]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/transaction.c
682acdd7c13247dcf5f67387934c324b76b0d224
[thirdparty/linux.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 #define BTRFS_ROOT_TRANS_TAG 0
41
42 /*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
60 * |
61 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
62 * | the race and the rest will wait for the winner to commit the transaction.
63 * |
64 * | The winner will wait for previous running transaction to completely finish
65 * | if there is one.
66 * |
67 * Transaction N [[TRANS_STATE_COMMIT_START]]
68 * |
69 * | Then one of the following happens:
70 * | - Wait for all other trans handle holders to release.
71 * | The btrfs_commit_transaction() caller will do the commit work.
72 * | - Wait for current transaction to be committed by others.
73 * | Other btrfs_commit_transaction() caller will do the commit work.
74 * |
75 * | At this stage, only btrfs_join_transaction*() variants can attach
76 * | to this running transaction.
77 * | All other variants will wait for current one to finish and attach to
78 * | transaction N+1.
79 * |
80 * | To next stage:
81 * | Caller is chosen to commit transaction N, and all other trans handle
82 * | haven been released.
83 * V
84 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
85 * |
86 * | The heavy lifting transaction work is started.
87 * | From running delayed refs (modifying extent tree) to creating pending
88 * | snapshots, running qgroups.
89 * | In short, modify supporting trees to reflect modifications of subvolume
90 * | trees.
91 * |
92 * | At this stage, all start_transaction() calls will wait for this
93 * | transaction to finish and attach to transaction N+1.
94 * |
95 * | To next stage:
96 * | Until all supporting trees are updated.
97 * V
98 * Transaction N [[TRANS_STATE_UNBLOCKED]]
99 * | Transaction N+1
100 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
101 * | need to write them back to disk and update |
102 * | super blocks. |
103 * | |
104 * | At this stage, new transaction is allowed to |
105 * | start. |
106 * | All new start_transaction() calls will be |
107 * | attached to transid N+1. |
108 * | |
109 * | To next stage: |
110 * | Until all tree blocks are super blocks are |
111 * | written to block devices |
112 * V |
113 * Transaction N [[TRANS_STATE_COMPLETED]] V
114 * All tree blocks and super blocks are written. Transaction N+1
115 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
116 * data structures will be cleaned up. | Life goes on
117 */
118 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
119 [TRANS_STATE_RUNNING] = 0U,
120 [TRANS_STATE_COMMIT_PREP] = 0U,
121 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
122 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOSTART),
126 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
127 __TRANS_ATTACH |
128 __TRANS_JOIN |
129 __TRANS_JOIN_NOLOCK |
130 __TRANS_JOIN_NOSTART),
131 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
132 __TRANS_ATTACH |
133 __TRANS_JOIN |
134 __TRANS_JOIN_NOLOCK |
135 __TRANS_JOIN_NOSTART),
136 [TRANS_STATE_COMPLETED] = (__TRANS_START |
137 __TRANS_ATTACH |
138 __TRANS_JOIN |
139 __TRANS_JOIN_NOLOCK |
140 __TRANS_JOIN_NOSTART),
141 };
142
143 void btrfs_put_transaction(struct btrfs_transaction *transaction)
144 {
145 WARN_ON(refcount_read(&transaction->use_count) == 0);
146 if (refcount_dec_and_test(&transaction->use_count)) {
147 BUG_ON(!list_empty(&transaction->list));
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.href_root.rb_root));
150 WARN_ON(!RB_EMPTY_ROOT(
151 &transaction->delayed_refs.dirty_extent_root));
152 if (transaction->delayed_refs.pending_csums)
153 btrfs_err(transaction->fs_info,
154 "pending csums is %llu",
155 transaction->delayed_refs.pending_csums);
156 /*
157 * If any block groups are found in ->deleted_bgs then it's
158 * because the transaction was aborted and a commit did not
159 * happen (things failed before writing the new superblock
160 * and calling btrfs_finish_extent_commit()), so we can not
161 * discard the physical locations of the block groups.
162 */
163 while (!list_empty(&transaction->deleted_bgs)) {
164 struct btrfs_block_group *cache;
165
166 cache = list_first_entry(&transaction->deleted_bgs,
167 struct btrfs_block_group,
168 bg_list);
169 list_del_init(&cache->bg_list);
170 btrfs_unfreeze_block_group(cache);
171 btrfs_put_block_group(cache);
172 }
173 WARN_ON(!list_empty(&transaction->dev_update_list));
174 kfree(transaction);
175 }
176 }
177
178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180 struct btrfs_transaction *cur_trans = trans->transaction;
181 struct btrfs_fs_info *fs_info = trans->fs_info;
182 struct btrfs_root *root, *tmp;
183
184 /*
185 * At this point no one can be using this transaction to modify any tree
186 * and no one can start another transaction to modify any tree either.
187 */
188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189
190 down_write(&fs_info->commit_root_sem);
191
192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 fs_info->last_reloc_trans = trans->transid;
194
195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 dirty_list) {
197 list_del_init(&root->dirty_list);
198 free_extent_buffer(root->commit_root);
199 root->commit_root = btrfs_root_node(root);
200 extent_io_tree_release(&root->dirty_log_pages);
201 btrfs_qgroup_clean_swapped_blocks(root);
202 }
203
204 /* We can free old roots now. */
205 spin_lock(&cur_trans->dropped_roots_lock);
206 while (!list_empty(&cur_trans->dropped_roots)) {
207 root = list_first_entry(&cur_trans->dropped_roots,
208 struct btrfs_root, root_list);
209 list_del_init(&root->root_list);
210 spin_unlock(&cur_trans->dropped_roots_lock);
211 btrfs_free_log(trans, root);
212 btrfs_drop_and_free_fs_root(fs_info, root);
213 spin_lock(&cur_trans->dropped_roots_lock);
214 }
215 spin_unlock(&cur_trans->dropped_roots_lock);
216
217 up_write(&fs_info->commit_root_sem);
218 }
219
220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 unsigned int type)
222 {
223 if (type & TRANS_EXTWRITERS)
224 atomic_inc(&trans->num_extwriters);
225 }
226
227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 unsigned int type)
229 {
230 if (type & TRANS_EXTWRITERS)
231 atomic_dec(&trans->num_extwriters);
232 }
233
234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 unsigned int type)
236 {
237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239
240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242 return atomic_read(&trans->num_extwriters);
243 }
244
245 /*
246 * To be called after doing the chunk btree updates right after allocating a new
247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248 * chunk after all chunk btree updates and after finishing the second phase of
249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250 * group had its chunk item insertion delayed to the second phase.
251 */
252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254 struct btrfs_fs_info *fs_info = trans->fs_info;
255
256 if (!trans->chunk_bytes_reserved)
257 return;
258
259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260 trans->chunk_bytes_reserved, NULL);
261 trans->chunk_bytes_reserved = 0;
262 }
263
264 /*
265 * either allocate a new transaction or hop into the existing one
266 */
267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 unsigned int type)
269 {
270 struct btrfs_transaction *cur_trans;
271
272 spin_lock(&fs_info->trans_lock);
273 loop:
274 /* The file system has been taken offline. No new transactions. */
275 if (BTRFS_FS_ERROR(fs_info)) {
276 spin_unlock(&fs_info->trans_lock);
277 return -EROFS;
278 }
279
280 cur_trans = fs_info->running_transaction;
281 if (cur_trans) {
282 if (TRANS_ABORTED(cur_trans)) {
283 spin_unlock(&fs_info->trans_lock);
284 return cur_trans->aborted;
285 }
286 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
287 spin_unlock(&fs_info->trans_lock);
288 return -EBUSY;
289 }
290 refcount_inc(&cur_trans->use_count);
291 atomic_inc(&cur_trans->num_writers);
292 extwriter_counter_inc(cur_trans, type);
293 spin_unlock(&fs_info->trans_lock);
294 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
295 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
296 return 0;
297 }
298 spin_unlock(&fs_info->trans_lock);
299
300 /*
301 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
302 * current transaction, and commit it. If there is no transaction, just
303 * return ENOENT.
304 */
305 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
306 return -ENOENT;
307
308 /*
309 * JOIN_NOLOCK only happens during the transaction commit, so
310 * it is impossible that ->running_transaction is NULL
311 */
312 BUG_ON(type == TRANS_JOIN_NOLOCK);
313
314 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
315 if (!cur_trans)
316 return -ENOMEM;
317
318 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
319 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
320
321 spin_lock(&fs_info->trans_lock);
322 if (fs_info->running_transaction) {
323 /*
324 * someone started a transaction after we unlocked. Make sure
325 * to redo the checks above
326 */
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329 kfree(cur_trans);
330 goto loop;
331 } else if (BTRFS_FS_ERROR(fs_info)) {
332 spin_unlock(&fs_info->trans_lock);
333 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
335 kfree(cur_trans);
336 return -EROFS;
337 }
338
339 cur_trans->fs_info = fs_info;
340 atomic_set(&cur_trans->pending_ordered, 0);
341 init_waitqueue_head(&cur_trans->pending_wait);
342 atomic_set(&cur_trans->num_writers, 1);
343 extwriter_counter_init(cur_trans, type);
344 init_waitqueue_head(&cur_trans->writer_wait);
345 init_waitqueue_head(&cur_trans->commit_wait);
346 cur_trans->state = TRANS_STATE_RUNNING;
347 /*
348 * One for this trans handle, one so it will live on until we
349 * commit the transaction.
350 */
351 refcount_set(&cur_trans->use_count, 2);
352 cur_trans->flags = 0;
353 cur_trans->start_time = ktime_get_seconds();
354
355 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356
357 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
358 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
359 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
360
361 /*
362 * although the tree mod log is per file system and not per transaction,
363 * the log must never go across transaction boundaries.
364 */
365 smp_mb();
366 if (!list_empty(&fs_info->tree_mod_seq_list))
367 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
368 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
369 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
370 atomic64_set(&fs_info->tree_mod_seq, 0);
371
372 spin_lock_init(&cur_trans->delayed_refs.lock);
373
374 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
375 INIT_LIST_HEAD(&cur_trans->dev_update_list);
376 INIT_LIST_HEAD(&cur_trans->switch_commits);
377 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
378 INIT_LIST_HEAD(&cur_trans->io_bgs);
379 INIT_LIST_HEAD(&cur_trans->dropped_roots);
380 mutex_init(&cur_trans->cache_write_mutex);
381 spin_lock_init(&cur_trans->dirty_bgs_lock);
382 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
383 spin_lock_init(&cur_trans->dropped_roots_lock);
384 list_add_tail(&cur_trans->list, &fs_info->trans_list);
385 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
386 IO_TREE_TRANS_DIRTY_PAGES);
387 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
388 IO_TREE_FS_PINNED_EXTENTS);
389 fs_info->generation++;
390 cur_trans->transid = fs_info->generation;
391 fs_info->running_transaction = cur_trans;
392 cur_trans->aborted = 0;
393 spin_unlock(&fs_info->trans_lock);
394
395 return 0;
396 }
397
398 /*
399 * This does all the record keeping required to make sure that a shareable root
400 * is properly recorded in a given transaction. This is required to make sure
401 * the old root from before we joined the transaction is deleted when the
402 * transaction commits.
403 */
404 static int record_root_in_trans(struct btrfs_trans_handle *trans,
405 struct btrfs_root *root,
406 int force)
407 {
408 struct btrfs_fs_info *fs_info = root->fs_info;
409 int ret = 0;
410
411 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
412 root->last_trans < trans->transid) || force) {
413 WARN_ON(!force && root->commit_root != root->node);
414
415 /*
416 * see below for IN_TRANS_SETUP usage rules
417 * we have the reloc mutex held now, so there
418 * is only one writer in this function
419 */
420 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
421
422 /* make sure readers find IN_TRANS_SETUP before
423 * they find our root->last_trans update
424 */
425 smp_wmb();
426
427 spin_lock(&fs_info->fs_roots_radix_lock);
428 if (root->last_trans == trans->transid && !force) {
429 spin_unlock(&fs_info->fs_roots_radix_lock);
430 return 0;
431 }
432 radix_tree_tag_set(&fs_info->fs_roots_radix,
433 (unsigned long)root->root_key.objectid,
434 BTRFS_ROOT_TRANS_TAG);
435 spin_unlock(&fs_info->fs_roots_radix_lock);
436 root->last_trans = trans->transid;
437
438 /* this is pretty tricky. We don't want to
439 * take the relocation lock in btrfs_record_root_in_trans
440 * unless we're really doing the first setup for this root in
441 * this transaction.
442 *
443 * Normally we'd use root->last_trans as a flag to decide
444 * if we want to take the expensive mutex.
445 *
446 * But, we have to set root->last_trans before we
447 * init the relocation root, otherwise, we trip over warnings
448 * in ctree.c. The solution used here is to flag ourselves
449 * with root IN_TRANS_SETUP. When this is 1, we're still
450 * fixing up the reloc trees and everyone must wait.
451 *
452 * When this is zero, they can trust root->last_trans and fly
453 * through btrfs_record_root_in_trans without having to take the
454 * lock. smp_wmb() makes sure that all the writes above are
455 * done before we pop in the zero below
456 */
457 ret = btrfs_init_reloc_root(trans, root);
458 smp_mb__before_atomic();
459 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
460 }
461 return ret;
462 }
463
464
465 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
466 struct btrfs_root *root)
467 {
468 struct btrfs_fs_info *fs_info = root->fs_info;
469 struct btrfs_transaction *cur_trans = trans->transaction;
470
471 /* Add ourselves to the transaction dropped list */
472 spin_lock(&cur_trans->dropped_roots_lock);
473 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
474 spin_unlock(&cur_trans->dropped_roots_lock);
475
476 /* Make sure we don't try to update the root at commit time */
477 spin_lock(&fs_info->fs_roots_radix_lock);
478 radix_tree_tag_clear(&fs_info->fs_roots_radix,
479 (unsigned long)root->root_key.objectid,
480 BTRFS_ROOT_TRANS_TAG);
481 spin_unlock(&fs_info->fs_roots_radix_lock);
482 }
483
484 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
485 struct btrfs_root *root)
486 {
487 struct btrfs_fs_info *fs_info = root->fs_info;
488 int ret;
489
490 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
491 return 0;
492
493 /*
494 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
495 * and barriers
496 */
497 smp_rmb();
498 if (root->last_trans == trans->transid &&
499 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
500 return 0;
501
502 mutex_lock(&fs_info->reloc_mutex);
503 ret = record_root_in_trans(trans, root, 0);
504 mutex_unlock(&fs_info->reloc_mutex);
505
506 return ret;
507 }
508
509 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
510 {
511 return (trans->state >= TRANS_STATE_COMMIT_START &&
512 trans->state < TRANS_STATE_UNBLOCKED &&
513 !TRANS_ABORTED(trans));
514 }
515
516 /* wait for commit against the current transaction to become unblocked
517 * when this is done, it is safe to start a new transaction, but the current
518 * transaction might not be fully on disk.
519 */
520 static void wait_current_trans(struct btrfs_fs_info *fs_info)
521 {
522 struct btrfs_transaction *cur_trans;
523
524 spin_lock(&fs_info->trans_lock);
525 cur_trans = fs_info->running_transaction;
526 if (cur_trans && is_transaction_blocked(cur_trans)) {
527 refcount_inc(&cur_trans->use_count);
528 spin_unlock(&fs_info->trans_lock);
529
530 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
531 wait_event(fs_info->transaction_wait,
532 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
533 TRANS_ABORTED(cur_trans));
534 btrfs_put_transaction(cur_trans);
535 } else {
536 spin_unlock(&fs_info->trans_lock);
537 }
538 }
539
540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
541 {
542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 return 0;
544
545 if (type == TRANS_START)
546 return 1;
547
548 return 0;
549 }
550
551 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552 {
553 struct btrfs_fs_info *fs_info = root->fs_info;
554
555 if (!fs_info->reloc_ctl ||
556 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
557 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 root->reloc_root)
559 return false;
560
561 return true;
562 }
563
564 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
565 enum btrfs_reserve_flush_enum flush,
566 u64 num_bytes,
567 u64 *delayed_refs_bytes)
568 {
569 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
570 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
571 u64 extra_delayed_refs_bytes = 0;
572 u64 bytes;
573 int ret;
574
575 /*
576 * If there's a gap between the size of the delayed refs reserve and
577 * its reserved space, than some tasks have added delayed refs or bumped
578 * its size otherwise (due to block group creation or removal, or block
579 * group item update). Also try to allocate that gap in order to prevent
580 * using (and possibly abusing) the global reserve when committing the
581 * transaction.
582 */
583 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
584 !btrfs_block_rsv_full(delayed_refs_rsv)) {
585 spin_lock(&delayed_refs_rsv->lock);
586 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved)
587 extra_delayed_refs_bytes = delayed_refs_rsv->size -
588 delayed_refs_rsv->reserved;
589 spin_unlock(&delayed_refs_rsv->lock);
590 }
591
592 bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes;
593
594 /*
595 * We want to reserve all the bytes we may need all at once, so we only
596 * do 1 enospc flushing cycle per transaction start.
597 */
598 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
599 if (ret == 0) {
600 if (extra_delayed_refs_bytes > 0)
601 btrfs_migrate_to_delayed_refs_rsv(fs_info,
602 extra_delayed_refs_bytes);
603 return 0;
604 }
605
606 if (extra_delayed_refs_bytes > 0) {
607 bytes -= extra_delayed_refs_bytes;
608 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
609 if (ret == 0)
610 return 0;
611 }
612
613 /*
614 * If we are an emergency flush, which can steal from the global block
615 * reserve, then attempt to not reserve space for the delayed refs, as
616 * we will consume space for them from the global block reserve.
617 */
618 if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
619 bytes -= *delayed_refs_bytes;
620 *delayed_refs_bytes = 0;
621 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
622 }
623
624 return ret;
625 }
626
627 static struct btrfs_trans_handle *
628 start_transaction(struct btrfs_root *root, unsigned int num_items,
629 unsigned int type, enum btrfs_reserve_flush_enum flush,
630 bool enforce_qgroups)
631 {
632 struct btrfs_fs_info *fs_info = root->fs_info;
633 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
634 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
635 struct btrfs_trans_handle *h;
636 struct btrfs_transaction *cur_trans;
637 u64 num_bytes = 0;
638 u64 qgroup_reserved = 0;
639 u64 delayed_refs_bytes = 0;
640 bool reloc_reserved = false;
641 bool do_chunk_alloc = false;
642 int ret;
643
644 if (BTRFS_FS_ERROR(fs_info))
645 return ERR_PTR(-EROFS);
646
647 if (current->journal_info) {
648 WARN_ON(type & TRANS_EXTWRITERS);
649 h = current->journal_info;
650 refcount_inc(&h->use_count);
651 WARN_ON(refcount_read(&h->use_count) > 2);
652 h->orig_rsv = h->block_rsv;
653 h->block_rsv = NULL;
654 goto got_it;
655 }
656
657 /*
658 * Do the reservation before we join the transaction so we can do all
659 * the appropriate flushing if need be.
660 */
661 if (num_items && root != fs_info->chunk_root) {
662 qgroup_reserved = num_items * fs_info->nodesize;
663 /*
664 * Use prealloc for now, as there might be a currently running
665 * transaction that could free this reserved space prematurely
666 * by committing.
667 */
668 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
669 enforce_qgroups, false);
670 if (ret)
671 return ERR_PTR(ret);
672
673 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
674 /*
675 * If we plan to insert/update/delete "num_items" from a btree,
676 * we will also generate delayed refs for extent buffers in the
677 * respective btree paths, so reserve space for the delayed refs
678 * that will be generated by the caller as it modifies btrees.
679 * Try to reserve them to avoid excessive use of the global
680 * block reserve.
681 */
682 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
683
684 /*
685 * Do the reservation for the relocation root creation
686 */
687 if (need_reserve_reloc_root(root)) {
688 num_bytes += fs_info->nodesize;
689 reloc_reserved = true;
690 }
691
692 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
693 &delayed_refs_bytes);
694 if (ret)
695 goto reserve_fail;
696
697 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
698
699 if (trans_rsv->space_info->force_alloc)
700 do_chunk_alloc = true;
701 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
702 !btrfs_block_rsv_full(delayed_refs_rsv)) {
703 /*
704 * Some people call with btrfs_start_transaction(root, 0)
705 * because they can be throttled, but have some other mechanism
706 * for reserving space. We still want these guys to refill the
707 * delayed block_rsv so just add 1 items worth of reservation
708 * here.
709 */
710 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
711 if (ret)
712 goto reserve_fail;
713 }
714 again:
715 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
716 if (!h) {
717 ret = -ENOMEM;
718 goto alloc_fail;
719 }
720
721 /*
722 * If we are JOIN_NOLOCK we're already committing a transaction and
723 * waiting on this guy, so we don't need to do the sb_start_intwrite
724 * because we're already holding a ref. We need this because we could
725 * have raced in and did an fsync() on a file which can kick a commit
726 * and then we deadlock with somebody doing a freeze.
727 *
728 * If we are ATTACH, it means we just want to catch the current
729 * transaction and commit it, so we needn't do sb_start_intwrite().
730 */
731 if (type & __TRANS_FREEZABLE)
732 sb_start_intwrite(fs_info->sb);
733
734 if (may_wait_transaction(fs_info, type))
735 wait_current_trans(fs_info);
736
737 do {
738 ret = join_transaction(fs_info, type);
739 if (ret == -EBUSY) {
740 wait_current_trans(fs_info);
741 if (unlikely(type == TRANS_ATTACH ||
742 type == TRANS_JOIN_NOSTART))
743 ret = -ENOENT;
744 }
745 } while (ret == -EBUSY);
746
747 if (ret < 0)
748 goto join_fail;
749
750 cur_trans = fs_info->running_transaction;
751
752 h->transid = cur_trans->transid;
753 h->transaction = cur_trans;
754 refcount_set(&h->use_count, 1);
755 h->fs_info = root->fs_info;
756
757 h->type = type;
758 INIT_LIST_HEAD(&h->new_bgs);
759 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
760
761 smp_mb();
762 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
763 may_wait_transaction(fs_info, type)) {
764 current->journal_info = h;
765 btrfs_commit_transaction(h);
766 goto again;
767 }
768
769 if (num_bytes) {
770 trace_btrfs_space_reservation(fs_info, "transaction",
771 h->transid, num_bytes, 1);
772 h->block_rsv = trans_rsv;
773 h->bytes_reserved = num_bytes;
774 if (delayed_refs_bytes > 0) {
775 trace_btrfs_space_reservation(fs_info,
776 "local_delayed_refs_rsv",
777 h->transid,
778 delayed_refs_bytes, 1);
779 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
780 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
781 delayed_refs_bytes = 0;
782 }
783 h->reloc_reserved = reloc_reserved;
784 }
785
786 /*
787 * Now that we have found a transaction to be a part of, convert the
788 * qgroup reservation from prealloc to pertrans. A different transaction
789 * can't race in and free our pertrans out from under us.
790 */
791 if (qgroup_reserved)
792 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
793
794 got_it:
795 if (!current->journal_info)
796 current->journal_info = h;
797
798 /*
799 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
800 * ALLOC_FORCE the first run through, and then we won't allocate for
801 * anybody else who races in later. We don't care about the return
802 * value here.
803 */
804 if (do_chunk_alloc && num_bytes) {
805 u64 flags = h->block_rsv->space_info->flags;
806
807 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
808 CHUNK_ALLOC_NO_FORCE);
809 }
810
811 /*
812 * btrfs_record_root_in_trans() needs to alloc new extents, and may
813 * call btrfs_join_transaction() while we're also starting a
814 * transaction.
815 *
816 * Thus it need to be called after current->journal_info initialized,
817 * or we can deadlock.
818 */
819 ret = btrfs_record_root_in_trans(h, root);
820 if (ret) {
821 /*
822 * The transaction handle is fully initialized and linked with
823 * other structures so it needs to be ended in case of errors,
824 * not just freed.
825 */
826 btrfs_end_transaction(h);
827 return ERR_PTR(ret);
828 }
829
830 return h;
831
832 join_fail:
833 if (type & __TRANS_FREEZABLE)
834 sb_end_intwrite(fs_info->sb);
835 kmem_cache_free(btrfs_trans_handle_cachep, h);
836 alloc_fail:
837 if (num_bytes)
838 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
839 if (delayed_refs_bytes)
840 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
841 delayed_refs_bytes);
842 reserve_fail:
843 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
844 return ERR_PTR(ret);
845 }
846
847 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
848 unsigned int num_items)
849 {
850 return start_transaction(root, num_items, TRANS_START,
851 BTRFS_RESERVE_FLUSH_ALL, true);
852 }
853
854 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
855 struct btrfs_root *root,
856 unsigned int num_items)
857 {
858 return start_transaction(root, num_items, TRANS_START,
859 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
860 }
861
862 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
863 {
864 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
865 true);
866 }
867
868 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
869 {
870 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
871 BTRFS_RESERVE_NO_FLUSH, true);
872 }
873
874 /*
875 * Similar to regular join but it never starts a transaction when none is
876 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
877 * This is similar to btrfs_attach_transaction() but it allows the join to
878 * happen if the transaction commit already started but it's not yet in the
879 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
880 */
881 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
882 {
883 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
884 BTRFS_RESERVE_NO_FLUSH, true);
885 }
886
887 /*
888 * Catch the running transaction.
889 *
890 * It is used when we want to commit the current the transaction, but
891 * don't want to start a new one.
892 *
893 * Note: If this function return -ENOENT, it just means there is no
894 * running transaction. But it is possible that the inactive transaction
895 * is still in the memory, not fully on disk. If you hope there is no
896 * inactive transaction in the fs when -ENOENT is returned, you should
897 * invoke
898 * btrfs_attach_transaction_barrier()
899 */
900 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
901 {
902 return start_transaction(root, 0, TRANS_ATTACH,
903 BTRFS_RESERVE_NO_FLUSH, true);
904 }
905
906 /*
907 * Catch the running transaction.
908 *
909 * It is similar to the above function, the difference is this one
910 * will wait for all the inactive transactions until they fully
911 * complete.
912 */
913 struct btrfs_trans_handle *
914 btrfs_attach_transaction_barrier(struct btrfs_root *root)
915 {
916 struct btrfs_trans_handle *trans;
917
918 trans = start_transaction(root, 0, TRANS_ATTACH,
919 BTRFS_RESERVE_NO_FLUSH, true);
920 if (trans == ERR_PTR(-ENOENT)) {
921 int ret;
922
923 ret = btrfs_wait_for_commit(root->fs_info, 0);
924 if (ret)
925 return ERR_PTR(ret);
926 }
927
928 return trans;
929 }
930
931 /* Wait for a transaction commit to reach at least the given state. */
932 static noinline void wait_for_commit(struct btrfs_transaction *commit,
933 const enum btrfs_trans_state min_state)
934 {
935 struct btrfs_fs_info *fs_info = commit->fs_info;
936 u64 transid = commit->transid;
937 bool put = false;
938
939 /*
940 * At the moment this function is called with min_state either being
941 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
942 */
943 if (min_state == TRANS_STATE_COMPLETED)
944 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
945 else
946 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
947
948 while (1) {
949 wait_event(commit->commit_wait, commit->state >= min_state);
950 if (put)
951 btrfs_put_transaction(commit);
952
953 if (min_state < TRANS_STATE_COMPLETED)
954 break;
955
956 /*
957 * A transaction isn't really completed until all of the
958 * previous transactions are completed, but with fsync we can
959 * end up with SUPER_COMMITTED transactions before a COMPLETED
960 * transaction. Wait for those.
961 */
962
963 spin_lock(&fs_info->trans_lock);
964 commit = list_first_entry_or_null(&fs_info->trans_list,
965 struct btrfs_transaction,
966 list);
967 if (!commit || commit->transid > transid) {
968 spin_unlock(&fs_info->trans_lock);
969 break;
970 }
971 refcount_inc(&commit->use_count);
972 put = true;
973 spin_unlock(&fs_info->trans_lock);
974 }
975 }
976
977 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
978 {
979 struct btrfs_transaction *cur_trans = NULL, *t;
980 int ret = 0;
981
982 if (transid) {
983 if (transid <= fs_info->last_trans_committed)
984 goto out;
985
986 /* find specified transaction */
987 spin_lock(&fs_info->trans_lock);
988 list_for_each_entry(t, &fs_info->trans_list, list) {
989 if (t->transid == transid) {
990 cur_trans = t;
991 refcount_inc(&cur_trans->use_count);
992 ret = 0;
993 break;
994 }
995 if (t->transid > transid) {
996 ret = 0;
997 break;
998 }
999 }
1000 spin_unlock(&fs_info->trans_lock);
1001
1002 /*
1003 * The specified transaction doesn't exist, or we
1004 * raced with btrfs_commit_transaction
1005 */
1006 if (!cur_trans) {
1007 if (transid > fs_info->last_trans_committed)
1008 ret = -EINVAL;
1009 goto out;
1010 }
1011 } else {
1012 /* find newest transaction that is committing | committed */
1013 spin_lock(&fs_info->trans_lock);
1014 list_for_each_entry_reverse(t, &fs_info->trans_list,
1015 list) {
1016 if (t->state >= TRANS_STATE_COMMIT_START) {
1017 if (t->state == TRANS_STATE_COMPLETED)
1018 break;
1019 cur_trans = t;
1020 refcount_inc(&cur_trans->use_count);
1021 break;
1022 }
1023 }
1024 spin_unlock(&fs_info->trans_lock);
1025 if (!cur_trans)
1026 goto out; /* nothing committing|committed */
1027 }
1028
1029 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
1030 ret = cur_trans->aborted;
1031 btrfs_put_transaction(cur_trans);
1032 out:
1033 return ret;
1034 }
1035
1036 void btrfs_throttle(struct btrfs_fs_info *fs_info)
1037 {
1038 wait_current_trans(fs_info);
1039 }
1040
1041 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1042 {
1043 struct btrfs_transaction *cur_trans = trans->transaction;
1044
1045 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1046 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1047 return true;
1048
1049 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1050 return true;
1051
1052 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1053 }
1054
1055 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1056
1057 {
1058 struct btrfs_fs_info *fs_info = trans->fs_info;
1059
1060 if (!trans->block_rsv) {
1061 ASSERT(!trans->bytes_reserved);
1062 ASSERT(!trans->delayed_refs_bytes_reserved);
1063 return;
1064 }
1065
1066 if (!trans->bytes_reserved) {
1067 ASSERT(!trans->delayed_refs_bytes_reserved);
1068 return;
1069 }
1070
1071 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1072 trace_btrfs_space_reservation(fs_info, "transaction",
1073 trans->transid, trans->bytes_reserved, 0);
1074 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1075 trans->bytes_reserved, NULL);
1076 trans->bytes_reserved = 0;
1077
1078 if (!trans->delayed_refs_bytes_reserved)
1079 return;
1080
1081 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1082 trans->transid,
1083 trans->delayed_refs_bytes_reserved, 0);
1084 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1085 trans->delayed_refs_bytes_reserved, NULL);
1086 trans->delayed_refs_bytes_reserved = 0;
1087 }
1088
1089 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1090 int throttle)
1091 {
1092 struct btrfs_fs_info *info = trans->fs_info;
1093 struct btrfs_transaction *cur_trans = trans->transaction;
1094 int err = 0;
1095
1096 if (refcount_read(&trans->use_count) > 1) {
1097 refcount_dec(&trans->use_count);
1098 trans->block_rsv = trans->orig_rsv;
1099 return 0;
1100 }
1101
1102 btrfs_trans_release_metadata(trans);
1103 trans->block_rsv = NULL;
1104
1105 btrfs_create_pending_block_groups(trans);
1106
1107 btrfs_trans_release_chunk_metadata(trans);
1108
1109 if (trans->type & __TRANS_FREEZABLE)
1110 sb_end_intwrite(info->sb);
1111
1112 WARN_ON(cur_trans != info->running_transaction);
1113 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1114 atomic_dec(&cur_trans->num_writers);
1115 extwriter_counter_dec(cur_trans, trans->type);
1116
1117 cond_wake_up(&cur_trans->writer_wait);
1118
1119 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1120 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1121
1122 btrfs_put_transaction(cur_trans);
1123
1124 if (current->journal_info == trans)
1125 current->journal_info = NULL;
1126
1127 if (throttle)
1128 btrfs_run_delayed_iputs(info);
1129
1130 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1131 wake_up_process(info->transaction_kthread);
1132 if (TRANS_ABORTED(trans))
1133 err = trans->aborted;
1134 else
1135 err = -EROFS;
1136 }
1137
1138 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1139 return err;
1140 }
1141
1142 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1143 {
1144 return __btrfs_end_transaction(trans, 0);
1145 }
1146
1147 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1148 {
1149 return __btrfs_end_transaction(trans, 1);
1150 }
1151
1152 /*
1153 * when btree blocks are allocated, they have some corresponding bits set for
1154 * them in one of two extent_io trees. This is used to make sure all of
1155 * those extents are sent to disk but does not wait on them
1156 */
1157 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1158 struct extent_io_tree *dirty_pages, int mark)
1159 {
1160 int err = 0;
1161 int werr = 0;
1162 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1163 struct extent_state *cached_state = NULL;
1164 u64 start = 0;
1165 u64 end;
1166
1167 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1168 mark, &cached_state)) {
1169 bool wait_writeback = false;
1170
1171 err = convert_extent_bit(dirty_pages, start, end,
1172 EXTENT_NEED_WAIT,
1173 mark, &cached_state);
1174 /*
1175 * convert_extent_bit can return -ENOMEM, which is most of the
1176 * time a temporary error. So when it happens, ignore the error
1177 * and wait for writeback of this range to finish - because we
1178 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1179 * to __btrfs_wait_marked_extents() would not know that
1180 * writeback for this range started and therefore wouldn't
1181 * wait for it to finish - we don't want to commit a
1182 * superblock that points to btree nodes/leafs for which
1183 * writeback hasn't finished yet (and without errors).
1184 * We cleanup any entries left in the io tree when committing
1185 * the transaction (through extent_io_tree_release()).
1186 */
1187 if (err == -ENOMEM) {
1188 err = 0;
1189 wait_writeback = true;
1190 }
1191 if (!err)
1192 err = filemap_fdatawrite_range(mapping, start, end);
1193 if (err)
1194 werr = err;
1195 else if (wait_writeback)
1196 werr = filemap_fdatawait_range(mapping, start, end);
1197 free_extent_state(cached_state);
1198 cached_state = NULL;
1199 cond_resched();
1200 start = end + 1;
1201 }
1202 return werr;
1203 }
1204
1205 /*
1206 * when btree blocks are allocated, they have some corresponding bits set for
1207 * them in one of two extent_io trees. This is used to make sure all of
1208 * those extents are on disk for transaction or log commit. We wait
1209 * on all the pages and clear them from the dirty pages state tree
1210 */
1211 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1212 struct extent_io_tree *dirty_pages)
1213 {
1214 int err = 0;
1215 int werr = 0;
1216 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1217 struct extent_state *cached_state = NULL;
1218 u64 start = 0;
1219 u64 end;
1220
1221 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1222 EXTENT_NEED_WAIT, &cached_state)) {
1223 /*
1224 * Ignore -ENOMEM errors returned by clear_extent_bit().
1225 * When committing the transaction, we'll remove any entries
1226 * left in the io tree. For a log commit, we don't remove them
1227 * after committing the log because the tree can be accessed
1228 * concurrently - we do it only at transaction commit time when
1229 * it's safe to do it (through extent_io_tree_release()).
1230 */
1231 err = clear_extent_bit(dirty_pages, start, end,
1232 EXTENT_NEED_WAIT, &cached_state);
1233 if (err == -ENOMEM)
1234 err = 0;
1235 if (!err)
1236 err = filemap_fdatawait_range(mapping, start, end);
1237 if (err)
1238 werr = err;
1239 free_extent_state(cached_state);
1240 cached_state = NULL;
1241 cond_resched();
1242 start = end + 1;
1243 }
1244 if (err)
1245 werr = err;
1246 return werr;
1247 }
1248
1249 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1250 struct extent_io_tree *dirty_pages)
1251 {
1252 bool errors = false;
1253 int err;
1254
1255 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1256 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1257 errors = true;
1258
1259 if (errors && !err)
1260 err = -EIO;
1261 return err;
1262 }
1263
1264 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1265 {
1266 struct btrfs_fs_info *fs_info = log_root->fs_info;
1267 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1268 bool errors = false;
1269 int err;
1270
1271 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1272
1273 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1274 if ((mark & EXTENT_DIRTY) &&
1275 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1276 errors = true;
1277
1278 if ((mark & EXTENT_NEW) &&
1279 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1280 errors = true;
1281
1282 if (errors && !err)
1283 err = -EIO;
1284 return err;
1285 }
1286
1287 /*
1288 * When btree blocks are allocated the corresponding extents are marked dirty.
1289 * This function ensures such extents are persisted on disk for transaction or
1290 * log commit.
1291 *
1292 * @trans: transaction whose dirty pages we'd like to write
1293 */
1294 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1295 {
1296 int ret;
1297 int ret2;
1298 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1299 struct btrfs_fs_info *fs_info = trans->fs_info;
1300 struct blk_plug plug;
1301
1302 blk_start_plug(&plug);
1303 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1304 blk_finish_plug(&plug);
1305 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1306
1307 extent_io_tree_release(&trans->transaction->dirty_pages);
1308
1309 if (ret)
1310 return ret;
1311 else if (ret2)
1312 return ret2;
1313 else
1314 return 0;
1315 }
1316
1317 /*
1318 * this is used to update the root pointer in the tree of tree roots.
1319 *
1320 * But, in the case of the extent allocation tree, updating the root
1321 * pointer may allocate blocks which may change the root of the extent
1322 * allocation tree.
1323 *
1324 * So, this loops and repeats and makes sure the cowonly root didn't
1325 * change while the root pointer was being updated in the metadata.
1326 */
1327 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1328 struct btrfs_root *root)
1329 {
1330 int ret;
1331 u64 old_root_bytenr;
1332 u64 old_root_used;
1333 struct btrfs_fs_info *fs_info = root->fs_info;
1334 struct btrfs_root *tree_root = fs_info->tree_root;
1335
1336 old_root_used = btrfs_root_used(&root->root_item);
1337
1338 while (1) {
1339 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1340 if (old_root_bytenr == root->node->start &&
1341 old_root_used == btrfs_root_used(&root->root_item))
1342 break;
1343
1344 btrfs_set_root_node(&root->root_item, root->node);
1345 ret = btrfs_update_root(trans, tree_root,
1346 &root->root_key,
1347 &root->root_item);
1348 if (ret)
1349 return ret;
1350
1351 old_root_used = btrfs_root_used(&root->root_item);
1352 }
1353
1354 return 0;
1355 }
1356
1357 /*
1358 * update all the cowonly tree roots on disk
1359 *
1360 * The error handling in this function may not be obvious. Any of the
1361 * failures will cause the file system to go offline. We still need
1362 * to clean up the delayed refs.
1363 */
1364 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1365 {
1366 struct btrfs_fs_info *fs_info = trans->fs_info;
1367 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1368 struct list_head *io_bgs = &trans->transaction->io_bgs;
1369 struct list_head *next;
1370 struct extent_buffer *eb;
1371 int ret;
1372
1373 /*
1374 * At this point no one can be using this transaction to modify any tree
1375 * and no one can start another transaction to modify any tree either.
1376 */
1377 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1378
1379 eb = btrfs_lock_root_node(fs_info->tree_root);
1380 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1381 0, &eb, BTRFS_NESTING_COW);
1382 btrfs_tree_unlock(eb);
1383 free_extent_buffer(eb);
1384
1385 if (ret)
1386 return ret;
1387
1388 ret = btrfs_run_dev_stats(trans);
1389 if (ret)
1390 return ret;
1391 ret = btrfs_run_dev_replace(trans);
1392 if (ret)
1393 return ret;
1394 ret = btrfs_run_qgroups(trans);
1395 if (ret)
1396 return ret;
1397
1398 ret = btrfs_setup_space_cache(trans);
1399 if (ret)
1400 return ret;
1401
1402 again:
1403 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1404 struct btrfs_root *root;
1405 next = fs_info->dirty_cowonly_roots.next;
1406 list_del_init(next);
1407 root = list_entry(next, struct btrfs_root, dirty_list);
1408 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1409
1410 list_add_tail(&root->dirty_list,
1411 &trans->transaction->switch_commits);
1412 ret = update_cowonly_root(trans, root);
1413 if (ret)
1414 return ret;
1415 }
1416
1417 /* Now flush any delayed refs generated by updating all of the roots */
1418 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1419 if (ret)
1420 return ret;
1421
1422 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1423 ret = btrfs_write_dirty_block_groups(trans);
1424 if (ret)
1425 return ret;
1426
1427 /*
1428 * We're writing the dirty block groups, which could generate
1429 * delayed refs, which could generate more dirty block groups,
1430 * so we want to keep this flushing in this loop to make sure
1431 * everything gets run.
1432 */
1433 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1434 if (ret)
1435 return ret;
1436 }
1437
1438 if (!list_empty(&fs_info->dirty_cowonly_roots))
1439 goto again;
1440
1441 /* Update dev-replace pointer once everything is committed */
1442 fs_info->dev_replace.committed_cursor_left =
1443 fs_info->dev_replace.cursor_left_last_write_of_item;
1444
1445 return 0;
1446 }
1447
1448 /*
1449 * If we had a pending drop we need to see if there are any others left in our
1450 * dead roots list, and if not clear our bit and wake any waiters.
1451 */
1452 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1453 {
1454 /*
1455 * We put the drop in progress roots at the front of the list, so if the
1456 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1457 * up.
1458 */
1459 spin_lock(&fs_info->trans_lock);
1460 if (!list_empty(&fs_info->dead_roots)) {
1461 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1462 struct btrfs_root,
1463 root_list);
1464 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1465 spin_unlock(&fs_info->trans_lock);
1466 return;
1467 }
1468 }
1469 spin_unlock(&fs_info->trans_lock);
1470
1471 btrfs_wake_unfinished_drop(fs_info);
1472 }
1473
1474 /*
1475 * dead roots are old snapshots that need to be deleted. This allocates
1476 * a dirty root struct and adds it into the list of dead roots that need to
1477 * be deleted
1478 */
1479 void btrfs_add_dead_root(struct btrfs_root *root)
1480 {
1481 struct btrfs_fs_info *fs_info = root->fs_info;
1482
1483 spin_lock(&fs_info->trans_lock);
1484 if (list_empty(&root->root_list)) {
1485 btrfs_grab_root(root);
1486
1487 /* We want to process the partially complete drops first. */
1488 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1489 list_add(&root->root_list, &fs_info->dead_roots);
1490 else
1491 list_add_tail(&root->root_list, &fs_info->dead_roots);
1492 }
1493 spin_unlock(&fs_info->trans_lock);
1494 }
1495
1496 /*
1497 * Update each subvolume root and its relocation root, if it exists, in the tree
1498 * of tree roots. Also free log roots if they exist.
1499 */
1500 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1501 {
1502 struct btrfs_fs_info *fs_info = trans->fs_info;
1503 struct btrfs_root *gang[8];
1504 int i;
1505 int ret;
1506
1507 /*
1508 * At this point no one can be using this transaction to modify any tree
1509 * and no one can start another transaction to modify any tree either.
1510 */
1511 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1512
1513 spin_lock(&fs_info->fs_roots_radix_lock);
1514 while (1) {
1515 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1516 (void **)gang, 0,
1517 ARRAY_SIZE(gang),
1518 BTRFS_ROOT_TRANS_TAG);
1519 if (ret == 0)
1520 break;
1521 for (i = 0; i < ret; i++) {
1522 struct btrfs_root *root = gang[i];
1523 int ret2;
1524
1525 /*
1526 * At this point we can neither have tasks logging inodes
1527 * from a root nor trying to commit a log tree.
1528 */
1529 ASSERT(atomic_read(&root->log_writers) == 0);
1530 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1531 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1532
1533 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1534 (unsigned long)root->root_key.objectid,
1535 BTRFS_ROOT_TRANS_TAG);
1536 spin_unlock(&fs_info->fs_roots_radix_lock);
1537
1538 btrfs_free_log(trans, root);
1539 ret2 = btrfs_update_reloc_root(trans, root);
1540 if (ret2)
1541 return ret2;
1542
1543 /* see comments in should_cow_block() */
1544 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1545 smp_mb__after_atomic();
1546
1547 if (root->commit_root != root->node) {
1548 list_add_tail(&root->dirty_list,
1549 &trans->transaction->switch_commits);
1550 btrfs_set_root_node(&root->root_item,
1551 root->node);
1552 }
1553
1554 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1555 &root->root_key,
1556 &root->root_item);
1557 if (ret2)
1558 return ret2;
1559 spin_lock(&fs_info->fs_roots_radix_lock);
1560 btrfs_qgroup_free_meta_all_pertrans(root);
1561 }
1562 }
1563 spin_unlock(&fs_info->fs_roots_radix_lock);
1564 return 0;
1565 }
1566
1567 /*
1568 * defrag a given btree.
1569 * Every leaf in the btree is read and defragged.
1570 */
1571 int btrfs_defrag_root(struct btrfs_root *root)
1572 {
1573 struct btrfs_fs_info *info = root->fs_info;
1574 struct btrfs_trans_handle *trans;
1575 int ret;
1576
1577 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1578 return 0;
1579
1580 while (1) {
1581 trans = btrfs_start_transaction(root, 0);
1582 if (IS_ERR(trans)) {
1583 ret = PTR_ERR(trans);
1584 break;
1585 }
1586
1587 ret = btrfs_defrag_leaves(trans, root);
1588
1589 btrfs_end_transaction(trans);
1590 btrfs_btree_balance_dirty(info);
1591 cond_resched();
1592
1593 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1594 break;
1595
1596 if (btrfs_defrag_cancelled(info)) {
1597 btrfs_debug(info, "defrag_root cancelled");
1598 ret = -EAGAIN;
1599 break;
1600 }
1601 }
1602 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1603 return ret;
1604 }
1605
1606 /*
1607 * Do all special snapshot related qgroup dirty hack.
1608 *
1609 * Will do all needed qgroup inherit and dirty hack like switch commit
1610 * roots inside one transaction and write all btree into disk, to make
1611 * qgroup works.
1612 */
1613 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1614 struct btrfs_root *src,
1615 struct btrfs_root *parent,
1616 struct btrfs_qgroup_inherit *inherit,
1617 u64 dst_objectid)
1618 {
1619 struct btrfs_fs_info *fs_info = src->fs_info;
1620 int ret;
1621
1622 /*
1623 * Save some performance in the case that qgroups are not enabled. If
1624 * this check races with the ioctl, rescan will kick in anyway.
1625 */
1626 if (!btrfs_qgroup_full_accounting(fs_info))
1627 return 0;
1628
1629 /*
1630 * Ensure dirty @src will be committed. Or, after coming
1631 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1632 * recorded root will never be updated again, causing an outdated root
1633 * item.
1634 */
1635 ret = record_root_in_trans(trans, src, 1);
1636 if (ret)
1637 return ret;
1638
1639 /*
1640 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1641 * src root, so we must run the delayed refs here.
1642 *
1643 * However this isn't particularly fool proof, because there's no
1644 * synchronization keeping us from changing the tree after this point
1645 * before we do the qgroup_inherit, or even from making changes while
1646 * we're doing the qgroup_inherit. But that's a problem for the future,
1647 * for now flush the delayed refs to narrow the race window where the
1648 * qgroup counters could end up wrong.
1649 */
1650 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1651 if (ret) {
1652 btrfs_abort_transaction(trans, ret);
1653 return ret;
1654 }
1655
1656 ret = commit_fs_roots(trans);
1657 if (ret)
1658 goto out;
1659 ret = btrfs_qgroup_account_extents(trans);
1660 if (ret < 0)
1661 goto out;
1662
1663 /* Now qgroup are all updated, we can inherit it to new qgroups */
1664 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1665 parent->root_key.objectid, inherit);
1666 if (ret < 0)
1667 goto out;
1668
1669 /*
1670 * Now we do a simplified commit transaction, which will:
1671 * 1) commit all subvolume and extent tree
1672 * To ensure all subvolume and extent tree have a valid
1673 * commit_root to accounting later insert_dir_item()
1674 * 2) write all btree blocks onto disk
1675 * This is to make sure later btree modification will be cowed
1676 * Or commit_root can be populated and cause wrong qgroup numbers
1677 * In this simplified commit, we don't really care about other trees
1678 * like chunk and root tree, as they won't affect qgroup.
1679 * And we don't write super to avoid half committed status.
1680 */
1681 ret = commit_cowonly_roots(trans);
1682 if (ret)
1683 goto out;
1684 switch_commit_roots(trans);
1685 ret = btrfs_write_and_wait_transaction(trans);
1686 if (ret)
1687 btrfs_handle_fs_error(fs_info, ret,
1688 "Error while writing out transaction for qgroup");
1689
1690 out:
1691 /*
1692 * Force parent root to be updated, as we recorded it before so its
1693 * last_trans == cur_transid.
1694 * Or it won't be committed again onto disk after later
1695 * insert_dir_item()
1696 */
1697 if (!ret)
1698 ret = record_root_in_trans(trans, parent, 1);
1699 return ret;
1700 }
1701
1702 /*
1703 * new snapshots need to be created at a very specific time in the
1704 * transaction commit. This does the actual creation.
1705 *
1706 * Note:
1707 * If the error which may affect the commitment of the current transaction
1708 * happens, we should return the error number. If the error which just affect
1709 * the creation of the pending snapshots, just return 0.
1710 */
1711 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1712 struct btrfs_pending_snapshot *pending)
1713 {
1714
1715 struct btrfs_fs_info *fs_info = trans->fs_info;
1716 struct btrfs_key key;
1717 struct btrfs_root_item *new_root_item;
1718 struct btrfs_root *tree_root = fs_info->tree_root;
1719 struct btrfs_root *root = pending->root;
1720 struct btrfs_root *parent_root;
1721 struct btrfs_block_rsv *rsv;
1722 struct inode *parent_inode = pending->dir;
1723 struct btrfs_path *path;
1724 struct btrfs_dir_item *dir_item;
1725 struct extent_buffer *tmp;
1726 struct extent_buffer *old;
1727 struct timespec64 cur_time;
1728 int ret = 0;
1729 u64 to_reserve = 0;
1730 u64 index = 0;
1731 u64 objectid;
1732 u64 root_flags;
1733 unsigned int nofs_flags;
1734 struct fscrypt_name fname;
1735
1736 ASSERT(pending->path);
1737 path = pending->path;
1738
1739 ASSERT(pending->root_item);
1740 new_root_item = pending->root_item;
1741
1742 /*
1743 * We're inside a transaction and must make sure that any potential
1744 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1745 * filesystem.
1746 */
1747 nofs_flags = memalloc_nofs_save();
1748 pending->error = fscrypt_setup_filename(parent_inode,
1749 &pending->dentry->d_name, 0,
1750 &fname);
1751 memalloc_nofs_restore(nofs_flags);
1752 if (pending->error)
1753 goto free_pending;
1754
1755 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1756 if (pending->error)
1757 goto free_fname;
1758
1759 /*
1760 * Make qgroup to skip current new snapshot's qgroupid, as it is
1761 * accounted by later btrfs_qgroup_inherit().
1762 */
1763 btrfs_set_skip_qgroup(trans, objectid);
1764
1765 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1766
1767 if (to_reserve > 0) {
1768 pending->error = btrfs_block_rsv_add(fs_info,
1769 &pending->block_rsv,
1770 to_reserve,
1771 BTRFS_RESERVE_NO_FLUSH);
1772 if (pending->error)
1773 goto clear_skip_qgroup;
1774 }
1775
1776 key.objectid = objectid;
1777 key.offset = (u64)-1;
1778 key.type = BTRFS_ROOT_ITEM_KEY;
1779
1780 rsv = trans->block_rsv;
1781 trans->block_rsv = &pending->block_rsv;
1782 trans->bytes_reserved = trans->block_rsv->reserved;
1783 trace_btrfs_space_reservation(fs_info, "transaction",
1784 trans->transid,
1785 trans->bytes_reserved, 1);
1786 parent_root = BTRFS_I(parent_inode)->root;
1787 ret = record_root_in_trans(trans, parent_root, 0);
1788 if (ret)
1789 goto fail;
1790 cur_time = current_time(parent_inode);
1791
1792 /*
1793 * insert the directory item
1794 */
1795 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1796 if (ret) {
1797 btrfs_abort_transaction(trans, ret);
1798 goto fail;
1799 }
1800
1801 /* check if there is a file/dir which has the same name. */
1802 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1803 btrfs_ino(BTRFS_I(parent_inode)),
1804 &fname.disk_name, 0);
1805 if (dir_item != NULL && !IS_ERR(dir_item)) {
1806 pending->error = -EEXIST;
1807 goto dir_item_existed;
1808 } else if (IS_ERR(dir_item)) {
1809 ret = PTR_ERR(dir_item);
1810 btrfs_abort_transaction(trans, ret);
1811 goto fail;
1812 }
1813 btrfs_release_path(path);
1814
1815 ret = btrfs_create_qgroup(trans, objectid);
1816 if (ret) {
1817 btrfs_abort_transaction(trans, ret);
1818 goto fail;
1819 }
1820
1821 /*
1822 * pull in the delayed directory update
1823 * and the delayed inode item
1824 * otherwise we corrupt the FS during
1825 * snapshot
1826 */
1827 ret = btrfs_run_delayed_items(trans);
1828 if (ret) { /* Transaction aborted */
1829 btrfs_abort_transaction(trans, ret);
1830 goto fail;
1831 }
1832
1833 ret = record_root_in_trans(trans, root, 0);
1834 if (ret) {
1835 btrfs_abort_transaction(trans, ret);
1836 goto fail;
1837 }
1838 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1839 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1840 btrfs_check_and_init_root_item(new_root_item);
1841
1842 root_flags = btrfs_root_flags(new_root_item);
1843 if (pending->readonly)
1844 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1845 else
1846 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1847 btrfs_set_root_flags(new_root_item, root_flags);
1848
1849 btrfs_set_root_generation_v2(new_root_item,
1850 trans->transid);
1851 generate_random_guid(new_root_item->uuid);
1852 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1853 BTRFS_UUID_SIZE);
1854 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1855 memset(new_root_item->received_uuid, 0,
1856 sizeof(new_root_item->received_uuid));
1857 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1858 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1859 btrfs_set_root_stransid(new_root_item, 0);
1860 btrfs_set_root_rtransid(new_root_item, 0);
1861 }
1862 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1863 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1864 btrfs_set_root_otransid(new_root_item, trans->transid);
1865
1866 old = btrfs_lock_root_node(root);
1867 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1868 BTRFS_NESTING_COW);
1869 if (ret) {
1870 btrfs_tree_unlock(old);
1871 free_extent_buffer(old);
1872 btrfs_abort_transaction(trans, ret);
1873 goto fail;
1874 }
1875
1876 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1877 /* clean up in any case */
1878 btrfs_tree_unlock(old);
1879 free_extent_buffer(old);
1880 if (ret) {
1881 btrfs_abort_transaction(trans, ret);
1882 goto fail;
1883 }
1884 /* see comments in should_cow_block() */
1885 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1886 smp_wmb();
1887
1888 btrfs_set_root_node(new_root_item, tmp);
1889 /* record when the snapshot was created in key.offset */
1890 key.offset = trans->transid;
1891 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1892 btrfs_tree_unlock(tmp);
1893 free_extent_buffer(tmp);
1894 if (ret) {
1895 btrfs_abort_transaction(trans, ret);
1896 goto fail;
1897 }
1898
1899 /*
1900 * insert root back/forward references
1901 */
1902 ret = btrfs_add_root_ref(trans, objectid,
1903 parent_root->root_key.objectid,
1904 btrfs_ino(BTRFS_I(parent_inode)), index,
1905 &fname.disk_name);
1906 if (ret) {
1907 btrfs_abort_transaction(trans, ret);
1908 goto fail;
1909 }
1910
1911 key.offset = (u64)-1;
1912 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1913 if (IS_ERR(pending->snap)) {
1914 ret = PTR_ERR(pending->snap);
1915 pending->snap = NULL;
1916 btrfs_abort_transaction(trans, ret);
1917 goto fail;
1918 }
1919
1920 ret = btrfs_reloc_post_snapshot(trans, pending);
1921 if (ret) {
1922 btrfs_abort_transaction(trans, ret);
1923 goto fail;
1924 }
1925
1926 /*
1927 * Do special qgroup accounting for snapshot, as we do some qgroup
1928 * snapshot hack to do fast snapshot.
1929 * To co-operate with that hack, we do hack again.
1930 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1931 */
1932 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1933 ret = qgroup_account_snapshot(trans, root, parent_root,
1934 pending->inherit, objectid);
1935 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1936 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1937 parent_root->root_key.objectid, pending->inherit);
1938 if (ret < 0)
1939 goto fail;
1940
1941 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1942 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1943 index);
1944 /* We have check then name at the beginning, so it is impossible. */
1945 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1946 if (ret) {
1947 btrfs_abort_transaction(trans, ret);
1948 goto fail;
1949 }
1950
1951 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1952 fname.disk_name.len * 2);
1953 parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1954 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1955 if (ret) {
1956 btrfs_abort_transaction(trans, ret);
1957 goto fail;
1958 }
1959 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1960 BTRFS_UUID_KEY_SUBVOL,
1961 objectid);
1962 if (ret) {
1963 btrfs_abort_transaction(trans, ret);
1964 goto fail;
1965 }
1966 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1967 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1968 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1969 objectid);
1970 if (ret && ret != -EEXIST) {
1971 btrfs_abort_transaction(trans, ret);
1972 goto fail;
1973 }
1974 }
1975
1976 fail:
1977 pending->error = ret;
1978 dir_item_existed:
1979 trans->block_rsv = rsv;
1980 trans->bytes_reserved = 0;
1981 clear_skip_qgroup:
1982 btrfs_clear_skip_qgroup(trans);
1983 free_fname:
1984 fscrypt_free_filename(&fname);
1985 free_pending:
1986 kfree(new_root_item);
1987 pending->root_item = NULL;
1988 btrfs_free_path(path);
1989 pending->path = NULL;
1990
1991 return ret;
1992 }
1993
1994 /*
1995 * create all the snapshots we've scheduled for creation
1996 */
1997 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1998 {
1999 struct btrfs_pending_snapshot *pending, *next;
2000 struct list_head *head = &trans->transaction->pending_snapshots;
2001 int ret = 0;
2002
2003 list_for_each_entry_safe(pending, next, head, list) {
2004 list_del(&pending->list);
2005 ret = create_pending_snapshot(trans, pending);
2006 if (ret)
2007 break;
2008 }
2009 return ret;
2010 }
2011
2012 static void update_super_roots(struct btrfs_fs_info *fs_info)
2013 {
2014 struct btrfs_root_item *root_item;
2015 struct btrfs_super_block *super;
2016
2017 super = fs_info->super_copy;
2018
2019 root_item = &fs_info->chunk_root->root_item;
2020 super->chunk_root = root_item->bytenr;
2021 super->chunk_root_generation = root_item->generation;
2022 super->chunk_root_level = root_item->level;
2023
2024 root_item = &fs_info->tree_root->root_item;
2025 super->root = root_item->bytenr;
2026 super->generation = root_item->generation;
2027 super->root_level = root_item->level;
2028 if (btrfs_test_opt(fs_info, SPACE_CACHE))
2029 super->cache_generation = root_item->generation;
2030 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
2031 super->cache_generation = 0;
2032 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
2033 super->uuid_tree_generation = root_item->generation;
2034 }
2035
2036 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
2037 {
2038 struct btrfs_transaction *trans;
2039 int ret = 0;
2040
2041 spin_lock(&info->trans_lock);
2042 trans = info->running_transaction;
2043 if (trans)
2044 ret = (trans->state >= TRANS_STATE_COMMIT_START);
2045 spin_unlock(&info->trans_lock);
2046 return ret;
2047 }
2048
2049 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
2050 {
2051 struct btrfs_transaction *trans;
2052 int ret = 0;
2053
2054 spin_lock(&info->trans_lock);
2055 trans = info->running_transaction;
2056 if (trans)
2057 ret = is_transaction_blocked(trans);
2058 spin_unlock(&info->trans_lock);
2059 return ret;
2060 }
2061
2062 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
2063 {
2064 struct btrfs_fs_info *fs_info = trans->fs_info;
2065 struct btrfs_transaction *cur_trans;
2066
2067 /* Kick the transaction kthread. */
2068 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2069 wake_up_process(fs_info->transaction_kthread);
2070
2071 /* take transaction reference */
2072 cur_trans = trans->transaction;
2073 refcount_inc(&cur_trans->use_count);
2074
2075 btrfs_end_transaction(trans);
2076
2077 /*
2078 * Wait for the current transaction commit to start and block
2079 * subsequent transaction joins
2080 */
2081 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2082 wait_event(fs_info->transaction_blocked_wait,
2083 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2084 TRANS_ABORTED(cur_trans));
2085 btrfs_put_transaction(cur_trans);
2086 }
2087
2088 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2089 {
2090 struct btrfs_fs_info *fs_info = trans->fs_info;
2091 struct btrfs_transaction *cur_trans = trans->transaction;
2092
2093 WARN_ON(refcount_read(&trans->use_count) > 1);
2094
2095 btrfs_abort_transaction(trans, err);
2096
2097 spin_lock(&fs_info->trans_lock);
2098
2099 /*
2100 * If the transaction is removed from the list, it means this
2101 * transaction has been committed successfully, so it is impossible
2102 * to call the cleanup function.
2103 */
2104 BUG_ON(list_empty(&cur_trans->list));
2105
2106 if (cur_trans == fs_info->running_transaction) {
2107 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2108 spin_unlock(&fs_info->trans_lock);
2109
2110 /*
2111 * The thread has already released the lockdep map as reader
2112 * already in btrfs_commit_transaction().
2113 */
2114 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2115 wait_event(cur_trans->writer_wait,
2116 atomic_read(&cur_trans->num_writers) == 1);
2117
2118 spin_lock(&fs_info->trans_lock);
2119 }
2120
2121 /*
2122 * Now that we know no one else is still using the transaction we can
2123 * remove the transaction from the list of transactions. This avoids
2124 * the transaction kthread from cleaning up the transaction while some
2125 * other task is still using it, which could result in a use-after-free
2126 * on things like log trees, as it forces the transaction kthread to
2127 * wait for this transaction to be cleaned up by us.
2128 */
2129 list_del_init(&cur_trans->list);
2130
2131 spin_unlock(&fs_info->trans_lock);
2132
2133 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2134
2135 spin_lock(&fs_info->trans_lock);
2136 if (cur_trans == fs_info->running_transaction)
2137 fs_info->running_transaction = NULL;
2138 spin_unlock(&fs_info->trans_lock);
2139
2140 if (trans->type & __TRANS_FREEZABLE)
2141 sb_end_intwrite(fs_info->sb);
2142 btrfs_put_transaction(cur_trans);
2143 btrfs_put_transaction(cur_trans);
2144
2145 trace_btrfs_transaction_commit(fs_info);
2146
2147 if (current->journal_info == trans)
2148 current->journal_info = NULL;
2149
2150 /*
2151 * If relocation is running, we can't cancel scrub because that will
2152 * result in a deadlock. Before relocating a block group, relocation
2153 * pauses scrub, then starts and commits a transaction before unpausing
2154 * scrub. If the transaction commit is being done by the relocation
2155 * task or triggered by another task and the relocation task is waiting
2156 * for the commit, and we end up here due to an error in the commit
2157 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2158 * asking for scrub to stop while having it asked to be paused higher
2159 * above in relocation code.
2160 */
2161 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2162 btrfs_scrub_cancel(fs_info);
2163
2164 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2165 }
2166
2167 /*
2168 * Release reserved delayed ref space of all pending block groups of the
2169 * transaction and remove them from the list
2170 */
2171 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2172 {
2173 struct btrfs_fs_info *fs_info = trans->fs_info;
2174 struct btrfs_block_group *block_group, *tmp;
2175
2176 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2177 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
2178 list_del_init(&block_group->bg_list);
2179 }
2180 }
2181
2182 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2183 {
2184 /*
2185 * We use try_to_writeback_inodes_sb() here because if we used
2186 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2187 * Currently are holding the fs freeze lock, if we do an async flush
2188 * we'll do btrfs_join_transaction() and deadlock because we need to
2189 * wait for the fs freeze lock. Using the direct flushing we benefit
2190 * from already being in a transaction and our join_transaction doesn't
2191 * have to re-take the fs freeze lock.
2192 *
2193 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2194 * if it can read lock sb->s_umount. It will always be able to lock it,
2195 * except when the filesystem is being unmounted or being frozen, but in
2196 * those cases sync_filesystem() is called, which results in calling
2197 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2198 * Note that we don't call writeback_inodes_sb() directly, because it
2199 * will emit a warning if sb->s_umount is not locked.
2200 */
2201 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2202 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2203 return 0;
2204 }
2205
2206 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2207 {
2208 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2209 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2210 }
2211
2212 /*
2213 * Add a pending snapshot associated with the given transaction handle to the
2214 * respective handle. This must be called after the transaction commit started
2215 * and while holding fs_info->trans_lock.
2216 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2217 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2218 * returns an error.
2219 */
2220 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2221 {
2222 struct btrfs_transaction *cur_trans = trans->transaction;
2223
2224 if (!trans->pending_snapshot)
2225 return;
2226
2227 lockdep_assert_held(&trans->fs_info->trans_lock);
2228 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2229
2230 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2231 }
2232
2233 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2234 {
2235 fs_info->commit_stats.commit_count++;
2236 fs_info->commit_stats.last_commit_dur = interval;
2237 fs_info->commit_stats.max_commit_dur =
2238 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2239 fs_info->commit_stats.total_commit_dur += interval;
2240 }
2241
2242 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2243 {
2244 struct btrfs_fs_info *fs_info = trans->fs_info;
2245 struct btrfs_transaction *cur_trans = trans->transaction;
2246 struct btrfs_transaction *prev_trans = NULL;
2247 int ret;
2248 ktime_t start_time;
2249 ktime_t interval;
2250
2251 ASSERT(refcount_read(&trans->use_count) == 1);
2252 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2253
2254 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2255
2256 /* Stop the commit early if ->aborted is set */
2257 if (TRANS_ABORTED(cur_trans)) {
2258 ret = cur_trans->aborted;
2259 goto lockdep_trans_commit_start_release;
2260 }
2261
2262 btrfs_trans_release_metadata(trans);
2263 trans->block_rsv = NULL;
2264
2265 /*
2266 * We only want one transaction commit doing the flushing so we do not
2267 * waste a bunch of time on lock contention on the extent root node.
2268 */
2269 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2270 &cur_trans->delayed_refs.flags)) {
2271 /*
2272 * Make a pass through all the delayed refs we have so far.
2273 * Any running threads may add more while we are here.
2274 */
2275 ret = btrfs_run_delayed_refs(trans, 0);
2276 if (ret)
2277 goto lockdep_trans_commit_start_release;
2278 }
2279
2280 btrfs_create_pending_block_groups(trans);
2281
2282 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2283 int run_it = 0;
2284
2285 /* this mutex is also taken before trying to set
2286 * block groups readonly. We need to make sure
2287 * that nobody has set a block group readonly
2288 * after a extents from that block group have been
2289 * allocated for cache files. btrfs_set_block_group_ro
2290 * will wait for the transaction to commit if it
2291 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2292 *
2293 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2294 * only one process starts all the block group IO. It wouldn't
2295 * hurt to have more than one go through, but there's no
2296 * real advantage to it either.
2297 */
2298 mutex_lock(&fs_info->ro_block_group_mutex);
2299 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2300 &cur_trans->flags))
2301 run_it = 1;
2302 mutex_unlock(&fs_info->ro_block_group_mutex);
2303
2304 if (run_it) {
2305 ret = btrfs_start_dirty_block_groups(trans);
2306 if (ret)
2307 goto lockdep_trans_commit_start_release;
2308 }
2309 }
2310
2311 spin_lock(&fs_info->trans_lock);
2312 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2313 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2314
2315 add_pending_snapshot(trans);
2316
2317 spin_unlock(&fs_info->trans_lock);
2318 refcount_inc(&cur_trans->use_count);
2319
2320 if (trans->in_fsync)
2321 want_state = TRANS_STATE_SUPER_COMMITTED;
2322
2323 btrfs_trans_state_lockdep_release(fs_info,
2324 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2325 ret = btrfs_end_transaction(trans);
2326 wait_for_commit(cur_trans, want_state);
2327
2328 if (TRANS_ABORTED(cur_trans))
2329 ret = cur_trans->aborted;
2330
2331 btrfs_put_transaction(cur_trans);
2332
2333 return ret;
2334 }
2335
2336 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2337 wake_up(&fs_info->transaction_blocked_wait);
2338 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2339
2340 if (cur_trans->list.prev != &fs_info->trans_list) {
2341 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2342
2343 if (trans->in_fsync)
2344 want_state = TRANS_STATE_SUPER_COMMITTED;
2345
2346 prev_trans = list_entry(cur_trans->list.prev,
2347 struct btrfs_transaction, list);
2348 if (prev_trans->state < want_state) {
2349 refcount_inc(&prev_trans->use_count);
2350 spin_unlock(&fs_info->trans_lock);
2351
2352 wait_for_commit(prev_trans, want_state);
2353
2354 ret = READ_ONCE(prev_trans->aborted);
2355
2356 btrfs_put_transaction(prev_trans);
2357 if (ret)
2358 goto lockdep_release;
2359 spin_lock(&fs_info->trans_lock);
2360 }
2361 } else {
2362 /*
2363 * The previous transaction was aborted and was already removed
2364 * from the list of transactions at fs_info->trans_list. So we
2365 * abort to prevent writing a new superblock that reflects a
2366 * corrupt state (pointing to trees with unwritten nodes/leafs).
2367 */
2368 if (BTRFS_FS_ERROR(fs_info)) {
2369 spin_unlock(&fs_info->trans_lock);
2370 ret = -EROFS;
2371 goto lockdep_release;
2372 }
2373 }
2374
2375 cur_trans->state = TRANS_STATE_COMMIT_START;
2376 wake_up(&fs_info->transaction_blocked_wait);
2377 spin_unlock(&fs_info->trans_lock);
2378
2379 /*
2380 * Get the time spent on the work done by the commit thread and not
2381 * the time spent waiting on a previous commit
2382 */
2383 start_time = ktime_get_ns();
2384
2385 extwriter_counter_dec(cur_trans, trans->type);
2386
2387 ret = btrfs_start_delalloc_flush(fs_info);
2388 if (ret)
2389 goto lockdep_release;
2390
2391 ret = btrfs_run_delayed_items(trans);
2392 if (ret)
2393 goto lockdep_release;
2394
2395 /*
2396 * The thread has started/joined the transaction thus it holds the
2397 * lockdep map as a reader. It has to release it before acquiring the
2398 * lockdep map as a writer.
2399 */
2400 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2401 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2402 wait_event(cur_trans->writer_wait,
2403 extwriter_counter_read(cur_trans) == 0);
2404
2405 /* some pending stuffs might be added after the previous flush. */
2406 ret = btrfs_run_delayed_items(trans);
2407 if (ret) {
2408 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2409 goto cleanup_transaction;
2410 }
2411
2412 btrfs_wait_delalloc_flush(fs_info);
2413
2414 /*
2415 * Wait for all ordered extents started by a fast fsync that joined this
2416 * transaction. Otherwise if this transaction commits before the ordered
2417 * extents complete we lose logged data after a power failure.
2418 */
2419 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2420 wait_event(cur_trans->pending_wait,
2421 atomic_read(&cur_trans->pending_ordered) == 0);
2422
2423 btrfs_scrub_pause(fs_info);
2424 /*
2425 * Ok now we need to make sure to block out any other joins while we
2426 * commit the transaction. We could have started a join before setting
2427 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2428 */
2429 spin_lock(&fs_info->trans_lock);
2430 add_pending_snapshot(trans);
2431 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2432 spin_unlock(&fs_info->trans_lock);
2433
2434 /*
2435 * The thread has started/joined the transaction thus it holds the
2436 * lockdep map as a reader. It has to release it before acquiring the
2437 * lockdep map as a writer.
2438 */
2439 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2440 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2441 wait_event(cur_trans->writer_wait,
2442 atomic_read(&cur_trans->num_writers) == 1);
2443
2444 /*
2445 * Make lockdep happy by acquiring the state locks after
2446 * btrfs_trans_num_writers is released. If we acquired the state locks
2447 * before releasing the btrfs_trans_num_writers lock then lockdep would
2448 * complain because we did not follow the reverse order unlocking rule.
2449 */
2450 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2451 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2452 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2453
2454 /*
2455 * We've started the commit, clear the flag in case we were triggered to
2456 * do an async commit but somebody else started before the transaction
2457 * kthread could do the work.
2458 */
2459 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2460
2461 if (TRANS_ABORTED(cur_trans)) {
2462 ret = cur_trans->aborted;
2463 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2464 goto scrub_continue;
2465 }
2466 /*
2467 * the reloc mutex makes sure that we stop
2468 * the balancing code from coming in and moving
2469 * extents around in the middle of the commit
2470 */
2471 mutex_lock(&fs_info->reloc_mutex);
2472
2473 /*
2474 * We needn't worry about the delayed items because we will
2475 * deal with them in create_pending_snapshot(), which is the
2476 * core function of the snapshot creation.
2477 */
2478 ret = create_pending_snapshots(trans);
2479 if (ret)
2480 goto unlock_reloc;
2481
2482 /*
2483 * We insert the dir indexes of the snapshots and update the inode
2484 * of the snapshots' parents after the snapshot creation, so there
2485 * are some delayed items which are not dealt with. Now deal with
2486 * them.
2487 *
2488 * We needn't worry that this operation will corrupt the snapshots,
2489 * because all the tree which are snapshoted will be forced to COW
2490 * the nodes and leaves.
2491 */
2492 ret = btrfs_run_delayed_items(trans);
2493 if (ret)
2494 goto unlock_reloc;
2495
2496 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2497 if (ret)
2498 goto unlock_reloc;
2499
2500 /*
2501 * make sure none of the code above managed to slip in a
2502 * delayed item
2503 */
2504 btrfs_assert_delayed_root_empty(fs_info);
2505
2506 WARN_ON(cur_trans != trans->transaction);
2507
2508 ret = commit_fs_roots(trans);
2509 if (ret)
2510 goto unlock_reloc;
2511
2512 /* commit_fs_roots gets rid of all the tree log roots, it is now
2513 * safe to free the root of tree log roots
2514 */
2515 btrfs_free_log_root_tree(trans, fs_info);
2516
2517 /*
2518 * Since fs roots are all committed, we can get a quite accurate
2519 * new_roots. So let's do quota accounting.
2520 */
2521 ret = btrfs_qgroup_account_extents(trans);
2522 if (ret < 0)
2523 goto unlock_reloc;
2524
2525 ret = commit_cowonly_roots(trans);
2526 if (ret)
2527 goto unlock_reloc;
2528
2529 /*
2530 * The tasks which save the space cache and inode cache may also
2531 * update ->aborted, check it.
2532 */
2533 if (TRANS_ABORTED(cur_trans)) {
2534 ret = cur_trans->aborted;
2535 goto unlock_reloc;
2536 }
2537
2538 cur_trans = fs_info->running_transaction;
2539
2540 btrfs_set_root_node(&fs_info->tree_root->root_item,
2541 fs_info->tree_root->node);
2542 list_add_tail(&fs_info->tree_root->dirty_list,
2543 &cur_trans->switch_commits);
2544
2545 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2546 fs_info->chunk_root->node);
2547 list_add_tail(&fs_info->chunk_root->dirty_list,
2548 &cur_trans->switch_commits);
2549
2550 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2551 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2552 fs_info->block_group_root->node);
2553 list_add_tail(&fs_info->block_group_root->dirty_list,
2554 &cur_trans->switch_commits);
2555 }
2556
2557 switch_commit_roots(trans);
2558
2559 ASSERT(list_empty(&cur_trans->dirty_bgs));
2560 ASSERT(list_empty(&cur_trans->io_bgs));
2561 update_super_roots(fs_info);
2562
2563 btrfs_set_super_log_root(fs_info->super_copy, 0);
2564 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2565 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2566 sizeof(*fs_info->super_copy));
2567
2568 btrfs_commit_device_sizes(cur_trans);
2569
2570 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2571 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2572
2573 btrfs_trans_release_chunk_metadata(trans);
2574
2575 /*
2576 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2577 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2578 * make sure that before we commit our superblock, no other task can
2579 * start a new transaction and commit a log tree before we commit our
2580 * superblock. Anyone trying to commit a log tree locks this mutex before
2581 * writing its superblock.
2582 */
2583 mutex_lock(&fs_info->tree_log_mutex);
2584
2585 spin_lock(&fs_info->trans_lock);
2586 cur_trans->state = TRANS_STATE_UNBLOCKED;
2587 fs_info->running_transaction = NULL;
2588 spin_unlock(&fs_info->trans_lock);
2589 mutex_unlock(&fs_info->reloc_mutex);
2590
2591 wake_up(&fs_info->transaction_wait);
2592 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2593
2594 /* If we have features changed, wake up the cleaner to update sysfs. */
2595 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2596 fs_info->cleaner_kthread)
2597 wake_up_process(fs_info->cleaner_kthread);
2598
2599 ret = btrfs_write_and_wait_transaction(trans);
2600 if (ret) {
2601 btrfs_handle_fs_error(fs_info, ret,
2602 "Error while writing out transaction");
2603 mutex_unlock(&fs_info->tree_log_mutex);
2604 goto scrub_continue;
2605 }
2606
2607 ret = write_all_supers(fs_info, 0);
2608 /*
2609 * the super is written, we can safely allow the tree-loggers
2610 * to go about their business
2611 */
2612 mutex_unlock(&fs_info->tree_log_mutex);
2613 if (ret)
2614 goto scrub_continue;
2615
2616 /*
2617 * We needn't acquire the lock here because there is no other task
2618 * which can change it.
2619 */
2620 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2621 wake_up(&cur_trans->commit_wait);
2622 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2623
2624 btrfs_finish_extent_commit(trans);
2625
2626 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2627 btrfs_clear_space_info_full(fs_info);
2628
2629 fs_info->last_trans_committed = cur_trans->transid;
2630 /*
2631 * We needn't acquire the lock here because there is no other task
2632 * which can change it.
2633 */
2634 cur_trans->state = TRANS_STATE_COMPLETED;
2635 wake_up(&cur_trans->commit_wait);
2636 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2637
2638 spin_lock(&fs_info->trans_lock);
2639 list_del_init(&cur_trans->list);
2640 spin_unlock(&fs_info->trans_lock);
2641
2642 btrfs_put_transaction(cur_trans);
2643 btrfs_put_transaction(cur_trans);
2644
2645 if (trans->type & __TRANS_FREEZABLE)
2646 sb_end_intwrite(fs_info->sb);
2647
2648 trace_btrfs_transaction_commit(fs_info);
2649
2650 interval = ktime_get_ns() - start_time;
2651
2652 btrfs_scrub_continue(fs_info);
2653
2654 if (current->journal_info == trans)
2655 current->journal_info = NULL;
2656
2657 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2658
2659 update_commit_stats(fs_info, interval);
2660
2661 return ret;
2662
2663 unlock_reloc:
2664 mutex_unlock(&fs_info->reloc_mutex);
2665 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2666 scrub_continue:
2667 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2668 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2669 btrfs_scrub_continue(fs_info);
2670 cleanup_transaction:
2671 btrfs_trans_release_metadata(trans);
2672 btrfs_cleanup_pending_block_groups(trans);
2673 btrfs_trans_release_chunk_metadata(trans);
2674 trans->block_rsv = NULL;
2675 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2676 if (current->journal_info == trans)
2677 current->journal_info = NULL;
2678 cleanup_transaction(trans, ret);
2679
2680 return ret;
2681
2682 lockdep_release:
2683 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2684 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2685 goto cleanup_transaction;
2686
2687 lockdep_trans_commit_start_release:
2688 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2689 btrfs_end_transaction(trans);
2690 return ret;
2691 }
2692
2693 /*
2694 * return < 0 if error
2695 * 0 if there are no more dead_roots at the time of call
2696 * 1 there are more to be processed, call me again
2697 *
2698 * The return value indicates there are certainly more snapshots to delete, but
2699 * if there comes a new one during processing, it may return 0. We don't mind,
2700 * because btrfs_commit_super will poke cleaner thread and it will process it a
2701 * few seconds later.
2702 */
2703 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2704 {
2705 struct btrfs_root *root;
2706 int ret;
2707
2708 spin_lock(&fs_info->trans_lock);
2709 if (list_empty(&fs_info->dead_roots)) {
2710 spin_unlock(&fs_info->trans_lock);
2711 return 0;
2712 }
2713 root = list_first_entry(&fs_info->dead_roots,
2714 struct btrfs_root, root_list);
2715 list_del_init(&root->root_list);
2716 spin_unlock(&fs_info->trans_lock);
2717
2718 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2719
2720 btrfs_kill_all_delayed_nodes(root);
2721
2722 if (btrfs_header_backref_rev(root->node) <
2723 BTRFS_MIXED_BACKREF_REV)
2724 ret = btrfs_drop_snapshot(root, 0, 0);
2725 else
2726 ret = btrfs_drop_snapshot(root, 1, 0);
2727
2728 btrfs_put_root(root);
2729 return (ret < 0) ? 0 : 1;
2730 }
2731
2732 /*
2733 * We only mark the transaction aborted and then set the file system read-only.
2734 * This will prevent new transactions from starting or trying to join this
2735 * one.
2736 *
2737 * This means that error recovery at the call site is limited to freeing
2738 * any local memory allocations and passing the error code up without
2739 * further cleanup. The transaction should complete as it normally would
2740 * in the call path but will return -EIO.
2741 *
2742 * We'll complete the cleanup in btrfs_end_transaction and
2743 * btrfs_commit_transaction.
2744 */
2745 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2746 const char *function,
2747 unsigned int line, int error, bool first_hit)
2748 {
2749 struct btrfs_fs_info *fs_info = trans->fs_info;
2750
2751 WRITE_ONCE(trans->aborted, error);
2752 WRITE_ONCE(trans->transaction->aborted, error);
2753 if (first_hit && error == -ENOSPC)
2754 btrfs_dump_space_info_for_trans_abort(fs_info);
2755 /* Wake up anybody who may be waiting on this transaction */
2756 wake_up(&fs_info->transaction_wait);
2757 wake_up(&fs_info->transaction_blocked_wait);
2758 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2759 }
2760
2761 int __init btrfs_transaction_init(void)
2762 {
2763 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2764 sizeof(struct btrfs_trans_handle), 0,
2765 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2766 if (!btrfs_trans_handle_cachep)
2767 return -ENOMEM;
2768 return 0;
2769 }
2770
2771 void __cold btrfs_transaction_exit(void)
2772 {
2773 kmem_cache_destroy(btrfs_trans_handle_cachep);
2774 }