]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/space-info.c
btrfs: fail priority metadata ticket with real fs error
[thirdparty/linux.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16
17 /*
18 * HOW DOES SPACE RESERVATION WORK
19 *
20 * If you want to know about delalloc specifically, there is a separate comment
21 * for that with the delalloc code. This comment is about how the whole system
22 * works generally.
23 *
24 * BASIC CONCEPTS
25 *
26 * 1) space_info. This is the ultimate arbiter of how much space we can use.
27 * There's a description of the bytes_ fields with the struct declaration,
28 * refer to that for specifics on each field. Suffice it to say that for
29 * reservations we care about total_bytes - SUM(space_info->bytes_) when
30 * determining if there is space to make an allocation. There is a space_info
31 * for METADATA, SYSTEM, and DATA areas.
32 *
33 * 2) block_rsv's. These are basically buckets for every different type of
34 * metadata reservation we have. You can see the comment in the block_rsv
35 * code on the rules for each type, but generally block_rsv->reserved is how
36 * much space is accounted for in space_info->bytes_may_use.
37 *
38 * 3) btrfs_calc*_size. These are the worst case calculations we used based
39 * on the number of items we will want to modify. We have one for changing
40 * items, and one for inserting new items. Generally we use these helpers to
41 * determine the size of the block reserves, and then use the actual bytes
42 * values to adjust the space_info counters.
43 *
44 * MAKING RESERVATIONS, THE NORMAL CASE
45 *
46 * We call into either btrfs_reserve_data_bytes() or
47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48 * num_bytes we want to reserve.
49 *
50 * ->reserve
51 * space_info->bytes_may_reserve += num_bytes
52 *
53 * ->extent allocation
54 * Call btrfs_add_reserved_bytes() which does
55 * space_info->bytes_may_reserve -= num_bytes
56 * space_info->bytes_reserved += extent_bytes
57 *
58 * ->insert reference
59 * Call btrfs_update_block_group() which does
60 * space_info->bytes_reserved -= extent_bytes
61 * space_info->bytes_used += extent_bytes
62 *
63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64 *
65 * Assume we are unable to simply make the reservation because we do not have
66 * enough space
67 *
68 * -> __reserve_bytes
69 * create a reserve_ticket with ->bytes set to our reservation, add it to
70 * the tail of space_info->tickets, kick async flush thread
71 *
72 * ->handle_reserve_ticket
73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74 * on the ticket.
75 *
76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77 * Flushes various things attempting to free up space.
78 *
79 * -> btrfs_try_granting_tickets()
80 * This is called by anything that either subtracts space from
81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82 * space_info->total_bytes. This loops through the ->priority_tickets and
83 * then the ->tickets list checking to see if the reservation can be
84 * completed. If it can the space is added to space_info->bytes_may_use and
85 * the ticket is woken up.
86 *
87 * -> ticket wakeup
88 * Check if ->bytes == 0, if it does we got our reservation and we can carry
89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90 * were interrupted.)
91 *
92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93 *
94 * Same as the above, except we add ourselves to the
95 * space_info->priority_tickets, and we do not use ticket->wait, we simply
96 * call flush_space() ourselves for the states that are safe for us to call
97 * without deadlocking and hope for the best.
98 *
99 * THE FLUSHING STATES
100 *
101 * Generally speaking we will have two cases for each state, a "nice" state
102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
103 * reduce the locking over head on the various trees, and even to keep from
104 * doing any work at all in the case of delayed refs. Each of these delayed
105 * things however hold reservations, and so letting them run allows us to
106 * reclaim space so we can make new reservations.
107 *
108 * FLUSH_DELAYED_ITEMS
109 * Every inode has a delayed item to update the inode. Take a simple write
110 * for example, we would update the inode item at write time to update the
111 * mtime, and then again at finish_ordered_io() time in order to update the
112 * isize or bytes. We keep these delayed items to coalesce these operations
113 * into a single operation done on demand. These are an easy way to reclaim
114 * metadata space.
115 *
116 * FLUSH_DELALLOC
117 * Look at the delalloc comment to get an idea of how much space is reserved
118 * for delayed allocation. We can reclaim some of this space simply by
119 * running delalloc, but usually we need to wait for ordered extents to
120 * reclaim the bulk of this space.
121 *
122 * FLUSH_DELAYED_REFS
123 * We have a block reserve for the outstanding delayed refs space, and every
124 * delayed ref operation holds a reservation. Running these is a quick way
125 * to reclaim space, but we want to hold this until the end because COW can
126 * churn a lot and we can avoid making some extent tree modifications if we
127 * are able to delay for as long as possible.
128 *
129 * ALLOC_CHUNK
130 * We will skip this the first time through space reservation, because of
131 * overcommit and we don't want to have a lot of useless metadata space when
132 * our worst case reservations will likely never come true.
133 *
134 * RUN_DELAYED_IPUTS
135 * If we're freeing inodes we're likely freeing checksums, file extent
136 * items, and extent tree items. Loads of space could be freed up by these
137 * operations, however they won't be usable until the transaction commits.
138 *
139 * COMMIT_TRANS
140 * This will commit the transaction. Historically we had a lot of logic
141 * surrounding whether or not we'd commit the transaction, but this waits born
142 * out of a pre-tickets era where we could end up committing the transaction
143 * thousands of times in a row without making progress. Now thanks to our
144 * ticketing system we know if we're not making progress and can error
145 * everybody out after a few commits rather than burning the disk hoping for
146 * a different answer.
147 *
148 * OVERCOMMIT
149 *
150 * Because we hold so many reservations for metadata we will allow you to
151 * reserve more space than is currently free in the currently allocate
152 * metadata space. This only happens with metadata, data does not allow
153 * overcommitting.
154 *
155 * You can see the current logic for when we allow overcommit in
156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
157 * is no unallocated space to be had, all reservations are kept within the
158 * free space in the allocated metadata chunks.
159 *
160 * Because of overcommitting, you generally want to use the
161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
162 * thing with or without extra unallocated space.
163 */
164
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166 bool may_use_included)
167 {
168 ASSERT(s_info);
169 return s_info->bytes_used + s_info->bytes_reserved +
170 s_info->bytes_pinned + s_info->bytes_readonly +
171 s_info->bytes_zone_unusable +
172 (may_use_included ? s_info->bytes_may_use : 0);
173 }
174
175 /*
176 * after adding space to the filesystem, we need to clear the full flags
177 * on all the space infos.
178 */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181 struct list_head *head = &info->space_info;
182 struct btrfs_space_info *found;
183
184 list_for_each_entry(found, head, list)
185 found->full = 0;
186 }
187
188 /*
189 * Block groups with more than this value (percents) of unusable space will be
190 * scheduled for background reclaim.
191 */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
193
194 /*
195 * Calculate chunk size depending on volume type (regular or zoned).
196 */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199 if (btrfs_is_zoned(fs_info))
200 return fs_info->zone_size;
201
202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203
204 if (flags & BTRFS_BLOCK_GROUP_DATA)
205 return BTRFS_MAX_DATA_CHUNK_SIZE;
206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 return SZ_32M;
208
209 /* Handle BTRFS_BLOCK_GROUP_METADATA */
210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 return SZ_1G;
212
213 return SZ_256M;
214 }
215
216 /*
217 * Update default chunk size.
218 */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 u64 chunk_size)
221 {
222 WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227
228 struct btrfs_space_info *space_info;
229 int i;
230 int ret;
231
232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 if (!space_info)
234 return -ENOMEM;
235
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 INIT_LIST_HEAD(&space_info->block_groups[i]);
238 init_rwsem(&space_info->groups_sem);
239 spin_lock_init(&space_info->lock);
240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242 INIT_LIST_HEAD(&space_info->ro_bgs);
243 INIT_LIST_HEAD(&space_info->tickets);
244 INIT_LIST_HEAD(&space_info->priority_tickets);
245 space_info->clamp = 1;
246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247
248 if (btrfs_is_zoned(info))
249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250
251 ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 if (ret)
253 return ret;
254
255 list_add(&space_info->list, &info->space_info);
256 if (flags & BTRFS_BLOCK_GROUP_DATA)
257 info->data_sinfo = space_info;
258
259 return ret;
260 }
261
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264 struct btrfs_super_block *disk_super;
265 u64 features;
266 u64 flags;
267 int mixed = 0;
268 int ret;
269
270 disk_super = fs_info->super_copy;
271 if (!btrfs_super_root(disk_super))
272 return -EINVAL;
273
274 features = btrfs_super_incompat_flags(disk_super);
275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 mixed = 1;
277
278 flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 ret = create_space_info(fs_info, flags);
280 if (ret)
281 goto out;
282
283 if (mixed) {
284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 ret = create_space_info(fs_info, flags);
286 } else {
287 flags = BTRFS_BLOCK_GROUP_METADATA;
288 ret = create_space_info(fs_info, flags);
289 if (ret)
290 goto out;
291
292 flags = BTRFS_BLOCK_GROUP_DATA;
293 ret = create_space_info(fs_info, flags);
294 }
295 out:
296 return ret;
297 }
298
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300 struct btrfs_block_group *block_group)
301 {
302 struct btrfs_space_info *found;
303 int factor, index;
304
305 factor = btrfs_bg_type_to_factor(block_group->flags);
306
307 found = btrfs_find_space_info(info, block_group->flags);
308 ASSERT(found);
309 spin_lock(&found->lock);
310 found->total_bytes += block_group->length;
311 found->disk_total += block_group->length * factor;
312 found->bytes_used += block_group->used;
313 found->disk_used += block_group->used * factor;
314 found->bytes_readonly += block_group->bytes_super;
315 found->bytes_zone_unusable += block_group->zone_unusable;
316 if (block_group->length > 0)
317 found->full = 0;
318 btrfs_try_granting_tickets(info, found);
319 spin_unlock(&found->lock);
320
321 block_group->space_info = found;
322
323 index = btrfs_bg_flags_to_raid_index(block_group->flags);
324 down_write(&found->groups_sem);
325 list_add_tail(&block_group->list, &found->block_groups[index]);
326 up_write(&found->groups_sem);
327 }
328
329 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
330 u64 flags)
331 {
332 struct list_head *head = &info->space_info;
333 struct btrfs_space_info *found;
334
335 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
336
337 list_for_each_entry(found, head, list) {
338 if (found->flags & flags)
339 return found;
340 }
341 return NULL;
342 }
343
344 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
345 struct btrfs_space_info *space_info,
346 enum btrfs_reserve_flush_enum flush)
347 {
348 u64 profile;
349 u64 avail;
350 int factor;
351
352 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
353 profile = btrfs_system_alloc_profile(fs_info);
354 else
355 profile = btrfs_metadata_alloc_profile(fs_info);
356
357 avail = atomic64_read(&fs_info->free_chunk_space);
358
359 /*
360 * If we have dup, raid1 or raid10 then only half of the free
361 * space is actually usable. For raid56, the space info used
362 * doesn't include the parity drive, so we don't have to
363 * change the math
364 */
365 factor = btrfs_bg_type_to_factor(profile);
366 avail = div_u64(avail, factor);
367
368 /*
369 * If we aren't flushing all things, let us overcommit up to
370 * 1/2th of the space. If we can flush, don't let us overcommit
371 * too much, let it overcommit up to 1/8 of the space.
372 */
373 if (flush == BTRFS_RESERVE_FLUSH_ALL)
374 avail >>= 3;
375 else
376 avail >>= 1;
377 return avail;
378 }
379
380 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
381 struct btrfs_space_info *space_info, u64 bytes,
382 enum btrfs_reserve_flush_enum flush)
383 {
384 u64 avail;
385 u64 used;
386
387 /* Don't overcommit when in mixed mode */
388 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
389 return 0;
390
391 used = btrfs_space_info_used(space_info, true);
392 if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags) &&
393 (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
394 avail = 0;
395 else
396 avail = calc_available_free_space(fs_info, space_info, flush);
397
398 if (used + bytes < space_info->total_bytes + avail)
399 return 1;
400 return 0;
401 }
402
403 static void remove_ticket(struct btrfs_space_info *space_info,
404 struct reserve_ticket *ticket)
405 {
406 if (!list_empty(&ticket->list)) {
407 list_del_init(&ticket->list);
408 ASSERT(space_info->reclaim_size >= ticket->bytes);
409 space_info->reclaim_size -= ticket->bytes;
410 }
411 }
412
413 /*
414 * This is for space we already have accounted in space_info->bytes_may_use, so
415 * basically when we're returning space from block_rsv's.
416 */
417 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
418 struct btrfs_space_info *space_info)
419 {
420 struct list_head *head;
421 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
422
423 lockdep_assert_held(&space_info->lock);
424
425 head = &space_info->priority_tickets;
426 again:
427 while (!list_empty(head)) {
428 struct reserve_ticket *ticket;
429 u64 used = btrfs_space_info_used(space_info, true);
430
431 ticket = list_first_entry(head, struct reserve_ticket, list);
432
433 /* Check and see if our ticket can be satisfied now. */
434 if ((used + ticket->bytes <= space_info->total_bytes) ||
435 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
436 flush)) {
437 btrfs_space_info_update_bytes_may_use(fs_info,
438 space_info,
439 ticket->bytes);
440 remove_ticket(space_info, ticket);
441 ticket->bytes = 0;
442 space_info->tickets_id++;
443 wake_up(&ticket->wait);
444 } else {
445 break;
446 }
447 }
448
449 if (head == &space_info->priority_tickets) {
450 head = &space_info->tickets;
451 flush = BTRFS_RESERVE_FLUSH_ALL;
452 goto again;
453 }
454 }
455
456 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
457 do { \
458 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
459 spin_lock(&__rsv->lock); \
460 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
461 __rsv->size, __rsv->reserved); \
462 spin_unlock(&__rsv->lock); \
463 } while (0)
464
465 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
466 {
467 switch (space_info->flags) {
468 case BTRFS_BLOCK_GROUP_SYSTEM:
469 return "SYSTEM";
470 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
471 return "DATA+METADATA";
472 case BTRFS_BLOCK_GROUP_DATA:
473 return "DATA";
474 case BTRFS_BLOCK_GROUP_METADATA:
475 return "METADATA";
476 default:
477 return "UNKNOWN";
478 }
479 }
480
481 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
482 {
483 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
484 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
485 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
486 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
487 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
488 }
489
490 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
491 struct btrfs_space_info *info)
492 {
493 const char *flag_str = space_info_flag_to_str(info);
494 lockdep_assert_held(&info->lock);
495
496 /* The free space could be negative in case of overcommit */
497 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
498 flag_str,
499 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
500 info->full ? "" : "not ");
501 btrfs_info(fs_info,
502 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
503 info->total_bytes, info->bytes_used, info->bytes_pinned,
504 info->bytes_reserved, info->bytes_may_use,
505 info->bytes_readonly, info->bytes_zone_unusable);
506 }
507
508 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
509 struct btrfs_space_info *info, u64 bytes,
510 int dump_block_groups)
511 {
512 struct btrfs_block_group *cache;
513 u64 total_avail = 0;
514 int index = 0;
515
516 spin_lock(&info->lock);
517 __btrfs_dump_space_info(fs_info, info);
518 dump_global_block_rsv(fs_info);
519 spin_unlock(&info->lock);
520
521 if (!dump_block_groups)
522 return;
523
524 down_read(&info->groups_sem);
525 again:
526 list_for_each_entry(cache, &info->block_groups[index], list) {
527 u64 avail;
528
529 spin_lock(&cache->lock);
530 avail = cache->length - cache->used - cache->pinned -
531 cache->reserved - cache->delalloc_bytes -
532 cache->bytes_super - cache->zone_unusable;
533 btrfs_info(fs_info,
534 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
535 cache->start, cache->length, cache->used, cache->pinned,
536 cache->reserved, cache->delalloc_bytes,
537 cache->bytes_super, cache->zone_unusable,
538 avail, cache->ro ? "[readonly]" : "");
539 spin_unlock(&cache->lock);
540 btrfs_dump_free_space(cache, bytes);
541 total_avail += avail;
542 }
543 if (++index < BTRFS_NR_RAID_TYPES)
544 goto again;
545 up_read(&info->groups_sem);
546
547 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
548 }
549
550 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
551 u64 to_reclaim)
552 {
553 u64 bytes;
554 u64 nr;
555
556 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
557 nr = div64_u64(to_reclaim, bytes);
558 if (!nr)
559 nr = 1;
560 return nr;
561 }
562
563 static inline u64 calc_delayed_refs_nr(const struct btrfs_fs_info *fs_info,
564 u64 to_reclaim)
565 {
566 const u64 bytes = btrfs_calc_delayed_ref_bytes(fs_info, 1);
567 u64 nr;
568
569 nr = div64_u64(to_reclaim, bytes);
570 if (!nr)
571 nr = 1;
572 return nr;
573 }
574
575 #define EXTENT_SIZE_PER_ITEM SZ_256K
576
577 /*
578 * shrink metadata reservation for delalloc
579 */
580 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
581 struct btrfs_space_info *space_info,
582 u64 to_reclaim, bool wait_ordered,
583 bool for_preempt)
584 {
585 struct btrfs_trans_handle *trans;
586 u64 delalloc_bytes;
587 u64 ordered_bytes;
588 u64 items;
589 long time_left;
590 int loops;
591
592 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
593 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
594 if (delalloc_bytes == 0 && ordered_bytes == 0)
595 return;
596
597 /* Calc the number of the pages we need flush for space reservation */
598 if (to_reclaim == U64_MAX) {
599 items = U64_MAX;
600 } else {
601 /*
602 * to_reclaim is set to however much metadata we need to
603 * reclaim, but reclaiming that much data doesn't really track
604 * exactly. What we really want to do is reclaim full inode's
605 * worth of reservations, however that's not available to us
606 * here. We will take a fraction of the delalloc bytes for our
607 * flushing loops and hope for the best. Delalloc will expand
608 * the amount we write to cover an entire dirty extent, which
609 * will reclaim the metadata reservation for that range. If
610 * it's not enough subsequent flush stages will be more
611 * aggressive.
612 */
613 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
614 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
615 }
616
617 trans = current->journal_info;
618
619 /*
620 * If we are doing more ordered than delalloc we need to just wait on
621 * ordered extents, otherwise we'll waste time trying to flush delalloc
622 * that likely won't give us the space back we need.
623 */
624 if (ordered_bytes > delalloc_bytes && !for_preempt)
625 wait_ordered = true;
626
627 loops = 0;
628 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
629 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
630 long nr_pages = min_t(u64, temp, LONG_MAX);
631 int async_pages;
632
633 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
634
635 /*
636 * We need to make sure any outstanding async pages are now
637 * processed before we continue. This is because things like
638 * sync_inode() try to be smart and skip writing if the inode is
639 * marked clean. We don't use filemap_fwrite for flushing
640 * because we want to control how many pages we write out at a
641 * time, thus this is the only safe way to make sure we've
642 * waited for outstanding compressed workers to have started
643 * their jobs and thus have ordered extents set up properly.
644 *
645 * This exists because we do not want to wait for each
646 * individual inode to finish its async work, we simply want to
647 * start the IO on everybody, and then come back here and wait
648 * for all of the async work to catch up. Once we're done with
649 * that we know we'll have ordered extents for everything and we
650 * can decide if we wait for that or not.
651 *
652 * If we choose to replace this in the future, make absolutely
653 * sure that the proper waiting is being done in the async case,
654 * as there have been bugs in that area before.
655 */
656 async_pages = atomic_read(&fs_info->async_delalloc_pages);
657 if (!async_pages)
658 goto skip_async;
659
660 /*
661 * We don't want to wait forever, if we wrote less pages in this
662 * loop than we have outstanding, only wait for that number of
663 * pages, otherwise we can wait for all async pages to finish
664 * before continuing.
665 */
666 if (async_pages > nr_pages)
667 async_pages -= nr_pages;
668 else
669 async_pages = 0;
670 wait_event(fs_info->async_submit_wait,
671 atomic_read(&fs_info->async_delalloc_pages) <=
672 async_pages);
673 skip_async:
674 loops++;
675 if (wait_ordered && !trans) {
676 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
677 } else {
678 time_left = schedule_timeout_killable(1);
679 if (time_left)
680 break;
681 }
682
683 /*
684 * If we are for preemption we just want a one-shot of delalloc
685 * flushing so we can stop flushing if we decide we don't need
686 * to anymore.
687 */
688 if (for_preempt)
689 break;
690
691 spin_lock(&space_info->lock);
692 if (list_empty(&space_info->tickets) &&
693 list_empty(&space_info->priority_tickets)) {
694 spin_unlock(&space_info->lock);
695 break;
696 }
697 spin_unlock(&space_info->lock);
698
699 delalloc_bytes = percpu_counter_sum_positive(
700 &fs_info->delalloc_bytes);
701 ordered_bytes = percpu_counter_sum_positive(
702 &fs_info->ordered_bytes);
703 }
704 }
705
706 /*
707 * Try to flush some data based on policy set by @state. This is only advisory
708 * and may fail for various reasons. The caller is supposed to examine the
709 * state of @space_info to detect the outcome.
710 */
711 static void flush_space(struct btrfs_fs_info *fs_info,
712 struct btrfs_space_info *space_info, u64 num_bytes,
713 enum btrfs_flush_state state, bool for_preempt)
714 {
715 struct btrfs_root *root = fs_info->tree_root;
716 struct btrfs_trans_handle *trans;
717 int nr;
718 int ret = 0;
719
720 switch (state) {
721 case FLUSH_DELAYED_ITEMS_NR:
722 case FLUSH_DELAYED_ITEMS:
723 if (state == FLUSH_DELAYED_ITEMS_NR)
724 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
725 else
726 nr = -1;
727
728 trans = btrfs_join_transaction(root);
729 if (IS_ERR(trans)) {
730 ret = PTR_ERR(trans);
731 break;
732 }
733 ret = btrfs_run_delayed_items_nr(trans, nr);
734 btrfs_end_transaction(trans);
735 break;
736 case FLUSH_DELALLOC:
737 case FLUSH_DELALLOC_WAIT:
738 case FLUSH_DELALLOC_FULL:
739 if (state == FLUSH_DELALLOC_FULL)
740 num_bytes = U64_MAX;
741 shrink_delalloc(fs_info, space_info, num_bytes,
742 state != FLUSH_DELALLOC, for_preempt);
743 break;
744 case FLUSH_DELAYED_REFS_NR:
745 case FLUSH_DELAYED_REFS:
746 trans = btrfs_join_transaction(root);
747 if (IS_ERR(trans)) {
748 ret = PTR_ERR(trans);
749 break;
750 }
751 if (state == FLUSH_DELAYED_REFS_NR)
752 nr = calc_delayed_refs_nr(fs_info, num_bytes);
753 else
754 nr = 0;
755 btrfs_run_delayed_refs(trans, nr);
756 btrfs_end_transaction(trans);
757 break;
758 case ALLOC_CHUNK:
759 case ALLOC_CHUNK_FORCE:
760 /*
761 * For metadata space on zoned filesystem, reaching here means we
762 * don't have enough space left in active_total_bytes. Try to
763 * activate a block group first, because we may have inactive
764 * block group already allocated.
765 */
766 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
767 if (ret < 0)
768 break;
769 else if (ret == 1)
770 break;
771
772 trans = btrfs_join_transaction(root);
773 if (IS_ERR(trans)) {
774 ret = PTR_ERR(trans);
775 break;
776 }
777 ret = btrfs_chunk_alloc(trans,
778 btrfs_get_alloc_profile(fs_info, space_info->flags),
779 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
780 CHUNK_ALLOC_FORCE);
781 btrfs_end_transaction(trans);
782
783 /*
784 * For metadata space on zoned filesystem, allocating a new chunk
785 * is not enough. We still need to activate the block * group.
786 * Active the newly allocated block group by (maybe) finishing
787 * a block group.
788 */
789 if (ret == 1) {
790 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
791 /*
792 * Revert to the original ret regardless we could finish
793 * one block group or not.
794 */
795 if (ret >= 0)
796 ret = 1;
797 }
798
799 if (ret > 0 || ret == -ENOSPC)
800 ret = 0;
801 break;
802 case RUN_DELAYED_IPUTS:
803 /*
804 * If we have pending delayed iputs then we could free up a
805 * bunch of pinned space, so make sure we run the iputs before
806 * we do our pinned bytes check below.
807 */
808 btrfs_run_delayed_iputs(fs_info);
809 btrfs_wait_on_delayed_iputs(fs_info);
810 break;
811 case COMMIT_TRANS:
812 ASSERT(current->journal_info == NULL);
813 trans = btrfs_join_transaction(root);
814 if (IS_ERR(trans)) {
815 ret = PTR_ERR(trans);
816 break;
817 }
818 ret = btrfs_commit_transaction(trans);
819 break;
820 default:
821 ret = -ENOSPC;
822 break;
823 }
824
825 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
826 ret, for_preempt);
827 return;
828 }
829
830 static inline u64
831 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
832 struct btrfs_space_info *space_info)
833 {
834 u64 used;
835 u64 avail;
836 u64 to_reclaim = space_info->reclaim_size;
837
838 lockdep_assert_held(&space_info->lock);
839
840 avail = calc_available_free_space(fs_info, space_info,
841 BTRFS_RESERVE_FLUSH_ALL);
842 used = btrfs_space_info_used(space_info, true);
843
844 /*
845 * We may be flushing because suddenly we have less space than we had
846 * before, and now we're well over-committed based on our current free
847 * space. If that's the case add in our overage so we make sure to put
848 * appropriate pressure on the flushing state machine.
849 */
850 if (space_info->total_bytes + avail < used)
851 to_reclaim += used - (space_info->total_bytes + avail);
852
853 return to_reclaim;
854 }
855
856 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
857 struct btrfs_space_info *space_info)
858 {
859 u64 global_rsv_size = fs_info->global_block_rsv.reserved;
860 u64 ordered, delalloc;
861 u64 thresh;
862 u64 used;
863
864 thresh = mult_perc(space_info->total_bytes, 90);
865
866 lockdep_assert_held(&space_info->lock);
867
868 /* If we're just plain full then async reclaim just slows us down. */
869 if ((space_info->bytes_used + space_info->bytes_reserved +
870 global_rsv_size) >= thresh)
871 return false;
872
873 used = space_info->bytes_may_use + space_info->bytes_pinned;
874
875 /* The total flushable belongs to the global rsv, don't flush. */
876 if (global_rsv_size >= used)
877 return false;
878
879 /*
880 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
881 * that devoted to other reservations then there's no sense in flushing,
882 * we don't have a lot of things that need flushing.
883 */
884 if (used - global_rsv_size <= SZ_128M)
885 return false;
886
887 /*
888 * We have tickets queued, bail so we don't compete with the async
889 * flushers.
890 */
891 if (space_info->reclaim_size)
892 return false;
893
894 /*
895 * If we have over half of the free space occupied by reservations or
896 * pinned then we want to start flushing.
897 *
898 * We do not do the traditional thing here, which is to say
899 *
900 * if (used >= ((total_bytes + avail) / 2))
901 * return 1;
902 *
903 * because this doesn't quite work how we want. If we had more than 50%
904 * of the space_info used by bytes_used and we had 0 available we'd just
905 * constantly run the background flusher. Instead we want it to kick in
906 * if our reclaimable space exceeds our clamped free space.
907 *
908 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
909 * the following:
910 *
911 * Amount of RAM Minimum threshold Maximum threshold
912 *
913 * 256GiB 1GiB 128GiB
914 * 128GiB 512MiB 64GiB
915 * 64GiB 256MiB 32GiB
916 * 32GiB 128MiB 16GiB
917 * 16GiB 64MiB 8GiB
918 *
919 * These are the range our thresholds will fall in, corresponding to how
920 * much delalloc we need for the background flusher to kick in.
921 */
922
923 thresh = calc_available_free_space(fs_info, space_info,
924 BTRFS_RESERVE_FLUSH_ALL);
925 used = space_info->bytes_used + space_info->bytes_reserved +
926 space_info->bytes_readonly + global_rsv_size;
927 if (used < space_info->total_bytes)
928 thresh += space_info->total_bytes - used;
929 thresh >>= space_info->clamp;
930
931 used = space_info->bytes_pinned;
932
933 /*
934 * If we have more ordered bytes than delalloc bytes then we're either
935 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
936 * around. Preemptive flushing is only useful in that it can free up
937 * space before tickets need to wait for things to finish. In the case
938 * of ordered extents, preemptively waiting on ordered extents gets us
939 * nothing, if our reservations are tied up in ordered extents we'll
940 * simply have to slow down writers by forcing them to wait on ordered
941 * extents.
942 *
943 * In the case that ordered is larger than delalloc, only include the
944 * block reserves that we would actually be able to directly reclaim
945 * from. In this case if we're heavy on metadata operations this will
946 * clearly be heavy enough to warrant preemptive flushing. In the case
947 * of heavy DIO or ordered reservations, preemptive flushing will just
948 * waste time and cause us to slow down.
949 *
950 * We want to make sure we truly are maxed out on ordered however, so
951 * cut ordered in half, and if it's still higher than delalloc then we
952 * can keep flushing. This is to avoid the case where we start
953 * flushing, and now delalloc == ordered and we stop preemptively
954 * flushing when we could still have several gigs of delalloc to flush.
955 */
956 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
957 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
958 if (ordered >= delalloc)
959 used += fs_info->delayed_refs_rsv.reserved +
960 fs_info->delayed_block_rsv.reserved;
961 else
962 used += space_info->bytes_may_use - global_rsv_size;
963
964 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
965 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
966 }
967
968 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
969 struct btrfs_space_info *space_info,
970 struct reserve_ticket *ticket)
971 {
972 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
973 u64 min_bytes;
974
975 if (!ticket->steal)
976 return false;
977
978 if (global_rsv->space_info != space_info)
979 return false;
980
981 spin_lock(&global_rsv->lock);
982 min_bytes = mult_perc(global_rsv->size, 10);
983 if (global_rsv->reserved < min_bytes + ticket->bytes) {
984 spin_unlock(&global_rsv->lock);
985 return false;
986 }
987 global_rsv->reserved -= ticket->bytes;
988 remove_ticket(space_info, ticket);
989 ticket->bytes = 0;
990 wake_up(&ticket->wait);
991 space_info->tickets_id++;
992 if (global_rsv->reserved < global_rsv->size)
993 global_rsv->full = 0;
994 spin_unlock(&global_rsv->lock);
995
996 return true;
997 }
998
999 /*
1000 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
1001 * @fs_info - fs_info for this fs
1002 * @space_info - the space info we were flushing
1003 *
1004 * We call this when we've exhausted our flushing ability and haven't made
1005 * progress in satisfying tickets. The reservation code handles tickets in
1006 * order, so if there is a large ticket first and then smaller ones we could
1007 * very well satisfy the smaller tickets. This will attempt to wake up any
1008 * tickets in the list to catch this case.
1009 *
1010 * This function returns true if it was able to make progress by clearing out
1011 * other tickets, or if it stumbles across a ticket that was smaller than the
1012 * first ticket.
1013 */
1014 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1015 struct btrfs_space_info *space_info)
1016 {
1017 struct reserve_ticket *ticket;
1018 u64 tickets_id = space_info->tickets_id;
1019 const bool aborted = BTRFS_FS_ERROR(fs_info);
1020
1021 trace_btrfs_fail_all_tickets(fs_info, space_info);
1022
1023 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1024 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1025 __btrfs_dump_space_info(fs_info, space_info);
1026 }
1027
1028 while (!list_empty(&space_info->tickets) &&
1029 tickets_id == space_info->tickets_id) {
1030 ticket = list_first_entry(&space_info->tickets,
1031 struct reserve_ticket, list);
1032
1033 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1034 return true;
1035
1036 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1037 btrfs_info(fs_info, "failing ticket with %llu bytes",
1038 ticket->bytes);
1039
1040 remove_ticket(space_info, ticket);
1041 if (aborted)
1042 ticket->error = -EIO;
1043 else
1044 ticket->error = -ENOSPC;
1045 wake_up(&ticket->wait);
1046
1047 /*
1048 * We're just throwing tickets away, so more flushing may not
1049 * trip over btrfs_try_granting_tickets, so we need to call it
1050 * here to see if we can make progress with the next ticket in
1051 * the list.
1052 */
1053 if (!aborted)
1054 btrfs_try_granting_tickets(fs_info, space_info);
1055 }
1056 return (tickets_id != space_info->tickets_id);
1057 }
1058
1059 /*
1060 * This is for normal flushers, we can wait all goddamned day if we want to. We
1061 * will loop and continuously try to flush as long as we are making progress.
1062 * We count progress as clearing off tickets each time we have to loop.
1063 */
1064 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1065 {
1066 struct btrfs_fs_info *fs_info;
1067 struct btrfs_space_info *space_info;
1068 u64 to_reclaim;
1069 enum btrfs_flush_state flush_state;
1070 int commit_cycles = 0;
1071 u64 last_tickets_id;
1072
1073 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1074 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1075
1076 spin_lock(&space_info->lock);
1077 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1078 if (!to_reclaim) {
1079 space_info->flush = 0;
1080 spin_unlock(&space_info->lock);
1081 return;
1082 }
1083 last_tickets_id = space_info->tickets_id;
1084 spin_unlock(&space_info->lock);
1085
1086 flush_state = FLUSH_DELAYED_ITEMS_NR;
1087 do {
1088 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1089 spin_lock(&space_info->lock);
1090 if (list_empty(&space_info->tickets)) {
1091 space_info->flush = 0;
1092 spin_unlock(&space_info->lock);
1093 return;
1094 }
1095 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1096 space_info);
1097 if (last_tickets_id == space_info->tickets_id) {
1098 flush_state++;
1099 } else {
1100 last_tickets_id = space_info->tickets_id;
1101 flush_state = FLUSH_DELAYED_ITEMS_NR;
1102 if (commit_cycles)
1103 commit_cycles--;
1104 }
1105
1106 /*
1107 * We do not want to empty the system of delalloc unless we're
1108 * under heavy pressure, so allow one trip through the flushing
1109 * logic before we start doing a FLUSH_DELALLOC_FULL.
1110 */
1111 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1112 flush_state++;
1113
1114 /*
1115 * We don't want to force a chunk allocation until we've tried
1116 * pretty hard to reclaim space. Think of the case where we
1117 * freed up a bunch of space and so have a lot of pinned space
1118 * to reclaim. We would rather use that than possibly create a
1119 * underutilized metadata chunk. So if this is our first run
1120 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1121 * commit the transaction. If nothing has changed the next go
1122 * around then we can force a chunk allocation.
1123 */
1124 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1125 flush_state++;
1126
1127 if (flush_state > COMMIT_TRANS) {
1128 commit_cycles++;
1129 if (commit_cycles > 2) {
1130 if (maybe_fail_all_tickets(fs_info, space_info)) {
1131 flush_state = FLUSH_DELAYED_ITEMS_NR;
1132 commit_cycles--;
1133 } else {
1134 space_info->flush = 0;
1135 }
1136 } else {
1137 flush_state = FLUSH_DELAYED_ITEMS_NR;
1138 }
1139 }
1140 spin_unlock(&space_info->lock);
1141 } while (flush_state <= COMMIT_TRANS);
1142 }
1143
1144 /*
1145 * This handles pre-flushing of metadata space before we get to the point that
1146 * we need to start blocking threads on tickets. The logic here is different
1147 * from the other flush paths because it doesn't rely on tickets to tell us how
1148 * much we need to flush, instead it attempts to keep us below the 80% full
1149 * watermark of space by flushing whichever reservation pool is currently the
1150 * largest.
1151 */
1152 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1153 {
1154 struct btrfs_fs_info *fs_info;
1155 struct btrfs_space_info *space_info;
1156 struct btrfs_block_rsv *delayed_block_rsv;
1157 struct btrfs_block_rsv *delayed_refs_rsv;
1158 struct btrfs_block_rsv *global_rsv;
1159 struct btrfs_block_rsv *trans_rsv;
1160 int loops = 0;
1161
1162 fs_info = container_of(work, struct btrfs_fs_info,
1163 preempt_reclaim_work);
1164 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1165 delayed_block_rsv = &fs_info->delayed_block_rsv;
1166 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1167 global_rsv = &fs_info->global_block_rsv;
1168 trans_rsv = &fs_info->trans_block_rsv;
1169
1170 spin_lock(&space_info->lock);
1171 while (need_preemptive_reclaim(fs_info, space_info)) {
1172 enum btrfs_flush_state flush;
1173 u64 delalloc_size = 0;
1174 u64 to_reclaim, block_rsv_size;
1175 u64 global_rsv_size = global_rsv->reserved;
1176
1177 loops++;
1178
1179 /*
1180 * We don't have a precise counter for the metadata being
1181 * reserved for delalloc, so we'll approximate it by subtracting
1182 * out the block rsv's space from the bytes_may_use. If that
1183 * amount is higher than the individual reserves, then we can
1184 * assume it's tied up in delalloc reservations.
1185 */
1186 block_rsv_size = global_rsv_size +
1187 delayed_block_rsv->reserved +
1188 delayed_refs_rsv->reserved +
1189 trans_rsv->reserved;
1190 if (block_rsv_size < space_info->bytes_may_use)
1191 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1192
1193 /*
1194 * We don't want to include the global_rsv in our calculation,
1195 * because that's space we can't touch. Subtract it from the
1196 * block_rsv_size for the next checks.
1197 */
1198 block_rsv_size -= global_rsv_size;
1199
1200 /*
1201 * We really want to avoid flushing delalloc too much, as it
1202 * could result in poor allocation patterns, so only flush it if
1203 * it's larger than the rest of the pools combined.
1204 */
1205 if (delalloc_size > block_rsv_size) {
1206 to_reclaim = delalloc_size;
1207 flush = FLUSH_DELALLOC;
1208 } else if (space_info->bytes_pinned >
1209 (delayed_block_rsv->reserved +
1210 delayed_refs_rsv->reserved)) {
1211 to_reclaim = space_info->bytes_pinned;
1212 flush = COMMIT_TRANS;
1213 } else if (delayed_block_rsv->reserved >
1214 delayed_refs_rsv->reserved) {
1215 to_reclaim = delayed_block_rsv->reserved;
1216 flush = FLUSH_DELAYED_ITEMS_NR;
1217 } else {
1218 to_reclaim = delayed_refs_rsv->reserved;
1219 flush = FLUSH_DELAYED_REFS_NR;
1220 }
1221
1222 spin_unlock(&space_info->lock);
1223
1224 /*
1225 * We don't want to reclaim everything, just a portion, so scale
1226 * down the to_reclaim by 1/4. If it takes us down to 0,
1227 * reclaim 1 items worth.
1228 */
1229 to_reclaim >>= 2;
1230 if (!to_reclaim)
1231 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1232 flush_space(fs_info, space_info, to_reclaim, flush, true);
1233 cond_resched();
1234 spin_lock(&space_info->lock);
1235 }
1236
1237 /* We only went through once, back off our clamping. */
1238 if (loops == 1 && !space_info->reclaim_size)
1239 space_info->clamp = max(1, space_info->clamp - 1);
1240 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1241 spin_unlock(&space_info->lock);
1242 }
1243
1244 /*
1245 * FLUSH_DELALLOC_WAIT:
1246 * Space is freed from flushing delalloc in one of two ways.
1247 *
1248 * 1) compression is on and we allocate less space than we reserved
1249 * 2) we are overwriting existing space
1250 *
1251 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1252 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1253 * length to ->bytes_reserved, and subtracts the reserved space from
1254 * ->bytes_may_use.
1255 *
1256 * For #2 this is trickier. Once the ordered extent runs we will drop the
1257 * extent in the range we are overwriting, which creates a delayed ref for
1258 * that freed extent. This however is not reclaimed until the transaction
1259 * commits, thus the next stages.
1260 *
1261 * RUN_DELAYED_IPUTS
1262 * If we are freeing inodes, we want to make sure all delayed iputs have
1263 * completed, because they could have been on an inode with i_nlink == 0, and
1264 * thus have been truncated and freed up space. But again this space is not
1265 * immediately re-usable, it comes in the form of a delayed ref, which must be
1266 * run and then the transaction must be committed.
1267 *
1268 * COMMIT_TRANS
1269 * This is where we reclaim all of the pinned space generated by running the
1270 * iputs
1271 *
1272 * ALLOC_CHUNK_FORCE
1273 * For data we start with alloc chunk force, however we could have been full
1274 * before, and then the transaction commit could have freed new block groups,
1275 * so if we now have space to allocate do the force chunk allocation.
1276 */
1277 static const enum btrfs_flush_state data_flush_states[] = {
1278 FLUSH_DELALLOC_FULL,
1279 RUN_DELAYED_IPUTS,
1280 COMMIT_TRANS,
1281 ALLOC_CHUNK_FORCE,
1282 };
1283
1284 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1285 {
1286 struct btrfs_fs_info *fs_info;
1287 struct btrfs_space_info *space_info;
1288 u64 last_tickets_id;
1289 enum btrfs_flush_state flush_state = 0;
1290
1291 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1292 space_info = fs_info->data_sinfo;
1293
1294 spin_lock(&space_info->lock);
1295 if (list_empty(&space_info->tickets)) {
1296 space_info->flush = 0;
1297 spin_unlock(&space_info->lock);
1298 return;
1299 }
1300 last_tickets_id = space_info->tickets_id;
1301 spin_unlock(&space_info->lock);
1302
1303 while (!space_info->full) {
1304 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1305 spin_lock(&space_info->lock);
1306 if (list_empty(&space_info->tickets)) {
1307 space_info->flush = 0;
1308 spin_unlock(&space_info->lock);
1309 return;
1310 }
1311
1312 /* Something happened, fail everything and bail. */
1313 if (BTRFS_FS_ERROR(fs_info))
1314 goto aborted_fs;
1315 last_tickets_id = space_info->tickets_id;
1316 spin_unlock(&space_info->lock);
1317 }
1318
1319 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1320 flush_space(fs_info, space_info, U64_MAX,
1321 data_flush_states[flush_state], false);
1322 spin_lock(&space_info->lock);
1323 if (list_empty(&space_info->tickets)) {
1324 space_info->flush = 0;
1325 spin_unlock(&space_info->lock);
1326 return;
1327 }
1328
1329 if (last_tickets_id == space_info->tickets_id) {
1330 flush_state++;
1331 } else {
1332 last_tickets_id = space_info->tickets_id;
1333 flush_state = 0;
1334 }
1335
1336 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1337 if (space_info->full) {
1338 if (maybe_fail_all_tickets(fs_info, space_info))
1339 flush_state = 0;
1340 else
1341 space_info->flush = 0;
1342 } else {
1343 flush_state = 0;
1344 }
1345
1346 /* Something happened, fail everything and bail. */
1347 if (BTRFS_FS_ERROR(fs_info))
1348 goto aborted_fs;
1349
1350 }
1351 spin_unlock(&space_info->lock);
1352 }
1353 return;
1354
1355 aborted_fs:
1356 maybe_fail_all_tickets(fs_info, space_info);
1357 space_info->flush = 0;
1358 spin_unlock(&space_info->lock);
1359 }
1360
1361 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1362 {
1363 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1364 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1365 INIT_WORK(&fs_info->preempt_reclaim_work,
1366 btrfs_preempt_reclaim_metadata_space);
1367 }
1368
1369 static const enum btrfs_flush_state priority_flush_states[] = {
1370 FLUSH_DELAYED_ITEMS_NR,
1371 FLUSH_DELAYED_ITEMS,
1372 ALLOC_CHUNK,
1373 };
1374
1375 static const enum btrfs_flush_state evict_flush_states[] = {
1376 FLUSH_DELAYED_ITEMS_NR,
1377 FLUSH_DELAYED_ITEMS,
1378 FLUSH_DELAYED_REFS_NR,
1379 FLUSH_DELAYED_REFS,
1380 FLUSH_DELALLOC,
1381 FLUSH_DELALLOC_WAIT,
1382 FLUSH_DELALLOC_FULL,
1383 ALLOC_CHUNK,
1384 COMMIT_TRANS,
1385 };
1386
1387 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1388 struct btrfs_space_info *space_info,
1389 struct reserve_ticket *ticket,
1390 const enum btrfs_flush_state *states,
1391 int states_nr)
1392 {
1393 u64 to_reclaim;
1394 int flush_state = 0;
1395
1396 spin_lock(&space_info->lock);
1397 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1398 /*
1399 * This is the priority reclaim path, so to_reclaim could be >0 still
1400 * because we may have only satisfied the priority tickets and still
1401 * left non priority tickets on the list. We would then have
1402 * to_reclaim but ->bytes == 0.
1403 */
1404 if (ticket->bytes == 0) {
1405 spin_unlock(&space_info->lock);
1406 return;
1407 }
1408
1409 while (flush_state < states_nr) {
1410 spin_unlock(&space_info->lock);
1411 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1412 false);
1413 flush_state++;
1414 spin_lock(&space_info->lock);
1415 if (ticket->bytes == 0) {
1416 spin_unlock(&space_info->lock);
1417 return;
1418 }
1419 }
1420
1421 /*
1422 * Attempt to steal from the global rsv if we can, except if the fs was
1423 * turned into error mode due to a transaction abort when flushing space
1424 * above, in that case fail with the abort error instead of returning
1425 * success to the caller if we can steal from the global rsv - this is
1426 * just to have caller fail immeditelly instead of later when trying to
1427 * modify the fs, making it easier to debug -ENOSPC problems.
1428 */
1429 if (BTRFS_FS_ERROR(fs_info)) {
1430 ticket->error = BTRFS_FS_ERROR(fs_info);
1431 remove_ticket(space_info, ticket);
1432 } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1433 ticket->error = -ENOSPC;
1434 remove_ticket(space_info, ticket);
1435 }
1436
1437 /*
1438 * We must run try_granting_tickets here because we could be a large
1439 * ticket in front of a smaller ticket that can now be satisfied with
1440 * the available space.
1441 */
1442 btrfs_try_granting_tickets(fs_info, space_info);
1443 spin_unlock(&space_info->lock);
1444 }
1445
1446 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1447 struct btrfs_space_info *space_info,
1448 struct reserve_ticket *ticket)
1449 {
1450 spin_lock(&space_info->lock);
1451
1452 /* We could have been granted before we got here. */
1453 if (ticket->bytes == 0) {
1454 spin_unlock(&space_info->lock);
1455 return;
1456 }
1457
1458 while (!space_info->full) {
1459 spin_unlock(&space_info->lock);
1460 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1461 spin_lock(&space_info->lock);
1462 if (ticket->bytes == 0) {
1463 spin_unlock(&space_info->lock);
1464 return;
1465 }
1466 }
1467
1468 ticket->error = -ENOSPC;
1469 remove_ticket(space_info, ticket);
1470 btrfs_try_granting_tickets(fs_info, space_info);
1471 spin_unlock(&space_info->lock);
1472 }
1473
1474 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1475 struct btrfs_space_info *space_info,
1476 struct reserve_ticket *ticket)
1477
1478 {
1479 DEFINE_WAIT(wait);
1480 int ret = 0;
1481
1482 spin_lock(&space_info->lock);
1483 while (ticket->bytes > 0 && ticket->error == 0) {
1484 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1485 if (ret) {
1486 /*
1487 * Delete us from the list. After we unlock the space
1488 * info, we don't want the async reclaim job to reserve
1489 * space for this ticket. If that would happen, then the
1490 * ticket's task would not known that space was reserved
1491 * despite getting an error, resulting in a space leak
1492 * (bytes_may_use counter of our space_info).
1493 */
1494 remove_ticket(space_info, ticket);
1495 ticket->error = -EINTR;
1496 break;
1497 }
1498 spin_unlock(&space_info->lock);
1499
1500 schedule();
1501
1502 finish_wait(&ticket->wait, &wait);
1503 spin_lock(&space_info->lock);
1504 }
1505 spin_unlock(&space_info->lock);
1506 }
1507
1508 /*
1509 * Do the appropriate flushing and waiting for a ticket.
1510 *
1511 * @fs_info: the filesystem
1512 * @space_info: space info for the reservation
1513 * @ticket: ticket for the reservation
1514 * @start_ns: timestamp when the reservation started
1515 * @orig_bytes: amount of bytes originally reserved
1516 * @flush: how much we can flush
1517 *
1518 * This does the work of figuring out how to flush for the ticket, waiting for
1519 * the reservation, and returning the appropriate error if there is one.
1520 */
1521 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1522 struct btrfs_space_info *space_info,
1523 struct reserve_ticket *ticket,
1524 u64 start_ns, u64 orig_bytes,
1525 enum btrfs_reserve_flush_enum flush)
1526 {
1527 int ret;
1528
1529 switch (flush) {
1530 case BTRFS_RESERVE_FLUSH_DATA:
1531 case BTRFS_RESERVE_FLUSH_ALL:
1532 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1533 wait_reserve_ticket(fs_info, space_info, ticket);
1534 break;
1535 case BTRFS_RESERVE_FLUSH_LIMIT:
1536 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1537 priority_flush_states,
1538 ARRAY_SIZE(priority_flush_states));
1539 break;
1540 case BTRFS_RESERVE_FLUSH_EVICT:
1541 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1542 evict_flush_states,
1543 ARRAY_SIZE(evict_flush_states));
1544 break;
1545 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1546 priority_reclaim_data_space(fs_info, space_info, ticket);
1547 break;
1548 default:
1549 ASSERT(0);
1550 break;
1551 }
1552
1553 ret = ticket->error;
1554 ASSERT(list_empty(&ticket->list));
1555 /*
1556 * Check that we can't have an error set if the reservation succeeded,
1557 * as that would confuse tasks and lead them to error out without
1558 * releasing reserved space (if an error happens the expectation is that
1559 * space wasn't reserved at all).
1560 */
1561 ASSERT(!(ticket->bytes == 0 && ticket->error));
1562 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1563 start_ns, flush, ticket->error);
1564 return ret;
1565 }
1566
1567 /*
1568 * This returns true if this flush state will go through the ordinary flushing
1569 * code.
1570 */
1571 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1572 {
1573 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1574 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1575 }
1576
1577 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1578 struct btrfs_space_info *space_info)
1579 {
1580 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1581 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1582
1583 /*
1584 * If we're heavy on ordered operations then clamping won't help us. We
1585 * need to clamp specifically to keep up with dirty'ing buffered
1586 * writers, because there's not a 1:1 correlation of writing delalloc
1587 * and freeing space, like there is with flushing delayed refs or
1588 * delayed nodes. If we're already more ordered than delalloc then
1589 * we're keeping up, otherwise we aren't and should probably clamp.
1590 */
1591 if (ordered < delalloc)
1592 space_info->clamp = min(space_info->clamp + 1, 8);
1593 }
1594
1595 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1596 {
1597 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1598 flush == BTRFS_RESERVE_FLUSH_EVICT);
1599 }
1600
1601 /*
1602 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1603 * fail as quickly as possible.
1604 */
1605 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1606 {
1607 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1608 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1609 }
1610
1611 /*
1612 * Try to reserve bytes from the block_rsv's space.
1613 *
1614 * @fs_info: the filesystem
1615 * @space_info: space info we want to allocate from
1616 * @orig_bytes: number of bytes we want
1617 * @flush: whether or not we can flush to make our reservation
1618 *
1619 * This will reserve orig_bytes number of bytes from the space info associated
1620 * with the block_rsv. If there is not enough space it will make an attempt to
1621 * flush out space to make room. It will do this by flushing delalloc if
1622 * possible or committing the transaction. If flush is 0 then no attempts to
1623 * regain reservations will be made and this will fail if there is not enough
1624 * space already.
1625 */
1626 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1627 struct btrfs_space_info *space_info, u64 orig_bytes,
1628 enum btrfs_reserve_flush_enum flush)
1629 {
1630 struct work_struct *async_work;
1631 struct reserve_ticket ticket;
1632 u64 start_ns = 0;
1633 u64 used;
1634 int ret = -ENOSPC;
1635 bool pending_tickets;
1636
1637 ASSERT(orig_bytes);
1638 /*
1639 * If have a transaction handle (current->journal_info != NULL), then
1640 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1641 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1642 * flushing methods can trigger transaction commits.
1643 */
1644 if (current->journal_info) {
1645 /* One assert per line for easier debugging. */
1646 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1647 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1648 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1649 }
1650
1651 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1652 async_work = &fs_info->async_data_reclaim_work;
1653 else
1654 async_work = &fs_info->async_reclaim_work;
1655
1656 spin_lock(&space_info->lock);
1657 used = btrfs_space_info_used(space_info, true);
1658
1659 /*
1660 * We don't want NO_FLUSH allocations to jump everybody, they can
1661 * generally handle ENOSPC in a different way, so treat them the same as
1662 * normal flushers when it comes to skipping pending tickets.
1663 */
1664 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1665 pending_tickets = !list_empty(&space_info->tickets) ||
1666 !list_empty(&space_info->priority_tickets);
1667 else
1668 pending_tickets = !list_empty(&space_info->priority_tickets);
1669
1670 /*
1671 * Carry on if we have enough space (short-circuit) OR call
1672 * can_overcommit() to ensure we can overcommit to continue.
1673 */
1674 if (!pending_tickets &&
1675 ((used + orig_bytes <= space_info->total_bytes) ||
1676 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1677 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1678 orig_bytes);
1679 ret = 0;
1680 }
1681
1682 /*
1683 * Things are dire, we need to make a reservation so we don't abort. We
1684 * will let this reservation go through as long as we have actual space
1685 * left to allocate for the block.
1686 */
1687 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1688 used = btrfs_space_info_used(space_info, false);
1689 if (used + orig_bytes <= space_info->total_bytes) {
1690 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1691 orig_bytes);
1692 ret = 0;
1693 }
1694 }
1695
1696 /*
1697 * If we couldn't make a reservation then setup our reservation ticket
1698 * and kick the async worker if it's not already running.
1699 *
1700 * If we are a priority flusher then we just need to add our ticket to
1701 * the list and we will do our own flushing further down.
1702 */
1703 if (ret && can_ticket(flush)) {
1704 ticket.bytes = orig_bytes;
1705 ticket.error = 0;
1706 space_info->reclaim_size += ticket.bytes;
1707 init_waitqueue_head(&ticket.wait);
1708 ticket.steal = can_steal(flush);
1709 if (trace_btrfs_reserve_ticket_enabled())
1710 start_ns = ktime_get_ns();
1711
1712 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1713 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1714 flush == BTRFS_RESERVE_FLUSH_DATA) {
1715 list_add_tail(&ticket.list, &space_info->tickets);
1716 if (!space_info->flush) {
1717 /*
1718 * We were forced to add a reserve ticket, so
1719 * our preemptive flushing is unable to keep
1720 * up. Clamp down on the threshold for the
1721 * preemptive flushing in order to keep up with
1722 * the workload.
1723 */
1724 maybe_clamp_preempt(fs_info, space_info);
1725
1726 space_info->flush = 1;
1727 trace_btrfs_trigger_flush(fs_info,
1728 space_info->flags,
1729 orig_bytes, flush,
1730 "enospc");
1731 queue_work(system_unbound_wq, async_work);
1732 }
1733 } else {
1734 list_add_tail(&ticket.list,
1735 &space_info->priority_tickets);
1736 }
1737 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1738 /*
1739 * We will do the space reservation dance during log replay,
1740 * which means we won't have fs_info->fs_root set, so don't do
1741 * the async reclaim as we will panic.
1742 */
1743 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1744 !work_busy(&fs_info->preempt_reclaim_work) &&
1745 need_preemptive_reclaim(fs_info, space_info)) {
1746 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1747 orig_bytes, flush, "preempt");
1748 queue_work(system_unbound_wq,
1749 &fs_info->preempt_reclaim_work);
1750 }
1751 }
1752 spin_unlock(&space_info->lock);
1753 if (!ret || !can_ticket(flush))
1754 return ret;
1755
1756 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1757 orig_bytes, flush);
1758 }
1759
1760 /*
1761 * Try to reserve metadata bytes from the block_rsv's space.
1762 *
1763 * @fs_info: the filesystem
1764 * @block_rsv: block_rsv we're allocating for
1765 * @orig_bytes: number of bytes we want
1766 * @flush: whether or not we can flush to make our reservation
1767 *
1768 * This will reserve orig_bytes number of bytes from the space info associated
1769 * with the block_rsv. If there is not enough space it will make an attempt to
1770 * flush out space to make room. It will do this by flushing delalloc if
1771 * possible or committing the transaction. If flush is 0 then no attempts to
1772 * regain reservations will be made and this will fail if there is not enough
1773 * space already.
1774 */
1775 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1776 struct btrfs_block_rsv *block_rsv,
1777 u64 orig_bytes,
1778 enum btrfs_reserve_flush_enum flush)
1779 {
1780 int ret;
1781
1782 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1783 if (ret == -ENOSPC) {
1784 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1785 block_rsv->space_info->flags,
1786 orig_bytes, 1);
1787
1788 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1789 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1790 orig_bytes, 0);
1791 }
1792 return ret;
1793 }
1794
1795 /*
1796 * Try to reserve data bytes for an allocation.
1797 *
1798 * @fs_info: the filesystem
1799 * @bytes: number of bytes we need
1800 * @flush: how we are allowed to flush
1801 *
1802 * This will reserve bytes from the data space info. If there is not enough
1803 * space then we will attempt to flush space as specified by flush.
1804 */
1805 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1806 enum btrfs_reserve_flush_enum flush)
1807 {
1808 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1809 int ret;
1810
1811 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1812 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1813 flush == BTRFS_RESERVE_NO_FLUSH);
1814 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1815
1816 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1817 if (ret == -ENOSPC) {
1818 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1819 data_sinfo->flags, bytes, 1);
1820 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1821 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1822 }
1823 return ret;
1824 }
1825
1826 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1827 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1828 {
1829 struct btrfs_space_info *space_info;
1830
1831 btrfs_info(fs_info, "dumping space info:");
1832 list_for_each_entry(space_info, &fs_info->space_info, list) {
1833 spin_lock(&space_info->lock);
1834 __btrfs_dump_space_info(fs_info, space_info);
1835 spin_unlock(&space_info->lock);
1836 }
1837 dump_global_block_rsv(fs_info);
1838 }
1839
1840 /*
1841 * Account the unused space of all the readonly block group in the space_info.
1842 * takes mirrors into account.
1843 */
1844 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1845 {
1846 struct btrfs_block_group *block_group;
1847 u64 free_bytes = 0;
1848 int factor;
1849
1850 /* It's df, we don't care if it's racy */
1851 if (list_empty(&sinfo->ro_bgs))
1852 return 0;
1853
1854 spin_lock(&sinfo->lock);
1855 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1856 spin_lock(&block_group->lock);
1857
1858 if (!block_group->ro) {
1859 spin_unlock(&block_group->lock);
1860 continue;
1861 }
1862
1863 factor = btrfs_bg_type_to_factor(block_group->flags);
1864 free_bytes += (block_group->length -
1865 block_group->used) * factor;
1866
1867 spin_unlock(&block_group->lock);
1868 }
1869 spin_unlock(&sinfo->lock);
1870
1871 return free_bytes;
1872 }