info *entry, *odi;
2806
2807 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2808 if (!odi)
2809 return ERR_PTR(-ENOMEM);
2810 odi->ino = dir_ino;
2811 odi->gen = 0;
2812
2813 while (*p) {
2814 parent = *p;
2815 entry = rb_entry(parent, struct orphan_dir_info, node);
2816 if (dir_ino < entry->ino) {
2817 p = &(*p)->rb_left;
2818 } else if (dir_ino > entry->ino) {
2819 p = &(*p)->rb_right;
2820 } else {
2821 kfree(odi);
2822 return entry;
2823 }
2824 }
2825
2826 rb_link_node(&odi->node, parent, p);
2827 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2828 return odi;
2829 }
2830
2831 static struct orphan_dir_info *
2832 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2833 {
2834 struct rb_node *n = sctx->orphan_dirs.rb_node;
2835 struct orphan_dir_info *entry;
2836
2837 while (n) {
2838 entry = rb_entry(n, struct orphan_dir_info, node);
2839 if (dir_ino < entry->ino)
2840 n = n->rb_left;
2841 else if (dir_ino > entry->ino)
2842 n = n->rb_right;
2843 else
2844 return entry;
2845 }
2846 return NULL;
2847 }
2848
2849 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2850 {
2851 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2852
2853 return odi != NULL;
2854 }
2855
2856 static void free_orphan_dir_info(struct send_ctx *sctx,
2857 struct orphan_dir_info *odi)
2858 {
2859 if (!odi)
2860 return;
2861 rb_erase(&odi->node, &sctx->orphan_dirs);
2862 kfree(odi);
2863 }
2864
2865 /*
2866 * Returns 1 if a directory can be removed at this point in time.
2867 * We check this by iterating all dir items and checking if the inode behind
2868 * the dir item was already processed.
2869 */
2870 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2871 u64 send_progress)
2872 {
2873 int ret = 0;
2874 struct btrfs_root *root = sctx->parent_root;
2875 struct btrfs_path *path;
2876 struct btrfs_key key;
2877 struct btrfs_key found_key;
2878 struct btrfs_key loc;
2879 struct btrfs_dir_item *di;
2880
2881 /*
2882 * Don't try to rmdir the top/root subvolume dir.
2883 */
2884 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2885 return 0;
2886
2887 path = alloc_path_for_send();
2888 if (!path)
2889 return -ENOMEM;
2890
2891 key.objectid = dir;
2892 key.type = BTRFS_DIR_INDEX_KEY;
2893 key.offset = 0;
2894 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2895 if (ret < 0)
2896 goto out;
2897
2898 while (1) {
2899 struct waiting_dir_move *dm;
2900
2901 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2902 ret = btrfs_next_leaf(root, path);
2903 if (ret < 0)
2904 goto out;
2905 else if (ret > 0)
2906 break;
2907 continue;
2908 }
2909 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2910 path->slots[0]);
2911 if (found_key.objectid != key.objectid ||
2912 found_key.type != key.type)
2913 break;
2914
2915 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2916 struct btrfs_dir_item);
2917 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2918
2919 dm = get_waiting_dir_move(sctx, loc.objectid);
2920 if (dm) {
2921 struct orphan_dir_info *odi;
2922
2923 odi = add_orphan_dir_info(sctx, dir);
2924 if (IS_ERR(odi)) {
2925 ret = PTR_ERR(odi);
2926 goto out;
2927 }
2928 odi->gen = dir_gen;
2929 dm->rmdir_ino = dir;
2930 ret = 0;
2931 goto out;
2932 }
2933
2934 if (loc.objectid > send_progress) {
2935 ret = 0;
2936 goto out;
2937 }
2938
2939 path->slots[0]++;
2940 }
2941
2942 ret = 1;
2943
2944 out:
2945 btrfs_free_path(path);
2946 return ret;
2947 }
2948
2949 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2950 {
2951 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2952
2953 return entry != NULL;
2954 }
2955
2956 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2957 {
2958 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2959 struct rb_node *parent = NULL;
2960 struct waiting_dir_move *entry, *dm;
2961
2962 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2963 if (!dm)
2964 return -ENOMEM;
2965 dm->ino = ino;
2966 dm->rmdir_ino = 0;
2967 dm->orphanized = orphanized;
2968
2969 while (*p) {
2970 parent = *p;
2971 entry = rb_entry(parent, struct waiting_dir_move, node);
2972 if (ino < entry->ino) {
2973 p = &(*p)->rb_left;
2974 } else if (ino > entry->ino) {
2975 p = &(*p)->rb_right;
2976 } else {
2977 kfree(dm);
2978 return -EEXIST;
2979 }
2980 }
2981
2982 rb_link_node(&dm->node, parent, p);
2983 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2984 return 0;
2985 }
2986
2987 static struct waiting_dir_move *
2988 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
2989 {
2990 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
2991 struct waiting_dir_move *entry;
2992
2993 while (n) {
2994 entry = rb_entry(n, struct waiting_dir_move, node);
2995 if (ino < entry->ino)
2996 n = n->rb_left;
2997 else if (ino > entry->ino)
2998 n = n->rb_right;
2999 else
3000 return entry;
3001 }
3002 return NULL;
3003 }
3004
3005 static void free_waiting_dir_move(struct send_ctx *sctx,
3006 struct waiting_dir_move *dm)
3007 {
3008 if (!dm)
3009 return;
3010 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3011 kfree(dm);
3012 }
3013
3014 static int add_pending_dir_move(struct send_ctx *sctx,
3015 u64 ino,
3016 u64 ino_gen,
3017 u64 parent_ino,
3018 struct list_head *new_refs,
3019 struct list_head *deleted_refs,
3020 const bool is_orphan)
3021 {
3022 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3023 struct rb_node *parent = NULL;
3024 struct pending_dir_move *entry = NULL, *pm;
3025 struct recorded_ref *cur;
3026 int exists = 0;
3027 int ret;
3028
3029 pm = kmalloc(sizeof(*pm), GFP_NOFS);
3030 if (!pm)
3031 return -ENOMEM;
3032 pm->parent_ino = parent_ino;
3033 pm->ino = ino;
3034 pm->gen = ino_gen;
3035 pm->is_orphan = is_orphan;
3036 INIT_LIST_HEAD(&pm->list);
3037 INIT_LIST_HEAD(&pm->update_refs);
3038 RB_CLEAR_NODE(&pm->node);
3039
3040 while (*p) {
3041 parent = *p;
3042 entry = rb_entry(parent, struct pending_dir_move, node);
3043 if (parent_ino < entry->parent_ino) {
3044 p = &(*p)->rb_left;
3045 } else if (parent_ino > entry->parent_ino) {
3046 p = &(*p)->rb_right;
3047 } else {
3048 exists = 1;
3049 break;
3050 }
3051 }
3052
3053 list_for_each_entry(cur, deleted_refs, list) {
3054 ret = dup_ref(cur, &pm->update_refs);
3055 if (ret < 0)
3056 goto out;
3057 }
3058 list_for_each_entry(cur, new_refs, list) {
3059 ret = dup_ref(cur, &pm->update_refs);
3060 if (ret < 0)
3061 goto out;
3062 }
3063
3064 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3065 if (ret)
3066 goto out;
3067
3068 if (exists) {
3069 list_add_tail(&pm->list, &entry->list);
3070 } else {
3071 rb_link_node(&pm->node, parent, p);
3072 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3073 }
3074 ret = 0;
3075 out:
3076 if (ret) {
3077 __free_recorded_refs(&pm->update_refs);
3078 kfree(pm);
3079 }
3080 return ret;
3081 }
3082
3083 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3084 u64 parent_ino)
3085 {
3086 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3087 struct pending_dir_move *entry;
3088
3089 while (n) {
3090 entry = rb_entry(n, struct pending_dir_move, node);
3091 if (parent_ino < entry->parent_ino)
3092 n = n->rb_left;
3093 else if (parent_ino > entry->parent_ino)
3094 n = n->rb_right;
3095 else
3096 return entry;
3097 }
3098 return NULL;
3099 }
3100
3101 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3102 {
3103 struct fs_path *from_path = NULL;
3104 struct fs_path *to_path = NULL;
3105 struct fs_path *name = NULL;
3106 u64 orig_progress = sctx->send_progress;
3107 struct recorded_ref *cur;
3108 u64 parent_ino, parent_gen;
3109 struct waiting_dir_move *dm = NULL;
3110 u64 rmdir_ino = 0;
3111 int ret;
3112
3113 name = fs_path_alloc();
3114 from_path = fs_path_alloc();
3115 if (!name || !from_path) {
3116 ret = -ENOMEM;
3117 goto out;
3118 }
3119
3120 dm = get_waiting_dir_move(sctx, pm->ino);
3121 ASSERT(dm);
3122 rmdir_ino = dm->rmdir_ino;
3123 free_waiting_dir_move(sctx, dm);
3124
3125 if (pm->is_orphan) {
3126 ret = gen_unique_name(sctx, pm->ino,
3127 pm->gen, from_path);
3128 } else {
3129 ret = get_first_ref(sctx->parent_root, pm->ino,
3130 &parent_ino, &parent_gen, name);
3131 if (ret < 0)
3132 goto out;
3133 ret = get_cur_path(sctx, parent_ino, parent_gen,
3134 from_path);
3135 if (ret < 0)
3136 goto out;
3137 ret = fs_path_add_path(from_path, name);
3138 }
3139 if (ret < 0)
3140 goto out;
3141
3142 sctx->send_progress = sctx->cur_ino + 1;
3143 fs_path_reset(name);
3144 to_path = name;
3145 name = NULL;
3146 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3147 if (ret < 0)
3148 goto out;
3149
3150 ret = send_rename(sctx, from_path, to_path);
3151 if (ret < 0)
3152 goto out;
3153
3154 if (rmdir_ino) {
3155 struct orphan_dir_info *odi;
3156
3157 odi = get_orphan_dir_info(sctx, rmdir_ino);
3158 if (!odi) {
3159 /* already deleted */
3160 goto finish;
3161 }
3162 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3163 if (ret < 0)
3164 goto out;
3165 if (!ret)
3166 goto finish;
3167
3168 name = fs_path_alloc();
3169 if (!name) {
3170 ret = -ENOMEM;
3171 goto out;
3172 }
3173 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3174 if (ret < 0)
3175 goto out;
3176 ret = send_rmdir(sctx, name);
3177 if (ret < 0)
3178 goto out;
3179 free_orphan_dir_info(sctx, odi);
3180 }
3181
3182 finish:
3183 ret = send_utimes(sctx, pm->ino, pm->gen);
3184 if (ret < 0)
3185 goto out;
3186
3187 /*
3188 * After rename/move, need to update the utimes of both new parent(s)
3189 * and old parent(s).
3190 */
3191 list_for_each_entry(cur, &pm->update_refs, list) {
3192 if (cur->dir == rmdir_ino)
3193 continue;
3194 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3195 if (ret < 0)
3196 goto out;
3197 }
3198
3199 out:
3200 fs_path_free(name);
3201 fs_path_free(from_path);
3202 fs_path_free(to_path);
3203 sctx->send_progress = orig_progress;
3204
3205 return ret;
3206 }
3207
3208 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3209 {
3210 if (!list_empty(&m->list))
3211 list_del(&m->list);
3212 if (!RB_EMPTY_NODE(&m->node))
3213 rb_erase(&m->node, &sctx->pending_dir_moves);
3214 __free_recorded_refs(&m->update_refs);
3215 kfree(m);
3216 }
3217
3218 static void tail_append_pending_moves(struct pending_dir_move *moves,
3219 struct list_head *stack)
3220 {
3221 if (list_empty(&moves->list)) {
3222 list_add_tail(&moves->list, stack);
3223 } else {
3224 LIST_HEAD(list);
3225 list_splice_init(&moves->list, &list);
3226 list_add_tail(&moves->list, stack);
3227 list_splice_tail(&list, stack);
3228 }
3229 }
3230
3231 static int apply_children_dir_moves(struct send_ctx *sctx)
3232 {
3233 struct pending_dir_move *pm;
3234 struct list_head stack;
3235 u64 parent_ino = sctx->cur_ino;
3236 int ret = 0;
3237
3238 pm = get_pending_dir_moves(sctx, parent_ino);
3239 if (!pm)
3240 return 0;
3241
3242 INIT_LIST_HEAD(&stack);
3243 tail_append_pending_moves(pm, &stack);
3244
3245 while (!list_empty(&stack)) {
3246 pm = list_first_entry(&stack, struct pending_dir_move, list);
3247 parent_ino = pm->ino;
3248 ret = apply_dir_move(sctx, pm);
3249 free_pending_move(sctx, pm);
3250 if (ret)
3251 goto out;
3252 pm = get_pending_dir_moves(sctx, parent_ino);
3253 if (pm)
3254 tail_append_pending_moves(pm, &stack);
3255 }
3256 return 0;
3257
3258 out:
3259 while (!list_empty(&stack)) {
3260 pm = list_first_entry(&stack, struct pending_dir_move, list);
3261 free_pending_move(sctx, pm);
3262 }
3263 return ret;
3264 }
3265
3266 /*
3267 * We might need to delay a directory rename even when no ancestor directory
3268 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3269 * renamed. This happens when we rename a directory to the old name (the name
3270 * in the parent root) of some other unrelated directory that got its rename
3271 * delayed due to some ancestor with higher number that got renamed.
3272 *
3273 * Example:
3274 *
3275 * Parent snapshot:
3276 * . (ino 256)
3277 * |---- a/ (ino 257)
3278 * | |---- file (ino 260)
3279 * |
3280 * |---- b/ (ino 258)
3281 * |---- c/ (ino 259)
3282 *
3283 * Send snapshot:
3284 * . (ino 256)
3285 * |---- a/ (ino 258)
3286 * |---- x/ (ino 259)
3287 * |---- y/ (ino 257)
3288 * |----- file (ino 260)
3289 *
3290 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3291 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3292 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3293 * must issue is:
3294 *
3295 * 1 - rename 259 from 'c' to 'x'
3296 * 2 - rename 257 from 'a' to 'x/y'
3297 * 3 - rename 258 from 'b' to 'a'
3298 *
3299 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3300 * be done right away and < 0 on error.
3301 */
3302 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3303 struct recorded_ref *parent_ref,
3304 const bool is_orphan)
3305 {
3306 struct btrfs_path *path;
3307 struct btrfs_key key;
3308 struct btrfs_key di_key;
3309 struct btrfs_dir_item *di;
3310 u64 left_gen;
3311 u64 right_gen;
3312 int ret = 0;
3313
3314 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3315 return 0;
3316
3317 path = alloc_path_for_send();
3318 if (!path)
3319 return -ENOMEM;
3320
3321 key.objectid = parent_ref->dir;
3322 key.type = BTRFS_DIR_ITEM_KEY;
3323 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3324
3325 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3326 if (ret < 0) {
3327 goto out;
3328 } else if (ret > 0) {
3329 ret = 0;
3330 goto out;
3331 }
3332
3333 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3334 parent_ref->name, parent_ref->name_len);
3335 if (!di) {
3336 ret = 0;
3337 goto out;
3338 }
3339 /*
3340 * di_key.objectid has the number of the inode that has a dentry in the
3341 * parent directory with the same name that sctx->cur_ino is being
3342 * renamed to. We need to check if that inode is in the send root as
3343 * well and if it is currently marked as an inode with a pending rename,
3344 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3345 * that it happens after that other inode is renamed.
3346 */
3347 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3348 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3349 ret = 0;
3350 goto out;
3351 }
3352
3353 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3354 &left_gen, NULL, NULL, NULL, NULL);
3355 if (ret < 0)
3356 goto out;
3357 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3358 &right_gen, NULL, NULL, NULL, NULL);
3359 if (ret < 0) {
3360 if (ret == -ENOENT)
3361 ret = 0;
3362 goto out;
3363 }
3364
3365 /* Different inode, no need to delay the rename of sctx->cur_ino */
3366 if (right_gen != left_gen) {
3367 ret = 0;
3368 goto out;
3369 }
3370
3371 if (is_waiting_for_move(sctx, di_key.objectid)) {
3372 ret = add_pending_dir_move(sctx,
3373 sctx->cur_ino,
3374 sctx->cur_inode_gen,
3375 di_key.objectid,
3376 &sctx->new_refs,
3377 &sctx->deleted_refs,
3378 is_orphan);
3379 if (!ret)
3380 ret = 1;
3381 }
3382 out:
3383 btrfs_free_path(path);
3384 return ret;
3385 }
3386
3387 /*
3388 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3389 * Return 1 if true, 0 if false and < 0 on error.
3390 */
3391 static int is_ancestor(struct btrfs_root *root,
3392 const u64 ino1,
3393 const u64 ino1_gen,
3394 const u64 ino2,
3395 struct fs_path *fs_path)
3396 {
3397 u64 ino = ino2;
3398
3399 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3400 int ret;
3401 u64 parent;
3402 u64 parent_gen;
3403
3404 fs_path_reset(fs_path);
3405 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3406 if (ret < 0) {
3407 if (ret == -ENOENT && ino == ino2)
3408 ret = 0;
3409 return ret;
3410 }
3411 if (parent == ino1)
3412 return parent_gen == ino1_gen ? 1 : 0;
3413 ino = parent;
3414 }
3415 return 0;
3416 }
3417
3418 static int wait_for_parent_move(struct send_ctx *sctx,
3419 struct recorded_ref *parent_ref,
3420 const bool is_orphan)
3421 {
3422 int ret = 0;
3423 u64 ino = parent_ref->dir;
3424 u64 parent_ino_before, parent_ino_after;
3425 struct fs_path *path_before = NULL;
3426 struct fs_path *path_after = NULL;
3427 int len1, len2;
3428
3429 path_after = fs_path_alloc();
3430 path_before = fs_path_alloc();
3431 if (!path_after || !path_before) {
3432 ret = -ENOMEM;
3433 goto out;
3434 }
3435
3436 /*
3437 * Our current directory inode may not yet be renamed/moved because some
3438 * ancestor (immediate or not) has to be renamed/moved first. So find if
3439 * such ancestor exists and make sure our own rename/move happens after
3440 * that ancestor is processed to avoid path build infinite loops (done
3441 * at get_cur_path()).
3442 */
3443 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3444 if (is_waiting_for_move(sctx, ino)) {
3445 /*
3446 * If the current inode is an ancestor of ino in the
3447 * parent root, we need to delay the rename of the
3448 * current inode, otherwise don't delayed the rename
3449 * because we can end up with a circular dependency
3450 * of renames, resulting in some directories never
3451 * getting the respective rename operations issued in
3452 * the send stream or getting into infinite path build
3453 * loops.
3454 */
3455 ret = is_ancestor(sctx->parent_root,
3456 sctx->cur_ino, sctx->cur_inode_gen,
3457 ino, path_before);
3458 break;
3459 }
3460
3461 fs_path_reset(path_before);
3462 fs_path_reset(path_after);
3463
3464 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3465 NULL, path_after);
3466 if (ret < 0)
3467 goto out;
3468 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3469 NULL, path_before);
3470 if (ret < 0 && ret != -ENOENT) {
3471 goto out;
3472 } else if (ret == -ENOENT) {
3473 ret = 0;
3474 break;
3475 }
3476
3477 len1 = fs_path_len(path_before);
3478 len2 = fs_path_len(path_after);
3479 if (ino > sctx->cur_ino &&
3480 (parent_ino_before != parent_ino_after || len1 != len2 ||
3481 memcmp(path_before->start, path_after->start, len1))) {
3482 ret = 1;
3483 break;
3484 }
3485 ino = parent_ino_after;
3486 }
3487
3488 out:
3489 fs_path_free(path_before);
3490 fs_path_free(path_after);
3491
3492 if (ret == 1) {
3493 ret = add_pending_dir_move(sctx,
3494 sctx->cur_ino,
3495 sctx->cur_inode_gen,
3496 ino,
3497 &sctx->new_refs,
3498 &sctx->deleted_refs,
3499 is_orphan);
3500 if (!ret)
3501 ret = 1;
3502 }
3503
3504 return ret;
3505 }
3506
3507 /*
3508 * This does all the move/link/unlink/rmdir magic.
3509 */
3510 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3511 {
3512 int ret = 0;
3513 struct recorded_ref *cur;
3514 struct recorded_ref *cur2;
3515 struct list_head check_dirs;
3516 struct fs_path *valid_path = NULL;
3517 u64 ow_inode = 0;
3518 u64 ow_gen;
3519 int did_overwrite = 0;
3520 int is_orphan = 0;
3521 u64 last_dir_ino_rm = 0;
3522 bool can_rename = true;
3523
3524 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3525
3526 /*
3527 * This should never happen as the root dir always has the same ref
3528 * which is always '..'
3529 */
3530 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3531 INIT_LIST_HEAD(&check_dirs);
3532
3533 valid_path = fs_path_alloc();
3534 if (!valid_path) {
3535 ret = -ENOMEM;
3536 goto out;
3537 }
3538
3539 /*
3540 * First, check if the first ref of the current inode was overwritten
3541 * before. If yes, we know that the current inode was already orphanized
3542 * and thus use the orphan name. If not, we can use get_cur_path to
3543 * get the path of the first ref as it would like while receiving at
3544 * this point in time.
3545 * New inodes are always orphan at the beginning, so force to use the
3546 * orphan name in this case.
3547 * The first ref is stored in valid_path and will be updated if it
3548 * gets moved around.
3549 */
3550 if (!sctx->cur_inode_new) {
3551 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3552 sctx->cur_inode_gen);
3553 if (ret < 0)
3554 goto out;
3555 if (ret)
3556 did_overwrite = 1;
3557 }
3558 if (sctx->cur_inode_new || did_overwrite) {
3559 ret = gen_unique_name(sctx, sctx->cur_ino,
3560 sctx->cur_inode_gen, valid_path);
3561 if (ret < 0)
3562 goto out;
3563 is_orphan = 1;
3564 } else {
3565 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3566 valid_path);
3567 if (ret < 0)
3568 goto out;
3569 }
3570
3571 list_for_each_entry(cur, &sctx->new_refs, list) {
3572 /*
3573 * We may have refs where the parent directory does not exist
3574 * yet. This happens if the parent directories inum is higher
3575 * the the current inum. To handle this case, we create the
3576 * parent directory out of order. But we need to check if this
3577 * did already happen before due to other refs in the same dir.
3578 */
3579 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3580 if (ret < 0)
3581 goto out;
3582 if (ret == inode_state_will_create) {
3583 ret = 0;
3584 /*
3585 * First check if any of the current inodes refs did
3586 * already create the dir.
3587 */
3588 list_for_each_entry(cur2, &sctx->new_refs, list) {
3589 if (cur == cur2)
3590 break;
3591 if (cur2->dir == cur->dir) {
3592 ret = 1;
3593 break;
3594 }
3595 }
3596
3597 /*
3598 * If that did not happen, check if a previous inode
3599 * did already create the dir.
3600 */
3601 if (!ret)
3602 ret = did_create_dir(sctx, cur->dir);
3603 if (ret < 0)
3604 goto out;
3605 if (!ret) {
3606 ret = send_create_inode(sctx, cur->dir);
3607 if (ret < 0)
3608 goto out;
3609 }
3610 }
3611
3612 /*
3613 * Check if this new ref would overwrite the first ref of
3614 * another unprocessed inode. If yes, orphanize the
3615 * overwritten inode. If we find an overwritten ref that is
3616 * not the first ref, simply unlink it.
3617 */
3618 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3619 cur->name, cur->name_len,
3620 &ow_inode, &ow_gen);
3621 if (ret < 0)
3622 goto out;
3623 if (ret) {
3624 ret = is_first_ref(sctx->parent_root,
3625 ow_inode, cur->dir, cur->name,
3626 cur->name_len);
3627 if (ret < 0)
3628 goto out;
3629 if (ret) {
3630 struct name_cache_entry *nce;
3631
3632 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3633 cur->full_path);
3634 if (ret < 0)
3635 goto out;
3636 /*
3637 * Make sure we clear our orphanized inode's
3638 * name from the name cache. This is because the
3639 * inode ow_inode might be an ancestor of some
3640 * other inode that will be orphanized as well
3641 * later and has an inode number greater than
3642 * sctx->send_progress. We need to prevent
3643 * future name lookups from using the old name
3644 * and get instead the orphan name.
3645 */
3646 nce = name_cache_search(sctx, ow_inode, ow_gen);
3647 if (nce) {
3648 name_cache_delete(sctx, nce);
3649 kfree(nce);
3650 }
3651 } else {
3652 ret = send_unlink(sctx, cur->full_path);
3653 if (ret < 0)
3654 goto out;
3655 }
3656 }
3657
3658 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3659 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3660 if (ret < 0)
3661 goto out;
3662 if (ret == 1) {
3663 can_rename = false;
3664 *pending_move = 1;
3665 }
3666 }
3667
3668 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3669 can_rename) {
3670 ret = wait_for_parent_move(sctx, cur, is_orphan);
3671 if (ret < 0)
3672 goto out;
3673 if (ret == 1) {
3674 can_rename = false;
3675 *pending_move = 1;
3676 }
3677 }
3678
3679 /*
3680 * link/move the ref to the new place. If we have an orphan
3681 * inode, move it and update valid_path. If not, link or move
3682 * it depending on the inode mode.
3683 */
3684 if (is_orphan && can_rename) {
3685 ret = send_rename(sctx, valid_path, cur->full_path);
3686 if (ret < 0)
3687 goto out;
3688 is_orphan = 0;
3689 ret = fs_path_copy(valid_path, cur->full_path);
3690 if (ret < 0)
3691 goto out;
3692 } else if (can_rename) {
3693 if (S_ISDIR(sctx->cur_inode_mode)) {
3694 /*
3695 * Dirs can't be linked, so move it. For moved
3696 * dirs, we always have one new and one deleted
3697 * ref. The deleted ref is ignored later.
3698 */
3699 ret = send_rename(sctx, valid_path,
3700 cur->full_path);
3701 if (!ret)
3702 ret = fs_path_copy(valid_path,
3703 cur->full_path);
3704 if (ret < 0)
3705 goto out;
3706 } else {
3707 ret = send_link(sctx, cur->full_path,
3708 valid_path);
3709 if (ret < 0)
3710 goto out;
3711 }
3712 }
3713 ret = dup_ref(cur, &check_dirs);
3714 if (ret < 0)
3715 goto out;
3716 }
3717
3718 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3719 /*
3720 * Check if we can already rmdir the directory. If not,
3721 * orphanize it. For every dir item inside that gets deleted
3722 * later, we do this check again and rmdir it then if possible.
3723 * See the use of check_dirs for more details.
3724 */
3725 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3726 sctx->cur_ino);
3727 if (ret < 0)
3728 goto out;
3729 if (ret) {
3730 ret = send_rmdir(sctx, valid_path);
3731 if (ret < 0)
3732 goto out;
3733 } else if (!is_orphan) {
3734 ret = orphanize_inode(sctx, sctx->cur_ino,
3735 sctx->cur_inode_gen, valid_path);
3736 if (ret < 0)
3737 goto out;
3738 is_orphan = 1;
3739 }
3740
3741 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3742 ret = dup_ref(cur, &check_dirs);
3743 if (ret < 0)
3744 goto out;
3745 }
3746 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3747 !list_empty(&sctx->deleted_refs)) {
3748 /*
3749 * We have a moved dir. Add the old parent to check_dirs
3750 */
3751 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3752 list);
3753 ret = dup_ref(cur, &check_dirs);
3754 if (ret < 0)
3755 goto out;
3756 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3757 /*
3758 * We have a non dir inode. Go through all deleted refs and
3759 * unlink them if they were not already overwritten by other
3760 * inodes.
3761 */
3762 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3763 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3764 sctx->cur_ino, sctx->cur_inode_gen,
3765 cur->name, cur->name_len);
3766 if (ret < 0)
3767 goto out;
3768 if (!ret) {
3769 ret = send_unlink(sctx, cur->full_path);
3770 if (ret < 0)
3771 goto out;
3772 }
3773 ret = dup_ref(cur, &check_dirs);
3774 if (ret < 0)
3775 goto out;
3776 }
3777 /*
3778 * If the inode is still orphan, unlink the orphan. This may
3779 * happen when a previous inode did overwrite the first ref
3780 * of this inode and no new refs were added for the current
3781 * inode. Unlinking does not mean that the inode is deleted in
3782 * all cases. There may still be links to this inode in other
3783 * places.
3784 */
3785 if (is_orphan) {
3786 ret = send_unlink(sctx, valid_path);
3787 if (ret < 0)
3788 goto out;
3789 }
3790 }
3791
3792 /*
3793 * We did collect all parent dirs where cur_inode was once located. We
3794 * now go through all these dirs and check if they are pending for
3795 * deletion and if it's finally possible to perform the rmdir now.
3796 * We also update the inode stats of the parent dirs here.
3797 */
3798 list_for_each_entry(cur, &check_dirs, list) {
3799 /*
3800 * In case we had refs into dirs that were not processed yet,
3801 * we don't need to do the utime and rmdir logic for these dirs.
3802 * The dir will be processed later.
3803 */
3804 if (cur->dir > sctx->cur_ino)
3805 continue;
3806
3807 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3808 if (ret < 0)
3809 goto out;
3810
3811 if (ret == inode_state_did_create ||
3812 ret == inode_state_no_change) {
3813 /* TODO delayed utimes */
3814 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3815 if (ret < 0)
3816 goto out;
3817 } else if (ret == inode_state_did_delete &&
3818 cur->dir != last_dir_ino_rm) {
3819 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3820 sctx->cur_ino);
3821 if (ret < 0)
3822 goto out;
3823 if (ret) {
3824 ret = get_cur_path(sctx, cur->dir,
3825 cur->dir_gen, valid_path);
3826 if (ret < 0)
3827 goto out;
3828 ret = send_rmdir(sctx, valid_path);
3829 if (ret < 0)
3830 goto out;
3831 last_dir_ino_rm = cur->dir;
3832 }
3833 }
3834 }
3835
3836 ret = 0;
3837
3838 out:
3839 __free_recorded_refs(&check_dirs);
3840 free_recorded_refs(sctx);
3841 fs_path_free(valid_path);
3842 return ret;
3843 }
3844
3845 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3846 struct fs_path *name, void *ctx, struct list_head *refs)
3847 {
3848 int ret = 0;
3849 struct send_ctx *sctx = ctx;
3850 struct fs_path *p;
3851 u64 gen;
3852
3853 p = fs_path_alloc();
3854 if (!p)
3855 return -ENOMEM;
3856
3857 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3858 NULL, NULL);
3859 if (ret < 0)
3860 goto out;
3861
3862 ret = get_cur_path(sctx, dir, gen, p);
3863 if (ret < 0)
3864 goto out;
3865 ret = fs_path_add_path(p, name);
3866 if (ret < 0)
3867 goto out;
3868
3869 ret = __record_ref(refs, dir, gen, p);
3870
3871 out:
3872 if (ret)
3873 fs_path_free(p);
3874 return ret;
3875 }
3876
3877 static int __record_new_ref(int num, u64 dir, int index,
3878 struct fs_path *name,
3879 void *ctx)
3880 {
3881 struct send_ctx *sctx = ctx;
3882 return record_ref(sctx->send_root, num, dir, index, name,
3883 ctx, &sctx->new_refs);
3884 }
3885
3886
3887 static int __record_deleted_ref(int num, u64 dir, int index,
3888 struct fs_path *name,
3889 void *ctx)
3890 {
3891 struct send_ctx *sctx = ctx;
3892 return record_ref(sctx->parent_root, num, dir, index, name,
3893 ctx, &sctx->deleted_refs);
3894 }
3895
3896 static int record_new_ref(struct send_ctx *sctx)
3897 {
3898 int ret;
3899
3900 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3901 sctx->cmp_key, 0, __record_new_ref, sctx);
3902 if (ret < 0)
3903 goto out;
3904 ret = 0;
3905
3906 out:
3907 return ret;
3908 }
3909
3910 static int record_deleted_ref(struct send_ctx *sctx)
3911 {
3912 int ret;
3913
3914 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3915 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3916 if (ret < 0)
3917 goto out;
3918 ret = 0;
3919
3920 out:
3921 return ret;
3922 }
3923
3924 struct find_ref_ctx {
3925 u64 dir;
3926 u64 dir_gen;
3927 struct btrfs_root *root;
3928 struct fs_path *name;
3929 int found_idx;
3930 };
3931
3932 static int __find_iref(int num, u64 dir, int index,
3933 struct fs_path *name,
3934 void *ctx_)
3935 {
3936 struct find_ref_ctx *ctx = ctx_;
3937 u64 dir_gen;
3938 int ret;
3939
3940 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3941 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3942 /*
3943 * To avoid doing extra lookups we'll only do this if everything
3944 * else matches.
3945 */
3946 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3947 NULL, NULL, NULL);
3948 if (ret)
3949 return ret;
3950 if (dir_gen != ctx->dir_gen)
3951 return 0;
3952 ctx->found_idx = num;
3953 return 1;
3954 }
3955 return 0;
3956 }
3957
3958 static int find_iref(struct btrfs_root *root,
3959 struct btrfs_path *path,
3960 struct btrfs_key *key,
3961 u64 dir, u64 dir_gen, struct fs_path *name)
3962 {
3963 int ret;
3964 struct find_ref_ctx ctx;
3965
3966 ctx.dir = dir;
3967 ctx.name = name;
3968 ctx.dir_gen = dir_gen;
3969 ctx.found_idx = -1;
3970 ctx.root = root;
3971
3972 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3973 if (ret < 0)
3974 return ret;
3975
3976 if (ctx.found_idx == -1)
3977 return -ENOENT;
3978
3979 return ctx.found_idx;
3980 }
3981
3982 static int __record_changed_new_ref(int num, u64 dir, int index,
3983 struct fs_path *name,
3984 void *ctx)
3985 {
3986 u64 dir_gen;
3987 int ret;
3988 struct send_ctx *sctx = ctx;
3989
3990 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
3991 NULL, NULL, NULL);
3992 if (ret)
3993 return ret;
3994
3995 ret = find_iref(sctx->parent_root, sctx->right_path,
3996 sctx->cmp_key, dir, dir_gen, name);
3997 if (ret == -ENOENT)
3998 ret = __record_new_ref(num, dir, index, name, sctx);
3999 else if (ret > 0)
4000 ret = 0;
4001
4002 return ret;
4003 }
4004
4005 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4006 struct fs_path *name,
4007 void *ctx)
4008 {
4009 u64 dir_gen;
4010 int ret;
4011 struct send_ctx *sctx = ctx;
4012
4013 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4014 NULL, NULL, NULL);
4015 if (ret)
4016 return ret;
4017
4018 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4019 dir, dir_gen, name);
4020 if (ret == -ENOENT)
4021 ret = __record_deleted_ref(num, dir, index, name, sctx);
4022 else if (ret > 0)
4023 ret = 0;
4024
4025 return ret;
4026 }
4027
4028 static int record_changed_ref(struct send_ctx *sctx)
4029 {
4030 int ret = 0;
4031
4032 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4033 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4034 if (ret < 0)
4035 goto out;
4036 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4037 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4038 if (ret < 0)
4039 goto out;
4040 ret = 0;
4041
4042 out:
4043 return ret;
4044 }
4045
4046 /*
4047 * Record and process all refs at once. Needed when an inode changes the
4048 * generation number, which means that it was deleted and recreated.
4049 */
4050 static int process_all_refs(struct send_ctx *sctx,
4051 enum btrfs_compare_tree_result cmd)
4052 {
4053 int ret;
4054 struct btrfs_root *root;
4055 struct btrfs_path *path;
4056 struct btrfs_key key;
4057 struct btrfs_key found_key;
4058 struct extent_buffer *eb;
4059 int slot;
4060 iterate_inode_ref_t cb;
4061 int pending_move = 0;
4062
4063 path = alloc_path_for_send();
4064 if (!path)
4065 return -ENOMEM;
4066
4067 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4068 root = sctx->send_root;
4069 cb = __record_new_ref;
4070 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4071 root = sctx->parent_root;
4072 cb = __record_deleted_ref;
4073 } else {
4074 btrfs_err(sctx->send_root->fs_info,
4075 "Wrong command %d in process_all_refs", cmd);
4076 ret = -EINVAL;
4077 goto out;
4078 }
4079
4080 key.objectid = sctx->cmp_key->objectid;
4081 key.type = BTRFS_INODE_REF_KEY;
4082 key.offset = 0;
4083 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4084 if (ret < 0)
4085 goto out;
4086
4087 while (1) {
4088 eb = path->nodes[0];
4089 slot = path->slots[0];
4090 if (slot >= btrfs_header_nritems(eb)) {
4091 ret = btrfs_next_leaf(root, path);
4092 if (ret < 0)
4093 goto out;
4094 else if (ret > 0)
4095 break;
4096 continue;
4097 }
4098
4099 btrfs_item_key_to_cpu(eb, &found_key, slot);
4100
4101 if (found_key.objectid != key.objectid ||
4102 (found_key.type != BTRFS_INODE_REF_KEY &&
4103 found_key.type != BTRFS_INODE_EXTREF_KEY))
4104 break;
4105
4106 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4107 if (ret < 0)
4108 goto out;
4109
4110 path->slots[0]++;
4111 }
4112 btrfs_release_path(path);
4113
4114 ret = process_recorded_refs(sctx, &pending_move);
4115 /* Only applicable to an incremental send. */
4116 ASSERT(pending_move == 0);
4117
4118 out:
4119 btrfs_free_path(path);
4120 return ret;
4121 }
4122
4123 static int send_set_xattr(struct send_ctx *sctx,
4124 struct fs_path *path,
4125 const char *name, int name_len,
4126 const char *data, int data_len)
4127 {
4128 int ret = 0;
4129
4130 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4131 if (ret < 0)
4132 goto out;
4133
4134 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4135 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4136 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4137
4138 ret = send_cmd(sctx);
4139
4140 tlv_put_failure:
4141 out:
4142 return ret;
4143 }
4144
4145 static int send_remove_xattr(struct send_ctx *sctx,
4146 struct fs_path *path,
4147 const char *name, int name_len)
4148 {
4149 int ret = 0;
4150
4151 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4152 if (ret < 0)
4153 goto out;
4154
4155 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4156 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4157
4158 ret = send_cmd(sctx);
4159
4160 tlv_put_failure:
4161 out:
4162 return ret;
4163 }
4164
4165 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4166 const char *name, int name_len,
4167 const char *data, int data_len,
4168 u8 type, void *ctx)
4169 {
4170 int ret;
4171 struct send_ctx *sctx = ctx;
4172 struct fs_path *p;
4173 posix_acl_xattr_header dummy_acl;
4174
4175 p = fs_path_alloc();
4176 if (!p)
4177 return -ENOMEM;
4178
4179 /*
4180 * This hack is needed because empty acl's are stored as zero byte
4181 * data in xattrs. Problem with that is, that receiving these zero byte
4182 * acl's will fail later. To fix this, we send a dummy acl list that
4183 * only contains the version number and no entries.
4184 */
4185 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4186 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4187 if (data_len == 0) {
4188 dummy_acl.a_version =
4189 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4190 data = (char *)&dummy_acl;
4191 data_len = sizeof(dummy_acl);
4192 }
4193 }
4194
4195 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4196 if (ret < 0)
4197 goto out;
4198
4199 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4200
4201 out:
4202 fs_path_free(p);
4203 return ret;
4204 }
4205
4206 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4207 const char *name, int name_len,
4208 const char *data, int data_len,
4209 u8 type, void *ctx)
4210 {
4211 int ret;
4212 struct send_ctx *sctx = ctx;
4213 struct fs_path *p;
4214
4215 p = fs_path_alloc();
4216 if (!p)
4217 return -ENOMEM;
4218
4219 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4220 if (ret < 0)
4221 goto out;
4222
4223 ret = send_remove_xattr(sctx, p, name, name_len);
4224
4225 out:
4226 fs_path_free(p);
4227 return ret;
4228 }
4229
4230 static int process_new_xattr(struct send_ctx *sctx)
4231 {
4232 int ret = 0;
4233
4234 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4235 sctx->cmp_key, __process_new_xattr, sctx);
4236
4237 return ret;
4238 }
4239
4240 static int process_deleted_xattr(struct send_ctx *sctx)
4241 {
4242 int ret;
4243
4244 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4245 sctx->cmp_key, __process_deleted_xattr, sctx);
4246
4247 return ret;
4248 }
4249
4250 struct find_xattr_ctx {
4251 const char *name;
4252 int name_len;
4253 int found_idx;
4254 char *found_data;
4255 int found_data_len;
4256 };
4257
4258 static int __find_xattr(int num, struct btrfs_key *di_key,
4259 const char *name, int name_len,
4260 const char *data, int data_len,
4261 u8 type, void *vctx)
4262 {
4263 struct find_xattr_ctx *ctx = vctx;
4264
4265 if (name_len == ctx->name_len &&
4266 strncmp(name, ctx->name, name_len) == 0) {
4267 ctx->found_idx = num;
4268 ctx->found_data_len = data_len;
4269 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4270 if (!ctx->found_data)
4271 return -ENOMEM;
4272 return 1;
4273 }
4274 return 0;
4275 }
4276
4277 static int find_xattr(struct btrfs_root *root,
4278 struct btrfs_path *path,
4279 struct btrfs_key *key,
4280 const char *name, int name_len,
4281 char **data, int *data_len)
4282 {
4283 int ret;
4284 struct find_xattr_ctx ctx;
4285
4286 ctx.name = name;
4287 ctx.name_len = name_len;
4288 ctx.found_idx = -1;
4289 ctx.found_data = NULL;
4290 ctx.found_data_len = 0;
4291
4292 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4293 if (ret < 0)
4294 return ret;
4295
4296 if (ctx.found_idx == -1)
4297 return -ENOENT;
4298 if (data) {
4299 *data = ctx.found_data;
4300 *data_len = ctx.found_data_len;
4301 } else {
4302 kfree(ctx.found_data);
4303 }
4304 return ctx.found_idx;
4305 }
4306
4307
4308 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4309 const char *name, int name_len,
4310 const char *data, int data_len,
4311 u8 type, void *ctx)
4312 {
4313 int ret;
4314 struct send_ctx *sctx = ctx;
4315 char *found_data = NULL;
4316 int found_data_len = 0;
4317
4318 ret = find_xattr(sctx->parent_root, sctx->right_path,
4319 sctx->cmp_key, name, name_len, &found_data,
4320 &found_data_len);
4321 if (ret == -ENOENT) {
4322 ret = __process_new_xattr(num, di_key, name, name_len, data,
4323 data_len, type, ctx);
4324 } else if (ret >= 0) {
4325 if (data_len != found_data_len ||
4326 memcmp(data, found_data, data_len)) {
4327 ret = __process_new_xattr(num, di_key, name, name_len,
4328 data, data_len, type, ctx);
4329 } else {
4330 ret = 0;
4331 }
4332 }
4333
4334 kfree(found_data);
4335 return ret;
4336 }
4337
4338 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4339 const char *name, int name_len,
4340 const char *data, int data_len,
4341 u8 type, void *ctx)
4342 {
4343 int ret;
4344 struct send_ctx *sctx = ctx;
4345
4346 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4347 name, name_len, NULL, NULL);
4348 if (ret == -ENOENT)
4349 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4350 data_len, type, ctx);
4351 else if (ret >= 0)
4352 ret = 0;
4353
4354 return ret;
4355 }
4356
4357 static int process_changed_xattr(struct send_ctx *sctx)
4358 {
4359 int ret = 0;
4360
4361 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4362 sctx->cmp_key, __process_changed_new_xattr, sctx);
4363 if (ret < 0)
4364 goto out;
4365 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4366 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4367
4368 out:
4369 return ret;
4370 }
4371
4372 static int process_all_new_xattrs(struct send_ctx *sctx)
4373 {
4374 int ret;
4375 struct btrfs_root *root;
4376 struct btrfs_path *path;
4377 struct btrfs_key key;
4378 struct btrfs_key found_key;
4379 struct extent_buffer *eb;
4380 int slot;
4381
4382 path = alloc_path_for_send();
4383 if (!path)
4384 return -ENOMEM;
4385
4386 root = sctx->send_root;
4387
4388 key.objectid = sctx->cmp_key->objectid;
4389 key.type = BTRFS_XATTR_ITEM_KEY;
4390 key.offset = 0;
4391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4392 if (ret < 0)
4393 goto out;
4394
4395 while (1) {
4396 eb = path->nodes[0];
4397 slot = path->slots[0];
4398 if (slot >= btrfs_header_nritems(eb)) {
4399 ret = btrfs_next_leaf(root, path);
4400 if (ret < 0) {
4401 goto out;
4402 } else if (ret > 0) {
4403 ret = 0;
4404 break;
4405 }
4406 continue;
4407 }
4408
4409 btrfs_item_key_to_cpu(eb, &found_key, slot);
4410 if (found_key.objectid != key.objectid ||
4411 found_key.type != key.type) {
4412 ret = 0;
4413 goto out;
4414 }
4415
4416 ret = iterate_dir_item(root, path, &found_key,
4417 __process_new_xattr, sctx);
4418 if (ret < 0)
4419 goto out;
4420
4421 path->slots[0]++;
4422 }
4423
4424 out:
4425 btrfs_free_path(path);
4426 return ret;
4427 }
4428
4429 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4430 {
4431 struct btrfs_root *root = sctx->send_root;
4432 struct btrfs_fs_info *fs_info = root->fs_info;
4433 struct inode *inode;
4434 struct page *page;
4435 char *addr;
4436 struct btrfs_key key;
4437 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4438 pgoff_t last_index;
4439 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4440 ssize_t ret = 0;
4441
4442 key.objectid = sctx->cur_ino;
4443 key.type = BTRFS_INODE_ITEM_KEY;
4444 key.offset = 0;
4445
4446 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4447 if (IS_ERR(inode))
4448 return PTR_ERR(inode);
4449
4450 if (offset + len > i_size_read(inode)) {
4451 if (offset > i_size_read(inode))
4452 len = 0;
4453 else
4454 len = offset - i_size_read(inode);
4455 }
4456 if (len == 0)
4457 goto out;
4458
4459 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4460
4461 /* initial readahead */
4462 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4463 file_ra_state_init(&sctx->ra, inode->i_mapping);
4464 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4465 last_index - index + 1);
4466
4467 while (index <= last_index) {
4468 unsigned cur_len = min_t(unsigned, len,
4469 PAGE_CACHE_SIZE - pg_offset);
4470 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4471 if (!page) {
4472 ret = -ENOMEM;
4473 break;
4474 }
4475
4476 if (!PageUptodate(page)) {
4477 btrfs_readpage(NULL, page);
4478 lock_page(page);
4479 if (!PageUptodate(page)) {
4480 unlock_page(page);
4481 page_cache_release(page);
4482 ret = -EIO;
4483 break;
4484 }
4485 }
4486
4487 addr = kmap(page);
4488 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4489 kunmap(page);
4490 unlock_page(page);
4491 page_cache_release(page);
4492 index++;
4493 pg_offset = 0;
4494 len -= cur_len;
4495 ret += cur_len;
4496 }
4497 out:
4498 iput(inode);
4499 return ret;
4500 }
4501
4502 /*
4503 * Read some bytes from the current inode/file and send a write command to
4504 * user space.
4505 */
4506 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4507 {
4508 int ret = 0;
4509 struct fs_path *p;
4510 ssize_t num_read = 0;
4511
4512 p = fs_path_alloc();
4513 if (!p)
4514 return -ENOMEM;
4515
4516 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4517
4518 num_read = fill_read_buf(sctx, offset, len);
4519 if (num_read <= 0) {
4520 if (num_read < 0)
4521 ret = num_read;
4522 goto out;
4523 }
4524
4525 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4526 if (ret < 0)
4527 goto out;
4528
4529 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4530 if (ret < 0)
4531 goto out;
4532
4533 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4534 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4535 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4536
4537 ret = send_cmd(sctx);
4538
4539 tlv_put_failure:
4540 out:
4541 fs_path_free(p);
4542 if (ret < 0)
4543 return ret;
4544 return num_read;
4545 }
4546
4547 /*
4548 * Send a clone command to user space.
4549 */
4550 static int send_clone(struct send_ctx *sctx,
4551 u64 offset, u32 len,
4552 struct clone_root *clone_root)
4553 {
4554 int ret = 0;
4555 struct fs_path *p;
4556 u64 gen;
4557
4558 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4559 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4560 clone_root->root->objectid, clone_root->ino,
4561 clone_root->offset);
4562
4563 p = fs_path_alloc();
4564 if (!p)
4565 return -ENOMEM;
4566
4567 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4568 if (ret < 0)
4569 goto out;
4570
4571 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4572 if (ret < 0)
4573 goto out;
4574
4575 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4576 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4577 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4578
4579 if (clone_root->root == sctx->send_root) {
4580 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4581 &gen, NULL, NULL, NULL, NULL);
4582 if (ret < 0)
4583 goto out;
4584 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4585 } else {
4586 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4587 }
4588 if (ret < 0)
4589 goto out;
4590
4591 /*
4592 * If the parent we're using has a received_uuid set then use that as
4593 * our clone source as that is what we will look for when doing a
4594 * receive.
4595 *
4596 * This covers the case that we create a snapshot off of a received
4597 * subvolume and then use that as the parent and try to receive on a
4598 * different host.
4599 */
4600 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4601 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4602 clone_root->root->root_item.received_uuid);
4603 else
4604 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4605 clone_root->root->root_item.uuid);
4606 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4607 le64_to_cpu(clone_root->root->root_item.ctransid));
4608 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4609 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4610 clone_root->offset);
4611
4612 ret = send_cmd(sctx);
4613
4614 tlv_put_failure:
4615 out:
4616 fs_path_free(p);
4617 return ret;
4618 }
4619
4620 /*
4621 * Send an update extent command to user space.
4622 */
4623 static int send_update_extent(struct send_ctx *sctx,
4624 u64 offset, u32 len)
4625 {
4626 int ret = 0;
4627 struct fs_path *p;
4628
4629 p = fs_path_alloc();
4630 if (!p)
4631 return -ENOMEM;
4632
4633 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4634 if (ret < 0)
4635 goto out;
4636
4637 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4638 if (ret < 0)
4639 goto out;
4640
4641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4642 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4643 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4644
4645 ret = send_cmd(sctx);
4646
4647 tlv_put_failure:
4648 out:
4649 fs_path_free(p);
4650 return ret;
4651 }
4652
4653 static int send_hole(struct send_ctx *sctx, u64 end)
4654 {
4655 struct fs_path *p = NULL;
4656 u64 offset = sctx->cur_inode_last_extent;
4657 u64 len;
4658 int ret = 0;
4659
4660 p = fs_path_alloc();
4661 if (!p)
4662 return -ENOMEM;
4663 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4664 if (ret < 0)
4665 goto tlv_put_failure;
4666 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4667 while (offset < end) {
4668 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4669
4670 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4671 if (ret < 0)
4672 break;
4673 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4674 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4675 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4676 ret = send_cmd(sctx);
4677 if (ret < 0)
4678 break;
4679 offset += len;
4680 }
4681 tlv_put_failure:
4682 fs_path_free(p);
4683 return ret;
4684 }
4685
4686 static int send_extent_data(struct send_ctx *sctx,
4687 const u64 offset,
4688 const u64 len)
4689 {
4690 u64 sent = 0;
4691
4692 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4693 return send_update_extent(sctx, offset, len);
4694
4695 while (sent < len) {
4696 u64 size = len - sent;
4697 int ret;
4698
4699 if (size > BTRFS_SEND_READ_SIZE)
4700 size = BTRFS_SEND_READ_SIZE;
4701 ret = send_write(sctx, offset + sent, size);
4702 if (ret < 0)
4703 return ret;
4704 if (!ret)
4705 break;
4706 sent += ret;
4707 }
4708 return 0;
4709 }
4710
4711 static int clone_range(struct send_ctx *sctx,
4712 struct clone_root *clone_root,
4713 const u64 disk_byte,
4714 u64 data_offset,
4715 u64 offset,
4716 u64 len)
4717 {
4718 struct btrfs_path *path;
4719 struct btrfs_key key;
4720 int ret;
4721
4722 path = alloc_path_for_send();
4723 if (!path)
4724 return -ENOMEM;
4725
4726 /*
4727 * We can't send a clone operation for the entire range if we find
4728 * extent items in the respective range in the source file that
4729 * refer to different extents or if we find holes.
4730 * So check for that and do a mix of clone and regular write/copy
4731 * operations if needed.
4732 *
4733 * Example:
4734 *
4735 * mkfs.btrfs -f /dev/sda
4736 * mount /dev/sda /mnt
4737 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4738 * cp --reflink=always /mnt/foo /mnt/bar
4739 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4740 * btrfs subvolume snapshot -r /mnt /mnt/snap
4741 *
4742 * If when we send the snapshot and we are processing file bar (which
4743 * has a higher inode number than foo) we blindly send a clone operation
4744 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4745 * a file bar that matches the content of file foo - iow, doesn't match
4746 * the content from bar in the original filesystem.
4747 */
4748 key.objectid = clone_root->ino;
4749 key.type = BTRFS_EXTENT_DATA_KEY;
4750 key.offset = clone_root->offset;
4751 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4752 if (ret < 0)
4753 goto out;
4754 if (ret > 0 && path->slots[0] > 0) {
4755 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4756 if (key.objectid == clone_root->ino &&
4757 key.type == BTRFS_EXTENT_DATA_KEY)
4758 path->slots[0]--;
4759 }
4760
4761 while (true) {
4762 struct extent_buffer *leaf = path->nodes[0];
4763 int slot = path->slots[0];
4764 struct btrfs_file_extent_item *ei;
4765 u8 type;
4766 u64 ext_len;
4767 u64 clone_len;
4768
4769 if (slot >= btrfs_header_nritems(leaf)) {
4770 ret = btrfs_next_leaf(clone_root->root, path);
4771 if (ret < 0)
4772 goto out;
4773 else if (ret > 0)
4774 break;
4775 continue;
4776 }
4777
4778 btrfs_item_key_to_cpu(leaf, &key, slot);
4779
4780 /*
4781 * We might have an implicit trailing hole (NO_HOLES feature
4782 * enabled). We deal with it after leaving this loop.
4783 */
4784 if (key.objectid != clone_root->ino ||
4785 key.type != BTRFS_EXTENT_DATA_KEY)
4786 break;
4787
4788 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4789 type = btrfs_file_extent_type(leaf, ei);
4790 if (type == BTRFS_FILE_EXTENT_INLINE) {
4791 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4792 ext_len = PAGE_CACHE_ALIGN(ext_len);
4793 } else {
4794 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4795 }
4796
4797 if (key.offset + ext_len <= clone_root->offset)
4798 goto next;
4799
4800 if (key.offset > clone_root->offset) {
4801 /* Implicit hole, NO_HOLES feature enabled. */
4802 u64 hole_len = key.offset - clone_root->offset;
4803
4804 if (hole_len > len)
4805 hole_len = len;
4806 ret = send_extent_data(sctx, offset, hole_len);
4807 if (ret < 0)
4808 goto out;
4809
4810 len -= hole_len;
4811 if (len == 0)
4812 break;
4813 offset += hole_len;
4814 clone_root->offset += hole_len;
4815 data_offset += hole_len;
4816 }
4817
4818 if (key.offset >= clone_root->offset + len)
4819 break;
4820
4821 clone_len = min_t(u64, ext_len, len);
4822
4823 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4824 btrfs_file_extent_offset(leaf, ei) == data_offset)
4825 ret = send_clone(sctx, offset, clone_len, clone_root);
4826 else
4827 ret = send_extent_data(sctx, offset, clone_len);
4828
4829 if (ret < 0)
4830 goto out;
4831
4832 len -= clone_len;
4833 if (len == 0)
4834 break;
4835 offset += clone_len;
4836 clone_root->offset += clone_len;
4837 data_offset += clone_len;
4838 next:
4839 path->slots[0]++;
4840 }
4841
4842 if (len > 0)
4843 ret = send_extent_data(sctx, offset, len);
4844 else
4845 ret = 0;
4846 out:
4847 btrfs_free_path(path);
4848 return ret;
4849 }
4850
4851 static int send_write_or_clone(struct send_ctx *sctx,
4852 struct btrfs_path *path,
4853 struct btrfs_key *key,
4854 struct clone_root *clone_root)
4855 {
4856 int ret = 0;
4857 struct btrfs_file_extent_item *ei;
4858 u64 offset = key->offset;
4859 u64 len;
4860 u8 type;
4861 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4862
4863 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4864 struct btrfs_file_extent_item);
4865 type = btrfs_file_extent_type(path->nodes[0], ei);
4866 if (type == BTRFS_FILE_EXTENT_INLINE) {
4867 len = btrfs_file_extent_inline_len(path->nodes[0],
4868 path->slots[0], ei);
4869 /*
4870 * it is possible the inline item won't cover the whole page,
4871 * but there may be items after this page. Make
4872 * sure to send the whole thing
4873 */
4874 len = PAGE_CACHE_ALIGN(len);
4875 } else {
4876 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4877 }
4878
4879 if (offset + len > sctx->cur_inode_size)
4880 len = sctx->cur_inode_size - offset;
4881 if (len == 0) {
4882 ret = 0;
4883 goto out;
4884 }
4885
4886 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4887 u64 disk_byte;
4888 u64 data_offset;
4889
4890 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4891 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4892 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4893 offset, len);
4894 } else {
4895 ret = send_extent_data(sctx, offset, len);
4896 }
4897 out:
4898 return ret;
4899 }
4900
4901 static int is_extent_unchanged(struct send_ctx *sctx,
4902 struct btrfs_path *left_path,
4903 struct btrfs_key *ekey)
4904 {
4905 int ret = 0;
4906 struct btrfs_key key;
4907 struct btrfs_path *path = NULL;
4908 struct extent_buffer *eb;
4909 int slot;
4910 struct btrfs_key found_key;
4911 struct btrfs_file_extent_item *ei;
4912 u64 left_disknr;
4913 u64 right_disknr;
4914 u64 left_offset;
4915 u64 right_offset;
4916 u64 left_offset_fixed;
4917 u64 left_len;
4918 u64 right_len;
4919 u64 left_gen;
4920 u64 right_gen;
4921 u8 left_type;
4922 u8 right_type;
4923
4924 path = alloc_path_for_send();
4925 if (!path)
4926 return -ENOMEM;
4927
4928 eb = left_path->nodes[0];
4929 slot = left_path->slots[0];
4930 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4931 left_type = btrfs_file_extent_type(eb, ei);
4932
4933 if (left_type != BTRFS_FILE_EXTENT_REG) {
4934 ret = 0;
4935 goto out;
4936 }
4937 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4938 left_len = btrfs_file_extent_num_bytes(eb, ei);
4939 left_offset = btrfs_file_extent_offset(eb, ei);
4940 left_gen = btrfs_file_extent_generation(eb, ei);
4941
4942 /*
4943 * Following comments will refer to these graphics. L is the left
4944 * extents which we are checking at the moment. 1-8 are the right
4945 * extents that we iterate.
4946 *
4947 * |-----L-----|
4948 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4949 *
4950 * |-----L-----|
4951 * |--1--|-2b-|...(same as above)
4952 *
4953 * Alternative situation. Happens on files where extents got split.
4954 * |-----L-----|
4955 * |-----------7-----------|-6-|
4956 *
4957 * Alternative situation. Happens on files which got larger.
4958 * |-----L-----|
4959 * |-8-|
4960 * Nothing follows after 8.
4961 */
4962
4963 key.objectid = ekey->objectid;
4964 key.type = BTRFS_EXTENT_DATA_KEY;
4965 key.offset = ekey->offset;
4966 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4967 if (ret < 0)
4968 goto out;
4969 if (ret) {
4970 ret = 0;
4971 goto out;
4972 }
4973
4974 /*
4975 * Handle special case where the right side has no extents at all.
4976 */
4977 eb = path->nodes[0];
4978 slot = path->slots[0];
4979 btrfs_item_key_to_cpu(eb, &found_key, slot);
4980 if (found_key.objectid != key.objectid ||
4981 found_key.type != key.type) {
4982 /* If we're a hole then just pretend nothing changed */
4983 ret = (left_disknr) ? 0 : 1;
4984 goto out;
4985 }
4986
4987 /*
4988 * We're now on 2a, 2b or 7.
4989 */
4990 key = found_key;
4991 while (key.offset < ekey->offset + left_len) {
4992 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4993 right_type = btrfs_file_extent_type(eb, ei);
4994 if (right_type != BTRFS_FILE_EXTENT_REG) {
4995 ret = 0;
4996 goto out;
4997 }
4998
4999 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5000 right_len = btrfs_file_extent_num_bytes(eb, ei);
5001 right_offset = btrfs_file_extent_offset(eb, ei);
5002 right_gen = btrfs_file_extent_generation(eb, ei);
5003
5004 /*
5005 * Are we at extent 8? If yes, we know the extent is changed.
5006 * This may only happen on the first iteration.
5007 */
5008 if (found_key.offset + right_len <= ekey->offset) {
5009 /* If we're a hole just pretend nothing changed */
5010 ret = (left_disknr) ? 0 : 1;
5011 goto out;
5012 }
5013
5014 left_offset_fixed = left_offset;
5015 if (key.offset < ekey->offset) {
5016 /* Fix the right offset for 2a and 7. */
5017 right_offset += ekey->offset - key.offset;
5018 } else {
5019 /* Fix the left offset for all behind 2a and 2b */
5020 left_offset_fixed += key.offset - ekey->offset;
5021 }
5022
5023 /*
5024 * Check if we have the same extent.
5025 */
5026 if (left_disknr != right_disknr ||
5027 left_offset_fixed != right_offset ||
5028 left_gen != right_gen) {
5029 ret = 0;
5030 goto out;
5031 }
5032
5033 /*
5034 * Go to the next extent.
5035 */
5036 ret = btrfs_next_item(sctx->parent_root, path);
5037 if (ret < 0)
5038 goto out;
5039 if (!ret) {
5040 eb = path->nodes[0];
5041 slot = path->slots[0];
5042 btrfs_item_key_to_cpu(eb, &found_key, slot);
5043 }
5044 if (ret || found_key.objectid != key.objectid ||
5045 found_key.type != key.type) {
5046 key.offset += right_len;
5047 break;
5048 }
5049 if (found_key.offset != key.offset + right_len) {
5050 ret = 0;
5051 goto out;
5052 }
5053 key = found_key;
5054 }
5055
5056 /*
5057 * We're now behind the left extent (treat as unchanged) or at the end
5058 * of the right side (treat as changed).
5059 */
5060 if (key.offset >= ekey->offset + left_len)
5061 ret = 1;
5062 else
5063 ret = 0;
5064
5065
5066 out:
5067 btrfs_free_path(path);
5068 return ret;
5069 }
5070
5071 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5072 {
5073 struct btrfs_path *path;
5074 struct btrfs_root *root = sctx->send_root;
5075 struct btrfs_file_extent_item *fi;
5076 struct btrfs_key key;
5077 u64 extent_end;
5078 u8 type;
5079 int ret;
5080
5081 path = alloc_path_for_send();
5082 if (!path)
5083 return -ENOMEM;
5084
5085 sctx->cur_inode_last_extent = 0;
5086
5087 key.objectid = sctx->cur_ino;
5088 key.type = BTRFS_EXTENT_DATA_KEY;
5089 key.offset = offset;
5090 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5091 if (ret < 0)
5092 goto out;
5093 ret = 0;
5094 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5095 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5096 goto out;
5097
5098 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5099 struct btrfs_file_extent_item);
5100 type = btrfs_file_extent_type(path->nodes[0], fi);
5101 if (type == BTRFS_FILE_EXTENT_INLINE) {
5102 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5103 path->slots[0], fi);
5104 extent_end = ALIGN(key.offset + size,
5105 sctx->send_root->sectorsize);
5106 } else {
5107 extent_end = key.offset +
5108 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5109 }
5110 sctx->cur_inode_last_extent = extent_end;
5111 out:
5112 btrfs_free_path(path);
5113 return ret;
5114 }
5115
5116 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5117 struct btrfs_key *key)
5118 {
5119 struct btrfs_file_extent_item *fi;
5120 u64 extent_end;
5121 u8 type;
5122 int ret = 0;
5123
5124 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5125 return 0;
5126
5127 if (sctx->cur_inode_last_extent == (u64)-1) {
5128 ret = get_last_extent(sctx, key->offset - 1);
5129 if (ret)
5130 return ret;
5131 }
5132
5133 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5134 struct btrfs_file_extent_item);
5135 type = btrfs_file_extent_type(path->nodes[0], fi);
5136 if (type == BTRFS_FILE_EXTENT_INLINE) {
5137 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5138 path->slots[0], fi);
5139 extent_end = ALIGN(key->offset + size,
5140 sctx->send_root->sectorsize);
5141 } else {
5142 extent_end = key->offset +
5143 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5144 }
5145
5146 if (path->slots[0] == 0 &&
5147 sctx->cur_inode_last_extent < key->offset) {
5148 /*
5149 * We might have skipped entire leafs that contained only
5150 * file extent items for our current inode. These leafs have
5151 * a generation number smaller (older) than the one in the
5152 * current leaf and the leaf our last extent came from, and
5153 * are located between these 2 leafs.
5154 */
5155 ret = get_last_extent(sctx, key->offset - 1);
5156 if (ret)
5157 return ret;
5158 }
5159
5160 if (sctx->cur_inode_last_extent < key->offset)
5161 ret = send_hole(sctx, key->offset);
5162 sctx->cur_inode_last_extent = extent_end;
5163 return ret;
5164 }
5165
5166 static int process_extent(struct send_ctx *sctx,
5167 struct btrfs_path *path,
5168 struct btrfs_key *key)
5169 {
5170 struct clone_root *found_clone = NULL;
5171 int ret = 0;
5172
5173 if (S_ISLNK(sctx->cur_inode_mode))
5174 return 0;
5175
5176 if (sctx->parent_root && !sctx->cur_inode_new) {
5177 ret = is_extent_unchanged(sctx, path, key);
5178 if (ret < 0)
5179 goto out;
5180 if (ret) {
5181 ret = 0;
5182 goto out_hole;
5183 }
5184 } else {
5185 struct btrfs_file_extent_item *ei;
5186 u8 type;
5187
5188 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5189 struct btrfs_file_extent_item);
5190 type = btrfs_file_extent_type(path->nodes[0], ei);
5191 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5192 type == BTRFS_FILE_EXTENT_REG) {
5193 /*
5194 * The send spec does not have a prealloc command yet,
5195 * so just leave a hole for prealloc'ed extents until
5196 * we have enough commands queued up to justify rev'ing
5197 * the send spec.
5198 */
5199 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5200 ret = 0;
5201 goto out;
5202 }
5203
5204 /* Have a hole, just skip it. */
5205 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5206 ret = 0;
5207 goto out;
5208 }
5209 }
5210 }
5211
5212 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5213 sctx->cur_inode_size, &found_clone);
5214 if (ret != -ENOENT && ret < 0)
5215 goto out;
5216
5217 ret = send_write_or_clone(sctx, path, key, found_clone);
5218 if (ret)
5219 goto out;
5220 out_hole:
5221 ret = maybe_send_hole(sctx, path, key);
5222 out:
5223 return ret;
5224 }
5225
5226 static int process_all_extents(struct send_ctx *sctx)
5227 {
5228 int ret;
5229 struct btrfs_root *root;
5230 struct btrfs_path *path;
5231 struct btrfs_key key;
5232 struct btrfs_key found_key;
5233 struct extent_buffer *eb;
5234 int slot;
5235
5236 root = sctx->send_root;
5237 path = alloc_path_for_send();
5238 if (!path)
5239 return -ENOMEM;
5240
5241 key.objectid = sctx->cmp_key->objectid;
5242 key.type = BTRFS_EXTENT_DATA_KEY;
5243 key.offset = 0;
5244 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5245 if (ret < 0)
5246 goto out;
5247
5248 while (1) {
5249 eb = path->nodes[0];
5250 slot = path->slots[0];
5251
5252 if (slot >= btrfs_header_nritems(eb)) {
5253 ret = btrfs_next_leaf(root, path);
5254 if (ret < 0) {
5255 goto out;
5256 } else if (ret > 0) {
5257 ret = 0;
5258 break;
5259 }
5260 continue;
5261 }
5262
5263 btrfs_item_key_to_cpu(eb, &found_key, slot);
5264
5265 if (found_key.objectid != key.objectid ||
5266 found_key.type != key.type) {
5267 ret = 0;
5268 goto out;
5269 }
5270
5271 ret = process_extent(sctx, path, &found_key);
5272 if (ret < 0)
5273 goto out;
5274
5275 path->slots[0]++;
5276 }
5277
5278 out:
5279 btrfs_free_path(path);
5280 return ret;
5281 }
5282
5283 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5284 int *pending_move,
5285 int *refs_processed)
5286 {
5287 int ret = 0;
5288
5289 if (sctx->cur_ino == 0)
5290 goto out;
5291 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5292 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5293 goto out;
5294 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5295 goto out;
5296
5297 ret = process_recorded_refs(sctx, pending_move);
5298 if (ret < 0)
5299 goto out;
5300
5301 *refs_processed = 1;
5302 out:
5303 return ret;
5304 }
5305
5306 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5307 {
5308 int ret = 0;
5309 u64 left_mode;
5310 u64 left_uid;
5311 u64 left_gid;
5312 u64 right_mode;
5313 u64 right_uid;
5314 u64 right_gid;
5315 int need_chmod = 0;
5316 int need_chown = 0;
5317 int pending_move = 0;
5318 int refs_processed = 0;
5319
5320 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5321 &refs_processed);
5322 if (ret < 0)
5323 goto out;
5324
5325 /*
5326 * We have processed the refs and thus need to advance send_progress.
5327 * Now, calls to get_cur_xxx will take the updated refs of the current
5328 * inode into account.
5329 *
5330 * On the other hand, if our current inode is a directory and couldn't
5331 * be moved/renamed because its parent was renamed/moved too and it has
5332 * a higher inode number, we can only move/rename our current inode
5333 * after we moved/renamed its parent. Therefore in this case operate on
5334 * the old path (pre move/rename) of our current inode, and the
5335 * move/rename will be performed later.
5336 */
5337 if (refs_processed && !pending_move)
5338 sctx->send_progress = sctx->cur_ino + 1;
5339
5340 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5341 goto out;
5342 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5343 goto out;
5344
5345 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5346 &left_mode, &left_uid, &left_gid, NULL);
5347 if (ret < 0)
5348 goto out;
5349
5350 if (!sctx->parent_root || sctx->cur_inode_new) {
5351 need_chown = 1;
5352 if (!S_ISLNK(sctx->cur_inode_mode))
5353 need_chmod = 1;
5354 } else {
5355 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5356 NULL, NULL, &right_mode, &right_uid,
5357 &right_gid, NULL);
5358 if (ret < 0)
5359 goto out;
5360
5361 if (left_uid != right_uid || left_gid != right_gid)
5362 need_chown = 1;
5363 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5364 need_chmod = 1;
5365 }
5366
5367 if (S_ISREG(sctx->cur_inode_mode)) {
5368 if (need_send_hole(sctx)) {
5369 if (sctx->cur_inode_last_extent == (u64)-1 ||
5370 sctx->cur_inode_last_extent <
5371 sctx->cur_inode_size) {
5372 ret = get_last_extent(sctx, (u64)-1);
5373 if (ret)
5374 goto out;
5375 }
5376 if (sctx->cur_inode_last_extent <
5377 sctx->cur_inode_size) {
5378 ret = send_hole(sctx, sctx->cur_inode_size);
5379 if (ret)
5380 goto out;
5381 }
5382 }
5383 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5384 sctx->cur_inode_size);
5385 if (ret < 0)
5386 goto out;
5387 }
5388
5389 if (need_chown) {
5390 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5391 left_uid, left_gid);
5392 if (ret < 0)
5393 goto out;
5394 }
5395 if (need_chmod) {
5396 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5397 left_mode);
5398 if (ret < 0)
5399 goto out;
5400 }
5401
5402 /*
5403 * If other directory inodes depended on our current directory
5404 * inode's move/rename, now do their move/rename operations.
5405 */
5406 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5407 ret = apply_children_dir_moves(sctx);
5408 if (ret)
5409 goto out;
5410 /*
5411 * Need to send that every time, no matter if it actually
5412 * changed between the two trees as we have done changes to
5413 * the inode before. If our inode is a directory and it's
5414 * waiting to be moved/renamed, we will send its utimes when
5415 * it's moved/renamed, therefore we don't need to do it here.
5416 */
5417 sctx->send_progress = sctx->cur_ino + 1;
5418 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5419 if (ret < 0)
5420 goto out;
5421 }
5422
5423 out:
5424 return ret;
5425 }
5426
5427 static int changed_inode(struct send_ctx *sctx,
5428 enum btrfs_compare_tree_result result)
5429 {
5430 int ret = 0;
5431 struct btrfs_key *key = sctx->cmp_key;
5432 struct btrfs_inode_item *left_ii = NULL;
5433 struct btrfs_inode_item *right_ii = NULL;
5434 u64 left_gen = 0;
5435 u64 right_gen = 0;
5436
5437 sctx->cur_ino = key->objectid;
5438 sctx->cur_inode_new_gen = 0;
5439 sctx->cur_inode_last_extent = (u64)-1;
5440
5441 /*
5442 * Set send_progress to current inode. This will tell all get_cur_xxx
5443 * functions that the current inode's refs are not updated yet. Later,
5444 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5445 */
5446 sctx->send_progress = sctx->cur_ino;
5447
5448 if (result == BTRFS_COMPARE_TREE_NEW ||
5449 result == BTRFS_COMPARE_TREE_CHANGED) {
5450 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5451 sctx->left_path->slots[0],
5452 struct btrfs_inode_item);
5453 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5454 left_ii);
5455 } else {
5456 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5457 sctx->right_path->slots[0],
5458 struct btrfs_inode_item);
5459 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5460 right_ii);
5461 }
5462 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5463 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5464 sctx->right_path->slots[0],
5465 struct btrfs_inode_item);
5466
5467 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5468 right_ii);
5469
5470 /*
5471 * The cur_ino = root dir case is special here. We can't treat
5472 * the inode as deleted+reused because it would generate a
5473 * stream that tries to delete/mkdir the root dir.
5474 */
5475 if (left_gen != right_gen &&
5476 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5477 sctx->cur_inode_new_gen = 1;
5478 }
5479
5480 if (result == BTRFS_COMPARE_TREE_NEW) {
5481 sctx->cur_inode_gen = left_gen;
5482 sctx->cur_inode_new = 1;
5483 sctx->cur_inode_deleted = 0;
5484 sctx->cur_inode_size = btrfs_inode_size(
5485 sctx->left_path->nodes[0], left_ii);
5486 sctx->cur_inode_mode = btrfs_inode_mode(
5487 sctx->left_path->nodes[0], left_ii);
5488 sctx->cur_inode_rdev = btrfs_inode_rdev(
5489 sctx->left_path->nodes[0], left_ii);
5490 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5491 ret = send_create_inode_if_needed(sctx);
5492 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5493 sctx->cur_inode_gen = right_gen;
5494 sctx->cur_inode_new = 0;
5495 sctx->cur_inode_deleted = 1;
5496 sctx->cur_inode_size = btrfs_inode_size(
5497 sctx->right_path->nodes[0], right_ii);
5498 sctx->cur_inode_mode = btrfs_inode_mode(
5499 sctx->right_path->nodes[0], right_ii);
5500 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5501 /*
5502 * We need to do some special handling in case the inode was
5503 * reported as changed with a changed generation number. This
5504 * means that the original inode was deleted and new inode
5505 * reused the same inum. So we have to treat the old inode as
5506 * deleted and the new one as new.
5507 */
5508 if (sctx->cur_inode_new_gen) {
5509 /*
5510 * First, process the inode as if it was deleted.
5511 */
5512 sctx->cur_inode_gen = right_gen;
5513 sctx->cur_inode_new = 0;
5514 sctx->cur_inode_deleted = 1;
5515 sctx->cur_inode_size = btrfs_inode_size(
5516 sctx->right_path->nodes[0], right_ii);
5517 sctx->cur_inode_mode = btrfs_inode_mode(
5518 sctx->right_path->nodes[0], right_ii);
5519 ret = process_all_refs(sctx,
5520 BTRFS_COMPARE_TREE_DELETED);
5521 if (ret < 0)
5522 goto out;
5523
5524 /*
5525 * Now process the inode as if it was new.
5526 */
5527 sctx->cur_inode_gen = left_gen;
5528 sctx->cur_inode_new = 1;
5529 sctx->cur_inode_deleted = 0;
5530 sctx->cur_inode_size = btrfs_inode_size(
5531 sctx->left_path->nodes[0], left_ii);
5532 sctx->cur_inode_mode = btrfs_inode_mode(
5533 sctx->left_path->nodes[0], left_ii);
5534 sctx->cur_inode_rdev = btrfs_inode_rdev(
5535 sctx->left_path->nodes[0], left_ii);
5536 ret = send_create_inode_if_needed(sctx);
5537 if (ret < 0)
5538 goto out;
5539
5540 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5541 if (ret < 0)
5542 goto out;
5543 /*
5544 * Advance send_progress now as we did not get into
5545 * process_recorded_refs_if_needed in the new_gen case.
5546 */
5547 sctx->send_progress = sctx->cur_ino + 1;
5548
5549 /*
5550 * Now process all extents and xattrs of the inode as if
5551 * they were all new.
5552 */
5553 ret = process_all_extents(sctx);
5554 if (ret < 0)
5555 goto out;
5556 ret = process_all_new_xattrs(sctx);
5557 if (ret < 0)
5558 goto out;
5559 } else {
5560 sctx->cur_inode_gen = left_gen;
5561 sctx->cur_inode_new = 0;
5562 sctx->cur_inode_new_gen = 0;
5563 sctx->cur_inode_deleted = 0;
5564 sctx->cur_inode_size = btrfs_inode_size(
5565 sctx->left_path->nodes[0], left_ii);
5566 sctx->cur_inode_mode = btrfs_inode_mode(
5567 sctx->left_path->nodes[0], left_ii);
5568 }
5569 }
5570
5571 out:
5572 return ret;
5573 }
5574
5575 /*
5576 * We have to process new refs before deleted refs, but compare_trees gives us
5577 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5578 * first and later process them in process_recorded_refs.
5579 * For the cur_inode_new_gen case, we skip recording completely because
5580 * changed_inode did already initiate processing of refs. The reason for this is
5581 * that in this case, compare_tree actually compares the refs of 2 different
5582 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5583 * refs of the right tree as deleted and all refs of the left tree as new.
5584 */
5585 static int changed_ref(struct send_ctx *sctx,
5586 enum btrfs_compare_tree_result result)
5587 {
5588 int ret = 0;
5589
5590 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5591
5592 if (!sctx->cur_inode_new_gen &&
5593 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5594 if (result == BTRFS_COMPARE_TREE_NEW)
5595 ret = record_new_ref(sctx);
5596 else if (result == BTRFS_COMPARE_TREE_DELETED)
5597 ret = record_deleted_ref(sctx);
5598 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5599 ret = record_changed_ref(sctx);
5600 }
5601
5602 return ret;
5603 }
5604
5605 /*
5606 * Process new/deleted/changed xattrs. We skip processing in the
5607 * cur_inode_new_gen case because changed_inode did already initiate processing
5608 * of xattrs. The reason is the same as in changed_ref
5609 */
5610 static int changed_xattr(struct send_ctx *sctx,
5611 enum btrfs_compare_tree_result result)
5612 {
5613 int ret = 0;
5614
5615 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5616
5617 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5618 if (result == BTRFS_COMPARE_TREE_NEW)
5619 ret = process_new_xattr(sctx);
5620 else if (result == BTRFS_COMPARE_TREE_DELETED)
5621 ret = process_deleted_xattr(sctx);
5622 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5623 ret = process_changed_xattr(sctx);
5624 }
5625
5626 return ret;
5627 }
5628
5629 /*
5630 * Process new/deleted/changed extents. We skip processing in the
5631 * cur_inode_new_gen case because changed_inode did already initiate processing
5632 * of extents. The reason is the same as in changed_ref
5633 */
5634 static int changed_extent(struct send_ctx *sctx,
5635 enum btrfs_compare_tree_result result)
5636 {
5637 int ret = 0;
5638
5639 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5640
5641 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5642 if (result != BTRFS_COMPARE_TREE_DELETED)
5643 ret = process_extent(sctx, sctx->left_path,
5644 sctx->cmp_key);
5645 }
5646
5647 return ret;
5648 }
5649
5650 static int dir_changed(struct send_ctx *sctx, u64 dir)
5651 {
5652 u64 orig_gen, new_gen;
5653 int ret;
5654
5655 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5656 NULL, NULL);
5657 if (ret)
5658 return ret;
5659
5660 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5661 NULL, NULL, NULL);
5662 if (ret)
5663 return ret;
5664
5665 return (orig_gen != new_gen) ? 1 : 0;
5666 }
5667
5668 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5669 struct btrfs_key *key)
5670 {
5671 struct btrfs_inode_extref *extref;
5672 struct extent_buffer *leaf;
5673 u64 dirid = 0, last_dirid = 0;
5674 unsigned long ptr;
5675 u32 item_size;
5676 u32 cur_offset = 0;
5677 int ref_name_len;
5678 int ret = 0;
5679
5680 /* Easy case, just check this one dirid */
5681 if (key->type == BTRFS_INODE_REF_KEY) {
5682 dirid = key->offset;
5683
5684 ret = dir_changed(sctx, dirid);
5685 goto out;
5686 }
5687
5688 leaf = path->nodes[0];
5689 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5690 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5691 while (cur_offset < item_size) {
5692 extref = (struct btrfs_inode_extref *)(ptr +
5693 cur_offset);
5694 dirid = btrfs_inode_extref_parent(leaf, extref);
5695 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5696 cur_offset += ref_name_len + sizeof(*extref);
5697 if (dirid == last_dirid)
5698 continue;
5699 ret = dir_changed(sctx, dirid);
5700 if (ret)
5701 break;
5702 last_dirid = dirid;
5703 }
5704 out:
5705 return ret;
5706 }
5707
5708 /*
5709 * Updates compare related fields in sctx and simply forwards to the actual
5710 * changed_xxx functions.
5711 */
5712 static int changed_cb(struct btrfs_root *left_root,
5713 struct btrfs_root *right_root,
5714 struct btrfs_path *left_path,
5715 struct btrfs_path *right_path,
5716 struct btrfs_key *key,
5717 enum btrfs_compare_tree_result result,
5718 void *ctx)
5719 {
5720 int ret = 0;
5721 struct send_ctx *sctx = ctx;
5722
5723 if (result == BTRFS_COMPARE_TREE_SAME) {
5724 if (key->type == BTRFS_INODE_REF_KEY ||
5725 key->type == BTRFS_INODE_EXTREF_KEY) {
5726 ret = compare_refs(sctx, left_path, key);
5727 if (!ret)
5728 return 0;
5729 if (ret < 0)
5730 return ret;
5731 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5732 return maybe_send_hole(sctx, left_path, key);
5733 } else {
5734 return 0;
5735 }
5736 result = BTRFS_COMPARE_TREE_CHANGED;
5737 ret = 0;
5738 }
5739
5740 sctx->left_path = left_path;
5741 sctx->right_path = right_path;
5742 sctx->cmp_key = key;
5743
5744 ret = finish_inode_if_needed(sctx, 0);
5745 if (ret < 0)
5746 goto out;
5747
5748 /* Ignore non-FS objects */
5749 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5750 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5751 goto out;
5752
5753 if (key->type == BTRFS_INODE_ITEM_KEY)
5754 ret = changed_inode(sctx, result);
5755 else if (key->type == BTRFS_INODE_REF_KEY ||
5756 key->type == BTRFS_INODE_EXTREF_KEY)
5757 ret = changed_ref(sctx, result);
5758 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5759 ret = changed_xattr(sctx, result);
5760 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5761 ret = changed_extent(sctx, result);
5762
5763 out:
5764 return ret;
5765 }
5766
5767 static int full_send_tree(struct send_ctx *sctx)
5768 {
5769 int ret;
5770 struct btrfs_root *send_root = sctx->send_root;
5771 struct btrfs_key key;
5772 struct btrfs_key found_key;
5773 struct btrfs_path *path;
5774 struct extent_buffer *eb;
5775 int slot;
5776
5777 path = alloc_path_for_send();
5778 if (!path)
5779 return -ENOMEM;
5780
5781 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5782 key.type = BTRFS_INODE_ITEM_KEY;
5783 key.offset = 0;
5784
5785 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5786 if (ret < 0)
5787 goto out;
5788 if (ret)
5789 goto out_finish;
5790
5791 while (1) {
5792 eb = path->nodes[0];
5793 slot = path->slots[0];
5794 btrfs_item_key_to_cpu(eb, &found_key, slot);
5795
5796 ret = changed_cb(send_root, NULL, path, NULL,
5797 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5798 if (ret < 0)
5799 goto out;
5800
5801 key.objectid = found_key.objectid;
5802 key.type = found_key.type;
5803 key.offset = found_key.offset + 1;
5804
5805 ret = btrfs_next_item(send_root, path);
5806 if (ret < 0)
5807 goto out;
5808 if (ret) {
5809 ret = 0;
5810 break;
5811 }
5812 }
5813
5814 out_finish:
5815 ret = finish_inode_if_needed(sctx, 1);
5816
5817 out:
5818 btrfs_free_path(path);
5819 return ret;
5820 }
5821
5822 static int send_subvol(struct send_ctx *sctx)
5823 {
5824 int ret;
5825
5826 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5827 ret = send_header(sctx);
5828 if (ret < 0)
5829 goto out;
5830 }
5831
5832 ret = send_subvol_begin(sctx);
5833 if (ret < 0)
5834 goto out;
5835
5836 if (sctx->parent_root) {
5837 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5838 changed_cb, sctx);
5839 if (ret < 0)
5840 goto out;
5841 ret = finish_inode_if_needed(sctx, 1);
5842 if (ret < 0)
5843 goto out;
5844 } else {
5845 ret = full_send_tree(sctx);
5846 if (ret < 0)
5847 goto out;
5848 }
5849
5850 out:
5851 free_recorded_refs(sctx);
5852 return ret;
5853 }
5854
5855 /*
5856 * If orphan cleanup did remove any orphans from a root, it means the tree
5857 * was modified and therefore the commit root is not the same as the current
5858 * root anymore. This is a problem, because send uses the commit root and
5859 * therefore can see inode items that don't exist in the current root anymore,
5860 * and for example make calls to btrfs_iget, which will do tree lookups based
5861 * on the current root and not on the commit root. Those lookups will fail,
5862 * returning a -ESTALE error, and making send fail with that error. So make
5863 * sure a send does not see any orphans we have just removed, and that it will
5864 * see the same inodes regardless of whether a transaction commit happened
5865 * before it started (meaning that the commit root will be the same as the
5866 * current root) or not.
5867 */
5868 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5869 {
5870 int i;
5871 struct btrfs_trans_handle *trans = NULL;
5872
5873 again:
5874 if (sctx->parent_root &&
5875 sctx->parent_root->node != sctx->parent_root->commit_root)
5876 goto commit_trans;
5877
5878 for (i = 0; i < sctx->clone_roots_cnt; i++)
5879 if (sctx->clone_roots[i].root->node !=
5880 sctx->clone_roots[i].root->commit_root)
5881 goto commit_trans;
5882
5883 if (trans)
5884 return btrfs_end_transaction(trans, sctx->send_root);
5885
5886 return 0;
5887
5888 commit_trans:
5889 /* Use any root, all fs roots will get their commit roots updated. */
5890 if (!trans) {
5891 trans = btrfs_join_transaction(sctx->send_root);
5892 if (IS_ERR(trans))
5893 return PTR_ERR(trans);
5894 goto again;
5895 }
5896
5897 return btrfs_commit_transaction(trans, sctx->send_root);
5898 }
5899
5900 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5901 {
5902 spin_lock(&root->root_item_lock);
5903 root->send_in_progress--;
5904 /*
5905 * Not much left to do, we don't know why it's unbalanced and
5906 * can't blindly reset it to 0.
5907 */
5908 if (root->send_in_progress < 0)
5909 btrfs_err(root->fs_info,
5910 "send_in_progres unbalanced %d root %llu",
5911 root->send_in_progress, root->root_key.objectid);
5912 spin_unlock(&root->root_item_lock);
5913 }
5914
5915 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5916 {
5917 int ret = 0;
5918 struct btrfs_root *send_root;
5919 struct btrfs_root *clone_root;
5920 struct btrfs_fs_info *fs_info;
5921 struct btrfs_ioctl_send_args *arg = NULL;
5922 struct btrfs_key key;
5923 struct send_ctx *sctx = NULL;
5924 u32 i;
5925 u64 *clone_sources_tmp = NULL;
5926 int clone_sources_to_rollback = 0;
5927 int sort_clone_roots = 0;
5928 int index;
5929
5930 if (!capable(CAP_SYS_ADMIN))
5931 return -EPERM;
5932
5933 send_root = BTRFS_I(file_inode(mnt_file))->root;
5934 fs_info = send_root->fs_info;
5935
5936 /*
5937 * The subvolume must remain read-only during send, protect against
5938 * making it RW. This also protects against deletion.
5939 */
5940 spin_lock(&send_root->root_item_lock);
5941 send_root->send_in_progress++;
5942 spin_unlock(&send_root->root_item_lock);
5943
5944 /*
5945 * This is done when we lookup the root, it should already be complete
5946 * by the time we get here.
5947 */
5948 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5949
5950 /*
5951 * Userspace tools do the checks and warn the user if it's
5952 * not RO.
5953 */
5954 if (!btrfs_root_readonly(send_root)) {
5955 ret = -EPERM;
5956 goto out;
5957 }
5958
5959 arg = memdup_user(arg_, sizeof(*arg));
5960 if (IS_ERR(arg)) {
5961 ret = PTR_ERR(arg);
5962 arg = NULL;
5963 goto out;
5964 }
5965
5966 if (!access_ok(VERIFY_READ, arg->clone_sources,
5967 sizeof(*arg->clone_sources) *
5968 arg->clone_sources_count)) {
5969 ret = -EFAULT;
5970 goto out;
5971 }
5972
5973 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5974 ret = -EINVAL;
5975 goto out;
5976 }
5977
5978 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
5979 if (!sctx) {
5980 ret = -ENOMEM;
5981 goto out;
5982 }
5983
5984 INIT_LIST_HEAD(&sctx->new_refs);
5985 INIT_LIST_HEAD(&sctx->deleted_refs);
5986 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
5987 INIT_LIST_HEAD(&sctx->name_cache_list);
5988
5989 sctx->flags = arg->flags;
5990
5991 sctx->send_filp = fget(arg->send_fd);
5992 if (!sctx->send_filp) {
5993 ret = -EBADF;
5994 goto out;
5995 }
5996
5997 sctx->send_root = send_root;
5998 /*
5999 * Unlikely but possible, if the subvolume is marked for deletion but
6000 * is slow to remove the directory entry, send can still be started
6001 */
6002 if (btrfs_root_dead(sctx->send_root)) {
6003 ret = -EPERM;
6004 goto out;
6005 }
6006
6007 sctx->clone_roots_cnt = arg->clone_sources_count;
6008
6009 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6010 sctx->send_buf = vmalloc(sctx->send_max_size);
6011 if (!sctx->send_buf) {
6012 ret = -ENOMEM;
6013 goto out;
6014 }
6015
6016 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6017 if (!sctx->read_buf) {
6018 ret = -ENOMEM;
6019 goto out;
6020 }
6021
6022 sctx->pending_dir_moves = RB_ROOT;
6023 sctx->waiting_dir_moves = RB_ROOT;
6024 sctx->orphan_dirs = RB_ROOT;
6025
6026 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6027 (arg->clone_sources_count + 1));
6028 if (!sctx->clone_roots) {
6029 ret = -ENOMEM;
6030 goto out;
6031 }
6032
6033 if (arg->clone_sources_count) {
6034 clone_sources_tmp = vmalloc(arg->clone_sources_count *
6035 sizeof(*arg->clone_sources));
6036 if (!clone_sources_tmp) {
6037 ret = -ENOMEM;
6038 goto out;
6039 }
6040
6041 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6042 arg->clone_sources_count *
6043 sizeof(*arg->clone_sources));
6044 if (ret) {
6045 ret = -EFAULT;
6046 goto out;
6047 }
6048
6049 for (i = 0; i < arg->clone_sources_count; i++) {
6050 key.objectid = clone_sources_tmp[i];
6051 key.type = BTRFS_ROOT_ITEM_KEY;
6052 key.offset = (u64)-1;
6053
6054 index = srcu_read_lock(&fs_info->subvol_srcu);
6055
6056 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6057 if (IS_ERR(clone_root)) {
6058 srcu_read_unlock(&fs_info->subvol_srcu, index);
6059 ret = PTR_ERR(clone_root);
6060 goto out;
6061 }
6062 spin_lock(&clone_root->root_item_lock);
6063 if (!btrfs_root_readonly(clone_root) ||
6064 btrfs_root_dead(clone_root)) {
6065 spin_unlock(&clone_root->root_item_lock);
6066 srcu_read_unlock(&fs_info->subvol_srcu, index);
6067 ret = -EPERM;
6068 goto out;
6069 }
6070 clone_root->send_in_progress++;
6071 spin_unlock(&clone_root->root_item_lock);
6072 srcu_read_unlock(&fs_info->subvol_srcu, index);
6073
6074 sctx->clone_roots[i].root = clone_root;
6075 clone_sources_to_rollback = i + 1;
6076 }
6077 vfree(clone_sources_tmp);
6078 clone_sources_tmp = NULL;
6079 }
6080
6081 if (arg->parent_root) {
6082 key.objectid = arg->parent_root;
6083 key.type = BTRFS_ROOT_ITEM_KEY;
6084 key.offset = (u64)-1;
6085
6086 index = srcu_read_lock(&fs_info->subvol_srcu);
6087
6088 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6089 if (IS_ERR(sctx->parent_root)) {
6090 srcu_read_unlock(&fs_info->subvol_srcu, index);
6091 ret = PTR_ERR(sctx->parent_root);
6092 goto out;
6093 }
6094
6095 spin_lock(&sctx->parent_root->root_item_lock);
6096 sctx->parent_root->send_in_progress++;
6097 if (!btrfs_root_readonly(sctx->parent_root) ||
6098 btrfs_root_dead(sctx->parent_root)) {
6099 spin_unlock(&sctx->parent_root->root_item_lock);
6100 srcu_read_unlock(&fs_info->subvol_srcu, index);
6101 ret = -EPERM;
6102 goto out;
6103 }
6104 spin_unlock(&sctx->parent_root->root_item_lock);
6105
6106 srcu_read_unlock(&fs_info->subvol_srcu, index);
6107 }
6108
6109 /*
6110 * Clones from send_root are allowed, but only if the clone source
6111 * is behind the current send position. This is checked while searching
6112 * for possible clone sources.
6113 */
6114 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6115
6116 /* We do a bsearch later */
6117 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6118 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6119 NULL);
6120 sort_clone_roots = 1;
6121
6122 ret = ensure_commit_roots_uptodate(sctx);
6123 if (ret)
6124 goto out;
6125
6126 current->journal_info = BTRFS_SEND_TRANS_STUB;
6127 ret = send_subvol(sctx);
6128 current->journal_info = NULL;
6129 if (ret < 0)
6130 goto out;
6131
6132 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6133 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6134 if (ret < 0)
6135 goto out;
6136 ret = send_cmd(sctx);
6137 if (ret < 0)
6138 goto out;
6139 }
6140
6141 out:
6142 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6143 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6144 struct rb_node *n;
6145 struct pending_dir_move *pm;
6146
6147 n = rb_first(&sctx->pending_dir_moves);
6148 pm = rb_entry(n, struct pending_dir_move, node);
6149 while (!list_empty(&pm->list)) {
6150 struct pending_dir_move *pm2;
6151
6152 pm2 = list_first_entry(&pm->list,
6153 struct pending_dir_move, list);
6154 free_pending_move(sctx, pm2);
6155 }
6156 free_pending_move(sctx, pm);
6157 }
6158
6159 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6160 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6161 struct rb_node *n;
6162 struct waiting_dir_move *dm;
6163
6164 n = rb_first(&sctx->waiting_dir_moves);
6165 dm = rb_entry(n, struct waiting_dir_move, node);
6166 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6167 kfree(dm);
6168 }
6169
6170 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6171 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6172 struct rb_node *n;
6173 struct orphan_dir_info *odi;
6174
6175 n = rb_first(&sctx->orphan_dirs);
6176 odi = rb_entry(n, struct orphan_dir_info, node);
6177 free_orphan_dir_info(sctx, odi);
6178 }
6179
6180 if (sort_clone_roots) {
6181 for (i = 0; i < sctx->clone_roots_cnt; i++)
6182 btrfs_root_dec_send_in_progress(
6183 sctx->clone_roots[i].root);
6184 } else {
6185 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6186 btrfs_root_dec_send_in_progress(
6187 sctx->clone_roots[i].root);
6188
6189 btrfs_root_dec_send_in_progress(send_root);
6190 }
6191 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6192 btrfs_root_dec_send_in_progress(sctx->parent_root);
6193
6194 kfree(arg);
6195 vfree(clone_sources_tmp);
6196
6197 if (sctx) {
6198 if (sctx->send_filp)
6199 fput(sctx->send_filp);
6200
6201 vfree(sctx->clone_roots);
6202 vfree(sctx->send_buf);
6203 vfree(sctx->read_buf);
6204
6205 name_cache_free(sctx);
6206
6207 kfree(sctx);
6208 }
6209
6210 return ret;
6211 }