]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/transaction.c
Merge tag 'pm-5.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[thirdparty/linux.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24
25 #define BTRFS_ROOT_TRANS_TAG 0
26
27 /*
28 * Transaction states and transitions
29 *
30 * No running transaction (fs tree blocks are not modified)
31 * |
32 * | To next stage:
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34 * V
35 * Transaction N [[TRANS_STATE_RUNNING]]
36 * |
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
39 * |
40 * | To next stage:
41 * | Call btrfs_commit_transaction() on any trans handle attached to
42 * | transaction N
43 * V
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
45 * |
46 * | Will wait for previous running transaction to completely finish if there
47 * | is one
48 * |
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
54 * |
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
58 * | transaction N+1.
59 * |
60 * | To next stage:
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
63 * V
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65 * |
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
70 * | trees.
71 * |
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
74 * |
75 * | To next stage:
76 * | Until all supporting trees are updated.
77 * V
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
79 * | Transaction N+1
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
82 * | super blocks. |
83 * | |
84 * | At this stage, new transaction is allowed to |
85 * | start. |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
88 * | |
89 * | To next stage: |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
92 * V |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
97 */
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 [TRANS_STATE_RUNNING] = 0U,
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
102 __TRANS_ATTACH |
103 __TRANS_JOIN |
104 __TRANS_JOIN_NOSTART),
105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
106 __TRANS_ATTACH |
107 __TRANS_JOIN |
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
110 [TRANS_STATE_COMPLETED] = (__TRANS_START |
111 __TRANS_ATTACH |
112 __TRANS_JOIN |
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
115 };
116
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
118 {
119 WARN_ON(refcount_read(&transaction->use_count) == 0);
120 if (refcount_dec_and_test(&transaction->use_count)) {
121 BUG_ON(!list_empty(&transaction->list));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction->delayed_refs.href_root.rb_root));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction->delayed_refs.dirty_extent_root));
126 if (transaction->delayed_refs.pending_csums)
127 btrfs_err(transaction->fs_info,
128 "pending csums is %llu",
129 transaction->delayed_refs.pending_csums);
130 /*
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
136 */
137 while (!list_empty(&transaction->deleted_bgs)) {
138 struct btrfs_block_group *cache;
139
140 cache = list_first_entry(&transaction->deleted_bgs,
141 struct btrfs_block_group,
142 bg_list);
143 list_del_init(&cache->bg_list);
144 btrfs_put_block_group_trimming(cache);
145 btrfs_put_block_group(cache);
146 }
147 WARN_ON(!list_empty(&transaction->dev_update_list));
148 kfree(transaction);
149 }
150 }
151
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
153 {
154 struct btrfs_transaction *cur_trans = trans->transaction;
155 struct btrfs_fs_info *fs_info = trans->fs_info;
156 struct btrfs_root *root, *tmp;
157
158 down_write(&fs_info->commit_root_sem);
159 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
160 dirty_list) {
161 list_del_init(&root->dirty_list);
162 free_extent_buffer(root->commit_root);
163 root->commit_root = btrfs_root_node(root);
164 if (is_fstree(root->root_key.objectid))
165 btrfs_unpin_free_ino(root);
166 extent_io_tree_release(&root->dirty_log_pages);
167 btrfs_qgroup_clean_swapped_blocks(root);
168 }
169
170 /* We can free old roots now. */
171 spin_lock(&cur_trans->dropped_roots_lock);
172 while (!list_empty(&cur_trans->dropped_roots)) {
173 root = list_first_entry(&cur_trans->dropped_roots,
174 struct btrfs_root, root_list);
175 list_del_init(&root->root_list);
176 spin_unlock(&cur_trans->dropped_roots_lock);
177 btrfs_free_log(trans, root);
178 btrfs_drop_and_free_fs_root(fs_info, root);
179 spin_lock(&cur_trans->dropped_roots_lock);
180 }
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 up_write(&fs_info->commit_root_sem);
183 }
184
185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
186 unsigned int type)
187 {
188 if (type & TRANS_EXTWRITERS)
189 atomic_inc(&trans->num_extwriters);
190 }
191
192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
193 unsigned int type)
194 {
195 if (type & TRANS_EXTWRITERS)
196 atomic_dec(&trans->num_extwriters);
197 }
198
199 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
200 unsigned int type)
201 {
202 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
203 }
204
205 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
206 {
207 return atomic_read(&trans->num_extwriters);
208 }
209
210 /*
211 * To be called after all the new block groups attached to the transaction
212 * handle have been created (btrfs_create_pending_block_groups()).
213 */
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
215 {
216 struct btrfs_fs_info *fs_info = trans->fs_info;
217
218 if (!trans->chunk_bytes_reserved)
219 return;
220
221 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
222
223 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
224 trans->chunk_bytes_reserved, NULL);
225 trans->chunk_bytes_reserved = 0;
226 }
227
228 /*
229 * either allocate a new transaction or hop into the existing one
230 */
231 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
232 unsigned int type)
233 {
234 struct btrfs_transaction *cur_trans;
235
236 spin_lock(&fs_info->trans_lock);
237 loop:
238 /* The file system has been taken offline. No new transactions. */
239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
240 spin_unlock(&fs_info->trans_lock);
241 return -EROFS;
242 }
243
244 cur_trans = fs_info->running_transaction;
245 if (cur_trans) {
246 if (TRANS_ABORTED(cur_trans)) {
247 spin_unlock(&fs_info->trans_lock);
248 return cur_trans->aborted;
249 }
250 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
251 spin_unlock(&fs_info->trans_lock);
252 return -EBUSY;
253 }
254 refcount_inc(&cur_trans->use_count);
255 atomic_inc(&cur_trans->num_writers);
256 extwriter_counter_inc(cur_trans, type);
257 spin_unlock(&fs_info->trans_lock);
258 return 0;
259 }
260 spin_unlock(&fs_info->trans_lock);
261
262 /*
263 * If we are ATTACH, we just want to catch the current transaction,
264 * and commit it. If there is no transaction, just return ENOENT.
265 */
266 if (type == TRANS_ATTACH)
267 return -ENOENT;
268
269 /*
270 * JOIN_NOLOCK only happens during the transaction commit, so
271 * it is impossible that ->running_transaction is NULL
272 */
273 BUG_ON(type == TRANS_JOIN_NOLOCK);
274
275 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
276 if (!cur_trans)
277 return -ENOMEM;
278
279 spin_lock(&fs_info->trans_lock);
280 if (fs_info->running_transaction) {
281 /*
282 * someone started a transaction after we unlocked. Make sure
283 * to redo the checks above
284 */
285 kfree(cur_trans);
286 goto loop;
287 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
288 spin_unlock(&fs_info->trans_lock);
289 kfree(cur_trans);
290 return -EROFS;
291 }
292
293 cur_trans->fs_info = fs_info;
294 atomic_set(&cur_trans->num_writers, 1);
295 extwriter_counter_init(cur_trans, type);
296 init_waitqueue_head(&cur_trans->writer_wait);
297 init_waitqueue_head(&cur_trans->commit_wait);
298 cur_trans->state = TRANS_STATE_RUNNING;
299 /*
300 * One for this trans handle, one so it will live on until we
301 * commit the transaction.
302 */
303 refcount_set(&cur_trans->use_count, 2);
304 cur_trans->flags = 0;
305 cur_trans->start_time = ktime_get_seconds();
306
307 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
308
309 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
310 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
311 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
312
313 /*
314 * although the tree mod log is per file system and not per transaction,
315 * the log must never go across transaction boundaries.
316 */
317 smp_mb();
318 if (!list_empty(&fs_info->tree_mod_seq_list))
319 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
321 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 atomic64_set(&fs_info->tree_mod_seq, 0);
323
324 spin_lock_init(&cur_trans->delayed_refs.lock);
325
326 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
327 INIT_LIST_HEAD(&cur_trans->dev_update_list);
328 INIT_LIST_HEAD(&cur_trans->switch_commits);
329 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
330 INIT_LIST_HEAD(&cur_trans->io_bgs);
331 INIT_LIST_HEAD(&cur_trans->dropped_roots);
332 mutex_init(&cur_trans->cache_write_mutex);
333 spin_lock_init(&cur_trans->dirty_bgs_lock);
334 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
335 spin_lock_init(&cur_trans->dropped_roots_lock);
336 list_add_tail(&cur_trans->list, &fs_info->trans_list);
337 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
338 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
339 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
340 IO_TREE_FS_PINNED_EXTENTS, NULL);
341 fs_info->generation++;
342 cur_trans->transid = fs_info->generation;
343 fs_info->running_transaction = cur_trans;
344 cur_trans->aborted = 0;
345 spin_unlock(&fs_info->trans_lock);
346
347 return 0;
348 }
349
350 /*
351 * this does all the record keeping required to make sure that a reference
352 * counted root is properly recorded in a given transaction. This is required
353 * to make sure the old root from before we joined the transaction is deleted
354 * when the transaction commits
355 */
356 static int record_root_in_trans(struct btrfs_trans_handle *trans,
357 struct btrfs_root *root,
358 int force)
359 {
360 struct btrfs_fs_info *fs_info = root->fs_info;
361
362 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
363 root->last_trans < trans->transid) || force) {
364 WARN_ON(root == fs_info->extent_root);
365 WARN_ON(!force && root->commit_root != root->node);
366
367 /*
368 * see below for IN_TRANS_SETUP usage rules
369 * we have the reloc mutex held now, so there
370 * is only one writer in this function
371 */
372 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
373
374 /* make sure readers find IN_TRANS_SETUP before
375 * they find our root->last_trans update
376 */
377 smp_wmb();
378
379 spin_lock(&fs_info->fs_roots_radix_lock);
380 if (root->last_trans == trans->transid && !force) {
381 spin_unlock(&fs_info->fs_roots_radix_lock);
382 return 0;
383 }
384 radix_tree_tag_set(&fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&fs_info->fs_roots_radix_lock);
388 root->last_trans = trans->transid;
389
390 /* this is pretty tricky. We don't want to
391 * take the relocation lock in btrfs_record_root_in_trans
392 * unless we're really doing the first setup for this root in
393 * this transaction.
394 *
395 * Normally we'd use root->last_trans as a flag to decide
396 * if we want to take the expensive mutex.
397 *
398 * But, we have to set root->last_trans before we
399 * init the relocation root, otherwise, we trip over warnings
400 * in ctree.c. The solution used here is to flag ourselves
401 * with root IN_TRANS_SETUP. When this is 1, we're still
402 * fixing up the reloc trees and everyone must wait.
403 *
404 * When this is zero, they can trust root->last_trans and fly
405 * through btrfs_record_root_in_trans without having to take the
406 * lock. smp_wmb() makes sure that all the writes above are
407 * done before we pop in the zero below
408 */
409 btrfs_init_reloc_root(trans, root);
410 smp_mb__before_atomic();
411 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
412 }
413 return 0;
414 }
415
416
417 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root)
419 {
420 struct btrfs_fs_info *fs_info = root->fs_info;
421 struct btrfs_transaction *cur_trans = trans->transaction;
422
423 /* Add ourselves to the transaction dropped list */
424 spin_lock(&cur_trans->dropped_roots_lock);
425 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
426 spin_unlock(&cur_trans->dropped_roots_lock);
427
428 /* Make sure we don't try to update the root at commit time */
429 spin_lock(&fs_info->fs_roots_radix_lock);
430 radix_tree_tag_clear(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
434 }
435
436 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
437 struct btrfs_root *root)
438 {
439 struct btrfs_fs_info *fs_info = root->fs_info;
440
441 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
442 return 0;
443
444 /*
445 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
446 * and barriers
447 */
448 smp_rmb();
449 if (root->last_trans == trans->transid &&
450 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
451 return 0;
452
453 mutex_lock(&fs_info->reloc_mutex);
454 record_root_in_trans(trans, root, 0);
455 mutex_unlock(&fs_info->reloc_mutex);
456
457 return 0;
458 }
459
460 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
461 {
462 return (trans->state >= TRANS_STATE_COMMIT_START &&
463 trans->state < TRANS_STATE_UNBLOCKED &&
464 !TRANS_ABORTED(trans));
465 }
466
467 /* wait for commit against the current transaction to become unblocked
468 * when this is done, it is safe to start a new transaction, but the current
469 * transaction might not be fully on disk.
470 */
471 static void wait_current_trans(struct btrfs_fs_info *fs_info)
472 {
473 struct btrfs_transaction *cur_trans;
474
475 spin_lock(&fs_info->trans_lock);
476 cur_trans = fs_info->running_transaction;
477 if (cur_trans && is_transaction_blocked(cur_trans)) {
478 refcount_inc(&cur_trans->use_count);
479 spin_unlock(&fs_info->trans_lock);
480
481 wait_event(fs_info->transaction_wait,
482 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
483 TRANS_ABORTED(cur_trans));
484 btrfs_put_transaction(cur_trans);
485 } else {
486 spin_unlock(&fs_info->trans_lock);
487 }
488 }
489
490 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
491 {
492 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
493 return 0;
494
495 if (type == TRANS_START)
496 return 1;
497
498 return 0;
499 }
500
501 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
502 {
503 struct btrfs_fs_info *fs_info = root->fs_info;
504
505 if (!fs_info->reloc_ctl ||
506 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
507 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
508 root->reloc_root)
509 return false;
510
511 return true;
512 }
513
514 static struct btrfs_trans_handle *
515 start_transaction(struct btrfs_root *root, unsigned int num_items,
516 unsigned int type, enum btrfs_reserve_flush_enum flush,
517 bool enforce_qgroups)
518 {
519 struct btrfs_fs_info *fs_info = root->fs_info;
520 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
521 struct btrfs_trans_handle *h;
522 struct btrfs_transaction *cur_trans;
523 u64 num_bytes = 0;
524 u64 qgroup_reserved = 0;
525 bool reloc_reserved = false;
526 int ret;
527
528 /* Send isn't supposed to start transactions. */
529 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
530
531 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
532 return ERR_PTR(-EROFS);
533
534 if (current->journal_info) {
535 WARN_ON(type & TRANS_EXTWRITERS);
536 h = current->journal_info;
537 refcount_inc(&h->use_count);
538 WARN_ON(refcount_read(&h->use_count) > 2);
539 h->orig_rsv = h->block_rsv;
540 h->block_rsv = NULL;
541 goto got_it;
542 }
543
544 /*
545 * Do the reservation before we join the transaction so we can do all
546 * the appropriate flushing if need be.
547 */
548 if (num_items && root != fs_info->chunk_root) {
549 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
550 u64 delayed_refs_bytes = 0;
551
552 qgroup_reserved = num_items * fs_info->nodesize;
553 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
554 enforce_qgroups);
555 if (ret)
556 return ERR_PTR(ret);
557
558 /*
559 * We want to reserve all the bytes we may need all at once, so
560 * we only do 1 enospc flushing cycle per transaction start. We
561 * accomplish this by simply assuming we'll do 2 x num_items
562 * worth of delayed refs updates in this trans handle, and
563 * refill that amount for whatever is missing in the reserve.
564 */
565 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
566 if (delayed_refs_rsv->full == 0) {
567 delayed_refs_bytes = num_bytes;
568 num_bytes <<= 1;
569 }
570
571 /*
572 * Do the reservation for the relocation root creation
573 */
574 if (need_reserve_reloc_root(root)) {
575 num_bytes += fs_info->nodesize;
576 reloc_reserved = true;
577 }
578
579 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
580 if (ret)
581 goto reserve_fail;
582 if (delayed_refs_bytes) {
583 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
584 delayed_refs_bytes);
585 num_bytes -= delayed_refs_bytes;
586 }
587 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
588 !delayed_refs_rsv->full) {
589 /*
590 * Some people call with btrfs_start_transaction(root, 0)
591 * because they can be throttled, but have some other mechanism
592 * for reserving space. We still want these guys to refill the
593 * delayed block_rsv so just add 1 items worth of reservation
594 * here.
595 */
596 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
597 if (ret)
598 goto reserve_fail;
599 }
600 again:
601 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
602 if (!h) {
603 ret = -ENOMEM;
604 goto alloc_fail;
605 }
606
607 /*
608 * If we are JOIN_NOLOCK we're already committing a transaction and
609 * waiting on this guy, so we don't need to do the sb_start_intwrite
610 * because we're already holding a ref. We need this because we could
611 * have raced in and did an fsync() on a file which can kick a commit
612 * and then we deadlock with somebody doing a freeze.
613 *
614 * If we are ATTACH, it means we just want to catch the current
615 * transaction and commit it, so we needn't do sb_start_intwrite().
616 */
617 if (type & __TRANS_FREEZABLE)
618 sb_start_intwrite(fs_info->sb);
619
620 if (may_wait_transaction(fs_info, type))
621 wait_current_trans(fs_info);
622
623 do {
624 ret = join_transaction(fs_info, type);
625 if (ret == -EBUSY) {
626 wait_current_trans(fs_info);
627 if (unlikely(type == TRANS_ATTACH ||
628 type == TRANS_JOIN_NOSTART))
629 ret = -ENOENT;
630 }
631 } while (ret == -EBUSY);
632
633 if (ret < 0)
634 goto join_fail;
635
636 cur_trans = fs_info->running_transaction;
637
638 h->transid = cur_trans->transid;
639 h->transaction = cur_trans;
640 h->root = root;
641 refcount_set(&h->use_count, 1);
642 h->fs_info = root->fs_info;
643
644 h->type = type;
645 h->can_flush_pending_bgs = true;
646 INIT_LIST_HEAD(&h->new_bgs);
647
648 smp_mb();
649 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
650 may_wait_transaction(fs_info, type)) {
651 current->journal_info = h;
652 btrfs_commit_transaction(h);
653 goto again;
654 }
655
656 if (num_bytes) {
657 trace_btrfs_space_reservation(fs_info, "transaction",
658 h->transid, num_bytes, 1);
659 h->block_rsv = &fs_info->trans_block_rsv;
660 h->bytes_reserved = num_bytes;
661 h->reloc_reserved = reloc_reserved;
662 }
663
664 got_it:
665 if (!current->journal_info)
666 current->journal_info = h;
667
668 /*
669 * btrfs_record_root_in_trans() needs to alloc new extents, and may
670 * call btrfs_join_transaction() while we're also starting a
671 * transaction.
672 *
673 * Thus it need to be called after current->journal_info initialized,
674 * or we can deadlock.
675 */
676 btrfs_record_root_in_trans(h, root);
677
678 return h;
679
680 join_fail:
681 if (type & __TRANS_FREEZABLE)
682 sb_end_intwrite(fs_info->sb);
683 kmem_cache_free(btrfs_trans_handle_cachep, h);
684 alloc_fail:
685 if (num_bytes)
686 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
687 num_bytes, NULL);
688 reserve_fail:
689 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
690 return ERR_PTR(ret);
691 }
692
693 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
694 unsigned int num_items)
695 {
696 return start_transaction(root, num_items, TRANS_START,
697 BTRFS_RESERVE_FLUSH_ALL, true);
698 }
699
700 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
701 struct btrfs_root *root,
702 unsigned int num_items,
703 int min_factor)
704 {
705 struct btrfs_fs_info *fs_info = root->fs_info;
706 struct btrfs_trans_handle *trans;
707 u64 num_bytes;
708 int ret;
709
710 /*
711 * We have two callers: unlink and block group removal. The
712 * former should succeed even if we will temporarily exceed
713 * quota and the latter operates on the extent root so
714 * qgroup enforcement is ignored anyway.
715 */
716 trans = start_transaction(root, num_items, TRANS_START,
717 BTRFS_RESERVE_FLUSH_ALL, false);
718 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
719 return trans;
720
721 trans = btrfs_start_transaction(root, 0);
722 if (IS_ERR(trans))
723 return trans;
724
725 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
726 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
727 num_bytes, min_factor);
728 if (ret) {
729 btrfs_end_transaction(trans);
730 return ERR_PTR(ret);
731 }
732
733 trans->block_rsv = &fs_info->trans_block_rsv;
734 trans->bytes_reserved = num_bytes;
735 trace_btrfs_space_reservation(fs_info, "transaction",
736 trans->transid, num_bytes, 1);
737
738 return trans;
739 }
740
741 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
742 {
743 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
744 true);
745 }
746
747 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
748 {
749 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
750 BTRFS_RESERVE_NO_FLUSH, true);
751 }
752
753 /*
754 * Similar to regular join but it never starts a transaction when none is
755 * running or after waiting for the current one to finish.
756 */
757 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
758 {
759 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
760 BTRFS_RESERVE_NO_FLUSH, true);
761 }
762
763 /*
764 * btrfs_attach_transaction() - catch the running transaction
765 *
766 * It is used when we want to commit the current the transaction, but
767 * don't want to start a new one.
768 *
769 * Note: If this function return -ENOENT, it just means there is no
770 * running transaction. But it is possible that the inactive transaction
771 * is still in the memory, not fully on disk. If you hope there is no
772 * inactive transaction in the fs when -ENOENT is returned, you should
773 * invoke
774 * btrfs_attach_transaction_barrier()
775 */
776 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
777 {
778 return start_transaction(root, 0, TRANS_ATTACH,
779 BTRFS_RESERVE_NO_FLUSH, true);
780 }
781
782 /*
783 * btrfs_attach_transaction_barrier() - catch the running transaction
784 *
785 * It is similar to the above function, the difference is this one
786 * will wait for all the inactive transactions until they fully
787 * complete.
788 */
789 struct btrfs_trans_handle *
790 btrfs_attach_transaction_barrier(struct btrfs_root *root)
791 {
792 struct btrfs_trans_handle *trans;
793
794 trans = start_transaction(root, 0, TRANS_ATTACH,
795 BTRFS_RESERVE_NO_FLUSH, true);
796 if (trans == ERR_PTR(-ENOENT))
797 btrfs_wait_for_commit(root->fs_info, 0);
798
799 return trans;
800 }
801
802 /* wait for a transaction commit to be fully complete */
803 static noinline void wait_for_commit(struct btrfs_transaction *commit)
804 {
805 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
806 }
807
808 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
809 {
810 struct btrfs_transaction *cur_trans = NULL, *t;
811 int ret = 0;
812
813 if (transid) {
814 if (transid <= fs_info->last_trans_committed)
815 goto out;
816
817 /* find specified transaction */
818 spin_lock(&fs_info->trans_lock);
819 list_for_each_entry(t, &fs_info->trans_list, list) {
820 if (t->transid == transid) {
821 cur_trans = t;
822 refcount_inc(&cur_trans->use_count);
823 ret = 0;
824 break;
825 }
826 if (t->transid > transid) {
827 ret = 0;
828 break;
829 }
830 }
831 spin_unlock(&fs_info->trans_lock);
832
833 /*
834 * The specified transaction doesn't exist, or we
835 * raced with btrfs_commit_transaction
836 */
837 if (!cur_trans) {
838 if (transid > fs_info->last_trans_committed)
839 ret = -EINVAL;
840 goto out;
841 }
842 } else {
843 /* find newest transaction that is committing | committed */
844 spin_lock(&fs_info->trans_lock);
845 list_for_each_entry_reverse(t, &fs_info->trans_list,
846 list) {
847 if (t->state >= TRANS_STATE_COMMIT_START) {
848 if (t->state == TRANS_STATE_COMPLETED)
849 break;
850 cur_trans = t;
851 refcount_inc(&cur_trans->use_count);
852 break;
853 }
854 }
855 spin_unlock(&fs_info->trans_lock);
856 if (!cur_trans)
857 goto out; /* nothing committing|committed */
858 }
859
860 wait_for_commit(cur_trans);
861 btrfs_put_transaction(cur_trans);
862 out:
863 return ret;
864 }
865
866 void btrfs_throttle(struct btrfs_fs_info *fs_info)
867 {
868 wait_current_trans(fs_info);
869 }
870
871 static int should_end_transaction(struct btrfs_trans_handle *trans)
872 {
873 struct btrfs_fs_info *fs_info = trans->fs_info;
874
875 if (btrfs_check_space_for_delayed_refs(fs_info))
876 return 1;
877
878 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
879 }
880
881 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
882 {
883 struct btrfs_transaction *cur_trans = trans->transaction;
884
885 smp_mb();
886 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
887 cur_trans->delayed_refs.flushing)
888 return 1;
889
890 return should_end_transaction(trans);
891 }
892
893 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
894
895 {
896 struct btrfs_fs_info *fs_info = trans->fs_info;
897
898 if (!trans->block_rsv) {
899 ASSERT(!trans->bytes_reserved);
900 return;
901 }
902
903 if (!trans->bytes_reserved)
904 return;
905
906 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
907 trace_btrfs_space_reservation(fs_info, "transaction",
908 trans->transid, trans->bytes_reserved, 0);
909 btrfs_block_rsv_release(fs_info, trans->block_rsv,
910 trans->bytes_reserved, NULL);
911 trans->bytes_reserved = 0;
912 }
913
914 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
915 int throttle)
916 {
917 struct btrfs_fs_info *info = trans->fs_info;
918 struct btrfs_transaction *cur_trans = trans->transaction;
919 int err = 0;
920
921 if (refcount_read(&trans->use_count) > 1) {
922 refcount_dec(&trans->use_count);
923 trans->block_rsv = trans->orig_rsv;
924 return 0;
925 }
926
927 btrfs_trans_release_metadata(trans);
928 trans->block_rsv = NULL;
929
930 btrfs_create_pending_block_groups(trans);
931
932 btrfs_trans_release_chunk_metadata(trans);
933
934 if (trans->type & __TRANS_FREEZABLE)
935 sb_end_intwrite(info->sb);
936
937 WARN_ON(cur_trans != info->running_transaction);
938 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
939 atomic_dec(&cur_trans->num_writers);
940 extwriter_counter_dec(cur_trans, trans->type);
941
942 cond_wake_up(&cur_trans->writer_wait);
943 btrfs_put_transaction(cur_trans);
944
945 if (current->journal_info == trans)
946 current->journal_info = NULL;
947
948 if (throttle)
949 btrfs_run_delayed_iputs(info);
950
951 if (TRANS_ABORTED(trans) ||
952 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
953 wake_up_process(info->transaction_kthread);
954 err = -EIO;
955 }
956
957 kmem_cache_free(btrfs_trans_handle_cachep, trans);
958 return err;
959 }
960
961 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
962 {
963 return __btrfs_end_transaction(trans, 0);
964 }
965
966 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
967 {
968 return __btrfs_end_transaction(trans, 1);
969 }
970
971 /*
972 * when btree blocks are allocated, they have some corresponding bits set for
973 * them in one of two extent_io trees. This is used to make sure all of
974 * those extents are sent to disk but does not wait on them
975 */
976 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
977 struct extent_io_tree *dirty_pages, int mark)
978 {
979 int err = 0;
980 int werr = 0;
981 struct address_space *mapping = fs_info->btree_inode->i_mapping;
982 struct extent_state *cached_state = NULL;
983 u64 start = 0;
984 u64 end;
985
986 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
987 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
988 mark, &cached_state)) {
989 bool wait_writeback = false;
990
991 err = convert_extent_bit(dirty_pages, start, end,
992 EXTENT_NEED_WAIT,
993 mark, &cached_state);
994 /*
995 * convert_extent_bit can return -ENOMEM, which is most of the
996 * time a temporary error. So when it happens, ignore the error
997 * and wait for writeback of this range to finish - because we
998 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
999 * to __btrfs_wait_marked_extents() would not know that
1000 * writeback for this range started and therefore wouldn't
1001 * wait for it to finish - we don't want to commit a
1002 * superblock that points to btree nodes/leafs for which
1003 * writeback hasn't finished yet (and without errors).
1004 * We cleanup any entries left in the io tree when committing
1005 * the transaction (through extent_io_tree_release()).
1006 */
1007 if (err == -ENOMEM) {
1008 err = 0;
1009 wait_writeback = true;
1010 }
1011 if (!err)
1012 err = filemap_fdatawrite_range(mapping, start, end);
1013 if (err)
1014 werr = err;
1015 else if (wait_writeback)
1016 werr = filemap_fdatawait_range(mapping, start, end);
1017 free_extent_state(cached_state);
1018 cached_state = NULL;
1019 cond_resched();
1020 start = end + 1;
1021 }
1022 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1023 return werr;
1024 }
1025
1026 /*
1027 * when btree blocks are allocated, they have some corresponding bits set for
1028 * them in one of two extent_io trees. This is used to make sure all of
1029 * those extents are on disk for transaction or log commit. We wait
1030 * on all the pages and clear them from the dirty pages state tree
1031 */
1032 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1033 struct extent_io_tree *dirty_pages)
1034 {
1035 int err = 0;
1036 int werr = 0;
1037 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1038 struct extent_state *cached_state = NULL;
1039 u64 start = 0;
1040 u64 end;
1041
1042 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1043 EXTENT_NEED_WAIT, &cached_state)) {
1044 /*
1045 * Ignore -ENOMEM errors returned by clear_extent_bit().
1046 * When committing the transaction, we'll remove any entries
1047 * left in the io tree. For a log commit, we don't remove them
1048 * after committing the log because the tree can be accessed
1049 * concurrently - we do it only at transaction commit time when
1050 * it's safe to do it (through extent_io_tree_release()).
1051 */
1052 err = clear_extent_bit(dirty_pages, start, end,
1053 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1054 if (err == -ENOMEM)
1055 err = 0;
1056 if (!err)
1057 err = filemap_fdatawait_range(mapping, start, end);
1058 if (err)
1059 werr = err;
1060 free_extent_state(cached_state);
1061 cached_state = NULL;
1062 cond_resched();
1063 start = end + 1;
1064 }
1065 if (err)
1066 werr = err;
1067 return werr;
1068 }
1069
1070 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1071 struct extent_io_tree *dirty_pages)
1072 {
1073 bool errors = false;
1074 int err;
1075
1076 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1077 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1078 errors = true;
1079
1080 if (errors && !err)
1081 err = -EIO;
1082 return err;
1083 }
1084
1085 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1086 {
1087 struct btrfs_fs_info *fs_info = log_root->fs_info;
1088 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1089 bool errors = false;
1090 int err;
1091
1092 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1093
1094 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1095 if ((mark & EXTENT_DIRTY) &&
1096 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1097 errors = true;
1098
1099 if ((mark & EXTENT_NEW) &&
1100 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1101 errors = true;
1102
1103 if (errors && !err)
1104 err = -EIO;
1105 return err;
1106 }
1107
1108 /*
1109 * When btree blocks are allocated the corresponding extents are marked dirty.
1110 * This function ensures such extents are persisted on disk for transaction or
1111 * log commit.
1112 *
1113 * @trans: transaction whose dirty pages we'd like to write
1114 */
1115 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1116 {
1117 int ret;
1118 int ret2;
1119 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1120 struct btrfs_fs_info *fs_info = trans->fs_info;
1121 struct blk_plug plug;
1122
1123 blk_start_plug(&plug);
1124 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1125 blk_finish_plug(&plug);
1126 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1127
1128 extent_io_tree_release(&trans->transaction->dirty_pages);
1129
1130 if (ret)
1131 return ret;
1132 else if (ret2)
1133 return ret2;
1134 else
1135 return 0;
1136 }
1137
1138 /*
1139 * this is used to update the root pointer in the tree of tree roots.
1140 *
1141 * But, in the case of the extent allocation tree, updating the root
1142 * pointer may allocate blocks which may change the root of the extent
1143 * allocation tree.
1144 *
1145 * So, this loops and repeats and makes sure the cowonly root didn't
1146 * change while the root pointer was being updated in the metadata.
1147 */
1148 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1149 struct btrfs_root *root)
1150 {
1151 int ret;
1152 u64 old_root_bytenr;
1153 u64 old_root_used;
1154 struct btrfs_fs_info *fs_info = root->fs_info;
1155 struct btrfs_root *tree_root = fs_info->tree_root;
1156
1157 old_root_used = btrfs_root_used(&root->root_item);
1158
1159 while (1) {
1160 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1161 if (old_root_bytenr == root->node->start &&
1162 old_root_used == btrfs_root_used(&root->root_item))
1163 break;
1164
1165 btrfs_set_root_node(&root->root_item, root->node);
1166 ret = btrfs_update_root(trans, tree_root,
1167 &root->root_key,
1168 &root->root_item);
1169 if (ret)
1170 return ret;
1171
1172 old_root_used = btrfs_root_used(&root->root_item);
1173 }
1174
1175 return 0;
1176 }
1177
1178 /*
1179 * update all the cowonly tree roots on disk
1180 *
1181 * The error handling in this function may not be obvious. Any of the
1182 * failures will cause the file system to go offline. We still need
1183 * to clean up the delayed refs.
1184 */
1185 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1186 {
1187 struct btrfs_fs_info *fs_info = trans->fs_info;
1188 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1189 struct list_head *io_bgs = &trans->transaction->io_bgs;
1190 struct list_head *next;
1191 struct extent_buffer *eb;
1192 int ret;
1193
1194 eb = btrfs_lock_root_node(fs_info->tree_root);
1195 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1196 0, &eb);
1197 btrfs_tree_unlock(eb);
1198 free_extent_buffer(eb);
1199
1200 if (ret)
1201 return ret;
1202
1203 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1204 if (ret)
1205 return ret;
1206
1207 ret = btrfs_run_dev_stats(trans);
1208 if (ret)
1209 return ret;
1210 ret = btrfs_run_dev_replace(trans);
1211 if (ret)
1212 return ret;
1213 ret = btrfs_run_qgroups(trans);
1214 if (ret)
1215 return ret;
1216
1217 ret = btrfs_setup_space_cache(trans);
1218 if (ret)
1219 return ret;
1220
1221 /* run_qgroups might have added some more refs */
1222 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1223 if (ret)
1224 return ret;
1225 again:
1226 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1227 struct btrfs_root *root;
1228 next = fs_info->dirty_cowonly_roots.next;
1229 list_del_init(next);
1230 root = list_entry(next, struct btrfs_root, dirty_list);
1231 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1232
1233 if (root != fs_info->extent_root)
1234 list_add_tail(&root->dirty_list,
1235 &trans->transaction->switch_commits);
1236 ret = update_cowonly_root(trans, root);
1237 if (ret)
1238 return ret;
1239 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1240 if (ret)
1241 return ret;
1242 }
1243
1244 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1245 ret = btrfs_write_dirty_block_groups(trans);
1246 if (ret)
1247 return ret;
1248 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1249 if (ret)
1250 return ret;
1251 }
1252
1253 if (!list_empty(&fs_info->dirty_cowonly_roots))
1254 goto again;
1255
1256 list_add_tail(&fs_info->extent_root->dirty_list,
1257 &trans->transaction->switch_commits);
1258
1259 /* Update dev-replace pointer once everything is committed */
1260 fs_info->dev_replace.committed_cursor_left =
1261 fs_info->dev_replace.cursor_left_last_write_of_item;
1262
1263 return 0;
1264 }
1265
1266 /*
1267 * dead roots are old snapshots that need to be deleted. This allocates
1268 * a dirty root struct and adds it into the list of dead roots that need to
1269 * be deleted
1270 */
1271 void btrfs_add_dead_root(struct btrfs_root *root)
1272 {
1273 struct btrfs_fs_info *fs_info = root->fs_info;
1274
1275 spin_lock(&fs_info->trans_lock);
1276 if (list_empty(&root->root_list)) {
1277 btrfs_grab_root(root);
1278 list_add_tail(&root->root_list, &fs_info->dead_roots);
1279 }
1280 spin_unlock(&fs_info->trans_lock);
1281 }
1282
1283 /*
1284 * update all the cowonly tree roots on disk
1285 */
1286 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1287 {
1288 struct btrfs_fs_info *fs_info = trans->fs_info;
1289 struct btrfs_root *gang[8];
1290 int i;
1291 int ret;
1292 int err = 0;
1293
1294 spin_lock(&fs_info->fs_roots_radix_lock);
1295 while (1) {
1296 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1297 (void **)gang, 0,
1298 ARRAY_SIZE(gang),
1299 BTRFS_ROOT_TRANS_TAG);
1300 if (ret == 0)
1301 break;
1302 for (i = 0; i < ret; i++) {
1303 struct btrfs_root *root = gang[i];
1304 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1305 (unsigned long)root->root_key.objectid,
1306 BTRFS_ROOT_TRANS_TAG);
1307 spin_unlock(&fs_info->fs_roots_radix_lock);
1308
1309 btrfs_free_log(trans, root);
1310 btrfs_update_reloc_root(trans, root);
1311
1312 btrfs_save_ino_cache(root, trans);
1313
1314 /* see comments in should_cow_block() */
1315 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1316 smp_mb__after_atomic();
1317
1318 if (root->commit_root != root->node) {
1319 list_add_tail(&root->dirty_list,
1320 &trans->transaction->switch_commits);
1321 btrfs_set_root_node(&root->root_item,
1322 root->node);
1323 }
1324
1325 err = btrfs_update_root(trans, fs_info->tree_root,
1326 &root->root_key,
1327 &root->root_item);
1328 spin_lock(&fs_info->fs_roots_radix_lock);
1329 if (err)
1330 break;
1331 btrfs_qgroup_free_meta_all_pertrans(root);
1332 }
1333 }
1334 spin_unlock(&fs_info->fs_roots_radix_lock);
1335 return err;
1336 }
1337
1338 /*
1339 * defrag a given btree.
1340 * Every leaf in the btree is read and defragged.
1341 */
1342 int btrfs_defrag_root(struct btrfs_root *root)
1343 {
1344 struct btrfs_fs_info *info = root->fs_info;
1345 struct btrfs_trans_handle *trans;
1346 int ret;
1347
1348 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1349 return 0;
1350
1351 while (1) {
1352 trans = btrfs_start_transaction(root, 0);
1353 if (IS_ERR(trans))
1354 return PTR_ERR(trans);
1355
1356 ret = btrfs_defrag_leaves(trans, root);
1357
1358 btrfs_end_transaction(trans);
1359 btrfs_btree_balance_dirty(info);
1360 cond_resched();
1361
1362 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1363 break;
1364
1365 if (btrfs_defrag_cancelled(info)) {
1366 btrfs_debug(info, "defrag_root cancelled");
1367 ret = -EAGAIN;
1368 break;
1369 }
1370 }
1371 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1372 return ret;
1373 }
1374
1375 /*
1376 * Do all special snapshot related qgroup dirty hack.
1377 *
1378 * Will do all needed qgroup inherit and dirty hack like switch commit
1379 * roots inside one transaction and write all btree into disk, to make
1380 * qgroup works.
1381 */
1382 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1383 struct btrfs_root *src,
1384 struct btrfs_root *parent,
1385 struct btrfs_qgroup_inherit *inherit,
1386 u64 dst_objectid)
1387 {
1388 struct btrfs_fs_info *fs_info = src->fs_info;
1389 int ret;
1390
1391 /*
1392 * Save some performance in the case that qgroups are not
1393 * enabled. If this check races with the ioctl, rescan will
1394 * kick in anyway.
1395 */
1396 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1397 return 0;
1398
1399 /*
1400 * Ensure dirty @src will be committed. Or, after coming
1401 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1402 * recorded root will never be updated again, causing an outdated root
1403 * item.
1404 */
1405 record_root_in_trans(trans, src, 1);
1406
1407 /*
1408 * We are going to commit transaction, see btrfs_commit_transaction()
1409 * comment for reason locking tree_log_mutex
1410 */
1411 mutex_lock(&fs_info->tree_log_mutex);
1412
1413 ret = commit_fs_roots(trans);
1414 if (ret)
1415 goto out;
1416 ret = btrfs_qgroup_account_extents(trans);
1417 if (ret < 0)
1418 goto out;
1419
1420 /* Now qgroup are all updated, we can inherit it to new qgroups */
1421 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1422 inherit);
1423 if (ret < 0)
1424 goto out;
1425
1426 /*
1427 * Now we do a simplified commit transaction, which will:
1428 * 1) commit all subvolume and extent tree
1429 * To ensure all subvolume and extent tree have a valid
1430 * commit_root to accounting later insert_dir_item()
1431 * 2) write all btree blocks onto disk
1432 * This is to make sure later btree modification will be cowed
1433 * Or commit_root can be populated and cause wrong qgroup numbers
1434 * In this simplified commit, we don't really care about other trees
1435 * like chunk and root tree, as they won't affect qgroup.
1436 * And we don't write super to avoid half committed status.
1437 */
1438 ret = commit_cowonly_roots(trans);
1439 if (ret)
1440 goto out;
1441 switch_commit_roots(trans);
1442 ret = btrfs_write_and_wait_transaction(trans);
1443 if (ret)
1444 btrfs_handle_fs_error(fs_info, ret,
1445 "Error while writing out transaction for qgroup");
1446
1447 out:
1448 mutex_unlock(&fs_info->tree_log_mutex);
1449
1450 /*
1451 * Force parent root to be updated, as we recorded it before so its
1452 * last_trans == cur_transid.
1453 * Or it won't be committed again onto disk after later
1454 * insert_dir_item()
1455 */
1456 if (!ret)
1457 record_root_in_trans(trans, parent, 1);
1458 return ret;
1459 }
1460
1461 /*
1462 * new snapshots need to be created at a very specific time in the
1463 * transaction commit. This does the actual creation.
1464 *
1465 * Note:
1466 * If the error which may affect the commitment of the current transaction
1467 * happens, we should return the error number. If the error which just affect
1468 * the creation of the pending snapshots, just return 0.
1469 */
1470 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1471 struct btrfs_pending_snapshot *pending)
1472 {
1473
1474 struct btrfs_fs_info *fs_info = trans->fs_info;
1475 struct btrfs_key key;
1476 struct btrfs_root_item *new_root_item;
1477 struct btrfs_root *tree_root = fs_info->tree_root;
1478 struct btrfs_root *root = pending->root;
1479 struct btrfs_root *parent_root;
1480 struct btrfs_block_rsv *rsv;
1481 struct inode *parent_inode;
1482 struct btrfs_path *path;
1483 struct btrfs_dir_item *dir_item;
1484 struct dentry *dentry;
1485 struct extent_buffer *tmp;
1486 struct extent_buffer *old;
1487 struct timespec64 cur_time;
1488 int ret = 0;
1489 u64 to_reserve = 0;
1490 u64 index = 0;
1491 u64 objectid;
1492 u64 root_flags;
1493
1494 ASSERT(pending->path);
1495 path = pending->path;
1496
1497 ASSERT(pending->root_item);
1498 new_root_item = pending->root_item;
1499
1500 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1501 if (pending->error)
1502 goto no_free_objectid;
1503
1504 /*
1505 * Make qgroup to skip current new snapshot's qgroupid, as it is
1506 * accounted by later btrfs_qgroup_inherit().
1507 */
1508 btrfs_set_skip_qgroup(trans, objectid);
1509
1510 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1511
1512 if (to_reserve > 0) {
1513 pending->error = btrfs_block_rsv_add(root,
1514 &pending->block_rsv,
1515 to_reserve,
1516 BTRFS_RESERVE_NO_FLUSH);
1517 if (pending->error)
1518 goto clear_skip_qgroup;
1519 }
1520
1521 key.objectid = objectid;
1522 key.offset = (u64)-1;
1523 key.type = BTRFS_ROOT_ITEM_KEY;
1524
1525 rsv = trans->block_rsv;
1526 trans->block_rsv = &pending->block_rsv;
1527 trans->bytes_reserved = trans->block_rsv->reserved;
1528 trace_btrfs_space_reservation(fs_info, "transaction",
1529 trans->transid,
1530 trans->bytes_reserved, 1);
1531 dentry = pending->dentry;
1532 parent_inode = pending->dir;
1533 parent_root = BTRFS_I(parent_inode)->root;
1534 record_root_in_trans(trans, parent_root, 0);
1535
1536 cur_time = current_time(parent_inode);
1537
1538 /*
1539 * insert the directory item
1540 */
1541 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1542 BUG_ON(ret); /* -ENOMEM */
1543
1544 /* check if there is a file/dir which has the same name. */
1545 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1546 btrfs_ino(BTRFS_I(parent_inode)),
1547 dentry->d_name.name,
1548 dentry->d_name.len, 0);
1549 if (dir_item != NULL && !IS_ERR(dir_item)) {
1550 pending->error = -EEXIST;
1551 goto dir_item_existed;
1552 } else if (IS_ERR(dir_item)) {
1553 ret = PTR_ERR(dir_item);
1554 btrfs_abort_transaction(trans, ret);
1555 goto fail;
1556 }
1557 btrfs_release_path(path);
1558
1559 /*
1560 * pull in the delayed directory update
1561 * and the delayed inode item
1562 * otherwise we corrupt the FS during
1563 * snapshot
1564 */
1565 ret = btrfs_run_delayed_items(trans);
1566 if (ret) { /* Transaction aborted */
1567 btrfs_abort_transaction(trans, ret);
1568 goto fail;
1569 }
1570
1571 record_root_in_trans(trans, root, 0);
1572 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1573 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1574 btrfs_check_and_init_root_item(new_root_item);
1575
1576 root_flags = btrfs_root_flags(new_root_item);
1577 if (pending->readonly)
1578 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1579 else
1580 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1581 btrfs_set_root_flags(new_root_item, root_flags);
1582
1583 btrfs_set_root_generation_v2(new_root_item,
1584 trans->transid);
1585 generate_random_guid(new_root_item->uuid);
1586 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1587 BTRFS_UUID_SIZE);
1588 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1589 memset(new_root_item->received_uuid, 0,
1590 sizeof(new_root_item->received_uuid));
1591 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1592 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1593 btrfs_set_root_stransid(new_root_item, 0);
1594 btrfs_set_root_rtransid(new_root_item, 0);
1595 }
1596 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1597 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1598 btrfs_set_root_otransid(new_root_item, trans->transid);
1599
1600 old = btrfs_lock_root_node(root);
1601 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1602 if (ret) {
1603 btrfs_tree_unlock(old);
1604 free_extent_buffer(old);
1605 btrfs_abort_transaction(trans, ret);
1606 goto fail;
1607 }
1608
1609 btrfs_set_lock_blocking_write(old);
1610
1611 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1612 /* clean up in any case */
1613 btrfs_tree_unlock(old);
1614 free_extent_buffer(old);
1615 if (ret) {
1616 btrfs_abort_transaction(trans, ret);
1617 goto fail;
1618 }
1619 /* see comments in should_cow_block() */
1620 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1621 smp_wmb();
1622
1623 btrfs_set_root_node(new_root_item, tmp);
1624 /* record when the snapshot was created in key.offset */
1625 key.offset = trans->transid;
1626 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1627 btrfs_tree_unlock(tmp);
1628 free_extent_buffer(tmp);
1629 if (ret) {
1630 btrfs_abort_transaction(trans, ret);
1631 goto fail;
1632 }
1633
1634 /*
1635 * insert root back/forward references
1636 */
1637 ret = btrfs_add_root_ref(trans, objectid,
1638 parent_root->root_key.objectid,
1639 btrfs_ino(BTRFS_I(parent_inode)), index,
1640 dentry->d_name.name, dentry->d_name.len);
1641 if (ret) {
1642 btrfs_abort_transaction(trans, ret);
1643 goto fail;
1644 }
1645
1646 key.offset = (u64)-1;
1647 pending->snap = btrfs_get_fs_root(fs_info, &key, true);
1648 if (IS_ERR(pending->snap)) {
1649 ret = PTR_ERR(pending->snap);
1650 btrfs_abort_transaction(trans, ret);
1651 goto fail;
1652 }
1653
1654 ret = btrfs_reloc_post_snapshot(trans, pending);
1655 if (ret) {
1656 btrfs_abort_transaction(trans, ret);
1657 goto fail;
1658 }
1659
1660 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1661 if (ret) {
1662 btrfs_abort_transaction(trans, ret);
1663 goto fail;
1664 }
1665
1666 /*
1667 * Do special qgroup accounting for snapshot, as we do some qgroup
1668 * snapshot hack to do fast snapshot.
1669 * To co-operate with that hack, we do hack again.
1670 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1671 */
1672 ret = qgroup_account_snapshot(trans, root, parent_root,
1673 pending->inherit, objectid);
1674 if (ret < 0)
1675 goto fail;
1676
1677 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1678 dentry->d_name.len, BTRFS_I(parent_inode),
1679 &key, BTRFS_FT_DIR, index);
1680 /* We have check then name at the beginning, so it is impossible. */
1681 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1682 if (ret) {
1683 btrfs_abort_transaction(trans, ret);
1684 goto fail;
1685 }
1686
1687 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1688 dentry->d_name.len * 2);
1689 parent_inode->i_mtime = parent_inode->i_ctime =
1690 current_time(parent_inode);
1691 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1692 if (ret) {
1693 btrfs_abort_transaction(trans, ret);
1694 goto fail;
1695 }
1696 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1697 BTRFS_UUID_KEY_SUBVOL,
1698 objectid);
1699 if (ret) {
1700 btrfs_abort_transaction(trans, ret);
1701 goto fail;
1702 }
1703 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1704 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1705 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1706 objectid);
1707 if (ret && ret != -EEXIST) {
1708 btrfs_abort_transaction(trans, ret);
1709 goto fail;
1710 }
1711 }
1712
1713 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1714 if (ret) {
1715 btrfs_abort_transaction(trans, ret);
1716 goto fail;
1717 }
1718
1719 fail:
1720 pending->error = ret;
1721 dir_item_existed:
1722 trans->block_rsv = rsv;
1723 trans->bytes_reserved = 0;
1724 clear_skip_qgroup:
1725 btrfs_clear_skip_qgroup(trans);
1726 no_free_objectid:
1727 kfree(new_root_item);
1728 pending->root_item = NULL;
1729 btrfs_free_path(path);
1730 pending->path = NULL;
1731
1732 return ret;
1733 }
1734
1735 /*
1736 * create all the snapshots we've scheduled for creation
1737 */
1738 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1739 {
1740 struct btrfs_pending_snapshot *pending, *next;
1741 struct list_head *head = &trans->transaction->pending_snapshots;
1742 int ret = 0;
1743
1744 list_for_each_entry_safe(pending, next, head, list) {
1745 list_del(&pending->list);
1746 ret = create_pending_snapshot(trans, pending);
1747 if (ret)
1748 break;
1749 }
1750 return ret;
1751 }
1752
1753 static void update_super_roots(struct btrfs_fs_info *fs_info)
1754 {
1755 struct btrfs_root_item *root_item;
1756 struct btrfs_super_block *super;
1757
1758 super = fs_info->super_copy;
1759
1760 root_item = &fs_info->chunk_root->root_item;
1761 super->chunk_root = root_item->bytenr;
1762 super->chunk_root_generation = root_item->generation;
1763 super->chunk_root_level = root_item->level;
1764
1765 root_item = &fs_info->tree_root->root_item;
1766 super->root = root_item->bytenr;
1767 super->generation = root_item->generation;
1768 super->root_level = root_item->level;
1769 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1770 super->cache_generation = root_item->generation;
1771 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1772 super->uuid_tree_generation = root_item->generation;
1773 }
1774
1775 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1776 {
1777 struct btrfs_transaction *trans;
1778 int ret = 0;
1779
1780 spin_lock(&info->trans_lock);
1781 trans = info->running_transaction;
1782 if (trans)
1783 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1784 spin_unlock(&info->trans_lock);
1785 return ret;
1786 }
1787
1788 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1789 {
1790 struct btrfs_transaction *trans;
1791 int ret = 0;
1792
1793 spin_lock(&info->trans_lock);
1794 trans = info->running_transaction;
1795 if (trans)
1796 ret = is_transaction_blocked(trans);
1797 spin_unlock(&info->trans_lock);
1798 return ret;
1799 }
1800
1801 /*
1802 * wait for the current transaction commit to start and block subsequent
1803 * transaction joins
1804 */
1805 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1806 struct btrfs_transaction *trans)
1807 {
1808 wait_event(fs_info->transaction_blocked_wait,
1809 trans->state >= TRANS_STATE_COMMIT_START ||
1810 TRANS_ABORTED(trans));
1811 }
1812
1813 /*
1814 * wait for the current transaction to start and then become unblocked.
1815 * caller holds ref.
1816 */
1817 static void wait_current_trans_commit_start_and_unblock(
1818 struct btrfs_fs_info *fs_info,
1819 struct btrfs_transaction *trans)
1820 {
1821 wait_event(fs_info->transaction_wait,
1822 trans->state >= TRANS_STATE_UNBLOCKED ||
1823 TRANS_ABORTED(trans));
1824 }
1825
1826 /*
1827 * commit transactions asynchronously. once btrfs_commit_transaction_async
1828 * returns, any subsequent transaction will not be allowed to join.
1829 */
1830 struct btrfs_async_commit {
1831 struct btrfs_trans_handle *newtrans;
1832 struct work_struct work;
1833 };
1834
1835 static void do_async_commit(struct work_struct *work)
1836 {
1837 struct btrfs_async_commit *ac =
1838 container_of(work, struct btrfs_async_commit, work);
1839
1840 /*
1841 * We've got freeze protection passed with the transaction.
1842 * Tell lockdep about it.
1843 */
1844 if (ac->newtrans->type & __TRANS_FREEZABLE)
1845 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1846
1847 current->journal_info = ac->newtrans;
1848
1849 btrfs_commit_transaction(ac->newtrans);
1850 kfree(ac);
1851 }
1852
1853 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1854 int wait_for_unblock)
1855 {
1856 struct btrfs_fs_info *fs_info = trans->fs_info;
1857 struct btrfs_async_commit *ac;
1858 struct btrfs_transaction *cur_trans;
1859
1860 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1861 if (!ac)
1862 return -ENOMEM;
1863
1864 INIT_WORK(&ac->work, do_async_commit);
1865 ac->newtrans = btrfs_join_transaction(trans->root);
1866 if (IS_ERR(ac->newtrans)) {
1867 int err = PTR_ERR(ac->newtrans);
1868 kfree(ac);
1869 return err;
1870 }
1871
1872 /* take transaction reference */
1873 cur_trans = trans->transaction;
1874 refcount_inc(&cur_trans->use_count);
1875
1876 btrfs_end_transaction(trans);
1877
1878 /*
1879 * Tell lockdep we've released the freeze rwsem, since the
1880 * async commit thread will be the one to unlock it.
1881 */
1882 if (ac->newtrans->type & __TRANS_FREEZABLE)
1883 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1884
1885 schedule_work(&ac->work);
1886
1887 /* wait for transaction to start and unblock */
1888 if (wait_for_unblock)
1889 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1890 else
1891 wait_current_trans_commit_start(fs_info, cur_trans);
1892
1893 if (current->journal_info == trans)
1894 current->journal_info = NULL;
1895
1896 btrfs_put_transaction(cur_trans);
1897 return 0;
1898 }
1899
1900
1901 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1902 {
1903 struct btrfs_fs_info *fs_info = trans->fs_info;
1904 struct btrfs_transaction *cur_trans = trans->transaction;
1905
1906 WARN_ON(refcount_read(&trans->use_count) > 1);
1907
1908 btrfs_abort_transaction(trans, err);
1909
1910 spin_lock(&fs_info->trans_lock);
1911
1912 /*
1913 * If the transaction is removed from the list, it means this
1914 * transaction has been committed successfully, so it is impossible
1915 * to call the cleanup function.
1916 */
1917 BUG_ON(list_empty(&cur_trans->list));
1918
1919 list_del_init(&cur_trans->list);
1920 if (cur_trans == fs_info->running_transaction) {
1921 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1922 spin_unlock(&fs_info->trans_lock);
1923 wait_event(cur_trans->writer_wait,
1924 atomic_read(&cur_trans->num_writers) == 1);
1925
1926 spin_lock(&fs_info->trans_lock);
1927 }
1928 spin_unlock(&fs_info->trans_lock);
1929
1930 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1931
1932 spin_lock(&fs_info->trans_lock);
1933 if (cur_trans == fs_info->running_transaction)
1934 fs_info->running_transaction = NULL;
1935 spin_unlock(&fs_info->trans_lock);
1936
1937 if (trans->type & __TRANS_FREEZABLE)
1938 sb_end_intwrite(fs_info->sb);
1939 btrfs_put_transaction(cur_trans);
1940 btrfs_put_transaction(cur_trans);
1941
1942 trace_btrfs_transaction_commit(trans->root);
1943
1944 if (current->journal_info == trans)
1945 current->journal_info = NULL;
1946 btrfs_scrub_cancel(fs_info);
1947
1948 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1949 }
1950
1951 /*
1952 * Release reserved delayed ref space of all pending block groups of the
1953 * transaction and remove them from the list
1954 */
1955 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1956 {
1957 struct btrfs_fs_info *fs_info = trans->fs_info;
1958 struct btrfs_block_group *block_group, *tmp;
1959
1960 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1961 btrfs_delayed_refs_rsv_release(fs_info, 1);
1962 list_del_init(&block_group->bg_list);
1963 }
1964 }
1965
1966 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1967 {
1968 struct btrfs_fs_info *fs_info = trans->fs_info;
1969
1970 /*
1971 * We use writeback_inodes_sb here because if we used
1972 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1973 * Currently are holding the fs freeze lock, if we do an async flush
1974 * we'll do btrfs_join_transaction() and deadlock because we need to
1975 * wait for the fs freeze lock. Using the direct flushing we benefit
1976 * from already being in a transaction and our join_transaction doesn't
1977 * have to re-take the fs freeze lock.
1978 */
1979 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1980 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1981 } else {
1982 struct btrfs_pending_snapshot *pending;
1983 struct list_head *head = &trans->transaction->pending_snapshots;
1984
1985 /*
1986 * Flush dellaloc for any root that is going to be snapshotted.
1987 * This is done to avoid a corrupted version of files, in the
1988 * snapshots, that had both buffered and direct IO writes (even
1989 * if they were done sequentially) due to an unordered update of
1990 * the inode's size on disk.
1991 */
1992 list_for_each_entry(pending, head, list) {
1993 int ret;
1994
1995 ret = btrfs_start_delalloc_snapshot(pending->root);
1996 if (ret)
1997 return ret;
1998 }
1999 }
2000 return 0;
2001 }
2002
2003 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
2004 {
2005 struct btrfs_fs_info *fs_info = trans->fs_info;
2006
2007 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
2008 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2009 } else {
2010 struct btrfs_pending_snapshot *pending;
2011 struct list_head *head = &trans->transaction->pending_snapshots;
2012
2013 /*
2014 * Wait for any dellaloc that we started previously for the roots
2015 * that are going to be snapshotted. This is to avoid a corrupted
2016 * version of files in the snapshots that had both buffered and
2017 * direct IO writes (even if they were done sequentially).
2018 */
2019 list_for_each_entry(pending, head, list)
2020 btrfs_wait_ordered_extents(pending->root,
2021 U64_MAX, 0, U64_MAX);
2022 }
2023 }
2024
2025 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2026 {
2027 struct btrfs_fs_info *fs_info = trans->fs_info;
2028 struct btrfs_transaction *cur_trans = trans->transaction;
2029 struct btrfs_transaction *prev_trans = NULL;
2030 int ret;
2031
2032 ASSERT(refcount_read(&trans->use_count) == 1);
2033
2034 /*
2035 * Some places just start a transaction to commit it. We need to make
2036 * sure that if this commit fails that the abort code actually marks the
2037 * transaction as failed, so set trans->dirty to make the abort code do
2038 * the right thing.
2039 */
2040 trans->dirty = true;
2041
2042 /* Stop the commit early if ->aborted is set */
2043 if (TRANS_ABORTED(cur_trans)) {
2044 ret = cur_trans->aborted;
2045 btrfs_end_transaction(trans);
2046 return ret;
2047 }
2048
2049 btrfs_trans_release_metadata(trans);
2050 trans->block_rsv = NULL;
2051
2052 /* make a pass through all the delayed refs we have so far
2053 * any runnings procs may add more while we are here
2054 */
2055 ret = btrfs_run_delayed_refs(trans, 0);
2056 if (ret) {
2057 btrfs_end_transaction(trans);
2058 return ret;
2059 }
2060
2061 cur_trans = trans->transaction;
2062
2063 /*
2064 * set the flushing flag so procs in this transaction have to
2065 * start sending their work down.
2066 */
2067 cur_trans->delayed_refs.flushing = 1;
2068 smp_wmb();
2069
2070 btrfs_create_pending_block_groups(trans);
2071
2072 ret = btrfs_run_delayed_refs(trans, 0);
2073 if (ret) {
2074 btrfs_end_transaction(trans);
2075 return ret;
2076 }
2077
2078 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2079 int run_it = 0;
2080
2081 /* this mutex is also taken before trying to set
2082 * block groups readonly. We need to make sure
2083 * that nobody has set a block group readonly
2084 * after a extents from that block group have been
2085 * allocated for cache files. btrfs_set_block_group_ro
2086 * will wait for the transaction to commit if it
2087 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2088 *
2089 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2090 * only one process starts all the block group IO. It wouldn't
2091 * hurt to have more than one go through, but there's no
2092 * real advantage to it either.
2093 */
2094 mutex_lock(&fs_info->ro_block_group_mutex);
2095 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2096 &cur_trans->flags))
2097 run_it = 1;
2098 mutex_unlock(&fs_info->ro_block_group_mutex);
2099
2100 if (run_it) {
2101 ret = btrfs_start_dirty_block_groups(trans);
2102 if (ret) {
2103 btrfs_end_transaction(trans);
2104 return ret;
2105 }
2106 }
2107 }
2108
2109 spin_lock(&fs_info->trans_lock);
2110 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2111 spin_unlock(&fs_info->trans_lock);
2112 refcount_inc(&cur_trans->use_count);
2113 ret = btrfs_end_transaction(trans);
2114
2115 wait_for_commit(cur_trans);
2116
2117 if (TRANS_ABORTED(cur_trans))
2118 ret = cur_trans->aborted;
2119
2120 btrfs_put_transaction(cur_trans);
2121
2122 return ret;
2123 }
2124
2125 cur_trans->state = TRANS_STATE_COMMIT_START;
2126 wake_up(&fs_info->transaction_blocked_wait);
2127
2128 if (cur_trans->list.prev != &fs_info->trans_list) {
2129 prev_trans = list_entry(cur_trans->list.prev,
2130 struct btrfs_transaction, list);
2131 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2132 refcount_inc(&prev_trans->use_count);
2133 spin_unlock(&fs_info->trans_lock);
2134
2135 wait_for_commit(prev_trans);
2136 ret = READ_ONCE(prev_trans->aborted);
2137
2138 btrfs_put_transaction(prev_trans);
2139 if (ret)
2140 goto cleanup_transaction;
2141 } else {
2142 spin_unlock(&fs_info->trans_lock);
2143 }
2144 } else {
2145 spin_unlock(&fs_info->trans_lock);
2146 /*
2147 * The previous transaction was aborted and was already removed
2148 * from the list of transactions at fs_info->trans_list. So we
2149 * abort to prevent writing a new superblock that reflects a
2150 * corrupt state (pointing to trees with unwritten nodes/leafs).
2151 */
2152 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2153 ret = -EROFS;
2154 goto cleanup_transaction;
2155 }
2156 }
2157
2158 extwriter_counter_dec(cur_trans, trans->type);
2159
2160 ret = btrfs_start_delalloc_flush(trans);
2161 if (ret)
2162 goto cleanup_transaction;
2163
2164 ret = btrfs_run_delayed_items(trans);
2165 if (ret)
2166 goto cleanup_transaction;
2167
2168 wait_event(cur_trans->writer_wait,
2169 extwriter_counter_read(cur_trans) == 0);
2170
2171 /* some pending stuffs might be added after the previous flush. */
2172 ret = btrfs_run_delayed_items(trans);
2173 if (ret)
2174 goto cleanup_transaction;
2175
2176 btrfs_wait_delalloc_flush(trans);
2177
2178 btrfs_scrub_pause(fs_info);
2179 /*
2180 * Ok now we need to make sure to block out any other joins while we
2181 * commit the transaction. We could have started a join before setting
2182 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2183 */
2184 spin_lock(&fs_info->trans_lock);
2185 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2186 spin_unlock(&fs_info->trans_lock);
2187 wait_event(cur_trans->writer_wait,
2188 atomic_read(&cur_trans->num_writers) == 1);
2189
2190 if (TRANS_ABORTED(cur_trans)) {
2191 ret = cur_trans->aborted;
2192 goto scrub_continue;
2193 }
2194 /*
2195 * the reloc mutex makes sure that we stop
2196 * the balancing code from coming in and moving
2197 * extents around in the middle of the commit
2198 */
2199 mutex_lock(&fs_info->reloc_mutex);
2200
2201 /*
2202 * We needn't worry about the delayed items because we will
2203 * deal with them in create_pending_snapshot(), which is the
2204 * core function of the snapshot creation.
2205 */
2206 ret = create_pending_snapshots(trans);
2207 if (ret)
2208 goto unlock_reloc;
2209
2210 /*
2211 * We insert the dir indexes of the snapshots and update the inode
2212 * of the snapshots' parents after the snapshot creation, so there
2213 * are some delayed items which are not dealt with. Now deal with
2214 * them.
2215 *
2216 * We needn't worry that this operation will corrupt the snapshots,
2217 * because all the tree which are snapshoted will be forced to COW
2218 * the nodes and leaves.
2219 */
2220 ret = btrfs_run_delayed_items(trans);
2221 if (ret)
2222 goto unlock_reloc;
2223
2224 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2225 if (ret)
2226 goto unlock_reloc;
2227
2228 /*
2229 * make sure none of the code above managed to slip in a
2230 * delayed item
2231 */
2232 btrfs_assert_delayed_root_empty(fs_info);
2233
2234 WARN_ON(cur_trans != trans->transaction);
2235
2236 /* btrfs_commit_tree_roots is responsible for getting the
2237 * various roots consistent with each other. Every pointer
2238 * in the tree of tree roots has to point to the most up to date
2239 * root for every subvolume and other tree. So, we have to keep
2240 * the tree logging code from jumping in and changing any
2241 * of the trees.
2242 *
2243 * At this point in the commit, there can't be any tree-log
2244 * writers, but a little lower down we drop the trans mutex
2245 * and let new people in. By holding the tree_log_mutex
2246 * from now until after the super is written, we avoid races
2247 * with the tree-log code.
2248 */
2249 mutex_lock(&fs_info->tree_log_mutex);
2250
2251 ret = commit_fs_roots(trans);
2252 if (ret)
2253 goto unlock_tree_log;
2254
2255 /*
2256 * Since the transaction is done, we can apply the pending changes
2257 * before the next transaction.
2258 */
2259 btrfs_apply_pending_changes(fs_info);
2260
2261 /* commit_fs_roots gets rid of all the tree log roots, it is now
2262 * safe to free the root of tree log roots
2263 */
2264 btrfs_free_log_root_tree(trans, fs_info);
2265
2266 /*
2267 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2268 * new delayed refs. Must handle them or qgroup can be wrong.
2269 */
2270 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2271 if (ret)
2272 goto unlock_tree_log;
2273
2274 /*
2275 * Since fs roots are all committed, we can get a quite accurate
2276 * new_roots. So let's do quota accounting.
2277 */
2278 ret = btrfs_qgroup_account_extents(trans);
2279 if (ret < 0)
2280 goto unlock_tree_log;
2281
2282 ret = commit_cowonly_roots(trans);
2283 if (ret)
2284 goto unlock_tree_log;
2285
2286 /*
2287 * The tasks which save the space cache and inode cache may also
2288 * update ->aborted, check it.
2289 */
2290 if (TRANS_ABORTED(cur_trans)) {
2291 ret = cur_trans->aborted;
2292 goto unlock_tree_log;
2293 }
2294
2295 btrfs_prepare_extent_commit(fs_info);
2296
2297 cur_trans = fs_info->running_transaction;
2298
2299 btrfs_set_root_node(&fs_info->tree_root->root_item,
2300 fs_info->tree_root->node);
2301 list_add_tail(&fs_info->tree_root->dirty_list,
2302 &cur_trans->switch_commits);
2303
2304 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2305 fs_info->chunk_root->node);
2306 list_add_tail(&fs_info->chunk_root->dirty_list,
2307 &cur_trans->switch_commits);
2308
2309 switch_commit_roots(trans);
2310
2311 ASSERT(list_empty(&cur_trans->dirty_bgs));
2312 ASSERT(list_empty(&cur_trans->io_bgs));
2313 update_super_roots(fs_info);
2314
2315 btrfs_set_super_log_root(fs_info->super_copy, 0);
2316 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2317 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2318 sizeof(*fs_info->super_copy));
2319
2320 btrfs_commit_device_sizes(cur_trans);
2321
2322 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2323 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2324
2325 btrfs_trans_release_chunk_metadata(trans);
2326
2327 spin_lock(&fs_info->trans_lock);
2328 cur_trans->state = TRANS_STATE_UNBLOCKED;
2329 fs_info->running_transaction = NULL;
2330 spin_unlock(&fs_info->trans_lock);
2331 mutex_unlock(&fs_info->reloc_mutex);
2332
2333 wake_up(&fs_info->transaction_wait);
2334
2335 ret = btrfs_write_and_wait_transaction(trans);
2336 if (ret) {
2337 btrfs_handle_fs_error(fs_info, ret,
2338 "Error while writing out transaction");
2339 /*
2340 * reloc_mutex has been unlocked, tree_log_mutex is still held
2341 * but we can't jump to unlock_tree_log causing double unlock
2342 */
2343 mutex_unlock(&fs_info->tree_log_mutex);
2344 goto scrub_continue;
2345 }
2346
2347 ret = write_all_supers(fs_info, 0);
2348 /*
2349 * the super is written, we can safely allow the tree-loggers
2350 * to go about their business
2351 */
2352 mutex_unlock(&fs_info->tree_log_mutex);
2353 if (ret)
2354 goto scrub_continue;
2355
2356 btrfs_finish_extent_commit(trans);
2357
2358 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2359 btrfs_clear_space_info_full(fs_info);
2360
2361 fs_info->last_trans_committed = cur_trans->transid;
2362 /*
2363 * We needn't acquire the lock here because there is no other task
2364 * which can change it.
2365 */
2366 cur_trans->state = TRANS_STATE_COMPLETED;
2367 wake_up(&cur_trans->commit_wait);
2368 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2369
2370 spin_lock(&fs_info->trans_lock);
2371 list_del_init(&cur_trans->list);
2372 spin_unlock(&fs_info->trans_lock);
2373
2374 btrfs_put_transaction(cur_trans);
2375 btrfs_put_transaction(cur_trans);
2376
2377 if (trans->type & __TRANS_FREEZABLE)
2378 sb_end_intwrite(fs_info->sb);
2379
2380 trace_btrfs_transaction_commit(trans->root);
2381
2382 btrfs_scrub_continue(fs_info);
2383
2384 if (current->journal_info == trans)
2385 current->journal_info = NULL;
2386
2387 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2388
2389 return ret;
2390
2391 unlock_tree_log:
2392 mutex_unlock(&fs_info->tree_log_mutex);
2393 unlock_reloc:
2394 mutex_unlock(&fs_info->reloc_mutex);
2395 scrub_continue:
2396 btrfs_scrub_continue(fs_info);
2397 cleanup_transaction:
2398 btrfs_trans_release_metadata(trans);
2399 btrfs_cleanup_pending_block_groups(trans);
2400 btrfs_trans_release_chunk_metadata(trans);
2401 trans->block_rsv = NULL;
2402 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2403 if (current->journal_info == trans)
2404 current->journal_info = NULL;
2405 cleanup_transaction(trans, ret);
2406
2407 return ret;
2408 }
2409
2410 /*
2411 * return < 0 if error
2412 * 0 if there are no more dead_roots at the time of call
2413 * 1 there are more to be processed, call me again
2414 *
2415 * The return value indicates there are certainly more snapshots to delete, but
2416 * if there comes a new one during processing, it may return 0. We don't mind,
2417 * because btrfs_commit_super will poke cleaner thread and it will process it a
2418 * few seconds later.
2419 */
2420 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2421 {
2422 int ret;
2423 struct btrfs_fs_info *fs_info = root->fs_info;
2424
2425 spin_lock(&fs_info->trans_lock);
2426 if (list_empty(&fs_info->dead_roots)) {
2427 spin_unlock(&fs_info->trans_lock);
2428 return 0;
2429 }
2430 root = list_first_entry(&fs_info->dead_roots,
2431 struct btrfs_root, root_list);
2432 list_del_init(&root->root_list);
2433 spin_unlock(&fs_info->trans_lock);
2434
2435 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2436
2437 btrfs_kill_all_delayed_nodes(root);
2438 if (root->ino_cache_inode) {
2439 iput(root->ino_cache_inode);
2440 root->ino_cache_inode = NULL;
2441 }
2442
2443 if (btrfs_header_backref_rev(root->node) <
2444 BTRFS_MIXED_BACKREF_REV)
2445 ret = btrfs_drop_snapshot(root, 0, 0);
2446 else
2447 ret = btrfs_drop_snapshot(root, 1, 0);
2448
2449 btrfs_put_root(root);
2450 return (ret < 0) ? 0 : 1;
2451 }
2452
2453 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2454 {
2455 unsigned long prev;
2456 unsigned long bit;
2457
2458 prev = xchg(&fs_info->pending_changes, 0);
2459 if (!prev)
2460 return;
2461
2462 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2463 if (prev & bit)
2464 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2465 prev &= ~bit;
2466
2467 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2468 if (prev & bit)
2469 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2470 prev &= ~bit;
2471
2472 bit = 1 << BTRFS_PENDING_COMMIT;
2473 if (prev & bit)
2474 btrfs_debug(fs_info, "pending commit done");
2475 prev &= ~bit;
2476
2477 if (prev)
2478 btrfs_warn(fs_info,
2479 "unknown pending changes left 0x%lx, ignoring", prev);
2480 }