]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/volumes.c
b6a701011fb057b5d6e2e96eee0b98019c2f8321
[thirdparty/kernel/stable.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "rcu-string.h"
22 #include "dev-replace.h"
23 #include "sysfs.h"
24 #include "tree-checker.h"
25 #include "space-info.h"
26 #include "block-group.h"
27 #include "discard.h"
28 #include "zoned.h"
29 #include "fs.h"
30 #include "accessors.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35 #include "super.h"
36 #include "raid-stripe-tree.h"
37
38 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
39 BTRFS_BLOCK_GROUP_RAID10 | \
40 BTRFS_BLOCK_GROUP_RAID56_MASK)
41
42 struct btrfs_io_geometry {
43 u32 stripe_index;
44 u32 stripe_nr;
45 int mirror_num;
46 int num_stripes;
47 u64 stripe_offset;
48 u64 raid56_full_stripe_start;
49 int max_errors;
50 enum btrfs_map_op op;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags) {
217 strcpy(bp, "NONE");
218 return;
219 }
220
221 #define DESCRIBE_FLAG(flag, desc) \
222 do { \
223 if (flags & (flag)) { \
224 ret = snprintf(bp, size_bp, "%s|", (desc)); \
225 if (ret < 0 || ret >= size_bp) \
226 goto out_overflow; \
227 size_bp -= ret; \
228 bp += ret; \
229 flags &= ~(flag); \
230 } \
231 } while (0)
232
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
234 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
235 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
236
237 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
238 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
239 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
240 btrfs_raid_array[i].raid_name);
241 #undef DESCRIBE_FLAG
242
243 if (flags) {
244 ret = snprintf(bp, size_bp, "0x%llx|", flags);
245 size_bp -= ret;
246 }
247
248 if (size_bp < size_buf)
249 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
250
251 /*
252 * The text is trimmed, it's up to the caller to provide sufficiently
253 * large buffer
254 */
255 out_overflow:;
256 }
257
258 static int init_first_rw_device(struct btrfs_trans_handle *trans);
259 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
260 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
261
262 /*
263 * Device locking
264 * ==============
265 *
266 * There are several mutexes that protect manipulation of devices and low-level
267 * structures like chunks but not block groups, extents or files
268 *
269 * uuid_mutex (global lock)
270 * ------------------------
271 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
272 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
273 * device) or requested by the device= mount option
274 *
275 * the mutex can be very coarse and can cover long-running operations
276 *
277 * protects: updates to fs_devices counters like missing devices, rw devices,
278 * seeding, structure cloning, opening/closing devices at mount/umount time
279 *
280 * global::fs_devs - add, remove, updates to the global list
281 *
282 * does not protect: manipulation of the fs_devices::devices list in general
283 * but in mount context it could be used to exclude list modifications by eg.
284 * scan ioctl
285 *
286 * btrfs_device::name - renames (write side), read is RCU
287 *
288 * fs_devices::device_list_mutex (per-fs, with RCU)
289 * ------------------------------------------------
290 * protects updates to fs_devices::devices, ie. adding and deleting
291 *
292 * simple list traversal with read-only actions can be done with RCU protection
293 *
294 * may be used to exclude some operations from running concurrently without any
295 * modifications to the list (see write_all_supers)
296 *
297 * Is not required at mount and close times, because our device list is
298 * protected by the uuid_mutex at that point.
299 *
300 * balance_mutex
301 * -------------
302 * protects balance structures (status, state) and context accessed from
303 * several places (internally, ioctl)
304 *
305 * chunk_mutex
306 * -----------
307 * protects chunks, adding or removing during allocation, trim or when a new
308 * device is added/removed. Additionally it also protects post_commit_list of
309 * individual devices, since they can be added to the transaction's
310 * post_commit_list only with chunk_mutex held.
311 *
312 * cleaner_mutex
313 * -------------
314 * a big lock that is held by the cleaner thread and prevents running subvolume
315 * cleaning together with relocation or delayed iputs
316 *
317 *
318 * Lock nesting
319 * ============
320 *
321 * uuid_mutex
322 * device_list_mutex
323 * chunk_mutex
324 * balance_mutex
325 *
326 *
327 * Exclusive operations
328 * ====================
329 *
330 * Maintains the exclusivity of the following operations that apply to the
331 * whole filesystem and cannot run in parallel.
332 *
333 * - Balance (*)
334 * - Device add
335 * - Device remove
336 * - Device replace (*)
337 * - Resize
338 *
339 * The device operations (as above) can be in one of the following states:
340 *
341 * - Running state
342 * - Paused state
343 * - Completed state
344 *
345 * Only device operations marked with (*) can go into the Paused state for the
346 * following reasons:
347 *
348 * - ioctl (only Balance can be Paused through ioctl)
349 * - filesystem remounted as read-only
350 * - filesystem unmounted and mounted as read-only
351 * - system power-cycle and filesystem mounted as read-only
352 * - filesystem or device errors leading to forced read-only
353 *
354 * The status of exclusive operation is set and cleared atomically.
355 * During the course of Paused state, fs_info::exclusive_operation remains set.
356 * A device operation in Paused or Running state can be canceled or resumed
357 * either by ioctl (Balance only) or when remounted as read-write.
358 * The exclusive status is cleared when the device operation is canceled or
359 * completed.
360 */
361
362 DEFINE_MUTEX(uuid_mutex);
363 static LIST_HEAD(fs_uuids);
364 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
365 {
366 return &fs_uuids;
367 }
368
369 /*
370 * Allocate new btrfs_fs_devices structure identified by a fsid.
371 *
372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
373 * fs_devices::metadata_fsid
374 *
375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
376 * The returned struct is not linked onto any lists and can be destroyed with
377 * kfree() right away.
378 */
379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
380 {
381 struct btrfs_fs_devices *fs_devs;
382
383 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
384 if (!fs_devs)
385 return ERR_PTR(-ENOMEM);
386
387 mutex_init(&fs_devs->device_list_mutex);
388
389 INIT_LIST_HEAD(&fs_devs->devices);
390 INIT_LIST_HEAD(&fs_devs->alloc_list);
391 INIT_LIST_HEAD(&fs_devs->fs_list);
392 INIT_LIST_HEAD(&fs_devs->seed_list);
393
394 if (fsid) {
395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
396 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
397 }
398
399 return fs_devs;
400 }
401
402 static void btrfs_free_device(struct btrfs_device *device)
403 {
404 WARN_ON(!list_empty(&device->post_commit_list));
405 rcu_string_free(device->name);
406 extent_io_tree_release(&device->alloc_state);
407 btrfs_destroy_dev_zone_info(device);
408 kfree(device);
409 }
410
411 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
412 {
413 struct btrfs_device *device;
414
415 WARN_ON(fs_devices->opened);
416 while (!list_empty(&fs_devices->devices)) {
417 device = list_entry(fs_devices->devices.next,
418 struct btrfs_device, dev_list);
419 list_del(&device->dev_list);
420 btrfs_free_device(device);
421 }
422 kfree(fs_devices);
423 }
424
425 void __exit btrfs_cleanup_fs_uuids(void)
426 {
427 struct btrfs_fs_devices *fs_devices;
428
429 while (!list_empty(&fs_uuids)) {
430 fs_devices = list_entry(fs_uuids.next,
431 struct btrfs_fs_devices, fs_list);
432 list_del(&fs_devices->fs_list);
433 free_fs_devices(fs_devices);
434 }
435 }
436
437 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
438 const u8 *fsid, const u8 *metadata_fsid)
439 {
440 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
441 return false;
442
443 if (!metadata_fsid)
444 return true;
445
446 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
447 return false;
448
449 return true;
450 }
451
452 static noinline struct btrfs_fs_devices *find_fsid(
453 const u8 *fsid, const u8 *metadata_fsid)
454 {
455 struct btrfs_fs_devices *fs_devices;
456
457 ASSERT(fsid);
458
459 /* Handle non-split brain cases */
460 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
461 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
462 return fs_devices;
463 }
464 return NULL;
465 }
466
467 static int
468 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
469 int flush, struct file **bdev_file,
470 struct btrfs_super_block **disk_super)
471 {
472 struct block_device *bdev;
473 int ret;
474
475 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, NULL);
476
477 if (IS_ERR(*bdev_file)) {
478 ret = PTR_ERR(*bdev_file);
479 goto error;
480 }
481 bdev = file_bdev(*bdev_file);
482
483 if (flush)
484 sync_blockdev(bdev);
485 ret = set_blocksize(bdev, BTRFS_BDEV_BLOCKSIZE);
486 if (ret) {
487 fput(*bdev_file);
488 goto error;
489 }
490 invalidate_bdev(bdev);
491 *disk_super = btrfs_read_dev_super(bdev);
492 if (IS_ERR(*disk_super)) {
493 ret = PTR_ERR(*disk_super);
494 fput(*bdev_file);
495 goto error;
496 }
497
498 return 0;
499
500 error:
501 *bdev_file = NULL;
502 return ret;
503 }
504
505 /*
506 * Search and remove all stale devices (which are not mounted). When both
507 * inputs are NULL, it will search and release all stale devices.
508 *
509 * @devt: Optional. When provided will it release all unmounted devices
510 * matching this devt only.
511 * @skip_device: Optional. Will skip this device when searching for the stale
512 * devices.
513 *
514 * Return: 0 for success or if @devt is 0.
515 * -EBUSY if @devt is a mounted device.
516 * -ENOENT if @devt does not match any device in the list.
517 */
518 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
519 {
520 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
521 struct btrfs_device *device, *tmp_device;
522 int ret;
523 bool freed = false;
524
525 lockdep_assert_held(&uuid_mutex);
526
527 /* Return good status if there is no instance of devt. */
528 ret = 0;
529 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
530
531 mutex_lock(&fs_devices->device_list_mutex);
532 list_for_each_entry_safe(device, tmp_device,
533 &fs_devices->devices, dev_list) {
534 if (skip_device && skip_device == device)
535 continue;
536 if (devt && devt != device->devt)
537 continue;
538 if (fs_devices->opened) {
539 if (devt)
540 ret = -EBUSY;
541 break;
542 }
543
544 /* delete the stale device */
545 fs_devices->num_devices--;
546 list_del(&device->dev_list);
547 btrfs_free_device(device);
548
549 freed = true;
550 }
551 mutex_unlock(&fs_devices->device_list_mutex);
552
553 if (fs_devices->num_devices == 0) {
554 btrfs_sysfs_remove_fsid(fs_devices);
555 list_del(&fs_devices->fs_list);
556 free_fs_devices(fs_devices);
557 }
558 }
559
560 /* If there is at least one freed device return 0. */
561 if (freed)
562 return 0;
563
564 return ret;
565 }
566
567 static struct btrfs_fs_devices *find_fsid_by_device(
568 struct btrfs_super_block *disk_super,
569 dev_t devt, bool *same_fsid_diff_dev)
570 {
571 struct btrfs_fs_devices *fsid_fs_devices;
572 struct btrfs_fs_devices *devt_fs_devices;
573 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
574 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
575 bool found_by_devt = false;
576
577 /* Find the fs_device by the usual method, if found use it. */
578 fsid_fs_devices = find_fsid(disk_super->fsid,
579 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
580
581 /* The temp_fsid feature is supported only with single device filesystem. */
582 if (btrfs_super_num_devices(disk_super) != 1)
583 return fsid_fs_devices;
584
585 /*
586 * A seed device is an integral component of the sprout device, which
587 * functions as a multi-device filesystem. So, temp-fsid feature is
588 * not supported.
589 */
590 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
591 return fsid_fs_devices;
592
593 /* Try to find a fs_devices by matching devt. */
594 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
595 struct btrfs_device *device;
596
597 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
598 if (device->devt == devt) {
599 found_by_devt = true;
600 break;
601 }
602 }
603 if (found_by_devt)
604 break;
605 }
606
607 if (found_by_devt) {
608 /* Existing device. */
609 if (fsid_fs_devices == NULL) {
610 if (devt_fs_devices->opened == 0) {
611 /* Stale device. */
612 return NULL;
613 } else {
614 /* temp_fsid is mounting a subvol. */
615 return devt_fs_devices;
616 }
617 } else {
618 /* Regular or temp_fsid device mounting a subvol. */
619 return devt_fs_devices;
620 }
621 } else {
622 /* New device. */
623 if (fsid_fs_devices == NULL) {
624 return NULL;
625 } else {
626 /* sb::fsid is already used create a new temp_fsid. */
627 *same_fsid_diff_dev = true;
628 return NULL;
629 }
630 }
631
632 /* Not reached. */
633 }
634
635 /*
636 * This is only used on mount, and we are protected from competing things
637 * messing with our fs_devices by the uuid_mutex, thus we do not need the
638 * fs_devices->device_list_mutex here.
639 */
640 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
641 struct btrfs_device *device, blk_mode_t flags,
642 void *holder)
643 {
644 struct file *bdev_file;
645 struct btrfs_super_block *disk_super;
646 u64 devid;
647 int ret;
648
649 if (device->bdev)
650 return -EINVAL;
651 if (!device->name)
652 return -EINVAL;
653
654 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
655 &bdev_file, &disk_super);
656 if (ret)
657 return ret;
658
659 devid = btrfs_stack_device_id(&disk_super->dev_item);
660 if (devid != device->devid)
661 goto error_free_page;
662
663 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
664 goto error_free_page;
665
666 device->generation = btrfs_super_generation(disk_super);
667
668 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
669 if (btrfs_super_incompat_flags(disk_super) &
670 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
671 pr_err(
672 "BTRFS: Invalid seeding and uuid-changed device detected\n");
673 goto error_free_page;
674 }
675
676 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
677 fs_devices->seeding = true;
678 } else {
679 if (bdev_read_only(file_bdev(bdev_file)))
680 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
681 else
682 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
683 }
684
685 if (!bdev_nonrot(file_bdev(bdev_file)))
686 fs_devices->rotating = true;
687
688 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
689 fs_devices->discardable = true;
690
691 device->bdev_file = bdev_file;
692 device->bdev = file_bdev(bdev_file);
693 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
694
695 if (device->devt != device->bdev->bd_dev) {
696 btrfs_warn(NULL,
697 "device %s maj:min changed from %d:%d to %d:%d",
698 device->name->str, MAJOR(device->devt),
699 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
700 MINOR(device->bdev->bd_dev));
701
702 device->devt = device->bdev->bd_dev;
703 }
704
705 fs_devices->open_devices++;
706 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
707 device->devid != BTRFS_DEV_REPLACE_DEVID) {
708 fs_devices->rw_devices++;
709 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
710 }
711 btrfs_release_disk_super(disk_super);
712
713 return 0;
714
715 error_free_page:
716 btrfs_release_disk_super(disk_super);
717 fput(bdev_file);
718
719 return -EINVAL;
720 }
721
722 u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
723 {
724 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
725 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
726
727 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
728 }
729
730 /*
731 * Add new device to list of registered devices
732 *
733 * Returns:
734 * device pointer which was just added or updated when successful
735 * error pointer when failed
736 */
737 static noinline struct btrfs_device *device_list_add(const char *path,
738 struct btrfs_super_block *disk_super,
739 bool *new_device_added)
740 {
741 struct btrfs_device *device;
742 struct btrfs_fs_devices *fs_devices = NULL;
743 struct rcu_string *name;
744 u64 found_transid = btrfs_super_generation(disk_super);
745 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
746 dev_t path_devt;
747 int error;
748 bool same_fsid_diff_dev = false;
749 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
750 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
751
752 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
753 btrfs_err(NULL,
754 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
755 path);
756 return ERR_PTR(-EAGAIN);
757 }
758
759 error = lookup_bdev(path, &path_devt);
760 if (error) {
761 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
762 path, error);
763 return ERR_PTR(error);
764 }
765
766 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
767
768 if (!fs_devices) {
769 fs_devices = alloc_fs_devices(disk_super->fsid);
770 if (IS_ERR(fs_devices))
771 return ERR_CAST(fs_devices);
772
773 if (has_metadata_uuid)
774 memcpy(fs_devices->metadata_uuid,
775 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
776
777 if (same_fsid_diff_dev) {
778 generate_random_uuid(fs_devices->fsid);
779 fs_devices->temp_fsid = true;
780 pr_info("BTRFS: device %s (%d:%d) using temp-fsid %pU\n",
781 path, MAJOR(path_devt), MINOR(path_devt),
782 fs_devices->fsid);
783 }
784
785 mutex_lock(&fs_devices->device_list_mutex);
786 list_add(&fs_devices->fs_list, &fs_uuids);
787
788 device = NULL;
789 } else {
790 struct btrfs_dev_lookup_args args = {
791 .devid = devid,
792 .uuid = disk_super->dev_item.uuid,
793 };
794
795 mutex_lock(&fs_devices->device_list_mutex);
796 device = btrfs_find_device(fs_devices, &args);
797
798 if (found_transid > fs_devices->latest_generation) {
799 memcpy(fs_devices->fsid, disk_super->fsid,
800 BTRFS_FSID_SIZE);
801 memcpy(fs_devices->metadata_uuid,
802 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
803 }
804 }
805
806 if (!device) {
807 unsigned int nofs_flag;
808
809 if (fs_devices->opened) {
810 btrfs_err(NULL,
811 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
812 path, MAJOR(path_devt), MINOR(path_devt),
813 fs_devices->fsid, current->comm,
814 task_pid_nr(current));
815 mutex_unlock(&fs_devices->device_list_mutex);
816 return ERR_PTR(-EBUSY);
817 }
818
819 nofs_flag = memalloc_nofs_save();
820 device = btrfs_alloc_device(NULL, &devid,
821 disk_super->dev_item.uuid, path);
822 memalloc_nofs_restore(nofs_flag);
823 if (IS_ERR(device)) {
824 mutex_unlock(&fs_devices->device_list_mutex);
825 /* we can safely leave the fs_devices entry around */
826 return device;
827 }
828
829 device->devt = path_devt;
830
831 list_add_rcu(&device->dev_list, &fs_devices->devices);
832 fs_devices->num_devices++;
833
834 device->fs_devices = fs_devices;
835 *new_device_added = true;
836
837 if (disk_super->label[0])
838 pr_info(
839 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
840 disk_super->label, devid, found_transid, path,
841 MAJOR(path_devt), MINOR(path_devt),
842 current->comm, task_pid_nr(current));
843 else
844 pr_info(
845 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
846 disk_super->fsid, devid, found_transid, path,
847 MAJOR(path_devt), MINOR(path_devt),
848 current->comm, task_pid_nr(current));
849
850 } else if (!device->name || strcmp(device->name->str, path)) {
851 /*
852 * When FS is already mounted.
853 * 1. If you are here and if the device->name is NULL that
854 * means this device was missing at time of FS mount.
855 * 2. If you are here and if the device->name is different
856 * from 'path' that means either
857 * a. The same device disappeared and reappeared with
858 * different name. or
859 * b. The missing-disk-which-was-replaced, has
860 * reappeared now.
861 *
862 * We must allow 1 and 2a above. But 2b would be a spurious
863 * and unintentional.
864 *
865 * Further in case of 1 and 2a above, the disk at 'path'
866 * would have missed some transaction when it was away and
867 * in case of 2a the stale bdev has to be updated as well.
868 * 2b must not be allowed at all time.
869 */
870
871 /*
872 * For now, we do allow update to btrfs_fs_device through the
873 * btrfs dev scan cli after FS has been mounted. We're still
874 * tracking a problem where systems fail mount by subvolume id
875 * when we reject replacement on a mounted FS.
876 */
877 if (!fs_devices->opened && found_transid < device->generation) {
878 /*
879 * That is if the FS is _not_ mounted and if you
880 * are here, that means there is more than one
881 * disk with same uuid and devid.We keep the one
882 * with larger generation number or the last-in if
883 * generation are equal.
884 */
885 mutex_unlock(&fs_devices->device_list_mutex);
886 btrfs_err(NULL,
887 "device %s already registered with a higher generation, found %llu expect %llu",
888 path, found_transid, device->generation);
889 return ERR_PTR(-EEXIST);
890 }
891
892 /*
893 * We are going to replace the device path for a given devid,
894 * make sure it's the same device if the device is mounted
895 *
896 * NOTE: the device->fs_info may not be reliable here so pass
897 * in a NULL to message helpers instead. This avoids a possible
898 * use-after-free when the fs_info and fs_info->sb are already
899 * torn down.
900 */
901 if (device->bdev) {
902 if (device->devt != path_devt) {
903 mutex_unlock(&fs_devices->device_list_mutex);
904 btrfs_warn_in_rcu(NULL,
905 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
906 path, devid, found_transid,
907 current->comm,
908 task_pid_nr(current));
909 return ERR_PTR(-EEXIST);
910 }
911 btrfs_info_in_rcu(NULL,
912 "devid %llu device path %s changed to %s scanned by %s (%d)",
913 devid, btrfs_dev_name(device),
914 path, current->comm,
915 task_pid_nr(current));
916 }
917
918 name = rcu_string_strdup(path, GFP_NOFS);
919 if (!name) {
920 mutex_unlock(&fs_devices->device_list_mutex);
921 return ERR_PTR(-ENOMEM);
922 }
923 rcu_string_free(device->name);
924 rcu_assign_pointer(device->name, name);
925 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
926 fs_devices->missing_devices--;
927 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
928 }
929 device->devt = path_devt;
930 }
931
932 /*
933 * Unmount does not free the btrfs_device struct but would zero
934 * generation along with most of the other members. So just update
935 * it back. We need it to pick the disk with largest generation
936 * (as above).
937 */
938 if (!fs_devices->opened) {
939 device->generation = found_transid;
940 fs_devices->latest_generation = max_t(u64, found_transid,
941 fs_devices->latest_generation);
942 }
943
944 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
945
946 mutex_unlock(&fs_devices->device_list_mutex);
947 return device;
948 }
949
950 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
951 {
952 struct btrfs_fs_devices *fs_devices;
953 struct btrfs_device *device;
954 struct btrfs_device *orig_dev;
955 int ret = 0;
956
957 lockdep_assert_held(&uuid_mutex);
958
959 fs_devices = alloc_fs_devices(orig->fsid);
960 if (IS_ERR(fs_devices))
961 return fs_devices;
962
963 fs_devices->total_devices = orig->total_devices;
964
965 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
966 const char *dev_path = NULL;
967
968 /*
969 * This is ok to do without RCU read locked because we hold the
970 * uuid mutex so nothing we touch in here is going to disappear.
971 */
972 if (orig_dev->name)
973 dev_path = orig_dev->name->str;
974
975 device = btrfs_alloc_device(NULL, &orig_dev->devid,
976 orig_dev->uuid, dev_path);
977 if (IS_ERR(device)) {
978 ret = PTR_ERR(device);
979 goto error;
980 }
981
982 if (orig_dev->zone_info) {
983 struct btrfs_zoned_device_info *zone_info;
984
985 zone_info = btrfs_clone_dev_zone_info(orig_dev);
986 if (!zone_info) {
987 btrfs_free_device(device);
988 ret = -ENOMEM;
989 goto error;
990 }
991 device->zone_info = zone_info;
992 }
993
994 list_add(&device->dev_list, &fs_devices->devices);
995 device->fs_devices = fs_devices;
996 fs_devices->num_devices++;
997 }
998 return fs_devices;
999 error:
1000 free_fs_devices(fs_devices);
1001 return ERR_PTR(ret);
1002 }
1003
1004 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1005 struct btrfs_device **latest_dev)
1006 {
1007 struct btrfs_device *device, *next;
1008
1009 /* This is the initialized path, it is safe to release the devices. */
1010 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1011 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1012 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1013 &device->dev_state) &&
1014 !test_bit(BTRFS_DEV_STATE_MISSING,
1015 &device->dev_state) &&
1016 (!*latest_dev ||
1017 device->generation > (*latest_dev)->generation)) {
1018 *latest_dev = device;
1019 }
1020 continue;
1021 }
1022
1023 /*
1024 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1025 * in btrfs_init_dev_replace() so just continue.
1026 */
1027 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1028 continue;
1029
1030 if (device->bdev_file) {
1031 fput(device->bdev_file);
1032 device->bdev = NULL;
1033 device->bdev_file = NULL;
1034 fs_devices->open_devices--;
1035 }
1036 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1037 list_del_init(&device->dev_alloc_list);
1038 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1039 fs_devices->rw_devices--;
1040 }
1041 list_del_init(&device->dev_list);
1042 fs_devices->num_devices--;
1043 btrfs_free_device(device);
1044 }
1045
1046 }
1047
1048 /*
1049 * After we have read the system tree and know devids belonging to this
1050 * filesystem, remove the device which does not belong there.
1051 */
1052 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1053 {
1054 struct btrfs_device *latest_dev = NULL;
1055 struct btrfs_fs_devices *seed_dev;
1056
1057 mutex_lock(&uuid_mutex);
1058 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1059
1060 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1061 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1062
1063 fs_devices->latest_dev = latest_dev;
1064
1065 mutex_unlock(&uuid_mutex);
1066 }
1067
1068 static void btrfs_close_bdev(struct btrfs_device *device)
1069 {
1070 if (!device->bdev)
1071 return;
1072
1073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1074 sync_blockdev(device->bdev);
1075 invalidate_bdev(device->bdev);
1076 }
1077
1078 fput(device->bdev_file);
1079 }
1080
1081 static void btrfs_close_one_device(struct btrfs_device *device)
1082 {
1083 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1084
1085 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1086 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1087 list_del_init(&device->dev_alloc_list);
1088 fs_devices->rw_devices--;
1089 }
1090
1091 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1092 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1093
1094 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1095 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1096 fs_devices->missing_devices--;
1097 }
1098
1099 btrfs_close_bdev(device);
1100 if (device->bdev) {
1101 fs_devices->open_devices--;
1102 device->bdev = NULL;
1103 }
1104 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1105 btrfs_destroy_dev_zone_info(device);
1106
1107 device->fs_info = NULL;
1108 atomic_set(&device->dev_stats_ccnt, 0);
1109 extent_io_tree_release(&device->alloc_state);
1110
1111 /*
1112 * Reset the flush error record. We might have a transient flush error
1113 * in this mount, and if so we aborted the current transaction and set
1114 * the fs to an error state, guaranteeing no super blocks can be further
1115 * committed. However that error might be transient and if we unmount the
1116 * filesystem and mount it again, we should allow the mount to succeed
1117 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1118 * filesystem again we still get flush errors, then we will again abort
1119 * any transaction and set the error state, guaranteeing no commits of
1120 * unsafe super blocks.
1121 */
1122 device->last_flush_error = 0;
1123
1124 /* Verify the device is back in a pristine state */
1125 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1126 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1127 WARN_ON(!list_empty(&device->dev_alloc_list));
1128 WARN_ON(!list_empty(&device->post_commit_list));
1129 }
1130
1131 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1132 {
1133 struct btrfs_device *device, *tmp;
1134
1135 lockdep_assert_held(&uuid_mutex);
1136
1137 if (--fs_devices->opened > 0)
1138 return;
1139
1140 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1141 btrfs_close_one_device(device);
1142
1143 WARN_ON(fs_devices->open_devices);
1144 WARN_ON(fs_devices->rw_devices);
1145 fs_devices->opened = 0;
1146 fs_devices->seeding = false;
1147 fs_devices->fs_info = NULL;
1148 }
1149
1150 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1151 {
1152 LIST_HEAD(list);
1153 struct btrfs_fs_devices *tmp;
1154
1155 mutex_lock(&uuid_mutex);
1156 close_fs_devices(fs_devices);
1157 if (!fs_devices->opened) {
1158 list_splice_init(&fs_devices->seed_list, &list);
1159
1160 /*
1161 * If the struct btrfs_fs_devices is not assembled with any
1162 * other device, it can be re-initialized during the next mount
1163 * without the needing device-scan step. Therefore, it can be
1164 * fully freed.
1165 */
1166 if (fs_devices->num_devices == 1) {
1167 list_del(&fs_devices->fs_list);
1168 free_fs_devices(fs_devices);
1169 }
1170 }
1171
1172
1173 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1174 close_fs_devices(fs_devices);
1175 list_del(&fs_devices->seed_list);
1176 free_fs_devices(fs_devices);
1177 }
1178 mutex_unlock(&uuid_mutex);
1179 }
1180
1181 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1182 blk_mode_t flags, void *holder)
1183 {
1184 struct btrfs_device *device;
1185 struct btrfs_device *latest_dev = NULL;
1186 struct btrfs_device *tmp_device;
1187 int ret = 0;
1188
1189 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1190 dev_list) {
1191 int ret2;
1192
1193 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1194 if (ret2 == 0 &&
1195 (!latest_dev || device->generation > latest_dev->generation)) {
1196 latest_dev = device;
1197 } else if (ret2 == -ENODATA) {
1198 fs_devices->num_devices--;
1199 list_del(&device->dev_list);
1200 btrfs_free_device(device);
1201 }
1202 if (ret == 0 && ret2 != 0)
1203 ret = ret2;
1204 }
1205
1206 if (fs_devices->open_devices == 0) {
1207 if (ret)
1208 return ret;
1209 return -EINVAL;
1210 }
1211
1212 fs_devices->opened = 1;
1213 fs_devices->latest_dev = latest_dev;
1214 fs_devices->total_rw_bytes = 0;
1215 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1216 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1217
1218 return 0;
1219 }
1220
1221 static int devid_cmp(void *priv, const struct list_head *a,
1222 const struct list_head *b)
1223 {
1224 const struct btrfs_device *dev1, *dev2;
1225
1226 dev1 = list_entry(a, struct btrfs_device, dev_list);
1227 dev2 = list_entry(b, struct btrfs_device, dev_list);
1228
1229 if (dev1->devid < dev2->devid)
1230 return -1;
1231 else if (dev1->devid > dev2->devid)
1232 return 1;
1233 return 0;
1234 }
1235
1236 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1237 blk_mode_t flags, void *holder)
1238 {
1239 int ret;
1240
1241 lockdep_assert_held(&uuid_mutex);
1242 /*
1243 * The device_list_mutex cannot be taken here in case opening the
1244 * underlying device takes further locks like open_mutex.
1245 *
1246 * We also don't need the lock here as this is called during mount and
1247 * exclusion is provided by uuid_mutex
1248 */
1249
1250 if (fs_devices->opened) {
1251 fs_devices->opened++;
1252 ret = 0;
1253 } else {
1254 list_sort(NULL, &fs_devices->devices, devid_cmp);
1255 ret = open_fs_devices(fs_devices, flags, holder);
1256 }
1257
1258 return ret;
1259 }
1260
1261 void btrfs_release_disk_super(struct btrfs_super_block *super)
1262 {
1263 struct page *page = virt_to_page(super);
1264
1265 put_page(page);
1266 }
1267
1268 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1269 u64 bytenr, u64 bytenr_orig)
1270 {
1271 struct btrfs_super_block *disk_super;
1272 struct page *page;
1273 void *p;
1274 pgoff_t index;
1275
1276 /* make sure our super fits in the device */
1277 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
1278 return ERR_PTR(-EINVAL);
1279
1280 /* make sure our super fits in the page */
1281 if (sizeof(*disk_super) > PAGE_SIZE)
1282 return ERR_PTR(-EINVAL);
1283
1284 /* make sure our super doesn't straddle pages on disk */
1285 index = bytenr >> PAGE_SHIFT;
1286 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1287 return ERR_PTR(-EINVAL);
1288
1289 /* pull in the page with our super */
1290 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
1291
1292 if (IS_ERR(page))
1293 return ERR_CAST(page);
1294
1295 p = page_address(page);
1296
1297 /* align our pointer to the offset of the super block */
1298 disk_super = p + offset_in_page(bytenr);
1299
1300 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
1301 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
1302 btrfs_release_disk_super(p);
1303 return ERR_PTR(-EINVAL);
1304 }
1305
1306 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1307 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
1308
1309 return disk_super;
1310 }
1311
1312 int btrfs_forget_devices(dev_t devt)
1313 {
1314 int ret;
1315
1316 mutex_lock(&uuid_mutex);
1317 ret = btrfs_free_stale_devices(devt, NULL);
1318 mutex_unlock(&uuid_mutex);
1319
1320 return ret;
1321 }
1322
1323 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1324 const char *path, dev_t devt,
1325 bool mount_arg_dev)
1326 {
1327 struct btrfs_fs_devices *fs_devices;
1328
1329 /*
1330 * Do not skip device registration for mounted devices with matching
1331 * maj:min but different paths. Booting without initrd relies on
1332 * /dev/root initially, later replaced with the actual root device.
1333 * A successful scan ensures grub2-probe selects the correct device.
1334 */
1335 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1336 struct btrfs_device *device;
1337
1338 mutex_lock(&fs_devices->device_list_mutex);
1339
1340 if (!fs_devices->opened) {
1341 mutex_unlock(&fs_devices->device_list_mutex);
1342 continue;
1343 }
1344
1345 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1346 if (device->bdev && (device->bdev->bd_dev == devt) &&
1347 strcmp(device->name->str, path) != 0) {
1348 mutex_unlock(&fs_devices->device_list_mutex);
1349
1350 /* Do not skip registration. */
1351 return false;
1352 }
1353 }
1354 mutex_unlock(&fs_devices->device_list_mutex);
1355 }
1356
1357 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1358 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1359 return true;
1360
1361 return false;
1362 }
1363
1364 /*
1365 * Look for a btrfs signature on a device. This may be called out of the mount path
1366 * and we are not allowed to call set_blocksize during the scan. The superblock
1367 * is read via pagecache.
1368 *
1369 * With @mount_arg_dev it's a scan during mount time that will always register
1370 * the device or return an error. Multi-device and seeding devices are registered
1371 * in both cases.
1372 */
1373 struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1374 bool mount_arg_dev)
1375 {
1376 struct btrfs_super_block *disk_super;
1377 bool new_device_added = false;
1378 struct btrfs_device *device = NULL;
1379 struct file *bdev_file;
1380 u64 bytenr, bytenr_orig;
1381 dev_t devt;
1382 int ret;
1383
1384 lockdep_assert_held(&uuid_mutex);
1385
1386 /*
1387 * we would like to check all the supers, but that would make
1388 * a btrfs mount succeed after a mkfs from a different FS.
1389 * So, we need to add a special mount option to scan for
1390 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1391 */
1392
1393 /*
1394 * Avoid an exclusive open here, as the systemd-udev may initiate the
1395 * device scan which may race with the user's mount or mkfs command,
1396 * resulting in failure.
1397 * Since the device scan is solely for reading purposes, there is no
1398 * need for an exclusive open. Additionally, the devices are read again
1399 * during the mount process. It is ok to get some inconsistent
1400 * values temporarily, as the device paths of the fsid are the only
1401 * required information for assembling the volume.
1402 */
1403 bdev_file = bdev_file_open_by_path(path, flags, NULL, NULL);
1404 if (IS_ERR(bdev_file))
1405 return ERR_CAST(bdev_file);
1406
1407 bytenr_orig = btrfs_sb_offset(0);
1408 ret = btrfs_sb_log_location_bdev(file_bdev(bdev_file), 0, READ, &bytenr);
1409 if (ret) {
1410 device = ERR_PTR(ret);
1411 goto error_bdev_put;
1412 }
1413
1414 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), bytenr,
1415 bytenr_orig);
1416 if (IS_ERR(disk_super)) {
1417 device = ERR_CAST(disk_super);
1418 goto error_bdev_put;
1419 }
1420
1421 devt = file_bdev(bdev_file)->bd_dev;
1422 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1423 pr_debug("BTRFS: skip registering single non-seed device %s (%d:%d)\n",
1424 path, MAJOR(devt), MINOR(devt));
1425
1426 btrfs_free_stale_devices(devt, NULL);
1427
1428 device = NULL;
1429 goto free_disk_super;
1430 }
1431
1432 device = device_list_add(path, disk_super, &new_device_added);
1433 if (!IS_ERR(device) && new_device_added)
1434 btrfs_free_stale_devices(device->devt, device);
1435
1436 free_disk_super:
1437 btrfs_release_disk_super(disk_super);
1438
1439 error_bdev_put:
1440 fput(bdev_file);
1441
1442 return device;
1443 }
1444
1445 /*
1446 * Try to find a chunk that intersects [start, start + len] range and when one
1447 * such is found, record the end of it in *start
1448 */
1449 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1450 u64 len)
1451 {
1452 u64 physical_start, physical_end;
1453
1454 lockdep_assert_held(&device->fs_info->chunk_mutex);
1455
1456 if (find_first_extent_bit(&device->alloc_state, *start,
1457 &physical_start, &physical_end,
1458 CHUNK_ALLOCATED, NULL)) {
1459
1460 if (in_range(physical_start, *start, len) ||
1461 in_range(*start, physical_start,
1462 physical_end + 1 - physical_start)) {
1463 *start = physical_end + 1;
1464 return true;
1465 }
1466 }
1467 return false;
1468 }
1469
1470 static u64 dev_extent_search_start(struct btrfs_device *device)
1471 {
1472 switch (device->fs_devices->chunk_alloc_policy) {
1473 case BTRFS_CHUNK_ALLOC_REGULAR:
1474 return BTRFS_DEVICE_RANGE_RESERVED;
1475 case BTRFS_CHUNK_ALLOC_ZONED:
1476 /*
1477 * We don't care about the starting region like regular
1478 * allocator, because we anyway use/reserve the first two zones
1479 * for superblock logging.
1480 */
1481 return 0;
1482 default:
1483 BUG();
1484 }
1485 }
1486
1487 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1488 u64 *hole_start, u64 *hole_size,
1489 u64 num_bytes)
1490 {
1491 u64 zone_size = device->zone_info->zone_size;
1492 u64 pos;
1493 int ret;
1494 bool changed = false;
1495
1496 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1497
1498 while (*hole_size > 0) {
1499 pos = btrfs_find_allocatable_zones(device, *hole_start,
1500 *hole_start + *hole_size,
1501 num_bytes);
1502 if (pos != *hole_start) {
1503 *hole_size = *hole_start + *hole_size - pos;
1504 *hole_start = pos;
1505 changed = true;
1506 if (*hole_size < num_bytes)
1507 break;
1508 }
1509
1510 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1511
1512 /* Range is ensured to be empty */
1513 if (!ret)
1514 return changed;
1515
1516 /* Given hole range was invalid (outside of device) */
1517 if (ret == -ERANGE) {
1518 *hole_start += *hole_size;
1519 *hole_size = 0;
1520 return true;
1521 }
1522
1523 *hole_start += zone_size;
1524 *hole_size -= zone_size;
1525 changed = true;
1526 }
1527
1528 return changed;
1529 }
1530
1531 /*
1532 * Check if specified hole is suitable for allocation.
1533 *
1534 * @device: the device which we have the hole
1535 * @hole_start: starting position of the hole
1536 * @hole_size: the size of the hole
1537 * @num_bytes: the size of the free space that we need
1538 *
1539 * This function may modify @hole_start and @hole_size to reflect the suitable
1540 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1541 */
1542 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1543 u64 *hole_size, u64 num_bytes)
1544 {
1545 bool changed = false;
1546 u64 hole_end = *hole_start + *hole_size;
1547
1548 for (;;) {
1549 /*
1550 * Check before we set max_hole_start, otherwise we could end up
1551 * sending back this offset anyway.
1552 */
1553 if (contains_pending_extent(device, hole_start, *hole_size)) {
1554 if (hole_end >= *hole_start)
1555 *hole_size = hole_end - *hole_start;
1556 else
1557 *hole_size = 0;
1558 changed = true;
1559 }
1560
1561 switch (device->fs_devices->chunk_alloc_policy) {
1562 case BTRFS_CHUNK_ALLOC_REGULAR:
1563 /* No extra check */
1564 break;
1565 case BTRFS_CHUNK_ALLOC_ZONED:
1566 if (dev_extent_hole_check_zoned(device, hole_start,
1567 hole_size, num_bytes)) {
1568 changed = true;
1569 /*
1570 * The changed hole can contain pending extent.
1571 * Loop again to check that.
1572 */
1573 continue;
1574 }
1575 break;
1576 default:
1577 BUG();
1578 }
1579
1580 break;
1581 }
1582
1583 return changed;
1584 }
1585
1586 /*
1587 * Find free space in the specified device.
1588 *
1589 * @device: the device which we search the free space in
1590 * @num_bytes: the size of the free space that we need
1591 * @search_start: the position from which to begin the search
1592 * @start: store the start of the free space.
1593 * @len: the size of the free space. that we find, or the size
1594 * of the max free space if we don't find suitable free space
1595 *
1596 * This does a pretty simple search, the expectation is that it is called very
1597 * infrequently and that a given device has a small number of extents.
1598 *
1599 * @start is used to store the start of the free space if we find. But if we
1600 * don't find suitable free space, it will be used to store the start position
1601 * of the max free space.
1602 *
1603 * @len is used to store the size of the free space that we find.
1604 * But if we don't find suitable free space, it is used to store the size of
1605 * the max free space.
1606 *
1607 * NOTE: This function will search *commit* root of device tree, and does extra
1608 * check to ensure dev extents are not double allocated.
1609 * This makes the function safe to allocate dev extents but may not report
1610 * correct usable device space, as device extent freed in current transaction
1611 * is not reported as available.
1612 */
1613 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1614 u64 *start, u64 *len)
1615 {
1616 struct btrfs_fs_info *fs_info = device->fs_info;
1617 struct btrfs_root *root = fs_info->dev_root;
1618 struct btrfs_key key;
1619 struct btrfs_dev_extent *dev_extent;
1620 struct btrfs_path *path;
1621 u64 search_start;
1622 u64 hole_size;
1623 u64 max_hole_start;
1624 u64 max_hole_size = 0;
1625 u64 extent_end;
1626 u64 search_end = device->total_bytes;
1627 int ret;
1628 int slot;
1629 struct extent_buffer *l;
1630
1631 search_start = dev_extent_search_start(device);
1632 max_hole_start = search_start;
1633
1634 WARN_ON(device->zone_info &&
1635 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1636
1637 path = btrfs_alloc_path();
1638 if (!path) {
1639 ret = -ENOMEM;
1640 goto out;
1641 }
1642 again:
1643 if (search_start >= search_end ||
1644 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1645 ret = -ENOSPC;
1646 goto out;
1647 }
1648
1649 path->reada = READA_FORWARD;
1650 path->search_commit_root = 1;
1651 path->skip_locking = 1;
1652
1653 key.objectid = device->devid;
1654 key.offset = search_start;
1655 key.type = BTRFS_DEV_EXTENT_KEY;
1656
1657 ret = btrfs_search_backwards(root, &key, path);
1658 if (ret < 0)
1659 goto out;
1660
1661 while (search_start < search_end) {
1662 l = path->nodes[0];
1663 slot = path->slots[0];
1664 if (slot >= btrfs_header_nritems(l)) {
1665 ret = btrfs_next_leaf(root, path);
1666 if (ret == 0)
1667 continue;
1668 if (ret < 0)
1669 goto out;
1670
1671 break;
1672 }
1673 btrfs_item_key_to_cpu(l, &key, slot);
1674
1675 if (key.objectid < device->devid)
1676 goto next;
1677
1678 if (key.objectid > device->devid)
1679 break;
1680
1681 if (key.type != BTRFS_DEV_EXTENT_KEY)
1682 goto next;
1683
1684 if (key.offset > search_end)
1685 break;
1686
1687 if (key.offset > search_start) {
1688 hole_size = key.offset - search_start;
1689 dev_extent_hole_check(device, &search_start, &hole_size,
1690 num_bytes);
1691
1692 if (hole_size > max_hole_size) {
1693 max_hole_start = search_start;
1694 max_hole_size = hole_size;
1695 }
1696
1697 /*
1698 * If this free space is greater than which we need,
1699 * it must be the max free space that we have found
1700 * until now, so max_hole_start must point to the start
1701 * of this free space and the length of this free space
1702 * is stored in max_hole_size. Thus, we return
1703 * max_hole_start and max_hole_size and go back to the
1704 * caller.
1705 */
1706 if (hole_size >= num_bytes) {
1707 ret = 0;
1708 goto out;
1709 }
1710 }
1711
1712 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1713 extent_end = key.offset + btrfs_dev_extent_length(l,
1714 dev_extent);
1715 if (extent_end > search_start)
1716 search_start = extent_end;
1717 next:
1718 path->slots[0]++;
1719 cond_resched();
1720 }
1721
1722 /*
1723 * At this point, search_start should be the end of
1724 * allocated dev extents, and when shrinking the device,
1725 * search_end may be smaller than search_start.
1726 */
1727 if (search_end > search_start) {
1728 hole_size = search_end - search_start;
1729 if (dev_extent_hole_check(device, &search_start, &hole_size,
1730 num_bytes)) {
1731 btrfs_release_path(path);
1732 goto again;
1733 }
1734
1735 if (hole_size > max_hole_size) {
1736 max_hole_start = search_start;
1737 max_hole_size = hole_size;
1738 }
1739 }
1740
1741 /* See above. */
1742 if (max_hole_size < num_bytes)
1743 ret = -ENOSPC;
1744 else
1745 ret = 0;
1746
1747 ASSERT(max_hole_start + max_hole_size <= search_end);
1748 out:
1749 btrfs_free_path(path);
1750 *start = max_hole_start;
1751 if (len)
1752 *len = max_hole_size;
1753 return ret;
1754 }
1755
1756 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1757 struct btrfs_device *device,
1758 u64 start, u64 *dev_extent_len)
1759 {
1760 struct btrfs_fs_info *fs_info = device->fs_info;
1761 struct btrfs_root *root = fs_info->dev_root;
1762 int ret;
1763 struct btrfs_path *path;
1764 struct btrfs_key key;
1765 struct btrfs_key found_key;
1766 struct extent_buffer *leaf = NULL;
1767 struct btrfs_dev_extent *extent = NULL;
1768
1769 path = btrfs_alloc_path();
1770 if (!path)
1771 return -ENOMEM;
1772
1773 key.objectid = device->devid;
1774 key.offset = start;
1775 key.type = BTRFS_DEV_EXTENT_KEY;
1776 again:
1777 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1778 if (ret > 0) {
1779 ret = btrfs_previous_item(root, path, key.objectid,
1780 BTRFS_DEV_EXTENT_KEY);
1781 if (ret)
1782 goto out;
1783 leaf = path->nodes[0];
1784 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1785 extent = btrfs_item_ptr(leaf, path->slots[0],
1786 struct btrfs_dev_extent);
1787 BUG_ON(found_key.offset > start || found_key.offset +
1788 btrfs_dev_extent_length(leaf, extent) < start);
1789 key = found_key;
1790 btrfs_release_path(path);
1791 goto again;
1792 } else if (ret == 0) {
1793 leaf = path->nodes[0];
1794 extent = btrfs_item_ptr(leaf, path->slots[0],
1795 struct btrfs_dev_extent);
1796 } else {
1797 goto out;
1798 }
1799
1800 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1801
1802 ret = btrfs_del_item(trans, root, path);
1803 if (ret == 0)
1804 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1805 out:
1806 btrfs_free_path(path);
1807 return ret;
1808 }
1809
1810 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1811 {
1812 struct rb_node *n;
1813 u64 ret = 0;
1814
1815 read_lock(&fs_info->mapping_tree_lock);
1816 n = rb_last(&fs_info->mapping_tree.rb_root);
1817 if (n) {
1818 struct btrfs_chunk_map *map;
1819
1820 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1821 ret = map->start + map->chunk_len;
1822 }
1823 read_unlock(&fs_info->mapping_tree_lock);
1824
1825 return ret;
1826 }
1827
1828 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1829 u64 *devid_ret)
1830 {
1831 int ret;
1832 struct btrfs_key key;
1833 struct btrfs_key found_key;
1834 struct btrfs_path *path;
1835
1836 path = btrfs_alloc_path();
1837 if (!path)
1838 return -ENOMEM;
1839
1840 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1841 key.type = BTRFS_DEV_ITEM_KEY;
1842 key.offset = (u64)-1;
1843
1844 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1845 if (ret < 0)
1846 goto error;
1847
1848 if (ret == 0) {
1849 /* Corruption */
1850 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1851 ret = -EUCLEAN;
1852 goto error;
1853 }
1854
1855 ret = btrfs_previous_item(fs_info->chunk_root, path,
1856 BTRFS_DEV_ITEMS_OBJECTID,
1857 BTRFS_DEV_ITEM_KEY);
1858 if (ret) {
1859 *devid_ret = 1;
1860 } else {
1861 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1862 path->slots[0]);
1863 *devid_ret = found_key.offset + 1;
1864 }
1865 ret = 0;
1866 error:
1867 btrfs_free_path(path);
1868 return ret;
1869 }
1870
1871 /*
1872 * the device information is stored in the chunk root
1873 * the btrfs_device struct should be fully filled in
1874 */
1875 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1876 struct btrfs_device *device)
1877 {
1878 int ret;
1879 struct btrfs_path *path;
1880 struct btrfs_dev_item *dev_item;
1881 struct extent_buffer *leaf;
1882 struct btrfs_key key;
1883 unsigned long ptr;
1884
1885 path = btrfs_alloc_path();
1886 if (!path)
1887 return -ENOMEM;
1888
1889 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1890 key.type = BTRFS_DEV_ITEM_KEY;
1891 key.offset = device->devid;
1892
1893 btrfs_reserve_chunk_metadata(trans, true);
1894 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1895 &key, sizeof(*dev_item));
1896 btrfs_trans_release_chunk_metadata(trans);
1897 if (ret)
1898 goto out;
1899
1900 leaf = path->nodes[0];
1901 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1902
1903 btrfs_set_device_id(leaf, dev_item, device->devid);
1904 btrfs_set_device_generation(leaf, dev_item, 0);
1905 btrfs_set_device_type(leaf, dev_item, device->type);
1906 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1907 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1908 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1909 btrfs_set_device_total_bytes(leaf, dev_item,
1910 btrfs_device_get_disk_total_bytes(device));
1911 btrfs_set_device_bytes_used(leaf, dev_item,
1912 btrfs_device_get_bytes_used(device));
1913 btrfs_set_device_group(leaf, dev_item, 0);
1914 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1915 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1916 btrfs_set_device_start_offset(leaf, dev_item, 0);
1917
1918 ptr = btrfs_device_uuid(dev_item);
1919 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1920 ptr = btrfs_device_fsid(dev_item);
1921 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1922 ptr, BTRFS_FSID_SIZE);
1923 btrfs_mark_buffer_dirty(trans, leaf);
1924
1925 ret = 0;
1926 out:
1927 btrfs_free_path(path);
1928 return ret;
1929 }
1930
1931 /*
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1934 *
1935 * We don't care about errors here, this is just to be kind to userspace.
1936 */
1937 static void update_dev_time(const char *device_path)
1938 {
1939 struct path path;
1940 int ret;
1941
1942 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1943 if (ret)
1944 return;
1945
1946 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
1947 path_put(&path);
1948 }
1949
1950 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1951 struct btrfs_device *device)
1952 {
1953 struct btrfs_root *root = device->fs_info->chunk_root;
1954 int ret;
1955 struct btrfs_path *path;
1956 struct btrfs_key key;
1957
1958 path = btrfs_alloc_path();
1959 if (!path)
1960 return -ENOMEM;
1961
1962 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1963 key.type = BTRFS_DEV_ITEM_KEY;
1964 key.offset = device->devid;
1965
1966 btrfs_reserve_chunk_metadata(trans, false);
1967 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1968 btrfs_trans_release_chunk_metadata(trans);
1969 if (ret) {
1970 if (ret > 0)
1971 ret = -ENOENT;
1972 goto out;
1973 }
1974
1975 ret = btrfs_del_item(trans, root, path);
1976 out:
1977 btrfs_free_path(path);
1978 return ret;
1979 }
1980
1981 /*
1982 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1983 * filesystem. It's up to the caller to adjust that number regarding eg. device
1984 * replace.
1985 */
1986 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1987 u64 num_devices)
1988 {
1989 u64 all_avail;
1990 unsigned seq;
1991 int i;
1992
1993 do {
1994 seq = read_seqbegin(&fs_info->profiles_lock);
1995
1996 all_avail = fs_info->avail_data_alloc_bits |
1997 fs_info->avail_system_alloc_bits |
1998 fs_info->avail_metadata_alloc_bits;
1999 } while (read_seqretry(&fs_info->profiles_lock, seq));
2000
2001 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2002 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2003 continue;
2004
2005 if (num_devices < btrfs_raid_array[i].devs_min)
2006 return btrfs_raid_array[i].mindev_error;
2007 }
2008
2009 return 0;
2010 }
2011
2012 static struct btrfs_device * btrfs_find_next_active_device(
2013 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2014 {
2015 struct btrfs_device *next_device;
2016
2017 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2018 if (next_device != device &&
2019 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2020 && next_device->bdev)
2021 return next_device;
2022 }
2023
2024 return NULL;
2025 }
2026
2027 /*
2028 * Helper function to check if the given device is part of s_bdev / latest_dev
2029 * and replace it with the provided or the next active device, in the context
2030 * where this function called, there should be always be another device (or
2031 * this_dev) which is active.
2032 */
2033 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2034 struct btrfs_device *next_device)
2035 {
2036 struct btrfs_fs_info *fs_info = device->fs_info;
2037
2038 if (!next_device)
2039 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2040 device);
2041 ASSERT(next_device);
2042
2043 if (fs_info->sb->s_bdev &&
2044 (fs_info->sb->s_bdev == device->bdev))
2045 fs_info->sb->s_bdev = next_device->bdev;
2046
2047 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2048 fs_info->fs_devices->latest_dev = next_device;
2049 }
2050
2051 /*
2052 * Return btrfs_fs_devices::num_devices excluding the device that's being
2053 * currently replaced.
2054 */
2055 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2056 {
2057 u64 num_devices = fs_info->fs_devices->num_devices;
2058
2059 down_read(&fs_info->dev_replace.rwsem);
2060 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2061 ASSERT(num_devices > 1);
2062 num_devices--;
2063 }
2064 up_read(&fs_info->dev_replace.rwsem);
2065
2066 return num_devices;
2067 }
2068
2069 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2070 struct block_device *bdev, int copy_num)
2071 {
2072 struct btrfs_super_block *disk_super;
2073 const size_t len = sizeof(disk_super->magic);
2074 const u64 bytenr = btrfs_sb_offset(copy_num);
2075 int ret;
2076
2077 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
2078 if (IS_ERR(disk_super))
2079 return;
2080
2081 memset(&disk_super->magic, 0, len);
2082 folio_mark_dirty(virt_to_folio(disk_super));
2083 btrfs_release_disk_super(disk_super);
2084
2085 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2086 if (ret)
2087 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2088 copy_num, ret);
2089 }
2090
2091 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2092 {
2093 int copy_num;
2094 struct block_device *bdev = device->bdev;
2095
2096 if (!bdev)
2097 return;
2098
2099 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2100 if (bdev_is_zoned(bdev))
2101 btrfs_reset_sb_log_zones(bdev, copy_num);
2102 else
2103 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2104 }
2105
2106 /* Notify udev that device has changed */
2107 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108
2109 /* Update ctime/mtime for device path for libblkid */
2110 update_dev_time(device->name->str);
2111 }
2112
2113 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114 struct btrfs_dev_lookup_args *args,
2115 struct file **bdev_file)
2116 {
2117 struct btrfs_trans_handle *trans;
2118 struct btrfs_device *device;
2119 struct btrfs_fs_devices *cur_devices;
2120 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2121 u64 num_devices;
2122 int ret = 0;
2123
2124 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126 return -EINVAL;
2127 }
2128
2129 /*
2130 * The device list in fs_devices is accessed without locks (neither
2131 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132 * filesystem and another device rm cannot run.
2133 */
2134 num_devices = btrfs_num_devices(fs_info);
2135
2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2137 if (ret)
2138 return ret;
2139
2140 device = btrfs_find_device(fs_info->fs_devices, args);
2141 if (!device) {
2142 if (args->missing)
2143 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144 else
2145 ret = -ENOENT;
2146 return ret;
2147 }
2148
2149 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150 btrfs_warn_in_rcu(fs_info,
2151 "cannot remove device %s (devid %llu) due to active swapfile",
2152 btrfs_dev_name(device), device->devid);
2153 return -ETXTBSY;
2154 }
2155
2156 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157 return BTRFS_ERROR_DEV_TGT_REPLACE;
2158
2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2160 fs_info->fs_devices->rw_devices == 1)
2161 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2162
2163 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2164 mutex_lock(&fs_info->chunk_mutex);
2165 list_del_init(&device->dev_alloc_list);
2166 device->fs_devices->rw_devices--;
2167 mutex_unlock(&fs_info->chunk_mutex);
2168 }
2169
2170 ret = btrfs_shrink_device(device, 0);
2171 if (ret)
2172 goto error_undo;
2173
2174 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175 if (IS_ERR(trans)) {
2176 ret = PTR_ERR(trans);
2177 goto error_undo;
2178 }
2179
2180 ret = btrfs_rm_dev_item(trans, device);
2181 if (ret) {
2182 /* Any error in dev item removal is critical */
2183 btrfs_crit(fs_info,
2184 "failed to remove device item for devid %llu: %d",
2185 device->devid, ret);
2186 btrfs_abort_transaction(trans, ret);
2187 btrfs_end_transaction(trans);
2188 return ret;
2189 }
2190
2191 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2192 btrfs_scrub_cancel_dev(device);
2193
2194 /*
2195 * the device list mutex makes sure that we don't change
2196 * the device list while someone else is writing out all
2197 * the device supers. Whoever is writing all supers, should
2198 * lock the device list mutex before getting the number of
2199 * devices in the super block (super_copy). Conversely,
2200 * whoever updates the number of devices in the super block
2201 * (super_copy) should hold the device list mutex.
2202 */
2203
2204 /*
2205 * In normal cases the cur_devices == fs_devices. But in case
2206 * of deleting a seed device, the cur_devices should point to
2207 * its own fs_devices listed under the fs_devices->seed_list.
2208 */
2209 cur_devices = device->fs_devices;
2210 mutex_lock(&fs_devices->device_list_mutex);
2211 list_del_rcu(&device->dev_list);
2212
2213 cur_devices->num_devices--;
2214 cur_devices->total_devices--;
2215 /* Update total_devices of the parent fs_devices if it's seed */
2216 if (cur_devices != fs_devices)
2217 fs_devices->total_devices--;
2218
2219 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2220 cur_devices->missing_devices--;
2221
2222 btrfs_assign_next_active_device(device, NULL);
2223
2224 if (device->bdev_file) {
2225 cur_devices->open_devices--;
2226 /* remove sysfs entry */
2227 btrfs_sysfs_remove_device(device);
2228 }
2229
2230 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2232 mutex_unlock(&fs_devices->device_list_mutex);
2233
2234 /*
2235 * At this point, the device is zero sized and detached from the
2236 * devices list. All that's left is to zero out the old supers and
2237 * free the device.
2238 *
2239 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240 * write lock, and fput() on the block device will pull in the
2241 * ->open_mutex on the block device and it's dependencies. Instead
2242 * just flush the device and let the caller do the final bdev_release.
2243 */
2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2245 btrfs_scratch_superblocks(fs_info, device);
2246 if (device->bdev) {
2247 sync_blockdev(device->bdev);
2248 invalidate_bdev(device->bdev);
2249 }
2250 }
2251
2252 *bdev_file = device->bdev_file;
2253 synchronize_rcu();
2254 btrfs_free_device(device);
2255
2256 /*
2257 * This can happen if cur_devices is the private seed devices list. We
2258 * cannot call close_fs_devices() here because it expects the uuid_mutex
2259 * to be held, but in fact we don't need that for the private
2260 * seed_devices, we can simply decrement cur_devices->opened and then
2261 * remove it from our list and free the fs_devices.
2262 */
2263 if (cur_devices->num_devices == 0) {
2264 list_del_init(&cur_devices->seed_list);
2265 ASSERT(cur_devices->opened == 1);
2266 cur_devices->opened--;
2267 free_fs_devices(cur_devices);
2268 }
2269
2270 ret = btrfs_commit_transaction(trans);
2271
2272 return ret;
2273
2274 error_undo:
2275 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2276 mutex_lock(&fs_info->chunk_mutex);
2277 list_add(&device->dev_alloc_list,
2278 &fs_devices->alloc_list);
2279 device->fs_devices->rw_devices++;
2280 mutex_unlock(&fs_info->chunk_mutex);
2281 }
2282 return ret;
2283 }
2284
2285 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2286 {
2287 struct btrfs_fs_devices *fs_devices;
2288
2289 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2290
2291 /*
2292 * in case of fs with no seed, srcdev->fs_devices will point
2293 * to fs_devices of fs_info. However when the dev being replaced is
2294 * a seed dev it will point to the seed's local fs_devices. In short
2295 * srcdev will have its correct fs_devices in both the cases.
2296 */
2297 fs_devices = srcdev->fs_devices;
2298
2299 list_del_rcu(&srcdev->dev_list);
2300 list_del(&srcdev->dev_alloc_list);
2301 fs_devices->num_devices--;
2302 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2303 fs_devices->missing_devices--;
2304
2305 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2306 fs_devices->rw_devices--;
2307
2308 if (srcdev->bdev)
2309 fs_devices->open_devices--;
2310 }
2311
2312 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2313 {
2314 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2315
2316 mutex_lock(&uuid_mutex);
2317
2318 btrfs_close_bdev(srcdev);
2319 synchronize_rcu();
2320 btrfs_free_device(srcdev);
2321
2322 /* if this is no devs we rather delete the fs_devices */
2323 if (!fs_devices->num_devices) {
2324 /*
2325 * On a mounted FS, num_devices can't be zero unless it's a
2326 * seed. In case of a seed device being replaced, the replace
2327 * target added to the sprout FS, so there will be no more
2328 * device left under the seed FS.
2329 */
2330 ASSERT(fs_devices->seeding);
2331
2332 list_del_init(&fs_devices->seed_list);
2333 close_fs_devices(fs_devices);
2334 free_fs_devices(fs_devices);
2335 }
2336 mutex_unlock(&uuid_mutex);
2337 }
2338
2339 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2340 {
2341 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2342
2343 mutex_lock(&fs_devices->device_list_mutex);
2344
2345 btrfs_sysfs_remove_device(tgtdev);
2346
2347 if (tgtdev->bdev)
2348 fs_devices->open_devices--;
2349
2350 fs_devices->num_devices--;
2351
2352 btrfs_assign_next_active_device(tgtdev, NULL);
2353
2354 list_del_rcu(&tgtdev->dev_list);
2355
2356 mutex_unlock(&fs_devices->device_list_mutex);
2357
2358 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2359
2360 btrfs_close_bdev(tgtdev);
2361 synchronize_rcu();
2362 btrfs_free_device(tgtdev);
2363 }
2364
2365 /*
2366 * Populate args from device at path.
2367 *
2368 * @fs_info: the filesystem
2369 * @args: the args to populate
2370 * @path: the path to the device
2371 *
2372 * This will read the super block of the device at @path and populate @args with
2373 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2374 * lookup a device to operate on, but need to do it before we take any locks.
2375 * This properly handles the special case of "missing" that a user may pass in,
2376 * and does some basic sanity checks. The caller must make sure that @path is
2377 * properly NUL terminated before calling in, and must call
2378 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2379 * uuid buffers.
2380 *
2381 * Return: 0 for success, -errno for failure
2382 */
2383 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2384 struct btrfs_dev_lookup_args *args,
2385 const char *path)
2386 {
2387 struct btrfs_super_block *disk_super;
2388 struct file *bdev_file;
2389 int ret;
2390
2391 if (!path || !path[0])
2392 return -EINVAL;
2393 if (!strcmp(path, "missing")) {
2394 args->missing = true;
2395 return 0;
2396 }
2397
2398 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2399 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2400 if (!args->uuid || !args->fsid) {
2401 btrfs_put_dev_args_from_path(args);
2402 return -ENOMEM;
2403 }
2404
2405 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2406 &bdev_file, &disk_super);
2407 if (ret) {
2408 btrfs_put_dev_args_from_path(args);
2409 return ret;
2410 }
2411
2412 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2413 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2414 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2415 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2416 else
2417 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2418 btrfs_release_disk_super(disk_super);
2419 fput(bdev_file);
2420 return 0;
2421 }
2422
2423 /*
2424 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2425 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2426 * that don't need to be freed.
2427 */
2428 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2429 {
2430 kfree(args->uuid);
2431 kfree(args->fsid);
2432 args->uuid = NULL;
2433 args->fsid = NULL;
2434 }
2435
2436 struct btrfs_device *btrfs_find_device_by_devspec(
2437 struct btrfs_fs_info *fs_info, u64 devid,
2438 const char *device_path)
2439 {
2440 BTRFS_DEV_LOOKUP_ARGS(args);
2441 struct btrfs_device *device;
2442 int ret;
2443
2444 if (devid) {
2445 args.devid = devid;
2446 device = btrfs_find_device(fs_info->fs_devices, &args);
2447 if (!device)
2448 return ERR_PTR(-ENOENT);
2449 return device;
2450 }
2451
2452 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2453 if (ret)
2454 return ERR_PTR(ret);
2455 device = btrfs_find_device(fs_info->fs_devices, &args);
2456 btrfs_put_dev_args_from_path(&args);
2457 if (!device)
2458 return ERR_PTR(-ENOENT);
2459 return device;
2460 }
2461
2462 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2463 {
2464 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2465 struct btrfs_fs_devices *old_devices;
2466 struct btrfs_fs_devices *seed_devices;
2467
2468 lockdep_assert_held(&uuid_mutex);
2469 if (!fs_devices->seeding)
2470 return ERR_PTR(-EINVAL);
2471
2472 /*
2473 * Private copy of the seed devices, anchored at
2474 * fs_info->fs_devices->seed_list
2475 */
2476 seed_devices = alloc_fs_devices(NULL);
2477 if (IS_ERR(seed_devices))
2478 return seed_devices;
2479
2480 /*
2481 * It's necessary to retain a copy of the original seed fs_devices in
2482 * fs_uuids so that filesystems which have been seeded can successfully
2483 * reference the seed device from open_seed_devices. This also supports
2484 * multiple fs seed.
2485 */
2486 old_devices = clone_fs_devices(fs_devices);
2487 if (IS_ERR(old_devices)) {
2488 kfree(seed_devices);
2489 return old_devices;
2490 }
2491
2492 list_add(&old_devices->fs_list, &fs_uuids);
2493
2494 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2495 seed_devices->opened = 1;
2496 INIT_LIST_HEAD(&seed_devices->devices);
2497 INIT_LIST_HEAD(&seed_devices->alloc_list);
2498 mutex_init(&seed_devices->device_list_mutex);
2499
2500 return seed_devices;
2501 }
2502
2503 /*
2504 * Splice seed devices into the sprout fs_devices.
2505 * Generate a new fsid for the sprouted read-write filesystem.
2506 */
2507 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2508 struct btrfs_fs_devices *seed_devices)
2509 {
2510 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2511 struct btrfs_super_block *disk_super = fs_info->super_copy;
2512 struct btrfs_device *device;
2513 u64 super_flags;
2514
2515 /*
2516 * We are updating the fsid, the thread leading to device_list_add()
2517 * could race, so uuid_mutex is needed.
2518 */
2519 lockdep_assert_held(&uuid_mutex);
2520
2521 /*
2522 * The threads listed below may traverse dev_list but can do that without
2523 * device_list_mutex:
2524 * - All device ops and balance - as we are in btrfs_exclop_start.
2525 * - Various dev_list readers - are using RCU.
2526 * - btrfs_ioctl_fitrim() - is using RCU.
2527 *
2528 * For-read threads as below are using device_list_mutex:
2529 * - Readonly scrub btrfs_scrub_dev()
2530 * - Readonly scrub btrfs_scrub_progress()
2531 * - btrfs_get_dev_stats()
2532 */
2533 lockdep_assert_held(&fs_devices->device_list_mutex);
2534
2535 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2536 synchronize_rcu);
2537 list_for_each_entry(device, &seed_devices->devices, dev_list)
2538 device->fs_devices = seed_devices;
2539
2540 fs_devices->seeding = false;
2541 fs_devices->num_devices = 0;
2542 fs_devices->open_devices = 0;
2543 fs_devices->missing_devices = 0;
2544 fs_devices->rotating = false;
2545 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2546
2547 generate_random_uuid(fs_devices->fsid);
2548 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2549 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2550
2551 super_flags = btrfs_super_flags(disk_super) &
2552 ~BTRFS_SUPER_FLAG_SEEDING;
2553 btrfs_set_super_flags(disk_super, super_flags);
2554 }
2555
2556 /*
2557 * Store the expected generation for seed devices in device items.
2558 */
2559 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2560 {
2561 BTRFS_DEV_LOOKUP_ARGS(args);
2562 struct btrfs_fs_info *fs_info = trans->fs_info;
2563 struct btrfs_root *root = fs_info->chunk_root;
2564 struct btrfs_path *path;
2565 struct extent_buffer *leaf;
2566 struct btrfs_dev_item *dev_item;
2567 struct btrfs_device *device;
2568 struct btrfs_key key;
2569 u8 fs_uuid[BTRFS_FSID_SIZE];
2570 u8 dev_uuid[BTRFS_UUID_SIZE];
2571 int ret;
2572
2573 path = btrfs_alloc_path();
2574 if (!path)
2575 return -ENOMEM;
2576
2577 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2578 key.offset = 0;
2579 key.type = BTRFS_DEV_ITEM_KEY;
2580
2581 while (1) {
2582 btrfs_reserve_chunk_metadata(trans, false);
2583 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2584 btrfs_trans_release_chunk_metadata(trans);
2585 if (ret < 0)
2586 goto error;
2587
2588 leaf = path->nodes[0];
2589 next_slot:
2590 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2591 ret = btrfs_next_leaf(root, path);
2592 if (ret > 0)
2593 break;
2594 if (ret < 0)
2595 goto error;
2596 leaf = path->nodes[0];
2597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2598 btrfs_release_path(path);
2599 continue;
2600 }
2601
2602 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2603 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2604 key.type != BTRFS_DEV_ITEM_KEY)
2605 break;
2606
2607 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2608 struct btrfs_dev_item);
2609 args.devid = btrfs_device_id(leaf, dev_item);
2610 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2611 BTRFS_UUID_SIZE);
2612 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2613 BTRFS_FSID_SIZE);
2614 args.uuid = dev_uuid;
2615 args.fsid = fs_uuid;
2616 device = btrfs_find_device(fs_info->fs_devices, &args);
2617 BUG_ON(!device); /* Logic error */
2618
2619 if (device->fs_devices->seeding) {
2620 btrfs_set_device_generation(leaf, dev_item,
2621 device->generation);
2622 btrfs_mark_buffer_dirty(trans, leaf);
2623 }
2624
2625 path->slots[0]++;
2626 goto next_slot;
2627 }
2628 ret = 0;
2629 error:
2630 btrfs_free_path(path);
2631 return ret;
2632 }
2633
2634 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2635 {
2636 struct btrfs_root *root = fs_info->dev_root;
2637 struct btrfs_trans_handle *trans;
2638 struct btrfs_device *device;
2639 struct file *bdev_file;
2640 struct super_block *sb = fs_info->sb;
2641 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2642 struct btrfs_fs_devices *seed_devices = NULL;
2643 u64 orig_super_total_bytes;
2644 u64 orig_super_num_devices;
2645 int ret = 0;
2646 bool seeding_dev = false;
2647 bool locked = false;
2648
2649 if (sb_rdonly(sb) && !fs_devices->seeding)
2650 return -EROFS;
2651
2652 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2653 fs_info->bdev_holder, NULL);
2654 if (IS_ERR(bdev_file))
2655 return PTR_ERR(bdev_file);
2656
2657 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2658 ret = -EINVAL;
2659 goto error;
2660 }
2661
2662 if (fs_devices->seeding) {
2663 seeding_dev = true;
2664 down_write(&sb->s_umount);
2665 mutex_lock(&uuid_mutex);
2666 locked = true;
2667 }
2668
2669 sync_blockdev(file_bdev(bdev_file));
2670
2671 rcu_read_lock();
2672 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2673 if (device->bdev == file_bdev(bdev_file)) {
2674 ret = -EEXIST;
2675 rcu_read_unlock();
2676 goto error;
2677 }
2678 }
2679 rcu_read_unlock();
2680
2681 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2682 if (IS_ERR(device)) {
2683 /* we can safely leave the fs_devices entry around */
2684 ret = PTR_ERR(device);
2685 goto error;
2686 }
2687
2688 device->fs_info = fs_info;
2689 device->bdev_file = bdev_file;
2690 device->bdev = file_bdev(bdev_file);
2691 ret = lookup_bdev(device_path, &device->devt);
2692 if (ret)
2693 goto error_free_device;
2694
2695 ret = btrfs_get_dev_zone_info(device, false);
2696 if (ret)
2697 goto error_free_device;
2698
2699 trans = btrfs_start_transaction(root, 0);
2700 if (IS_ERR(trans)) {
2701 ret = PTR_ERR(trans);
2702 goto error_free_zone;
2703 }
2704
2705 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2706 device->generation = trans->transid;
2707 device->io_width = fs_info->sectorsize;
2708 device->io_align = fs_info->sectorsize;
2709 device->sector_size = fs_info->sectorsize;
2710 device->total_bytes =
2711 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2712 device->disk_total_bytes = device->total_bytes;
2713 device->commit_total_bytes = device->total_bytes;
2714 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2715 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2716 device->dev_stats_valid = 1;
2717 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2718
2719 if (seeding_dev) {
2720 btrfs_clear_sb_rdonly(sb);
2721
2722 /* GFP_KERNEL allocation must not be under device_list_mutex */
2723 seed_devices = btrfs_init_sprout(fs_info);
2724 if (IS_ERR(seed_devices)) {
2725 ret = PTR_ERR(seed_devices);
2726 btrfs_abort_transaction(trans, ret);
2727 goto error_trans;
2728 }
2729 }
2730
2731 mutex_lock(&fs_devices->device_list_mutex);
2732 if (seeding_dev) {
2733 btrfs_setup_sprout(fs_info, seed_devices);
2734 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2735 device);
2736 }
2737
2738 device->fs_devices = fs_devices;
2739
2740 mutex_lock(&fs_info->chunk_mutex);
2741 list_add_rcu(&device->dev_list, &fs_devices->devices);
2742 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2743 fs_devices->num_devices++;
2744 fs_devices->open_devices++;
2745 fs_devices->rw_devices++;
2746 fs_devices->total_devices++;
2747 fs_devices->total_rw_bytes += device->total_bytes;
2748
2749 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2750
2751 if (!bdev_nonrot(device->bdev))
2752 fs_devices->rotating = true;
2753
2754 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2755 btrfs_set_super_total_bytes(fs_info->super_copy,
2756 round_down(orig_super_total_bytes + device->total_bytes,
2757 fs_info->sectorsize));
2758
2759 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2760 btrfs_set_super_num_devices(fs_info->super_copy,
2761 orig_super_num_devices + 1);
2762
2763 /*
2764 * we've got more storage, clear any full flags on the space
2765 * infos
2766 */
2767 btrfs_clear_space_info_full(fs_info);
2768
2769 mutex_unlock(&fs_info->chunk_mutex);
2770
2771 /* Add sysfs device entry */
2772 btrfs_sysfs_add_device(device);
2773
2774 mutex_unlock(&fs_devices->device_list_mutex);
2775
2776 if (seeding_dev) {
2777 mutex_lock(&fs_info->chunk_mutex);
2778 ret = init_first_rw_device(trans);
2779 mutex_unlock(&fs_info->chunk_mutex);
2780 if (ret) {
2781 btrfs_abort_transaction(trans, ret);
2782 goto error_sysfs;
2783 }
2784 }
2785
2786 ret = btrfs_add_dev_item(trans, device);
2787 if (ret) {
2788 btrfs_abort_transaction(trans, ret);
2789 goto error_sysfs;
2790 }
2791
2792 if (seeding_dev) {
2793 ret = btrfs_finish_sprout(trans);
2794 if (ret) {
2795 btrfs_abort_transaction(trans, ret);
2796 goto error_sysfs;
2797 }
2798
2799 /*
2800 * fs_devices now represents the newly sprouted filesystem and
2801 * its fsid has been changed by btrfs_sprout_splice().
2802 */
2803 btrfs_sysfs_update_sprout_fsid(fs_devices);
2804 }
2805
2806 ret = btrfs_commit_transaction(trans);
2807
2808 if (seeding_dev) {
2809 mutex_unlock(&uuid_mutex);
2810 up_write(&sb->s_umount);
2811 locked = false;
2812
2813 if (ret) /* transaction commit */
2814 return ret;
2815
2816 ret = btrfs_relocate_sys_chunks(fs_info);
2817 if (ret < 0)
2818 btrfs_handle_fs_error(fs_info, ret,
2819 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2820 trans = btrfs_attach_transaction(root);
2821 if (IS_ERR(trans)) {
2822 if (PTR_ERR(trans) == -ENOENT)
2823 return 0;
2824 ret = PTR_ERR(trans);
2825 trans = NULL;
2826 goto error_sysfs;
2827 }
2828 ret = btrfs_commit_transaction(trans);
2829 }
2830
2831 /*
2832 * Now that we have written a new super block to this device, check all
2833 * other fs_devices list if device_path alienates any other scanned
2834 * device.
2835 * We can ignore the return value as it typically returns -EINVAL and
2836 * only succeeds if the device was an alien.
2837 */
2838 btrfs_forget_devices(device->devt);
2839
2840 /* Update ctime/mtime for blkid or udev */
2841 update_dev_time(device_path);
2842
2843 return ret;
2844
2845 error_sysfs:
2846 btrfs_sysfs_remove_device(device);
2847 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2848 mutex_lock(&fs_info->chunk_mutex);
2849 list_del_rcu(&device->dev_list);
2850 list_del(&device->dev_alloc_list);
2851 fs_info->fs_devices->num_devices--;
2852 fs_info->fs_devices->open_devices--;
2853 fs_info->fs_devices->rw_devices--;
2854 fs_info->fs_devices->total_devices--;
2855 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2856 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2857 btrfs_set_super_total_bytes(fs_info->super_copy,
2858 orig_super_total_bytes);
2859 btrfs_set_super_num_devices(fs_info->super_copy,
2860 orig_super_num_devices);
2861 mutex_unlock(&fs_info->chunk_mutex);
2862 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2863 error_trans:
2864 if (seeding_dev)
2865 btrfs_set_sb_rdonly(sb);
2866 if (trans)
2867 btrfs_end_transaction(trans);
2868 error_free_zone:
2869 btrfs_destroy_dev_zone_info(device);
2870 error_free_device:
2871 btrfs_free_device(device);
2872 error:
2873 fput(bdev_file);
2874 if (locked) {
2875 mutex_unlock(&uuid_mutex);
2876 up_write(&sb->s_umount);
2877 }
2878 return ret;
2879 }
2880
2881 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2882 struct btrfs_device *device)
2883 {
2884 int ret;
2885 struct btrfs_path *path;
2886 struct btrfs_root *root = device->fs_info->chunk_root;
2887 struct btrfs_dev_item *dev_item;
2888 struct extent_buffer *leaf;
2889 struct btrfs_key key;
2890
2891 path = btrfs_alloc_path();
2892 if (!path)
2893 return -ENOMEM;
2894
2895 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2896 key.type = BTRFS_DEV_ITEM_KEY;
2897 key.offset = device->devid;
2898
2899 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2900 if (ret < 0)
2901 goto out;
2902
2903 if (ret > 0) {
2904 ret = -ENOENT;
2905 goto out;
2906 }
2907
2908 leaf = path->nodes[0];
2909 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2910
2911 btrfs_set_device_id(leaf, dev_item, device->devid);
2912 btrfs_set_device_type(leaf, dev_item, device->type);
2913 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2914 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2915 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2916 btrfs_set_device_total_bytes(leaf, dev_item,
2917 btrfs_device_get_disk_total_bytes(device));
2918 btrfs_set_device_bytes_used(leaf, dev_item,
2919 btrfs_device_get_bytes_used(device));
2920 btrfs_mark_buffer_dirty(trans, leaf);
2921
2922 out:
2923 btrfs_free_path(path);
2924 return ret;
2925 }
2926
2927 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2928 struct btrfs_device *device, u64 new_size)
2929 {
2930 struct btrfs_fs_info *fs_info = device->fs_info;
2931 struct btrfs_super_block *super_copy = fs_info->super_copy;
2932 u64 old_total;
2933 u64 diff;
2934 int ret;
2935
2936 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2937 return -EACCES;
2938
2939 new_size = round_down(new_size, fs_info->sectorsize);
2940
2941 mutex_lock(&fs_info->chunk_mutex);
2942 old_total = btrfs_super_total_bytes(super_copy);
2943 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2944
2945 if (new_size <= device->total_bytes ||
2946 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2947 mutex_unlock(&fs_info->chunk_mutex);
2948 return -EINVAL;
2949 }
2950
2951 btrfs_set_super_total_bytes(super_copy,
2952 round_down(old_total + diff, fs_info->sectorsize));
2953 device->fs_devices->total_rw_bytes += diff;
2954 atomic64_add(diff, &fs_info->free_chunk_space);
2955
2956 btrfs_device_set_total_bytes(device, new_size);
2957 btrfs_device_set_disk_total_bytes(device, new_size);
2958 btrfs_clear_space_info_full(device->fs_info);
2959 if (list_empty(&device->post_commit_list))
2960 list_add_tail(&device->post_commit_list,
2961 &trans->transaction->dev_update_list);
2962 mutex_unlock(&fs_info->chunk_mutex);
2963
2964 btrfs_reserve_chunk_metadata(trans, false);
2965 ret = btrfs_update_device(trans, device);
2966 btrfs_trans_release_chunk_metadata(trans);
2967
2968 return ret;
2969 }
2970
2971 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2972 {
2973 struct btrfs_fs_info *fs_info = trans->fs_info;
2974 struct btrfs_root *root = fs_info->chunk_root;
2975 int ret;
2976 struct btrfs_path *path;
2977 struct btrfs_key key;
2978
2979 path = btrfs_alloc_path();
2980 if (!path)
2981 return -ENOMEM;
2982
2983 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2984 key.offset = chunk_offset;
2985 key.type = BTRFS_CHUNK_ITEM_KEY;
2986
2987 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2988 if (ret < 0)
2989 goto out;
2990 else if (ret > 0) { /* Logic error or corruption */
2991 btrfs_handle_fs_error(fs_info, -ENOENT,
2992 "Failed lookup while freeing chunk.");
2993 ret = -ENOENT;
2994 goto out;
2995 }
2996
2997 ret = btrfs_del_item(trans, root, path);
2998 if (ret < 0)
2999 btrfs_handle_fs_error(fs_info, ret,
3000 "Failed to delete chunk item.");
3001 out:
3002 btrfs_free_path(path);
3003 return ret;
3004 }
3005
3006 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3007 {
3008 struct btrfs_super_block *super_copy = fs_info->super_copy;
3009 struct btrfs_disk_key *disk_key;
3010 struct btrfs_chunk *chunk;
3011 u8 *ptr;
3012 int ret = 0;
3013 u32 num_stripes;
3014 u32 array_size;
3015 u32 len = 0;
3016 u32 cur;
3017 struct btrfs_key key;
3018
3019 lockdep_assert_held(&fs_info->chunk_mutex);
3020 array_size = btrfs_super_sys_array_size(super_copy);
3021
3022 ptr = super_copy->sys_chunk_array;
3023 cur = 0;
3024
3025 while (cur < array_size) {
3026 disk_key = (struct btrfs_disk_key *)ptr;
3027 btrfs_disk_key_to_cpu(&key, disk_key);
3028
3029 len = sizeof(*disk_key);
3030
3031 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3032 chunk = (struct btrfs_chunk *)(ptr + len);
3033 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3034 len += btrfs_chunk_item_size(num_stripes);
3035 } else {
3036 ret = -EIO;
3037 break;
3038 }
3039 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3040 key.offset == chunk_offset) {
3041 memmove(ptr, ptr + len, array_size - (cur + len));
3042 array_size -= len;
3043 btrfs_set_super_sys_array_size(super_copy, array_size);
3044 } else {
3045 ptr += len;
3046 cur += len;
3047 }
3048 }
3049 return ret;
3050 }
3051
3052 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3053 u64 logical, u64 length)
3054 {
3055 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3056 struct rb_node *prev = NULL;
3057 struct rb_node *orig_prev;
3058 struct btrfs_chunk_map *map;
3059 struct btrfs_chunk_map *prev_map = NULL;
3060
3061 while (node) {
3062 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3063 prev = node;
3064 prev_map = map;
3065
3066 if (logical < map->start) {
3067 node = node->rb_left;
3068 } else if (logical >= map->start + map->chunk_len) {
3069 node = node->rb_right;
3070 } else {
3071 refcount_inc(&map->refs);
3072 return map;
3073 }
3074 }
3075
3076 if (!prev)
3077 return NULL;
3078
3079 orig_prev = prev;
3080 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3081 prev = rb_next(prev);
3082 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3083 }
3084
3085 if (!prev) {
3086 prev = orig_prev;
3087 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3088 while (prev && logical < prev_map->start) {
3089 prev = rb_prev(prev);
3090 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3091 }
3092 }
3093
3094 if (prev) {
3095 u64 end = logical + length;
3096
3097 /*
3098 * Caller can pass a U64_MAX length when it wants to get any
3099 * chunk starting at an offset of 'logical' or higher, so deal
3100 * with underflow by resetting the end offset to U64_MAX.
3101 */
3102 if (end < logical)
3103 end = U64_MAX;
3104
3105 if (end > prev_map->start &&
3106 logical < prev_map->start + prev_map->chunk_len) {
3107 refcount_inc(&prev_map->refs);
3108 return prev_map;
3109 }
3110 }
3111
3112 return NULL;
3113 }
3114
3115 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3116 u64 logical, u64 length)
3117 {
3118 struct btrfs_chunk_map *map;
3119
3120 read_lock(&fs_info->mapping_tree_lock);
3121 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3122 read_unlock(&fs_info->mapping_tree_lock);
3123
3124 return map;
3125 }
3126
3127 /*
3128 * Find the mapping containing the given logical extent.
3129 *
3130 * @logical: Logical block offset in bytes.
3131 * @length: Length of extent in bytes.
3132 *
3133 * Return: Chunk mapping or ERR_PTR.
3134 */
3135 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3136 u64 logical, u64 length)
3137 {
3138 struct btrfs_chunk_map *map;
3139
3140 map = btrfs_find_chunk_map(fs_info, logical, length);
3141
3142 if (unlikely(!map)) {
3143 btrfs_crit(fs_info,
3144 "unable to find chunk map for logical %llu length %llu",
3145 logical, length);
3146 return ERR_PTR(-EINVAL);
3147 }
3148
3149 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3150 btrfs_crit(fs_info,
3151 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3152 logical, logical + length, map->start,
3153 map->start + map->chunk_len);
3154 btrfs_free_chunk_map(map);
3155 return ERR_PTR(-EINVAL);
3156 }
3157
3158 /* Callers are responsible for dropping the reference. */
3159 return map;
3160 }
3161
3162 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3163 struct btrfs_chunk_map *map, u64 chunk_offset)
3164 {
3165 int i;
3166
3167 /*
3168 * Removing chunk items and updating the device items in the chunks btree
3169 * requires holding the chunk_mutex.
3170 * See the comment at btrfs_chunk_alloc() for the details.
3171 */
3172 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3173
3174 for (i = 0; i < map->num_stripes; i++) {
3175 int ret;
3176
3177 ret = btrfs_update_device(trans, map->stripes[i].dev);
3178 if (ret)
3179 return ret;
3180 }
3181
3182 return btrfs_free_chunk(trans, chunk_offset);
3183 }
3184
3185 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3186 {
3187 struct btrfs_fs_info *fs_info = trans->fs_info;
3188 struct btrfs_chunk_map *map;
3189 u64 dev_extent_len = 0;
3190 int i, ret = 0;
3191 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3192
3193 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3194 if (IS_ERR(map)) {
3195 /*
3196 * This is a logic error, but we don't want to just rely on the
3197 * user having built with ASSERT enabled, so if ASSERT doesn't
3198 * do anything we still error out.
3199 */
3200 ASSERT(0);
3201 return PTR_ERR(map);
3202 }
3203
3204 /*
3205 * First delete the device extent items from the devices btree.
3206 * We take the device_list_mutex to avoid racing with the finishing phase
3207 * of a device replace operation. See the comment below before acquiring
3208 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3209 * because that can result in a deadlock when deleting the device extent
3210 * items from the devices btree - COWing an extent buffer from the btree
3211 * may result in allocating a new metadata chunk, which would attempt to
3212 * lock again fs_info->chunk_mutex.
3213 */
3214 mutex_lock(&fs_devices->device_list_mutex);
3215 for (i = 0; i < map->num_stripes; i++) {
3216 struct btrfs_device *device = map->stripes[i].dev;
3217 ret = btrfs_free_dev_extent(trans, device,
3218 map->stripes[i].physical,
3219 &dev_extent_len);
3220 if (ret) {
3221 mutex_unlock(&fs_devices->device_list_mutex);
3222 btrfs_abort_transaction(trans, ret);
3223 goto out;
3224 }
3225
3226 if (device->bytes_used > 0) {
3227 mutex_lock(&fs_info->chunk_mutex);
3228 btrfs_device_set_bytes_used(device,
3229 device->bytes_used - dev_extent_len);
3230 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3231 btrfs_clear_space_info_full(fs_info);
3232 mutex_unlock(&fs_info->chunk_mutex);
3233 }
3234 }
3235 mutex_unlock(&fs_devices->device_list_mutex);
3236
3237 /*
3238 * We acquire fs_info->chunk_mutex for 2 reasons:
3239 *
3240 * 1) Just like with the first phase of the chunk allocation, we must
3241 * reserve system space, do all chunk btree updates and deletions, and
3242 * update the system chunk array in the superblock while holding this
3243 * mutex. This is for similar reasons as explained on the comment at
3244 * the top of btrfs_chunk_alloc();
3245 *
3246 * 2) Prevent races with the final phase of a device replace operation
3247 * that replaces the device object associated with the map's stripes,
3248 * because the device object's id can change at any time during that
3249 * final phase of the device replace operation
3250 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3251 * replaced device and then see it with an ID of
3252 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3253 * the device item, which does not exists on the chunk btree.
3254 * The finishing phase of device replace acquires both the
3255 * device_list_mutex and the chunk_mutex, in that order, so we are
3256 * safe by just acquiring the chunk_mutex.
3257 */
3258 trans->removing_chunk = true;
3259 mutex_lock(&fs_info->chunk_mutex);
3260
3261 check_system_chunk(trans, map->type);
3262
3263 ret = remove_chunk_item(trans, map, chunk_offset);
3264 /*
3265 * Normally we should not get -ENOSPC since we reserved space before
3266 * through the call to check_system_chunk().
3267 *
3268 * Despite our system space_info having enough free space, we may not
3269 * be able to allocate extents from its block groups, because all have
3270 * an incompatible profile, which will force us to allocate a new system
3271 * block group with the right profile, or right after we called
3272 * check_system_space() above, a scrub turned the only system block group
3273 * with enough free space into RO mode.
3274 * This is explained with more detail at do_chunk_alloc().
3275 *
3276 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3277 */
3278 if (ret == -ENOSPC) {
3279 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3280 struct btrfs_block_group *sys_bg;
3281
3282 sys_bg = btrfs_create_chunk(trans, sys_flags);
3283 if (IS_ERR(sys_bg)) {
3284 ret = PTR_ERR(sys_bg);
3285 btrfs_abort_transaction(trans, ret);
3286 goto out;
3287 }
3288
3289 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3290 if (ret) {
3291 btrfs_abort_transaction(trans, ret);
3292 goto out;
3293 }
3294
3295 ret = remove_chunk_item(trans, map, chunk_offset);
3296 if (ret) {
3297 btrfs_abort_transaction(trans, ret);
3298 goto out;
3299 }
3300 } else if (ret) {
3301 btrfs_abort_transaction(trans, ret);
3302 goto out;
3303 }
3304
3305 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3306
3307 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3308 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3309 if (ret) {
3310 btrfs_abort_transaction(trans, ret);
3311 goto out;
3312 }
3313 }
3314
3315 mutex_unlock(&fs_info->chunk_mutex);
3316 trans->removing_chunk = false;
3317
3318 /*
3319 * We are done with chunk btree updates and deletions, so release the
3320 * system space we previously reserved (with check_system_chunk()).
3321 */
3322 btrfs_trans_release_chunk_metadata(trans);
3323
3324 ret = btrfs_remove_block_group(trans, map);
3325 if (ret) {
3326 btrfs_abort_transaction(trans, ret);
3327 goto out;
3328 }
3329
3330 out:
3331 if (trans->removing_chunk) {
3332 mutex_unlock(&fs_info->chunk_mutex);
3333 trans->removing_chunk = false;
3334 }
3335 /* once for us */
3336 btrfs_free_chunk_map(map);
3337 return ret;
3338 }
3339
3340 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3341 {
3342 struct btrfs_root *root = fs_info->chunk_root;
3343 struct btrfs_trans_handle *trans;
3344 struct btrfs_block_group *block_group;
3345 u64 length;
3346 int ret;
3347
3348 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3349 btrfs_err(fs_info,
3350 "relocate: not supported on extent tree v2 yet");
3351 return -EINVAL;
3352 }
3353
3354 /*
3355 * Prevent races with automatic removal of unused block groups.
3356 * After we relocate and before we remove the chunk with offset
3357 * chunk_offset, automatic removal of the block group can kick in,
3358 * resulting in a failure when calling btrfs_remove_chunk() below.
3359 *
3360 * Make sure to acquire this mutex before doing a tree search (dev
3361 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3362 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3363 * we release the path used to search the chunk/dev tree and before
3364 * the current task acquires this mutex and calls us.
3365 */
3366 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3367
3368 /* step one, relocate all the extents inside this chunk */
3369 btrfs_scrub_pause(fs_info);
3370 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3371 btrfs_scrub_continue(fs_info);
3372 if (ret) {
3373 /*
3374 * If we had a transaction abort, stop all running scrubs.
3375 * See transaction.c:cleanup_transaction() why we do it here.
3376 */
3377 if (BTRFS_FS_ERROR(fs_info))
3378 btrfs_scrub_cancel(fs_info);
3379 return ret;
3380 }
3381
3382 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3383 if (!block_group)
3384 return -ENOENT;
3385 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3386 length = block_group->length;
3387 btrfs_put_block_group(block_group);
3388
3389 /*
3390 * On a zoned file system, discard the whole block group, this will
3391 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3392 * resetting the zone fails, don't treat it as a fatal problem from the
3393 * filesystem's point of view.
3394 */
3395 if (btrfs_is_zoned(fs_info)) {
3396 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3397 if (ret)
3398 btrfs_info(fs_info,
3399 "failed to reset zone %llu after relocation",
3400 chunk_offset);
3401 }
3402
3403 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3404 chunk_offset);
3405 if (IS_ERR(trans)) {
3406 ret = PTR_ERR(trans);
3407 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3408 return ret;
3409 }
3410
3411 /*
3412 * step two, delete the device extents and the
3413 * chunk tree entries
3414 */
3415 ret = btrfs_remove_chunk(trans, chunk_offset);
3416 btrfs_end_transaction(trans);
3417 return ret;
3418 }
3419
3420 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3421 {
3422 struct btrfs_root *chunk_root = fs_info->chunk_root;
3423 struct btrfs_path *path;
3424 struct extent_buffer *leaf;
3425 struct btrfs_chunk *chunk;
3426 struct btrfs_key key;
3427 struct btrfs_key found_key;
3428 u64 chunk_type;
3429 bool retried = false;
3430 int failed = 0;
3431 int ret;
3432
3433 path = btrfs_alloc_path();
3434 if (!path)
3435 return -ENOMEM;
3436
3437 again:
3438 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3439 key.offset = (u64)-1;
3440 key.type = BTRFS_CHUNK_ITEM_KEY;
3441
3442 while (1) {
3443 mutex_lock(&fs_info->reclaim_bgs_lock);
3444 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3445 if (ret < 0) {
3446 mutex_unlock(&fs_info->reclaim_bgs_lock);
3447 goto error;
3448 }
3449 if (ret == 0) {
3450 /*
3451 * On the first search we would find chunk tree with
3452 * offset -1, which is not possible. On subsequent
3453 * loops this would find an existing item on an invalid
3454 * offset (one less than the previous one, wrong
3455 * alignment and size).
3456 */
3457 ret = -EUCLEAN;
3458 mutex_unlock(&fs_info->reclaim_bgs_lock);
3459 goto error;
3460 }
3461
3462 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3463 key.type);
3464 if (ret)
3465 mutex_unlock(&fs_info->reclaim_bgs_lock);
3466 if (ret < 0)
3467 goto error;
3468 if (ret > 0)
3469 break;
3470
3471 leaf = path->nodes[0];
3472 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3473
3474 chunk = btrfs_item_ptr(leaf, path->slots[0],
3475 struct btrfs_chunk);
3476 chunk_type = btrfs_chunk_type(leaf, chunk);
3477 btrfs_release_path(path);
3478
3479 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3480 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3481 if (ret == -ENOSPC)
3482 failed++;
3483 else
3484 BUG_ON(ret);
3485 }
3486 mutex_unlock(&fs_info->reclaim_bgs_lock);
3487
3488 if (found_key.offset == 0)
3489 break;
3490 key.offset = found_key.offset - 1;
3491 }
3492 ret = 0;
3493 if (failed && !retried) {
3494 failed = 0;
3495 retried = true;
3496 goto again;
3497 } else if (WARN_ON(failed && retried)) {
3498 ret = -ENOSPC;
3499 }
3500 error:
3501 btrfs_free_path(path);
3502 return ret;
3503 }
3504
3505 /*
3506 * return 1 : allocate a data chunk successfully,
3507 * return <0: errors during allocating a data chunk,
3508 * return 0 : no need to allocate a data chunk.
3509 */
3510 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3511 u64 chunk_offset)
3512 {
3513 struct btrfs_block_group *cache;
3514 u64 bytes_used;
3515 u64 chunk_type;
3516
3517 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3518 ASSERT(cache);
3519 chunk_type = cache->flags;
3520 btrfs_put_block_group(cache);
3521
3522 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3523 return 0;
3524
3525 spin_lock(&fs_info->data_sinfo->lock);
3526 bytes_used = fs_info->data_sinfo->bytes_used;
3527 spin_unlock(&fs_info->data_sinfo->lock);
3528
3529 if (!bytes_used) {
3530 struct btrfs_trans_handle *trans;
3531 int ret;
3532
3533 trans = btrfs_join_transaction(fs_info->tree_root);
3534 if (IS_ERR(trans))
3535 return PTR_ERR(trans);
3536
3537 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3538 btrfs_end_transaction(trans);
3539 if (ret < 0)
3540 return ret;
3541 return 1;
3542 }
3543
3544 return 0;
3545 }
3546
3547 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3548 const struct btrfs_disk_balance_args *disk)
3549 {
3550 memset(cpu, 0, sizeof(*cpu));
3551
3552 cpu->profiles = le64_to_cpu(disk->profiles);
3553 cpu->usage = le64_to_cpu(disk->usage);
3554 cpu->devid = le64_to_cpu(disk->devid);
3555 cpu->pstart = le64_to_cpu(disk->pstart);
3556 cpu->pend = le64_to_cpu(disk->pend);
3557 cpu->vstart = le64_to_cpu(disk->vstart);
3558 cpu->vend = le64_to_cpu(disk->vend);
3559 cpu->target = le64_to_cpu(disk->target);
3560 cpu->flags = le64_to_cpu(disk->flags);
3561 cpu->limit = le64_to_cpu(disk->limit);
3562 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3563 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3564 }
3565
3566 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3567 const struct btrfs_balance_args *cpu)
3568 {
3569 memset(disk, 0, sizeof(*disk));
3570
3571 disk->profiles = cpu_to_le64(cpu->profiles);
3572 disk->usage = cpu_to_le64(cpu->usage);
3573 disk->devid = cpu_to_le64(cpu->devid);
3574 disk->pstart = cpu_to_le64(cpu->pstart);
3575 disk->pend = cpu_to_le64(cpu->pend);
3576 disk->vstart = cpu_to_le64(cpu->vstart);
3577 disk->vend = cpu_to_le64(cpu->vend);
3578 disk->target = cpu_to_le64(cpu->target);
3579 disk->flags = cpu_to_le64(cpu->flags);
3580 disk->limit = cpu_to_le64(cpu->limit);
3581 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3582 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3583 }
3584
3585 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3586 struct btrfs_balance_control *bctl)
3587 {
3588 struct btrfs_root *root = fs_info->tree_root;
3589 struct btrfs_trans_handle *trans;
3590 struct btrfs_balance_item *item;
3591 struct btrfs_disk_balance_args disk_bargs;
3592 struct btrfs_path *path;
3593 struct extent_buffer *leaf;
3594 struct btrfs_key key;
3595 int ret, err;
3596
3597 path = btrfs_alloc_path();
3598 if (!path)
3599 return -ENOMEM;
3600
3601 trans = btrfs_start_transaction(root, 0);
3602 if (IS_ERR(trans)) {
3603 btrfs_free_path(path);
3604 return PTR_ERR(trans);
3605 }
3606
3607 key.objectid = BTRFS_BALANCE_OBJECTID;
3608 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3609 key.offset = 0;
3610
3611 ret = btrfs_insert_empty_item(trans, root, path, &key,
3612 sizeof(*item));
3613 if (ret)
3614 goto out;
3615
3616 leaf = path->nodes[0];
3617 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3618
3619 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3620
3621 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3622 btrfs_set_balance_data(leaf, item, &disk_bargs);
3623 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3624 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3625 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3626 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3627
3628 btrfs_set_balance_flags(leaf, item, bctl->flags);
3629
3630 btrfs_mark_buffer_dirty(trans, leaf);
3631 out:
3632 btrfs_free_path(path);
3633 err = btrfs_commit_transaction(trans);
3634 if (err && !ret)
3635 ret = err;
3636 return ret;
3637 }
3638
3639 static int del_balance_item(struct btrfs_fs_info *fs_info)
3640 {
3641 struct btrfs_root *root = fs_info->tree_root;
3642 struct btrfs_trans_handle *trans;
3643 struct btrfs_path *path;
3644 struct btrfs_key key;
3645 int ret, err;
3646
3647 path = btrfs_alloc_path();
3648 if (!path)
3649 return -ENOMEM;
3650
3651 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3652 if (IS_ERR(trans)) {
3653 btrfs_free_path(path);
3654 return PTR_ERR(trans);
3655 }
3656
3657 key.objectid = BTRFS_BALANCE_OBJECTID;
3658 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3659 key.offset = 0;
3660
3661 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3662 if (ret < 0)
3663 goto out;
3664 if (ret > 0) {
3665 ret = -ENOENT;
3666 goto out;
3667 }
3668
3669 ret = btrfs_del_item(trans, root, path);
3670 out:
3671 btrfs_free_path(path);
3672 err = btrfs_commit_transaction(trans);
3673 if (err && !ret)
3674 ret = err;
3675 return ret;
3676 }
3677
3678 /*
3679 * This is a heuristic used to reduce the number of chunks balanced on
3680 * resume after balance was interrupted.
3681 */
3682 static void update_balance_args(struct btrfs_balance_control *bctl)
3683 {
3684 /*
3685 * Turn on soft mode for chunk types that were being converted.
3686 */
3687 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3688 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3689 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3690 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3691 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3692 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3693
3694 /*
3695 * Turn on usage filter if is not already used. The idea is
3696 * that chunks that we have already balanced should be
3697 * reasonably full. Don't do it for chunks that are being
3698 * converted - that will keep us from relocating unconverted
3699 * (albeit full) chunks.
3700 */
3701 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3702 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3703 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3704 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3705 bctl->data.usage = 90;
3706 }
3707 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3708 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3709 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3710 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3711 bctl->sys.usage = 90;
3712 }
3713 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3714 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3715 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3716 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3717 bctl->meta.usage = 90;
3718 }
3719 }
3720
3721 /*
3722 * Clear the balance status in fs_info and delete the balance item from disk.
3723 */
3724 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3725 {
3726 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3727 int ret;
3728
3729 ASSERT(fs_info->balance_ctl);
3730
3731 spin_lock(&fs_info->balance_lock);
3732 fs_info->balance_ctl = NULL;
3733 spin_unlock(&fs_info->balance_lock);
3734
3735 kfree(bctl);
3736 ret = del_balance_item(fs_info);
3737 if (ret)
3738 btrfs_handle_fs_error(fs_info, ret, NULL);
3739 }
3740
3741 /*
3742 * Balance filters. Return 1 if chunk should be filtered out
3743 * (should not be balanced).
3744 */
3745 static int chunk_profiles_filter(u64 chunk_type,
3746 struct btrfs_balance_args *bargs)
3747 {
3748 chunk_type = chunk_to_extended(chunk_type) &
3749 BTRFS_EXTENDED_PROFILE_MASK;
3750
3751 if (bargs->profiles & chunk_type)
3752 return 0;
3753
3754 return 1;
3755 }
3756
3757 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3758 struct btrfs_balance_args *bargs)
3759 {
3760 struct btrfs_block_group *cache;
3761 u64 chunk_used;
3762 u64 user_thresh_min;
3763 u64 user_thresh_max;
3764 int ret = 1;
3765
3766 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3767 chunk_used = cache->used;
3768
3769 if (bargs->usage_min == 0)
3770 user_thresh_min = 0;
3771 else
3772 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3773
3774 if (bargs->usage_max == 0)
3775 user_thresh_max = 1;
3776 else if (bargs->usage_max > 100)
3777 user_thresh_max = cache->length;
3778 else
3779 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3780
3781 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3782 ret = 0;
3783
3784 btrfs_put_block_group(cache);
3785 return ret;
3786 }
3787
3788 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3789 u64 chunk_offset, struct btrfs_balance_args *bargs)
3790 {
3791 struct btrfs_block_group *cache;
3792 u64 chunk_used, user_thresh;
3793 int ret = 1;
3794
3795 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3796 chunk_used = cache->used;
3797
3798 if (bargs->usage_min == 0)
3799 user_thresh = 1;
3800 else if (bargs->usage > 100)
3801 user_thresh = cache->length;
3802 else
3803 user_thresh = mult_perc(cache->length, bargs->usage);
3804
3805 if (chunk_used < user_thresh)
3806 ret = 0;
3807
3808 btrfs_put_block_group(cache);
3809 return ret;
3810 }
3811
3812 static int chunk_devid_filter(struct extent_buffer *leaf,
3813 struct btrfs_chunk *chunk,
3814 struct btrfs_balance_args *bargs)
3815 {
3816 struct btrfs_stripe *stripe;
3817 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3818 int i;
3819
3820 for (i = 0; i < num_stripes; i++) {
3821 stripe = btrfs_stripe_nr(chunk, i);
3822 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3823 return 0;
3824 }
3825
3826 return 1;
3827 }
3828
3829 static u64 calc_data_stripes(u64 type, int num_stripes)
3830 {
3831 const int index = btrfs_bg_flags_to_raid_index(type);
3832 const int ncopies = btrfs_raid_array[index].ncopies;
3833 const int nparity = btrfs_raid_array[index].nparity;
3834
3835 return (num_stripes - nparity) / ncopies;
3836 }
3837
3838 /* [pstart, pend) */
3839 static int chunk_drange_filter(struct extent_buffer *leaf,
3840 struct btrfs_chunk *chunk,
3841 struct btrfs_balance_args *bargs)
3842 {
3843 struct btrfs_stripe *stripe;
3844 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3845 u64 stripe_offset;
3846 u64 stripe_length;
3847 u64 type;
3848 int factor;
3849 int i;
3850
3851 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3852 return 0;
3853
3854 type = btrfs_chunk_type(leaf, chunk);
3855 factor = calc_data_stripes(type, num_stripes);
3856
3857 for (i = 0; i < num_stripes; i++) {
3858 stripe = btrfs_stripe_nr(chunk, i);
3859 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3860 continue;
3861
3862 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3863 stripe_length = btrfs_chunk_length(leaf, chunk);
3864 stripe_length = div_u64(stripe_length, factor);
3865
3866 if (stripe_offset < bargs->pend &&
3867 stripe_offset + stripe_length > bargs->pstart)
3868 return 0;
3869 }
3870
3871 return 1;
3872 }
3873
3874 /* [vstart, vend) */
3875 static int chunk_vrange_filter(struct extent_buffer *leaf,
3876 struct btrfs_chunk *chunk,
3877 u64 chunk_offset,
3878 struct btrfs_balance_args *bargs)
3879 {
3880 if (chunk_offset < bargs->vend &&
3881 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3882 /* at least part of the chunk is inside this vrange */
3883 return 0;
3884
3885 return 1;
3886 }
3887
3888 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3889 struct btrfs_chunk *chunk,
3890 struct btrfs_balance_args *bargs)
3891 {
3892 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3893
3894 if (bargs->stripes_min <= num_stripes
3895 && num_stripes <= bargs->stripes_max)
3896 return 0;
3897
3898 return 1;
3899 }
3900
3901 static int chunk_soft_convert_filter(u64 chunk_type,
3902 struct btrfs_balance_args *bargs)
3903 {
3904 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3905 return 0;
3906
3907 chunk_type = chunk_to_extended(chunk_type) &
3908 BTRFS_EXTENDED_PROFILE_MASK;
3909
3910 if (bargs->target == chunk_type)
3911 return 1;
3912
3913 return 0;
3914 }
3915
3916 static int should_balance_chunk(struct extent_buffer *leaf,
3917 struct btrfs_chunk *chunk, u64 chunk_offset)
3918 {
3919 struct btrfs_fs_info *fs_info = leaf->fs_info;
3920 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3921 struct btrfs_balance_args *bargs = NULL;
3922 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3923
3924 /* type filter */
3925 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3926 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3927 return 0;
3928 }
3929
3930 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3931 bargs = &bctl->data;
3932 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3933 bargs = &bctl->sys;
3934 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3935 bargs = &bctl->meta;
3936
3937 /* profiles filter */
3938 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3939 chunk_profiles_filter(chunk_type, bargs)) {
3940 return 0;
3941 }
3942
3943 /* usage filter */
3944 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3945 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3946 return 0;
3947 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3948 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3949 return 0;
3950 }
3951
3952 /* devid filter */
3953 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3954 chunk_devid_filter(leaf, chunk, bargs)) {
3955 return 0;
3956 }
3957
3958 /* drange filter, makes sense only with devid filter */
3959 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3960 chunk_drange_filter(leaf, chunk, bargs)) {
3961 return 0;
3962 }
3963
3964 /* vrange filter */
3965 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3966 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3967 return 0;
3968 }
3969
3970 /* stripes filter */
3971 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3972 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3973 return 0;
3974 }
3975
3976 /* soft profile changing mode */
3977 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3978 chunk_soft_convert_filter(chunk_type, bargs)) {
3979 return 0;
3980 }
3981
3982 /*
3983 * limited by count, must be the last filter
3984 */
3985 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3986 if (bargs->limit == 0)
3987 return 0;
3988 else
3989 bargs->limit--;
3990 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3991 /*
3992 * Same logic as the 'limit' filter; the minimum cannot be
3993 * determined here because we do not have the global information
3994 * about the count of all chunks that satisfy the filters.
3995 */
3996 if (bargs->limit_max == 0)
3997 return 0;
3998 else
3999 bargs->limit_max--;
4000 }
4001
4002 return 1;
4003 }
4004
4005 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4006 {
4007 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4008 struct btrfs_root *chunk_root = fs_info->chunk_root;
4009 u64 chunk_type;
4010 struct btrfs_chunk *chunk;
4011 struct btrfs_path *path = NULL;
4012 struct btrfs_key key;
4013 struct btrfs_key found_key;
4014 struct extent_buffer *leaf;
4015 int slot;
4016 int ret;
4017 int enospc_errors = 0;
4018 bool counting = true;
4019 /* The single value limit and min/max limits use the same bytes in the */
4020 u64 limit_data = bctl->data.limit;
4021 u64 limit_meta = bctl->meta.limit;
4022 u64 limit_sys = bctl->sys.limit;
4023 u32 count_data = 0;
4024 u32 count_meta = 0;
4025 u32 count_sys = 0;
4026 int chunk_reserved = 0;
4027
4028 path = btrfs_alloc_path();
4029 if (!path) {
4030 ret = -ENOMEM;
4031 goto error;
4032 }
4033
4034 /* zero out stat counters */
4035 spin_lock(&fs_info->balance_lock);
4036 memset(&bctl->stat, 0, sizeof(bctl->stat));
4037 spin_unlock(&fs_info->balance_lock);
4038 again:
4039 if (!counting) {
4040 /*
4041 * The single value limit and min/max limits use the same bytes
4042 * in the
4043 */
4044 bctl->data.limit = limit_data;
4045 bctl->meta.limit = limit_meta;
4046 bctl->sys.limit = limit_sys;
4047 }
4048 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4049 key.offset = (u64)-1;
4050 key.type = BTRFS_CHUNK_ITEM_KEY;
4051
4052 while (1) {
4053 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4054 atomic_read(&fs_info->balance_cancel_req)) {
4055 ret = -ECANCELED;
4056 goto error;
4057 }
4058
4059 mutex_lock(&fs_info->reclaim_bgs_lock);
4060 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4061 if (ret < 0) {
4062 mutex_unlock(&fs_info->reclaim_bgs_lock);
4063 goto error;
4064 }
4065
4066 /*
4067 * this shouldn't happen, it means the last relocate
4068 * failed
4069 */
4070 if (ret == 0)
4071 BUG(); /* FIXME break ? */
4072
4073 ret = btrfs_previous_item(chunk_root, path, 0,
4074 BTRFS_CHUNK_ITEM_KEY);
4075 if (ret) {
4076 mutex_unlock(&fs_info->reclaim_bgs_lock);
4077 ret = 0;
4078 break;
4079 }
4080
4081 leaf = path->nodes[0];
4082 slot = path->slots[0];
4083 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4084
4085 if (found_key.objectid != key.objectid) {
4086 mutex_unlock(&fs_info->reclaim_bgs_lock);
4087 break;
4088 }
4089
4090 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4091 chunk_type = btrfs_chunk_type(leaf, chunk);
4092
4093 if (!counting) {
4094 spin_lock(&fs_info->balance_lock);
4095 bctl->stat.considered++;
4096 spin_unlock(&fs_info->balance_lock);
4097 }
4098
4099 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4100
4101 btrfs_release_path(path);
4102 if (!ret) {
4103 mutex_unlock(&fs_info->reclaim_bgs_lock);
4104 goto loop;
4105 }
4106
4107 if (counting) {
4108 mutex_unlock(&fs_info->reclaim_bgs_lock);
4109 spin_lock(&fs_info->balance_lock);
4110 bctl->stat.expected++;
4111 spin_unlock(&fs_info->balance_lock);
4112
4113 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4114 count_data++;
4115 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4116 count_sys++;
4117 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4118 count_meta++;
4119
4120 goto loop;
4121 }
4122
4123 /*
4124 * Apply limit_min filter, no need to check if the LIMITS
4125 * filter is used, limit_min is 0 by default
4126 */
4127 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4128 count_data < bctl->data.limit_min)
4129 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4130 count_meta < bctl->meta.limit_min)
4131 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4132 count_sys < bctl->sys.limit_min)) {
4133 mutex_unlock(&fs_info->reclaim_bgs_lock);
4134 goto loop;
4135 }
4136
4137 if (!chunk_reserved) {
4138 /*
4139 * We may be relocating the only data chunk we have,
4140 * which could potentially end up with losing data's
4141 * raid profile, so lets allocate an empty one in
4142 * advance.
4143 */
4144 ret = btrfs_may_alloc_data_chunk(fs_info,
4145 found_key.offset);
4146 if (ret < 0) {
4147 mutex_unlock(&fs_info->reclaim_bgs_lock);
4148 goto error;
4149 } else if (ret == 1) {
4150 chunk_reserved = 1;
4151 }
4152 }
4153
4154 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
4155 mutex_unlock(&fs_info->reclaim_bgs_lock);
4156 if (ret == -ENOSPC) {
4157 enospc_errors++;
4158 } else if (ret == -ETXTBSY) {
4159 btrfs_info(fs_info,
4160 "skipping relocation of block group %llu due to active swapfile",
4161 found_key.offset);
4162 ret = 0;
4163 } else if (ret) {
4164 goto error;
4165 } else {
4166 spin_lock(&fs_info->balance_lock);
4167 bctl->stat.completed++;
4168 spin_unlock(&fs_info->balance_lock);
4169 }
4170 loop:
4171 if (found_key.offset == 0)
4172 break;
4173 key.offset = found_key.offset - 1;
4174 }
4175
4176 if (counting) {
4177 btrfs_release_path(path);
4178 counting = false;
4179 goto again;
4180 }
4181 error:
4182 btrfs_free_path(path);
4183 if (enospc_errors) {
4184 btrfs_info(fs_info, "%d enospc errors during balance",
4185 enospc_errors);
4186 if (!ret)
4187 ret = -ENOSPC;
4188 }
4189
4190 return ret;
4191 }
4192
4193 /*
4194 * See if a given profile is valid and reduced.
4195 *
4196 * @flags: profile to validate
4197 * @extended: if true @flags is treated as an extended profile
4198 */
4199 static int alloc_profile_is_valid(u64 flags, int extended)
4200 {
4201 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4202 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4203
4204 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4205
4206 /* 1) check that all other bits are zeroed */
4207 if (flags & ~mask)
4208 return 0;
4209
4210 /* 2) see if profile is reduced */
4211 if (flags == 0)
4212 return !extended; /* "0" is valid for usual profiles */
4213
4214 return has_single_bit_set(flags);
4215 }
4216
4217 /*
4218 * Validate target profile against allowed profiles and return true if it's OK.
4219 * Otherwise print the error message and return false.
4220 */
4221 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4222 const struct btrfs_balance_args *bargs,
4223 u64 allowed, const char *type)
4224 {
4225 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4226 return true;
4227
4228 /* Profile is valid and does not have bits outside of the allowed set */
4229 if (alloc_profile_is_valid(bargs->target, 1) &&
4230 (bargs->target & ~allowed) == 0)
4231 return true;
4232
4233 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4234 type, btrfs_bg_type_to_raid_name(bargs->target));
4235 return false;
4236 }
4237
4238 /*
4239 * Fill @buf with textual description of balance filter flags @bargs, up to
4240 * @size_buf including the terminating null. The output may be trimmed if it
4241 * does not fit into the provided buffer.
4242 */
4243 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4244 u32 size_buf)
4245 {
4246 int ret;
4247 u32 size_bp = size_buf;
4248 char *bp = buf;
4249 u64 flags = bargs->flags;
4250 char tmp_buf[128] = {'\0'};
4251
4252 if (!flags)
4253 return;
4254
4255 #define CHECK_APPEND_NOARG(a) \
4256 do { \
4257 ret = snprintf(bp, size_bp, (a)); \
4258 if (ret < 0 || ret >= size_bp) \
4259 goto out_overflow; \
4260 size_bp -= ret; \
4261 bp += ret; \
4262 } while (0)
4263
4264 #define CHECK_APPEND_1ARG(a, v1) \
4265 do { \
4266 ret = snprintf(bp, size_bp, (a), (v1)); \
4267 if (ret < 0 || ret >= size_bp) \
4268 goto out_overflow; \
4269 size_bp -= ret; \
4270 bp += ret; \
4271 } while (0)
4272
4273 #define CHECK_APPEND_2ARG(a, v1, v2) \
4274 do { \
4275 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4276 if (ret < 0 || ret >= size_bp) \
4277 goto out_overflow; \
4278 size_bp -= ret; \
4279 bp += ret; \
4280 } while (0)
4281
4282 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4283 CHECK_APPEND_1ARG("convert=%s,",
4284 btrfs_bg_type_to_raid_name(bargs->target));
4285
4286 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4287 CHECK_APPEND_NOARG("soft,");
4288
4289 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4290 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4291 sizeof(tmp_buf));
4292 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4293 }
4294
4295 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4296 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4297
4298 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4299 CHECK_APPEND_2ARG("usage=%u..%u,",
4300 bargs->usage_min, bargs->usage_max);
4301
4302 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4303 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4304
4305 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4306 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4307 bargs->pstart, bargs->pend);
4308
4309 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4310 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4311 bargs->vstart, bargs->vend);
4312
4313 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4314 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4315
4316 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4317 CHECK_APPEND_2ARG("limit=%u..%u,",
4318 bargs->limit_min, bargs->limit_max);
4319
4320 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4321 CHECK_APPEND_2ARG("stripes=%u..%u,",
4322 bargs->stripes_min, bargs->stripes_max);
4323
4324 #undef CHECK_APPEND_2ARG
4325 #undef CHECK_APPEND_1ARG
4326 #undef CHECK_APPEND_NOARG
4327
4328 out_overflow:
4329
4330 if (size_bp < size_buf)
4331 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4332 else
4333 buf[0] = '\0';
4334 }
4335
4336 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4337 {
4338 u32 size_buf = 1024;
4339 char tmp_buf[192] = {'\0'};
4340 char *buf;
4341 char *bp;
4342 u32 size_bp = size_buf;
4343 int ret;
4344 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4345
4346 buf = kzalloc(size_buf, GFP_KERNEL);
4347 if (!buf)
4348 return;
4349
4350 bp = buf;
4351
4352 #define CHECK_APPEND_1ARG(a, v1) \
4353 do { \
4354 ret = snprintf(bp, size_bp, (a), (v1)); \
4355 if (ret < 0 || ret >= size_bp) \
4356 goto out_overflow; \
4357 size_bp -= ret; \
4358 bp += ret; \
4359 } while (0)
4360
4361 if (bctl->flags & BTRFS_BALANCE_FORCE)
4362 CHECK_APPEND_1ARG("%s", "-f ");
4363
4364 if (bctl->flags & BTRFS_BALANCE_DATA) {
4365 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4366 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4367 }
4368
4369 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4370 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4371 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4372 }
4373
4374 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4375 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4376 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4377 }
4378
4379 #undef CHECK_APPEND_1ARG
4380
4381 out_overflow:
4382
4383 if (size_bp < size_buf)
4384 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4385 btrfs_info(fs_info, "balance: %s %s",
4386 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4387 "resume" : "start", buf);
4388
4389 kfree(buf);
4390 }
4391
4392 /*
4393 * Should be called with balance mutexe held
4394 */
4395 int btrfs_balance(struct btrfs_fs_info *fs_info,
4396 struct btrfs_balance_control *bctl,
4397 struct btrfs_ioctl_balance_args *bargs)
4398 {
4399 u64 meta_target, data_target;
4400 u64 allowed;
4401 int mixed = 0;
4402 int ret;
4403 u64 num_devices;
4404 unsigned seq;
4405 bool reducing_redundancy;
4406 bool paused = false;
4407 int i;
4408
4409 if (btrfs_fs_closing(fs_info) ||
4410 atomic_read(&fs_info->balance_pause_req) ||
4411 btrfs_should_cancel_balance(fs_info)) {
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415
4416 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4417 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4418 mixed = 1;
4419
4420 /*
4421 * In case of mixed groups both data and meta should be picked,
4422 * and identical options should be given for both of them.
4423 */
4424 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4425 if (mixed && (bctl->flags & allowed)) {
4426 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4427 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4428 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4429 btrfs_err(fs_info,
4430 "balance: mixed groups data and metadata options must be the same");
4431 ret = -EINVAL;
4432 goto out;
4433 }
4434 }
4435
4436 /*
4437 * rw_devices will not change at the moment, device add/delete/replace
4438 * are exclusive
4439 */
4440 num_devices = fs_info->fs_devices->rw_devices;
4441
4442 /*
4443 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4444 * special bit for it, to make it easier to distinguish. Thus we need
4445 * to set it manually, or balance would refuse the profile.
4446 */
4447 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4448 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4449 if (num_devices >= btrfs_raid_array[i].devs_min)
4450 allowed |= btrfs_raid_array[i].bg_flag;
4451
4452 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4453 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4454 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4455 ret = -EINVAL;
4456 goto out;
4457 }
4458
4459 /*
4460 * Allow to reduce metadata or system integrity only if force set for
4461 * profiles with redundancy (copies, parity)
4462 */
4463 allowed = 0;
4464 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4465 if (btrfs_raid_array[i].ncopies >= 2 ||
4466 btrfs_raid_array[i].tolerated_failures >= 1)
4467 allowed |= btrfs_raid_array[i].bg_flag;
4468 }
4469 do {
4470 seq = read_seqbegin(&fs_info->profiles_lock);
4471
4472 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4473 (fs_info->avail_system_alloc_bits & allowed) &&
4474 !(bctl->sys.target & allowed)) ||
4475 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4476 (fs_info->avail_metadata_alloc_bits & allowed) &&
4477 !(bctl->meta.target & allowed)))
4478 reducing_redundancy = true;
4479 else
4480 reducing_redundancy = false;
4481
4482 /* if we're not converting, the target field is uninitialized */
4483 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4484 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4485 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4486 bctl->data.target : fs_info->avail_data_alloc_bits;
4487 } while (read_seqretry(&fs_info->profiles_lock, seq));
4488
4489 if (reducing_redundancy) {
4490 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4491 btrfs_info(fs_info,
4492 "balance: force reducing metadata redundancy");
4493 } else {
4494 btrfs_err(fs_info,
4495 "balance: reduces metadata redundancy, use --force if you want this");
4496 ret = -EINVAL;
4497 goto out;
4498 }
4499 }
4500
4501 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4502 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4503 btrfs_warn(fs_info,
4504 "balance: metadata profile %s has lower redundancy than data profile %s",
4505 btrfs_bg_type_to_raid_name(meta_target),
4506 btrfs_bg_type_to_raid_name(data_target));
4507 }
4508
4509 ret = insert_balance_item(fs_info, bctl);
4510 if (ret && ret != -EEXIST)
4511 goto out;
4512
4513 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4514 BUG_ON(ret == -EEXIST);
4515 BUG_ON(fs_info->balance_ctl);
4516 spin_lock(&fs_info->balance_lock);
4517 fs_info->balance_ctl = bctl;
4518 spin_unlock(&fs_info->balance_lock);
4519 } else {
4520 BUG_ON(ret != -EEXIST);
4521 spin_lock(&fs_info->balance_lock);
4522 update_balance_args(bctl);
4523 spin_unlock(&fs_info->balance_lock);
4524 }
4525
4526 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4527 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4528 describe_balance_start_or_resume(fs_info);
4529 mutex_unlock(&fs_info->balance_mutex);
4530
4531 ret = __btrfs_balance(fs_info);
4532
4533 mutex_lock(&fs_info->balance_mutex);
4534 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4535 btrfs_info(fs_info, "balance: paused");
4536 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4537 paused = true;
4538 }
4539 /*
4540 * Balance can be canceled by:
4541 *
4542 * - Regular cancel request
4543 * Then ret == -ECANCELED and balance_cancel_req > 0
4544 *
4545 * - Fatal signal to "btrfs" process
4546 * Either the signal caught by wait_reserve_ticket() and callers
4547 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4548 * got -ECANCELED.
4549 * Either way, in this case balance_cancel_req = 0, and
4550 * ret == -EINTR or ret == -ECANCELED.
4551 *
4552 * So here we only check the return value to catch canceled balance.
4553 */
4554 else if (ret == -ECANCELED || ret == -EINTR)
4555 btrfs_info(fs_info, "balance: canceled");
4556 else
4557 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4558
4559 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4560
4561 if (bargs) {
4562 memset(bargs, 0, sizeof(*bargs));
4563 btrfs_update_ioctl_balance_args(fs_info, bargs);
4564 }
4565
4566 /* We didn't pause, we can clean everything up. */
4567 if (!paused) {
4568 reset_balance_state(fs_info);
4569 btrfs_exclop_finish(fs_info);
4570 }
4571
4572 wake_up(&fs_info->balance_wait_q);
4573
4574 return ret;
4575 out:
4576 if (bctl->flags & BTRFS_BALANCE_RESUME)
4577 reset_balance_state(fs_info);
4578 else
4579 kfree(bctl);
4580 btrfs_exclop_finish(fs_info);
4581
4582 return ret;
4583 }
4584
4585 static int balance_kthread(void *data)
4586 {
4587 struct btrfs_fs_info *fs_info = data;
4588 int ret = 0;
4589
4590 sb_start_write(fs_info->sb);
4591 mutex_lock(&fs_info->balance_mutex);
4592 if (fs_info->balance_ctl)
4593 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4594 mutex_unlock(&fs_info->balance_mutex);
4595 sb_end_write(fs_info->sb);
4596
4597 return ret;
4598 }
4599
4600 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4601 {
4602 struct task_struct *tsk;
4603
4604 mutex_lock(&fs_info->balance_mutex);
4605 if (!fs_info->balance_ctl) {
4606 mutex_unlock(&fs_info->balance_mutex);
4607 return 0;
4608 }
4609 mutex_unlock(&fs_info->balance_mutex);
4610
4611 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4612 btrfs_info(fs_info, "balance: resume skipped");
4613 return 0;
4614 }
4615
4616 spin_lock(&fs_info->super_lock);
4617 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4618 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4619 spin_unlock(&fs_info->super_lock);
4620 /*
4621 * A ro->rw remount sequence should continue with the paused balance
4622 * regardless of who pauses it, system or the user as of now, so set
4623 * the resume flag.
4624 */
4625 spin_lock(&fs_info->balance_lock);
4626 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4627 spin_unlock(&fs_info->balance_lock);
4628
4629 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4630 return PTR_ERR_OR_ZERO(tsk);
4631 }
4632
4633 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4634 {
4635 struct btrfs_balance_control *bctl;
4636 struct btrfs_balance_item *item;
4637 struct btrfs_disk_balance_args disk_bargs;
4638 struct btrfs_path *path;
4639 struct extent_buffer *leaf;
4640 struct btrfs_key key;
4641 int ret;
4642
4643 path = btrfs_alloc_path();
4644 if (!path)
4645 return -ENOMEM;
4646
4647 key.objectid = BTRFS_BALANCE_OBJECTID;
4648 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4649 key.offset = 0;
4650
4651 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4652 if (ret < 0)
4653 goto out;
4654 if (ret > 0) { /* ret = -ENOENT; */
4655 ret = 0;
4656 goto out;
4657 }
4658
4659 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4660 if (!bctl) {
4661 ret = -ENOMEM;
4662 goto out;
4663 }
4664
4665 leaf = path->nodes[0];
4666 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4667
4668 bctl->flags = btrfs_balance_flags(leaf, item);
4669 bctl->flags |= BTRFS_BALANCE_RESUME;
4670
4671 btrfs_balance_data(leaf, item, &disk_bargs);
4672 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4673 btrfs_balance_meta(leaf, item, &disk_bargs);
4674 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4675 btrfs_balance_sys(leaf, item, &disk_bargs);
4676 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4677
4678 /*
4679 * This should never happen, as the paused balance state is recovered
4680 * during mount without any chance of other exclusive ops to collide.
4681 *
4682 * This gives the exclusive op status to balance and keeps in paused
4683 * state until user intervention (cancel or umount). If the ownership
4684 * cannot be assigned, show a message but do not fail. The balance
4685 * is in a paused state and must have fs_info::balance_ctl properly
4686 * set up.
4687 */
4688 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4689 btrfs_warn(fs_info,
4690 "balance: cannot set exclusive op status, resume manually");
4691
4692 btrfs_release_path(path);
4693
4694 mutex_lock(&fs_info->balance_mutex);
4695 BUG_ON(fs_info->balance_ctl);
4696 spin_lock(&fs_info->balance_lock);
4697 fs_info->balance_ctl = bctl;
4698 spin_unlock(&fs_info->balance_lock);
4699 mutex_unlock(&fs_info->balance_mutex);
4700 out:
4701 btrfs_free_path(path);
4702 return ret;
4703 }
4704
4705 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4706 {
4707 int ret = 0;
4708
4709 mutex_lock(&fs_info->balance_mutex);
4710 if (!fs_info->balance_ctl) {
4711 mutex_unlock(&fs_info->balance_mutex);
4712 return -ENOTCONN;
4713 }
4714
4715 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4716 atomic_inc(&fs_info->balance_pause_req);
4717 mutex_unlock(&fs_info->balance_mutex);
4718
4719 wait_event(fs_info->balance_wait_q,
4720 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4721
4722 mutex_lock(&fs_info->balance_mutex);
4723 /* we are good with balance_ctl ripped off from under us */
4724 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4725 atomic_dec(&fs_info->balance_pause_req);
4726 } else {
4727 ret = -ENOTCONN;
4728 }
4729
4730 mutex_unlock(&fs_info->balance_mutex);
4731 return ret;
4732 }
4733
4734 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4735 {
4736 mutex_lock(&fs_info->balance_mutex);
4737 if (!fs_info->balance_ctl) {
4738 mutex_unlock(&fs_info->balance_mutex);
4739 return -ENOTCONN;
4740 }
4741
4742 /*
4743 * A paused balance with the item stored on disk can be resumed at
4744 * mount time if the mount is read-write. Otherwise it's still paused
4745 * and we must not allow cancelling as it deletes the item.
4746 */
4747 if (sb_rdonly(fs_info->sb)) {
4748 mutex_unlock(&fs_info->balance_mutex);
4749 return -EROFS;
4750 }
4751
4752 atomic_inc(&fs_info->balance_cancel_req);
4753 /*
4754 * if we are running just wait and return, balance item is
4755 * deleted in btrfs_balance in this case
4756 */
4757 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4758 mutex_unlock(&fs_info->balance_mutex);
4759 wait_event(fs_info->balance_wait_q,
4760 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4761 mutex_lock(&fs_info->balance_mutex);
4762 } else {
4763 mutex_unlock(&fs_info->balance_mutex);
4764 /*
4765 * Lock released to allow other waiters to continue, we'll
4766 * reexamine the status again.
4767 */
4768 mutex_lock(&fs_info->balance_mutex);
4769
4770 if (fs_info->balance_ctl) {
4771 reset_balance_state(fs_info);
4772 btrfs_exclop_finish(fs_info);
4773 btrfs_info(fs_info, "balance: canceled");
4774 }
4775 }
4776
4777 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4778 atomic_dec(&fs_info->balance_cancel_req);
4779 mutex_unlock(&fs_info->balance_mutex);
4780 return 0;
4781 }
4782
4783 int btrfs_uuid_scan_kthread(void *data)
4784 {
4785 struct btrfs_fs_info *fs_info = data;
4786 struct btrfs_root *root = fs_info->tree_root;
4787 struct btrfs_key key;
4788 struct btrfs_path *path = NULL;
4789 int ret = 0;
4790 struct extent_buffer *eb;
4791 int slot;
4792 struct btrfs_root_item root_item;
4793 u32 item_size;
4794 struct btrfs_trans_handle *trans = NULL;
4795 bool closing = false;
4796
4797 path = btrfs_alloc_path();
4798 if (!path) {
4799 ret = -ENOMEM;
4800 goto out;
4801 }
4802
4803 key.objectid = 0;
4804 key.type = BTRFS_ROOT_ITEM_KEY;
4805 key.offset = 0;
4806
4807 while (1) {
4808 if (btrfs_fs_closing(fs_info)) {
4809 closing = true;
4810 break;
4811 }
4812 ret = btrfs_search_forward(root, &key, path,
4813 BTRFS_OLDEST_GENERATION);
4814 if (ret) {
4815 if (ret > 0)
4816 ret = 0;
4817 break;
4818 }
4819
4820 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4821 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4822 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4823 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4824 goto skip;
4825
4826 eb = path->nodes[0];
4827 slot = path->slots[0];
4828 item_size = btrfs_item_size(eb, slot);
4829 if (item_size < sizeof(root_item))
4830 goto skip;
4831
4832 read_extent_buffer(eb, &root_item,
4833 btrfs_item_ptr_offset(eb, slot),
4834 (int)sizeof(root_item));
4835 if (btrfs_root_refs(&root_item) == 0)
4836 goto skip;
4837
4838 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4839 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4840 if (trans)
4841 goto update_tree;
4842
4843 btrfs_release_path(path);
4844 /*
4845 * 1 - subvol uuid item
4846 * 1 - received_subvol uuid item
4847 */
4848 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4849 if (IS_ERR(trans)) {
4850 ret = PTR_ERR(trans);
4851 break;
4852 }
4853 continue;
4854 } else {
4855 goto skip;
4856 }
4857 update_tree:
4858 btrfs_release_path(path);
4859 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4860 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4861 BTRFS_UUID_KEY_SUBVOL,
4862 key.objectid);
4863 if (ret < 0) {
4864 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4865 ret);
4866 break;
4867 }
4868 }
4869
4870 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4871 ret = btrfs_uuid_tree_add(trans,
4872 root_item.received_uuid,
4873 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4874 key.objectid);
4875 if (ret < 0) {
4876 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4877 ret);
4878 break;
4879 }
4880 }
4881
4882 skip:
4883 btrfs_release_path(path);
4884 if (trans) {
4885 ret = btrfs_end_transaction(trans);
4886 trans = NULL;
4887 if (ret)
4888 break;
4889 }
4890
4891 if (key.offset < (u64)-1) {
4892 key.offset++;
4893 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4894 key.offset = 0;
4895 key.type = BTRFS_ROOT_ITEM_KEY;
4896 } else if (key.objectid < (u64)-1) {
4897 key.offset = 0;
4898 key.type = BTRFS_ROOT_ITEM_KEY;
4899 key.objectid++;
4900 } else {
4901 break;
4902 }
4903 cond_resched();
4904 }
4905
4906 out:
4907 btrfs_free_path(path);
4908 if (trans && !IS_ERR(trans))
4909 btrfs_end_transaction(trans);
4910 if (ret)
4911 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4912 else if (!closing)
4913 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4914 up(&fs_info->uuid_tree_rescan_sem);
4915 return 0;
4916 }
4917
4918 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4919 {
4920 struct btrfs_trans_handle *trans;
4921 struct btrfs_root *tree_root = fs_info->tree_root;
4922 struct btrfs_root *uuid_root;
4923 struct task_struct *task;
4924 int ret;
4925
4926 /*
4927 * 1 - root node
4928 * 1 - root item
4929 */
4930 trans = btrfs_start_transaction(tree_root, 2);
4931 if (IS_ERR(trans))
4932 return PTR_ERR(trans);
4933
4934 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4935 if (IS_ERR(uuid_root)) {
4936 ret = PTR_ERR(uuid_root);
4937 btrfs_abort_transaction(trans, ret);
4938 btrfs_end_transaction(trans);
4939 return ret;
4940 }
4941
4942 fs_info->uuid_root = uuid_root;
4943
4944 ret = btrfs_commit_transaction(trans);
4945 if (ret)
4946 return ret;
4947
4948 down(&fs_info->uuid_tree_rescan_sem);
4949 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4950 if (IS_ERR(task)) {
4951 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4952 btrfs_warn(fs_info, "failed to start uuid_scan task");
4953 up(&fs_info->uuid_tree_rescan_sem);
4954 return PTR_ERR(task);
4955 }
4956
4957 return 0;
4958 }
4959
4960 /*
4961 * shrinking a device means finding all of the device extents past
4962 * the new size, and then following the back refs to the chunks.
4963 * The chunk relocation code actually frees the device extent
4964 */
4965 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4966 {
4967 struct btrfs_fs_info *fs_info = device->fs_info;
4968 struct btrfs_root *root = fs_info->dev_root;
4969 struct btrfs_trans_handle *trans;
4970 struct btrfs_dev_extent *dev_extent = NULL;
4971 struct btrfs_path *path;
4972 u64 length;
4973 u64 chunk_offset;
4974 int ret;
4975 int slot;
4976 int failed = 0;
4977 bool retried = false;
4978 struct extent_buffer *l;
4979 struct btrfs_key key;
4980 struct btrfs_super_block *super_copy = fs_info->super_copy;
4981 u64 old_total = btrfs_super_total_bytes(super_copy);
4982 u64 old_size = btrfs_device_get_total_bytes(device);
4983 u64 diff;
4984 u64 start;
4985 u64 free_diff = 0;
4986
4987 new_size = round_down(new_size, fs_info->sectorsize);
4988 start = new_size;
4989 diff = round_down(old_size - new_size, fs_info->sectorsize);
4990
4991 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4992 return -EINVAL;
4993
4994 path = btrfs_alloc_path();
4995 if (!path)
4996 return -ENOMEM;
4997
4998 path->reada = READA_BACK;
4999
5000 trans = btrfs_start_transaction(root, 0);
5001 if (IS_ERR(trans)) {
5002 btrfs_free_path(path);
5003 return PTR_ERR(trans);
5004 }
5005
5006 mutex_lock(&fs_info->chunk_mutex);
5007
5008 btrfs_device_set_total_bytes(device, new_size);
5009 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5010 device->fs_devices->total_rw_bytes -= diff;
5011
5012 /*
5013 * The new free_chunk_space is new_size - used, so we have to
5014 * subtract the delta of the old free_chunk_space which included
5015 * old_size - used. If used > new_size then just subtract this
5016 * entire device's free space.
5017 */
5018 if (device->bytes_used < new_size)
5019 free_diff = (old_size - device->bytes_used) -
5020 (new_size - device->bytes_used);
5021 else
5022 free_diff = old_size - device->bytes_used;
5023 atomic64_sub(free_diff, &fs_info->free_chunk_space);
5024 }
5025
5026 /*
5027 * Once the device's size has been set to the new size, ensure all
5028 * in-memory chunks are synced to disk so that the loop below sees them
5029 * and relocates them accordingly.
5030 */
5031 if (contains_pending_extent(device, &start, diff)) {
5032 mutex_unlock(&fs_info->chunk_mutex);
5033 ret = btrfs_commit_transaction(trans);
5034 if (ret)
5035 goto done;
5036 } else {
5037 mutex_unlock(&fs_info->chunk_mutex);
5038 btrfs_end_transaction(trans);
5039 }
5040
5041 again:
5042 key.objectid = device->devid;
5043 key.offset = (u64)-1;
5044 key.type = BTRFS_DEV_EXTENT_KEY;
5045
5046 do {
5047 mutex_lock(&fs_info->reclaim_bgs_lock);
5048 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5049 if (ret < 0) {
5050 mutex_unlock(&fs_info->reclaim_bgs_lock);
5051 goto done;
5052 }
5053
5054 ret = btrfs_previous_item(root, path, 0, key.type);
5055 if (ret) {
5056 mutex_unlock(&fs_info->reclaim_bgs_lock);
5057 if (ret < 0)
5058 goto done;
5059 ret = 0;
5060 btrfs_release_path(path);
5061 break;
5062 }
5063
5064 l = path->nodes[0];
5065 slot = path->slots[0];
5066 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
5067
5068 if (key.objectid != device->devid) {
5069 mutex_unlock(&fs_info->reclaim_bgs_lock);
5070 btrfs_release_path(path);
5071 break;
5072 }
5073
5074 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
5075 length = btrfs_dev_extent_length(l, dev_extent);
5076
5077 if (key.offset + length <= new_size) {
5078 mutex_unlock(&fs_info->reclaim_bgs_lock);
5079 btrfs_release_path(path);
5080 break;
5081 }
5082
5083 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
5084 btrfs_release_path(path);
5085
5086 /*
5087 * We may be relocating the only data chunk we have,
5088 * which could potentially end up with losing data's
5089 * raid profile, so lets allocate an empty one in
5090 * advance.
5091 */
5092 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
5093 if (ret < 0) {
5094 mutex_unlock(&fs_info->reclaim_bgs_lock);
5095 goto done;
5096 }
5097
5098 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
5099 mutex_unlock(&fs_info->reclaim_bgs_lock);
5100 if (ret == -ENOSPC) {
5101 failed++;
5102 } else if (ret) {
5103 if (ret == -ETXTBSY) {
5104 btrfs_warn(fs_info,
5105 "could not shrink block group %llu due to active swapfile",
5106 chunk_offset);
5107 }
5108 goto done;
5109 }
5110 } while (key.offset-- > 0);
5111
5112 if (failed && !retried) {
5113 failed = 0;
5114 retried = true;
5115 goto again;
5116 } else if (failed && retried) {
5117 ret = -ENOSPC;
5118 goto done;
5119 }
5120
5121 /* Shrinking succeeded, else we would be at "done". */
5122 trans = btrfs_start_transaction(root, 0);
5123 if (IS_ERR(trans)) {
5124 ret = PTR_ERR(trans);
5125 goto done;
5126 }
5127
5128 mutex_lock(&fs_info->chunk_mutex);
5129 /* Clear all state bits beyond the shrunk device size */
5130 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5131 CHUNK_STATE_MASK);
5132
5133 btrfs_device_set_disk_total_bytes(device, new_size);
5134 if (list_empty(&device->post_commit_list))
5135 list_add_tail(&device->post_commit_list,
5136 &trans->transaction->dev_update_list);
5137
5138 WARN_ON(diff > old_total);
5139 btrfs_set_super_total_bytes(super_copy,
5140 round_down(old_total - diff, fs_info->sectorsize));
5141 mutex_unlock(&fs_info->chunk_mutex);
5142
5143 btrfs_reserve_chunk_metadata(trans, false);
5144 /* Now btrfs_update_device() will change the on-disk size. */
5145 ret = btrfs_update_device(trans, device);
5146 btrfs_trans_release_chunk_metadata(trans);
5147 if (ret < 0) {
5148 btrfs_abort_transaction(trans, ret);
5149 btrfs_end_transaction(trans);
5150 } else {
5151 ret = btrfs_commit_transaction(trans);
5152 }
5153 done:
5154 btrfs_free_path(path);
5155 if (ret) {
5156 mutex_lock(&fs_info->chunk_mutex);
5157 btrfs_device_set_total_bytes(device, old_size);
5158 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5159 device->fs_devices->total_rw_bytes += diff;
5160 atomic64_add(free_diff, &fs_info->free_chunk_space);
5161 }
5162 mutex_unlock(&fs_info->chunk_mutex);
5163 }
5164 return ret;
5165 }
5166
5167 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5168 struct btrfs_key *key,
5169 struct btrfs_chunk *chunk, int item_size)
5170 {
5171 struct btrfs_super_block *super_copy = fs_info->super_copy;
5172 struct btrfs_disk_key disk_key;
5173 u32 array_size;
5174 u8 *ptr;
5175
5176 lockdep_assert_held(&fs_info->chunk_mutex);
5177
5178 array_size = btrfs_super_sys_array_size(super_copy);
5179 if (array_size + item_size + sizeof(disk_key)
5180 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5181 return -EFBIG;
5182
5183 ptr = super_copy->sys_chunk_array + array_size;
5184 btrfs_cpu_key_to_disk(&disk_key, key);
5185 memcpy(ptr, &disk_key, sizeof(disk_key));
5186 ptr += sizeof(disk_key);
5187 memcpy(ptr, chunk, item_size);
5188 item_size += sizeof(disk_key);
5189 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5190
5191 return 0;
5192 }
5193
5194 /*
5195 * sort the devices in descending order by max_avail, total_avail
5196 */
5197 static int btrfs_cmp_device_info(const void *a, const void *b)
5198 {
5199 const struct btrfs_device_info *di_a = a;
5200 const struct btrfs_device_info *di_b = b;
5201
5202 if (di_a->max_avail > di_b->max_avail)
5203 return -1;
5204 if (di_a->max_avail < di_b->max_avail)
5205 return 1;
5206 if (di_a->total_avail > di_b->total_avail)
5207 return -1;
5208 if (di_a->total_avail < di_b->total_avail)
5209 return 1;
5210 return 0;
5211 }
5212
5213 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5214 {
5215 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5216 return;
5217
5218 btrfs_set_fs_incompat(info, RAID56);
5219 }
5220
5221 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5222 {
5223 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5224 return;
5225
5226 btrfs_set_fs_incompat(info, RAID1C34);
5227 }
5228
5229 /*
5230 * Structure used internally for btrfs_create_chunk() function.
5231 * Wraps needed parameters.
5232 */
5233 struct alloc_chunk_ctl {
5234 u64 start;
5235 u64 type;
5236 /* Total number of stripes to allocate */
5237 int num_stripes;
5238 /* sub_stripes info for map */
5239 int sub_stripes;
5240 /* Stripes per device */
5241 int dev_stripes;
5242 /* Maximum number of devices to use */
5243 int devs_max;
5244 /* Minimum number of devices to use */
5245 int devs_min;
5246 /* ndevs has to be a multiple of this */
5247 int devs_increment;
5248 /* Number of copies */
5249 int ncopies;
5250 /* Number of stripes worth of bytes to store parity information */
5251 int nparity;
5252 u64 max_stripe_size;
5253 u64 max_chunk_size;
5254 u64 dev_extent_min;
5255 u64 stripe_size;
5256 u64 chunk_size;
5257 int ndevs;
5258 };
5259
5260 static void init_alloc_chunk_ctl_policy_regular(
5261 struct btrfs_fs_devices *fs_devices,
5262 struct alloc_chunk_ctl *ctl)
5263 {
5264 struct btrfs_space_info *space_info;
5265
5266 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5267 ASSERT(space_info);
5268
5269 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5270 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5271
5272 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5273 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5274
5275 /* We don't want a chunk larger than 10% of writable space */
5276 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5277 ctl->max_chunk_size);
5278 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5279 }
5280
5281 static void init_alloc_chunk_ctl_policy_zoned(
5282 struct btrfs_fs_devices *fs_devices,
5283 struct alloc_chunk_ctl *ctl)
5284 {
5285 u64 zone_size = fs_devices->fs_info->zone_size;
5286 u64 limit;
5287 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5288 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5289 u64 min_chunk_size = min_data_stripes * zone_size;
5290 u64 type = ctl->type;
5291
5292 ctl->max_stripe_size = zone_size;
5293 if (type & BTRFS_BLOCK_GROUP_DATA) {
5294 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5295 zone_size);
5296 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5297 ctl->max_chunk_size = ctl->max_stripe_size;
5298 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5299 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5300 ctl->devs_max = min_t(int, ctl->devs_max,
5301 BTRFS_MAX_DEVS_SYS_CHUNK);
5302 } else {
5303 BUG();
5304 }
5305
5306 /* We don't want a chunk larger than 10% of writable space */
5307 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5308 zone_size),
5309 min_chunk_size);
5310 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5311 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5312 }
5313
5314 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5315 struct alloc_chunk_ctl *ctl)
5316 {
5317 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5318
5319 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5320 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5321 ctl->devs_max = btrfs_raid_array[index].devs_max;
5322 if (!ctl->devs_max)
5323 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5324 ctl->devs_min = btrfs_raid_array[index].devs_min;
5325 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5326 ctl->ncopies = btrfs_raid_array[index].ncopies;
5327 ctl->nparity = btrfs_raid_array[index].nparity;
5328 ctl->ndevs = 0;
5329
5330 switch (fs_devices->chunk_alloc_policy) {
5331 case BTRFS_CHUNK_ALLOC_REGULAR:
5332 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5333 break;
5334 case BTRFS_CHUNK_ALLOC_ZONED:
5335 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5336 break;
5337 default:
5338 BUG();
5339 }
5340 }
5341
5342 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5343 struct alloc_chunk_ctl *ctl,
5344 struct btrfs_device_info *devices_info)
5345 {
5346 struct btrfs_fs_info *info = fs_devices->fs_info;
5347 struct btrfs_device *device;
5348 u64 total_avail;
5349 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5350 int ret;
5351 int ndevs = 0;
5352 u64 max_avail;
5353 u64 dev_offset;
5354
5355 /*
5356 * in the first pass through the devices list, we gather information
5357 * about the available holes on each device.
5358 */
5359 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5360 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5361 WARN(1, KERN_ERR
5362 "BTRFS: read-only device in alloc_list\n");
5363 continue;
5364 }
5365
5366 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5367 &device->dev_state) ||
5368 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5369 continue;
5370
5371 if (device->total_bytes > device->bytes_used)
5372 total_avail = device->total_bytes - device->bytes_used;
5373 else
5374 total_avail = 0;
5375
5376 /* If there is no space on this device, skip it. */
5377 if (total_avail < ctl->dev_extent_min)
5378 continue;
5379
5380 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5381 &max_avail);
5382 if (ret && ret != -ENOSPC)
5383 return ret;
5384
5385 if (ret == 0)
5386 max_avail = dev_extent_want;
5387
5388 if (max_avail < ctl->dev_extent_min) {
5389 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5390 btrfs_debug(info,
5391 "%s: devid %llu has no free space, have=%llu want=%llu",
5392 __func__, device->devid, max_avail,
5393 ctl->dev_extent_min);
5394 continue;
5395 }
5396
5397 if (ndevs == fs_devices->rw_devices) {
5398 WARN(1, "%s: found more than %llu devices\n",
5399 __func__, fs_devices->rw_devices);
5400 break;
5401 }
5402 devices_info[ndevs].dev_offset = dev_offset;
5403 devices_info[ndevs].max_avail = max_avail;
5404 devices_info[ndevs].total_avail = total_avail;
5405 devices_info[ndevs].dev = device;
5406 ++ndevs;
5407 }
5408 ctl->ndevs = ndevs;
5409
5410 /*
5411 * now sort the devices by hole size / available space
5412 */
5413 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5414 btrfs_cmp_device_info, NULL);
5415
5416 return 0;
5417 }
5418
5419 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5420 struct btrfs_device_info *devices_info)
5421 {
5422 /* Number of stripes that count for block group size */
5423 int data_stripes;
5424
5425 /*
5426 * The primary goal is to maximize the number of stripes, so use as
5427 * many devices as possible, even if the stripes are not maximum sized.
5428 *
5429 * The DUP profile stores more than one stripe per device, the
5430 * max_avail is the total size so we have to adjust.
5431 */
5432 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5433 ctl->dev_stripes);
5434 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5435
5436 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5437 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5438
5439 /*
5440 * Use the number of data stripes to figure out how big this chunk is
5441 * really going to be in terms of logical address space, and compare
5442 * that answer with the max chunk size. If it's higher, we try to
5443 * reduce stripe_size.
5444 */
5445 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5446 /*
5447 * Reduce stripe_size, round it up to a 16MB boundary again and
5448 * then use it, unless it ends up being even bigger than the
5449 * previous value we had already.
5450 */
5451 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5452 data_stripes), SZ_16M),
5453 ctl->stripe_size);
5454 }
5455
5456 /* Stripe size should not go beyond 1G. */
5457 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5458
5459 /* Align to BTRFS_STRIPE_LEN */
5460 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5461 ctl->chunk_size = ctl->stripe_size * data_stripes;
5462
5463 return 0;
5464 }
5465
5466 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5467 struct btrfs_device_info *devices_info)
5468 {
5469 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5470 /* Number of stripes that count for block group size */
5471 int data_stripes;
5472
5473 /*
5474 * It should hold because:
5475 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5476 */
5477 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5478
5479 ctl->stripe_size = zone_size;
5480 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5481 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5482
5483 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5484 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5485 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5486 ctl->stripe_size) + ctl->nparity,
5487 ctl->dev_stripes);
5488 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5489 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5490 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5491 }
5492
5493 ctl->chunk_size = ctl->stripe_size * data_stripes;
5494
5495 return 0;
5496 }
5497
5498 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5499 struct alloc_chunk_ctl *ctl,
5500 struct btrfs_device_info *devices_info)
5501 {
5502 struct btrfs_fs_info *info = fs_devices->fs_info;
5503
5504 /*
5505 * Round down to number of usable stripes, devs_increment can be any
5506 * number so we can't use round_down() that requires power of 2, while
5507 * rounddown is safe.
5508 */
5509 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5510
5511 if (ctl->ndevs < ctl->devs_min) {
5512 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5513 btrfs_debug(info,
5514 "%s: not enough devices with free space: have=%d minimum required=%d",
5515 __func__, ctl->ndevs, ctl->devs_min);
5516 }
5517 return -ENOSPC;
5518 }
5519
5520 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5521
5522 switch (fs_devices->chunk_alloc_policy) {
5523 case BTRFS_CHUNK_ALLOC_REGULAR:
5524 return decide_stripe_size_regular(ctl, devices_info);
5525 case BTRFS_CHUNK_ALLOC_ZONED:
5526 return decide_stripe_size_zoned(ctl, devices_info);
5527 default:
5528 BUG();
5529 }
5530 }
5531
5532 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5533 {
5534 for (int i = 0; i < map->num_stripes; i++) {
5535 struct btrfs_io_stripe *stripe = &map->stripes[i];
5536 struct btrfs_device *device = stripe->dev;
5537
5538 set_extent_bit(&device->alloc_state, stripe->physical,
5539 stripe->physical + map->stripe_size - 1,
5540 bits | EXTENT_NOWAIT, NULL);
5541 }
5542 }
5543
5544 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5545 {
5546 for (int i = 0; i < map->num_stripes; i++) {
5547 struct btrfs_io_stripe *stripe = &map->stripes[i];
5548 struct btrfs_device *device = stripe->dev;
5549
5550 __clear_extent_bit(&device->alloc_state, stripe->physical,
5551 stripe->physical + map->stripe_size - 1,
5552 bits | EXTENT_NOWAIT,
5553 NULL, NULL);
5554 }
5555 }
5556
5557 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5558 {
5559 write_lock(&fs_info->mapping_tree_lock);
5560 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5561 RB_CLEAR_NODE(&map->rb_node);
5562 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5563 write_unlock(&fs_info->mapping_tree_lock);
5564
5565 /* Once for the tree reference. */
5566 btrfs_free_chunk_map(map);
5567 }
5568
5569 EXPORT_FOR_TESTS
5570 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5571 {
5572 struct rb_node **p;
5573 struct rb_node *parent = NULL;
5574 bool leftmost = true;
5575
5576 write_lock(&fs_info->mapping_tree_lock);
5577 p = &fs_info->mapping_tree.rb_root.rb_node;
5578 while (*p) {
5579 struct btrfs_chunk_map *entry;
5580
5581 parent = *p;
5582 entry = rb_entry(parent, struct btrfs_chunk_map, rb_node);
5583
5584 if (map->start < entry->start) {
5585 p = &(*p)->rb_left;
5586 } else if (map->start > entry->start) {
5587 p = &(*p)->rb_right;
5588 leftmost = false;
5589 } else {
5590 write_unlock(&fs_info->mapping_tree_lock);
5591 return -EEXIST;
5592 }
5593 }
5594 rb_link_node(&map->rb_node, parent, p);
5595 rb_insert_color_cached(&map->rb_node, &fs_info->mapping_tree, leftmost);
5596 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5597 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5598 write_unlock(&fs_info->mapping_tree_lock);
5599
5600 return 0;
5601 }
5602
5603 EXPORT_FOR_TESTS
5604 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5605 {
5606 struct btrfs_chunk_map *map;
5607
5608 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5609 if (!map)
5610 return NULL;
5611
5612 refcount_set(&map->refs, 1);
5613 RB_CLEAR_NODE(&map->rb_node);
5614
5615 return map;
5616 }
5617
5618 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5619 struct alloc_chunk_ctl *ctl,
5620 struct btrfs_device_info *devices_info)
5621 {
5622 struct btrfs_fs_info *info = trans->fs_info;
5623 struct btrfs_chunk_map *map;
5624 struct btrfs_block_group *block_group;
5625 u64 start = ctl->start;
5626 u64 type = ctl->type;
5627 int ret;
5628 int i;
5629 int j;
5630
5631 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5632 if (!map)
5633 return ERR_PTR(-ENOMEM);
5634
5635 map->start = start;
5636 map->chunk_len = ctl->chunk_size;
5637 map->stripe_size = ctl->stripe_size;
5638 map->type = type;
5639 map->io_align = BTRFS_STRIPE_LEN;
5640 map->io_width = BTRFS_STRIPE_LEN;
5641 map->sub_stripes = ctl->sub_stripes;
5642 map->num_stripes = ctl->num_stripes;
5643
5644 for (i = 0; i < ctl->ndevs; ++i) {
5645 for (j = 0; j < ctl->dev_stripes; ++j) {
5646 int s = i * ctl->dev_stripes + j;
5647 map->stripes[s].dev = devices_info[i].dev;
5648 map->stripes[s].physical = devices_info[i].dev_offset +
5649 j * ctl->stripe_size;
5650 }
5651 }
5652
5653 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5654
5655 ret = btrfs_add_chunk_map(info, map);
5656 if (ret) {
5657 btrfs_free_chunk_map(map);
5658 return ERR_PTR(ret);
5659 }
5660
5661 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
5662 if (IS_ERR(block_group)) {
5663 btrfs_remove_chunk_map(info, map);
5664 return block_group;
5665 }
5666
5667 for (int i = 0; i < map->num_stripes; i++) {
5668 struct btrfs_device *dev = map->stripes[i].dev;
5669
5670 btrfs_device_set_bytes_used(dev,
5671 dev->bytes_used + ctl->stripe_size);
5672 if (list_empty(&dev->post_commit_list))
5673 list_add_tail(&dev->post_commit_list,
5674 &trans->transaction->dev_update_list);
5675 }
5676
5677 atomic64_sub(ctl->stripe_size * map->num_stripes,
5678 &info->free_chunk_space);
5679
5680 check_raid56_incompat_flag(info, type);
5681 check_raid1c34_incompat_flag(info, type);
5682
5683 return block_group;
5684 }
5685
5686 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5687 u64 type)
5688 {
5689 struct btrfs_fs_info *info = trans->fs_info;
5690 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5691 struct btrfs_device_info *devices_info = NULL;
5692 struct alloc_chunk_ctl ctl;
5693 struct btrfs_block_group *block_group;
5694 int ret;
5695
5696 lockdep_assert_held(&info->chunk_mutex);
5697
5698 if (!alloc_profile_is_valid(type, 0)) {
5699 ASSERT(0);
5700 return ERR_PTR(-EINVAL);
5701 }
5702
5703 if (list_empty(&fs_devices->alloc_list)) {
5704 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5705 btrfs_debug(info, "%s: no writable device", __func__);
5706 return ERR_PTR(-ENOSPC);
5707 }
5708
5709 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5710 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5711 ASSERT(0);
5712 return ERR_PTR(-EINVAL);
5713 }
5714
5715 ctl.start = find_next_chunk(info);
5716 ctl.type = type;
5717 init_alloc_chunk_ctl(fs_devices, &ctl);
5718
5719 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5720 GFP_NOFS);
5721 if (!devices_info)
5722 return ERR_PTR(-ENOMEM);
5723
5724 ret = gather_device_info(fs_devices, &ctl, devices_info);
5725 if (ret < 0) {
5726 block_group = ERR_PTR(ret);
5727 goto out;
5728 }
5729
5730 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5731 if (ret < 0) {
5732 block_group = ERR_PTR(ret);
5733 goto out;
5734 }
5735
5736 block_group = create_chunk(trans, &ctl, devices_info);
5737
5738 out:
5739 kfree(devices_info);
5740 return block_group;
5741 }
5742
5743 /*
5744 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5745 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5746 * chunks.
5747 *
5748 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5749 * phases.
5750 */
5751 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5752 struct btrfs_block_group *bg)
5753 {
5754 struct btrfs_fs_info *fs_info = trans->fs_info;
5755 struct btrfs_root *chunk_root = fs_info->chunk_root;
5756 struct btrfs_key key;
5757 struct btrfs_chunk *chunk;
5758 struct btrfs_stripe *stripe;
5759 struct btrfs_chunk_map *map;
5760 size_t item_size;
5761 int i;
5762 int ret;
5763
5764 /*
5765 * We take the chunk_mutex for 2 reasons:
5766 *
5767 * 1) Updates and insertions in the chunk btree must be done while holding
5768 * the chunk_mutex, as well as updating the system chunk array in the
5769 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5770 * details;
5771 *
5772 * 2) To prevent races with the final phase of a device replace operation
5773 * that replaces the device object associated with the map's stripes,
5774 * because the device object's id can change at any time during that
5775 * final phase of the device replace operation
5776 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5777 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5778 * which would cause a failure when updating the device item, which does
5779 * not exists, or persisting a stripe of the chunk item with such ID.
5780 * Here we can't use the device_list_mutex because our caller already
5781 * has locked the chunk_mutex, and the final phase of device replace
5782 * acquires both mutexes - first the device_list_mutex and then the
5783 * chunk_mutex. Using any of those two mutexes protects us from a
5784 * concurrent device replace.
5785 */
5786 lockdep_assert_held(&fs_info->chunk_mutex);
5787
5788 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5789 if (IS_ERR(map)) {
5790 ret = PTR_ERR(map);
5791 btrfs_abort_transaction(trans, ret);
5792 return ret;
5793 }
5794
5795 item_size = btrfs_chunk_item_size(map->num_stripes);
5796
5797 chunk = kzalloc(item_size, GFP_NOFS);
5798 if (!chunk) {
5799 ret = -ENOMEM;
5800 btrfs_abort_transaction(trans, ret);
5801 goto out;
5802 }
5803
5804 for (i = 0; i < map->num_stripes; i++) {
5805 struct btrfs_device *device = map->stripes[i].dev;
5806
5807 ret = btrfs_update_device(trans, device);
5808 if (ret)
5809 goto out;
5810 }
5811
5812 stripe = &chunk->stripe;
5813 for (i = 0; i < map->num_stripes; i++) {
5814 struct btrfs_device *device = map->stripes[i].dev;
5815 const u64 dev_offset = map->stripes[i].physical;
5816
5817 btrfs_set_stack_stripe_devid(stripe, device->devid);
5818 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5819 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5820 stripe++;
5821 }
5822
5823 btrfs_set_stack_chunk_length(chunk, bg->length);
5824 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5825 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5826 btrfs_set_stack_chunk_type(chunk, map->type);
5827 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5828 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5829 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5830 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5831 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5832
5833 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5834 key.type = BTRFS_CHUNK_ITEM_KEY;
5835 key.offset = bg->start;
5836
5837 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5838 if (ret)
5839 goto out;
5840
5841 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5842
5843 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5844 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5845 if (ret)
5846 goto out;
5847 }
5848
5849 out:
5850 kfree(chunk);
5851 btrfs_free_chunk_map(map);
5852 return ret;
5853 }
5854
5855 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5856 {
5857 struct btrfs_fs_info *fs_info = trans->fs_info;
5858 u64 alloc_profile;
5859 struct btrfs_block_group *meta_bg;
5860 struct btrfs_block_group *sys_bg;
5861
5862 /*
5863 * When adding a new device for sprouting, the seed device is read-only
5864 * so we must first allocate a metadata and a system chunk. But before
5865 * adding the block group items to the extent, device and chunk btrees,
5866 * we must first:
5867 *
5868 * 1) Create both chunks without doing any changes to the btrees, as
5869 * otherwise we would get -ENOSPC since the block groups from the
5870 * seed device are read-only;
5871 *
5872 * 2) Add the device item for the new sprout device - finishing the setup
5873 * of a new block group requires updating the device item in the chunk
5874 * btree, so it must exist when we attempt to do it. The previous step
5875 * ensures this does not fail with -ENOSPC.
5876 *
5877 * After that we can add the block group items to their btrees:
5878 * update existing device item in the chunk btree, add a new block group
5879 * item to the extent btree, add a new chunk item to the chunk btree and
5880 * finally add the new device extent items to the devices btree.
5881 */
5882
5883 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5884 meta_bg = btrfs_create_chunk(trans, alloc_profile);
5885 if (IS_ERR(meta_bg))
5886 return PTR_ERR(meta_bg);
5887
5888 alloc_profile = btrfs_system_alloc_profile(fs_info);
5889 sys_bg = btrfs_create_chunk(trans, alloc_profile);
5890 if (IS_ERR(sys_bg))
5891 return PTR_ERR(sys_bg);
5892
5893 return 0;
5894 }
5895
5896 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5897 {
5898 const int index = btrfs_bg_flags_to_raid_index(map->type);
5899
5900 return btrfs_raid_array[index].tolerated_failures;
5901 }
5902
5903 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5904 {
5905 struct btrfs_chunk_map *map;
5906 int miss_ndevs = 0;
5907 int i;
5908 bool ret = true;
5909
5910 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5911 if (IS_ERR(map))
5912 return false;
5913
5914 for (i = 0; i < map->num_stripes; i++) {
5915 if (test_bit(BTRFS_DEV_STATE_MISSING,
5916 &map->stripes[i].dev->dev_state)) {
5917 miss_ndevs++;
5918 continue;
5919 }
5920 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5921 &map->stripes[i].dev->dev_state)) {
5922 ret = false;
5923 goto end;
5924 }
5925 }
5926
5927 /*
5928 * If the number of missing devices is larger than max errors, we can
5929 * not write the data into that chunk successfully.
5930 */
5931 if (miss_ndevs > btrfs_chunk_max_errors(map))
5932 ret = false;
5933 end:
5934 btrfs_free_chunk_map(map);
5935 return ret;
5936 }
5937
5938 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5939 {
5940 write_lock(&fs_info->mapping_tree_lock);
5941 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5942 struct btrfs_chunk_map *map;
5943 struct rb_node *node;
5944
5945 node = rb_first_cached(&fs_info->mapping_tree);
5946 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5947 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5948 RB_CLEAR_NODE(&map->rb_node);
5949 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5950 /* Once for the tree ref. */
5951 btrfs_free_chunk_map(map);
5952 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5953 }
5954 write_unlock(&fs_info->mapping_tree_lock);
5955 }
5956
5957 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5958 {
5959 struct btrfs_chunk_map *map;
5960 enum btrfs_raid_types index;
5961 int ret = 1;
5962
5963 map = btrfs_get_chunk_map(fs_info, logical, len);
5964 if (IS_ERR(map))
5965 /*
5966 * We could return errors for these cases, but that could get
5967 * ugly and we'd probably do the same thing which is just not do
5968 * anything else and exit, so return 1 so the callers don't try
5969 * to use other copies.
5970 */
5971 return 1;
5972
5973 index = btrfs_bg_flags_to_raid_index(map->type);
5974
5975 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5976 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5977 ret = btrfs_raid_array[index].ncopies;
5978 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5979 ret = 2;
5980 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5981 /*
5982 * There could be two corrupted data stripes, we need
5983 * to loop retry in order to rebuild the correct data.
5984 *
5985 * Fail a stripe at a time on every retry except the
5986 * stripe under reconstruction.
5987 */
5988 ret = map->num_stripes;
5989 btrfs_free_chunk_map(map);
5990 return ret;
5991 }
5992
5993 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5994 u64 logical)
5995 {
5996 struct btrfs_chunk_map *map;
5997 unsigned long len = fs_info->sectorsize;
5998
5999 if (!btrfs_fs_incompat(fs_info, RAID56))
6000 return len;
6001
6002 map = btrfs_get_chunk_map(fs_info, logical, len);
6003
6004 if (!WARN_ON(IS_ERR(map))) {
6005 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6006 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6007 btrfs_free_chunk_map(map);
6008 }
6009 return len;
6010 }
6011
6012 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
6013 {
6014 struct btrfs_chunk_map *map;
6015 int ret = 0;
6016
6017 if (!btrfs_fs_incompat(fs_info, RAID56))
6018 return 0;
6019
6020 map = btrfs_get_chunk_map(fs_info, logical, len);
6021
6022 if (!WARN_ON(IS_ERR(map))) {
6023 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6024 ret = 1;
6025 btrfs_free_chunk_map(map);
6026 }
6027 return ret;
6028 }
6029
6030 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6031 struct btrfs_chunk_map *map, int first,
6032 int dev_replace_is_ongoing)
6033 {
6034 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6035 int i;
6036 int num_stripes;
6037 int preferred_mirror;
6038 int tolerance;
6039 struct btrfs_device *srcdev;
6040
6041 ASSERT((map->type &
6042 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
6043
6044 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6045 num_stripes = map->sub_stripes;
6046 else
6047 num_stripes = map->num_stripes;
6048
6049 switch (policy) {
6050 default:
6051 /* Shouldn't happen, just warn and use pid instead of failing */
6052 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6053 policy);
6054 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6055 fallthrough;
6056 case BTRFS_READ_POLICY_PID:
6057 preferred_mirror = first + (current->pid % num_stripes);
6058 break;
6059 }
6060
6061 if (dev_replace_is_ongoing &&
6062 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6063 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6064 srcdev = fs_info->dev_replace.srcdev;
6065 else
6066 srcdev = NULL;
6067
6068 /*
6069 * try to avoid the drive that is the source drive for a
6070 * dev-replace procedure, only choose it if no other non-missing
6071 * mirror is available
6072 */
6073 for (tolerance = 0; tolerance < 2; tolerance++) {
6074 if (map->stripes[preferred_mirror].dev->bdev &&
6075 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6076 return preferred_mirror;
6077 for (i = first; i < first + num_stripes; i++) {
6078 if (map->stripes[i].dev->bdev &&
6079 (tolerance || map->stripes[i].dev != srcdev))
6080 return i;
6081 }
6082 }
6083
6084 /* we couldn't find one that doesn't fail. Just return something
6085 * and the io error handling code will clean up eventually
6086 */
6087 return preferred_mirror;
6088 }
6089
6090 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6091 u64 logical,
6092 u16 total_stripes)
6093 {
6094 struct btrfs_io_context *bioc;
6095
6096 bioc = kzalloc(
6097 /* The size of btrfs_io_context */
6098 sizeof(struct btrfs_io_context) +
6099 /* Plus the variable array for the stripes */
6100 sizeof(struct btrfs_io_stripe) * (total_stripes),
6101 GFP_NOFS);
6102
6103 if (!bioc)
6104 return NULL;
6105
6106 refcount_set(&bioc->refs, 1);
6107
6108 bioc->fs_info = fs_info;
6109 bioc->replace_stripe_src = -1;
6110 bioc->full_stripe_logical = (u64)-1;
6111 bioc->logical = logical;
6112
6113 return bioc;
6114 }
6115
6116 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6117 {
6118 WARN_ON(!refcount_read(&bioc->refs));
6119 refcount_inc(&bioc->refs);
6120 }
6121
6122 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6123 {
6124 if (!bioc)
6125 return;
6126 if (refcount_dec_and_test(&bioc->refs))
6127 kfree(bioc);
6128 }
6129
6130 /*
6131 * Please note that, discard won't be sent to target device of device
6132 * replace.
6133 */
6134 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6135 u64 logical, u64 *length_ret,
6136 u32 *num_stripes)
6137 {
6138 struct btrfs_chunk_map *map;
6139 struct btrfs_discard_stripe *stripes;
6140 u64 length = *length_ret;
6141 u64 offset;
6142 u32 stripe_nr;
6143 u32 stripe_nr_end;
6144 u32 stripe_cnt;
6145 u64 stripe_end_offset;
6146 u64 stripe_offset;
6147 u32 stripe_index;
6148 u32 factor = 0;
6149 u32 sub_stripes = 0;
6150 u32 stripes_per_dev = 0;
6151 u32 remaining_stripes = 0;
6152 u32 last_stripe = 0;
6153 int ret;
6154 int i;
6155
6156 map = btrfs_get_chunk_map(fs_info, logical, length);
6157 if (IS_ERR(map))
6158 return ERR_CAST(map);
6159
6160 /* we don't discard raid56 yet */
6161 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6162 ret = -EOPNOTSUPP;
6163 goto out_free_map;
6164 }
6165
6166 offset = logical - map->start;
6167 length = min_t(u64, map->start + map->chunk_len - logical, length);
6168 *length_ret = length;
6169
6170 /*
6171 * stripe_nr counts the total number of stripes we have to stride
6172 * to get to this block
6173 */
6174 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6175
6176 /* stripe_offset is the offset of this block in its stripe */
6177 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6178
6179 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6180 BTRFS_STRIPE_LEN_SHIFT;
6181 stripe_cnt = stripe_nr_end - stripe_nr;
6182 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6183 (offset + length);
6184 /*
6185 * after this, stripe_nr is the number of stripes on this
6186 * device we have to walk to find the data, and stripe_index is
6187 * the number of our device in the stripe array
6188 */
6189 *num_stripes = 1;
6190 stripe_index = 0;
6191 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6192 BTRFS_BLOCK_GROUP_RAID10)) {
6193 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6194 sub_stripes = 1;
6195 else
6196 sub_stripes = map->sub_stripes;
6197
6198 factor = map->num_stripes / sub_stripes;
6199 *num_stripes = min_t(u64, map->num_stripes,
6200 sub_stripes * stripe_cnt);
6201 stripe_index = stripe_nr % factor;
6202 stripe_nr /= factor;
6203 stripe_index *= sub_stripes;
6204
6205 remaining_stripes = stripe_cnt % factor;
6206 stripes_per_dev = stripe_cnt / factor;
6207 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6208 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6209 BTRFS_BLOCK_GROUP_DUP)) {
6210 *num_stripes = map->num_stripes;
6211 } else {
6212 stripe_index = stripe_nr % map->num_stripes;
6213 stripe_nr /= map->num_stripes;
6214 }
6215
6216 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6217 if (!stripes) {
6218 ret = -ENOMEM;
6219 goto out_free_map;
6220 }
6221
6222 for (i = 0; i < *num_stripes; i++) {
6223 stripes[i].physical =
6224 map->stripes[stripe_index].physical +
6225 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6226 stripes[i].dev = map->stripes[stripe_index].dev;
6227
6228 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6229 BTRFS_BLOCK_GROUP_RAID10)) {
6230 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6231
6232 if (i / sub_stripes < remaining_stripes)
6233 stripes[i].length += BTRFS_STRIPE_LEN;
6234
6235 /*
6236 * Special for the first stripe and
6237 * the last stripe:
6238 *
6239 * |-------|...|-------|
6240 * |----------|
6241 * off end_off
6242 */
6243 if (i < sub_stripes)
6244 stripes[i].length -= stripe_offset;
6245
6246 if (stripe_index >= last_stripe &&
6247 stripe_index <= (last_stripe +
6248 sub_stripes - 1))
6249 stripes[i].length -= stripe_end_offset;
6250
6251 if (i == sub_stripes - 1)
6252 stripe_offset = 0;
6253 } else {
6254 stripes[i].length = length;
6255 }
6256
6257 stripe_index++;
6258 if (stripe_index == map->num_stripes) {
6259 stripe_index = 0;
6260 stripe_nr++;
6261 }
6262 }
6263
6264 btrfs_free_chunk_map(map);
6265 return stripes;
6266 out_free_map:
6267 btrfs_free_chunk_map(map);
6268 return ERR_PTR(ret);
6269 }
6270
6271 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6272 {
6273 struct btrfs_block_group *cache;
6274 bool ret;
6275
6276 /* Non zoned filesystem does not use "to_copy" flag */
6277 if (!btrfs_is_zoned(fs_info))
6278 return false;
6279
6280 cache = btrfs_lookup_block_group(fs_info, logical);
6281
6282 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6283
6284 btrfs_put_block_group(cache);
6285 return ret;
6286 }
6287
6288 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
6289 struct btrfs_io_context *bioc,
6290 struct btrfs_dev_replace *dev_replace,
6291 u64 logical,
6292 int *num_stripes_ret, int *max_errors_ret)
6293 {
6294 u64 srcdev_devid = dev_replace->srcdev->devid;
6295 /*
6296 * At this stage, num_stripes is still the real number of stripes,
6297 * excluding the duplicated stripes.
6298 */
6299 int num_stripes = *num_stripes_ret;
6300 int nr_extra_stripes = 0;
6301 int max_errors = *max_errors_ret;
6302 int i;
6303
6304 /*
6305 * A block group which has "to_copy" set will eventually be copied by
6306 * the dev-replace process. We can avoid cloning IO here.
6307 */
6308 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6309 return;
6310
6311 /*
6312 * Duplicate the write operations while the dev-replace procedure is
6313 * running. Since the copying of the old disk to the new disk takes
6314 * place at run time while the filesystem is mounted writable, the
6315 * regular write operations to the old disk have to be duplicated to go
6316 * to the new disk as well.
6317 *
6318 * Note that device->missing is handled by the caller, and that the
6319 * write to the old disk is already set up in the stripes array.
6320 */
6321 for (i = 0; i < num_stripes; i++) {
6322 struct btrfs_io_stripe *old = &bioc->stripes[i];
6323 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6324
6325 if (old->dev->devid != srcdev_devid)
6326 continue;
6327
6328 new->physical = old->physical;
6329 new->dev = dev_replace->tgtdev;
6330 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6331 bioc->replace_stripe_src = i;
6332 nr_extra_stripes++;
6333 }
6334
6335 /* We can only have at most 2 extra nr_stripes (for DUP). */
6336 ASSERT(nr_extra_stripes <= 2);
6337 /*
6338 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6339 * replace.
6340 * If we have 2 extra stripes, only choose the one with smaller physical.
6341 */
6342 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6343 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6344 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6345
6346 /* Only DUP can have two extra stripes. */
6347 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6348
6349 /*
6350 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6351 * The extra stripe would still be there, but won't be accessed.
6352 */
6353 if (first->physical > second->physical) {
6354 swap(second->physical, first->physical);
6355 swap(second->dev, first->dev);
6356 nr_extra_stripes--;
6357 }
6358 }
6359
6360 *num_stripes_ret = num_stripes + nr_extra_stripes;
6361 *max_errors_ret = max_errors + nr_extra_stripes;
6362 bioc->replace_nr_stripes = nr_extra_stripes;
6363 }
6364
6365 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6366 struct btrfs_io_geometry *io_geom)
6367 {
6368 /*
6369 * Stripe_nr is the stripe where this block falls. stripe_offset is
6370 * the offset of this block in its stripe.
6371 */
6372 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6373 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6374 ASSERT(io_geom->stripe_offset < U32_MAX);
6375
6376 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6377 unsigned long full_stripe_len =
6378 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6379
6380 /*
6381 * For full stripe start, we use previously calculated
6382 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6383 * STRIPE_LEN.
6384 *
6385 * By this we can avoid u64 division completely. And we have
6386 * to go rounddown(), not round_down(), as nr_data_stripes is
6387 * not ensured to be power of 2.
6388 */
6389 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6390 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6391
6392 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset);
6393 ASSERT(io_geom->raid56_full_stripe_start <= offset);
6394 /*
6395 * For writes to RAID56, allow to write a full stripe set, but
6396 * no straddling of stripe sets.
6397 */
6398 if (io_geom->op == BTRFS_MAP_WRITE)
6399 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6400 }
6401
6402 /*
6403 * For other RAID types and for RAID56 reads, allow a single stripe (on
6404 * a single disk).
6405 */
6406 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6407 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6408 return U64_MAX;
6409 }
6410
6411 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6412 u64 *length, struct btrfs_io_stripe *dst,
6413 struct btrfs_chunk_map *map,
6414 struct btrfs_io_geometry *io_geom)
6415 {
6416 dst->dev = map->stripes[io_geom->stripe_index].dev;
6417
6418 if (io_geom->op == BTRFS_MAP_READ &&
6419 btrfs_need_stripe_tree_update(fs_info, map->type))
6420 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6421 map->type,
6422 io_geom->stripe_index, dst);
6423
6424 dst->physical = map->stripes[io_geom->stripe_index].physical +
6425 io_geom->stripe_offset +
6426 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6427 return 0;
6428 }
6429
6430 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6431 const struct btrfs_io_stripe *smap,
6432 const struct btrfs_chunk_map *map,
6433 int num_alloc_stripes,
6434 enum btrfs_map_op op, int mirror_num)
6435 {
6436 if (!smap)
6437 return false;
6438
6439 if (num_alloc_stripes != 1)
6440 return false;
6441
6442 if (btrfs_need_stripe_tree_update(fs_info, map->type) && op != BTRFS_MAP_READ)
6443 return false;
6444
6445 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)
6446 return false;
6447
6448 return true;
6449 }
6450
6451 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6452 struct btrfs_io_geometry *io_geom)
6453 {
6454 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6455 io_geom->stripe_nr /= map->num_stripes;
6456 if (io_geom->op == BTRFS_MAP_READ)
6457 io_geom->mirror_num = 1;
6458 }
6459
6460 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6461 struct btrfs_chunk_map *map,
6462 struct btrfs_io_geometry *io_geom,
6463 bool dev_replace_is_ongoing)
6464 {
6465 if (io_geom->op != BTRFS_MAP_READ) {
6466 io_geom->num_stripes = map->num_stripes;
6467 return;
6468 }
6469
6470 if (io_geom->mirror_num) {
6471 io_geom->stripe_index = io_geom->mirror_num - 1;
6472 return;
6473 }
6474
6475 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6476 dev_replace_is_ongoing);
6477 io_geom->mirror_num = io_geom->stripe_index + 1;
6478 }
6479
6480 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6481 struct btrfs_io_geometry *io_geom)
6482 {
6483 if (io_geom->op != BTRFS_MAP_READ) {
6484 io_geom->num_stripes = map->num_stripes;
6485 return;
6486 }
6487
6488 if (io_geom->mirror_num) {
6489 io_geom->stripe_index = io_geom->mirror_num - 1;
6490 return;
6491 }
6492
6493 io_geom->mirror_num = 1;
6494 }
6495
6496 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6497 struct btrfs_chunk_map *map,
6498 struct btrfs_io_geometry *io_geom,
6499 bool dev_replace_is_ongoing)
6500 {
6501 u32 factor = map->num_stripes / map->sub_stripes;
6502 int old_stripe_index;
6503
6504 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6505 io_geom->stripe_nr /= factor;
6506
6507 if (io_geom->op != BTRFS_MAP_READ) {
6508 io_geom->num_stripes = map->sub_stripes;
6509 return;
6510 }
6511
6512 if (io_geom->mirror_num) {
6513 io_geom->stripe_index += io_geom->mirror_num - 1;
6514 return;
6515 }
6516
6517 old_stripe_index = io_geom->stripe_index;
6518 io_geom->stripe_index = find_live_mirror(fs_info, map,
6519 io_geom->stripe_index,
6520 dev_replace_is_ongoing);
6521 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6522 }
6523
6524 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6525 struct btrfs_io_geometry *io_geom,
6526 u64 logical, u64 *length)
6527 {
6528 int data_stripes = nr_data_stripes(map);
6529
6530 /*
6531 * Needs full stripe mapping.
6532 *
6533 * Push stripe_nr back to the start of the full stripe For those cases
6534 * needing a full stripe, @stripe_nr is the full stripe number.
6535 *
6536 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6537 * that can be expensive. Here we just divide @stripe_nr with
6538 * @data_stripes.
6539 */
6540 io_geom->stripe_nr /= data_stripes;
6541
6542 /* RAID[56] write or recovery. Return all stripes */
6543 io_geom->num_stripes = map->num_stripes;
6544 io_geom->max_errors = btrfs_chunk_max_errors(map);
6545
6546 /* Return the length to the full stripe end. */
6547 *length = min(logical + *length,
6548 io_geom->raid56_full_stripe_start + map->start +
6549 btrfs_stripe_nr_to_offset(data_stripes)) -
6550 logical;
6551 io_geom->stripe_index = 0;
6552 io_geom->stripe_offset = 0;
6553 }
6554
6555 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6556 struct btrfs_io_geometry *io_geom)
6557 {
6558 int data_stripes = nr_data_stripes(map);
6559
6560 ASSERT(io_geom->mirror_num <= 1);
6561 /* Just grab the data stripe directly. */
6562 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6563 io_geom->stripe_nr /= data_stripes;
6564
6565 /* We distribute the parity blocks across stripes. */
6566 io_geom->stripe_index =
6567 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6568
6569 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6570 io_geom->mirror_num = 1;
6571 }
6572
6573 static void map_blocks_single(const struct btrfs_chunk_map *map,
6574 struct btrfs_io_geometry *io_geom)
6575 {
6576 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6577 io_geom->stripe_nr /= map->num_stripes;
6578 io_geom->mirror_num = io_geom->stripe_index + 1;
6579 }
6580
6581 /*
6582 * Map one logical range to one or more physical ranges.
6583 *
6584 * @length: (Mandatory) mapped length of this run.
6585 * One logical range can be split into different segments
6586 * due to factors like zones and RAID0/5/6/10 stripe
6587 * boundaries.
6588 *
6589 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6590 * which has one or more physical ranges (btrfs_io_stripe)
6591 * recorded inside.
6592 * Caller should call btrfs_put_bioc() to free it after use.
6593 *
6594 * @smap: (Optional) single physical range optimization.
6595 * If the map request can be fulfilled by one single
6596 * physical range, and this is parameter is not NULL,
6597 * then @bioc_ret would be NULL, and @smap would be
6598 * updated.
6599 *
6600 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6601 * value is 0.
6602 *
6603 * Mirror number 0 means to choose any live mirrors.
6604 *
6605 * For non-RAID56 profiles, non-zero mirror_num means
6606 * the Nth mirror. (e.g. mirror_num 1 means the first
6607 * copy).
6608 *
6609 * For RAID56 profile, mirror 1 means rebuild from P and
6610 * the remaining data stripes.
6611 *
6612 * For RAID6 profile, mirror > 2 means mark another
6613 * data/P stripe error and rebuild from the remaining
6614 * stripes..
6615 */
6616 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6617 u64 logical, u64 *length,
6618 struct btrfs_io_context **bioc_ret,
6619 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6620 {
6621 struct btrfs_chunk_map *map;
6622 struct btrfs_io_geometry io_geom = { 0 };
6623 u64 map_offset;
6624 int i;
6625 int ret = 0;
6626 int num_copies;
6627 struct btrfs_io_context *bioc = NULL;
6628 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6629 int dev_replace_is_ongoing = 0;
6630 u16 num_alloc_stripes;
6631 u64 max_len;
6632
6633 ASSERT(bioc_ret);
6634
6635 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6636 io_geom.num_stripes = 1;
6637 io_geom.stripe_index = 0;
6638 io_geom.op = op;
6639
6640 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6641 if (io_geom.mirror_num > num_copies)
6642 return -EINVAL;
6643
6644 map = btrfs_get_chunk_map(fs_info, logical, *length);
6645 if (IS_ERR(map))
6646 return PTR_ERR(map);
6647
6648 map_offset = logical - map->start;
6649 io_geom.raid56_full_stripe_start = (u64)-1;
6650 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6651 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6652
6653 down_read(&dev_replace->rwsem);
6654 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6655 /*
6656 * Hold the semaphore for read during the whole operation, write is
6657 * requested at commit time but must wait.
6658 */
6659 if (!dev_replace_is_ongoing)
6660 up_read(&dev_replace->rwsem);
6661
6662 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6663 case BTRFS_BLOCK_GROUP_RAID0:
6664 map_blocks_raid0(map, &io_geom);
6665 break;
6666 case BTRFS_BLOCK_GROUP_RAID1:
6667 case BTRFS_BLOCK_GROUP_RAID1C3:
6668 case BTRFS_BLOCK_GROUP_RAID1C4:
6669 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6670 break;
6671 case BTRFS_BLOCK_GROUP_DUP:
6672 map_blocks_dup(map, &io_geom);
6673 break;
6674 case BTRFS_BLOCK_GROUP_RAID10:
6675 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6676 break;
6677 case BTRFS_BLOCK_GROUP_RAID5:
6678 case BTRFS_BLOCK_GROUP_RAID6:
6679 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6680 map_blocks_raid56_write(map, &io_geom, logical, length);
6681 else
6682 map_blocks_raid56_read(map, &io_geom);
6683 break;
6684 default:
6685 /*
6686 * After this, stripe_nr is the number of stripes on this
6687 * device we have to walk to find the data, and stripe_index is
6688 * the number of our device in the stripe array
6689 */
6690 map_blocks_single(map, &io_geom);
6691 break;
6692 }
6693 if (io_geom.stripe_index >= map->num_stripes) {
6694 btrfs_crit(fs_info,
6695 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6696 io_geom.stripe_index, map->num_stripes);
6697 ret = -EINVAL;
6698 goto out;
6699 }
6700
6701 num_alloc_stripes = io_geom.num_stripes;
6702 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6703 op != BTRFS_MAP_READ)
6704 /*
6705 * For replace case, we need to add extra stripes for extra
6706 * duplicated stripes.
6707 *
6708 * For both WRITE and GET_READ_MIRRORS, we may have at most
6709 * 2 more stripes (DUP types, otherwise 1).
6710 */
6711 num_alloc_stripes += 2;
6712
6713 /*
6714 * If this I/O maps to a single device, try to return the device and
6715 * physical block information on the stack instead of allocating an
6716 * I/O context structure.
6717 */
6718 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, op,
6719 io_geom.mirror_num)) {
6720 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6721 if (mirror_num_ret)
6722 *mirror_num_ret = io_geom.mirror_num;
6723 *bioc_ret = NULL;
6724 goto out;
6725 }
6726
6727 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6728 if (!bioc) {
6729 ret = -ENOMEM;
6730 goto out;
6731 }
6732 bioc->map_type = map->type;
6733
6734 /*
6735 * For RAID56 full map, we need to make sure the stripes[] follows the
6736 * rule that data stripes are all ordered, then followed with P and Q
6737 * (if we have).
6738 *
6739 * It's still mostly the same as other profiles, just with extra rotation.
6740 */
6741 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6742 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6743 /*
6744 * For RAID56 @stripe_nr is already the number of full stripes
6745 * before us, which is also the rotation value (needs to modulo
6746 * with num_stripes).
6747 *
6748 * In this case, we just add @stripe_nr with @i, then do the
6749 * modulo, to reduce one modulo call.
6750 */
6751 bioc->full_stripe_logical = map->start +
6752 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6753 nr_data_stripes(map));
6754 for (int i = 0; i < io_geom.num_stripes; i++) {
6755 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6756 u32 stripe_index;
6757
6758 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6759 dst->dev = map->stripes[stripe_index].dev;
6760 dst->physical =
6761 map->stripes[stripe_index].physical +
6762 io_geom.stripe_offset +
6763 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6764 }
6765 } else {
6766 /*
6767 * For all other non-RAID56 profiles, just copy the target
6768 * stripe into the bioc.
6769 */
6770 for (i = 0; i < io_geom.num_stripes; i++) {
6771 ret = set_io_stripe(fs_info, logical, length,
6772 &bioc->stripes[i], map, &io_geom);
6773 if (ret < 0)
6774 break;
6775 io_geom.stripe_index++;
6776 }
6777 }
6778
6779 if (ret) {
6780 *bioc_ret = NULL;
6781 btrfs_put_bioc(bioc);
6782 goto out;
6783 }
6784
6785 if (op != BTRFS_MAP_READ)
6786 io_geom.max_errors = btrfs_chunk_max_errors(map);
6787
6788 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6789 op != BTRFS_MAP_READ) {
6790 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6791 &io_geom.num_stripes, &io_geom.max_errors);
6792 }
6793
6794 *bioc_ret = bioc;
6795 bioc->num_stripes = io_geom.num_stripes;
6796 bioc->max_errors = io_geom.max_errors;
6797 bioc->mirror_num = io_geom.mirror_num;
6798
6799 out:
6800 if (dev_replace_is_ongoing) {
6801 lockdep_assert_held(&dev_replace->rwsem);
6802 /* Unlock and let waiting writers proceed */
6803 up_read(&dev_replace->rwsem);
6804 }
6805 btrfs_free_chunk_map(map);
6806 return ret;
6807 }
6808
6809 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6810 const struct btrfs_fs_devices *fs_devices)
6811 {
6812 if (args->fsid == NULL)
6813 return true;
6814 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6815 return true;
6816 return false;
6817 }
6818
6819 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6820 const struct btrfs_device *device)
6821 {
6822 if (args->missing) {
6823 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6824 !device->bdev)
6825 return true;
6826 return false;
6827 }
6828
6829 if (device->devid != args->devid)
6830 return false;
6831 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6832 return false;
6833 return true;
6834 }
6835
6836 /*
6837 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6838 * return NULL.
6839 *
6840 * If devid and uuid are both specified, the match must be exact, otherwise
6841 * only devid is used.
6842 */
6843 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6844 const struct btrfs_dev_lookup_args *args)
6845 {
6846 struct btrfs_device *device;
6847 struct btrfs_fs_devices *seed_devs;
6848
6849 if (dev_args_match_fs_devices(args, fs_devices)) {
6850 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6851 if (dev_args_match_device(args, device))
6852 return device;
6853 }
6854 }
6855
6856 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6857 if (!dev_args_match_fs_devices(args, seed_devs))
6858 continue;
6859 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6860 if (dev_args_match_device(args, device))
6861 return device;
6862 }
6863 }
6864
6865 return NULL;
6866 }
6867
6868 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6869 u64 devid, u8 *dev_uuid)
6870 {
6871 struct btrfs_device *device;
6872 unsigned int nofs_flag;
6873
6874 /*
6875 * We call this under the chunk_mutex, so we want to use NOFS for this
6876 * allocation, however we don't want to change btrfs_alloc_device() to
6877 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6878 * places.
6879 */
6880
6881 nofs_flag = memalloc_nofs_save();
6882 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6883 memalloc_nofs_restore(nofs_flag);
6884 if (IS_ERR(device))
6885 return device;
6886
6887 list_add(&device->dev_list, &fs_devices->devices);
6888 device->fs_devices = fs_devices;
6889 fs_devices->num_devices++;
6890
6891 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6892 fs_devices->missing_devices++;
6893
6894 return device;
6895 }
6896
6897 /*
6898 * Allocate new device struct, set up devid and UUID.
6899 *
6900 * @fs_info: used only for generating a new devid, can be NULL if
6901 * devid is provided (i.e. @devid != NULL).
6902 * @devid: a pointer to devid for this device. If NULL a new devid
6903 * is generated.
6904 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6905 * is generated.
6906 * @path: a pointer to device path if available, NULL otherwise.
6907 *
6908 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6909 * on error. Returned struct is not linked onto any lists and must be
6910 * destroyed with btrfs_free_device.
6911 */
6912 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6913 const u64 *devid, const u8 *uuid,
6914 const char *path)
6915 {
6916 struct btrfs_device *dev;
6917 u64 tmp;
6918
6919 if (WARN_ON(!devid && !fs_info))
6920 return ERR_PTR(-EINVAL);
6921
6922 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6923 if (!dev)
6924 return ERR_PTR(-ENOMEM);
6925
6926 INIT_LIST_HEAD(&dev->dev_list);
6927 INIT_LIST_HEAD(&dev->dev_alloc_list);
6928 INIT_LIST_HEAD(&dev->post_commit_list);
6929
6930 atomic_set(&dev->dev_stats_ccnt, 0);
6931 btrfs_device_data_ordered_init(dev);
6932 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6933
6934 if (devid)
6935 tmp = *devid;
6936 else {
6937 int ret;
6938
6939 ret = find_next_devid(fs_info, &tmp);
6940 if (ret) {
6941 btrfs_free_device(dev);
6942 return ERR_PTR(ret);
6943 }
6944 }
6945 dev->devid = tmp;
6946
6947 if (uuid)
6948 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6949 else
6950 generate_random_uuid(dev->uuid);
6951
6952 if (path) {
6953 struct rcu_string *name;
6954
6955 name = rcu_string_strdup(path, GFP_KERNEL);
6956 if (!name) {
6957 btrfs_free_device(dev);
6958 return ERR_PTR(-ENOMEM);
6959 }
6960 rcu_assign_pointer(dev->name, name);
6961 }
6962
6963 return dev;
6964 }
6965
6966 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6967 u64 devid, u8 *uuid, bool error)
6968 {
6969 if (error)
6970 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6971 devid, uuid);
6972 else
6973 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6974 devid, uuid);
6975 }
6976
6977 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6978 {
6979 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6980
6981 return div_u64(map->chunk_len, data_stripes);
6982 }
6983
6984 #if BITS_PER_LONG == 32
6985 /*
6986 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6987 * can't be accessed on 32bit systems.
6988 *
6989 * This function do mount time check to reject the fs if it already has
6990 * metadata chunk beyond that limit.
6991 */
6992 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6993 u64 logical, u64 length, u64 type)
6994 {
6995 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6996 return 0;
6997
6998 if (logical + length < MAX_LFS_FILESIZE)
6999 return 0;
7000
7001 btrfs_err_32bit_limit(fs_info);
7002 return -EOVERFLOW;
7003 }
7004
7005 /*
7006 * This is to give early warning for any metadata chunk reaching
7007 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7008 * Although we can still access the metadata, it's not going to be possible
7009 * once the limit is reached.
7010 */
7011 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7012 u64 logical, u64 length, u64 type)
7013 {
7014 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7015 return;
7016
7017 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7018 return;
7019
7020 btrfs_warn_32bit_limit(fs_info);
7021 }
7022 #endif
7023
7024 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7025 u64 devid, u8 *uuid)
7026 {
7027 struct btrfs_device *dev;
7028
7029 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7030 btrfs_report_missing_device(fs_info, devid, uuid, true);
7031 return ERR_PTR(-ENOENT);
7032 }
7033
7034 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7035 if (IS_ERR(dev)) {
7036 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7037 devid, PTR_ERR(dev));
7038 return dev;
7039 }
7040 btrfs_report_missing_device(fs_info, devid, uuid, false);
7041
7042 return dev;
7043 }
7044
7045 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7046 struct btrfs_chunk *chunk)
7047 {
7048 BTRFS_DEV_LOOKUP_ARGS(args);
7049 struct btrfs_fs_info *fs_info = leaf->fs_info;
7050 struct btrfs_chunk_map *map;
7051 u64 logical;
7052 u64 length;
7053 u64 devid;
7054 u64 type;
7055 u8 uuid[BTRFS_UUID_SIZE];
7056 int index;
7057 int num_stripes;
7058 int ret;
7059 int i;
7060
7061 logical = key->offset;
7062 length = btrfs_chunk_length(leaf, chunk);
7063 type = btrfs_chunk_type(leaf, chunk);
7064 index = btrfs_bg_flags_to_raid_index(type);
7065 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7066
7067 #if BITS_PER_LONG == 32
7068 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7069 if (ret < 0)
7070 return ret;
7071 warn_32bit_meta_chunk(fs_info, logical, length, type);
7072 #endif
7073
7074 /*
7075 * Only need to verify chunk item if we're reading from sys chunk array,
7076 * as chunk item in tree block is already verified by tree-checker.
7077 */
7078 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
7079 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
7080 if (ret)
7081 return ret;
7082 }
7083
7084 map = btrfs_find_chunk_map(fs_info, logical, 1);
7085
7086 /* already mapped? */
7087 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7088 btrfs_free_chunk_map(map);
7089 return 0;
7090 } else if (map) {
7091 btrfs_free_chunk_map(map);
7092 }
7093
7094 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7095 if (!map)
7096 return -ENOMEM;
7097
7098 map->start = logical;
7099 map->chunk_len = length;
7100 map->num_stripes = num_stripes;
7101 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7102 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7103 map->type = type;
7104 /*
7105 * We can't use the sub_stripes value, as for profiles other than
7106 * RAID10, they may have 0 as sub_stripes for filesystems created by
7107 * older mkfs (<v5.4).
7108 * In that case, it can cause divide-by-zero errors later.
7109 * Since currently sub_stripes is fixed for each profile, let's
7110 * use the trusted value instead.
7111 */
7112 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7113 map->verified_stripes = 0;
7114 map->stripe_size = btrfs_calc_stripe_length(map);
7115 for (i = 0; i < num_stripes; i++) {
7116 map->stripes[i].physical =
7117 btrfs_stripe_offset_nr(leaf, chunk, i);
7118 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7119 args.devid = devid;
7120 read_extent_buffer(leaf, uuid, (unsigned long)
7121 btrfs_stripe_dev_uuid_nr(chunk, i),
7122 BTRFS_UUID_SIZE);
7123 args.uuid = uuid;
7124 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7125 if (!map->stripes[i].dev) {
7126 map->stripes[i].dev = handle_missing_device(fs_info,
7127 devid, uuid);
7128 if (IS_ERR(map->stripes[i].dev)) {
7129 ret = PTR_ERR(map->stripes[i].dev);
7130 btrfs_free_chunk_map(map);
7131 return ret;
7132 }
7133 }
7134
7135 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7136 &(map->stripes[i].dev->dev_state));
7137 }
7138
7139 ret = btrfs_add_chunk_map(fs_info, map);
7140 if (ret < 0) {
7141 btrfs_err(fs_info,
7142 "failed to add chunk map, start=%llu len=%llu: %d",
7143 map->start, map->chunk_len, ret);
7144 }
7145
7146 return ret;
7147 }
7148
7149 static void fill_device_from_item(struct extent_buffer *leaf,
7150 struct btrfs_dev_item *dev_item,
7151 struct btrfs_device *device)
7152 {
7153 unsigned long ptr;
7154
7155 device->devid = btrfs_device_id(leaf, dev_item);
7156 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7157 device->total_bytes = device->disk_total_bytes;
7158 device->commit_total_bytes = device->disk_total_bytes;
7159 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7160 device->commit_bytes_used = device->bytes_used;
7161 device->type = btrfs_device_type(leaf, dev_item);
7162 device->io_align = btrfs_device_io_align(leaf, dev_item);
7163 device->io_width = btrfs_device_io_width(leaf, dev_item);
7164 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7165 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7166 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7167
7168 ptr = btrfs_device_uuid(dev_item);
7169 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7170 }
7171
7172 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7173 u8 *fsid)
7174 {
7175 struct btrfs_fs_devices *fs_devices;
7176 int ret;
7177
7178 lockdep_assert_held(&uuid_mutex);
7179 ASSERT(fsid);
7180
7181 /* This will match only for multi-device seed fs */
7182 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7183 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7184 return fs_devices;
7185
7186
7187 fs_devices = find_fsid(fsid, NULL);
7188 if (!fs_devices) {
7189 if (!btrfs_test_opt(fs_info, DEGRADED))
7190 return ERR_PTR(-ENOENT);
7191
7192 fs_devices = alloc_fs_devices(fsid);
7193 if (IS_ERR(fs_devices))
7194 return fs_devices;
7195
7196 fs_devices->seeding = true;
7197 fs_devices->opened = 1;
7198 return fs_devices;
7199 }
7200
7201 /*
7202 * Upon first call for a seed fs fsid, just create a private copy of the
7203 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7204 */
7205 fs_devices = clone_fs_devices(fs_devices);
7206 if (IS_ERR(fs_devices))
7207 return fs_devices;
7208
7209 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
7210 if (ret) {
7211 free_fs_devices(fs_devices);
7212 return ERR_PTR(ret);
7213 }
7214
7215 if (!fs_devices->seeding) {
7216 close_fs_devices(fs_devices);
7217 free_fs_devices(fs_devices);
7218 return ERR_PTR(-EINVAL);
7219 }
7220
7221 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7222
7223 return fs_devices;
7224 }
7225
7226 static int read_one_dev(struct extent_buffer *leaf,
7227 struct btrfs_dev_item *dev_item)
7228 {
7229 BTRFS_DEV_LOOKUP_ARGS(args);
7230 struct btrfs_fs_info *fs_info = leaf->fs_info;
7231 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7232 struct btrfs_device *device;
7233 u64 devid;
7234 int ret;
7235 u8 fs_uuid[BTRFS_FSID_SIZE];
7236 u8 dev_uuid[BTRFS_UUID_SIZE];
7237
7238 devid = btrfs_device_id(leaf, dev_item);
7239 args.devid = devid;
7240 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7241 BTRFS_UUID_SIZE);
7242 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7243 BTRFS_FSID_SIZE);
7244 args.uuid = dev_uuid;
7245 args.fsid = fs_uuid;
7246
7247 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7248 fs_devices = open_seed_devices(fs_info, fs_uuid);
7249 if (IS_ERR(fs_devices))
7250 return PTR_ERR(fs_devices);
7251 }
7252
7253 device = btrfs_find_device(fs_info->fs_devices, &args);
7254 if (!device) {
7255 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7256 btrfs_report_missing_device(fs_info, devid,
7257 dev_uuid, true);
7258 return -ENOENT;
7259 }
7260
7261 device = add_missing_dev(fs_devices, devid, dev_uuid);
7262 if (IS_ERR(device)) {
7263 btrfs_err(fs_info,
7264 "failed to add missing dev %llu: %ld",
7265 devid, PTR_ERR(device));
7266 return PTR_ERR(device);
7267 }
7268 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7269 } else {
7270 if (!device->bdev) {
7271 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7272 btrfs_report_missing_device(fs_info,
7273 devid, dev_uuid, true);
7274 return -ENOENT;
7275 }
7276 btrfs_report_missing_device(fs_info, devid,
7277 dev_uuid, false);
7278 }
7279
7280 if (!device->bdev &&
7281 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7282 /*
7283 * this happens when a device that was properly setup
7284 * in the device info lists suddenly goes bad.
7285 * device->bdev is NULL, and so we have to set
7286 * device->missing to one here
7287 */
7288 device->fs_devices->missing_devices++;
7289 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7290 }
7291
7292 /* Move the device to its own fs_devices */
7293 if (device->fs_devices != fs_devices) {
7294 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7295 &device->dev_state));
7296
7297 list_move(&device->dev_list, &fs_devices->devices);
7298 device->fs_devices->num_devices--;
7299 fs_devices->num_devices++;
7300
7301 device->fs_devices->missing_devices--;
7302 fs_devices->missing_devices++;
7303
7304 device->fs_devices = fs_devices;
7305 }
7306 }
7307
7308 if (device->fs_devices != fs_info->fs_devices) {
7309 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7310 if (device->generation !=
7311 btrfs_device_generation(leaf, dev_item))
7312 return -EINVAL;
7313 }
7314
7315 fill_device_from_item(leaf, dev_item, device);
7316 if (device->bdev) {
7317 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7318
7319 if (device->total_bytes > max_total_bytes) {
7320 btrfs_err(fs_info,
7321 "device total_bytes should be at most %llu but found %llu",
7322 max_total_bytes, device->total_bytes);
7323 return -EINVAL;
7324 }
7325 }
7326 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7327 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7328 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7329 device->fs_devices->total_rw_bytes += device->total_bytes;
7330 atomic64_add(device->total_bytes - device->bytes_used,
7331 &fs_info->free_chunk_space);
7332 }
7333 ret = 0;
7334 return ret;
7335 }
7336
7337 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7338 {
7339 struct btrfs_super_block *super_copy = fs_info->super_copy;
7340 struct extent_buffer *sb;
7341 struct btrfs_disk_key *disk_key;
7342 struct btrfs_chunk *chunk;
7343 u8 *array_ptr;
7344 unsigned long sb_array_offset;
7345 int ret = 0;
7346 u32 num_stripes;
7347 u32 array_size;
7348 u32 len = 0;
7349 u32 cur_offset;
7350 u64 type;
7351 struct btrfs_key key;
7352
7353 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7354
7355 /*
7356 * We allocated a dummy extent, just to use extent buffer accessors.
7357 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7358 * that's fine, we will not go beyond system chunk array anyway.
7359 */
7360 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7361 if (!sb)
7362 return -ENOMEM;
7363 set_extent_buffer_uptodate(sb);
7364
7365 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7366 array_size = btrfs_super_sys_array_size(super_copy);
7367
7368 array_ptr = super_copy->sys_chunk_array;
7369 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7370 cur_offset = 0;
7371
7372 while (cur_offset < array_size) {
7373 disk_key = (struct btrfs_disk_key *)array_ptr;
7374 len = sizeof(*disk_key);
7375 if (cur_offset + len > array_size)
7376 goto out_short_read;
7377
7378 btrfs_disk_key_to_cpu(&key, disk_key);
7379
7380 array_ptr += len;
7381 sb_array_offset += len;
7382 cur_offset += len;
7383
7384 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7385 btrfs_err(fs_info,
7386 "unexpected item type %u in sys_array at offset %u",
7387 (u32)key.type, cur_offset);
7388 ret = -EIO;
7389 break;
7390 }
7391
7392 chunk = (struct btrfs_chunk *)sb_array_offset;
7393 /*
7394 * At least one btrfs_chunk with one stripe must be present,
7395 * exact stripe count check comes afterwards
7396 */
7397 len = btrfs_chunk_item_size(1);
7398 if (cur_offset + len > array_size)
7399 goto out_short_read;
7400
7401 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7402 if (!num_stripes) {
7403 btrfs_err(fs_info,
7404 "invalid number of stripes %u in sys_array at offset %u",
7405 num_stripes, cur_offset);
7406 ret = -EIO;
7407 break;
7408 }
7409
7410 type = btrfs_chunk_type(sb, chunk);
7411 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7412 btrfs_err(fs_info,
7413 "invalid chunk type %llu in sys_array at offset %u",
7414 type, cur_offset);
7415 ret = -EIO;
7416 break;
7417 }
7418
7419 len = btrfs_chunk_item_size(num_stripes);
7420 if (cur_offset + len > array_size)
7421 goto out_short_read;
7422
7423 ret = read_one_chunk(&key, sb, chunk);
7424 if (ret)
7425 break;
7426
7427 array_ptr += len;
7428 sb_array_offset += len;
7429 cur_offset += len;
7430 }
7431 clear_extent_buffer_uptodate(sb);
7432 free_extent_buffer_stale(sb);
7433 return ret;
7434
7435 out_short_read:
7436 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7437 len, cur_offset);
7438 clear_extent_buffer_uptodate(sb);
7439 free_extent_buffer_stale(sb);
7440 return -EIO;
7441 }
7442
7443 /*
7444 * Check if all chunks in the fs are OK for read-write degraded mount
7445 *
7446 * If the @failing_dev is specified, it's accounted as missing.
7447 *
7448 * Return true if all chunks meet the minimal RW mount requirements.
7449 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7450 */
7451 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7452 struct btrfs_device *failing_dev)
7453 {
7454 struct btrfs_chunk_map *map;
7455 u64 next_start;
7456 bool ret = true;
7457
7458 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7459 /* No chunk at all? Return false anyway */
7460 if (!map) {
7461 ret = false;
7462 goto out;
7463 }
7464 while (map) {
7465 int missing = 0;
7466 int max_tolerated;
7467 int i;
7468
7469 max_tolerated =
7470 btrfs_get_num_tolerated_disk_barrier_failures(
7471 map->type);
7472 for (i = 0; i < map->num_stripes; i++) {
7473 struct btrfs_device *dev = map->stripes[i].dev;
7474
7475 if (!dev || !dev->bdev ||
7476 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7477 dev->last_flush_error)
7478 missing++;
7479 else if (failing_dev && failing_dev == dev)
7480 missing++;
7481 }
7482 if (missing > max_tolerated) {
7483 if (!failing_dev)
7484 btrfs_warn(fs_info,
7485 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7486 map->start, missing, max_tolerated);
7487 btrfs_free_chunk_map(map);
7488 ret = false;
7489 goto out;
7490 }
7491 next_start = map->start + map->chunk_len;
7492 btrfs_free_chunk_map(map);
7493
7494 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7495 }
7496 out:
7497 return ret;
7498 }
7499
7500 static void readahead_tree_node_children(struct extent_buffer *node)
7501 {
7502 int i;
7503 const int nr_items = btrfs_header_nritems(node);
7504
7505 for (i = 0; i < nr_items; i++)
7506 btrfs_readahead_node_child(node, i);
7507 }
7508
7509 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7510 {
7511 struct btrfs_root *root = fs_info->chunk_root;
7512 struct btrfs_path *path;
7513 struct extent_buffer *leaf;
7514 struct btrfs_key key;
7515 struct btrfs_key found_key;
7516 int ret;
7517 int slot;
7518 int iter_ret = 0;
7519 u64 total_dev = 0;
7520 u64 last_ra_node = 0;
7521
7522 path = btrfs_alloc_path();
7523 if (!path)
7524 return -ENOMEM;
7525
7526 /*
7527 * uuid_mutex is needed only if we are mounting a sprout FS
7528 * otherwise we don't need it.
7529 */
7530 mutex_lock(&uuid_mutex);
7531
7532 /*
7533 * It is possible for mount and umount to race in such a way that
7534 * we execute this code path, but open_fs_devices failed to clear
7535 * total_rw_bytes. We certainly want it cleared before reading the
7536 * device items, so clear it here.
7537 */
7538 fs_info->fs_devices->total_rw_bytes = 0;
7539
7540 /*
7541 * Lockdep complains about possible circular locking dependency between
7542 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7543 * used for freeze procection of a fs (struct super_block.s_writers),
7544 * which we take when starting a transaction, and extent buffers of the
7545 * chunk tree if we call read_one_dev() while holding a lock on an
7546 * extent buffer of the chunk tree. Since we are mounting the filesystem
7547 * and at this point there can't be any concurrent task modifying the
7548 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7549 */
7550 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7551 path->skip_locking = 1;
7552
7553 /*
7554 * Read all device items, and then all the chunk items. All
7555 * device items are found before any chunk item (their object id
7556 * is smaller than the lowest possible object id for a chunk
7557 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7558 */
7559 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7560 key.offset = 0;
7561 key.type = 0;
7562 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7563 struct extent_buffer *node = path->nodes[1];
7564
7565 leaf = path->nodes[0];
7566 slot = path->slots[0];
7567
7568 if (node) {
7569 if (last_ra_node != node->start) {
7570 readahead_tree_node_children(node);
7571 last_ra_node = node->start;
7572 }
7573 }
7574 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7575 struct btrfs_dev_item *dev_item;
7576 dev_item = btrfs_item_ptr(leaf, slot,
7577 struct btrfs_dev_item);
7578 ret = read_one_dev(leaf, dev_item);
7579 if (ret)
7580 goto error;
7581 total_dev++;
7582 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7583 struct btrfs_chunk *chunk;
7584
7585 /*
7586 * We are only called at mount time, so no need to take
7587 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7588 * we always lock first fs_info->chunk_mutex before
7589 * acquiring any locks on the chunk tree. This is a
7590 * requirement for chunk allocation, see the comment on
7591 * top of btrfs_chunk_alloc() for details.
7592 */
7593 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7594 ret = read_one_chunk(&found_key, leaf, chunk);
7595 if (ret)
7596 goto error;
7597 }
7598 }
7599 /* Catch error found during iteration */
7600 if (iter_ret < 0) {
7601 ret = iter_ret;
7602 goto error;
7603 }
7604
7605 /*
7606 * After loading chunk tree, we've got all device information,
7607 * do another round of validation checks.
7608 */
7609 if (total_dev != fs_info->fs_devices->total_devices) {
7610 btrfs_warn(fs_info,
7611 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7612 btrfs_super_num_devices(fs_info->super_copy),
7613 total_dev);
7614 fs_info->fs_devices->total_devices = total_dev;
7615 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7616 }
7617 if (btrfs_super_total_bytes(fs_info->super_copy) <
7618 fs_info->fs_devices->total_rw_bytes) {
7619 btrfs_err(fs_info,
7620 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7621 btrfs_super_total_bytes(fs_info->super_copy),
7622 fs_info->fs_devices->total_rw_bytes);
7623 ret = -EINVAL;
7624 goto error;
7625 }
7626 ret = 0;
7627 error:
7628 mutex_unlock(&uuid_mutex);
7629
7630 btrfs_free_path(path);
7631 return ret;
7632 }
7633
7634 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7635 {
7636 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7637 struct btrfs_device *device;
7638 int ret = 0;
7639
7640 fs_devices->fs_info = fs_info;
7641
7642 mutex_lock(&fs_devices->device_list_mutex);
7643 list_for_each_entry(device, &fs_devices->devices, dev_list)
7644 device->fs_info = fs_info;
7645
7646 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7647 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7648 device->fs_info = fs_info;
7649 ret = btrfs_get_dev_zone_info(device, false);
7650 if (ret)
7651 break;
7652 }
7653
7654 seed_devs->fs_info = fs_info;
7655 }
7656 mutex_unlock(&fs_devices->device_list_mutex);
7657
7658 return ret;
7659 }
7660
7661 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7662 const struct btrfs_dev_stats_item *ptr,
7663 int index)
7664 {
7665 u64 val;
7666
7667 read_extent_buffer(eb, &val,
7668 offsetof(struct btrfs_dev_stats_item, values) +
7669 ((unsigned long)ptr) + (index * sizeof(u64)),
7670 sizeof(val));
7671 return val;
7672 }
7673
7674 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7675 struct btrfs_dev_stats_item *ptr,
7676 int index, u64 val)
7677 {
7678 write_extent_buffer(eb, &val,
7679 offsetof(struct btrfs_dev_stats_item, values) +
7680 ((unsigned long)ptr) + (index * sizeof(u64)),
7681 sizeof(val));
7682 }
7683
7684 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7685 struct btrfs_path *path)
7686 {
7687 struct btrfs_dev_stats_item *ptr;
7688 struct extent_buffer *eb;
7689 struct btrfs_key key;
7690 int item_size;
7691 int i, ret, slot;
7692
7693 if (!device->fs_info->dev_root)
7694 return 0;
7695
7696 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7697 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7698 key.offset = device->devid;
7699 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7700 if (ret) {
7701 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7702 btrfs_dev_stat_set(device, i, 0);
7703 device->dev_stats_valid = 1;
7704 btrfs_release_path(path);
7705 return ret < 0 ? ret : 0;
7706 }
7707 slot = path->slots[0];
7708 eb = path->nodes[0];
7709 item_size = btrfs_item_size(eb, slot);
7710
7711 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7712
7713 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7714 if (item_size >= (1 + i) * sizeof(__le64))
7715 btrfs_dev_stat_set(device, i,
7716 btrfs_dev_stats_value(eb, ptr, i));
7717 else
7718 btrfs_dev_stat_set(device, i, 0);
7719 }
7720
7721 device->dev_stats_valid = 1;
7722 btrfs_dev_stat_print_on_load(device);
7723 btrfs_release_path(path);
7724
7725 return 0;
7726 }
7727
7728 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7729 {
7730 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7731 struct btrfs_device *device;
7732 struct btrfs_path *path = NULL;
7733 int ret = 0;
7734
7735 path = btrfs_alloc_path();
7736 if (!path)
7737 return -ENOMEM;
7738
7739 mutex_lock(&fs_devices->device_list_mutex);
7740 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7741 ret = btrfs_device_init_dev_stats(device, path);
7742 if (ret)
7743 goto out;
7744 }
7745 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7746 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7747 ret = btrfs_device_init_dev_stats(device, path);
7748 if (ret)
7749 goto out;
7750 }
7751 }
7752 out:
7753 mutex_unlock(&fs_devices->device_list_mutex);
7754
7755 btrfs_free_path(path);
7756 return ret;
7757 }
7758
7759 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7760 struct btrfs_device *device)
7761 {
7762 struct btrfs_fs_info *fs_info = trans->fs_info;
7763 struct btrfs_root *dev_root = fs_info->dev_root;
7764 struct btrfs_path *path;
7765 struct btrfs_key key;
7766 struct extent_buffer *eb;
7767 struct btrfs_dev_stats_item *ptr;
7768 int ret;
7769 int i;
7770
7771 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7772 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7773 key.offset = device->devid;
7774
7775 path = btrfs_alloc_path();
7776 if (!path)
7777 return -ENOMEM;
7778 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7779 if (ret < 0) {
7780 btrfs_warn_in_rcu(fs_info,
7781 "error %d while searching for dev_stats item for device %s",
7782 ret, btrfs_dev_name(device));
7783 goto out;
7784 }
7785
7786 if (ret == 0 &&
7787 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7788 /* need to delete old one and insert a new one */
7789 ret = btrfs_del_item(trans, dev_root, path);
7790 if (ret != 0) {
7791 btrfs_warn_in_rcu(fs_info,
7792 "delete too small dev_stats item for device %s failed %d",
7793 btrfs_dev_name(device), ret);
7794 goto out;
7795 }
7796 ret = 1;
7797 }
7798
7799 if (ret == 1) {
7800 /* need to insert a new item */
7801 btrfs_release_path(path);
7802 ret = btrfs_insert_empty_item(trans, dev_root, path,
7803 &key, sizeof(*ptr));
7804 if (ret < 0) {
7805 btrfs_warn_in_rcu(fs_info,
7806 "insert dev_stats item for device %s failed %d",
7807 btrfs_dev_name(device), ret);
7808 goto out;
7809 }
7810 }
7811
7812 eb = path->nodes[0];
7813 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7814 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7815 btrfs_set_dev_stats_value(eb, ptr, i,
7816 btrfs_dev_stat_read(device, i));
7817 btrfs_mark_buffer_dirty(trans, eb);
7818
7819 out:
7820 btrfs_free_path(path);
7821 return ret;
7822 }
7823
7824 /*
7825 * called from commit_transaction. Writes all changed device stats to disk.
7826 */
7827 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7828 {
7829 struct btrfs_fs_info *fs_info = trans->fs_info;
7830 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7831 struct btrfs_device *device;
7832 int stats_cnt;
7833 int ret = 0;
7834
7835 mutex_lock(&fs_devices->device_list_mutex);
7836 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7837 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7838 if (!device->dev_stats_valid || stats_cnt == 0)
7839 continue;
7840
7841
7842 /*
7843 * There is a LOAD-LOAD control dependency between the value of
7844 * dev_stats_ccnt and updating the on-disk values which requires
7845 * reading the in-memory counters. Such control dependencies
7846 * require explicit read memory barriers.
7847 *
7848 * This memory barriers pairs with smp_mb__before_atomic in
7849 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7850 * barrier implied by atomic_xchg in
7851 * btrfs_dev_stats_read_and_reset
7852 */
7853 smp_rmb();
7854
7855 ret = update_dev_stat_item(trans, device);
7856 if (!ret)
7857 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7858 }
7859 mutex_unlock(&fs_devices->device_list_mutex);
7860
7861 return ret;
7862 }
7863
7864 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7865 {
7866 btrfs_dev_stat_inc(dev, index);
7867
7868 if (!dev->dev_stats_valid)
7869 return;
7870 btrfs_err_rl_in_rcu(dev->fs_info,
7871 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7872 btrfs_dev_name(dev),
7873 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7874 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7875 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7876 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7877 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7878 }
7879
7880 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7881 {
7882 int i;
7883
7884 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7885 if (btrfs_dev_stat_read(dev, i) != 0)
7886 break;
7887 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7888 return; /* all values == 0, suppress message */
7889
7890 btrfs_info_in_rcu(dev->fs_info,
7891 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7892 btrfs_dev_name(dev),
7893 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7894 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7895 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7896 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7897 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7898 }
7899
7900 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7901 struct btrfs_ioctl_get_dev_stats *stats)
7902 {
7903 BTRFS_DEV_LOOKUP_ARGS(args);
7904 struct btrfs_device *dev;
7905 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7906 int i;
7907
7908 mutex_lock(&fs_devices->device_list_mutex);
7909 args.devid = stats->devid;
7910 dev = btrfs_find_device(fs_info->fs_devices, &args);
7911 mutex_unlock(&fs_devices->device_list_mutex);
7912
7913 if (!dev) {
7914 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7915 return -ENODEV;
7916 } else if (!dev->dev_stats_valid) {
7917 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7918 return -ENODEV;
7919 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7920 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7921 if (stats->nr_items > i)
7922 stats->values[i] =
7923 btrfs_dev_stat_read_and_reset(dev, i);
7924 else
7925 btrfs_dev_stat_set(dev, i, 0);
7926 }
7927 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7928 current->comm, task_pid_nr(current));
7929 } else {
7930 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7931 if (stats->nr_items > i)
7932 stats->values[i] = btrfs_dev_stat_read(dev, i);
7933 }
7934 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7935 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7936 return 0;
7937 }
7938
7939 /*
7940 * Update the size and bytes used for each device where it changed. This is
7941 * delayed since we would otherwise get errors while writing out the
7942 * superblocks.
7943 *
7944 * Must be invoked during transaction commit.
7945 */
7946 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7947 {
7948 struct btrfs_device *curr, *next;
7949
7950 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7951
7952 if (list_empty(&trans->dev_update_list))
7953 return;
7954
7955 /*
7956 * We don't need the device_list_mutex here. This list is owned by the
7957 * transaction and the transaction must complete before the device is
7958 * released.
7959 */
7960 mutex_lock(&trans->fs_info->chunk_mutex);
7961 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7962 post_commit_list) {
7963 list_del_init(&curr->post_commit_list);
7964 curr->commit_total_bytes = curr->disk_total_bytes;
7965 curr->commit_bytes_used = curr->bytes_used;
7966 }
7967 mutex_unlock(&trans->fs_info->chunk_mutex);
7968 }
7969
7970 /*
7971 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7972 */
7973 int btrfs_bg_type_to_factor(u64 flags)
7974 {
7975 const int index = btrfs_bg_flags_to_raid_index(flags);
7976
7977 return btrfs_raid_array[index].ncopies;
7978 }
7979
7980
7981
7982 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7983 u64 chunk_offset, u64 devid,
7984 u64 physical_offset, u64 physical_len)
7985 {
7986 struct btrfs_dev_lookup_args args = { .devid = devid };
7987 struct btrfs_chunk_map *map;
7988 struct btrfs_device *dev;
7989 u64 stripe_len;
7990 bool found = false;
7991 int ret = 0;
7992 int i;
7993
7994 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7995 if (!map) {
7996 btrfs_err(fs_info,
7997 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7998 physical_offset, devid);
7999 ret = -EUCLEAN;
8000 goto out;
8001 }
8002
8003 stripe_len = btrfs_calc_stripe_length(map);
8004 if (physical_len != stripe_len) {
8005 btrfs_err(fs_info,
8006 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8007 physical_offset, devid, map->start, physical_len,
8008 stripe_len);
8009 ret = -EUCLEAN;
8010 goto out;
8011 }
8012
8013 /*
8014 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
8015 * space. Although kernel can handle it without problem, better to warn
8016 * the users.
8017 */
8018 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
8019 btrfs_warn(fs_info,
8020 "devid %llu physical %llu len %llu inside the reserved space",
8021 devid, physical_offset, physical_len);
8022
8023 for (i = 0; i < map->num_stripes; i++) {
8024 if (map->stripes[i].dev->devid == devid &&
8025 map->stripes[i].physical == physical_offset) {
8026 found = true;
8027 if (map->verified_stripes >= map->num_stripes) {
8028 btrfs_err(fs_info,
8029 "too many dev extents for chunk %llu found",
8030 map->start);
8031 ret = -EUCLEAN;
8032 goto out;
8033 }
8034 map->verified_stripes++;
8035 break;
8036 }
8037 }
8038 if (!found) {
8039 btrfs_err(fs_info,
8040 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8041 physical_offset, devid);
8042 ret = -EUCLEAN;
8043 }
8044
8045 /* Make sure no dev extent is beyond device boundary */
8046 dev = btrfs_find_device(fs_info->fs_devices, &args);
8047 if (!dev) {
8048 btrfs_err(fs_info, "failed to find devid %llu", devid);
8049 ret = -EUCLEAN;
8050 goto out;
8051 }
8052
8053 if (physical_offset + physical_len > dev->disk_total_bytes) {
8054 btrfs_err(fs_info,
8055 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8056 devid, physical_offset, physical_len,
8057 dev->disk_total_bytes);
8058 ret = -EUCLEAN;
8059 goto out;
8060 }
8061
8062 if (dev->zone_info) {
8063 u64 zone_size = dev->zone_info->zone_size;
8064
8065 if (!IS_ALIGNED(physical_offset, zone_size) ||
8066 !IS_ALIGNED(physical_len, zone_size)) {
8067 btrfs_err(fs_info,
8068 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8069 devid, physical_offset, physical_len);
8070 ret = -EUCLEAN;
8071 goto out;
8072 }
8073 }
8074
8075 out:
8076 btrfs_free_chunk_map(map);
8077 return ret;
8078 }
8079
8080 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8081 {
8082 struct rb_node *node;
8083 int ret = 0;
8084
8085 read_lock(&fs_info->mapping_tree_lock);
8086 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8087 struct btrfs_chunk_map *map;
8088
8089 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8090 if (map->num_stripes != map->verified_stripes) {
8091 btrfs_err(fs_info,
8092 "chunk %llu has missing dev extent, have %d expect %d",
8093 map->start, map->verified_stripes, map->num_stripes);
8094 ret = -EUCLEAN;
8095 goto out;
8096 }
8097 }
8098 out:
8099 read_unlock(&fs_info->mapping_tree_lock);
8100 return ret;
8101 }
8102
8103 /*
8104 * Ensure that all dev extents are mapped to correct chunk, otherwise
8105 * later chunk allocation/free would cause unexpected behavior.
8106 *
8107 * NOTE: This will iterate through the whole device tree, which should be of
8108 * the same size level as the chunk tree. This slightly increases mount time.
8109 */
8110 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8111 {
8112 struct btrfs_path *path;
8113 struct btrfs_root *root = fs_info->dev_root;
8114 struct btrfs_key key;
8115 u64 prev_devid = 0;
8116 u64 prev_dev_ext_end = 0;
8117 int ret = 0;
8118
8119 /*
8120 * We don't have a dev_root because we mounted with ignorebadroots and
8121 * failed to load the root, so we want to skip the verification in this
8122 * case for sure.
8123 *
8124 * However if the dev root is fine, but the tree itself is corrupted
8125 * we'd still fail to mount. This verification is only to make sure
8126 * writes can happen safely, so instead just bypass this check
8127 * completely in the case of IGNOREBADROOTS.
8128 */
8129 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8130 return 0;
8131
8132 key.objectid = 1;
8133 key.type = BTRFS_DEV_EXTENT_KEY;
8134 key.offset = 0;
8135
8136 path = btrfs_alloc_path();
8137 if (!path)
8138 return -ENOMEM;
8139
8140 path->reada = READA_FORWARD;
8141 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8142 if (ret < 0)
8143 goto out;
8144
8145 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8146 ret = btrfs_next_leaf(root, path);
8147 if (ret < 0)
8148 goto out;
8149 /* No dev extents at all? Not good */
8150 if (ret > 0) {
8151 ret = -EUCLEAN;
8152 goto out;
8153 }
8154 }
8155 while (1) {
8156 struct extent_buffer *leaf = path->nodes[0];
8157 struct btrfs_dev_extent *dext;
8158 int slot = path->slots[0];
8159 u64 chunk_offset;
8160 u64 physical_offset;
8161 u64 physical_len;
8162 u64 devid;
8163
8164 btrfs_item_key_to_cpu(leaf, &key, slot);
8165 if (key.type != BTRFS_DEV_EXTENT_KEY)
8166 break;
8167 devid = key.objectid;
8168 physical_offset = key.offset;
8169
8170 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8171 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8172 physical_len = btrfs_dev_extent_length(leaf, dext);
8173
8174 /* Check if this dev extent overlaps with the previous one */
8175 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8176 btrfs_err(fs_info,
8177 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8178 devid, physical_offset, prev_dev_ext_end);
8179 ret = -EUCLEAN;
8180 goto out;
8181 }
8182
8183 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8184 physical_offset, physical_len);
8185 if (ret < 0)
8186 goto out;
8187 prev_devid = devid;
8188 prev_dev_ext_end = physical_offset + physical_len;
8189
8190 ret = btrfs_next_item(root, path);
8191 if (ret < 0)
8192 goto out;
8193 if (ret > 0) {
8194 ret = 0;
8195 break;
8196 }
8197 }
8198
8199 /* Ensure all chunks have corresponding dev extents */
8200 ret = verify_chunk_dev_extent_mapping(fs_info);
8201 out:
8202 btrfs_free_path(path);
8203 return ret;
8204 }
8205
8206 /*
8207 * Check whether the given block group or device is pinned by any inode being
8208 * used as a swapfile.
8209 */
8210 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8211 {
8212 struct btrfs_swapfile_pin *sp;
8213 struct rb_node *node;
8214
8215 spin_lock(&fs_info->swapfile_pins_lock);
8216 node = fs_info->swapfile_pins.rb_node;
8217 while (node) {
8218 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8219 if (ptr < sp->ptr)
8220 node = node->rb_left;
8221 else if (ptr > sp->ptr)
8222 node = node->rb_right;
8223 else
8224 break;
8225 }
8226 spin_unlock(&fs_info->swapfile_pins_lock);
8227 return node != NULL;
8228 }
8229
8230 static int relocating_repair_kthread(void *data)
8231 {
8232 struct btrfs_block_group *cache = data;
8233 struct btrfs_fs_info *fs_info = cache->fs_info;
8234 u64 target;
8235 int ret = 0;
8236
8237 target = cache->start;
8238 btrfs_put_block_group(cache);
8239
8240 sb_start_write(fs_info->sb);
8241 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8242 btrfs_info(fs_info,
8243 "zoned: skip relocating block group %llu to repair: EBUSY",
8244 target);
8245 sb_end_write(fs_info->sb);
8246 return -EBUSY;
8247 }
8248
8249 mutex_lock(&fs_info->reclaim_bgs_lock);
8250
8251 /* Ensure block group still exists */
8252 cache = btrfs_lookup_block_group(fs_info, target);
8253 if (!cache)
8254 goto out;
8255
8256 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8257 goto out;
8258
8259 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8260 if (ret < 0)
8261 goto out;
8262
8263 btrfs_info(fs_info,
8264 "zoned: relocating block group %llu to repair IO failure",
8265 target);
8266 ret = btrfs_relocate_chunk(fs_info, target);
8267
8268 out:
8269 if (cache)
8270 btrfs_put_block_group(cache);
8271 mutex_unlock(&fs_info->reclaim_bgs_lock);
8272 btrfs_exclop_finish(fs_info);
8273 sb_end_write(fs_info->sb);
8274
8275 return ret;
8276 }
8277
8278 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8279 {
8280 struct btrfs_block_group *cache;
8281
8282 if (!btrfs_is_zoned(fs_info))
8283 return false;
8284
8285 /* Do not attempt to repair in degraded state */
8286 if (btrfs_test_opt(fs_info, DEGRADED))
8287 return true;
8288
8289 cache = btrfs_lookup_block_group(fs_info, logical);
8290 if (!cache)
8291 return true;
8292
8293 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8294 btrfs_put_block_group(cache);
8295 return true;
8296 }
8297
8298 kthread_run(relocating_repair_kthread, cache,
8299 "btrfs-relocating-repair");
8300
8301 return true;
8302 }
8303
8304 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8305 struct btrfs_io_stripe *smap,
8306 u64 logical)
8307 {
8308 int data_stripes = nr_bioc_data_stripes(bioc);
8309 int i;
8310
8311 for (i = 0; i < data_stripes; i++) {
8312 u64 stripe_start = bioc->full_stripe_logical +
8313 btrfs_stripe_nr_to_offset(i);
8314
8315 if (logical >= stripe_start &&
8316 logical < stripe_start + BTRFS_STRIPE_LEN)
8317 break;
8318 }
8319 ASSERT(i < data_stripes);
8320 smap->dev = bioc->stripes[i].dev;
8321 smap->physical = bioc->stripes[i].physical +
8322 ((logical - bioc->full_stripe_logical) &
8323 BTRFS_STRIPE_LEN_MASK);
8324 }
8325
8326 /*
8327 * Map a repair write into a single device.
8328 *
8329 * A repair write is triggered by read time repair or scrub, which would only
8330 * update the contents of a single device.
8331 * Not update any other mirrors nor go through RMW path.
8332 *
8333 * Callers should ensure:
8334 *
8335 * - Call btrfs_bio_counter_inc_blocked() first
8336 * - The range does not cross stripe boundary
8337 * - Has a valid @mirror_num passed in.
8338 */
8339 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8340 struct btrfs_io_stripe *smap, u64 logical,
8341 u32 length, int mirror_num)
8342 {
8343 struct btrfs_io_context *bioc = NULL;
8344 u64 map_length = length;
8345 int mirror_ret = mirror_num;
8346 int ret;
8347
8348 ASSERT(mirror_num > 0);
8349
8350 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8351 &bioc, smap, &mirror_ret);
8352 if (ret < 0)
8353 return ret;
8354
8355 /* The map range should not cross stripe boundary. */
8356 ASSERT(map_length >= length);
8357
8358 /* Already mapped to single stripe. */
8359 if (!bioc)
8360 goto out;
8361
8362 /* Map the RAID56 multi-stripe writes to a single one. */
8363 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8364 map_raid56_repair_block(bioc, smap, logical);
8365 goto out;
8366 }
8367
8368 ASSERT(mirror_num <= bioc->num_stripes);
8369 smap->dev = bioc->stripes[mirror_num - 1].dev;
8370 smap->physical = bioc->stripes[mirror_num - 1].physical;
8371 out:
8372 btrfs_put_bioc(bioc);
8373 ASSERT(smap->dev);
8374 return 0;
8375 }