]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/transaction.c
Merge tag 'kvm-x86-docs-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39
40 #define BTRFS_ROOT_TRANS_TAG 0
41
42 /*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
60 * |
61 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
62 * | the race and the rest will wait for the winner to commit the transaction.
63 * |
64 * | The winner will wait for previous running transaction to completely finish
65 * | if there is one.
66 * |
67 * Transaction N [[TRANS_STATE_COMMIT_START]]
68 * |
69 * | Then one of the following happens:
70 * | - Wait for all other trans handle holders to release.
71 * | The btrfs_commit_transaction() caller will do the commit work.
72 * | - Wait for current transaction to be committed by others.
73 * | Other btrfs_commit_transaction() caller will do the commit work.
74 * |
75 * | At this stage, only btrfs_join_transaction*() variants can attach
76 * | to this running transaction.
77 * | All other variants will wait for current one to finish and attach to
78 * | transaction N+1.
79 * |
80 * | To next stage:
81 * | Caller is chosen to commit transaction N, and all other trans handle
82 * | haven been released.
83 * V
84 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
85 * |
86 * | The heavy lifting transaction work is started.
87 * | From running delayed refs (modifying extent tree) to creating pending
88 * | snapshots, running qgroups.
89 * | In short, modify supporting trees to reflect modifications of subvolume
90 * | trees.
91 * |
92 * | At this stage, all start_transaction() calls will wait for this
93 * | transaction to finish and attach to transaction N+1.
94 * |
95 * | To next stage:
96 * | Until all supporting trees are updated.
97 * V
98 * Transaction N [[TRANS_STATE_UNBLOCKED]]
99 * | Transaction N+1
100 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
101 * | need to write them back to disk and update |
102 * | super blocks. |
103 * | |
104 * | At this stage, new transaction is allowed to |
105 * | start. |
106 * | All new start_transaction() calls will be |
107 * | attached to transid N+1. |
108 * | |
109 * | To next stage: |
110 * | Until all tree blocks are super blocks are |
111 * | written to block devices |
112 * V |
113 * Transaction N [[TRANS_STATE_COMPLETED]] V
114 * All tree blocks and super blocks are written. Transaction N+1
115 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
116 * data structures will be cleaned up. | Life goes on
117 */
118 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
119 [TRANS_STATE_RUNNING] = 0U,
120 [TRANS_STATE_COMMIT_PREP] = 0U,
121 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
122 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOSTART),
126 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
127 __TRANS_ATTACH |
128 __TRANS_JOIN |
129 __TRANS_JOIN_NOLOCK |
130 __TRANS_JOIN_NOSTART),
131 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
132 __TRANS_ATTACH |
133 __TRANS_JOIN |
134 __TRANS_JOIN_NOLOCK |
135 __TRANS_JOIN_NOSTART),
136 [TRANS_STATE_COMPLETED] = (__TRANS_START |
137 __TRANS_ATTACH |
138 __TRANS_JOIN |
139 __TRANS_JOIN_NOLOCK |
140 __TRANS_JOIN_NOSTART),
141 };
142
143 void btrfs_put_transaction(struct btrfs_transaction *transaction)
144 {
145 WARN_ON(refcount_read(&transaction->use_count) == 0);
146 if (refcount_dec_and_test(&transaction->use_count)) {
147 BUG_ON(!list_empty(&transaction->list));
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.href_root.rb_root));
150 WARN_ON(!RB_EMPTY_ROOT(
151 &transaction->delayed_refs.dirty_extent_root));
152 if (transaction->delayed_refs.pending_csums)
153 btrfs_err(transaction->fs_info,
154 "pending csums is %llu",
155 transaction->delayed_refs.pending_csums);
156 /*
157 * If any block groups are found in ->deleted_bgs then it's
158 * because the transaction was aborted and a commit did not
159 * happen (things failed before writing the new superblock
160 * and calling btrfs_finish_extent_commit()), so we can not
161 * discard the physical locations of the block groups.
162 */
163 while (!list_empty(&transaction->deleted_bgs)) {
164 struct btrfs_block_group *cache;
165
166 cache = list_first_entry(&transaction->deleted_bgs,
167 struct btrfs_block_group,
168 bg_list);
169 list_del_init(&cache->bg_list);
170 btrfs_unfreeze_block_group(cache);
171 btrfs_put_block_group(cache);
172 }
173 WARN_ON(!list_empty(&transaction->dev_update_list));
174 kfree(transaction);
175 }
176 }
177
178 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
179 {
180 struct btrfs_transaction *cur_trans = trans->transaction;
181 struct btrfs_fs_info *fs_info = trans->fs_info;
182 struct btrfs_root *root, *tmp;
183
184 /*
185 * At this point no one can be using this transaction to modify any tree
186 * and no one can start another transaction to modify any tree either.
187 */
188 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
189
190 down_write(&fs_info->commit_root_sem);
191
192 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
193 fs_info->last_reloc_trans = trans->transid;
194
195 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
196 dirty_list) {
197 list_del_init(&root->dirty_list);
198 free_extent_buffer(root->commit_root);
199 root->commit_root = btrfs_root_node(root);
200 extent_io_tree_release(&root->dirty_log_pages);
201 btrfs_qgroup_clean_swapped_blocks(root);
202 }
203
204 /* We can free old roots now. */
205 spin_lock(&cur_trans->dropped_roots_lock);
206 while (!list_empty(&cur_trans->dropped_roots)) {
207 root = list_first_entry(&cur_trans->dropped_roots,
208 struct btrfs_root, root_list);
209 list_del_init(&root->root_list);
210 spin_unlock(&cur_trans->dropped_roots_lock);
211 btrfs_free_log(trans, root);
212 btrfs_drop_and_free_fs_root(fs_info, root);
213 spin_lock(&cur_trans->dropped_roots_lock);
214 }
215 spin_unlock(&cur_trans->dropped_roots_lock);
216
217 up_write(&fs_info->commit_root_sem);
218 }
219
220 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
221 unsigned int type)
222 {
223 if (type & TRANS_EXTWRITERS)
224 atomic_inc(&trans->num_extwriters);
225 }
226
227 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
228 unsigned int type)
229 {
230 if (type & TRANS_EXTWRITERS)
231 atomic_dec(&trans->num_extwriters);
232 }
233
234 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
235 unsigned int type)
236 {
237 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
238 }
239
240 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
241 {
242 return atomic_read(&trans->num_extwriters);
243 }
244
245 /*
246 * To be called after doing the chunk btree updates right after allocating a new
247 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
248 * chunk after all chunk btree updates and after finishing the second phase of
249 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
250 * group had its chunk item insertion delayed to the second phase.
251 */
252 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
253 {
254 struct btrfs_fs_info *fs_info = trans->fs_info;
255
256 if (!trans->chunk_bytes_reserved)
257 return;
258
259 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
260 trans->chunk_bytes_reserved, NULL);
261 trans->chunk_bytes_reserved = 0;
262 }
263
264 /*
265 * either allocate a new transaction or hop into the existing one
266 */
267 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
268 unsigned int type)
269 {
270 struct btrfs_transaction *cur_trans;
271
272 spin_lock(&fs_info->trans_lock);
273 loop:
274 /* The file system has been taken offline. No new transactions. */
275 if (BTRFS_FS_ERROR(fs_info)) {
276 spin_unlock(&fs_info->trans_lock);
277 return -EROFS;
278 }
279
280 cur_trans = fs_info->running_transaction;
281 if (cur_trans) {
282 if (TRANS_ABORTED(cur_trans)) {
283 spin_unlock(&fs_info->trans_lock);
284 return cur_trans->aborted;
285 }
286 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
287 spin_unlock(&fs_info->trans_lock);
288 return -EBUSY;
289 }
290 refcount_inc(&cur_trans->use_count);
291 atomic_inc(&cur_trans->num_writers);
292 extwriter_counter_inc(cur_trans, type);
293 spin_unlock(&fs_info->trans_lock);
294 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
295 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
296 return 0;
297 }
298 spin_unlock(&fs_info->trans_lock);
299
300 /*
301 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
302 * current transaction, and commit it. If there is no transaction, just
303 * return ENOENT.
304 */
305 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
306 return -ENOENT;
307
308 /*
309 * JOIN_NOLOCK only happens during the transaction commit, so
310 * it is impossible that ->running_transaction is NULL
311 */
312 BUG_ON(type == TRANS_JOIN_NOLOCK);
313
314 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
315 if (!cur_trans)
316 return -ENOMEM;
317
318 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
319 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
320
321 spin_lock(&fs_info->trans_lock);
322 if (fs_info->running_transaction) {
323 /*
324 * someone started a transaction after we unlocked. Make sure
325 * to redo the checks above
326 */
327 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329 kfree(cur_trans);
330 goto loop;
331 } else if (BTRFS_FS_ERROR(fs_info)) {
332 spin_unlock(&fs_info->trans_lock);
333 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
334 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
335 kfree(cur_trans);
336 return -EROFS;
337 }
338
339 cur_trans->fs_info = fs_info;
340 atomic_set(&cur_trans->pending_ordered, 0);
341 init_waitqueue_head(&cur_trans->pending_wait);
342 atomic_set(&cur_trans->num_writers, 1);
343 extwriter_counter_init(cur_trans, type);
344 init_waitqueue_head(&cur_trans->writer_wait);
345 init_waitqueue_head(&cur_trans->commit_wait);
346 cur_trans->state = TRANS_STATE_RUNNING;
347 /*
348 * One for this trans handle, one so it will live on until we
349 * commit the transaction.
350 */
351 refcount_set(&cur_trans->use_count, 2);
352 cur_trans->flags = 0;
353 cur_trans->start_time = ktime_get_seconds();
354
355 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
356
357 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
358 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
359 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
360
361 /*
362 * although the tree mod log is per file system and not per transaction,
363 * the log must never go across transaction boundaries.
364 */
365 smp_mb();
366 if (!list_empty(&fs_info->tree_mod_seq_list))
367 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
368 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
369 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
370 atomic64_set(&fs_info->tree_mod_seq, 0);
371
372 spin_lock_init(&cur_trans->delayed_refs.lock);
373
374 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
375 INIT_LIST_HEAD(&cur_trans->dev_update_list);
376 INIT_LIST_HEAD(&cur_trans->switch_commits);
377 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
378 INIT_LIST_HEAD(&cur_trans->io_bgs);
379 INIT_LIST_HEAD(&cur_trans->dropped_roots);
380 mutex_init(&cur_trans->cache_write_mutex);
381 spin_lock_init(&cur_trans->dirty_bgs_lock);
382 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
383 spin_lock_init(&cur_trans->dropped_roots_lock);
384 list_add_tail(&cur_trans->list, &fs_info->trans_list);
385 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
386 IO_TREE_TRANS_DIRTY_PAGES);
387 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
388 IO_TREE_FS_PINNED_EXTENTS);
389 fs_info->generation++;
390 cur_trans->transid = fs_info->generation;
391 fs_info->running_transaction = cur_trans;
392 cur_trans->aborted = 0;
393 spin_unlock(&fs_info->trans_lock);
394
395 return 0;
396 }
397
398 /*
399 * This does all the record keeping required to make sure that a shareable root
400 * is properly recorded in a given transaction. This is required to make sure
401 * the old root from before we joined the transaction is deleted when the
402 * transaction commits.
403 */
404 static int record_root_in_trans(struct btrfs_trans_handle *trans,
405 struct btrfs_root *root,
406 int force)
407 {
408 struct btrfs_fs_info *fs_info = root->fs_info;
409 int ret = 0;
410
411 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
412 root->last_trans < trans->transid) || force) {
413 WARN_ON(!force && root->commit_root != root->node);
414
415 /*
416 * see below for IN_TRANS_SETUP usage rules
417 * we have the reloc mutex held now, so there
418 * is only one writer in this function
419 */
420 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
421
422 /* make sure readers find IN_TRANS_SETUP before
423 * they find our root->last_trans update
424 */
425 smp_wmb();
426
427 spin_lock(&fs_info->fs_roots_radix_lock);
428 if (root->last_trans == trans->transid && !force) {
429 spin_unlock(&fs_info->fs_roots_radix_lock);
430 return 0;
431 }
432 radix_tree_tag_set(&fs_info->fs_roots_radix,
433 (unsigned long)root->root_key.objectid,
434 BTRFS_ROOT_TRANS_TAG);
435 spin_unlock(&fs_info->fs_roots_radix_lock);
436 root->last_trans = trans->transid;
437
438 /* this is pretty tricky. We don't want to
439 * take the relocation lock in btrfs_record_root_in_trans
440 * unless we're really doing the first setup for this root in
441 * this transaction.
442 *
443 * Normally we'd use root->last_trans as a flag to decide
444 * if we want to take the expensive mutex.
445 *
446 * But, we have to set root->last_trans before we
447 * init the relocation root, otherwise, we trip over warnings
448 * in ctree.c. The solution used here is to flag ourselves
449 * with root IN_TRANS_SETUP. When this is 1, we're still
450 * fixing up the reloc trees and everyone must wait.
451 *
452 * When this is zero, they can trust root->last_trans and fly
453 * through btrfs_record_root_in_trans without having to take the
454 * lock. smp_wmb() makes sure that all the writes above are
455 * done before we pop in the zero below
456 */
457 ret = btrfs_init_reloc_root(trans, root);
458 smp_mb__before_atomic();
459 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
460 }
461 return ret;
462 }
463
464
465 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
466 struct btrfs_root *root)
467 {
468 struct btrfs_fs_info *fs_info = root->fs_info;
469 struct btrfs_transaction *cur_trans = trans->transaction;
470
471 /* Add ourselves to the transaction dropped list */
472 spin_lock(&cur_trans->dropped_roots_lock);
473 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
474 spin_unlock(&cur_trans->dropped_roots_lock);
475
476 /* Make sure we don't try to update the root at commit time */
477 spin_lock(&fs_info->fs_roots_radix_lock);
478 radix_tree_tag_clear(&fs_info->fs_roots_radix,
479 (unsigned long)root->root_key.objectid,
480 BTRFS_ROOT_TRANS_TAG);
481 spin_unlock(&fs_info->fs_roots_radix_lock);
482 }
483
484 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
485 struct btrfs_root *root)
486 {
487 struct btrfs_fs_info *fs_info = root->fs_info;
488 int ret;
489
490 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
491 return 0;
492
493 /*
494 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
495 * and barriers
496 */
497 smp_rmb();
498 if (root->last_trans == trans->transid &&
499 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
500 return 0;
501
502 mutex_lock(&fs_info->reloc_mutex);
503 ret = record_root_in_trans(trans, root, 0);
504 mutex_unlock(&fs_info->reloc_mutex);
505
506 return ret;
507 }
508
509 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
510 {
511 return (trans->state >= TRANS_STATE_COMMIT_START &&
512 trans->state < TRANS_STATE_UNBLOCKED &&
513 !TRANS_ABORTED(trans));
514 }
515
516 /* wait for commit against the current transaction to become unblocked
517 * when this is done, it is safe to start a new transaction, but the current
518 * transaction might not be fully on disk.
519 */
520 static void wait_current_trans(struct btrfs_fs_info *fs_info)
521 {
522 struct btrfs_transaction *cur_trans;
523
524 spin_lock(&fs_info->trans_lock);
525 cur_trans = fs_info->running_transaction;
526 if (cur_trans && is_transaction_blocked(cur_trans)) {
527 refcount_inc(&cur_trans->use_count);
528 spin_unlock(&fs_info->trans_lock);
529
530 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
531 wait_event(fs_info->transaction_wait,
532 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
533 TRANS_ABORTED(cur_trans));
534 btrfs_put_transaction(cur_trans);
535 } else {
536 spin_unlock(&fs_info->trans_lock);
537 }
538 }
539
540 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
541 {
542 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
543 return 0;
544
545 if (type == TRANS_START)
546 return 1;
547
548 return 0;
549 }
550
551 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
552 {
553 struct btrfs_fs_info *fs_info = root->fs_info;
554
555 if (!fs_info->reloc_ctl ||
556 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
557 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
558 root->reloc_root)
559 return false;
560
561 return true;
562 }
563
564 static struct btrfs_trans_handle *
565 start_transaction(struct btrfs_root *root, unsigned int num_items,
566 unsigned int type, enum btrfs_reserve_flush_enum flush,
567 bool enforce_qgroups)
568 {
569 struct btrfs_fs_info *fs_info = root->fs_info;
570 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
571 struct btrfs_trans_handle *h;
572 struct btrfs_transaction *cur_trans;
573 u64 num_bytes = 0;
574 u64 qgroup_reserved = 0;
575 bool reloc_reserved = false;
576 bool do_chunk_alloc = false;
577 int ret;
578
579 if (BTRFS_FS_ERROR(fs_info))
580 return ERR_PTR(-EROFS);
581
582 if (current->journal_info) {
583 WARN_ON(type & TRANS_EXTWRITERS);
584 h = current->journal_info;
585 refcount_inc(&h->use_count);
586 WARN_ON(refcount_read(&h->use_count) > 2);
587 h->orig_rsv = h->block_rsv;
588 h->block_rsv = NULL;
589 goto got_it;
590 }
591
592 /*
593 * Do the reservation before we join the transaction so we can do all
594 * the appropriate flushing if need be.
595 */
596 if (num_items && root != fs_info->chunk_root) {
597 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
598 u64 delayed_refs_bytes = 0;
599
600 qgroup_reserved = num_items * fs_info->nodesize;
601 /*
602 * Use prealloc for now, as there might be a currently running
603 * transaction that could free this reserved space prematurely
604 * by committing.
605 */
606 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
607 enforce_qgroups, false);
608 if (ret)
609 return ERR_PTR(ret);
610
611 /*
612 * We want to reserve all the bytes we may need all at once, so
613 * we only do 1 enospc flushing cycle per transaction start. We
614 * accomplish this by simply assuming we'll do num_items worth
615 * of delayed refs updates in this trans handle, and refill that
616 * amount for whatever is missing in the reserve.
617 */
618 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
619 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
620 !btrfs_block_rsv_full(delayed_refs_rsv)) {
621 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
622 num_items);
623 num_bytes += delayed_refs_bytes;
624 }
625
626 /*
627 * Do the reservation for the relocation root creation
628 */
629 if (need_reserve_reloc_root(root)) {
630 num_bytes += fs_info->nodesize;
631 reloc_reserved = true;
632 }
633
634 ret = btrfs_reserve_metadata_bytes(fs_info, rsv, num_bytes, flush);
635 if (ret)
636 goto reserve_fail;
637 if (delayed_refs_bytes) {
638 btrfs_migrate_to_delayed_refs_rsv(fs_info, delayed_refs_bytes);
639 num_bytes -= delayed_refs_bytes;
640 }
641 btrfs_block_rsv_add_bytes(rsv, num_bytes, true);
642
643 if (rsv->space_info->force_alloc)
644 do_chunk_alloc = true;
645 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
646 !btrfs_block_rsv_full(delayed_refs_rsv)) {
647 /*
648 * Some people call with btrfs_start_transaction(root, 0)
649 * because they can be throttled, but have some other mechanism
650 * for reserving space. We still want these guys to refill the
651 * delayed block_rsv so just add 1 items worth of reservation
652 * here.
653 */
654 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
655 if (ret)
656 goto reserve_fail;
657 }
658 again:
659 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
660 if (!h) {
661 ret = -ENOMEM;
662 goto alloc_fail;
663 }
664
665 /*
666 * If we are JOIN_NOLOCK we're already committing a transaction and
667 * waiting on this guy, so we don't need to do the sb_start_intwrite
668 * because we're already holding a ref. We need this because we could
669 * have raced in and did an fsync() on a file which can kick a commit
670 * and then we deadlock with somebody doing a freeze.
671 *
672 * If we are ATTACH, it means we just want to catch the current
673 * transaction and commit it, so we needn't do sb_start_intwrite().
674 */
675 if (type & __TRANS_FREEZABLE)
676 sb_start_intwrite(fs_info->sb);
677
678 if (may_wait_transaction(fs_info, type))
679 wait_current_trans(fs_info);
680
681 do {
682 ret = join_transaction(fs_info, type);
683 if (ret == -EBUSY) {
684 wait_current_trans(fs_info);
685 if (unlikely(type == TRANS_ATTACH ||
686 type == TRANS_JOIN_NOSTART))
687 ret = -ENOENT;
688 }
689 } while (ret == -EBUSY);
690
691 if (ret < 0)
692 goto join_fail;
693
694 cur_trans = fs_info->running_transaction;
695
696 h->transid = cur_trans->transid;
697 h->transaction = cur_trans;
698 refcount_set(&h->use_count, 1);
699 h->fs_info = root->fs_info;
700
701 h->type = type;
702 INIT_LIST_HEAD(&h->new_bgs);
703
704 smp_mb();
705 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
706 may_wait_transaction(fs_info, type)) {
707 current->journal_info = h;
708 btrfs_commit_transaction(h);
709 goto again;
710 }
711
712 if (num_bytes) {
713 trace_btrfs_space_reservation(fs_info, "transaction",
714 h->transid, num_bytes, 1);
715 h->block_rsv = &fs_info->trans_block_rsv;
716 h->bytes_reserved = num_bytes;
717 h->reloc_reserved = reloc_reserved;
718 }
719
720 /*
721 * Now that we have found a transaction to be a part of, convert the
722 * qgroup reservation from prealloc to pertrans. A different transaction
723 * can't race in and free our pertrans out from under us.
724 */
725 if (qgroup_reserved)
726 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
727
728 got_it:
729 if (!current->journal_info)
730 current->journal_info = h;
731
732 /*
733 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
734 * ALLOC_FORCE the first run through, and then we won't allocate for
735 * anybody else who races in later. We don't care about the return
736 * value here.
737 */
738 if (do_chunk_alloc && num_bytes) {
739 u64 flags = h->block_rsv->space_info->flags;
740
741 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
742 CHUNK_ALLOC_NO_FORCE);
743 }
744
745 /*
746 * btrfs_record_root_in_trans() needs to alloc new extents, and may
747 * call btrfs_join_transaction() while we're also starting a
748 * transaction.
749 *
750 * Thus it need to be called after current->journal_info initialized,
751 * or we can deadlock.
752 */
753 ret = btrfs_record_root_in_trans(h, root);
754 if (ret) {
755 /*
756 * The transaction handle is fully initialized and linked with
757 * other structures so it needs to be ended in case of errors,
758 * not just freed.
759 */
760 btrfs_end_transaction(h);
761 return ERR_PTR(ret);
762 }
763
764 return h;
765
766 join_fail:
767 if (type & __TRANS_FREEZABLE)
768 sb_end_intwrite(fs_info->sb);
769 kmem_cache_free(btrfs_trans_handle_cachep, h);
770 alloc_fail:
771 if (num_bytes)
772 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
773 num_bytes, NULL);
774 reserve_fail:
775 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
776 return ERR_PTR(ret);
777 }
778
779 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
780 unsigned int num_items)
781 {
782 return start_transaction(root, num_items, TRANS_START,
783 BTRFS_RESERVE_FLUSH_ALL, true);
784 }
785
786 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
787 struct btrfs_root *root,
788 unsigned int num_items)
789 {
790 return start_transaction(root, num_items, TRANS_START,
791 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
792 }
793
794 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
795 {
796 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
797 true);
798 }
799
800 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
801 {
802 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
803 BTRFS_RESERVE_NO_FLUSH, true);
804 }
805
806 /*
807 * Similar to regular join but it never starts a transaction when none is
808 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
809 * This is similar to btrfs_attach_transaction() but it allows the join to
810 * happen if the transaction commit already started but it's not yet in the
811 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
812 */
813 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
814 {
815 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
816 BTRFS_RESERVE_NO_FLUSH, true);
817 }
818
819 /*
820 * btrfs_attach_transaction() - catch the running transaction
821 *
822 * It is used when we want to commit the current the transaction, but
823 * don't want to start a new one.
824 *
825 * Note: If this function return -ENOENT, it just means there is no
826 * running transaction. But it is possible that the inactive transaction
827 * is still in the memory, not fully on disk. If you hope there is no
828 * inactive transaction in the fs when -ENOENT is returned, you should
829 * invoke
830 * btrfs_attach_transaction_barrier()
831 */
832 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
833 {
834 return start_transaction(root, 0, TRANS_ATTACH,
835 BTRFS_RESERVE_NO_FLUSH, true);
836 }
837
838 /*
839 * btrfs_attach_transaction_barrier() - catch the running transaction
840 *
841 * It is similar to the above function, the difference is this one
842 * will wait for all the inactive transactions until they fully
843 * complete.
844 */
845 struct btrfs_trans_handle *
846 btrfs_attach_transaction_barrier(struct btrfs_root *root)
847 {
848 struct btrfs_trans_handle *trans;
849
850 trans = start_transaction(root, 0, TRANS_ATTACH,
851 BTRFS_RESERVE_NO_FLUSH, true);
852 if (trans == ERR_PTR(-ENOENT)) {
853 int ret;
854
855 ret = btrfs_wait_for_commit(root->fs_info, 0);
856 if (ret)
857 return ERR_PTR(ret);
858 }
859
860 return trans;
861 }
862
863 /* Wait for a transaction commit to reach at least the given state. */
864 static noinline void wait_for_commit(struct btrfs_transaction *commit,
865 const enum btrfs_trans_state min_state)
866 {
867 struct btrfs_fs_info *fs_info = commit->fs_info;
868 u64 transid = commit->transid;
869 bool put = false;
870
871 /*
872 * At the moment this function is called with min_state either being
873 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
874 */
875 if (min_state == TRANS_STATE_COMPLETED)
876 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
877 else
878 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
879
880 while (1) {
881 wait_event(commit->commit_wait, commit->state >= min_state);
882 if (put)
883 btrfs_put_transaction(commit);
884
885 if (min_state < TRANS_STATE_COMPLETED)
886 break;
887
888 /*
889 * A transaction isn't really completed until all of the
890 * previous transactions are completed, but with fsync we can
891 * end up with SUPER_COMMITTED transactions before a COMPLETED
892 * transaction. Wait for those.
893 */
894
895 spin_lock(&fs_info->trans_lock);
896 commit = list_first_entry_or_null(&fs_info->trans_list,
897 struct btrfs_transaction,
898 list);
899 if (!commit || commit->transid > transid) {
900 spin_unlock(&fs_info->trans_lock);
901 break;
902 }
903 refcount_inc(&commit->use_count);
904 put = true;
905 spin_unlock(&fs_info->trans_lock);
906 }
907 }
908
909 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
910 {
911 struct btrfs_transaction *cur_trans = NULL, *t;
912 int ret = 0;
913
914 if (transid) {
915 if (transid <= fs_info->last_trans_committed)
916 goto out;
917
918 /* find specified transaction */
919 spin_lock(&fs_info->trans_lock);
920 list_for_each_entry(t, &fs_info->trans_list, list) {
921 if (t->transid == transid) {
922 cur_trans = t;
923 refcount_inc(&cur_trans->use_count);
924 ret = 0;
925 break;
926 }
927 if (t->transid > transid) {
928 ret = 0;
929 break;
930 }
931 }
932 spin_unlock(&fs_info->trans_lock);
933
934 /*
935 * The specified transaction doesn't exist, or we
936 * raced with btrfs_commit_transaction
937 */
938 if (!cur_trans) {
939 if (transid > fs_info->last_trans_committed)
940 ret = -EINVAL;
941 goto out;
942 }
943 } else {
944 /* find newest transaction that is committing | committed */
945 spin_lock(&fs_info->trans_lock);
946 list_for_each_entry_reverse(t, &fs_info->trans_list,
947 list) {
948 if (t->state >= TRANS_STATE_COMMIT_START) {
949 if (t->state == TRANS_STATE_COMPLETED)
950 break;
951 cur_trans = t;
952 refcount_inc(&cur_trans->use_count);
953 break;
954 }
955 }
956 spin_unlock(&fs_info->trans_lock);
957 if (!cur_trans)
958 goto out; /* nothing committing|committed */
959 }
960
961 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
962 ret = cur_trans->aborted;
963 btrfs_put_transaction(cur_trans);
964 out:
965 return ret;
966 }
967
968 void btrfs_throttle(struct btrfs_fs_info *fs_info)
969 {
970 wait_current_trans(fs_info);
971 }
972
973 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
974 {
975 struct btrfs_transaction *cur_trans = trans->transaction;
976
977 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
978 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
979 return true;
980
981 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
982 return true;
983
984 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
985 }
986
987 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
988
989 {
990 struct btrfs_fs_info *fs_info = trans->fs_info;
991
992 if (!trans->block_rsv) {
993 ASSERT(!trans->bytes_reserved);
994 return;
995 }
996
997 if (!trans->bytes_reserved)
998 return;
999
1000 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1001 trace_btrfs_space_reservation(fs_info, "transaction",
1002 trans->transid, trans->bytes_reserved, 0);
1003 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1004 trans->bytes_reserved, NULL);
1005 trans->bytes_reserved = 0;
1006 }
1007
1008 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1009 int throttle)
1010 {
1011 struct btrfs_fs_info *info = trans->fs_info;
1012 struct btrfs_transaction *cur_trans = trans->transaction;
1013 int err = 0;
1014
1015 if (refcount_read(&trans->use_count) > 1) {
1016 refcount_dec(&trans->use_count);
1017 trans->block_rsv = trans->orig_rsv;
1018 return 0;
1019 }
1020
1021 btrfs_trans_release_metadata(trans);
1022 trans->block_rsv = NULL;
1023
1024 btrfs_create_pending_block_groups(trans);
1025
1026 btrfs_trans_release_chunk_metadata(trans);
1027
1028 if (trans->type & __TRANS_FREEZABLE)
1029 sb_end_intwrite(info->sb);
1030
1031 WARN_ON(cur_trans != info->running_transaction);
1032 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1033 atomic_dec(&cur_trans->num_writers);
1034 extwriter_counter_dec(cur_trans, trans->type);
1035
1036 cond_wake_up(&cur_trans->writer_wait);
1037
1038 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1039 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1040
1041 btrfs_put_transaction(cur_trans);
1042
1043 if (current->journal_info == trans)
1044 current->journal_info = NULL;
1045
1046 if (throttle)
1047 btrfs_run_delayed_iputs(info);
1048
1049 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1050 wake_up_process(info->transaction_kthread);
1051 if (TRANS_ABORTED(trans))
1052 err = trans->aborted;
1053 else
1054 err = -EROFS;
1055 }
1056
1057 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1058 return err;
1059 }
1060
1061 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1062 {
1063 return __btrfs_end_transaction(trans, 0);
1064 }
1065
1066 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1067 {
1068 return __btrfs_end_transaction(trans, 1);
1069 }
1070
1071 /*
1072 * when btree blocks are allocated, they have some corresponding bits set for
1073 * them in one of two extent_io trees. This is used to make sure all of
1074 * those extents are sent to disk but does not wait on them
1075 */
1076 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1077 struct extent_io_tree *dirty_pages, int mark)
1078 {
1079 int err = 0;
1080 int werr = 0;
1081 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1082 struct extent_state *cached_state = NULL;
1083 u64 start = 0;
1084 u64 end;
1085
1086 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1087 mark, &cached_state)) {
1088 bool wait_writeback = false;
1089
1090 err = convert_extent_bit(dirty_pages, start, end,
1091 EXTENT_NEED_WAIT,
1092 mark, &cached_state);
1093 /*
1094 * convert_extent_bit can return -ENOMEM, which is most of the
1095 * time a temporary error. So when it happens, ignore the error
1096 * and wait for writeback of this range to finish - because we
1097 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1098 * to __btrfs_wait_marked_extents() would not know that
1099 * writeback for this range started and therefore wouldn't
1100 * wait for it to finish - we don't want to commit a
1101 * superblock that points to btree nodes/leafs for which
1102 * writeback hasn't finished yet (and without errors).
1103 * We cleanup any entries left in the io tree when committing
1104 * the transaction (through extent_io_tree_release()).
1105 */
1106 if (err == -ENOMEM) {
1107 err = 0;
1108 wait_writeback = true;
1109 }
1110 if (!err)
1111 err = filemap_fdatawrite_range(mapping, start, end);
1112 if (err)
1113 werr = err;
1114 else if (wait_writeback)
1115 werr = filemap_fdatawait_range(mapping, start, end);
1116 free_extent_state(cached_state);
1117 cached_state = NULL;
1118 cond_resched();
1119 start = end + 1;
1120 }
1121 return werr;
1122 }
1123
1124 /*
1125 * when btree blocks are allocated, they have some corresponding bits set for
1126 * them in one of two extent_io trees. This is used to make sure all of
1127 * those extents are on disk for transaction or log commit. We wait
1128 * on all the pages and clear them from the dirty pages state tree
1129 */
1130 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1131 struct extent_io_tree *dirty_pages)
1132 {
1133 int err = 0;
1134 int werr = 0;
1135 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1136 struct extent_state *cached_state = NULL;
1137 u64 start = 0;
1138 u64 end;
1139
1140 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1141 EXTENT_NEED_WAIT, &cached_state)) {
1142 /*
1143 * Ignore -ENOMEM errors returned by clear_extent_bit().
1144 * When committing the transaction, we'll remove any entries
1145 * left in the io tree. For a log commit, we don't remove them
1146 * after committing the log because the tree can be accessed
1147 * concurrently - we do it only at transaction commit time when
1148 * it's safe to do it (through extent_io_tree_release()).
1149 */
1150 err = clear_extent_bit(dirty_pages, start, end,
1151 EXTENT_NEED_WAIT, &cached_state);
1152 if (err == -ENOMEM)
1153 err = 0;
1154 if (!err)
1155 err = filemap_fdatawait_range(mapping, start, end);
1156 if (err)
1157 werr = err;
1158 free_extent_state(cached_state);
1159 cached_state = NULL;
1160 cond_resched();
1161 start = end + 1;
1162 }
1163 if (err)
1164 werr = err;
1165 return werr;
1166 }
1167
1168 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1169 struct extent_io_tree *dirty_pages)
1170 {
1171 bool errors = false;
1172 int err;
1173
1174 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1175 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1176 errors = true;
1177
1178 if (errors && !err)
1179 err = -EIO;
1180 return err;
1181 }
1182
1183 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1184 {
1185 struct btrfs_fs_info *fs_info = log_root->fs_info;
1186 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1187 bool errors = false;
1188 int err;
1189
1190 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1191
1192 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1193 if ((mark & EXTENT_DIRTY) &&
1194 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1195 errors = true;
1196
1197 if ((mark & EXTENT_NEW) &&
1198 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1199 errors = true;
1200
1201 if (errors && !err)
1202 err = -EIO;
1203 return err;
1204 }
1205
1206 /*
1207 * When btree blocks are allocated the corresponding extents are marked dirty.
1208 * This function ensures such extents are persisted on disk for transaction or
1209 * log commit.
1210 *
1211 * @trans: transaction whose dirty pages we'd like to write
1212 */
1213 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1214 {
1215 int ret;
1216 int ret2;
1217 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1218 struct btrfs_fs_info *fs_info = trans->fs_info;
1219 struct blk_plug plug;
1220
1221 blk_start_plug(&plug);
1222 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1223 blk_finish_plug(&plug);
1224 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1225
1226 extent_io_tree_release(&trans->transaction->dirty_pages);
1227
1228 if (ret)
1229 return ret;
1230 else if (ret2)
1231 return ret2;
1232 else
1233 return 0;
1234 }
1235
1236 /*
1237 * this is used to update the root pointer in the tree of tree roots.
1238 *
1239 * But, in the case of the extent allocation tree, updating the root
1240 * pointer may allocate blocks which may change the root of the extent
1241 * allocation tree.
1242 *
1243 * So, this loops and repeats and makes sure the cowonly root didn't
1244 * change while the root pointer was being updated in the metadata.
1245 */
1246 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1247 struct btrfs_root *root)
1248 {
1249 int ret;
1250 u64 old_root_bytenr;
1251 u64 old_root_used;
1252 struct btrfs_fs_info *fs_info = root->fs_info;
1253 struct btrfs_root *tree_root = fs_info->tree_root;
1254
1255 old_root_used = btrfs_root_used(&root->root_item);
1256
1257 while (1) {
1258 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1259 if (old_root_bytenr == root->node->start &&
1260 old_root_used == btrfs_root_used(&root->root_item))
1261 break;
1262
1263 btrfs_set_root_node(&root->root_item, root->node);
1264 ret = btrfs_update_root(trans, tree_root,
1265 &root->root_key,
1266 &root->root_item);
1267 if (ret)
1268 return ret;
1269
1270 old_root_used = btrfs_root_used(&root->root_item);
1271 }
1272
1273 return 0;
1274 }
1275
1276 /*
1277 * update all the cowonly tree roots on disk
1278 *
1279 * The error handling in this function may not be obvious. Any of the
1280 * failures will cause the file system to go offline. We still need
1281 * to clean up the delayed refs.
1282 */
1283 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1284 {
1285 struct btrfs_fs_info *fs_info = trans->fs_info;
1286 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1287 struct list_head *io_bgs = &trans->transaction->io_bgs;
1288 struct list_head *next;
1289 struct extent_buffer *eb;
1290 int ret;
1291
1292 /*
1293 * At this point no one can be using this transaction to modify any tree
1294 * and no one can start another transaction to modify any tree either.
1295 */
1296 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1297
1298 eb = btrfs_lock_root_node(fs_info->tree_root);
1299 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1300 0, &eb, BTRFS_NESTING_COW);
1301 btrfs_tree_unlock(eb);
1302 free_extent_buffer(eb);
1303
1304 if (ret)
1305 return ret;
1306
1307 ret = btrfs_run_dev_stats(trans);
1308 if (ret)
1309 return ret;
1310 ret = btrfs_run_dev_replace(trans);
1311 if (ret)
1312 return ret;
1313 ret = btrfs_run_qgroups(trans);
1314 if (ret)
1315 return ret;
1316
1317 ret = btrfs_setup_space_cache(trans);
1318 if (ret)
1319 return ret;
1320
1321 again:
1322 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1323 struct btrfs_root *root;
1324 next = fs_info->dirty_cowonly_roots.next;
1325 list_del_init(next);
1326 root = list_entry(next, struct btrfs_root, dirty_list);
1327 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1328
1329 list_add_tail(&root->dirty_list,
1330 &trans->transaction->switch_commits);
1331 ret = update_cowonly_root(trans, root);
1332 if (ret)
1333 return ret;
1334 }
1335
1336 /* Now flush any delayed refs generated by updating all of the roots */
1337 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1338 if (ret)
1339 return ret;
1340
1341 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1342 ret = btrfs_write_dirty_block_groups(trans);
1343 if (ret)
1344 return ret;
1345
1346 /*
1347 * We're writing the dirty block groups, which could generate
1348 * delayed refs, which could generate more dirty block groups,
1349 * so we want to keep this flushing in this loop to make sure
1350 * everything gets run.
1351 */
1352 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1353 if (ret)
1354 return ret;
1355 }
1356
1357 if (!list_empty(&fs_info->dirty_cowonly_roots))
1358 goto again;
1359
1360 /* Update dev-replace pointer once everything is committed */
1361 fs_info->dev_replace.committed_cursor_left =
1362 fs_info->dev_replace.cursor_left_last_write_of_item;
1363
1364 return 0;
1365 }
1366
1367 /*
1368 * If we had a pending drop we need to see if there are any others left in our
1369 * dead roots list, and if not clear our bit and wake any waiters.
1370 */
1371 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1372 {
1373 /*
1374 * We put the drop in progress roots at the front of the list, so if the
1375 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1376 * up.
1377 */
1378 spin_lock(&fs_info->trans_lock);
1379 if (!list_empty(&fs_info->dead_roots)) {
1380 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1381 struct btrfs_root,
1382 root_list);
1383 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1384 spin_unlock(&fs_info->trans_lock);
1385 return;
1386 }
1387 }
1388 spin_unlock(&fs_info->trans_lock);
1389
1390 btrfs_wake_unfinished_drop(fs_info);
1391 }
1392
1393 /*
1394 * dead roots are old snapshots that need to be deleted. This allocates
1395 * a dirty root struct and adds it into the list of dead roots that need to
1396 * be deleted
1397 */
1398 void btrfs_add_dead_root(struct btrfs_root *root)
1399 {
1400 struct btrfs_fs_info *fs_info = root->fs_info;
1401
1402 spin_lock(&fs_info->trans_lock);
1403 if (list_empty(&root->root_list)) {
1404 btrfs_grab_root(root);
1405
1406 /* We want to process the partially complete drops first. */
1407 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1408 list_add(&root->root_list, &fs_info->dead_roots);
1409 else
1410 list_add_tail(&root->root_list, &fs_info->dead_roots);
1411 }
1412 spin_unlock(&fs_info->trans_lock);
1413 }
1414
1415 /*
1416 * Update each subvolume root and its relocation root, if it exists, in the tree
1417 * of tree roots. Also free log roots if they exist.
1418 */
1419 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1420 {
1421 struct btrfs_fs_info *fs_info = trans->fs_info;
1422 struct btrfs_root *gang[8];
1423 int i;
1424 int ret;
1425
1426 /*
1427 * At this point no one can be using this transaction to modify any tree
1428 * and no one can start another transaction to modify any tree either.
1429 */
1430 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1431
1432 spin_lock(&fs_info->fs_roots_radix_lock);
1433 while (1) {
1434 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1435 (void **)gang, 0,
1436 ARRAY_SIZE(gang),
1437 BTRFS_ROOT_TRANS_TAG);
1438 if (ret == 0)
1439 break;
1440 for (i = 0; i < ret; i++) {
1441 struct btrfs_root *root = gang[i];
1442 int ret2;
1443
1444 /*
1445 * At this point we can neither have tasks logging inodes
1446 * from a root nor trying to commit a log tree.
1447 */
1448 ASSERT(atomic_read(&root->log_writers) == 0);
1449 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1450 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1451
1452 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1453 (unsigned long)root->root_key.objectid,
1454 BTRFS_ROOT_TRANS_TAG);
1455 spin_unlock(&fs_info->fs_roots_radix_lock);
1456
1457 btrfs_free_log(trans, root);
1458 ret2 = btrfs_update_reloc_root(trans, root);
1459 if (ret2)
1460 return ret2;
1461
1462 /* see comments in should_cow_block() */
1463 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1464 smp_mb__after_atomic();
1465
1466 if (root->commit_root != root->node) {
1467 list_add_tail(&root->dirty_list,
1468 &trans->transaction->switch_commits);
1469 btrfs_set_root_node(&root->root_item,
1470 root->node);
1471 }
1472
1473 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1474 &root->root_key,
1475 &root->root_item);
1476 if (ret2)
1477 return ret2;
1478 spin_lock(&fs_info->fs_roots_radix_lock);
1479 btrfs_qgroup_free_meta_all_pertrans(root);
1480 }
1481 }
1482 spin_unlock(&fs_info->fs_roots_radix_lock);
1483 return 0;
1484 }
1485
1486 /*
1487 * defrag a given btree.
1488 * Every leaf in the btree is read and defragged.
1489 */
1490 int btrfs_defrag_root(struct btrfs_root *root)
1491 {
1492 struct btrfs_fs_info *info = root->fs_info;
1493 struct btrfs_trans_handle *trans;
1494 int ret;
1495
1496 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1497 return 0;
1498
1499 while (1) {
1500 trans = btrfs_start_transaction(root, 0);
1501 if (IS_ERR(trans)) {
1502 ret = PTR_ERR(trans);
1503 break;
1504 }
1505
1506 ret = btrfs_defrag_leaves(trans, root);
1507
1508 btrfs_end_transaction(trans);
1509 btrfs_btree_balance_dirty(info);
1510 cond_resched();
1511
1512 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1513 break;
1514
1515 if (btrfs_defrag_cancelled(info)) {
1516 btrfs_debug(info, "defrag_root cancelled");
1517 ret = -EAGAIN;
1518 break;
1519 }
1520 }
1521 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1522 return ret;
1523 }
1524
1525 /*
1526 * Do all special snapshot related qgroup dirty hack.
1527 *
1528 * Will do all needed qgroup inherit and dirty hack like switch commit
1529 * roots inside one transaction and write all btree into disk, to make
1530 * qgroup works.
1531 */
1532 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1533 struct btrfs_root *src,
1534 struct btrfs_root *parent,
1535 struct btrfs_qgroup_inherit *inherit,
1536 u64 dst_objectid)
1537 {
1538 struct btrfs_fs_info *fs_info = src->fs_info;
1539 int ret;
1540
1541 /*
1542 * Save some performance in the case that qgroups are not
1543 * enabled. If this check races with the ioctl, rescan will
1544 * kick in anyway.
1545 */
1546 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1547 return 0;
1548
1549 /*
1550 * Ensure dirty @src will be committed. Or, after coming
1551 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1552 * recorded root will never be updated again, causing an outdated root
1553 * item.
1554 */
1555 ret = record_root_in_trans(trans, src, 1);
1556 if (ret)
1557 return ret;
1558
1559 /*
1560 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1561 * src root, so we must run the delayed refs here.
1562 *
1563 * However this isn't particularly fool proof, because there's no
1564 * synchronization keeping us from changing the tree after this point
1565 * before we do the qgroup_inherit, or even from making changes while
1566 * we're doing the qgroup_inherit. But that's a problem for the future,
1567 * for now flush the delayed refs to narrow the race window where the
1568 * qgroup counters could end up wrong.
1569 */
1570 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1571 if (ret) {
1572 btrfs_abort_transaction(trans, ret);
1573 return ret;
1574 }
1575
1576 ret = commit_fs_roots(trans);
1577 if (ret)
1578 goto out;
1579 ret = btrfs_qgroup_account_extents(trans);
1580 if (ret < 0)
1581 goto out;
1582
1583 /* Now qgroup are all updated, we can inherit it to new qgroups */
1584 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1585 inherit);
1586 if (ret < 0)
1587 goto out;
1588
1589 /*
1590 * Now we do a simplified commit transaction, which will:
1591 * 1) commit all subvolume and extent tree
1592 * To ensure all subvolume and extent tree have a valid
1593 * commit_root to accounting later insert_dir_item()
1594 * 2) write all btree blocks onto disk
1595 * This is to make sure later btree modification will be cowed
1596 * Or commit_root can be populated and cause wrong qgroup numbers
1597 * In this simplified commit, we don't really care about other trees
1598 * like chunk and root tree, as they won't affect qgroup.
1599 * And we don't write super to avoid half committed status.
1600 */
1601 ret = commit_cowonly_roots(trans);
1602 if (ret)
1603 goto out;
1604 switch_commit_roots(trans);
1605 ret = btrfs_write_and_wait_transaction(trans);
1606 if (ret)
1607 btrfs_handle_fs_error(fs_info, ret,
1608 "Error while writing out transaction for qgroup");
1609
1610 out:
1611 /*
1612 * Force parent root to be updated, as we recorded it before so its
1613 * last_trans == cur_transid.
1614 * Or it won't be committed again onto disk after later
1615 * insert_dir_item()
1616 */
1617 if (!ret)
1618 ret = record_root_in_trans(trans, parent, 1);
1619 return ret;
1620 }
1621
1622 /*
1623 * new snapshots need to be created at a very specific time in the
1624 * transaction commit. This does the actual creation.
1625 *
1626 * Note:
1627 * If the error which may affect the commitment of the current transaction
1628 * happens, we should return the error number. If the error which just affect
1629 * the creation of the pending snapshots, just return 0.
1630 */
1631 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1632 struct btrfs_pending_snapshot *pending)
1633 {
1634
1635 struct btrfs_fs_info *fs_info = trans->fs_info;
1636 struct btrfs_key key;
1637 struct btrfs_root_item *new_root_item;
1638 struct btrfs_root *tree_root = fs_info->tree_root;
1639 struct btrfs_root *root = pending->root;
1640 struct btrfs_root *parent_root;
1641 struct btrfs_block_rsv *rsv;
1642 struct inode *parent_inode = pending->dir;
1643 struct btrfs_path *path;
1644 struct btrfs_dir_item *dir_item;
1645 struct extent_buffer *tmp;
1646 struct extent_buffer *old;
1647 struct timespec64 cur_time;
1648 int ret = 0;
1649 u64 to_reserve = 0;
1650 u64 index = 0;
1651 u64 objectid;
1652 u64 root_flags;
1653 unsigned int nofs_flags;
1654 struct fscrypt_name fname;
1655
1656 ASSERT(pending->path);
1657 path = pending->path;
1658
1659 ASSERT(pending->root_item);
1660 new_root_item = pending->root_item;
1661
1662 /*
1663 * We're inside a transaction and must make sure that any potential
1664 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1665 * filesystem.
1666 */
1667 nofs_flags = memalloc_nofs_save();
1668 pending->error = fscrypt_setup_filename(parent_inode,
1669 &pending->dentry->d_name, 0,
1670 &fname);
1671 memalloc_nofs_restore(nofs_flags);
1672 if (pending->error)
1673 goto free_pending;
1674
1675 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1676 if (pending->error)
1677 goto free_fname;
1678
1679 /*
1680 * Make qgroup to skip current new snapshot's qgroupid, as it is
1681 * accounted by later btrfs_qgroup_inherit().
1682 */
1683 btrfs_set_skip_qgroup(trans, objectid);
1684
1685 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1686
1687 if (to_reserve > 0) {
1688 pending->error = btrfs_block_rsv_add(fs_info,
1689 &pending->block_rsv,
1690 to_reserve,
1691 BTRFS_RESERVE_NO_FLUSH);
1692 if (pending->error)
1693 goto clear_skip_qgroup;
1694 }
1695
1696 key.objectid = objectid;
1697 key.offset = (u64)-1;
1698 key.type = BTRFS_ROOT_ITEM_KEY;
1699
1700 rsv = trans->block_rsv;
1701 trans->block_rsv = &pending->block_rsv;
1702 trans->bytes_reserved = trans->block_rsv->reserved;
1703 trace_btrfs_space_reservation(fs_info, "transaction",
1704 trans->transid,
1705 trans->bytes_reserved, 1);
1706 parent_root = BTRFS_I(parent_inode)->root;
1707 ret = record_root_in_trans(trans, parent_root, 0);
1708 if (ret)
1709 goto fail;
1710 cur_time = current_time(parent_inode);
1711
1712 /*
1713 * insert the directory item
1714 */
1715 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1716 if (ret) {
1717 btrfs_abort_transaction(trans, ret);
1718 goto fail;
1719 }
1720
1721 /* check if there is a file/dir which has the same name. */
1722 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1723 btrfs_ino(BTRFS_I(parent_inode)),
1724 &fname.disk_name, 0);
1725 if (dir_item != NULL && !IS_ERR(dir_item)) {
1726 pending->error = -EEXIST;
1727 goto dir_item_existed;
1728 } else if (IS_ERR(dir_item)) {
1729 ret = PTR_ERR(dir_item);
1730 btrfs_abort_transaction(trans, ret);
1731 goto fail;
1732 }
1733 btrfs_release_path(path);
1734
1735 /*
1736 * pull in the delayed directory update
1737 * and the delayed inode item
1738 * otherwise we corrupt the FS during
1739 * snapshot
1740 */
1741 ret = btrfs_run_delayed_items(trans);
1742 if (ret) { /* Transaction aborted */
1743 btrfs_abort_transaction(trans, ret);
1744 goto fail;
1745 }
1746
1747 ret = record_root_in_trans(trans, root, 0);
1748 if (ret) {
1749 btrfs_abort_transaction(trans, ret);
1750 goto fail;
1751 }
1752 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1753 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1754 btrfs_check_and_init_root_item(new_root_item);
1755
1756 root_flags = btrfs_root_flags(new_root_item);
1757 if (pending->readonly)
1758 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1759 else
1760 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1761 btrfs_set_root_flags(new_root_item, root_flags);
1762
1763 btrfs_set_root_generation_v2(new_root_item,
1764 trans->transid);
1765 generate_random_guid(new_root_item->uuid);
1766 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1767 BTRFS_UUID_SIZE);
1768 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1769 memset(new_root_item->received_uuid, 0,
1770 sizeof(new_root_item->received_uuid));
1771 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1772 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1773 btrfs_set_root_stransid(new_root_item, 0);
1774 btrfs_set_root_rtransid(new_root_item, 0);
1775 }
1776 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1777 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1778 btrfs_set_root_otransid(new_root_item, trans->transid);
1779
1780 old = btrfs_lock_root_node(root);
1781 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1782 BTRFS_NESTING_COW);
1783 if (ret) {
1784 btrfs_tree_unlock(old);
1785 free_extent_buffer(old);
1786 btrfs_abort_transaction(trans, ret);
1787 goto fail;
1788 }
1789
1790 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1791 /* clean up in any case */
1792 btrfs_tree_unlock(old);
1793 free_extent_buffer(old);
1794 if (ret) {
1795 btrfs_abort_transaction(trans, ret);
1796 goto fail;
1797 }
1798 /* see comments in should_cow_block() */
1799 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1800 smp_wmb();
1801
1802 btrfs_set_root_node(new_root_item, tmp);
1803 /* record when the snapshot was created in key.offset */
1804 key.offset = trans->transid;
1805 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1806 btrfs_tree_unlock(tmp);
1807 free_extent_buffer(tmp);
1808 if (ret) {
1809 btrfs_abort_transaction(trans, ret);
1810 goto fail;
1811 }
1812
1813 /*
1814 * insert root back/forward references
1815 */
1816 ret = btrfs_add_root_ref(trans, objectid,
1817 parent_root->root_key.objectid,
1818 btrfs_ino(BTRFS_I(parent_inode)), index,
1819 &fname.disk_name);
1820 if (ret) {
1821 btrfs_abort_transaction(trans, ret);
1822 goto fail;
1823 }
1824
1825 key.offset = (u64)-1;
1826 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1827 if (IS_ERR(pending->snap)) {
1828 ret = PTR_ERR(pending->snap);
1829 pending->snap = NULL;
1830 btrfs_abort_transaction(trans, ret);
1831 goto fail;
1832 }
1833
1834 ret = btrfs_reloc_post_snapshot(trans, pending);
1835 if (ret) {
1836 btrfs_abort_transaction(trans, ret);
1837 goto fail;
1838 }
1839
1840 /*
1841 * Do special qgroup accounting for snapshot, as we do some qgroup
1842 * snapshot hack to do fast snapshot.
1843 * To co-operate with that hack, we do hack again.
1844 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1845 */
1846 ret = qgroup_account_snapshot(trans, root, parent_root,
1847 pending->inherit, objectid);
1848 if (ret < 0)
1849 goto fail;
1850
1851 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1852 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1853 index);
1854 /* We have check then name at the beginning, so it is impossible. */
1855 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1856 if (ret) {
1857 btrfs_abort_transaction(trans, ret);
1858 goto fail;
1859 }
1860
1861 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1862 fname.disk_name.len * 2);
1863 parent_inode->i_mtime = inode_set_ctime_current(parent_inode);
1864 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1865 if (ret) {
1866 btrfs_abort_transaction(trans, ret);
1867 goto fail;
1868 }
1869 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1870 BTRFS_UUID_KEY_SUBVOL,
1871 objectid);
1872 if (ret) {
1873 btrfs_abort_transaction(trans, ret);
1874 goto fail;
1875 }
1876 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1877 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1878 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1879 objectid);
1880 if (ret && ret != -EEXIST) {
1881 btrfs_abort_transaction(trans, ret);
1882 goto fail;
1883 }
1884 }
1885
1886 fail:
1887 pending->error = ret;
1888 dir_item_existed:
1889 trans->block_rsv = rsv;
1890 trans->bytes_reserved = 0;
1891 clear_skip_qgroup:
1892 btrfs_clear_skip_qgroup(trans);
1893 free_fname:
1894 fscrypt_free_filename(&fname);
1895 free_pending:
1896 kfree(new_root_item);
1897 pending->root_item = NULL;
1898 btrfs_free_path(path);
1899 pending->path = NULL;
1900
1901 return ret;
1902 }
1903
1904 /*
1905 * create all the snapshots we've scheduled for creation
1906 */
1907 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1908 {
1909 struct btrfs_pending_snapshot *pending, *next;
1910 struct list_head *head = &trans->transaction->pending_snapshots;
1911 int ret = 0;
1912
1913 list_for_each_entry_safe(pending, next, head, list) {
1914 list_del(&pending->list);
1915 ret = create_pending_snapshot(trans, pending);
1916 if (ret)
1917 break;
1918 }
1919 return ret;
1920 }
1921
1922 static void update_super_roots(struct btrfs_fs_info *fs_info)
1923 {
1924 struct btrfs_root_item *root_item;
1925 struct btrfs_super_block *super;
1926
1927 super = fs_info->super_copy;
1928
1929 root_item = &fs_info->chunk_root->root_item;
1930 super->chunk_root = root_item->bytenr;
1931 super->chunk_root_generation = root_item->generation;
1932 super->chunk_root_level = root_item->level;
1933
1934 root_item = &fs_info->tree_root->root_item;
1935 super->root = root_item->bytenr;
1936 super->generation = root_item->generation;
1937 super->root_level = root_item->level;
1938 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1939 super->cache_generation = root_item->generation;
1940 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1941 super->cache_generation = 0;
1942 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1943 super->uuid_tree_generation = root_item->generation;
1944 }
1945
1946 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1947 {
1948 struct btrfs_transaction *trans;
1949 int ret = 0;
1950
1951 spin_lock(&info->trans_lock);
1952 trans = info->running_transaction;
1953 if (trans)
1954 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1955 spin_unlock(&info->trans_lock);
1956 return ret;
1957 }
1958
1959 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1960 {
1961 struct btrfs_transaction *trans;
1962 int ret = 0;
1963
1964 spin_lock(&info->trans_lock);
1965 trans = info->running_transaction;
1966 if (trans)
1967 ret = is_transaction_blocked(trans);
1968 spin_unlock(&info->trans_lock);
1969 return ret;
1970 }
1971
1972 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1973 {
1974 struct btrfs_fs_info *fs_info = trans->fs_info;
1975 struct btrfs_transaction *cur_trans;
1976
1977 /* Kick the transaction kthread. */
1978 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1979 wake_up_process(fs_info->transaction_kthread);
1980
1981 /* take transaction reference */
1982 cur_trans = trans->transaction;
1983 refcount_inc(&cur_trans->use_count);
1984
1985 btrfs_end_transaction(trans);
1986
1987 /*
1988 * Wait for the current transaction commit to start and block
1989 * subsequent transaction joins
1990 */
1991 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1992 wait_event(fs_info->transaction_blocked_wait,
1993 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1994 TRANS_ABORTED(cur_trans));
1995 btrfs_put_transaction(cur_trans);
1996 }
1997
1998 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1999 {
2000 struct btrfs_fs_info *fs_info = trans->fs_info;
2001 struct btrfs_transaction *cur_trans = trans->transaction;
2002
2003 WARN_ON(refcount_read(&trans->use_count) > 1);
2004
2005 btrfs_abort_transaction(trans, err);
2006
2007 spin_lock(&fs_info->trans_lock);
2008
2009 /*
2010 * If the transaction is removed from the list, it means this
2011 * transaction has been committed successfully, so it is impossible
2012 * to call the cleanup function.
2013 */
2014 BUG_ON(list_empty(&cur_trans->list));
2015
2016 if (cur_trans == fs_info->running_transaction) {
2017 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2018 spin_unlock(&fs_info->trans_lock);
2019
2020 /*
2021 * The thread has already released the lockdep map as reader
2022 * already in btrfs_commit_transaction().
2023 */
2024 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2025 wait_event(cur_trans->writer_wait,
2026 atomic_read(&cur_trans->num_writers) == 1);
2027
2028 spin_lock(&fs_info->trans_lock);
2029 }
2030
2031 /*
2032 * Now that we know no one else is still using the transaction we can
2033 * remove the transaction from the list of transactions. This avoids
2034 * the transaction kthread from cleaning up the transaction while some
2035 * other task is still using it, which could result in a use-after-free
2036 * on things like log trees, as it forces the transaction kthread to
2037 * wait for this transaction to be cleaned up by us.
2038 */
2039 list_del_init(&cur_trans->list);
2040
2041 spin_unlock(&fs_info->trans_lock);
2042
2043 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2044
2045 spin_lock(&fs_info->trans_lock);
2046 if (cur_trans == fs_info->running_transaction)
2047 fs_info->running_transaction = NULL;
2048 spin_unlock(&fs_info->trans_lock);
2049
2050 if (trans->type & __TRANS_FREEZABLE)
2051 sb_end_intwrite(fs_info->sb);
2052 btrfs_put_transaction(cur_trans);
2053 btrfs_put_transaction(cur_trans);
2054
2055 trace_btrfs_transaction_commit(fs_info);
2056
2057 if (current->journal_info == trans)
2058 current->journal_info = NULL;
2059
2060 /*
2061 * If relocation is running, we can't cancel scrub because that will
2062 * result in a deadlock. Before relocating a block group, relocation
2063 * pauses scrub, then starts and commits a transaction before unpausing
2064 * scrub. If the transaction commit is being done by the relocation
2065 * task or triggered by another task and the relocation task is waiting
2066 * for the commit, and we end up here due to an error in the commit
2067 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2068 * asking for scrub to stop while having it asked to be paused higher
2069 * above in relocation code.
2070 */
2071 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2072 btrfs_scrub_cancel(fs_info);
2073
2074 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2075 }
2076
2077 /*
2078 * Release reserved delayed ref space of all pending block groups of the
2079 * transaction and remove them from the list
2080 */
2081 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2082 {
2083 struct btrfs_fs_info *fs_info = trans->fs_info;
2084 struct btrfs_block_group *block_group, *tmp;
2085
2086 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2087 btrfs_delayed_refs_rsv_release(fs_info, 1);
2088 list_del_init(&block_group->bg_list);
2089 }
2090 }
2091
2092 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2093 {
2094 /*
2095 * We use try_to_writeback_inodes_sb() here because if we used
2096 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2097 * Currently are holding the fs freeze lock, if we do an async flush
2098 * we'll do btrfs_join_transaction() and deadlock because we need to
2099 * wait for the fs freeze lock. Using the direct flushing we benefit
2100 * from already being in a transaction and our join_transaction doesn't
2101 * have to re-take the fs freeze lock.
2102 *
2103 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2104 * if it can read lock sb->s_umount. It will always be able to lock it,
2105 * except when the filesystem is being unmounted or being frozen, but in
2106 * those cases sync_filesystem() is called, which results in calling
2107 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2108 * Note that we don't call writeback_inodes_sb() directly, because it
2109 * will emit a warning if sb->s_umount is not locked.
2110 */
2111 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2112 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2113 return 0;
2114 }
2115
2116 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2117 {
2118 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2119 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2120 }
2121
2122 /*
2123 * Add a pending snapshot associated with the given transaction handle to the
2124 * respective handle. This must be called after the transaction commit started
2125 * and while holding fs_info->trans_lock.
2126 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2127 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2128 * returns an error.
2129 */
2130 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2131 {
2132 struct btrfs_transaction *cur_trans = trans->transaction;
2133
2134 if (!trans->pending_snapshot)
2135 return;
2136
2137 lockdep_assert_held(&trans->fs_info->trans_lock);
2138 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2139
2140 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2141 }
2142
2143 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2144 {
2145 fs_info->commit_stats.commit_count++;
2146 fs_info->commit_stats.last_commit_dur = interval;
2147 fs_info->commit_stats.max_commit_dur =
2148 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2149 fs_info->commit_stats.total_commit_dur += interval;
2150 }
2151
2152 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2153 {
2154 struct btrfs_fs_info *fs_info = trans->fs_info;
2155 struct btrfs_transaction *cur_trans = trans->transaction;
2156 struct btrfs_transaction *prev_trans = NULL;
2157 int ret;
2158 ktime_t start_time;
2159 ktime_t interval;
2160
2161 ASSERT(refcount_read(&trans->use_count) == 1);
2162 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2163
2164 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2165
2166 /* Stop the commit early if ->aborted is set */
2167 if (TRANS_ABORTED(cur_trans)) {
2168 ret = cur_trans->aborted;
2169 goto lockdep_trans_commit_start_release;
2170 }
2171
2172 btrfs_trans_release_metadata(trans);
2173 trans->block_rsv = NULL;
2174
2175 /*
2176 * We only want one transaction commit doing the flushing so we do not
2177 * waste a bunch of time on lock contention on the extent root node.
2178 */
2179 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2180 &cur_trans->delayed_refs.flags)) {
2181 /*
2182 * Make a pass through all the delayed refs we have so far.
2183 * Any running threads may add more while we are here.
2184 */
2185 ret = btrfs_run_delayed_refs(trans, 0);
2186 if (ret)
2187 goto lockdep_trans_commit_start_release;
2188 }
2189
2190 btrfs_create_pending_block_groups(trans);
2191
2192 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2193 int run_it = 0;
2194
2195 /* this mutex is also taken before trying to set
2196 * block groups readonly. We need to make sure
2197 * that nobody has set a block group readonly
2198 * after a extents from that block group have been
2199 * allocated for cache files. btrfs_set_block_group_ro
2200 * will wait for the transaction to commit if it
2201 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2202 *
2203 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2204 * only one process starts all the block group IO. It wouldn't
2205 * hurt to have more than one go through, but there's no
2206 * real advantage to it either.
2207 */
2208 mutex_lock(&fs_info->ro_block_group_mutex);
2209 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2210 &cur_trans->flags))
2211 run_it = 1;
2212 mutex_unlock(&fs_info->ro_block_group_mutex);
2213
2214 if (run_it) {
2215 ret = btrfs_start_dirty_block_groups(trans);
2216 if (ret)
2217 goto lockdep_trans_commit_start_release;
2218 }
2219 }
2220
2221 spin_lock(&fs_info->trans_lock);
2222 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2223 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2224
2225 add_pending_snapshot(trans);
2226
2227 spin_unlock(&fs_info->trans_lock);
2228 refcount_inc(&cur_trans->use_count);
2229
2230 if (trans->in_fsync)
2231 want_state = TRANS_STATE_SUPER_COMMITTED;
2232
2233 btrfs_trans_state_lockdep_release(fs_info,
2234 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2235 ret = btrfs_end_transaction(trans);
2236 wait_for_commit(cur_trans, want_state);
2237
2238 if (TRANS_ABORTED(cur_trans))
2239 ret = cur_trans->aborted;
2240
2241 btrfs_put_transaction(cur_trans);
2242
2243 return ret;
2244 }
2245
2246 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2247 wake_up(&fs_info->transaction_blocked_wait);
2248 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2249
2250 if (cur_trans->list.prev != &fs_info->trans_list) {
2251 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2252
2253 if (trans->in_fsync)
2254 want_state = TRANS_STATE_SUPER_COMMITTED;
2255
2256 prev_trans = list_entry(cur_trans->list.prev,
2257 struct btrfs_transaction, list);
2258 if (prev_trans->state < want_state) {
2259 refcount_inc(&prev_trans->use_count);
2260 spin_unlock(&fs_info->trans_lock);
2261
2262 wait_for_commit(prev_trans, want_state);
2263
2264 ret = READ_ONCE(prev_trans->aborted);
2265
2266 btrfs_put_transaction(prev_trans);
2267 if (ret)
2268 goto lockdep_release;
2269 spin_lock(&fs_info->trans_lock);
2270 }
2271 } else {
2272 /*
2273 * The previous transaction was aborted and was already removed
2274 * from the list of transactions at fs_info->trans_list. So we
2275 * abort to prevent writing a new superblock that reflects a
2276 * corrupt state (pointing to trees with unwritten nodes/leafs).
2277 */
2278 if (BTRFS_FS_ERROR(fs_info)) {
2279 spin_unlock(&fs_info->trans_lock);
2280 ret = -EROFS;
2281 goto lockdep_release;
2282 }
2283 }
2284
2285 cur_trans->state = TRANS_STATE_COMMIT_START;
2286 wake_up(&fs_info->transaction_blocked_wait);
2287 spin_unlock(&fs_info->trans_lock);
2288
2289 /*
2290 * Get the time spent on the work done by the commit thread and not
2291 * the time spent waiting on a previous commit
2292 */
2293 start_time = ktime_get_ns();
2294
2295 extwriter_counter_dec(cur_trans, trans->type);
2296
2297 ret = btrfs_start_delalloc_flush(fs_info);
2298 if (ret)
2299 goto lockdep_release;
2300
2301 ret = btrfs_run_delayed_items(trans);
2302 if (ret)
2303 goto lockdep_release;
2304
2305 /*
2306 * The thread has started/joined the transaction thus it holds the
2307 * lockdep map as a reader. It has to release it before acquiring the
2308 * lockdep map as a writer.
2309 */
2310 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2311 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2312 wait_event(cur_trans->writer_wait,
2313 extwriter_counter_read(cur_trans) == 0);
2314
2315 /* some pending stuffs might be added after the previous flush. */
2316 ret = btrfs_run_delayed_items(trans);
2317 if (ret) {
2318 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319 goto cleanup_transaction;
2320 }
2321
2322 btrfs_wait_delalloc_flush(fs_info);
2323
2324 /*
2325 * Wait for all ordered extents started by a fast fsync that joined this
2326 * transaction. Otherwise if this transaction commits before the ordered
2327 * extents complete we lose logged data after a power failure.
2328 */
2329 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2330 wait_event(cur_trans->pending_wait,
2331 atomic_read(&cur_trans->pending_ordered) == 0);
2332
2333 btrfs_scrub_pause(fs_info);
2334 /*
2335 * Ok now we need to make sure to block out any other joins while we
2336 * commit the transaction. We could have started a join before setting
2337 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2338 */
2339 spin_lock(&fs_info->trans_lock);
2340 add_pending_snapshot(trans);
2341 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2342 spin_unlock(&fs_info->trans_lock);
2343
2344 /*
2345 * The thread has started/joined the transaction thus it holds the
2346 * lockdep map as a reader. It has to release it before acquiring the
2347 * lockdep map as a writer.
2348 */
2349 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2350 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2351 wait_event(cur_trans->writer_wait,
2352 atomic_read(&cur_trans->num_writers) == 1);
2353
2354 /*
2355 * Make lockdep happy by acquiring the state locks after
2356 * btrfs_trans_num_writers is released. If we acquired the state locks
2357 * before releasing the btrfs_trans_num_writers lock then lockdep would
2358 * complain because we did not follow the reverse order unlocking rule.
2359 */
2360 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2361 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2362 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2363
2364 /*
2365 * We've started the commit, clear the flag in case we were triggered to
2366 * do an async commit but somebody else started before the transaction
2367 * kthread could do the work.
2368 */
2369 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2370
2371 if (TRANS_ABORTED(cur_trans)) {
2372 ret = cur_trans->aborted;
2373 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374 goto scrub_continue;
2375 }
2376 /*
2377 * the reloc mutex makes sure that we stop
2378 * the balancing code from coming in and moving
2379 * extents around in the middle of the commit
2380 */
2381 mutex_lock(&fs_info->reloc_mutex);
2382
2383 /*
2384 * We needn't worry about the delayed items because we will
2385 * deal with them in create_pending_snapshot(), which is the
2386 * core function of the snapshot creation.
2387 */
2388 ret = create_pending_snapshots(trans);
2389 if (ret)
2390 goto unlock_reloc;
2391
2392 /*
2393 * We insert the dir indexes of the snapshots and update the inode
2394 * of the snapshots' parents after the snapshot creation, so there
2395 * are some delayed items which are not dealt with. Now deal with
2396 * them.
2397 *
2398 * We needn't worry that this operation will corrupt the snapshots,
2399 * because all the tree which are snapshoted will be forced to COW
2400 * the nodes and leaves.
2401 */
2402 ret = btrfs_run_delayed_items(trans);
2403 if (ret)
2404 goto unlock_reloc;
2405
2406 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2407 if (ret)
2408 goto unlock_reloc;
2409
2410 /*
2411 * make sure none of the code above managed to slip in a
2412 * delayed item
2413 */
2414 btrfs_assert_delayed_root_empty(fs_info);
2415
2416 WARN_ON(cur_trans != trans->transaction);
2417
2418 ret = commit_fs_roots(trans);
2419 if (ret)
2420 goto unlock_reloc;
2421
2422 /* commit_fs_roots gets rid of all the tree log roots, it is now
2423 * safe to free the root of tree log roots
2424 */
2425 btrfs_free_log_root_tree(trans, fs_info);
2426
2427 /*
2428 * Since fs roots are all committed, we can get a quite accurate
2429 * new_roots. So let's do quota accounting.
2430 */
2431 ret = btrfs_qgroup_account_extents(trans);
2432 if (ret < 0)
2433 goto unlock_reloc;
2434
2435 ret = commit_cowonly_roots(trans);
2436 if (ret)
2437 goto unlock_reloc;
2438
2439 /*
2440 * The tasks which save the space cache and inode cache may also
2441 * update ->aborted, check it.
2442 */
2443 if (TRANS_ABORTED(cur_trans)) {
2444 ret = cur_trans->aborted;
2445 goto unlock_reloc;
2446 }
2447
2448 cur_trans = fs_info->running_transaction;
2449
2450 btrfs_set_root_node(&fs_info->tree_root->root_item,
2451 fs_info->tree_root->node);
2452 list_add_tail(&fs_info->tree_root->dirty_list,
2453 &cur_trans->switch_commits);
2454
2455 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2456 fs_info->chunk_root->node);
2457 list_add_tail(&fs_info->chunk_root->dirty_list,
2458 &cur_trans->switch_commits);
2459
2460 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2461 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2462 fs_info->block_group_root->node);
2463 list_add_tail(&fs_info->block_group_root->dirty_list,
2464 &cur_trans->switch_commits);
2465 }
2466
2467 switch_commit_roots(trans);
2468
2469 ASSERT(list_empty(&cur_trans->dirty_bgs));
2470 ASSERT(list_empty(&cur_trans->io_bgs));
2471 update_super_roots(fs_info);
2472
2473 btrfs_set_super_log_root(fs_info->super_copy, 0);
2474 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2475 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2476 sizeof(*fs_info->super_copy));
2477
2478 btrfs_commit_device_sizes(cur_trans);
2479
2480 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2481 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2482
2483 btrfs_trans_release_chunk_metadata(trans);
2484
2485 /*
2486 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2487 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2488 * make sure that before we commit our superblock, no other task can
2489 * start a new transaction and commit a log tree before we commit our
2490 * superblock. Anyone trying to commit a log tree locks this mutex before
2491 * writing its superblock.
2492 */
2493 mutex_lock(&fs_info->tree_log_mutex);
2494
2495 spin_lock(&fs_info->trans_lock);
2496 cur_trans->state = TRANS_STATE_UNBLOCKED;
2497 fs_info->running_transaction = NULL;
2498 spin_unlock(&fs_info->trans_lock);
2499 mutex_unlock(&fs_info->reloc_mutex);
2500
2501 wake_up(&fs_info->transaction_wait);
2502 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2503
2504 /* If we have features changed, wake up the cleaner to update sysfs. */
2505 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2506 fs_info->cleaner_kthread)
2507 wake_up_process(fs_info->cleaner_kthread);
2508
2509 ret = btrfs_write_and_wait_transaction(trans);
2510 if (ret) {
2511 btrfs_handle_fs_error(fs_info, ret,
2512 "Error while writing out transaction");
2513 mutex_unlock(&fs_info->tree_log_mutex);
2514 goto scrub_continue;
2515 }
2516
2517 ret = write_all_supers(fs_info, 0);
2518 /*
2519 * the super is written, we can safely allow the tree-loggers
2520 * to go about their business
2521 */
2522 mutex_unlock(&fs_info->tree_log_mutex);
2523 if (ret)
2524 goto scrub_continue;
2525
2526 /*
2527 * We needn't acquire the lock here because there is no other task
2528 * which can change it.
2529 */
2530 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2531 wake_up(&cur_trans->commit_wait);
2532 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2533
2534 btrfs_finish_extent_commit(trans);
2535
2536 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2537 btrfs_clear_space_info_full(fs_info);
2538
2539 fs_info->last_trans_committed = cur_trans->transid;
2540 /*
2541 * We needn't acquire the lock here because there is no other task
2542 * which can change it.
2543 */
2544 cur_trans->state = TRANS_STATE_COMPLETED;
2545 wake_up(&cur_trans->commit_wait);
2546 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2547
2548 spin_lock(&fs_info->trans_lock);
2549 list_del_init(&cur_trans->list);
2550 spin_unlock(&fs_info->trans_lock);
2551
2552 btrfs_put_transaction(cur_trans);
2553 btrfs_put_transaction(cur_trans);
2554
2555 if (trans->type & __TRANS_FREEZABLE)
2556 sb_end_intwrite(fs_info->sb);
2557
2558 trace_btrfs_transaction_commit(fs_info);
2559
2560 interval = ktime_get_ns() - start_time;
2561
2562 btrfs_scrub_continue(fs_info);
2563
2564 if (current->journal_info == trans)
2565 current->journal_info = NULL;
2566
2567 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2568
2569 update_commit_stats(fs_info, interval);
2570
2571 return ret;
2572
2573 unlock_reloc:
2574 mutex_unlock(&fs_info->reloc_mutex);
2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2576 scrub_continue:
2577 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2578 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2579 btrfs_scrub_continue(fs_info);
2580 cleanup_transaction:
2581 btrfs_trans_release_metadata(trans);
2582 btrfs_cleanup_pending_block_groups(trans);
2583 btrfs_trans_release_chunk_metadata(trans);
2584 trans->block_rsv = NULL;
2585 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2586 if (current->journal_info == trans)
2587 current->journal_info = NULL;
2588 cleanup_transaction(trans, ret);
2589
2590 return ret;
2591
2592 lockdep_release:
2593 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2594 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2595 goto cleanup_transaction;
2596
2597 lockdep_trans_commit_start_release:
2598 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2599 btrfs_end_transaction(trans);
2600 return ret;
2601 }
2602
2603 /*
2604 * return < 0 if error
2605 * 0 if there are no more dead_roots at the time of call
2606 * 1 there are more to be processed, call me again
2607 *
2608 * The return value indicates there are certainly more snapshots to delete, but
2609 * if there comes a new one during processing, it may return 0. We don't mind,
2610 * because btrfs_commit_super will poke cleaner thread and it will process it a
2611 * few seconds later.
2612 */
2613 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2614 {
2615 struct btrfs_root *root;
2616 int ret;
2617
2618 spin_lock(&fs_info->trans_lock);
2619 if (list_empty(&fs_info->dead_roots)) {
2620 spin_unlock(&fs_info->trans_lock);
2621 return 0;
2622 }
2623 root = list_first_entry(&fs_info->dead_roots,
2624 struct btrfs_root, root_list);
2625 list_del_init(&root->root_list);
2626 spin_unlock(&fs_info->trans_lock);
2627
2628 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2629
2630 btrfs_kill_all_delayed_nodes(root);
2631
2632 if (btrfs_header_backref_rev(root->node) <
2633 BTRFS_MIXED_BACKREF_REV)
2634 ret = btrfs_drop_snapshot(root, 0, 0);
2635 else
2636 ret = btrfs_drop_snapshot(root, 1, 0);
2637
2638 btrfs_put_root(root);
2639 return (ret < 0) ? 0 : 1;
2640 }
2641
2642 /*
2643 * We only mark the transaction aborted and then set the file system read-only.
2644 * This will prevent new transactions from starting or trying to join this
2645 * one.
2646 *
2647 * This means that error recovery at the call site is limited to freeing
2648 * any local memory allocations and passing the error code up without
2649 * further cleanup. The transaction should complete as it normally would
2650 * in the call path but will return -EIO.
2651 *
2652 * We'll complete the cleanup in btrfs_end_transaction and
2653 * btrfs_commit_transaction.
2654 */
2655 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2656 const char *function,
2657 unsigned int line, int errno, bool first_hit)
2658 {
2659 struct btrfs_fs_info *fs_info = trans->fs_info;
2660
2661 WRITE_ONCE(trans->aborted, errno);
2662 WRITE_ONCE(trans->transaction->aborted, errno);
2663 if (first_hit && errno == -ENOSPC)
2664 btrfs_dump_space_info_for_trans_abort(fs_info);
2665 /* Wake up anybody who may be waiting on this transaction */
2666 wake_up(&fs_info->transaction_wait);
2667 wake_up(&fs_info->transaction_blocked_wait);
2668 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2669 }
2670
2671 int __init btrfs_transaction_init(void)
2672 {
2673 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2674 sizeof(struct btrfs_trans_handle), 0,
2675 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2676 if (!btrfs_trans_handle_cachep)
2677 return -ENOMEM;
2678 return 0;
2679 }
2680
2681 void __cold btrfs_transaction_exit(void)
2682 {
2683 kmem_cache_destroy(btrfs_trans_handle_cachep);
2684 }