]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - fs/btrfs/volumes.c
b92e82d4413f2a2ac568000ed7aa0f3cc4bec286
[thirdparty/kernel/stable.git] / fs / btrfs / volumes.c
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
147
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
151 {
152 return &fs_uuids;
153 }
154
155 /*
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
158 *
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
162 */
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
164 {
165 struct btrfs_fs_devices *fs_devs;
166
167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
170
171 mutex_init(&fs_devs->device_list_mutex);
172
173 INIT_LIST_HEAD(&fs_devs->devices);
174 INIT_LIST_HEAD(&fs_devs->resized_devices);
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
179
180 return fs_devs;
181 }
182
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
184 {
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
191 rcu_string_free(device->name);
192 kfree(device);
193 }
194 kfree(fs_devices);
195 }
196
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 enum kobject_action action)
199 {
200 int ret;
201
202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203 if (ret)
204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205 action,
206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 &disk_to_dev(bdev->bd_disk)->kobj);
208 }
209
210 void btrfs_cleanup_fs_uuids(void)
211 {
212 struct btrfs_fs_devices *fs_devices;
213
214 while (!list_empty(&fs_uuids)) {
215 fs_devices = list_entry(fs_uuids.next,
216 struct btrfs_fs_devices, list);
217 list_del(&fs_devices->list);
218 free_fs_devices(fs_devices);
219 }
220 }
221
222 static struct btrfs_device *__alloc_device(void)
223 {
224 struct btrfs_device *dev;
225
226 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227 if (!dev)
228 return ERR_PTR(-ENOMEM);
229
230 /*
231 * Preallocate a bio that's always going to be used for flushing device
232 * barriers and matches the device lifespan
233 */
234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 if (!dev->flush_bio) {
236 kfree(dev);
237 return ERR_PTR(-ENOMEM);
238 }
239 bio_get(dev->flush_bio);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
257 /*
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259 * return NULL.
260 *
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
263 */
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
266 {
267 struct list_head *head = &fs_devices->devices;
268 struct btrfs_device *dev;
269
270 list_for_each_entry(dev, head, dev_list) {
271 if (dev->devid == devid &&
272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273 return dev;
274 }
275 }
276 return NULL;
277 }
278
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
280 {
281 struct btrfs_fs_devices *fs_devices;
282
283 list_for_each_entry(fs_devices, &fs_uuids, list) {
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 return fs_devices;
286 }
287 return NULL;
288 }
289
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
294 {
295 int ret;
296
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
298
299 if (IS_ERR(*bdev)) {
300 ret = PTR_ERR(*bdev);
301 goto error;
302 }
303
304 if (flush)
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307 if (ret) {
308 blkdev_put(*bdev, flags);
309 goto error;
310 }
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
313 if (IS_ERR(*bh)) {
314 ret = PTR_ERR(*bh);
315 blkdev_put(*bdev, flags);
316 goto error;
317 }
318
319 return 0;
320
321 error:
322 *bdev = NULL;
323 *bh = NULL;
324 return ret;
325 }
326
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
329 {
330
331 struct bio *old_head;
332
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
337 else
338 pending_bios->tail = tail;
339 }
340
341 /*
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
345 *
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
351 */
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
353 {
354 struct btrfs_fs_info *fs_info = device->fs_info;
355 struct bio *pending;
356 struct backing_dev_info *bdi;
357 struct btrfs_pending_bios *pending_bios;
358 struct bio *tail;
359 struct bio *cur;
360 int again = 0;
361 unsigned long num_run;
362 unsigned long batch_run = 0;
363 unsigned long limit;
364 unsigned long last_waited = 0;
365 int force_reg = 0;
366 int sync_pending = 0;
367 struct blk_plug plug;
368
369 /*
370 * this function runs all the bios we've collected for
371 * a particular device. We don't want to wander off to
372 * another device without first sending all of these down.
373 * So, setup a plug here and finish it off before we return
374 */
375 blk_start_plug(&plug);
376
377 bdi = device->bdev->bd_bdi;
378 limit = btrfs_async_submit_limit(fs_info);
379 limit = limit * 2 / 3;
380
381 loop:
382 spin_lock(&device->io_lock);
383
384 loop_lock:
385 num_run = 0;
386
387 /* take all the bios off the list at once and process them
388 * later on (without the lock held). But, remember the
389 * tail and other pointers so the bios can be properly reinserted
390 * into the list if we hit congestion
391 */
392 if (!force_reg && device->pending_sync_bios.head) {
393 pending_bios = &device->pending_sync_bios;
394 force_reg = 1;
395 } else {
396 pending_bios = &device->pending_bios;
397 force_reg = 0;
398 }
399
400 pending = pending_bios->head;
401 tail = pending_bios->tail;
402 WARN_ON(pending && !tail);
403
404 /*
405 * if pending was null this time around, no bios need processing
406 * at all and we can stop. Otherwise it'll loop back up again
407 * and do an additional check so no bios are missed.
408 *
409 * device->running_pending is used to synchronize with the
410 * schedule_bio code.
411 */
412 if (device->pending_sync_bios.head == NULL &&
413 device->pending_bios.head == NULL) {
414 again = 0;
415 device->running_pending = 0;
416 } else {
417 again = 1;
418 device->running_pending = 1;
419 }
420
421 pending_bios->head = NULL;
422 pending_bios->tail = NULL;
423
424 spin_unlock(&device->io_lock);
425
426 while (pending) {
427
428 rmb();
429 /* we want to work on both lists, but do more bios on the
430 * sync list than the regular list
431 */
432 if ((num_run > 32 &&
433 pending_bios != &device->pending_sync_bios &&
434 device->pending_sync_bios.head) ||
435 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
436 device->pending_bios.head)) {
437 spin_lock(&device->io_lock);
438 requeue_list(pending_bios, pending, tail);
439 goto loop_lock;
440 }
441
442 cur = pending;
443 pending = pending->bi_next;
444 cur->bi_next = NULL;
445
446 /*
447 * atomic_dec_return implies a barrier for waitqueue_active
448 */
449 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
450 waitqueue_active(&fs_info->async_submit_wait))
451 wake_up(&fs_info->async_submit_wait);
452
453 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
454
455 /*
456 * if we're doing the sync list, record that our
457 * plug has some sync requests on it
458 *
459 * If we're doing the regular list and there are
460 * sync requests sitting around, unplug before
461 * we add more
462 */
463 if (pending_bios == &device->pending_sync_bios) {
464 sync_pending = 1;
465 } else if (sync_pending) {
466 blk_finish_plug(&plug);
467 blk_start_plug(&plug);
468 sync_pending = 0;
469 }
470
471 btrfsic_submit_bio(cur);
472 num_run++;
473 batch_run++;
474
475 cond_resched();
476
477 /*
478 * we made progress, there is more work to do and the bdi
479 * is now congested. Back off and let other work structs
480 * run instead
481 */
482 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
483 fs_info->fs_devices->open_devices > 1) {
484 struct io_context *ioc;
485
486 ioc = current->io_context;
487
488 /*
489 * the main goal here is that we don't want to
490 * block if we're going to be able to submit
491 * more requests without blocking.
492 *
493 * This code does two great things, it pokes into
494 * the elevator code from a filesystem _and_
495 * it makes assumptions about how batching works.
496 */
497 if (ioc && ioc->nr_batch_requests > 0 &&
498 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
499 (last_waited == 0 ||
500 ioc->last_waited == last_waited)) {
501 /*
502 * we want to go through our batch of
503 * requests and stop. So, we copy out
504 * the ioc->last_waited time and test
505 * against it before looping
506 */
507 last_waited = ioc->last_waited;
508 cond_resched();
509 continue;
510 }
511 spin_lock(&device->io_lock);
512 requeue_list(pending_bios, pending, tail);
513 device->running_pending = 1;
514
515 spin_unlock(&device->io_lock);
516 btrfs_queue_work(fs_info->submit_workers,
517 &device->work);
518 goto done;
519 }
520 }
521
522 cond_resched();
523 if (again)
524 goto loop;
525
526 spin_lock(&device->io_lock);
527 if (device->pending_bios.head || device->pending_sync_bios.head)
528 goto loop_lock;
529 spin_unlock(&device->io_lock);
530
531 done:
532 blk_finish_plug(&plug);
533 }
534
535 static void pending_bios_fn(struct btrfs_work *work)
536 {
537 struct btrfs_device *device;
538
539 device = container_of(work, struct btrfs_device, work);
540 run_scheduled_bios(device);
541 }
542
543
544 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
545 {
546 struct btrfs_fs_devices *fs_devs;
547 struct btrfs_device *dev;
548
549 if (!cur_dev->name)
550 return;
551
552 list_for_each_entry(fs_devs, &fs_uuids, list) {
553 int del = 1;
554
555 if (fs_devs->opened)
556 continue;
557 if (fs_devs->seeding)
558 continue;
559
560 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
561
562 if (dev == cur_dev)
563 continue;
564 if (!dev->name)
565 continue;
566
567 /*
568 * Todo: This won't be enough. What if the same device
569 * comes back (with new uuid and) with its mapper path?
570 * But for now, this does help as mostly an admin will
571 * either use mapper or non mapper path throughout.
572 */
573 rcu_read_lock();
574 del = strcmp(rcu_str_deref(dev->name),
575 rcu_str_deref(cur_dev->name));
576 rcu_read_unlock();
577 if (!del)
578 break;
579 }
580
581 if (!del) {
582 /* delete the stale device */
583 if (fs_devs->num_devices == 1) {
584 btrfs_sysfs_remove_fsid(fs_devs);
585 list_del(&fs_devs->list);
586 free_fs_devices(fs_devs);
587 } else {
588 fs_devs->num_devices--;
589 list_del(&dev->dev_list);
590 rcu_string_free(dev->name);
591 kfree(dev);
592 }
593 break;
594 }
595 }
596 }
597
598 /*
599 * Add new device to list of registered devices
600 *
601 * Returns:
602 * 1 - first time device is seen
603 * 0 - device already known
604 * < 0 - error
605 */
606 static noinline int device_list_add(const char *path,
607 struct btrfs_super_block *disk_super,
608 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
609 {
610 struct btrfs_device *device;
611 struct btrfs_fs_devices *fs_devices;
612 struct rcu_string *name;
613 int ret = 0;
614 u64 found_transid = btrfs_super_generation(disk_super);
615
616 fs_devices = find_fsid(disk_super->fsid);
617 if (!fs_devices) {
618 fs_devices = alloc_fs_devices(disk_super->fsid);
619 if (IS_ERR(fs_devices))
620 return PTR_ERR(fs_devices);
621
622 list_add(&fs_devices->list, &fs_uuids);
623
624 device = NULL;
625 } else {
626 device = find_device(fs_devices, devid,
627 disk_super->dev_item.uuid);
628 }
629
630 if (!device) {
631 if (fs_devices->opened)
632 return -EBUSY;
633
634 device = btrfs_alloc_device(NULL, &devid,
635 disk_super->dev_item.uuid);
636 if (IS_ERR(device)) {
637 /* we can safely leave the fs_devices entry around */
638 return PTR_ERR(device);
639 }
640
641 name = rcu_string_strdup(path, GFP_NOFS);
642 if (!name) {
643 kfree(device);
644 return -ENOMEM;
645 }
646 rcu_assign_pointer(device->name, name);
647
648 mutex_lock(&fs_devices->device_list_mutex);
649 list_add_rcu(&device->dev_list, &fs_devices->devices);
650 fs_devices->num_devices++;
651 mutex_unlock(&fs_devices->device_list_mutex);
652
653 ret = 1;
654 device->fs_devices = fs_devices;
655 } else if (!device->name || strcmp(device->name->str, path)) {
656 /*
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
663 * different name. or
664 * b. The missing-disk-which-was-replaced, has
665 * reappeared now.
666 *
667 * We must allow 1 and 2a above. But 2b would be a spurious
668 * and unintentional.
669 *
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
674 */
675
676 /*
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
681 */
682 if (!fs_devices->opened && found_transid < device->generation) {
683 /*
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
689 */
690 return -EEXIST;
691 }
692
693 name = rcu_string_strdup(path, GFP_NOFS);
694 if (!name)
695 return -ENOMEM;
696 rcu_string_free(device->name);
697 rcu_assign_pointer(device->name, name);
698 if (device->missing) {
699 fs_devices->missing_devices--;
700 device->missing = 0;
701 }
702 }
703
704 /*
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
708 * (as above).
709 */
710 if (!fs_devices->opened)
711 device->generation = found_transid;
712
713 /*
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
716 */
717 if (ret > 0)
718 btrfs_free_stale_device(device);
719
720 *fs_devices_ret = fs_devices;
721
722 return ret;
723 }
724
725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
726 {
727 struct btrfs_fs_devices *fs_devices;
728 struct btrfs_device *device;
729 struct btrfs_device *orig_dev;
730
731 fs_devices = alloc_fs_devices(orig->fsid);
732 if (IS_ERR(fs_devices))
733 return fs_devices;
734
735 mutex_lock(&orig->device_list_mutex);
736 fs_devices->total_devices = orig->total_devices;
737
738 /* We have held the volume lock, it is safe to get the devices. */
739 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
740 struct rcu_string *name;
741
742 device = btrfs_alloc_device(NULL, &orig_dev->devid,
743 orig_dev->uuid);
744 if (IS_ERR(device))
745 goto error;
746
747 /*
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
750 */
751 if (orig_dev->name) {
752 name = rcu_string_strdup(orig_dev->name->str,
753 GFP_KERNEL);
754 if (!name) {
755 kfree(device);
756 goto error;
757 }
758 rcu_assign_pointer(device->name, name);
759 }
760
761 list_add(&device->dev_list, &fs_devices->devices);
762 device->fs_devices = fs_devices;
763 fs_devices->num_devices++;
764 }
765 mutex_unlock(&orig->device_list_mutex);
766 return fs_devices;
767 error:
768 mutex_unlock(&orig->device_list_mutex);
769 free_fs_devices(fs_devices);
770 return ERR_PTR(-ENOMEM);
771 }
772
773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
774 {
775 struct btrfs_device *device, *next;
776 struct btrfs_device *latest_dev = NULL;
777
778 mutex_lock(&uuid_mutex);
779 again:
780 /* This is the initialized path, it is safe to release the devices. */
781 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
782 if (device->in_fs_metadata) {
783 if (!device->is_tgtdev_for_dev_replace &&
784 (!latest_dev ||
785 device->generation > latest_dev->generation)) {
786 latest_dev = device;
787 }
788 continue;
789 }
790
791 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
792 /*
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
801 */
802 if (step == 0 || device->is_tgtdev_for_dev_replace) {
803 continue;
804 }
805 }
806 if (device->bdev) {
807 blkdev_put(device->bdev, device->mode);
808 device->bdev = NULL;
809 fs_devices->open_devices--;
810 }
811 if (device->writeable) {
812 list_del_init(&device->dev_alloc_list);
813 device->writeable = 0;
814 if (!device->is_tgtdev_for_dev_replace)
815 fs_devices->rw_devices--;
816 }
817 list_del_init(&device->dev_list);
818 fs_devices->num_devices--;
819 rcu_string_free(device->name);
820 kfree(device);
821 }
822
823 if (fs_devices->seed) {
824 fs_devices = fs_devices->seed;
825 goto again;
826 }
827
828 fs_devices->latest_bdev = latest_dev->bdev;
829
830 mutex_unlock(&uuid_mutex);
831 }
832
833 static void __free_device(struct work_struct *work)
834 {
835 struct btrfs_device *device;
836
837 device = container_of(work, struct btrfs_device, rcu_work);
838 rcu_string_free(device->name);
839 bio_put(device->flush_bio);
840 kfree(device);
841 }
842
843 static void free_device(struct rcu_head *head)
844 {
845 struct btrfs_device *device;
846
847 device = container_of(head, struct btrfs_device, rcu);
848
849 INIT_WORK(&device->rcu_work, __free_device);
850 schedule_work(&device->rcu_work);
851 }
852
853 static void btrfs_close_bdev(struct btrfs_device *device)
854 {
855 if (device->bdev && device->writeable) {
856 sync_blockdev(device->bdev);
857 invalidate_bdev(device->bdev);
858 }
859
860 if (device->bdev)
861 blkdev_put(device->bdev, device->mode);
862 }
863
864 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
865 {
866 struct btrfs_fs_devices *fs_devices = device->fs_devices;
867 struct btrfs_device *new_device;
868 struct rcu_string *name;
869
870 if (device->bdev)
871 fs_devices->open_devices--;
872
873 if (device->writeable &&
874 device->devid != BTRFS_DEV_REPLACE_DEVID) {
875 list_del_init(&device->dev_alloc_list);
876 fs_devices->rw_devices--;
877 }
878
879 if (device->missing)
880 fs_devices->missing_devices--;
881
882 new_device = btrfs_alloc_device(NULL, &device->devid,
883 device->uuid);
884 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
885
886 /* Safe because we are under uuid_mutex */
887 if (device->name) {
888 name = rcu_string_strdup(device->name->str, GFP_NOFS);
889 BUG_ON(!name); /* -ENOMEM */
890 rcu_assign_pointer(new_device->name, name);
891 }
892
893 list_replace_rcu(&device->dev_list, &new_device->dev_list);
894 new_device->fs_devices = device->fs_devices;
895 }
896
897 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
898 {
899 struct btrfs_device *device, *tmp;
900 struct list_head pending_put;
901
902 INIT_LIST_HEAD(&pending_put);
903
904 if (--fs_devices->opened > 0)
905 return 0;
906
907 mutex_lock(&fs_devices->device_list_mutex);
908 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
909 btrfs_prepare_close_one_device(device);
910 list_add(&device->dev_list, &pending_put);
911 }
912 mutex_unlock(&fs_devices->device_list_mutex);
913
914 /*
915 * btrfs_show_devname() is using the device_list_mutex,
916 * sometimes call to blkdev_put() leads vfs calling
917 * into this func. So do put outside of device_list_mutex,
918 * as of now.
919 */
920 while (!list_empty(&pending_put)) {
921 device = list_first_entry(&pending_put,
922 struct btrfs_device, dev_list);
923 list_del(&device->dev_list);
924 btrfs_close_bdev(device);
925 call_rcu(&device->rcu, free_device);
926 }
927
928 WARN_ON(fs_devices->open_devices);
929 WARN_ON(fs_devices->rw_devices);
930 fs_devices->opened = 0;
931 fs_devices->seeding = 0;
932
933 return 0;
934 }
935
936 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
937 {
938 struct btrfs_fs_devices *seed_devices = NULL;
939 int ret;
940
941 mutex_lock(&uuid_mutex);
942 ret = __btrfs_close_devices(fs_devices);
943 if (!fs_devices->opened) {
944 seed_devices = fs_devices->seed;
945 fs_devices->seed = NULL;
946 }
947 mutex_unlock(&uuid_mutex);
948
949 while (seed_devices) {
950 fs_devices = seed_devices;
951 seed_devices = fs_devices->seed;
952 __btrfs_close_devices(fs_devices);
953 free_fs_devices(fs_devices);
954 }
955 /*
956 * Wait for rcu kworkers under __btrfs_close_devices
957 * to finish all blkdev_puts so device is really
958 * free when umount is done.
959 */
960 rcu_barrier();
961 return ret;
962 }
963
964 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
965 fmode_t flags, void *holder)
966 {
967 struct request_queue *q;
968 struct block_device *bdev;
969 struct list_head *head = &fs_devices->devices;
970 struct btrfs_device *device;
971 struct btrfs_device *latest_dev = NULL;
972 struct buffer_head *bh;
973 struct btrfs_super_block *disk_super;
974 u64 devid;
975 int seeding = 1;
976 int ret = 0;
977
978 flags |= FMODE_EXCL;
979
980 list_for_each_entry(device, head, dev_list) {
981 if (device->bdev)
982 continue;
983 if (!device->name)
984 continue;
985
986 /* Just open everything we can; ignore failures here */
987 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
988 &bdev, &bh))
989 continue;
990
991 disk_super = (struct btrfs_super_block *)bh->b_data;
992 devid = btrfs_stack_device_id(&disk_super->dev_item);
993 if (devid != device->devid)
994 goto error_brelse;
995
996 if (memcmp(device->uuid, disk_super->dev_item.uuid,
997 BTRFS_UUID_SIZE))
998 goto error_brelse;
999
1000 device->generation = btrfs_super_generation(disk_super);
1001 if (!latest_dev ||
1002 device->generation > latest_dev->generation)
1003 latest_dev = device;
1004
1005 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1006 device->writeable = 0;
1007 } else {
1008 device->writeable = !bdev_read_only(bdev);
1009 seeding = 0;
1010 }
1011
1012 q = bdev_get_queue(bdev);
1013 if (blk_queue_discard(q))
1014 device->can_discard = 1;
1015 if (!blk_queue_nonrot(q))
1016 fs_devices->rotating = 1;
1017
1018 device->bdev = bdev;
1019 device->in_fs_metadata = 0;
1020 device->mode = flags;
1021
1022 fs_devices->open_devices++;
1023 if (device->writeable &&
1024 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1025 fs_devices->rw_devices++;
1026 list_add(&device->dev_alloc_list,
1027 &fs_devices->alloc_list);
1028 }
1029 brelse(bh);
1030 continue;
1031
1032 error_brelse:
1033 brelse(bh);
1034 blkdev_put(bdev, flags);
1035 continue;
1036 }
1037 if (fs_devices->open_devices == 0) {
1038 ret = -EINVAL;
1039 goto out;
1040 }
1041 fs_devices->seeding = seeding;
1042 fs_devices->opened = 1;
1043 fs_devices->latest_bdev = latest_dev->bdev;
1044 fs_devices->total_rw_bytes = 0;
1045 out:
1046 return ret;
1047 }
1048
1049 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1050 fmode_t flags, void *holder)
1051 {
1052 int ret;
1053
1054 mutex_lock(&uuid_mutex);
1055 if (fs_devices->opened) {
1056 fs_devices->opened++;
1057 ret = 0;
1058 } else {
1059 ret = __btrfs_open_devices(fs_devices, flags, holder);
1060 }
1061 mutex_unlock(&uuid_mutex);
1062 return ret;
1063 }
1064
1065 void btrfs_release_disk_super(struct page *page)
1066 {
1067 kunmap(page);
1068 put_page(page);
1069 }
1070
1071 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1072 struct page **page, struct btrfs_super_block **disk_super)
1073 {
1074 void *p;
1075 pgoff_t index;
1076
1077 /* make sure our super fits in the device */
1078 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1079 return 1;
1080
1081 /* make sure our super fits in the page */
1082 if (sizeof(**disk_super) > PAGE_SIZE)
1083 return 1;
1084
1085 /* make sure our super doesn't straddle pages on disk */
1086 index = bytenr >> PAGE_SHIFT;
1087 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1088 return 1;
1089
1090 /* pull in the page with our super */
1091 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1092 index, GFP_KERNEL);
1093
1094 if (IS_ERR_OR_NULL(*page))
1095 return 1;
1096
1097 p = kmap(*page);
1098
1099 /* align our pointer to the offset of the super block */
1100 *disk_super = p + (bytenr & ~PAGE_MASK);
1101
1102 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1103 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1104 btrfs_release_disk_super(*page);
1105 return 1;
1106 }
1107
1108 if ((*disk_super)->label[0] &&
1109 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1110 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1111
1112 return 0;
1113 }
1114
1115 /*
1116 * Look for a btrfs signature on a device. This may be called out of the mount path
1117 * and we are not allowed to call set_blocksize during the scan. The superblock
1118 * is read via pagecache
1119 */
1120 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1121 struct btrfs_fs_devices **fs_devices_ret)
1122 {
1123 struct btrfs_super_block *disk_super;
1124 struct block_device *bdev;
1125 struct page *page;
1126 int ret = -EINVAL;
1127 u64 devid;
1128 u64 transid;
1129 u64 total_devices;
1130 u64 bytenr;
1131
1132 /*
1133 * we would like to check all the supers, but that would make
1134 * a btrfs mount succeed after a mkfs from a different FS.
1135 * So, we need to add a special mount option to scan for
1136 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1137 */
1138 bytenr = btrfs_sb_offset(0);
1139 flags |= FMODE_EXCL;
1140 mutex_lock(&uuid_mutex);
1141
1142 bdev = blkdev_get_by_path(path, flags, holder);
1143 if (IS_ERR(bdev)) {
1144 ret = PTR_ERR(bdev);
1145 goto error;
1146 }
1147
1148 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1149 goto error_bdev_put;
1150
1151 devid = btrfs_stack_device_id(&disk_super->dev_item);
1152 transid = btrfs_super_generation(disk_super);
1153 total_devices = btrfs_super_num_devices(disk_super);
1154
1155 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1156 if (ret > 0) {
1157 if (disk_super->label[0]) {
1158 pr_info("BTRFS: device label %s ", disk_super->label);
1159 } else {
1160 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1161 }
1162
1163 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1164 ret = 0;
1165 }
1166 if (!ret && fs_devices_ret)
1167 (*fs_devices_ret)->total_devices = total_devices;
1168
1169 btrfs_release_disk_super(page);
1170
1171 error_bdev_put:
1172 blkdev_put(bdev, flags);
1173 error:
1174 mutex_unlock(&uuid_mutex);
1175 return ret;
1176 }
1177
1178 /* helper to account the used device space in the range */
1179 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1180 u64 end, u64 *length)
1181 {
1182 struct btrfs_key key;
1183 struct btrfs_root *root = device->fs_info->dev_root;
1184 struct btrfs_dev_extent *dev_extent;
1185 struct btrfs_path *path;
1186 u64 extent_end;
1187 int ret;
1188 int slot;
1189 struct extent_buffer *l;
1190
1191 *length = 0;
1192
1193 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1194 return 0;
1195
1196 path = btrfs_alloc_path();
1197 if (!path)
1198 return -ENOMEM;
1199 path->reada = READA_FORWARD;
1200
1201 key.objectid = device->devid;
1202 key.offset = start;
1203 key.type = BTRFS_DEV_EXTENT_KEY;
1204
1205 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1206 if (ret < 0)
1207 goto out;
1208 if (ret > 0) {
1209 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1210 if (ret < 0)
1211 goto out;
1212 }
1213
1214 while (1) {
1215 l = path->nodes[0];
1216 slot = path->slots[0];
1217 if (slot >= btrfs_header_nritems(l)) {
1218 ret = btrfs_next_leaf(root, path);
1219 if (ret == 0)
1220 continue;
1221 if (ret < 0)
1222 goto out;
1223
1224 break;
1225 }
1226 btrfs_item_key_to_cpu(l, &key, slot);
1227
1228 if (key.objectid < device->devid)
1229 goto next;
1230
1231 if (key.objectid > device->devid)
1232 break;
1233
1234 if (key.type != BTRFS_DEV_EXTENT_KEY)
1235 goto next;
1236
1237 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1238 extent_end = key.offset + btrfs_dev_extent_length(l,
1239 dev_extent);
1240 if (key.offset <= start && extent_end > end) {
1241 *length = end - start + 1;
1242 break;
1243 } else if (key.offset <= start && extent_end > start)
1244 *length += extent_end - start;
1245 else if (key.offset > start && extent_end <= end)
1246 *length += extent_end - key.offset;
1247 else if (key.offset > start && key.offset <= end) {
1248 *length += end - key.offset + 1;
1249 break;
1250 } else if (key.offset > end)
1251 break;
1252
1253 next:
1254 path->slots[0]++;
1255 }
1256 ret = 0;
1257 out:
1258 btrfs_free_path(path);
1259 return ret;
1260 }
1261
1262 static int contains_pending_extent(struct btrfs_transaction *transaction,
1263 struct btrfs_device *device,
1264 u64 *start, u64 len)
1265 {
1266 struct btrfs_fs_info *fs_info = device->fs_info;
1267 struct extent_map *em;
1268 struct list_head *search_list = &fs_info->pinned_chunks;
1269 int ret = 0;
1270 u64 physical_start = *start;
1271
1272 if (transaction)
1273 search_list = &transaction->pending_chunks;
1274 again:
1275 list_for_each_entry(em, search_list, list) {
1276 struct map_lookup *map;
1277 int i;
1278
1279 map = em->map_lookup;
1280 for (i = 0; i < map->num_stripes; i++) {
1281 u64 end;
1282
1283 if (map->stripes[i].dev != device)
1284 continue;
1285 if (map->stripes[i].physical >= physical_start + len ||
1286 map->stripes[i].physical + em->orig_block_len <=
1287 physical_start)
1288 continue;
1289 /*
1290 * Make sure that while processing the pinned list we do
1291 * not override our *start with a lower value, because
1292 * we can have pinned chunks that fall within this
1293 * device hole and that have lower physical addresses
1294 * than the pending chunks we processed before. If we
1295 * do not take this special care we can end up getting
1296 * 2 pending chunks that start at the same physical
1297 * device offsets because the end offset of a pinned
1298 * chunk can be equal to the start offset of some
1299 * pending chunk.
1300 */
1301 end = map->stripes[i].physical + em->orig_block_len;
1302 if (end > *start) {
1303 *start = end;
1304 ret = 1;
1305 }
1306 }
1307 }
1308 if (search_list != &fs_info->pinned_chunks) {
1309 search_list = &fs_info->pinned_chunks;
1310 goto again;
1311 }
1312
1313 return ret;
1314 }
1315
1316
1317 /*
1318 * find_free_dev_extent_start - find free space in the specified device
1319 * @device: the device which we search the free space in
1320 * @num_bytes: the size of the free space that we need
1321 * @search_start: the position from which to begin the search
1322 * @start: store the start of the free space.
1323 * @len: the size of the free space. that we find, or the size
1324 * of the max free space if we don't find suitable free space
1325 *
1326 * this uses a pretty simple search, the expectation is that it is
1327 * called very infrequently and that a given device has a small number
1328 * of extents
1329 *
1330 * @start is used to store the start of the free space if we find. But if we
1331 * don't find suitable free space, it will be used to store the start position
1332 * of the max free space.
1333 *
1334 * @len is used to store the size of the free space that we find.
1335 * But if we don't find suitable free space, it is used to store the size of
1336 * the max free space.
1337 */
1338 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1339 struct btrfs_device *device, u64 num_bytes,
1340 u64 search_start, u64 *start, u64 *len)
1341 {
1342 struct btrfs_fs_info *fs_info = device->fs_info;
1343 struct btrfs_root *root = fs_info->dev_root;
1344 struct btrfs_key key;
1345 struct btrfs_dev_extent *dev_extent;
1346 struct btrfs_path *path;
1347 u64 hole_size;
1348 u64 max_hole_start;
1349 u64 max_hole_size;
1350 u64 extent_end;
1351 u64 search_end = device->total_bytes;
1352 int ret;
1353 int slot;
1354 struct extent_buffer *l;
1355
1356 /*
1357 * We don't want to overwrite the superblock on the drive nor any area
1358 * used by the boot loader (grub for example), so we make sure to start
1359 * at an offset of at least 1MB.
1360 */
1361 search_start = max_t(u64, search_start, SZ_1M);
1362
1363 path = btrfs_alloc_path();
1364 if (!path)
1365 return -ENOMEM;
1366
1367 max_hole_start = search_start;
1368 max_hole_size = 0;
1369
1370 again:
1371 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1372 ret = -ENOSPC;
1373 goto out;
1374 }
1375
1376 path->reada = READA_FORWARD;
1377 path->search_commit_root = 1;
1378 path->skip_locking = 1;
1379
1380 key.objectid = device->devid;
1381 key.offset = search_start;
1382 key.type = BTRFS_DEV_EXTENT_KEY;
1383
1384 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1385 if (ret < 0)
1386 goto out;
1387 if (ret > 0) {
1388 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1389 if (ret < 0)
1390 goto out;
1391 }
1392
1393 while (1) {
1394 l = path->nodes[0];
1395 slot = path->slots[0];
1396 if (slot >= btrfs_header_nritems(l)) {
1397 ret = btrfs_next_leaf(root, path);
1398 if (ret == 0)
1399 continue;
1400 if (ret < 0)
1401 goto out;
1402
1403 break;
1404 }
1405 btrfs_item_key_to_cpu(l, &key, slot);
1406
1407 if (key.objectid < device->devid)
1408 goto next;
1409
1410 if (key.objectid > device->devid)
1411 break;
1412
1413 if (key.type != BTRFS_DEV_EXTENT_KEY)
1414 goto next;
1415
1416 if (key.offset > search_start) {
1417 hole_size = key.offset - search_start;
1418
1419 /*
1420 * Have to check before we set max_hole_start, otherwise
1421 * we could end up sending back this offset anyway.
1422 */
1423 if (contains_pending_extent(transaction, device,
1424 &search_start,
1425 hole_size)) {
1426 if (key.offset >= search_start) {
1427 hole_size = key.offset - search_start;
1428 } else {
1429 WARN_ON_ONCE(1);
1430 hole_size = 0;
1431 }
1432 }
1433
1434 if (hole_size > max_hole_size) {
1435 max_hole_start = search_start;
1436 max_hole_size = hole_size;
1437 }
1438
1439 /*
1440 * If this free space is greater than which we need,
1441 * it must be the max free space that we have found
1442 * until now, so max_hole_start must point to the start
1443 * of this free space and the length of this free space
1444 * is stored in max_hole_size. Thus, we return
1445 * max_hole_start and max_hole_size and go back to the
1446 * caller.
1447 */
1448 if (hole_size >= num_bytes) {
1449 ret = 0;
1450 goto out;
1451 }
1452 }
1453
1454 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1455 extent_end = key.offset + btrfs_dev_extent_length(l,
1456 dev_extent);
1457 if (extent_end > search_start)
1458 search_start = extent_end;
1459 next:
1460 path->slots[0]++;
1461 cond_resched();
1462 }
1463
1464 /*
1465 * At this point, search_start should be the end of
1466 * allocated dev extents, and when shrinking the device,
1467 * search_end may be smaller than search_start.
1468 */
1469 if (search_end > search_start) {
1470 hole_size = search_end - search_start;
1471
1472 if (contains_pending_extent(transaction, device, &search_start,
1473 hole_size)) {
1474 btrfs_release_path(path);
1475 goto again;
1476 }
1477
1478 if (hole_size > max_hole_size) {
1479 max_hole_start = search_start;
1480 max_hole_size = hole_size;
1481 }
1482 }
1483
1484 /* See above. */
1485 if (max_hole_size < num_bytes)
1486 ret = -ENOSPC;
1487 else
1488 ret = 0;
1489
1490 out:
1491 btrfs_free_path(path);
1492 *start = max_hole_start;
1493 if (len)
1494 *len = max_hole_size;
1495 return ret;
1496 }
1497
1498 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1499 struct btrfs_device *device, u64 num_bytes,
1500 u64 *start, u64 *len)
1501 {
1502 /* FIXME use last free of some kind */
1503 return find_free_dev_extent_start(trans->transaction, device,
1504 num_bytes, 0, start, len);
1505 }
1506
1507 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1508 struct btrfs_device *device,
1509 u64 start, u64 *dev_extent_len)
1510 {
1511 struct btrfs_fs_info *fs_info = device->fs_info;
1512 struct btrfs_root *root = fs_info->dev_root;
1513 int ret;
1514 struct btrfs_path *path;
1515 struct btrfs_key key;
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 key.objectid = device->devid;
1525 key.offset = start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
1527 again:
1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1529 if (ret > 0) {
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
1532 if (ret)
1533 goto out;
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
1540 key = found_key;
1541 btrfs_release_path(path);
1542 goto again;
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
1547 } else {
1548 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1549 goto out;
1550 }
1551
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553
1554 ret = btrfs_del_item(trans, root, path);
1555 if (ret) {
1556 btrfs_handle_fs_error(fs_info, ret,
1557 "Failed to remove dev extent item");
1558 } else {
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1560 }
1561 out:
1562 btrfs_free_path(path);
1563 return ret;
1564 }
1565
1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_offset, u64 start, u64 num_bytes)
1569 {
1570 int ret;
1571 struct btrfs_path *path;
1572 struct btrfs_fs_info *fs_info = device->fs_info;
1573 struct btrfs_root *root = fs_info->dev_root;
1574 struct btrfs_dev_extent *extent;
1575 struct extent_buffer *leaf;
1576 struct btrfs_key key;
1577
1578 WARN_ON(!device->in_fs_metadata);
1579 WARN_ON(device->is_tgtdev_for_dev_replace);
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
1584 key.objectid = device->devid;
1585 key.offset = start;
1586 key.type = BTRFS_DEV_EXTENT_KEY;
1587 ret = btrfs_insert_empty_item(trans, root, path, &key,
1588 sizeof(*extent));
1589 if (ret)
1590 goto out;
1591
1592 leaf = path->nodes[0];
1593 extent = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_dev_extent);
1595 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1596 BTRFS_CHUNK_TREE_OBJECTID);
1597 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1598 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1599 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1600
1601 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1602 btrfs_mark_buffer_dirty(leaf);
1603 out:
1604 btrfs_free_path(path);
1605 return ret;
1606 }
1607
1608 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1609 {
1610 struct extent_map_tree *em_tree;
1611 struct extent_map *em;
1612 struct rb_node *n;
1613 u64 ret = 0;
1614
1615 em_tree = &fs_info->mapping_tree.map_tree;
1616 read_lock(&em_tree->lock);
1617 n = rb_last(&em_tree->map);
1618 if (n) {
1619 em = rb_entry(n, struct extent_map, rb_node);
1620 ret = em->start + em->len;
1621 }
1622 read_unlock(&em_tree->lock);
1623
1624 return ret;
1625 }
1626
1627 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1628 u64 *devid_ret)
1629 {
1630 int ret;
1631 struct btrfs_key key;
1632 struct btrfs_key found_key;
1633 struct btrfs_path *path;
1634
1635 path = btrfs_alloc_path();
1636 if (!path)
1637 return -ENOMEM;
1638
1639 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1640 key.type = BTRFS_DEV_ITEM_KEY;
1641 key.offset = (u64)-1;
1642
1643 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1644 if (ret < 0)
1645 goto error;
1646
1647 BUG_ON(ret == 0); /* Corruption */
1648
1649 ret = btrfs_previous_item(fs_info->chunk_root, path,
1650 BTRFS_DEV_ITEMS_OBJECTID,
1651 BTRFS_DEV_ITEM_KEY);
1652 if (ret) {
1653 *devid_ret = 1;
1654 } else {
1655 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1656 path->slots[0]);
1657 *devid_ret = found_key.offset + 1;
1658 }
1659 ret = 0;
1660 error:
1661 btrfs_free_path(path);
1662 return ret;
1663 }
1664
1665 /*
1666 * the device information is stored in the chunk root
1667 * the btrfs_device struct should be fully filled in
1668 */
1669 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1670 struct btrfs_fs_info *fs_info,
1671 struct btrfs_device *device)
1672 {
1673 struct btrfs_root *root = fs_info->chunk_root;
1674 int ret;
1675 struct btrfs_path *path;
1676 struct btrfs_dev_item *dev_item;
1677 struct extent_buffer *leaf;
1678 struct btrfs_key key;
1679 unsigned long ptr;
1680
1681 path = btrfs_alloc_path();
1682 if (!path)
1683 return -ENOMEM;
1684
1685 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1686 key.type = BTRFS_DEV_ITEM_KEY;
1687 key.offset = device->devid;
1688
1689 ret = btrfs_insert_empty_item(trans, root, path, &key,
1690 sizeof(*dev_item));
1691 if (ret)
1692 goto out;
1693
1694 leaf = path->nodes[0];
1695 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1696
1697 btrfs_set_device_id(leaf, dev_item, device->devid);
1698 btrfs_set_device_generation(leaf, dev_item, 0);
1699 btrfs_set_device_type(leaf, dev_item, device->type);
1700 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1701 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1702 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1703 btrfs_set_device_total_bytes(leaf, dev_item,
1704 btrfs_device_get_disk_total_bytes(device));
1705 btrfs_set_device_bytes_used(leaf, dev_item,
1706 btrfs_device_get_bytes_used(device));
1707 btrfs_set_device_group(leaf, dev_item, 0);
1708 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1709 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1710 btrfs_set_device_start_offset(leaf, dev_item, 0);
1711
1712 ptr = btrfs_device_uuid(dev_item);
1713 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1714 ptr = btrfs_device_fsid(dev_item);
1715 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1716 btrfs_mark_buffer_dirty(leaf);
1717
1718 ret = 0;
1719 out:
1720 btrfs_free_path(path);
1721 return ret;
1722 }
1723
1724 /*
1725 * Function to update ctime/mtime for a given device path.
1726 * Mainly used for ctime/mtime based probe like libblkid.
1727 */
1728 static void update_dev_time(const char *path_name)
1729 {
1730 struct file *filp;
1731
1732 filp = filp_open(path_name, O_RDWR, 0);
1733 if (IS_ERR(filp))
1734 return;
1735 file_update_time(filp);
1736 filp_close(filp, NULL);
1737 }
1738
1739 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1740 struct btrfs_device *device)
1741 {
1742 struct btrfs_root *root = fs_info->chunk_root;
1743 int ret;
1744 struct btrfs_path *path;
1745 struct btrfs_key key;
1746 struct btrfs_trans_handle *trans;
1747
1748 path = btrfs_alloc_path();
1749 if (!path)
1750 return -ENOMEM;
1751
1752 trans = btrfs_start_transaction(root, 0);
1753 if (IS_ERR(trans)) {
1754 btrfs_free_path(path);
1755 return PTR_ERR(trans);
1756 }
1757 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1758 key.type = BTRFS_DEV_ITEM_KEY;
1759 key.offset = device->devid;
1760
1761 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1762 if (ret < 0)
1763 goto out;
1764
1765 if (ret > 0) {
1766 ret = -ENOENT;
1767 goto out;
1768 }
1769
1770 ret = btrfs_del_item(trans, root, path);
1771 if (ret)
1772 goto out;
1773 out:
1774 btrfs_free_path(path);
1775 btrfs_commit_transaction(trans);
1776 return ret;
1777 }
1778
1779 /*
1780 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1781 * filesystem. It's up to the caller to adjust that number regarding eg. device
1782 * replace.
1783 */
1784 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1785 u64 num_devices)
1786 {
1787 u64 all_avail;
1788 unsigned seq;
1789 int i;
1790
1791 do {
1792 seq = read_seqbegin(&fs_info->profiles_lock);
1793
1794 all_avail = fs_info->avail_data_alloc_bits |
1795 fs_info->avail_system_alloc_bits |
1796 fs_info->avail_metadata_alloc_bits;
1797 } while (read_seqretry(&fs_info->profiles_lock, seq));
1798
1799 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1800 if (!(all_avail & btrfs_raid_group[i]))
1801 continue;
1802
1803 if (num_devices < btrfs_raid_array[i].devs_min) {
1804 int ret = btrfs_raid_mindev_error[i];
1805
1806 if (ret)
1807 return ret;
1808 }
1809 }
1810
1811 return 0;
1812 }
1813
1814 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1815 struct btrfs_device *device)
1816 {
1817 struct btrfs_device *next_device;
1818
1819 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1820 if (next_device != device &&
1821 !next_device->missing && next_device->bdev)
1822 return next_device;
1823 }
1824
1825 return NULL;
1826 }
1827
1828 /*
1829 * Helper function to check if the given device is part of s_bdev / latest_bdev
1830 * and replace it with the provided or the next active device, in the context
1831 * where this function called, there should be always be another device (or
1832 * this_dev) which is active.
1833 */
1834 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1835 struct btrfs_device *device, struct btrfs_device *this_dev)
1836 {
1837 struct btrfs_device *next_device;
1838
1839 if (this_dev)
1840 next_device = this_dev;
1841 else
1842 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1843 device);
1844 ASSERT(next_device);
1845
1846 if (fs_info->sb->s_bdev &&
1847 (fs_info->sb->s_bdev == device->bdev))
1848 fs_info->sb->s_bdev = next_device->bdev;
1849
1850 if (fs_info->fs_devices->latest_bdev == device->bdev)
1851 fs_info->fs_devices->latest_bdev = next_device->bdev;
1852 }
1853
1854 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1855 u64 devid)
1856 {
1857 struct btrfs_device *device;
1858 struct btrfs_fs_devices *cur_devices;
1859 u64 num_devices;
1860 int ret = 0;
1861
1862 mutex_lock(&uuid_mutex);
1863
1864 num_devices = fs_info->fs_devices->num_devices;
1865 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1866 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1867 WARN_ON(num_devices < 1);
1868 num_devices--;
1869 }
1870 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1871
1872 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1873 if (ret)
1874 goto out;
1875
1876 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1877 &device);
1878 if (ret)
1879 goto out;
1880
1881 if (device->is_tgtdev_for_dev_replace) {
1882 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1883 goto out;
1884 }
1885
1886 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1887 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1888 goto out;
1889 }
1890
1891 if (device->writeable) {
1892 mutex_lock(&fs_info->chunk_mutex);
1893 list_del_init(&device->dev_alloc_list);
1894 device->fs_devices->rw_devices--;
1895 mutex_unlock(&fs_info->chunk_mutex);
1896 }
1897
1898 mutex_unlock(&uuid_mutex);
1899 ret = btrfs_shrink_device(device, 0);
1900 mutex_lock(&uuid_mutex);
1901 if (ret)
1902 goto error_undo;
1903
1904 /*
1905 * TODO: the superblock still includes this device in its num_devices
1906 * counter although write_all_supers() is not locked out. This
1907 * could give a filesystem state which requires a degraded mount.
1908 */
1909 ret = btrfs_rm_dev_item(fs_info, device);
1910 if (ret)
1911 goto error_undo;
1912
1913 device->in_fs_metadata = 0;
1914 btrfs_scrub_cancel_dev(fs_info, device);
1915
1916 /*
1917 * the device list mutex makes sure that we don't change
1918 * the device list while someone else is writing out all
1919 * the device supers. Whoever is writing all supers, should
1920 * lock the device list mutex before getting the number of
1921 * devices in the super block (super_copy). Conversely,
1922 * whoever updates the number of devices in the super block
1923 * (super_copy) should hold the device list mutex.
1924 */
1925
1926 cur_devices = device->fs_devices;
1927 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1928 list_del_rcu(&device->dev_list);
1929
1930 device->fs_devices->num_devices--;
1931 device->fs_devices->total_devices--;
1932
1933 if (device->missing)
1934 device->fs_devices->missing_devices--;
1935
1936 btrfs_assign_next_active_device(fs_info, device, NULL);
1937
1938 if (device->bdev) {
1939 device->fs_devices->open_devices--;
1940 /* remove sysfs entry */
1941 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1942 }
1943
1944 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1945 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1946 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1947
1948 /*
1949 * at this point, the device is zero sized and detached from
1950 * the devices list. All that's left is to zero out the old
1951 * supers and free the device.
1952 */
1953 if (device->writeable)
1954 btrfs_scratch_superblocks(device->bdev, device->name->str);
1955
1956 btrfs_close_bdev(device);
1957 call_rcu(&device->rcu, free_device);
1958
1959 if (cur_devices->open_devices == 0) {
1960 struct btrfs_fs_devices *fs_devices;
1961 fs_devices = fs_info->fs_devices;
1962 while (fs_devices) {
1963 if (fs_devices->seed == cur_devices) {
1964 fs_devices->seed = cur_devices->seed;
1965 break;
1966 }
1967 fs_devices = fs_devices->seed;
1968 }
1969 cur_devices->seed = NULL;
1970 __btrfs_close_devices(cur_devices);
1971 free_fs_devices(cur_devices);
1972 }
1973
1974 out:
1975 mutex_unlock(&uuid_mutex);
1976 return ret;
1977
1978 error_undo:
1979 if (device->writeable) {
1980 mutex_lock(&fs_info->chunk_mutex);
1981 list_add(&device->dev_alloc_list,
1982 &fs_info->fs_devices->alloc_list);
1983 device->fs_devices->rw_devices++;
1984 mutex_unlock(&fs_info->chunk_mutex);
1985 }
1986 goto out;
1987 }
1988
1989 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1990 struct btrfs_device *srcdev)
1991 {
1992 struct btrfs_fs_devices *fs_devices;
1993
1994 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1995
1996 /*
1997 * in case of fs with no seed, srcdev->fs_devices will point
1998 * to fs_devices of fs_info. However when the dev being replaced is
1999 * a seed dev it will point to the seed's local fs_devices. In short
2000 * srcdev will have its correct fs_devices in both the cases.
2001 */
2002 fs_devices = srcdev->fs_devices;
2003
2004 list_del_rcu(&srcdev->dev_list);
2005 list_del_rcu(&srcdev->dev_alloc_list);
2006 fs_devices->num_devices--;
2007 if (srcdev->missing)
2008 fs_devices->missing_devices--;
2009
2010 if (srcdev->writeable)
2011 fs_devices->rw_devices--;
2012
2013 if (srcdev->bdev)
2014 fs_devices->open_devices--;
2015 }
2016
2017 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2018 struct btrfs_device *srcdev)
2019 {
2020 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2021
2022 if (srcdev->writeable) {
2023 /* zero out the old super if it is writable */
2024 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2025 }
2026
2027 btrfs_close_bdev(srcdev);
2028
2029 call_rcu(&srcdev->rcu, free_device);
2030
2031 /*
2032 * unless fs_devices is seed fs, num_devices shouldn't go
2033 * zero
2034 */
2035 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2036
2037 /* if this is no devs we rather delete the fs_devices */
2038 if (!fs_devices->num_devices) {
2039 struct btrfs_fs_devices *tmp_fs_devices;
2040
2041 tmp_fs_devices = fs_info->fs_devices;
2042 while (tmp_fs_devices) {
2043 if (tmp_fs_devices->seed == fs_devices) {
2044 tmp_fs_devices->seed = fs_devices->seed;
2045 break;
2046 }
2047 tmp_fs_devices = tmp_fs_devices->seed;
2048 }
2049 fs_devices->seed = NULL;
2050 __btrfs_close_devices(fs_devices);
2051 free_fs_devices(fs_devices);
2052 }
2053 }
2054
2055 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2056 struct btrfs_device *tgtdev)
2057 {
2058 mutex_lock(&uuid_mutex);
2059 WARN_ON(!tgtdev);
2060 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2061
2062 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2063
2064 if (tgtdev->bdev)
2065 fs_info->fs_devices->open_devices--;
2066
2067 fs_info->fs_devices->num_devices--;
2068
2069 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2070
2071 list_del_rcu(&tgtdev->dev_list);
2072
2073 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2074 mutex_unlock(&uuid_mutex);
2075
2076 /*
2077 * The update_dev_time() with in btrfs_scratch_superblocks()
2078 * may lead to a call to btrfs_show_devname() which will try
2079 * to hold device_list_mutex. And here this device
2080 * is already out of device list, so we don't have to hold
2081 * the device_list_mutex lock.
2082 */
2083 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2084
2085 btrfs_close_bdev(tgtdev);
2086 call_rcu(&tgtdev->rcu, free_device);
2087 }
2088
2089 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2090 const char *device_path,
2091 struct btrfs_device **device)
2092 {
2093 int ret = 0;
2094 struct btrfs_super_block *disk_super;
2095 u64 devid;
2096 u8 *dev_uuid;
2097 struct block_device *bdev;
2098 struct buffer_head *bh;
2099
2100 *device = NULL;
2101 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2102 fs_info->bdev_holder, 0, &bdev, &bh);
2103 if (ret)
2104 return ret;
2105 disk_super = (struct btrfs_super_block *)bh->b_data;
2106 devid = btrfs_stack_device_id(&disk_super->dev_item);
2107 dev_uuid = disk_super->dev_item.uuid;
2108 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2109 brelse(bh);
2110 if (!*device)
2111 ret = -ENOENT;
2112 blkdev_put(bdev, FMODE_READ);
2113 return ret;
2114 }
2115
2116 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2117 const char *device_path,
2118 struct btrfs_device **device)
2119 {
2120 *device = NULL;
2121 if (strcmp(device_path, "missing") == 0) {
2122 struct list_head *devices;
2123 struct btrfs_device *tmp;
2124
2125 devices = &fs_info->fs_devices->devices;
2126 /*
2127 * It is safe to read the devices since the volume_mutex
2128 * is held by the caller.
2129 */
2130 list_for_each_entry(tmp, devices, dev_list) {
2131 if (tmp->in_fs_metadata && !tmp->bdev) {
2132 *device = tmp;
2133 break;
2134 }
2135 }
2136
2137 if (!*device)
2138 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2139
2140 return 0;
2141 } else {
2142 return btrfs_find_device_by_path(fs_info, device_path, device);
2143 }
2144 }
2145
2146 /*
2147 * Lookup a device given by device id, or the path if the id is 0.
2148 */
2149 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2150 const char *devpath,
2151 struct btrfs_device **device)
2152 {
2153 int ret;
2154
2155 if (devid) {
2156 ret = 0;
2157 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2158 if (!*device)
2159 ret = -ENOENT;
2160 } else {
2161 if (!devpath || !devpath[0])
2162 return -EINVAL;
2163
2164 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2165 device);
2166 }
2167 return ret;
2168 }
2169
2170 /*
2171 * does all the dirty work required for changing file system's UUID.
2172 */
2173 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2174 {
2175 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2176 struct btrfs_fs_devices *old_devices;
2177 struct btrfs_fs_devices *seed_devices;
2178 struct btrfs_super_block *disk_super = fs_info->super_copy;
2179 struct btrfs_device *device;
2180 u64 super_flags;
2181
2182 BUG_ON(!mutex_is_locked(&uuid_mutex));
2183 if (!fs_devices->seeding)
2184 return -EINVAL;
2185
2186 seed_devices = alloc_fs_devices(NULL);
2187 if (IS_ERR(seed_devices))
2188 return PTR_ERR(seed_devices);
2189
2190 old_devices = clone_fs_devices(fs_devices);
2191 if (IS_ERR(old_devices)) {
2192 kfree(seed_devices);
2193 return PTR_ERR(old_devices);
2194 }
2195
2196 list_add(&old_devices->list, &fs_uuids);
2197
2198 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2199 seed_devices->opened = 1;
2200 INIT_LIST_HEAD(&seed_devices->devices);
2201 INIT_LIST_HEAD(&seed_devices->alloc_list);
2202 mutex_init(&seed_devices->device_list_mutex);
2203
2204 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2205 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2206 synchronize_rcu);
2207 list_for_each_entry(device, &seed_devices->devices, dev_list)
2208 device->fs_devices = seed_devices;
2209
2210 mutex_lock(&fs_info->chunk_mutex);
2211 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2212 mutex_unlock(&fs_info->chunk_mutex);
2213
2214 fs_devices->seeding = 0;
2215 fs_devices->num_devices = 0;
2216 fs_devices->open_devices = 0;
2217 fs_devices->missing_devices = 0;
2218 fs_devices->rotating = 0;
2219 fs_devices->seed = seed_devices;
2220
2221 generate_random_uuid(fs_devices->fsid);
2222 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2223 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2224 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2225
2226 super_flags = btrfs_super_flags(disk_super) &
2227 ~BTRFS_SUPER_FLAG_SEEDING;
2228 btrfs_set_super_flags(disk_super, super_flags);
2229
2230 return 0;
2231 }
2232
2233 /*
2234 * Store the expected generation for seed devices in device items.
2235 */
2236 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2237 struct btrfs_fs_info *fs_info)
2238 {
2239 struct btrfs_root *root = fs_info->chunk_root;
2240 struct btrfs_path *path;
2241 struct extent_buffer *leaf;
2242 struct btrfs_dev_item *dev_item;
2243 struct btrfs_device *device;
2244 struct btrfs_key key;
2245 u8 fs_uuid[BTRFS_FSID_SIZE];
2246 u8 dev_uuid[BTRFS_UUID_SIZE];
2247 u64 devid;
2248 int ret;
2249
2250 path = btrfs_alloc_path();
2251 if (!path)
2252 return -ENOMEM;
2253
2254 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2255 key.offset = 0;
2256 key.type = BTRFS_DEV_ITEM_KEY;
2257
2258 while (1) {
2259 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2260 if (ret < 0)
2261 goto error;
2262
2263 leaf = path->nodes[0];
2264 next_slot:
2265 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 break;
2269 if (ret < 0)
2270 goto error;
2271 leaf = path->nodes[0];
2272 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2273 btrfs_release_path(path);
2274 continue;
2275 }
2276
2277 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2278 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2279 key.type != BTRFS_DEV_ITEM_KEY)
2280 break;
2281
2282 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2283 struct btrfs_dev_item);
2284 devid = btrfs_device_id(leaf, dev_item);
2285 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2286 BTRFS_UUID_SIZE);
2287 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2288 BTRFS_FSID_SIZE);
2289 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2290 BUG_ON(!device); /* Logic error */
2291
2292 if (device->fs_devices->seeding) {
2293 btrfs_set_device_generation(leaf, dev_item,
2294 device->generation);
2295 btrfs_mark_buffer_dirty(leaf);
2296 }
2297
2298 path->slots[0]++;
2299 goto next_slot;
2300 }
2301 ret = 0;
2302 error:
2303 btrfs_free_path(path);
2304 return ret;
2305 }
2306
2307 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2308 {
2309 struct btrfs_root *root = fs_info->dev_root;
2310 struct request_queue *q;
2311 struct btrfs_trans_handle *trans;
2312 struct btrfs_device *device;
2313 struct block_device *bdev;
2314 struct list_head *devices;
2315 struct super_block *sb = fs_info->sb;
2316 struct rcu_string *name;
2317 u64 tmp;
2318 int seeding_dev = 0;
2319 int ret = 0;
2320
2321 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2322 return -EROFS;
2323
2324 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2325 fs_info->bdev_holder);
2326 if (IS_ERR(bdev))
2327 return PTR_ERR(bdev);
2328
2329 if (fs_info->fs_devices->seeding) {
2330 seeding_dev = 1;
2331 down_write(&sb->s_umount);
2332 mutex_lock(&uuid_mutex);
2333 }
2334
2335 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2336
2337 devices = &fs_info->fs_devices->devices;
2338
2339 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2340 list_for_each_entry(device, devices, dev_list) {
2341 if (device->bdev == bdev) {
2342 ret = -EEXIST;
2343 mutex_unlock(
2344 &fs_info->fs_devices->device_list_mutex);
2345 goto error;
2346 }
2347 }
2348 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2349
2350 device = btrfs_alloc_device(fs_info, NULL, NULL);
2351 if (IS_ERR(device)) {
2352 /* we can safely leave the fs_devices entry around */
2353 ret = PTR_ERR(device);
2354 goto error;
2355 }
2356
2357 name = rcu_string_strdup(device_path, GFP_KERNEL);
2358 if (!name) {
2359 kfree(device);
2360 ret = -ENOMEM;
2361 goto error;
2362 }
2363 rcu_assign_pointer(device->name, name);
2364
2365 trans = btrfs_start_transaction(root, 0);
2366 if (IS_ERR(trans)) {
2367 rcu_string_free(device->name);
2368 kfree(device);
2369 ret = PTR_ERR(trans);
2370 goto error;
2371 }
2372
2373 q = bdev_get_queue(bdev);
2374 if (blk_queue_discard(q))
2375 device->can_discard = 1;
2376 device->writeable = 1;
2377 device->generation = trans->transid;
2378 device->io_width = fs_info->sectorsize;
2379 device->io_align = fs_info->sectorsize;
2380 device->sector_size = fs_info->sectorsize;
2381 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2382 fs_info->sectorsize);
2383 device->disk_total_bytes = device->total_bytes;
2384 device->commit_total_bytes = device->total_bytes;
2385 device->fs_info = fs_info;
2386 device->bdev = bdev;
2387 device->in_fs_metadata = 1;
2388 device->is_tgtdev_for_dev_replace = 0;
2389 device->mode = FMODE_EXCL;
2390 device->dev_stats_valid = 1;
2391 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2392
2393 if (seeding_dev) {
2394 sb->s_flags &= ~MS_RDONLY;
2395 ret = btrfs_prepare_sprout(fs_info);
2396 BUG_ON(ret); /* -ENOMEM */
2397 }
2398
2399 device->fs_devices = fs_info->fs_devices;
2400
2401 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2402 mutex_lock(&fs_info->chunk_mutex);
2403 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2404 list_add(&device->dev_alloc_list,
2405 &fs_info->fs_devices->alloc_list);
2406 fs_info->fs_devices->num_devices++;
2407 fs_info->fs_devices->open_devices++;
2408 fs_info->fs_devices->rw_devices++;
2409 fs_info->fs_devices->total_devices++;
2410 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2411
2412 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2413
2414 if (!blk_queue_nonrot(q))
2415 fs_info->fs_devices->rotating = 1;
2416
2417 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2418 btrfs_set_super_total_bytes(fs_info->super_copy,
2419 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2420
2421 tmp = btrfs_super_num_devices(fs_info->super_copy);
2422 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2423
2424 /* add sysfs device entry */
2425 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2426
2427 /*
2428 * we've got more storage, clear any full flags on the space
2429 * infos
2430 */
2431 btrfs_clear_space_info_full(fs_info);
2432
2433 mutex_unlock(&fs_info->chunk_mutex);
2434 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2435
2436 if (seeding_dev) {
2437 mutex_lock(&fs_info->chunk_mutex);
2438 ret = init_first_rw_device(trans, fs_info);
2439 mutex_unlock(&fs_info->chunk_mutex);
2440 if (ret) {
2441 btrfs_abort_transaction(trans, ret);
2442 goto error_trans;
2443 }
2444 }
2445
2446 ret = btrfs_add_device(trans, fs_info, device);
2447 if (ret) {
2448 btrfs_abort_transaction(trans, ret);
2449 goto error_trans;
2450 }
2451
2452 if (seeding_dev) {
2453 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2454
2455 ret = btrfs_finish_sprout(trans, fs_info);
2456 if (ret) {
2457 btrfs_abort_transaction(trans, ret);
2458 goto error_trans;
2459 }
2460
2461 /* Sprouting would change fsid of the mounted root,
2462 * so rename the fsid on the sysfs
2463 */
2464 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2465 fs_info->fsid);
2466 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2467 btrfs_warn(fs_info,
2468 "sysfs: failed to create fsid for sprout");
2469 }
2470
2471 ret = btrfs_commit_transaction(trans);
2472
2473 if (seeding_dev) {
2474 mutex_unlock(&uuid_mutex);
2475 up_write(&sb->s_umount);
2476
2477 if (ret) /* transaction commit */
2478 return ret;
2479
2480 ret = btrfs_relocate_sys_chunks(fs_info);
2481 if (ret < 0)
2482 btrfs_handle_fs_error(fs_info, ret,
2483 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2484 trans = btrfs_attach_transaction(root);
2485 if (IS_ERR(trans)) {
2486 if (PTR_ERR(trans) == -ENOENT)
2487 return 0;
2488 return PTR_ERR(trans);
2489 }
2490 ret = btrfs_commit_transaction(trans);
2491 }
2492
2493 /* Update ctime/mtime for libblkid */
2494 update_dev_time(device_path);
2495 return ret;
2496
2497 error_trans:
2498 btrfs_end_transaction(trans);
2499 rcu_string_free(device->name);
2500 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2501 kfree(device);
2502 error:
2503 blkdev_put(bdev, FMODE_EXCL);
2504 if (seeding_dev) {
2505 mutex_unlock(&uuid_mutex);
2506 up_write(&sb->s_umount);
2507 }
2508 return ret;
2509 }
2510
2511 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2512 const char *device_path,
2513 struct btrfs_device *srcdev,
2514 struct btrfs_device **device_out)
2515 {
2516 struct request_queue *q;
2517 struct btrfs_device *device;
2518 struct block_device *bdev;
2519 struct list_head *devices;
2520 struct rcu_string *name;
2521 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2522 int ret = 0;
2523
2524 *device_out = NULL;
2525 if (fs_info->fs_devices->seeding) {
2526 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2527 return -EINVAL;
2528 }
2529
2530 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2531 fs_info->bdev_holder);
2532 if (IS_ERR(bdev)) {
2533 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2534 return PTR_ERR(bdev);
2535 }
2536
2537 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2538
2539 devices = &fs_info->fs_devices->devices;
2540 list_for_each_entry(device, devices, dev_list) {
2541 if (device->bdev == bdev) {
2542 btrfs_err(fs_info,
2543 "target device is in the filesystem!");
2544 ret = -EEXIST;
2545 goto error;
2546 }
2547 }
2548
2549
2550 if (i_size_read(bdev->bd_inode) <
2551 btrfs_device_get_total_bytes(srcdev)) {
2552 btrfs_err(fs_info,
2553 "target device is smaller than source device!");
2554 ret = -EINVAL;
2555 goto error;
2556 }
2557
2558
2559 device = btrfs_alloc_device(NULL, &devid, NULL);
2560 if (IS_ERR(device)) {
2561 ret = PTR_ERR(device);
2562 goto error;
2563 }
2564
2565 name = rcu_string_strdup(device_path, GFP_KERNEL);
2566 if (!name) {
2567 kfree(device);
2568 ret = -ENOMEM;
2569 goto error;
2570 }
2571 rcu_assign_pointer(device->name, name);
2572
2573 q = bdev_get_queue(bdev);
2574 if (blk_queue_discard(q))
2575 device->can_discard = 1;
2576 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2577 device->writeable = 1;
2578 device->generation = 0;
2579 device->io_width = fs_info->sectorsize;
2580 device->io_align = fs_info->sectorsize;
2581 device->sector_size = fs_info->sectorsize;
2582 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2583 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2584 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2585 ASSERT(list_empty(&srcdev->resized_list));
2586 device->commit_total_bytes = srcdev->commit_total_bytes;
2587 device->commit_bytes_used = device->bytes_used;
2588 device->fs_info = fs_info;
2589 device->bdev = bdev;
2590 device->in_fs_metadata = 1;
2591 device->is_tgtdev_for_dev_replace = 1;
2592 device->mode = FMODE_EXCL;
2593 device->dev_stats_valid = 1;
2594 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2595 device->fs_devices = fs_info->fs_devices;
2596 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2597 fs_info->fs_devices->num_devices++;
2598 fs_info->fs_devices->open_devices++;
2599 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2600
2601 *device_out = device;
2602 return ret;
2603
2604 error:
2605 blkdev_put(bdev, FMODE_EXCL);
2606 return ret;
2607 }
2608
2609 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2610 struct btrfs_device *tgtdev)
2611 {
2612 u32 sectorsize = fs_info->sectorsize;
2613
2614 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2615 tgtdev->io_width = sectorsize;
2616 tgtdev->io_align = sectorsize;
2617 tgtdev->sector_size = sectorsize;
2618 tgtdev->fs_info = fs_info;
2619 tgtdev->in_fs_metadata = 1;
2620 }
2621
2622 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2623 struct btrfs_device *device)
2624 {
2625 int ret;
2626 struct btrfs_path *path;
2627 struct btrfs_root *root = device->fs_info->chunk_root;
2628 struct btrfs_dev_item *dev_item;
2629 struct extent_buffer *leaf;
2630 struct btrfs_key key;
2631
2632 path = btrfs_alloc_path();
2633 if (!path)
2634 return -ENOMEM;
2635
2636 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2637 key.type = BTRFS_DEV_ITEM_KEY;
2638 key.offset = device->devid;
2639
2640 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2641 if (ret < 0)
2642 goto out;
2643
2644 if (ret > 0) {
2645 ret = -ENOENT;
2646 goto out;
2647 }
2648
2649 leaf = path->nodes[0];
2650 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2651
2652 btrfs_set_device_id(leaf, dev_item, device->devid);
2653 btrfs_set_device_type(leaf, dev_item, device->type);
2654 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2655 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2656 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2657 btrfs_set_device_total_bytes(leaf, dev_item,
2658 btrfs_device_get_disk_total_bytes(device));
2659 btrfs_set_device_bytes_used(leaf, dev_item,
2660 btrfs_device_get_bytes_used(device));
2661 btrfs_mark_buffer_dirty(leaf);
2662
2663 out:
2664 btrfs_free_path(path);
2665 return ret;
2666 }
2667
2668 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2669 struct btrfs_device *device, u64 new_size)
2670 {
2671 struct btrfs_fs_info *fs_info = device->fs_info;
2672 struct btrfs_super_block *super_copy = fs_info->super_copy;
2673 struct btrfs_fs_devices *fs_devices;
2674 u64 old_total;
2675 u64 diff;
2676
2677 if (!device->writeable)
2678 return -EACCES;
2679
2680 new_size = round_down(new_size, fs_info->sectorsize);
2681
2682 mutex_lock(&fs_info->chunk_mutex);
2683 old_total = btrfs_super_total_bytes(super_copy);
2684 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2685
2686 if (new_size <= device->total_bytes ||
2687 device->is_tgtdev_for_dev_replace) {
2688 mutex_unlock(&fs_info->chunk_mutex);
2689 return -EINVAL;
2690 }
2691
2692 fs_devices = fs_info->fs_devices;
2693
2694 btrfs_set_super_total_bytes(super_copy,
2695 round_down(old_total + diff, fs_info->sectorsize));
2696 device->fs_devices->total_rw_bytes += diff;
2697
2698 btrfs_device_set_total_bytes(device, new_size);
2699 btrfs_device_set_disk_total_bytes(device, new_size);
2700 btrfs_clear_space_info_full(device->fs_info);
2701 if (list_empty(&device->resized_list))
2702 list_add_tail(&device->resized_list,
2703 &fs_devices->resized_devices);
2704 mutex_unlock(&fs_info->chunk_mutex);
2705
2706 return btrfs_update_device(trans, device);
2707 }
2708
2709 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2710 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2711 {
2712 struct btrfs_root *root = fs_info->chunk_root;
2713 int ret;
2714 struct btrfs_path *path;
2715 struct btrfs_key key;
2716
2717 path = btrfs_alloc_path();
2718 if (!path)
2719 return -ENOMEM;
2720
2721 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2722 key.offset = chunk_offset;
2723 key.type = BTRFS_CHUNK_ITEM_KEY;
2724
2725 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2726 if (ret < 0)
2727 goto out;
2728 else if (ret > 0) { /* Logic error or corruption */
2729 btrfs_handle_fs_error(fs_info, -ENOENT,
2730 "Failed lookup while freeing chunk.");
2731 ret = -ENOENT;
2732 goto out;
2733 }
2734
2735 ret = btrfs_del_item(trans, root, path);
2736 if (ret < 0)
2737 btrfs_handle_fs_error(fs_info, ret,
2738 "Failed to delete chunk item.");
2739 out:
2740 btrfs_free_path(path);
2741 return ret;
2742 }
2743
2744 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2745 {
2746 struct btrfs_super_block *super_copy = fs_info->super_copy;
2747 struct btrfs_disk_key *disk_key;
2748 struct btrfs_chunk *chunk;
2749 u8 *ptr;
2750 int ret = 0;
2751 u32 num_stripes;
2752 u32 array_size;
2753 u32 len = 0;
2754 u32 cur;
2755 struct btrfs_key key;
2756
2757 mutex_lock(&fs_info->chunk_mutex);
2758 array_size = btrfs_super_sys_array_size(super_copy);
2759
2760 ptr = super_copy->sys_chunk_array;
2761 cur = 0;
2762
2763 while (cur < array_size) {
2764 disk_key = (struct btrfs_disk_key *)ptr;
2765 btrfs_disk_key_to_cpu(&key, disk_key);
2766
2767 len = sizeof(*disk_key);
2768
2769 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2770 chunk = (struct btrfs_chunk *)(ptr + len);
2771 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2772 len += btrfs_chunk_item_size(num_stripes);
2773 } else {
2774 ret = -EIO;
2775 break;
2776 }
2777 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2778 key.offset == chunk_offset) {
2779 memmove(ptr, ptr + len, array_size - (cur + len));
2780 array_size -= len;
2781 btrfs_set_super_sys_array_size(super_copy, array_size);
2782 } else {
2783 ptr += len;
2784 cur += len;
2785 }
2786 }
2787 mutex_unlock(&fs_info->chunk_mutex);
2788 return ret;
2789 }
2790
2791 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2792 u64 logical, u64 length)
2793 {
2794 struct extent_map_tree *em_tree;
2795 struct extent_map *em;
2796
2797 em_tree = &fs_info->mapping_tree.map_tree;
2798 read_lock(&em_tree->lock);
2799 em = lookup_extent_mapping(em_tree, logical, length);
2800 read_unlock(&em_tree->lock);
2801
2802 if (!em) {
2803 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2804 logical, length);
2805 return ERR_PTR(-EINVAL);
2806 }
2807
2808 if (em->start > logical || em->start + em->len < logical) {
2809 btrfs_crit(fs_info,
2810 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2811 logical, length, em->start, em->start + em->len);
2812 free_extent_map(em);
2813 return ERR_PTR(-EINVAL);
2814 }
2815
2816 /* callers are responsible for dropping em's ref. */
2817 return em;
2818 }
2819
2820 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2821 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2822 {
2823 struct extent_map *em;
2824 struct map_lookup *map;
2825 u64 dev_extent_len = 0;
2826 int i, ret = 0;
2827 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2828
2829 em = get_chunk_map(fs_info, chunk_offset, 1);
2830 if (IS_ERR(em)) {
2831 /*
2832 * This is a logic error, but we don't want to just rely on the
2833 * user having built with ASSERT enabled, so if ASSERT doesn't
2834 * do anything we still error out.
2835 */
2836 ASSERT(0);
2837 return PTR_ERR(em);
2838 }
2839 map = em->map_lookup;
2840 mutex_lock(&fs_info->chunk_mutex);
2841 check_system_chunk(trans, fs_info, map->type);
2842 mutex_unlock(&fs_info->chunk_mutex);
2843
2844 /*
2845 * Take the device list mutex to prevent races with the final phase of
2846 * a device replace operation that replaces the device object associated
2847 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2848 */
2849 mutex_lock(&fs_devices->device_list_mutex);
2850 for (i = 0; i < map->num_stripes; i++) {
2851 struct btrfs_device *device = map->stripes[i].dev;
2852 ret = btrfs_free_dev_extent(trans, device,
2853 map->stripes[i].physical,
2854 &dev_extent_len);
2855 if (ret) {
2856 mutex_unlock(&fs_devices->device_list_mutex);
2857 btrfs_abort_transaction(trans, ret);
2858 goto out;
2859 }
2860
2861 if (device->bytes_used > 0) {
2862 mutex_lock(&fs_info->chunk_mutex);
2863 btrfs_device_set_bytes_used(device,
2864 device->bytes_used - dev_extent_len);
2865 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2866 btrfs_clear_space_info_full(fs_info);
2867 mutex_unlock(&fs_info->chunk_mutex);
2868 }
2869
2870 if (map->stripes[i].dev) {
2871 ret = btrfs_update_device(trans, map->stripes[i].dev);
2872 if (ret) {
2873 mutex_unlock(&fs_devices->device_list_mutex);
2874 btrfs_abort_transaction(trans, ret);
2875 goto out;
2876 }
2877 }
2878 }
2879 mutex_unlock(&fs_devices->device_list_mutex);
2880
2881 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2882 if (ret) {
2883 btrfs_abort_transaction(trans, ret);
2884 goto out;
2885 }
2886
2887 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2888
2889 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2890 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2891 if (ret) {
2892 btrfs_abort_transaction(trans, ret);
2893 goto out;
2894 }
2895 }
2896
2897 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2898 if (ret) {
2899 btrfs_abort_transaction(trans, ret);
2900 goto out;
2901 }
2902
2903 out:
2904 /* once for us */
2905 free_extent_map(em);
2906 return ret;
2907 }
2908
2909 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2910 {
2911 struct btrfs_root *root = fs_info->chunk_root;
2912 struct btrfs_trans_handle *trans;
2913 int ret;
2914
2915 /*
2916 * Prevent races with automatic removal of unused block groups.
2917 * After we relocate and before we remove the chunk with offset
2918 * chunk_offset, automatic removal of the block group can kick in,
2919 * resulting in a failure when calling btrfs_remove_chunk() below.
2920 *
2921 * Make sure to acquire this mutex before doing a tree search (dev
2922 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2923 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2924 * we release the path used to search the chunk/dev tree and before
2925 * the current task acquires this mutex and calls us.
2926 */
2927 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2928
2929 ret = btrfs_can_relocate(fs_info, chunk_offset);
2930 if (ret)
2931 return -ENOSPC;
2932
2933 /* step one, relocate all the extents inside this chunk */
2934 btrfs_scrub_pause(fs_info);
2935 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2936 btrfs_scrub_continue(fs_info);
2937 if (ret)
2938 return ret;
2939
2940 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2941 chunk_offset);
2942 if (IS_ERR(trans)) {
2943 ret = PTR_ERR(trans);
2944 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2945 return ret;
2946 }
2947
2948 /*
2949 * step two, delete the device extents and the
2950 * chunk tree entries
2951 */
2952 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2953 btrfs_end_transaction(trans);
2954 return ret;
2955 }
2956
2957 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2958 {
2959 struct btrfs_root *chunk_root = fs_info->chunk_root;
2960 struct btrfs_path *path;
2961 struct extent_buffer *leaf;
2962 struct btrfs_chunk *chunk;
2963 struct btrfs_key key;
2964 struct btrfs_key found_key;
2965 u64 chunk_type;
2966 bool retried = false;
2967 int failed = 0;
2968 int ret;
2969
2970 path = btrfs_alloc_path();
2971 if (!path)
2972 return -ENOMEM;
2973
2974 again:
2975 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2976 key.offset = (u64)-1;
2977 key.type = BTRFS_CHUNK_ITEM_KEY;
2978
2979 while (1) {
2980 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2981 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2982 if (ret < 0) {
2983 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2984 goto error;
2985 }
2986 BUG_ON(ret == 0); /* Corruption */
2987
2988 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2989 key.type);
2990 if (ret)
2991 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2992 if (ret < 0)
2993 goto error;
2994 if (ret > 0)
2995 break;
2996
2997 leaf = path->nodes[0];
2998 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2999
3000 chunk = btrfs_item_ptr(leaf, path->slots[0],
3001 struct btrfs_chunk);
3002 chunk_type = btrfs_chunk_type(leaf, chunk);
3003 btrfs_release_path(path);
3004
3005 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3006 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3007 if (ret == -ENOSPC)
3008 failed++;
3009 else
3010 BUG_ON(ret);
3011 }
3012 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3013
3014 if (found_key.offset == 0)
3015 break;
3016 key.offset = found_key.offset - 1;
3017 }
3018 ret = 0;
3019 if (failed && !retried) {
3020 failed = 0;
3021 retried = true;
3022 goto again;
3023 } else if (WARN_ON(failed && retried)) {
3024 ret = -ENOSPC;
3025 }
3026 error:
3027 btrfs_free_path(path);
3028 return ret;
3029 }
3030
3031 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3032 struct btrfs_balance_control *bctl)
3033 {
3034 struct btrfs_root *root = fs_info->tree_root;
3035 struct btrfs_trans_handle *trans;
3036 struct btrfs_balance_item *item;
3037 struct btrfs_disk_balance_args disk_bargs;
3038 struct btrfs_path *path;
3039 struct extent_buffer *leaf;
3040 struct btrfs_key key;
3041 int ret, err;
3042
3043 path = btrfs_alloc_path();
3044 if (!path)
3045 return -ENOMEM;
3046
3047 trans = btrfs_start_transaction(root, 0);
3048 if (IS_ERR(trans)) {
3049 btrfs_free_path(path);
3050 return PTR_ERR(trans);
3051 }
3052
3053 key.objectid = BTRFS_BALANCE_OBJECTID;
3054 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3055 key.offset = 0;
3056
3057 ret = btrfs_insert_empty_item(trans, root, path, &key,
3058 sizeof(*item));
3059 if (ret)
3060 goto out;
3061
3062 leaf = path->nodes[0];
3063 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3064
3065 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3066
3067 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3068 btrfs_set_balance_data(leaf, item, &disk_bargs);
3069 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3070 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3071 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3072 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3073
3074 btrfs_set_balance_flags(leaf, item, bctl->flags);
3075
3076 btrfs_mark_buffer_dirty(leaf);
3077 out:
3078 btrfs_free_path(path);
3079 err = btrfs_commit_transaction(trans);
3080 if (err && !ret)
3081 ret = err;
3082 return ret;
3083 }
3084
3085 static int del_balance_item(struct btrfs_fs_info *fs_info)
3086 {
3087 struct btrfs_root *root = fs_info->tree_root;
3088 struct btrfs_trans_handle *trans;
3089 struct btrfs_path *path;
3090 struct btrfs_key key;
3091 int ret, err;
3092
3093 path = btrfs_alloc_path();
3094 if (!path)
3095 return -ENOMEM;
3096
3097 trans = btrfs_start_transaction(root, 0);
3098 if (IS_ERR(trans)) {
3099 btrfs_free_path(path);
3100 return PTR_ERR(trans);
3101 }
3102
3103 key.objectid = BTRFS_BALANCE_OBJECTID;
3104 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3105 key.offset = 0;
3106
3107 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3108 if (ret < 0)
3109 goto out;
3110 if (ret > 0) {
3111 ret = -ENOENT;
3112 goto out;
3113 }
3114
3115 ret = btrfs_del_item(trans, root, path);
3116 out:
3117 btrfs_free_path(path);
3118 err = btrfs_commit_transaction(trans);
3119 if (err && !ret)
3120 ret = err;
3121 return ret;
3122 }
3123
3124 /*
3125 * This is a heuristic used to reduce the number of chunks balanced on
3126 * resume after balance was interrupted.
3127 */
3128 static void update_balance_args(struct btrfs_balance_control *bctl)
3129 {
3130 /*
3131 * Turn on soft mode for chunk types that were being converted.
3132 */
3133 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3134 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3135 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3136 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3137 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3138 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3139
3140 /*
3141 * Turn on usage filter if is not already used. The idea is
3142 * that chunks that we have already balanced should be
3143 * reasonably full. Don't do it for chunks that are being
3144 * converted - that will keep us from relocating unconverted
3145 * (albeit full) chunks.
3146 */
3147 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3148 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3149 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3150 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3151 bctl->data.usage = 90;
3152 }
3153 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3154 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3155 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157 bctl->sys.usage = 90;
3158 }
3159 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 bctl->meta.usage = 90;
3164 }
3165 }
3166
3167 /*
3168 * Should be called with both balance and volume mutexes held to
3169 * serialize other volume operations (add_dev/rm_dev/resize) with
3170 * restriper. Same goes for unset_balance_control.
3171 */
3172 static void set_balance_control(struct btrfs_balance_control *bctl)
3173 {
3174 struct btrfs_fs_info *fs_info = bctl->fs_info;
3175
3176 BUG_ON(fs_info->balance_ctl);
3177
3178 spin_lock(&fs_info->balance_lock);
3179 fs_info->balance_ctl = bctl;
3180 spin_unlock(&fs_info->balance_lock);
3181 }
3182
3183 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3184 {
3185 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3186
3187 BUG_ON(!fs_info->balance_ctl);
3188
3189 spin_lock(&fs_info->balance_lock);
3190 fs_info->balance_ctl = NULL;
3191 spin_unlock(&fs_info->balance_lock);
3192
3193 kfree(bctl);
3194 }
3195
3196 /*
3197 * Balance filters. Return 1 if chunk should be filtered out
3198 * (should not be balanced).
3199 */
3200 static int chunk_profiles_filter(u64 chunk_type,
3201 struct btrfs_balance_args *bargs)
3202 {
3203 chunk_type = chunk_to_extended(chunk_type) &
3204 BTRFS_EXTENDED_PROFILE_MASK;
3205
3206 if (bargs->profiles & chunk_type)
3207 return 0;
3208
3209 return 1;
3210 }
3211
3212 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3213 struct btrfs_balance_args *bargs)
3214 {
3215 struct btrfs_block_group_cache *cache;
3216 u64 chunk_used;
3217 u64 user_thresh_min;
3218 u64 user_thresh_max;
3219 int ret = 1;
3220
3221 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3222 chunk_used = btrfs_block_group_used(&cache->item);
3223
3224 if (bargs->usage_min == 0)
3225 user_thresh_min = 0;
3226 else
3227 user_thresh_min = div_factor_fine(cache->key.offset,
3228 bargs->usage_min);
3229
3230 if (bargs->usage_max == 0)
3231 user_thresh_max = 1;
3232 else if (bargs->usage_max > 100)
3233 user_thresh_max = cache->key.offset;
3234 else
3235 user_thresh_max = div_factor_fine(cache->key.offset,
3236 bargs->usage_max);
3237
3238 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3239 ret = 0;
3240
3241 btrfs_put_block_group(cache);
3242 return ret;
3243 }
3244
3245 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3246 u64 chunk_offset, struct btrfs_balance_args *bargs)
3247 {
3248 struct btrfs_block_group_cache *cache;
3249 u64 chunk_used, user_thresh;
3250 int ret = 1;
3251
3252 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3253 chunk_used = btrfs_block_group_used(&cache->item);
3254
3255 if (bargs->usage_min == 0)
3256 user_thresh = 1;
3257 else if (bargs->usage > 100)
3258 user_thresh = cache->key.offset;
3259 else
3260 user_thresh = div_factor_fine(cache->key.offset,
3261 bargs->usage);
3262
3263 if (chunk_used < user_thresh)
3264 ret = 0;
3265
3266 btrfs_put_block_group(cache);
3267 return ret;
3268 }
3269
3270 static int chunk_devid_filter(struct extent_buffer *leaf,
3271 struct btrfs_chunk *chunk,
3272 struct btrfs_balance_args *bargs)
3273 {
3274 struct btrfs_stripe *stripe;
3275 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3276 int i;
3277
3278 for (i = 0; i < num_stripes; i++) {
3279 stripe = btrfs_stripe_nr(chunk, i);
3280 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3281 return 0;
3282 }
3283
3284 return 1;
3285 }
3286
3287 /* [pstart, pend) */
3288 static int chunk_drange_filter(struct extent_buffer *leaf,
3289 struct btrfs_chunk *chunk,
3290 struct btrfs_balance_args *bargs)
3291 {
3292 struct btrfs_stripe *stripe;
3293 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3294 u64 stripe_offset;
3295 u64 stripe_length;
3296 int factor;
3297 int i;
3298
3299 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3300 return 0;
3301
3302 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3303 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3304 factor = num_stripes / 2;
3305 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3306 factor = num_stripes - 1;
3307 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3308 factor = num_stripes - 2;
3309 } else {
3310 factor = num_stripes;
3311 }
3312
3313 for (i = 0; i < num_stripes; i++) {
3314 stripe = btrfs_stripe_nr(chunk, i);
3315 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3316 continue;
3317
3318 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3319 stripe_length = btrfs_chunk_length(leaf, chunk);
3320 stripe_length = div_u64(stripe_length, factor);
3321
3322 if (stripe_offset < bargs->pend &&
3323 stripe_offset + stripe_length > bargs->pstart)
3324 return 0;
3325 }
3326
3327 return 1;
3328 }
3329
3330 /* [vstart, vend) */
3331 static int chunk_vrange_filter(struct extent_buffer *leaf,
3332 struct btrfs_chunk *chunk,
3333 u64 chunk_offset,
3334 struct btrfs_balance_args *bargs)
3335 {
3336 if (chunk_offset < bargs->vend &&
3337 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3338 /* at least part of the chunk is inside this vrange */
3339 return 0;
3340
3341 return 1;
3342 }
3343
3344 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3345 struct btrfs_chunk *chunk,
3346 struct btrfs_balance_args *bargs)
3347 {
3348 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3349
3350 if (bargs->stripes_min <= num_stripes
3351 && num_stripes <= bargs->stripes_max)
3352 return 0;
3353
3354 return 1;
3355 }
3356
3357 static int chunk_soft_convert_filter(u64 chunk_type,
3358 struct btrfs_balance_args *bargs)
3359 {
3360 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3361 return 0;
3362
3363 chunk_type = chunk_to_extended(chunk_type) &
3364 BTRFS_EXTENDED_PROFILE_MASK;
3365
3366 if (bargs->target == chunk_type)
3367 return 1;
3368
3369 return 0;
3370 }
3371
3372 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3373 struct extent_buffer *leaf,
3374 struct btrfs_chunk *chunk, u64 chunk_offset)
3375 {
3376 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3377 struct btrfs_balance_args *bargs = NULL;
3378 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3379
3380 /* type filter */
3381 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3382 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3383 return 0;
3384 }
3385
3386 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3387 bargs = &bctl->data;
3388 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3389 bargs = &bctl->sys;
3390 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3391 bargs = &bctl->meta;
3392
3393 /* profiles filter */
3394 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3395 chunk_profiles_filter(chunk_type, bargs)) {
3396 return 0;
3397 }
3398
3399 /* usage filter */
3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3401 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3402 return 0;
3403 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3404 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3405 return 0;
3406 }
3407
3408 /* devid filter */
3409 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3410 chunk_devid_filter(leaf, chunk, bargs)) {
3411 return 0;
3412 }
3413
3414 /* drange filter, makes sense only with devid filter */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3416 chunk_drange_filter(leaf, chunk, bargs)) {
3417 return 0;
3418 }
3419
3420 /* vrange filter */
3421 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3422 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3423 return 0;
3424 }
3425
3426 /* stripes filter */
3427 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3428 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3429 return 0;
3430 }
3431
3432 /* soft profile changing mode */
3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3434 chunk_soft_convert_filter(chunk_type, bargs)) {
3435 return 0;
3436 }
3437
3438 /*
3439 * limited by count, must be the last filter
3440 */
3441 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3442 if (bargs->limit == 0)
3443 return 0;
3444 else
3445 bargs->limit--;
3446 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3447 /*
3448 * Same logic as the 'limit' filter; the minimum cannot be
3449 * determined here because we do not have the global information
3450 * about the count of all chunks that satisfy the filters.
3451 */
3452 if (bargs->limit_max == 0)
3453 return 0;
3454 else
3455 bargs->limit_max--;
3456 }
3457
3458 return 1;
3459 }
3460
3461 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3462 {
3463 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3464 struct btrfs_root *chunk_root = fs_info->chunk_root;
3465 struct btrfs_root *dev_root = fs_info->dev_root;
3466 struct list_head *devices;
3467 struct btrfs_device *device;
3468 u64 old_size;
3469 u64 size_to_free;
3470 u64 chunk_type;
3471 struct btrfs_chunk *chunk;
3472 struct btrfs_path *path = NULL;
3473 struct btrfs_key key;
3474 struct btrfs_key found_key;
3475 struct btrfs_trans_handle *trans;
3476 struct extent_buffer *leaf;
3477 int slot;
3478 int ret;
3479 int enospc_errors = 0;
3480 bool counting = true;
3481 /* The single value limit and min/max limits use the same bytes in the */
3482 u64 limit_data = bctl->data.limit;
3483 u64 limit_meta = bctl->meta.limit;
3484 u64 limit_sys = bctl->sys.limit;
3485 u32 count_data = 0;
3486 u32 count_meta = 0;
3487 u32 count_sys = 0;
3488 int chunk_reserved = 0;
3489 u64 bytes_used = 0;
3490
3491 /* step one make some room on all the devices */
3492 devices = &fs_info->fs_devices->devices;
3493 list_for_each_entry(device, devices, dev_list) {
3494 old_size = btrfs_device_get_total_bytes(device);
3495 size_to_free = div_factor(old_size, 1);
3496 size_to_free = min_t(u64, size_to_free, SZ_1M);
3497 if (!device->writeable ||
3498 btrfs_device_get_total_bytes(device) -
3499 btrfs_device_get_bytes_used(device) > size_to_free ||
3500 device->is_tgtdev_for_dev_replace)
3501 continue;
3502
3503 ret = btrfs_shrink_device(device, old_size - size_to_free);
3504 if (ret == -ENOSPC)
3505 break;
3506 if (ret) {
3507 /* btrfs_shrink_device never returns ret > 0 */
3508 WARN_ON(ret > 0);
3509 goto error;
3510 }
3511
3512 trans = btrfs_start_transaction(dev_root, 0);
3513 if (IS_ERR(trans)) {
3514 ret = PTR_ERR(trans);
3515 btrfs_info_in_rcu(fs_info,
3516 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3517 rcu_str_deref(device->name), ret,
3518 old_size, old_size - size_to_free);
3519 goto error;
3520 }
3521
3522 ret = btrfs_grow_device(trans, device, old_size);
3523 if (ret) {
3524 btrfs_end_transaction(trans);
3525 /* btrfs_grow_device never returns ret > 0 */
3526 WARN_ON(ret > 0);
3527 btrfs_info_in_rcu(fs_info,
3528 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3529 rcu_str_deref(device->name), ret,
3530 old_size, old_size - size_to_free);
3531 goto error;
3532 }
3533
3534 btrfs_end_transaction(trans);
3535 }
3536
3537 /* step two, relocate all the chunks */
3538 path = btrfs_alloc_path();
3539 if (!path) {
3540 ret = -ENOMEM;
3541 goto error;
3542 }
3543
3544 /* zero out stat counters */
3545 spin_lock(&fs_info->balance_lock);
3546 memset(&bctl->stat, 0, sizeof(bctl->stat));
3547 spin_unlock(&fs_info->balance_lock);
3548 again:
3549 if (!counting) {
3550 /*
3551 * The single value limit and min/max limits use the same bytes
3552 * in the
3553 */
3554 bctl->data.limit = limit_data;
3555 bctl->meta.limit = limit_meta;
3556 bctl->sys.limit = limit_sys;
3557 }
3558 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3559 key.offset = (u64)-1;
3560 key.type = BTRFS_CHUNK_ITEM_KEY;
3561
3562 while (1) {
3563 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3564 atomic_read(&fs_info->balance_cancel_req)) {
3565 ret = -ECANCELED;
3566 goto error;
3567 }
3568
3569 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3570 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3571 if (ret < 0) {
3572 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3573 goto error;
3574 }
3575
3576 /*
3577 * this shouldn't happen, it means the last relocate
3578 * failed
3579 */
3580 if (ret == 0)
3581 BUG(); /* FIXME break ? */
3582
3583 ret = btrfs_previous_item(chunk_root, path, 0,
3584 BTRFS_CHUNK_ITEM_KEY);
3585 if (ret) {
3586 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3587 ret = 0;
3588 break;
3589 }
3590
3591 leaf = path->nodes[0];
3592 slot = path->slots[0];
3593 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3594
3595 if (found_key.objectid != key.objectid) {
3596 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3597 break;
3598 }
3599
3600 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3601 chunk_type = btrfs_chunk_type(leaf, chunk);
3602
3603 if (!counting) {
3604 spin_lock(&fs_info->balance_lock);
3605 bctl->stat.considered++;
3606 spin_unlock(&fs_info->balance_lock);
3607 }
3608
3609 ret = should_balance_chunk(fs_info, leaf, chunk,
3610 found_key.offset);
3611
3612 btrfs_release_path(path);
3613 if (!ret) {
3614 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3615 goto loop;
3616 }
3617
3618 if (counting) {
3619 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3620 spin_lock(&fs_info->balance_lock);
3621 bctl->stat.expected++;
3622 spin_unlock(&fs_info->balance_lock);
3623
3624 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3625 count_data++;
3626 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3627 count_sys++;
3628 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3629 count_meta++;
3630
3631 goto loop;
3632 }
3633
3634 /*
3635 * Apply limit_min filter, no need to check if the LIMITS
3636 * filter is used, limit_min is 0 by default
3637 */
3638 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3639 count_data < bctl->data.limit_min)
3640 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3641 count_meta < bctl->meta.limit_min)
3642 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3643 count_sys < bctl->sys.limit_min)) {
3644 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3645 goto loop;
3646 }
3647
3648 ASSERT(fs_info->data_sinfo);
3649 spin_lock(&fs_info->data_sinfo->lock);
3650 bytes_used = fs_info->data_sinfo->bytes_used;
3651 spin_unlock(&fs_info->data_sinfo->lock);
3652
3653 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3654 !chunk_reserved && !bytes_used) {
3655 trans = btrfs_start_transaction(chunk_root, 0);
3656 if (IS_ERR(trans)) {
3657 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 ret = PTR_ERR(trans);
3659 goto error;
3660 }
3661
3662 ret = btrfs_force_chunk_alloc(trans, fs_info,
3663 BTRFS_BLOCK_GROUP_DATA);
3664 btrfs_end_transaction(trans);
3665 if (ret < 0) {
3666 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3667 goto error;
3668 }
3669 chunk_reserved = 1;
3670 }
3671
3672 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3673 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3674 if (ret && ret != -ENOSPC)
3675 goto error;
3676 if (ret == -ENOSPC) {
3677 enospc_errors++;
3678 } else {
3679 spin_lock(&fs_info->balance_lock);
3680 bctl->stat.completed++;
3681 spin_unlock(&fs_info->balance_lock);
3682 }
3683 loop:
3684 if (found_key.offset == 0)
3685 break;
3686 key.offset = found_key.offset - 1;
3687 }
3688
3689 if (counting) {
3690 btrfs_release_path(path);
3691 counting = false;
3692 goto again;
3693 }
3694 error:
3695 btrfs_free_path(path);
3696 if (enospc_errors) {
3697 btrfs_info(fs_info, "%d enospc errors during balance",
3698 enospc_errors);
3699 if (!ret)
3700 ret = -ENOSPC;
3701 }
3702
3703 return ret;
3704 }
3705
3706 /**
3707 * alloc_profile_is_valid - see if a given profile is valid and reduced
3708 * @flags: profile to validate
3709 * @extended: if true @flags is treated as an extended profile
3710 */
3711 static int alloc_profile_is_valid(u64 flags, int extended)
3712 {
3713 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3714 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3715
3716 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3717
3718 /* 1) check that all other bits are zeroed */
3719 if (flags & ~mask)
3720 return 0;
3721
3722 /* 2) see if profile is reduced */
3723 if (flags == 0)
3724 return !extended; /* "0" is valid for usual profiles */
3725
3726 /* true if exactly one bit set */
3727 return (flags & (flags - 1)) == 0;
3728 }
3729
3730 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3731 {
3732 /* cancel requested || normal exit path */
3733 return atomic_read(&fs_info->balance_cancel_req) ||
3734 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3735 atomic_read(&fs_info->balance_cancel_req) == 0);
3736 }
3737
3738 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3739 {
3740 int ret;
3741
3742 unset_balance_control(fs_info);
3743 ret = del_balance_item(fs_info);
3744 if (ret)
3745 btrfs_handle_fs_error(fs_info, ret, NULL);
3746
3747 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3748 }
3749
3750 /* Non-zero return value signifies invalidity */
3751 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3752 u64 allowed)
3753 {
3754 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3755 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3756 (bctl_arg->target & ~allowed)));
3757 }
3758
3759 /*
3760 * Should be called with both balance and volume mutexes held
3761 */
3762 int btrfs_balance(struct btrfs_balance_control *bctl,
3763 struct btrfs_ioctl_balance_args *bargs)
3764 {
3765 struct btrfs_fs_info *fs_info = bctl->fs_info;
3766 u64 meta_target, data_target;
3767 u64 allowed;
3768 int mixed = 0;
3769 int ret;
3770 u64 num_devices;
3771 unsigned seq;
3772
3773 if (btrfs_fs_closing(fs_info) ||
3774 atomic_read(&fs_info->balance_pause_req) ||
3775 atomic_read(&fs_info->balance_cancel_req)) {
3776 ret = -EINVAL;
3777 goto out;
3778 }
3779
3780 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3781 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3782 mixed = 1;
3783
3784 /*
3785 * In case of mixed groups both data and meta should be picked,
3786 * and identical options should be given for both of them.
3787 */
3788 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3789 if (mixed && (bctl->flags & allowed)) {
3790 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3791 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3792 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3793 btrfs_err(fs_info,
3794 "with mixed groups data and metadata balance options must be the same");
3795 ret = -EINVAL;
3796 goto out;
3797 }
3798 }
3799
3800 num_devices = fs_info->fs_devices->num_devices;
3801 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3802 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3803 BUG_ON(num_devices < 1);
3804 num_devices--;
3805 }
3806 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3807 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3808 if (num_devices > 1)
3809 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3810 if (num_devices > 2)
3811 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3812 if (num_devices > 3)
3813 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3814 BTRFS_BLOCK_GROUP_RAID6);
3815 if (validate_convert_profile(&bctl->data, allowed)) {
3816 btrfs_err(fs_info,
3817 "unable to start balance with target data profile %llu",
3818 bctl->data.target);
3819 ret = -EINVAL;
3820 goto out;
3821 }
3822 if (validate_convert_profile(&bctl->meta, allowed)) {
3823 btrfs_err(fs_info,
3824 "unable to start balance with target metadata profile %llu",
3825 bctl->meta.target);
3826 ret = -EINVAL;
3827 goto out;
3828 }
3829 if (validate_convert_profile(&bctl->sys, allowed)) {
3830 btrfs_err(fs_info,
3831 "unable to start balance with target system profile %llu",
3832 bctl->sys.target);
3833 ret = -EINVAL;
3834 goto out;
3835 }
3836
3837 /* allow to reduce meta or sys integrity only if force set */
3838 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3839 BTRFS_BLOCK_GROUP_RAID10 |
3840 BTRFS_BLOCK_GROUP_RAID5 |
3841 BTRFS_BLOCK_GROUP_RAID6;
3842 do {
3843 seq = read_seqbegin(&fs_info->profiles_lock);
3844
3845 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3846 (fs_info->avail_system_alloc_bits & allowed) &&
3847 !(bctl->sys.target & allowed)) ||
3848 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3849 (fs_info->avail_metadata_alloc_bits & allowed) &&
3850 !(bctl->meta.target & allowed))) {
3851 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3852 btrfs_info(fs_info,
3853 "force reducing metadata integrity");
3854 } else {
3855 btrfs_err(fs_info,
3856 "balance will reduce metadata integrity, use force if you want this");
3857 ret = -EINVAL;
3858 goto out;
3859 }
3860 }
3861 } while (read_seqretry(&fs_info->profiles_lock, seq));
3862
3863 /* if we're not converting, the target field is uninitialized */
3864 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3865 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3866 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3867 bctl->data.target : fs_info->avail_data_alloc_bits;
3868 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3869 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3870 btrfs_warn(fs_info,
3871 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3872 meta_target, data_target);
3873 }
3874
3875 ret = insert_balance_item(fs_info, bctl);
3876 if (ret && ret != -EEXIST)
3877 goto out;
3878
3879 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3880 BUG_ON(ret == -EEXIST);
3881 set_balance_control(bctl);
3882 } else {
3883 BUG_ON(ret != -EEXIST);
3884 spin_lock(&fs_info->balance_lock);
3885 update_balance_args(bctl);
3886 spin_unlock(&fs_info->balance_lock);
3887 }
3888
3889 atomic_inc(&fs_info->balance_running);
3890 mutex_unlock(&fs_info->balance_mutex);
3891
3892 ret = __btrfs_balance(fs_info);
3893
3894 mutex_lock(&fs_info->balance_mutex);
3895 atomic_dec(&fs_info->balance_running);
3896
3897 if (bargs) {
3898 memset(bargs, 0, sizeof(*bargs));
3899 update_ioctl_balance_args(fs_info, 0, bargs);
3900 }
3901
3902 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3903 balance_need_close(fs_info)) {
3904 __cancel_balance(fs_info);
3905 }
3906
3907 wake_up(&fs_info->balance_wait_q);
3908
3909 return ret;
3910 out:
3911 if (bctl->flags & BTRFS_BALANCE_RESUME)
3912 __cancel_balance(fs_info);
3913 else {
3914 kfree(bctl);
3915 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3916 }
3917 return ret;
3918 }
3919
3920 static int balance_kthread(void *data)
3921 {
3922 struct btrfs_fs_info *fs_info = data;
3923 int ret = 0;
3924
3925 mutex_lock(&fs_info->volume_mutex);
3926 mutex_lock(&fs_info->balance_mutex);
3927
3928 if (fs_info->balance_ctl) {
3929 btrfs_info(fs_info, "continuing balance");
3930 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3931 }
3932
3933 mutex_unlock(&fs_info->balance_mutex);
3934 mutex_unlock(&fs_info->volume_mutex);
3935
3936 return ret;
3937 }
3938
3939 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3940 {
3941 struct task_struct *tsk;
3942
3943 spin_lock(&fs_info->balance_lock);
3944 if (!fs_info->balance_ctl) {
3945 spin_unlock(&fs_info->balance_lock);
3946 return 0;
3947 }
3948 spin_unlock(&fs_info->balance_lock);
3949
3950 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3951 btrfs_info(fs_info, "force skipping balance");
3952 return 0;
3953 }
3954
3955 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3956 return PTR_ERR_OR_ZERO(tsk);
3957 }
3958
3959 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3960 {
3961 struct btrfs_balance_control *bctl;
3962 struct btrfs_balance_item *item;
3963 struct btrfs_disk_balance_args disk_bargs;
3964 struct btrfs_path *path;
3965 struct extent_buffer *leaf;
3966 struct btrfs_key key;
3967 int ret;
3968
3969 path = btrfs_alloc_path();
3970 if (!path)
3971 return -ENOMEM;
3972
3973 key.objectid = BTRFS_BALANCE_OBJECTID;
3974 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3975 key.offset = 0;
3976
3977 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3978 if (ret < 0)
3979 goto out;
3980 if (ret > 0) { /* ret = -ENOENT; */
3981 ret = 0;
3982 goto out;
3983 }
3984
3985 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3986 if (!bctl) {
3987 ret = -ENOMEM;
3988 goto out;
3989 }
3990
3991 leaf = path->nodes[0];
3992 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3993
3994 bctl->fs_info = fs_info;
3995 bctl->flags = btrfs_balance_flags(leaf, item);
3996 bctl->flags |= BTRFS_BALANCE_RESUME;
3997
3998 btrfs_balance_data(leaf, item, &disk_bargs);
3999 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4000 btrfs_balance_meta(leaf, item, &disk_bargs);
4001 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4002 btrfs_balance_sys(leaf, item, &disk_bargs);
4003 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4004
4005 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4006
4007 mutex_lock(&fs_info->volume_mutex);
4008 mutex_lock(&fs_info->balance_mutex);
4009
4010 set_balance_control(bctl);
4011
4012 mutex_unlock(&fs_info->balance_mutex);
4013 mutex_unlock(&fs_info->volume_mutex);
4014 out:
4015 btrfs_free_path(path);
4016 return ret;
4017 }
4018
4019 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4020 {
4021 int ret = 0;
4022
4023 mutex_lock(&fs_info->balance_mutex);
4024 if (!fs_info->balance_ctl) {
4025 mutex_unlock(&fs_info->balance_mutex);
4026 return -ENOTCONN;
4027 }
4028
4029 if (atomic_read(&fs_info->balance_running)) {
4030 atomic_inc(&fs_info->balance_pause_req);
4031 mutex_unlock(&fs_info->balance_mutex);
4032
4033 wait_event(fs_info->balance_wait_q,
4034 atomic_read(&fs_info->balance_running) == 0);
4035
4036 mutex_lock(&fs_info->balance_mutex);
4037 /* we are good with balance_ctl ripped off from under us */
4038 BUG_ON(atomic_read(&fs_info->balance_running));
4039 atomic_dec(&fs_info->balance_pause_req);
4040 } else {
4041 ret = -ENOTCONN;
4042 }
4043
4044 mutex_unlock(&fs_info->balance_mutex);
4045 return ret;
4046 }
4047
4048 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4049 {
4050 if (sb_rdonly(fs_info->sb))
4051 return -EROFS;
4052
4053 mutex_lock(&fs_info->balance_mutex);
4054 if (!fs_info->balance_ctl) {
4055 mutex_unlock(&fs_info->balance_mutex);
4056 return -ENOTCONN;
4057 }
4058
4059 atomic_inc(&fs_info->balance_cancel_req);
4060 /*
4061 * if we are running just wait and return, balance item is
4062 * deleted in btrfs_balance in this case
4063 */
4064 if (atomic_read(&fs_info->balance_running)) {
4065 mutex_unlock(&fs_info->balance_mutex);
4066 wait_event(fs_info->balance_wait_q,
4067 atomic_read(&fs_info->balance_running) == 0);
4068 mutex_lock(&fs_info->balance_mutex);
4069 } else {
4070 /* __cancel_balance needs volume_mutex */
4071 mutex_unlock(&fs_info->balance_mutex);
4072 mutex_lock(&fs_info->volume_mutex);
4073 mutex_lock(&fs_info->balance_mutex);
4074
4075 if (fs_info->balance_ctl)
4076 __cancel_balance(fs_info);
4077
4078 mutex_unlock(&fs_info->volume_mutex);
4079 }
4080
4081 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4082 atomic_dec(&fs_info->balance_cancel_req);
4083 mutex_unlock(&fs_info->balance_mutex);
4084 return 0;
4085 }
4086
4087 static int btrfs_uuid_scan_kthread(void *data)
4088 {
4089 struct btrfs_fs_info *fs_info = data;
4090 struct btrfs_root *root = fs_info->tree_root;
4091 struct btrfs_key key;
4092 struct btrfs_path *path = NULL;
4093 int ret = 0;
4094 struct extent_buffer *eb;
4095 int slot;
4096 struct btrfs_root_item root_item;
4097 u32 item_size;
4098 struct btrfs_trans_handle *trans = NULL;
4099
4100 path = btrfs_alloc_path();
4101 if (!path) {
4102 ret = -ENOMEM;
4103 goto out;
4104 }
4105
4106 key.objectid = 0;
4107 key.type = BTRFS_ROOT_ITEM_KEY;
4108 key.offset = 0;
4109
4110 while (1) {
4111 ret = btrfs_search_forward(root, &key, path, 0);
4112 if (ret) {
4113 if (ret > 0)
4114 ret = 0;
4115 break;
4116 }
4117
4118 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4119 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4120 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4121 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4122 goto skip;
4123
4124 eb = path->nodes[0];
4125 slot = path->slots[0];
4126 item_size = btrfs_item_size_nr(eb, slot);
4127 if (item_size < sizeof(root_item))
4128 goto skip;
4129
4130 read_extent_buffer(eb, &root_item,
4131 btrfs_item_ptr_offset(eb, slot),
4132 (int)sizeof(root_item));
4133 if (btrfs_root_refs(&root_item) == 0)
4134 goto skip;
4135
4136 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4137 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4138 if (trans)
4139 goto update_tree;
4140
4141 btrfs_release_path(path);
4142 /*
4143 * 1 - subvol uuid item
4144 * 1 - received_subvol uuid item
4145 */
4146 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4147 if (IS_ERR(trans)) {
4148 ret = PTR_ERR(trans);
4149 break;
4150 }
4151 continue;
4152 } else {
4153 goto skip;
4154 }
4155 update_tree:
4156 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4157 ret = btrfs_uuid_tree_add(trans, fs_info,
4158 root_item.uuid,
4159 BTRFS_UUID_KEY_SUBVOL,
4160 key.objectid);
4161 if (ret < 0) {
4162 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4163 ret);
4164 break;
4165 }
4166 }
4167
4168 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4169 ret = btrfs_uuid_tree_add(trans, fs_info,
4170 root_item.received_uuid,
4171 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4172 key.objectid);
4173 if (ret < 0) {
4174 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4175 ret);
4176 break;
4177 }
4178 }
4179
4180 skip:
4181 if (trans) {
4182 ret = btrfs_end_transaction(trans);
4183 trans = NULL;
4184 if (ret)
4185 break;
4186 }
4187
4188 btrfs_release_path(path);
4189 if (key.offset < (u64)-1) {
4190 key.offset++;
4191 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4192 key.offset = 0;
4193 key.type = BTRFS_ROOT_ITEM_KEY;
4194 } else if (key.objectid < (u64)-1) {
4195 key.offset = 0;
4196 key.type = BTRFS_ROOT_ITEM_KEY;
4197 key.objectid++;
4198 } else {
4199 break;
4200 }
4201 cond_resched();
4202 }
4203
4204 out:
4205 btrfs_free_path(path);
4206 if (trans && !IS_ERR(trans))
4207 btrfs_end_transaction(trans);
4208 if (ret)
4209 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4210 else
4211 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4212 up(&fs_info->uuid_tree_rescan_sem);
4213 return 0;
4214 }
4215
4216 /*
4217 * Callback for btrfs_uuid_tree_iterate().
4218 * returns:
4219 * 0 check succeeded, the entry is not outdated.
4220 * < 0 if an error occurred.
4221 * > 0 if the check failed, which means the caller shall remove the entry.
4222 */
4223 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4224 u8 *uuid, u8 type, u64 subid)
4225 {
4226 struct btrfs_key key;
4227 int ret = 0;
4228 struct btrfs_root *subvol_root;
4229
4230 if (type != BTRFS_UUID_KEY_SUBVOL &&
4231 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4232 goto out;
4233
4234 key.objectid = subid;
4235 key.type = BTRFS_ROOT_ITEM_KEY;
4236 key.offset = (u64)-1;
4237 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4238 if (IS_ERR(subvol_root)) {
4239 ret = PTR_ERR(subvol_root);
4240 if (ret == -ENOENT)
4241 ret = 1;
4242 goto out;
4243 }
4244
4245 switch (type) {
4246 case BTRFS_UUID_KEY_SUBVOL:
4247 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4248 ret = 1;
4249 break;
4250 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4251 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4252 BTRFS_UUID_SIZE))
4253 ret = 1;
4254 break;
4255 }
4256
4257 out:
4258 return ret;
4259 }
4260
4261 static int btrfs_uuid_rescan_kthread(void *data)
4262 {
4263 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4264 int ret;
4265
4266 /*
4267 * 1st step is to iterate through the existing UUID tree and
4268 * to delete all entries that contain outdated data.
4269 * 2nd step is to add all missing entries to the UUID tree.
4270 */
4271 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4272 if (ret < 0) {
4273 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4274 up(&fs_info->uuid_tree_rescan_sem);
4275 return ret;
4276 }
4277 return btrfs_uuid_scan_kthread(data);
4278 }
4279
4280 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4281 {
4282 struct btrfs_trans_handle *trans;
4283 struct btrfs_root *tree_root = fs_info->tree_root;
4284 struct btrfs_root *uuid_root;
4285 struct task_struct *task;
4286 int ret;
4287
4288 /*
4289 * 1 - root node
4290 * 1 - root item
4291 */
4292 trans = btrfs_start_transaction(tree_root, 2);
4293 if (IS_ERR(trans))
4294 return PTR_ERR(trans);
4295
4296 uuid_root = btrfs_create_tree(trans, fs_info,
4297 BTRFS_UUID_TREE_OBJECTID);
4298 if (IS_ERR(uuid_root)) {
4299 ret = PTR_ERR(uuid_root);
4300 btrfs_abort_transaction(trans, ret);
4301 btrfs_end_transaction(trans);
4302 return ret;
4303 }
4304
4305 fs_info->uuid_root = uuid_root;
4306
4307 ret = btrfs_commit_transaction(trans);
4308 if (ret)
4309 return ret;
4310
4311 down(&fs_info->uuid_tree_rescan_sem);
4312 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4313 if (IS_ERR(task)) {
4314 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4315 btrfs_warn(fs_info, "failed to start uuid_scan task");
4316 up(&fs_info->uuid_tree_rescan_sem);
4317 return PTR_ERR(task);
4318 }
4319
4320 return 0;
4321 }
4322
4323 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4324 {
4325 struct task_struct *task;
4326
4327 down(&fs_info->uuid_tree_rescan_sem);
4328 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4329 if (IS_ERR(task)) {
4330 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4331 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4332 up(&fs_info->uuid_tree_rescan_sem);
4333 return PTR_ERR(task);
4334 }
4335
4336 return 0;
4337 }
4338
4339 /*
4340 * shrinking a device means finding all of the device extents past
4341 * the new size, and then following the back refs to the chunks.
4342 * The chunk relocation code actually frees the device extent
4343 */
4344 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4345 {
4346 struct btrfs_fs_info *fs_info = device->fs_info;
4347 struct btrfs_root *root = fs_info->dev_root;
4348 struct btrfs_trans_handle *trans;
4349 struct btrfs_dev_extent *dev_extent = NULL;
4350 struct btrfs_path *path;
4351 u64 length;
4352 u64 chunk_offset;
4353 int ret;
4354 int slot;
4355 int failed = 0;
4356 bool retried = false;
4357 bool checked_pending_chunks = false;
4358 struct extent_buffer *l;
4359 struct btrfs_key key;
4360 struct btrfs_super_block *super_copy = fs_info->super_copy;
4361 u64 old_total = btrfs_super_total_bytes(super_copy);
4362 u64 old_size = btrfs_device_get_total_bytes(device);
4363 u64 diff;
4364
4365 new_size = round_down(new_size, fs_info->sectorsize);
4366 diff = round_down(old_size - new_size, fs_info->sectorsize);
4367
4368 if (device->is_tgtdev_for_dev_replace)
4369 return -EINVAL;
4370
4371 path = btrfs_alloc_path();
4372 if (!path)
4373 return -ENOMEM;
4374
4375 path->reada = READA_FORWARD;
4376
4377 mutex_lock(&fs_info->chunk_mutex);
4378
4379 btrfs_device_set_total_bytes(device, new_size);
4380 if (device->writeable) {
4381 device->fs_devices->total_rw_bytes -= diff;
4382 atomic64_sub(diff, &fs_info->free_chunk_space);
4383 }
4384 mutex_unlock(&fs_info->chunk_mutex);
4385
4386 again:
4387 key.objectid = device->devid;
4388 key.offset = (u64)-1;
4389 key.type = BTRFS_DEV_EXTENT_KEY;
4390
4391 do {
4392 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4393 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4394 if (ret < 0) {
4395 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4396 goto done;
4397 }
4398
4399 ret = btrfs_previous_item(root, path, 0, key.type);
4400 if (ret)
4401 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4402 if (ret < 0)
4403 goto done;
4404 if (ret) {
4405 ret = 0;
4406 btrfs_release_path(path);
4407 break;
4408 }
4409
4410 l = path->nodes[0];
4411 slot = path->slots[0];
4412 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4413
4414 if (key.objectid != device->devid) {
4415 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4416 btrfs_release_path(path);
4417 break;
4418 }
4419
4420 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4421 length = btrfs_dev_extent_length(l, dev_extent);
4422
4423 if (key.offset + length <= new_size) {
4424 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4425 btrfs_release_path(path);
4426 break;
4427 }
4428
4429 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4430 btrfs_release_path(path);
4431
4432 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4433 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4434 if (ret && ret != -ENOSPC)
4435 goto done;
4436 if (ret == -ENOSPC)
4437 failed++;
4438 } while (key.offset-- > 0);
4439
4440 if (failed && !retried) {
4441 failed = 0;
4442 retried = true;
4443 goto again;
4444 } else if (failed && retried) {
4445 ret = -ENOSPC;
4446 goto done;
4447 }
4448
4449 /* Shrinking succeeded, else we would be at "done". */
4450 trans = btrfs_start_transaction(root, 0);
4451 if (IS_ERR(trans)) {
4452 ret = PTR_ERR(trans);
4453 goto done;
4454 }
4455
4456 mutex_lock(&fs_info->chunk_mutex);
4457
4458 /*
4459 * We checked in the above loop all device extents that were already in
4460 * the device tree. However before we have updated the device's
4461 * total_bytes to the new size, we might have had chunk allocations that
4462 * have not complete yet (new block groups attached to transaction
4463 * handles), and therefore their device extents were not yet in the
4464 * device tree and we missed them in the loop above. So if we have any
4465 * pending chunk using a device extent that overlaps the device range
4466 * that we can not use anymore, commit the current transaction and
4467 * repeat the search on the device tree - this way we guarantee we will
4468 * not have chunks using device extents that end beyond 'new_size'.
4469 */
4470 if (!checked_pending_chunks) {
4471 u64 start = new_size;
4472 u64 len = old_size - new_size;
4473
4474 if (contains_pending_extent(trans->transaction, device,
4475 &start, len)) {
4476 mutex_unlock(&fs_info->chunk_mutex);
4477 checked_pending_chunks = true;
4478 failed = 0;
4479 retried = false;
4480 ret = btrfs_commit_transaction(trans);
4481 if (ret)
4482 goto done;
4483 goto again;
4484 }
4485 }
4486
4487 btrfs_device_set_disk_total_bytes(device, new_size);
4488 if (list_empty(&device->resized_list))
4489 list_add_tail(&device->resized_list,
4490 &fs_info->fs_devices->resized_devices);
4491
4492 WARN_ON(diff > old_total);
4493 btrfs_set_super_total_bytes(super_copy,
4494 round_down(old_total - diff, fs_info->sectorsize));
4495 mutex_unlock(&fs_info->chunk_mutex);
4496
4497 /* Now btrfs_update_device() will change the on-disk size. */
4498 ret = btrfs_update_device(trans, device);
4499 btrfs_end_transaction(trans);
4500 done:
4501 btrfs_free_path(path);
4502 if (ret) {
4503 mutex_lock(&fs_info->chunk_mutex);
4504 btrfs_device_set_total_bytes(device, old_size);
4505 if (device->writeable)
4506 device->fs_devices->total_rw_bytes += diff;
4507 atomic64_add(diff, &fs_info->free_chunk_space);
4508 mutex_unlock(&fs_info->chunk_mutex);
4509 }
4510 return ret;
4511 }
4512
4513 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4514 struct btrfs_key *key,
4515 struct btrfs_chunk *chunk, int item_size)
4516 {
4517 struct btrfs_super_block *super_copy = fs_info->super_copy;
4518 struct btrfs_disk_key disk_key;
4519 u32 array_size;
4520 u8 *ptr;
4521
4522 mutex_lock(&fs_info->chunk_mutex);
4523 array_size = btrfs_super_sys_array_size(super_copy);
4524 if (array_size + item_size + sizeof(disk_key)
4525 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4526 mutex_unlock(&fs_info->chunk_mutex);
4527 return -EFBIG;
4528 }
4529
4530 ptr = super_copy->sys_chunk_array + array_size;
4531 btrfs_cpu_key_to_disk(&disk_key, key);
4532 memcpy(ptr, &disk_key, sizeof(disk_key));
4533 ptr += sizeof(disk_key);
4534 memcpy(ptr, chunk, item_size);
4535 item_size += sizeof(disk_key);
4536 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4537 mutex_unlock(&fs_info->chunk_mutex);
4538
4539 return 0;
4540 }
4541
4542 /*
4543 * sort the devices in descending order by max_avail, total_avail
4544 */
4545 static int btrfs_cmp_device_info(const void *a, const void *b)
4546 {
4547 const struct btrfs_device_info *di_a = a;
4548 const struct btrfs_device_info *di_b = b;
4549
4550 if (di_a->max_avail > di_b->max_avail)
4551 return -1;
4552 if (di_a->max_avail < di_b->max_avail)
4553 return 1;
4554 if (di_a->total_avail > di_b->total_avail)
4555 return -1;
4556 if (di_a->total_avail < di_b->total_avail)
4557 return 1;
4558 return 0;
4559 }
4560
4561 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4562 {
4563 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4564 return;
4565
4566 btrfs_set_fs_incompat(info, RAID56);
4567 }
4568
4569 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4570 - sizeof(struct btrfs_chunk)) \
4571 / sizeof(struct btrfs_stripe) + 1)
4572
4573 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4574 - 2 * sizeof(struct btrfs_disk_key) \
4575 - 2 * sizeof(struct btrfs_chunk)) \
4576 / sizeof(struct btrfs_stripe) + 1)
4577
4578 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4579 u64 start, u64 type)
4580 {
4581 struct btrfs_fs_info *info = trans->fs_info;
4582 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4583 struct btrfs_device *device;
4584 struct map_lookup *map = NULL;
4585 struct extent_map_tree *em_tree;
4586 struct extent_map *em;
4587 struct btrfs_device_info *devices_info = NULL;
4588 u64 total_avail;
4589 int num_stripes; /* total number of stripes to allocate */
4590 int data_stripes; /* number of stripes that count for
4591 block group size */
4592 int sub_stripes; /* sub_stripes info for map */
4593 int dev_stripes; /* stripes per dev */
4594 int devs_max; /* max devs to use */
4595 int devs_min; /* min devs needed */
4596 int devs_increment; /* ndevs has to be a multiple of this */
4597 int ncopies; /* how many copies to data has */
4598 int ret;
4599 u64 max_stripe_size;
4600 u64 max_chunk_size;
4601 u64 stripe_size;
4602 u64 num_bytes;
4603 int ndevs;
4604 int i;
4605 int j;
4606 int index;
4607
4608 BUG_ON(!alloc_profile_is_valid(type, 0));
4609
4610 if (list_empty(&fs_devices->alloc_list))
4611 return -ENOSPC;
4612
4613 index = __get_raid_index(type);
4614
4615 sub_stripes = btrfs_raid_array[index].sub_stripes;
4616 dev_stripes = btrfs_raid_array[index].dev_stripes;
4617 devs_max = btrfs_raid_array[index].devs_max;
4618 devs_min = btrfs_raid_array[index].devs_min;
4619 devs_increment = btrfs_raid_array[index].devs_increment;
4620 ncopies = btrfs_raid_array[index].ncopies;
4621
4622 if (type & BTRFS_BLOCK_GROUP_DATA) {
4623 max_stripe_size = SZ_1G;
4624 max_chunk_size = 10 * max_stripe_size;
4625 if (!devs_max)
4626 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4627 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4628 /* for larger filesystems, use larger metadata chunks */
4629 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4630 max_stripe_size = SZ_1G;
4631 else
4632 max_stripe_size = SZ_256M;
4633 max_chunk_size = max_stripe_size;
4634 if (!devs_max)
4635 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4636 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4637 max_stripe_size = SZ_32M;
4638 max_chunk_size = 2 * max_stripe_size;
4639 if (!devs_max)
4640 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4641 } else {
4642 btrfs_err(info, "invalid chunk type 0x%llx requested",
4643 type);
4644 BUG_ON(1);
4645 }
4646
4647 /* we don't want a chunk larger than 10% of writeable space */
4648 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4649 max_chunk_size);
4650
4651 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4652 GFP_NOFS);
4653 if (!devices_info)
4654 return -ENOMEM;
4655
4656 /*
4657 * in the first pass through the devices list, we gather information
4658 * about the available holes on each device.
4659 */
4660 ndevs = 0;
4661 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4662 u64 max_avail;
4663 u64 dev_offset;
4664
4665 if (!device->writeable) {
4666 WARN(1, KERN_ERR
4667 "BTRFS: read-only device in alloc_list\n");
4668 continue;
4669 }
4670
4671 if (!device->in_fs_metadata ||
4672 device->is_tgtdev_for_dev_replace)
4673 continue;
4674
4675 if (device->total_bytes > device->bytes_used)
4676 total_avail = device->total_bytes - device->bytes_used;
4677 else
4678 total_avail = 0;
4679
4680 /* If there is no space on this device, skip it. */
4681 if (total_avail == 0)
4682 continue;
4683
4684 ret = find_free_dev_extent(trans, device,
4685 max_stripe_size * dev_stripes,
4686 &dev_offset, &max_avail);
4687 if (ret && ret != -ENOSPC)
4688 goto error;
4689
4690 if (ret == 0)
4691 max_avail = max_stripe_size * dev_stripes;
4692
4693 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4694 continue;
4695
4696 if (ndevs == fs_devices->rw_devices) {
4697 WARN(1, "%s: found more than %llu devices\n",
4698 __func__, fs_devices->rw_devices);
4699 break;
4700 }
4701 devices_info[ndevs].dev_offset = dev_offset;
4702 devices_info[ndevs].max_avail = max_avail;
4703 devices_info[ndevs].total_avail = total_avail;
4704 devices_info[ndevs].dev = device;
4705 ++ndevs;
4706 }
4707
4708 /*
4709 * now sort the devices by hole size / available space
4710 */
4711 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4712 btrfs_cmp_device_info, NULL);
4713
4714 /* round down to number of usable stripes */
4715 ndevs = round_down(ndevs, devs_increment);
4716
4717 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4718 ret = -ENOSPC;
4719 goto error;
4720 }
4721
4722 ndevs = min(ndevs, devs_max);
4723
4724 /*
4725 * the primary goal is to maximize the number of stripes, so use as many
4726 * devices as possible, even if the stripes are not maximum sized.
4727 */
4728 stripe_size = devices_info[ndevs-1].max_avail;
4729 num_stripes = ndevs * dev_stripes;
4730
4731 /*
4732 * this will have to be fixed for RAID1 and RAID10 over
4733 * more drives
4734 */
4735 data_stripes = num_stripes / ncopies;
4736
4737 if (type & BTRFS_BLOCK_GROUP_RAID5)
4738 data_stripes = num_stripes - 1;
4739
4740 if (type & BTRFS_BLOCK_GROUP_RAID6)
4741 data_stripes = num_stripes - 2;
4742
4743 /*
4744 * Use the number of data stripes to figure out how big this chunk
4745 * is really going to be in terms of logical address space,
4746 * and compare that answer with the max chunk size
4747 */
4748 if (stripe_size * data_stripes > max_chunk_size) {
4749 u64 mask = (1ULL << 24) - 1;
4750
4751 stripe_size = div_u64(max_chunk_size, data_stripes);
4752
4753 /* bump the answer up to a 16MB boundary */
4754 stripe_size = (stripe_size + mask) & ~mask;
4755
4756 /* but don't go higher than the limits we found
4757 * while searching for free extents
4758 */
4759 if (stripe_size > devices_info[ndevs-1].max_avail)
4760 stripe_size = devices_info[ndevs-1].max_avail;
4761 }
4762
4763 stripe_size = div_u64(stripe_size, dev_stripes);
4764
4765 /* align to BTRFS_STRIPE_LEN */
4766 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4767
4768 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4769 if (!map) {
4770 ret = -ENOMEM;
4771 goto error;
4772 }
4773 map->num_stripes = num_stripes;
4774
4775 for (i = 0; i < ndevs; ++i) {
4776 for (j = 0; j < dev_stripes; ++j) {
4777 int s = i * dev_stripes + j;
4778 map->stripes[s].dev = devices_info[i].dev;
4779 map->stripes[s].physical = devices_info[i].dev_offset +
4780 j * stripe_size;
4781 }
4782 }
4783 map->stripe_len = BTRFS_STRIPE_LEN;
4784 map->io_align = BTRFS_STRIPE_LEN;
4785 map->io_width = BTRFS_STRIPE_LEN;
4786 map->type = type;
4787 map->sub_stripes = sub_stripes;
4788
4789 num_bytes = stripe_size * data_stripes;
4790
4791 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4792
4793 em = alloc_extent_map();
4794 if (!em) {
4795 kfree(map);
4796 ret = -ENOMEM;
4797 goto error;
4798 }
4799 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4800 em->map_lookup = map;
4801 em->start = start;
4802 em->len = num_bytes;
4803 em->block_start = 0;
4804 em->block_len = em->len;
4805 em->orig_block_len = stripe_size;
4806
4807 em_tree = &info->mapping_tree.map_tree;
4808 write_lock(&em_tree->lock);
4809 ret = add_extent_mapping(em_tree, em, 0);
4810 if (!ret) {
4811 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4812 refcount_inc(&em->refs);
4813 }
4814 write_unlock(&em_tree->lock);
4815 if (ret) {
4816 free_extent_map(em);
4817 goto error;
4818 }
4819
4820 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4821 if (ret)
4822 goto error_del_extent;
4823
4824 for (i = 0; i < map->num_stripes; i++) {
4825 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4826 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4827 }
4828
4829 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4830
4831 free_extent_map(em);
4832 check_raid56_incompat_flag(info, type);
4833
4834 kfree(devices_info);
4835 return 0;
4836
4837 error_del_extent:
4838 write_lock(&em_tree->lock);
4839 remove_extent_mapping(em_tree, em);
4840 write_unlock(&em_tree->lock);
4841
4842 /* One for our allocation */
4843 free_extent_map(em);
4844 /* One for the tree reference */
4845 free_extent_map(em);
4846 /* One for the pending_chunks list reference */
4847 free_extent_map(em);
4848 error:
4849 kfree(devices_info);
4850 return ret;
4851 }
4852
4853 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4854 struct btrfs_fs_info *fs_info,
4855 u64 chunk_offset, u64 chunk_size)
4856 {
4857 struct btrfs_root *extent_root = fs_info->extent_root;
4858 struct btrfs_root *chunk_root = fs_info->chunk_root;
4859 struct btrfs_key key;
4860 struct btrfs_device *device;
4861 struct btrfs_chunk *chunk;
4862 struct btrfs_stripe *stripe;
4863 struct extent_map *em;
4864 struct map_lookup *map;
4865 size_t item_size;
4866 u64 dev_offset;
4867 u64 stripe_size;
4868 int i = 0;
4869 int ret = 0;
4870
4871 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4872 if (IS_ERR(em))
4873 return PTR_ERR(em);
4874
4875 map = em->map_lookup;
4876 item_size = btrfs_chunk_item_size(map->num_stripes);
4877 stripe_size = em->orig_block_len;
4878
4879 chunk = kzalloc(item_size, GFP_NOFS);
4880 if (!chunk) {
4881 ret = -ENOMEM;
4882 goto out;
4883 }
4884
4885 /*
4886 * Take the device list mutex to prevent races with the final phase of
4887 * a device replace operation that replaces the device object associated
4888 * with the map's stripes, because the device object's id can change
4889 * at any time during that final phase of the device replace operation
4890 * (dev-replace.c:btrfs_dev_replace_finishing()).
4891 */
4892 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4893 for (i = 0; i < map->num_stripes; i++) {
4894 device = map->stripes[i].dev;
4895 dev_offset = map->stripes[i].physical;
4896
4897 ret = btrfs_update_device(trans, device);
4898 if (ret)
4899 break;
4900 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4901 dev_offset, stripe_size);
4902 if (ret)
4903 break;
4904 }
4905 if (ret) {
4906 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4907 goto out;
4908 }
4909
4910 stripe = &chunk->stripe;
4911 for (i = 0; i < map->num_stripes; i++) {
4912 device = map->stripes[i].dev;
4913 dev_offset = map->stripes[i].physical;
4914
4915 btrfs_set_stack_stripe_devid(stripe, device->devid);
4916 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4917 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4918 stripe++;
4919 }
4920 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4921
4922 btrfs_set_stack_chunk_length(chunk, chunk_size);
4923 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4924 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4925 btrfs_set_stack_chunk_type(chunk, map->type);
4926 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4927 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4928 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4929 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4930 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4931
4932 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4933 key.type = BTRFS_CHUNK_ITEM_KEY;
4934 key.offset = chunk_offset;
4935
4936 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4937 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4938 /*
4939 * TODO: Cleanup of inserted chunk root in case of
4940 * failure.
4941 */
4942 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4943 }
4944
4945 out:
4946 kfree(chunk);
4947 free_extent_map(em);
4948 return ret;
4949 }
4950
4951 /*
4952 * Chunk allocation falls into two parts. The first part does works
4953 * that make the new allocated chunk useable, but not do any operation
4954 * that modifies the chunk tree. The second part does the works that
4955 * require modifying the chunk tree. This division is important for the
4956 * bootstrap process of adding storage to a seed btrfs.
4957 */
4958 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4959 struct btrfs_fs_info *fs_info, u64 type)
4960 {
4961 u64 chunk_offset;
4962
4963 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4964 chunk_offset = find_next_chunk(fs_info);
4965 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4966 }
4967
4968 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4969 struct btrfs_fs_info *fs_info)
4970 {
4971 u64 chunk_offset;
4972 u64 sys_chunk_offset;
4973 u64 alloc_profile;
4974 int ret;
4975
4976 chunk_offset = find_next_chunk(fs_info);
4977 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4978 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4979 if (ret)
4980 return ret;
4981
4982 sys_chunk_offset = find_next_chunk(fs_info);
4983 alloc_profile = btrfs_system_alloc_profile(fs_info);
4984 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4985 return ret;
4986 }
4987
4988 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4989 {
4990 int max_errors;
4991
4992 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4993 BTRFS_BLOCK_GROUP_RAID10 |
4994 BTRFS_BLOCK_GROUP_RAID5 |
4995 BTRFS_BLOCK_GROUP_DUP)) {
4996 max_errors = 1;
4997 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
4998 max_errors = 2;
4999 } else {
5000 max_errors = 0;
5001 }
5002
5003 return max_errors;
5004 }
5005
5006 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5007 {
5008 struct extent_map *em;
5009 struct map_lookup *map;
5010 int readonly = 0;
5011 int miss_ndevs = 0;
5012 int i;
5013
5014 em = get_chunk_map(fs_info, chunk_offset, 1);
5015 if (IS_ERR(em))
5016 return 1;
5017
5018 map = em->map_lookup;
5019 for (i = 0; i < map->num_stripes; i++) {
5020 if (map->stripes[i].dev->missing) {
5021 miss_ndevs++;
5022 continue;
5023 }
5024
5025 if (!map->stripes[i].dev->writeable) {
5026 readonly = 1;
5027 goto end;
5028 }
5029 }
5030
5031 /*
5032 * If the number of missing devices is larger than max errors,
5033 * we can not write the data into that chunk successfully, so
5034 * set it readonly.
5035 */
5036 if (miss_ndevs > btrfs_chunk_max_errors(map))
5037 readonly = 1;
5038 end:
5039 free_extent_map(em);
5040 return readonly;
5041 }
5042
5043 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5044 {
5045 extent_map_tree_init(&tree->map_tree);
5046 }
5047
5048 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5049 {
5050 struct extent_map *em;
5051
5052 while (1) {
5053 write_lock(&tree->map_tree.lock);
5054 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5055 if (em)
5056 remove_extent_mapping(&tree->map_tree, em);
5057 write_unlock(&tree->map_tree.lock);
5058 if (!em)
5059 break;
5060 /* once for us */
5061 free_extent_map(em);
5062 /* once for the tree */
5063 free_extent_map(em);
5064 }
5065 }
5066
5067 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5068 {
5069 struct extent_map *em;
5070 struct map_lookup *map;
5071 int ret;
5072
5073 em = get_chunk_map(fs_info, logical, len);
5074 if (IS_ERR(em))
5075 /*
5076 * We could return errors for these cases, but that could get
5077 * ugly and we'd probably do the same thing which is just not do
5078 * anything else and exit, so return 1 so the callers don't try
5079 * to use other copies.
5080 */
5081 return 1;
5082
5083 map = em->map_lookup;
5084 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5085 ret = map->num_stripes;
5086 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5087 ret = map->sub_stripes;
5088 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5089 ret = 2;
5090 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5091 ret = 3;
5092 else
5093 ret = 1;
5094 free_extent_map(em);
5095
5096 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5097 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5098 fs_info->dev_replace.tgtdev)
5099 ret++;
5100 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5101
5102 return ret;
5103 }
5104
5105 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5106 u64 logical)
5107 {
5108 struct extent_map *em;
5109 struct map_lookup *map;
5110 unsigned long len = fs_info->sectorsize;
5111
5112 em = get_chunk_map(fs_info, logical, len);
5113
5114 if (!WARN_ON(IS_ERR(em))) {
5115 map = em->map_lookup;
5116 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5117 len = map->stripe_len * nr_data_stripes(map);
5118 free_extent_map(em);
5119 }
5120 return len;
5121 }
5122
5123 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5124 {
5125 struct extent_map *em;
5126 struct map_lookup *map;
5127 int ret = 0;
5128
5129 em = get_chunk_map(fs_info, logical, len);
5130
5131 if(!WARN_ON(IS_ERR(em))) {
5132 map = em->map_lookup;
5133 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5134 ret = 1;
5135 free_extent_map(em);
5136 }
5137 return ret;
5138 }
5139
5140 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5141 struct map_lookup *map, int first, int num,
5142 int optimal, int dev_replace_is_ongoing)
5143 {
5144 int i;
5145 int tolerance;
5146 struct btrfs_device *srcdev;
5147
5148 if (dev_replace_is_ongoing &&
5149 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5150 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5151 srcdev = fs_info->dev_replace.srcdev;
5152 else
5153 srcdev = NULL;
5154
5155 /*
5156 * try to avoid the drive that is the source drive for a
5157 * dev-replace procedure, only choose it if no other non-missing
5158 * mirror is available
5159 */
5160 for (tolerance = 0; tolerance < 2; tolerance++) {
5161 if (map->stripes[optimal].dev->bdev &&
5162 (tolerance || map->stripes[optimal].dev != srcdev))
5163 return optimal;
5164 for (i = first; i < first + num; i++) {
5165 if (map->stripes[i].dev->bdev &&
5166 (tolerance || map->stripes[i].dev != srcdev))
5167 return i;
5168 }
5169 }
5170
5171 /* we couldn't find one that doesn't fail. Just return something
5172 * and the io error handling code will clean up eventually
5173 */
5174 return optimal;
5175 }
5176
5177 static inline int parity_smaller(u64 a, u64 b)
5178 {
5179 return a > b;
5180 }
5181
5182 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5183 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5184 {
5185 struct btrfs_bio_stripe s;
5186 int i;
5187 u64 l;
5188 int again = 1;
5189
5190 while (again) {
5191 again = 0;
5192 for (i = 0; i < num_stripes - 1; i++) {
5193 if (parity_smaller(bbio->raid_map[i],
5194 bbio->raid_map[i+1])) {
5195 s = bbio->stripes[i];
5196 l = bbio->raid_map[i];
5197 bbio->stripes[i] = bbio->stripes[i+1];
5198 bbio->raid_map[i] = bbio->raid_map[i+1];
5199 bbio->stripes[i+1] = s;
5200 bbio->raid_map[i+1] = l;
5201
5202 again = 1;
5203 }
5204 }
5205 }
5206 }
5207
5208 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5209 {
5210 struct btrfs_bio *bbio = kzalloc(
5211 /* the size of the btrfs_bio */
5212 sizeof(struct btrfs_bio) +
5213 /* plus the variable array for the stripes */
5214 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5215 /* plus the variable array for the tgt dev */
5216 sizeof(int) * (real_stripes) +
5217 /*
5218 * plus the raid_map, which includes both the tgt dev
5219 * and the stripes
5220 */
5221 sizeof(u64) * (total_stripes),
5222 GFP_NOFS|__GFP_NOFAIL);
5223
5224 atomic_set(&bbio->error, 0);
5225 refcount_set(&bbio->refs, 1);
5226
5227 return bbio;
5228 }
5229
5230 void btrfs_get_bbio(struct btrfs_bio *bbio)
5231 {
5232 WARN_ON(!refcount_read(&bbio->refs));
5233 refcount_inc(&bbio->refs);
5234 }
5235
5236 void btrfs_put_bbio(struct btrfs_bio *bbio)
5237 {
5238 if (!bbio)
5239 return;
5240 if (refcount_dec_and_test(&bbio->refs))
5241 kfree(bbio);
5242 }
5243
5244 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5245 /*
5246 * Please note that, discard won't be sent to target device of device
5247 * replace.
5248 */
5249 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5250 u64 logical, u64 length,
5251 struct btrfs_bio **bbio_ret)
5252 {
5253 struct extent_map *em;
5254 struct map_lookup *map;
5255 struct btrfs_bio *bbio;
5256 u64 offset;
5257 u64 stripe_nr;
5258 u64 stripe_nr_end;
5259 u64 stripe_end_offset;
5260 u64 stripe_cnt;
5261 u64 stripe_len;
5262 u64 stripe_offset;
5263 u64 num_stripes;
5264 u32 stripe_index;
5265 u32 factor = 0;
5266 u32 sub_stripes = 0;
5267 u64 stripes_per_dev = 0;
5268 u32 remaining_stripes = 0;
5269 u32 last_stripe = 0;
5270 int ret = 0;
5271 int i;
5272
5273 /* discard always return a bbio */
5274 ASSERT(bbio_ret);
5275
5276 em = get_chunk_map(fs_info, logical, length);
5277 if (IS_ERR(em))
5278 return PTR_ERR(em);
5279
5280 map = em->map_lookup;
5281 /* we don't discard raid56 yet */
5282 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5283 ret = -EOPNOTSUPP;
5284 goto out;
5285 }
5286
5287 offset = logical - em->start;
5288 length = min_t(u64, em->len - offset, length);
5289
5290 stripe_len = map->stripe_len;
5291 /*
5292 * stripe_nr counts the total number of stripes we have to stride
5293 * to get to this block
5294 */
5295 stripe_nr = div64_u64(offset, stripe_len);
5296
5297 /* stripe_offset is the offset of this block in its stripe */
5298 stripe_offset = offset - stripe_nr * stripe_len;
5299
5300 stripe_nr_end = round_up(offset + length, map->stripe_len);
5301 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5302 stripe_cnt = stripe_nr_end - stripe_nr;
5303 stripe_end_offset = stripe_nr_end * map->stripe_len -
5304 (offset + length);
5305 /*
5306 * after this, stripe_nr is the number of stripes on this
5307 * device we have to walk to find the data, and stripe_index is
5308 * the number of our device in the stripe array
5309 */
5310 num_stripes = 1;
5311 stripe_index = 0;
5312 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5313 BTRFS_BLOCK_GROUP_RAID10)) {
5314 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5315 sub_stripes = 1;
5316 else
5317 sub_stripes = map->sub_stripes;
5318
5319 factor = map->num_stripes / sub_stripes;
5320 num_stripes = min_t(u64, map->num_stripes,
5321 sub_stripes * stripe_cnt);
5322 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5323 stripe_index *= sub_stripes;
5324 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5325 &remaining_stripes);
5326 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5327 last_stripe *= sub_stripes;
5328 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5329 BTRFS_BLOCK_GROUP_DUP)) {
5330 num_stripes = map->num_stripes;
5331 } else {
5332 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5333 &stripe_index);
5334 }
5335
5336 bbio = alloc_btrfs_bio(num_stripes, 0);
5337 if (!bbio) {
5338 ret = -ENOMEM;
5339 goto out;
5340 }
5341
5342 for (i = 0; i < num_stripes; i++) {
5343 bbio->stripes[i].physical =
5344 map->stripes[stripe_index].physical +
5345 stripe_offset + stripe_nr * map->stripe_len;
5346 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5347
5348 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5349 BTRFS_BLOCK_GROUP_RAID10)) {
5350 bbio->stripes[i].length = stripes_per_dev *
5351 map->stripe_len;
5352
5353 if (i / sub_stripes < remaining_stripes)
5354 bbio->stripes[i].length +=
5355 map->stripe_len;
5356
5357 /*
5358 * Special for the first stripe and
5359 * the last stripe:
5360 *
5361 * |-------|...|-------|
5362 * |----------|
5363 * off end_off
5364 */
5365 if (i < sub_stripes)
5366 bbio->stripes[i].length -=
5367 stripe_offset;
5368
5369 if (stripe_index >= last_stripe &&
5370 stripe_index <= (last_stripe +
5371 sub_stripes - 1))
5372 bbio->stripes[i].length -=
5373 stripe_end_offset;
5374
5375 if (i == sub_stripes - 1)
5376 stripe_offset = 0;
5377 } else {
5378 bbio->stripes[i].length = length;
5379 }
5380
5381 stripe_index++;
5382 if (stripe_index == map->num_stripes) {
5383 stripe_index = 0;
5384 stripe_nr++;
5385 }
5386 }
5387
5388 *bbio_ret = bbio;
5389 bbio->map_type = map->type;
5390 bbio->num_stripes = num_stripes;
5391 out:
5392 free_extent_map(em);
5393 return ret;
5394 }
5395
5396 /*
5397 * In dev-replace case, for repair case (that's the only case where the mirror
5398 * is selected explicitly when calling btrfs_map_block), blocks left of the
5399 * left cursor can also be read from the target drive.
5400 *
5401 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5402 * array of stripes.
5403 * For READ, it also needs to be supported using the same mirror number.
5404 *
5405 * If the requested block is not left of the left cursor, EIO is returned. This
5406 * can happen because btrfs_num_copies() returns one more in the dev-replace
5407 * case.
5408 */
5409 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5410 u64 logical, u64 length,
5411 u64 srcdev_devid, int *mirror_num,
5412 u64 *physical)
5413 {
5414 struct btrfs_bio *bbio = NULL;
5415 int num_stripes;
5416 int index_srcdev = 0;
5417 int found = 0;
5418 u64 physical_of_found = 0;
5419 int i;
5420 int ret = 0;
5421
5422 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5423 logical, &length, &bbio, 0, 0);
5424 if (ret) {
5425 ASSERT(bbio == NULL);
5426 return ret;
5427 }
5428
5429 num_stripes = bbio->num_stripes;
5430 if (*mirror_num > num_stripes) {
5431 /*
5432 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5433 * that means that the requested area is not left of the left
5434 * cursor
5435 */
5436 btrfs_put_bbio(bbio);
5437 return -EIO;
5438 }
5439
5440 /*
5441 * process the rest of the function using the mirror_num of the source
5442 * drive. Therefore look it up first. At the end, patch the device
5443 * pointer to the one of the target drive.
5444 */
5445 for (i = 0; i < num_stripes; i++) {
5446 if (bbio->stripes[i].dev->devid != srcdev_devid)
5447 continue;
5448
5449 /*
5450 * In case of DUP, in order to keep it simple, only add the
5451 * mirror with the lowest physical address
5452 */
5453 if (found &&
5454 physical_of_found <= bbio->stripes[i].physical)
5455 continue;
5456
5457 index_srcdev = i;
5458 found = 1;
5459 physical_of_found = bbio->stripes[i].physical;
5460 }
5461
5462 btrfs_put_bbio(bbio);
5463
5464 ASSERT(found);
5465 if (!found)
5466 return -EIO;
5467
5468 *mirror_num = index_srcdev + 1;
5469 *physical = physical_of_found;
5470 return ret;
5471 }
5472
5473 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5474 struct btrfs_bio **bbio_ret,
5475 struct btrfs_dev_replace *dev_replace,
5476 int *num_stripes_ret, int *max_errors_ret)
5477 {
5478 struct btrfs_bio *bbio = *bbio_ret;
5479 u64 srcdev_devid = dev_replace->srcdev->devid;
5480 int tgtdev_indexes = 0;
5481 int num_stripes = *num_stripes_ret;
5482 int max_errors = *max_errors_ret;
5483 int i;
5484
5485 if (op == BTRFS_MAP_WRITE) {
5486 int index_where_to_add;
5487
5488 /*
5489 * duplicate the write operations while the dev replace
5490 * procedure is running. Since the copying of the old disk to
5491 * the new disk takes place at run time while the filesystem is
5492 * mounted writable, the regular write operations to the old
5493 * disk have to be duplicated to go to the new disk as well.
5494 *
5495 * Note that device->missing is handled by the caller, and that
5496 * the write to the old disk is already set up in the stripes
5497 * array.
5498 */
5499 index_where_to_add = num_stripes;
5500 for (i = 0; i < num_stripes; i++) {
5501 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5502 /* write to new disk, too */
5503 struct btrfs_bio_stripe *new =
5504 bbio->stripes + index_where_to_add;
5505 struct btrfs_bio_stripe *old =
5506 bbio->stripes + i;
5507
5508 new->physical = old->physical;
5509 new->length = old->length;
5510 new->dev = dev_replace->tgtdev;
5511 bbio->tgtdev_map[i] = index_where_to_add;
5512 index_where_to_add++;
5513 max_errors++;
5514 tgtdev_indexes++;
5515 }
5516 }
5517 num_stripes = index_where_to_add;
5518 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5519 int index_srcdev = 0;
5520 int found = 0;
5521 u64 physical_of_found = 0;
5522
5523 /*
5524 * During the dev-replace procedure, the target drive can also
5525 * be used to read data in case it is needed to repair a corrupt
5526 * block elsewhere. This is possible if the requested area is
5527 * left of the left cursor. In this area, the target drive is a
5528 * full copy of the source drive.
5529 */
5530 for (i = 0; i < num_stripes; i++) {
5531 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5532 /*
5533 * In case of DUP, in order to keep it simple,
5534 * only add the mirror with the lowest physical
5535 * address
5536 */
5537 if (found &&
5538 physical_of_found <=
5539 bbio->stripes[i].physical)
5540 continue;
5541 index_srcdev = i;
5542 found = 1;
5543 physical_of_found = bbio->stripes[i].physical;
5544 }
5545 }
5546 if (found) {
5547 struct btrfs_bio_stripe *tgtdev_stripe =
5548 bbio->stripes + num_stripes;
5549
5550 tgtdev_stripe->physical = physical_of_found;
5551 tgtdev_stripe->length =
5552 bbio->stripes[index_srcdev].length;
5553 tgtdev_stripe->dev = dev_replace->tgtdev;
5554 bbio->tgtdev_map[index_srcdev] = num_stripes;
5555
5556 tgtdev_indexes++;
5557 num_stripes++;
5558 }
5559 }
5560
5561 *num_stripes_ret = num_stripes;
5562 *max_errors_ret = max_errors;
5563 bbio->num_tgtdevs = tgtdev_indexes;
5564 *bbio_ret = bbio;
5565 }
5566
5567 static bool need_full_stripe(enum btrfs_map_op op)
5568 {
5569 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5570 }
5571
5572 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5573 enum btrfs_map_op op,
5574 u64 logical, u64 *length,
5575 struct btrfs_bio **bbio_ret,
5576 int mirror_num, int need_raid_map)
5577 {
5578 struct extent_map *em;
5579 struct map_lookup *map;
5580 u64 offset;
5581 u64 stripe_offset;
5582 u64 stripe_nr;
5583 u64 stripe_len;
5584 u32 stripe_index;
5585 int i;
5586 int ret = 0;
5587 int num_stripes;
5588 int max_errors = 0;
5589 int tgtdev_indexes = 0;
5590 struct btrfs_bio *bbio = NULL;
5591 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5592 int dev_replace_is_ongoing = 0;
5593 int num_alloc_stripes;
5594 int patch_the_first_stripe_for_dev_replace = 0;
5595 u64 physical_to_patch_in_first_stripe = 0;
5596 u64 raid56_full_stripe_start = (u64)-1;
5597
5598 if (op == BTRFS_MAP_DISCARD)
5599 return __btrfs_map_block_for_discard(fs_info, logical,
5600 *length, bbio_ret);
5601
5602 em = get_chunk_map(fs_info, logical, *length);
5603 if (IS_ERR(em))
5604 return PTR_ERR(em);
5605
5606 map = em->map_lookup;
5607 offset = logical - em->start;
5608
5609 stripe_len = map->stripe_len;
5610 stripe_nr = offset;
5611 /*
5612 * stripe_nr counts the total number of stripes we have to stride
5613 * to get to this block
5614 */
5615 stripe_nr = div64_u64(stripe_nr, stripe_len);
5616
5617 stripe_offset = stripe_nr * stripe_len;
5618 if (offset < stripe_offset) {
5619 btrfs_crit(fs_info,
5620 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5621 stripe_offset, offset, em->start, logical,
5622 stripe_len);
5623 free_extent_map(em);
5624 return -EINVAL;
5625 }
5626
5627 /* stripe_offset is the offset of this block in its stripe*/
5628 stripe_offset = offset - stripe_offset;
5629
5630 /* if we're here for raid56, we need to know the stripe aligned start */
5631 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5632 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5633 raid56_full_stripe_start = offset;
5634
5635 /* allow a write of a full stripe, but make sure we don't
5636 * allow straddling of stripes
5637 */
5638 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5639 full_stripe_len);
5640 raid56_full_stripe_start *= full_stripe_len;
5641 }
5642
5643 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5644 u64 max_len;
5645 /* For writes to RAID[56], allow a full stripeset across all disks.
5646 For other RAID types and for RAID[56] reads, just allow a single
5647 stripe (on a single disk). */
5648 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5649 (op == BTRFS_MAP_WRITE)) {
5650 max_len = stripe_len * nr_data_stripes(map) -
5651 (offset - raid56_full_stripe_start);
5652 } else {
5653 /* we limit the length of each bio to what fits in a stripe */
5654 max_len = stripe_len - stripe_offset;
5655 }
5656 *length = min_t(u64, em->len - offset, max_len);
5657 } else {
5658 *length = em->len - offset;
5659 }
5660
5661 /* This is for when we're called from btrfs_merge_bio_hook() and all
5662 it cares about is the length */
5663 if (!bbio_ret)
5664 goto out;
5665
5666 btrfs_dev_replace_lock(dev_replace, 0);
5667 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5668 if (!dev_replace_is_ongoing)
5669 btrfs_dev_replace_unlock(dev_replace, 0);
5670 else
5671 btrfs_dev_replace_set_lock_blocking(dev_replace);
5672
5673 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5674 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5675 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5676 dev_replace->srcdev->devid,
5677 &mirror_num,
5678 &physical_to_patch_in_first_stripe);
5679 if (ret)
5680 goto out;
5681 else
5682 patch_the_first_stripe_for_dev_replace = 1;
5683 } else if (mirror_num > map->num_stripes) {
5684 mirror_num = 0;
5685 }
5686
5687 num_stripes = 1;
5688 stripe_index = 0;
5689 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5690 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5691 &stripe_index);
5692 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5693 mirror_num = 1;
5694 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5695 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5696 num_stripes = map->num_stripes;
5697 else if (mirror_num)
5698 stripe_index = mirror_num - 1;
5699 else {
5700 stripe_index = find_live_mirror(fs_info, map, 0,
5701 map->num_stripes,
5702 current->pid % map->num_stripes,
5703 dev_replace_is_ongoing);
5704 mirror_num = stripe_index + 1;
5705 }
5706
5707 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5708 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5709 num_stripes = map->num_stripes;
5710 } else if (mirror_num) {
5711 stripe_index = mirror_num - 1;
5712 } else {
5713 mirror_num = 1;
5714 }
5715
5716 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5717 u32 factor = map->num_stripes / map->sub_stripes;
5718
5719 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5720 stripe_index *= map->sub_stripes;
5721
5722 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5723 num_stripes = map->sub_stripes;
5724 else if (mirror_num)
5725 stripe_index += mirror_num - 1;
5726 else {
5727 int old_stripe_index = stripe_index;
5728 stripe_index = find_live_mirror(fs_info, map,
5729 stripe_index,
5730 map->sub_stripes, stripe_index +
5731 current->pid % map->sub_stripes,
5732 dev_replace_is_ongoing);
5733 mirror_num = stripe_index - old_stripe_index + 1;
5734 }
5735
5736 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5737 if (need_raid_map &&
5738 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5739 mirror_num > 1)) {
5740 /* push stripe_nr back to the start of the full stripe */
5741 stripe_nr = div64_u64(raid56_full_stripe_start,
5742 stripe_len * nr_data_stripes(map));
5743
5744 /* RAID[56] write or recovery. Return all stripes */
5745 num_stripes = map->num_stripes;
5746 max_errors = nr_parity_stripes(map);
5747
5748 *length = map->stripe_len;
5749 stripe_index = 0;
5750 stripe_offset = 0;
5751 } else {
5752 /*
5753 * Mirror #0 or #1 means the original data block.
5754 * Mirror #2 is RAID5 parity block.
5755 * Mirror #3 is RAID6 Q block.
5756 */
5757 stripe_nr = div_u64_rem(stripe_nr,
5758 nr_data_stripes(map), &stripe_index);
5759 if (mirror_num > 1)
5760 stripe_index = nr_data_stripes(map) +
5761 mirror_num - 2;
5762
5763 /* We distribute the parity blocks across stripes */
5764 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5765 &stripe_index);
5766 if ((op != BTRFS_MAP_WRITE &&
5767 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5768 mirror_num <= 1)
5769 mirror_num = 1;
5770 }
5771 } else {
5772 /*
5773 * after this, stripe_nr is the number of stripes on this
5774 * device we have to walk to find the data, and stripe_index is
5775 * the number of our device in the stripe array
5776 */
5777 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5778 &stripe_index);
5779 mirror_num = stripe_index + 1;
5780 }
5781 if (stripe_index >= map->num_stripes) {
5782 btrfs_crit(fs_info,
5783 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5784 stripe_index, map->num_stripes);
5785 ret = -EINVAL;
5786 goto out;
5787 }
5788
5789 num_alloc_stripes = num_stripes;
5790 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5791 if (op == BTRFS_MAP_WRITE)
5792 num_alloc_stripes <<= 1;
5793 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5794 num_alloc_stripes++;
5795 tgtdev_indexes = num_stripes;
5796 }
5797
5798 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5799 if (!bbio) {
5800 ret = -ENOMEM;
5801 goto out;
5802 }
5803 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5804 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5805
5806 /* build raid_map */
5807 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5808 (need_full_stripe(op) || mirror_num > 1)) {
5809 u64 tmp;
5810 unsigned rot;
5811
5812 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5813 sizeof(struct btrfs_bio_stripe) *
5814 num_alloc_stripes +
5815 sizeof(int) * tgtdev_indexes);
5816
5817 /* Work out the disk rotation on this stripe-set */
5818 div_u64_rem(stripe_nr, num_stripes, &rot);
5819
5820 /* Fill in the logical address of each stripe */
5821 tmp = stripe_nr * nr_data_stripes(map);
5822 for (i = 0; i < nr_data_stripes(map); i++)
5823 bbio->raid_map[(i+rot) % num_stripes] =
5824 em->start + (tmp + i) * map->stripe_len;
5825
5826 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5827 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5828 bbio->raid_map[(i+rot+1) % num_stripes] =
5829 RAID6_Q_STRIPE;
5830 }
5831
5832
5833 for (i = 0; i < num_stripes; i++) {
5834 bbio->stripes[i].physical =
5835 map->stripes[stripe_index].physical +
5836 stripe_offset +
5837 stripe_nr * map->stripe_len;
5838 bbio->stripes[i].dev =
5839 map->stripes[stripe_index].dev;
5840 stripe_index++;
5841 }
5842
5843 if (need_full_stripe(op))
5844 max_errors = btrfs_chunk_max_errors(map);
5845
5846 if (bbio->raid_map)
5847 sort_parity_stripes(bbio, num_stripes);
5848
5849 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5850 need_full_stripe(op)) {
5851 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5852 &max_errors);
5853 }
5854
5855 *bbio_ret = bbio;
5856 bbio->map_type = map->type;
5857 bbio->num_stripes = num_stripes;
5858 bbio->max_errors = max_errors;
5859 bbio->mirror_num = mirror_num;
5860
5861 /*
5862 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5863 * mirror_num == num_stripes + 1 && dev_replace target drive is
5864 * available as a mirror
5865 */
5866 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5867 WARN_ON(num_stripes > 1);
5868 bbio->stripes[0].dev = dev_replace->tgtdev;
5869 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5870 bbio->mirror_num = map->num_stripes + 1;
5871 }
5872 out:
5873 if (dev_replace_is_ongoing) {
5874 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5875 btrfs_dev_replace_unlock(dev_replace, 0);
5876 }
5877 free_extent_map(em);
5878 return ret;
5879 }
5880
5881 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5882 u64 logical, u64 *length,
5883 struct btrfs_bio **bbio_ret, int mirror_num)
5884 {
5885 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5886 mirror_num, 0);
5887 }
5888
5889 /* For Scrub/replace */
5890 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5891 u64 logical, u64 *length,
5892 struct btrfs_bio **bbio_ret)
5893 {
5894 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5895 }
5896
5897 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5898 u64 chunk_start, u64 physical, u64 devid,
5899 u64 **logical, int *naddrs, int *stripe_len)
5900 {
5901 struct extent_map *em;
5902 struct map_lookup *map;
5903 u64 *buf;
5904 u64 bytenr;
5905 u64 length;
5906 u64 stripe_nr;
5907 u64 rmap_len;
5908 int i, j, nr = 0;
5909
5910 em = get_chunk_map(fs_info, chunk_start, 1);
5911 if (IS_ERR(em))
5912 return -EIO;
5913
5914 map = em->map_lookup;
5915 length = em->len;
5916 rmap_len = map->stripe_len;
5917
5918 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5919 length = div_u64(length, map->num_stripes / map->sub_stripes);
5920 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5921 length = div_u64(length, map->num_stripes);
5922 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5923 length = div_u64(length, nr_data_stripes(map));
5924 rmap_len = map->stripe_len * nr_data_stripes(map);
5925 }
5926
5927 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5928 BUG_ON(!buf); /* -ENOMEM */
5929
5930 for (i = 0; i < map->num_stripes; i++) {
5931 if (devid && map->stripes[i].dev->devid != devid)
5932 continue;
5933 if (map->stripes[i].physical > physical ||
5934 map->stripes[i].physical + length <= physical)
5935 continue;
5936
5937 stripe_nr = physical - map->stripes[i].physical;
5938 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5939
5940 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5941 stripe_nr = stripe_nr * map->num_stripes + i;
5942 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5943 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5944 stripe_nr = stripe_nr * map->num_stripes + i;
5945 } /* else if RAID[56], multiply by nr_data_stripes().
5946 * Alternatively, just use rmap_len below instead of
5947 * map->stripe_len */
5948
5949 bytenr = chunk_start + stripe_nr * rmap_len;
5950 WARN_ON(nr >= map->num_stripes);
5951 for (j = 0; j < nr; j++) {
5952 if (buf[j] == bytenr)
5953 break;
5954 }
5955 if (j == nr) {
5956 WARN_ON(nr >= map->num_stripes);
5957 buf[nr++] = bytenr;
5958 }
5959 }
5960
5961 *logical = buf;
5962 *naddrs = nr;
5963 *stripe_len = rmap_len;
5964
5965 free_extent_map(em);
5966 return 0;
5967 }
5968
5969 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5970 {
5971 bio->bi_private = bbio->private;
5972 bio->bi_end_io = bbio->end_io;
5973 bio_endio(bio);
5974
5975 btrfs_put_bbio(bbio);
5976 }
5977
5978 static void btrfs_end_bio(struct bio *bio)
5979 {
5980 struct btrfs_bio *bbio = bio->bi_private;
5981 int is_orig_bio = 0;
5982
5983 if (bio->bi_status) {
5984 atomic_inc(&bbio->error);
5985 if (bio->bi_status == BLK_STS_IOERR ||
5986 bio->bi_status == BLK_STS_TARGET) {
5987 unsigned int stripe_index =
5988 btrfs_io_bio(bio)->stripe_index;
5989 struct btrfs_device *dev;
5990
5991 BUG_ON(stripe_index >= bbio->num_stripes);
5992 dev = bbio->stripes[stripe_index].dev;
5993 if (dev->bdev) {
5994 if (bio_op(bio) == REQ_OP_WRITE)
5995 btrfs_dev_stat_inc(dev,
5996 BTRFS_DEV_STAT_WRITE_ERRS);
5997 else
5998 btrfs_dev_stat_inc(dev,
5999 BTRFS_DEV_STAT_READ_ERRS);
6000 if (bio->bi_opf & REQ_PREFLUSH)
6001 btrfs_dev_stat_inc(dev,
6002 BTRFS_DEV_STAT_FLUSH_ERRS);
6003 btrfs_dev_stat_print_on_error(dev);
6004 }
6005 }
6006 }
6007
6008 if (bio == bbio->orig_bio)
6009 is_orig_bio = 1;
6010
6011 btrfs_bio_counter_dec(bbio->fs_info);
6012
6013 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6014 if (!is_orig_bio) {
6015 bio_put(bio);
6016 bio = bbio->orig_bio;
6017 }
6018
6019 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6020 /* only send an error to the higher layers if it is
6021 * beyond the tolerance of the btrfs bio
6022 */
6023 if (atomic_read(&bbio->error) > bbio->max_errors) {
6024 bio->bi_status = BLK_STS_IOERR;
6025 } else {
6026 /*
6027 * this bio is actually up to date, we didn't
6028 * go over the max number of errors
6029 */
6030 bio->bi_status = 0;
6031 }
6032
6033 btrfs_end_bbio(bbio, bio);
6034 } else if (!is_orig_bio) {
6035 bio_put(bio);
6036 }
6037 }
6038
6039 /*
6040 * see run_scheduled_bios for a description of why bios are collected for
6041 * async submit.
6042 *
6043 * This will add one bio to the pending list for a device and make sure
6044 * the work struct is scheduled.
6045 */
6046 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6047 struct bio *bio)
6048 {
6049 struct btrfs_fs_info *fs_info = device->fs_info;
6050 int should_queue = 1;
6051 struct btrfs_pending_bios *pending_bios;
6052
6053 if (device->missing || !device->bdev) {
6054 bio_io_error(bio);
6055 return;
6056 }
6057
6058 /* don't bother with additional async steps for reads, right now */
6059 if (bio_op(bio) == REQ_OP_READ) {
6060 bio_get(bio);
6061 btrfsic_submit_bio(bio);
6062 bio_put(bio);
6063 return;
6064 }
6065
6066 /*
6067 * nr_async_bios allows us to reliably return congestion to the
6068 * higher layers. Otherwise, the async bio makes it appear we have
6069 * made progress against dirty pages when we've really just put it
6070 * on a queue for later
6071 */
6072 atomic_inc(&fs_info->nr_async_bios);
6073 WARN_ON(bio->bi_next);
6074 bio->bi_next = NULL;
6075
6076 spin_lock(&device->io_lock);
6077 if (op_is_sync(bio->bi_opf))
6078 pending_bios = &device->pending_sync_bios;
6079 else
6080 pending_bios = &device->pending_bios;
6081
6082 if (pending_bios->tail)
6083 pending_bios->tail->bi_next = bio;
6084
6085 pending_bios->tail = bio;
6086 if (!pending_bios->head)
6087 pending_bios->head = bio;
6088 if (device->running_pending)
6089 should_queue = 0;
6090
6091 spin_unlock(&device->io_lock);
6092
6093 if (should_queue)
6094 btrfs_queue_work(fs_info->submit_workers, &device->work);
6095 }
6096
6097 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6098 u64 physical, int dev_nr, int async)
6099 {
6100 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6101 struct btrfs_fs_info *fs_info = bbio->fs_info;
6102
6103 bio->bi_private = bbio;
6104 btrfs_io_bio(bio)->stripe_index = dev_nr;
6105 bio->bi_end_io = btrfs_end_bio;
6106 bio->bi_iter.bi_sector = physical >> 9;
6107 #ifdef DEBUG
6108 {
6109 struct rcu_string *name;
6110
6111 rcu_read_lock();
6112 name = rcu_dereference(dev->name);
6113 btrfs_debug(fs_info,
6114 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6115 bio_op(bio), bio->bi_opf,
6116 (u64)bio->bi_iter.bi_sector,
6117 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6118 bio->bi_iter.bi_size);
6119 rcu_read_unlock();
6120 }
6121 #endif
6122 bio_set_dev(bio, dev->bdev);
6123
6124 btrfs_bio_counter_inc_noblocked(fs_info);
6125
6126 if (async)
6127 btrfs_schedule_bio(dev, bio);
6128 else
6129 btrfsic_submit_bio(bio);
6130 }
6131
6132 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6133 {
6134 atomic_inc(&bbio->error);
6135 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6136 /* Should be the original bio. */
6137 WARN_ON(bio != bbio->orig_bio);
6138
6139 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6140 bio->bi_iter.bi_sector = logical >> 9;
6141 bio->bi_status = BLK_STS_IOERR;
6142 btrfs_end_bbio(bbio, bio);
6143 }
6144 }
6145
6146 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6147 int mirror_num, int async_submit)
6148 {
6149 struct btrfs_device *dev;
6150 struct bio *first_bio = bio;
6151 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6152 u64 length = 0;
6153 u64 map_length;
6154 int ret;
6155 int dev_nr;
6156 int total_devs;
6157 struct btrfs_bio *bbio = NULL;
6158
6159 length = bio->bi_iter.bi_size;
6160 map_length = length;
6161
6162 btrfs_bio_counter_inc_blocked(fs_info);
6163 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6164 &map_length, &bbio, mirror_num, 1);
6165 if (ret) {
6166 btrfs_bio_counter_dec(fs_info);
6167 return errno_to_blk_status(ret);
6168 }
6169
6170 total_devs = bbio->num_stripes;
6171 bbio->orig_bio = first_bio;
6172 bbio->private = first_bio->bi_private;
6173 bbio->end_io = first_bio->bi_end_io;
6174 bbio->fs_info = fs_info;
6175 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6176
6177 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6178 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6179 /* In this case, map_length has been set to the length of
6180 a single stripe; not the whole write */
6181 if (bio_op(bio) == REQ_OP_WRITE) {
6182 ret = raid56_parity_write(fs_info, bio, bbio,
6183 map_length);
6184 } else {
6185 ret = raid56_parity_recover(fs_info, bio, bbio,
6186 map_length, mirror_num, 1);
6187 }
6188
6189 btrfs_bio_counter_dec(fs_info);
6190 return errno_to_blk_status(ret);
6191 }
6192
6193 if (map_length < length) {
6194 btrfs_crit(fs_info,
6195 "mapping failed logical %llu bio len %llu len %llu",
6196 logical, length, map_length);
6197 BUG();
6198 }
6199
6200 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6201 dev = bbio->stripes[dev_nr].dev;
6202 if (!dev || !dev->bdev ||
6203 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6204 bbio_error(bbio, first_bio, logical);
6205 continue;
6206 }
6207
6208 if (dev_nr < total_devs - 1)
6209 bio = btrfs_bio_clone(first_bio);
6210 else
6211 bio = first_bio;
6212
6213 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6214 dev_nr, async_submit);
6215 }
6216 btrfs_bio_counter_dec(fs_info);
6217 return BLK_STS_OK;
6218 }
6219
6220 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6221 u8 *uuid, u8 *fsid)
6222 {
6223 struct btrfs_device *device;
6224 struct btrfs_fs_devices *cur_devices;
6225
6226 cur_devices = fs_info->fs_devices;
6227 while (cur_devices) {
6228 if (!fsid ||
6229 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6230 device = find_device(cur_devices, devid, uuid);
6231 if (device)
6232 return device;
6233 }
6234 cur_devices = cur_devices->seed;
6235 }
6236 return NULL;
6237 }
6238
6239 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6240 u64 devid, u8 *dev_uuid)
6241 {
6242 struct btrfs_device *device;
6243
6244 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6245 if (IS_ERR(device))
6246 return NULL;
6247
6248 list_add(&device->dev_list, &fs_devices->devices);
6249 device->fs_devices = fs_devices;
6250 fs_devices->num_devices++;
6251
6252 device->missing = 1;
6253 fs_devices->missing_devices++;
6254
6255 return device;
6256 }
6257
6258 /**
6259 * btrfs_alloc_device - allocate struct btrfs_device
6260 * @fs_info: used only for generating a new devid, can be NULL if
6261 * devid is provided (i.e. @devid != NULL).
6262 * @devid: a pointer to devid for this device. If NULL a new devid
6263 * is generated.
6264 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6265 * is generated.
6266 *
6267 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6268 * on error. Returned struct is not linked onto any lists and can be
6269 * destroyed with kfree() right away.
6270 */
6271 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6272 const u64 *devid,
6273 const u8 *uuid)
6274 {
6275 struct btrfs_device *dev;
6276 u64 tmp;
6277
6278 if (WARN_ON(!devid && !fs_info))
6279 return ERR_PTR(-EINVAL);
6280
6281 dev = __alloc_device();
6282 if (IS_ERR(dev))
6283 return dev;
6284
6285 if (devid)
6286 tmp = *devid;
6287 else {
6288 int ret;
6289
6290 ret = find_next_devid(fs_info, &tmp);
6291 if (ret) {
6292 kfree(dev);
6293 return ERR_PTR(ret);
6294 }
6295 }
6296 dev->devid = tmp;
6297
6298 if (uuid)
6299 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6300 else
6301 generate_random_uuid(dev->uuid);
6302
6303 btrfs_init_work(&dev->work, btrfs_submit_helper,
6304 pending_bios_fn, NULL, NULL);
6305
6306 return dev;
6307 }
6308
6309 /* Return -EIO if any error, otherwise return 0. */
6310 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6311 struct extent_buffer *leaf,
6312 struct btrfs_chunk *chunk, u64 logical)
6313 {
6314 u64 length;
6315 u64 stripe_len;
6316 u16 num_stripes;
6317 u16 sub_stripes;
6318 u64 type;
6319
6320 length = btrfs_chunk_length(leaf, chunk);
6321 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6322 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6323 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6324 type = btrfs_chunk_type(leaf, chunk);
6325
6326 if (!num_stripes) {
6327 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6328 num_stripes);
6329 return -EIO;
6330 }
6331 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6332 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6333 return -EIO;
6334 }
6335 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6336 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6337 btrfs_chunk_sector_size(leaf, chunk));
6338 return -EIO;
6339 }
6340 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6341 btrfs_err(fs_info, "invalid chunk length %llu", length);
6342 return -EIO;
6343 }
6344 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6345 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6346 stripe_len);
6347 return -EIO;
6348 }
6349 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6350 type) {
6351 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6352 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6353 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6354 btrfs_chunk_type(leaf, chunk));
6355 return -EIO;
6356 }
6357 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6358 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6359 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6360 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6361 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6362 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6363 num_stripes != 1)) {
6364 btrfs_err(fs_info,
6365 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6366 num_stripes, sub_stripes,
6367 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6368 return -EIO;
6369 }
6370
6371 return 0;
6372 }
6373
6374 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6375 struct extent_buffer *leaf,
6376 struct btrfs_chunk *chunk)
6377 {
6378 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6379 struct map_lookup *map;
6380 struct extent_map *em;
6381 u64 logical;
6382 u64 length;
6383 u64 devid;
6384 u8 uuid[BTRFS_UUID_SIZE];
6385 int num_stripes;
6386 int ret;
6387 int i;
6388
6389 logical = key->offset;
6390 length = btrfs_chunk_length(leaf, chunk);
6391 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6392
6393 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6394 if (ret)
6395 return ret;
6396
6397 read_lock(&map_tree->map_tree.lock);
6398 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6399 read_unlock(&map_tree->map_tree.lock);
6400
6401 /* already mapped? */
6402 if (em && em->start <= logical && em->start + em->len > logical) {
6403 free_extent_map(em);
6404 return 0;
6405 } else if (em) {
6406 free_extent_map(em);
6407 }
6408
6409 em = alloc_extent_map();
6410 if (!em)
6411 return -ENOMEM;
6412 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6413 if (!map) {
6414 free_extent_map(em);
6415 return -ENOMEM;
6416 }
6417
6418 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6419 em->map_lookup = map;
6420 em->start = logical;
6421 em->len = length;
6422 em->orig_start = 0;
6423 em->block_start = 0;
6424 em->block_len = em->len;
6425
6426 map->num_stripes = num_stripes;
6427 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6428 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6429 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6430 map->type = btrfs_chunk_type(leaf, chunk);
6431 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6432 for (i = 0; i < num_stripes; i++) {
6433 map->stripes[i].physical =
6434 btrfs_stripe_offset_nr(leaf, chunk, i);
6435 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6436 read_extent_buffer(leaf, uuid, (unsigned long)
6437 btrfs_stripe_dev_uuid_nr(chunk, i),
6438 BTRFS_UUID_SIZE);
6439 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6440 uuid, NULL);
6441 if (!map->stripes[i].dev &&
6442 !btrfs_test_opt(fs_info, DEGRADED)) {
6443 free_extent_map(em);
6444 btrfs_report_missing_device(fs_info, devid, uuid);
6445 return -EIO;
6446 }
6447 if (!map->stripes[i].dev) {
6448 map->stripes[i].dev =
6449 add_missing_dev(fs_info->fs_devices, devid,
6450 uuid);
6451 if (!map->stripes[i].dev) {
6452 free_extent_map(em);
6453 return -EIO;
6454 }
6455 btrfs_report_missing_device(fs_info, devid, uuid);
6456 }
6457 map->stripes[i].dev->in_fs_metadata = 1;
6458 }
6459
6460 write_lock(&map_tree->map_tree.lock);
6461 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6462 write_unlock(&map_tree->map_tree.lock);
6463 BUG_ON(ret); /* Tree corruption */
6464 free_extent_map(em);
6465
6466 return 0;
6467 }
6468
6469 static void fill_device_from_item(struct extent_buffer *leaf,
6470 struct btrfs_dev_item *dev_item,
6471 struct btrfs_device *device)
6472 {
6473 unsigned long ptr;
6474
6475 device->devid = btrfs_device_id(leaf, dev_item);
6476 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6477 device->total_bytes = device->disk_total_bytes;
6478 device->commit_total_bytes = device->disk_total_bytes;
6479 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6480 device->commit_bytes_used = device->bytes_used;
6481 device->type = btrfs_device_type(leaf, dev_item);
6482 device->io_align = btrfs_device_io_align(leaf, dev_item);
6483 device->io_width = btrfs_device_io_width(leaf, dev_item);
6484 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6485 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6486 device->is_tgtdev_for_dev_replace = 0;
6487
6488 ptr = btrfs_device_uuid(dev_item);
6489 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6490 }
6491
6492 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6493 u8 *fsid)
6494 {
6495 struct btrfs_fs_devices *fs_devices;
6496 int ret;
6497
6498 BUG_ON(!mutex_is_locked(&uuid_mutex));
6499 ASSERT(fsid);
6500
6501 fs_devices = fs_info->fs_devices->seed;
6502 while (fs_devices) {
6503 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6504 return fs_devices;
6505
6506 fs_devices = fs_devices->seed;
6507 }
6508
6509 fs_devices = find_fsid(fsid);
6510 if (!fs_devices) {
6511 if (!btrfs_test_opt(fs_info, DEGRADED))
6512 return ERR_PTR(-ENOENT);
6513
6514 fs_devices = alloc_fs_devices(fsid);
6515 if (IS_ERR(fs_devices))
6516 return fs_devices;
6517
6518 fs_devices->seeding = 1;
6519 fs_devices->opened = 1;
6520 return fs_devices;
6521 }
6522
6523 fs_devices = clone_fs_devices(fs_devices);
6524 if (IS_ERR(fs_devices))
6525 return fs_devices;
6526
6527 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6528 fs_info->bdev_holder);
6529 if (ret) {
6530 free_fs_devices(fs_devices);
6531 fs_devices = ERR_PTR(ret);
6532 goto out;
6533 }
6534
6535 if (!fs_devices->seeding) {
6536 __btrfs_close_devices(fs_devices);
6537 free_fs_devices(fs_devices);
6538 fs_devices = ERR_PTR(-EINVAL);
6539 goto out;
6540 }
6541
6542 fs_devices->seed = fs_info->fs_devices->seed;
6543 fs_info->fs_devices->seed = fs_devices;
6544 out:
6545 return fs_devices;
6546 }
6547
6548 static int read_one_dev(struct btrfs_fs_info *fs_info,
6549 struct extent_buffer *leaf,
6550 struct btrfs_dev_item *dev_item)
6551 {
6552 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6553 struct btrfs_device *device;
6554 u64 devid;
6555 int ret;
6556 u8 fs_uuid[BTRFS_FSID_SIZE];
6557 u8 dev_uuid[BTRFS_UUID_SIZE];
6558
6559 devid = btrfs_device_id(leaf, dev_item);
6560 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6561 BTRFS_UUID_SIZE);
6562 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6563 BTRFS_FSID_SIZE);
6564
6565 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6566 fs_devices = open_seed_devices(fs_info, fs_uuid);
6567 if (IS_ERR(fs_devices))
6568 return PTR_ERR(fs_devices);
6569 }
6570
6571 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6572 if (!device) {
6573 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6574 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6575 return -EIO;
6576 }
6577
6578 device = add_missing_dev(fs_devices, devid, dev_uuid);
6579 if (!device)
6580 return -ENOMEM;
6581 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6582 } else {
6583 if (!device->bdev) {
6584 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6585 if (!btrfs_test_opt(fs_info, DEGRADED))
6586 return -EIO;
6587 }
6588
6589 if(!device->bdev && !device->missing) {
6590 /*
6591 * this happens when a device that was properly setup
6592 * in the device info lists suddenly goes bad.
6593 * device->bdev is NULL, and so we have to set
6594 * device->missing to one here
6595 */
6596 device->fs_devices->missing_devices++;
6597 device->missing = 1;
6598 }
6599
6600 /* Move the device to its own fs_devices */
6601 if (device->fs_devices != fs_devices) {
6602 ASSERT(device->missing);
6603
6604 list_move(&device->dev_list, &fs_devices->devices);
6605 device->fs_devices->num_devices--;
6606 fs_devices->num_devices++;
6607
6608 device->fs_devices->missing_devices--;
6609 fs_devices->missing_devices++;
6610
6611 device->fs_devices = fs_devices;
6612 }
6613 }
6614
6615 if (device->fs_devices != fs_info->fs_devices) {
6616 BUG_ON(device->writeable);
6617 if (device->generation !=
6618 btrfs_device_generation(leaf, dev_item))
6619 return -EINVAL;
6620 }
6621
6622 fill_device_from_item(leaf, dev_item, device);
6623 device->in_fs_metadata = 1;
6624 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6625 device->fs_devices->total_rw_bytes += device->total_bytes;
6626 atomic64_add(device->total_bytes - device->bytes_used,
6627 &fs_info->free_chunk_space);
6628 }
6629 ret = 0;
6630 return ret;
6631 }
6632
6633 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6634 {
6635 struct btrfs_root *root = fs_info->tree_root;
6636 struct btrfs_super_block *super_copy = fs_info->super_copy;
6637 struct extent_buffer *sb;
6638 struct btrfs_disk_key *disk_key;
6639 struct btrfs_chunk *chunk;
6640 u8 *array_ptr;
6641 unsigned long sb_array_offset;
6642 int ret = 0;
6643 u32 num_stripes;
6644 u32 array_size;
6645 u32 len = 0;
6646 u32 cur_offset;
6647 u64 type;
6648 struct btrfs_key key;
6649
6650 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6651 /*
6652 * This will create extent buffer of nodesize, superblock size is
6653 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6654 * overallocate but we can keep it as-is, only the first page is used.
6655 */
6656 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6657 if (IS_ERR(sb))
6658 return PTR_ERR(sb);
6659 set_extent_buffer_uptodate(sb);
6660 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6661 /*
6662 * The sb extent buffer is artificial and just used to read the system array.
6663 * set_extent_buffer_uptodate() call does not properly mark all it's
6664 * pages up-to-date when the page is larger: extent does not cover the
6665 * whole page and consequently check_page_uptodate does not find all
6666 * the page's extents up-to-date (the hole beyond sb),
6667 * write_extent_buffer then triggers a WARN_ON.
6668 *
6669 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6670 * but sb spans only this function. Add an explicit SetPageUptodate call
6671 * to silence the warning eg. on PowerPC 64.
6672 */
6673 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6674 SetPageUptodate(sb->pages[0]);
6675
6676 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6677 array_size = btrfs_super_sys_array_size(super_copy);
6678
6679 array_ptr = super_copy->sys_chunk_array;
6680 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6681 cur_offset = 0;
6682
6683 while (cur_offset < array_size) {
6684 disk_key = (struct btrfs_disk_key *)array_ptr;
6685 len = sizeof(*disk_key);
6686 if (cur_offset + len > array_size)
6687 goto out_short_read;
6688
6689 btrfs_disk_key_to_cpu(&key, disk_key);
6690
6691 array_ptr += len;
6692 sb_array_offset += len;
6693 cur_offset += len;
6694
6695 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6696 chunk = (struct btrfs_chunk *)sb_array_offset;
6697 /*
6698 * At least one btrfs_chunk with one stripe must be
6699 * present, exact stripe count check comes afterwards
6700 */
6701 len = btrfs_chunk_item_size(1);
6702 if (cur_offset + len > array_size)
6703 goto out_short_read;
6704
6705 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6706 if (!num_stripes) {
6707 btrfs_err(fs_info,
6708 "invalid number of stripes %u in sys_array at offset %u",
6709 num_stripes, cur_offset);
6710 ret = -EIO;
6711 break;
6712 }
6713
6714 type = btrfs_chunk_type(sb, chunk);
6715 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6716 btrfs_err(fs_info,
6717 "invalid chunk type %llu in sys_array at offset %u",
6718 type, cur_offset);
6719 ret = -EIO;
6720 break;
6721 }
6722
6723 len = btrfs_chunk_item_size(num_stripes);
6724 if (cur_offset + len > array_size)
6725 goto out_short_read;
6726
6727 ret = read_one_chunk(fs_info, &key, sb, chunk);
6728 if (ret)
6729 break;
6730 } else {
6731 btrfs_err(fs_info,
6732 "unexpected item type %u in sys_array at offset %u",
6733 (u32)key.type, cur_offset);
6734 ret = -EIO;
6735 break;
6736 }
6737 array_ptr += len;
6738 sb_array_offset += len;
6739 cur_offset += len;
6740 }
6741 clear_extent_buffer_uptodate(sb);
6742 free_extent_buffer_stale(sb);
6743 return ret;
6744
6745 out_short_read:
6746 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6747 len, cur_offset);
6748 clear_extent_buffer_uptodate(sb);
6749 free_extent_buffer_stale(sb);
6750 return -EIO;
6751 }
6752
6753 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid,
6754 u8 *uuid)
6755 {
6756 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid);
6757 }
6758
6759 /*
6760 * Check if all chunks in the fs are OK for read-write degraded mount
6761 *
6762 * Return true if all chunks meet the minimal RW mount requirements.
6763 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6764 */
6765 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6766 {
6767 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6768 struct extent_map *em;
6769 u64 next_start = 0;
6770 bool ret = true;
6771
6772 read_lock(&map_tree->map_tree.lock);
6773 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6774 read_unlock(&map_tree->map_tree.lock);
6775 /* No chunk at all? Return false anyway */
6776 if (!em) {
6777 ret = false;
6778 goto out;
6779 }
6780 while (em) {
6781 struct map_lookup *map;
6782 int missing = 0;
6783 int max_tolerated;
6784 int i;
6785
6786 map = em->map_lookup;
6787 max_tolerated =
6788 btrfs_get_num_tolerated_disk_barrier_failures(
6789 map->type);
6790 for (i = 0; i < map->num_stripes; i++) {
6791 struct btrfs_device *dev = map->stripes[i].dev;
6792
6793 if (!dev || !dev->bdev || dev->missing ||
6794 dev->last_flush_error)
6795 missing++;
6796 }
6797 if (missing > max_tolerated) {
6798 btrfs_warn(fs_info,
6799 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6800 em->start, missing, max_tolerated);
6801 free_extent_map(em);
6802 ret = false;
6803 goto out;
6804 }
6805 next_start = extent_map_end(em);
6806 free_extent_map(em);
6807
6808 read_lock(&map_tree->map_tree.lock);
6809 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6810 (u64)(-1) - next_start);
6811 read_unlock(&map_tree->map_tree.lock);
6812 }
6813 out:
6814 return ret;
6815 }
6816
6817 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6818 {
6819 struct btrfs_root *root = fs_info->chunk_root;
6820 struct btrfs_path *path;
6821 struct extent_buffer *leaf;
6822 struct btrfs_key key;
6823 struct btrfs_key found_key;
6824 int ret;
6825 int slot;
6826 u64 total_dev = 0;
6827
6828 path = btrfs_alloc_path();
6829 if (!path)
6830 return -ENOMEM;
6831
6832 mutex_lock(&uuid_mutex);
6833 mutex_lock(&fs_info->chunk_mutex);
6834
6835 /*
6836 * Read all device items, and then all the chunk items. All
6837 * device items are found before any chunk item (their object id
6838 * is smaller than the lowest possible object id for a chunk
6839 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6840 */
6841 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6842 key.offset = 0;
6843 key.type = 0;
6844 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6845 if (ret < 0)
6846 goto error;
6847 while (1) {
6848 leaf = path->nodes[0];
6849 slot = path->slots[0];
6850 if (slot >= btrfs_header_nritems(leaf)) {
6851 ret = btrfs_next_leaf(root, path);
6852 if (ret == 0)
6853 continue;
6854 if (ret < 0)
6855 goto error;
6856 break;
6857 }
6858 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6859 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6860 struct btrfs_dev_item *dev_item;
6861 dev_item = btrfs_item_ptr(leaf, slot,
6862 struct btrfs_dev_item);
6863 ret = read_one_dev(fs_info, leaf, dev_item);
6864 if (ret)
6865 goto error;
6866 total_dev++;
6867 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6868 struct btrfs_chunk *chunk;
6869 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6870 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6871 if (ret)
6872 goto error;
6873 }
6874 path->slots[0]++;
6875 }
6876
6877 /*
6878 * After loading chunk tree, we've got all device information,
6879 * do another round of validation checks.
6880 */
6881 if (total_dev != fs_info->fs_devices->total_devices) {
6882 btrfs_err(fs_info,
6883 "super_num_devices %llu mismatch with num_devices %llu found here",
6884 btrfs_super_num_devices(fs_info->super_copy),
6885 total_dev);
6886 ret = -EINVAL;
6887 goto error;
6888 }
6889 if (btrfs_super_total_bytes(fs_info->super_copy) <
6890 fs_info->fs_devices->total_rw_bytes) {
6891 btrfs_err(fs_info,
6892 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6893 btrfs_super_total_bytes(fs_info->super_copy),
6894 fs_info->fs_devices->total_rw_bytes);
6895 ret = -EINVAL;
6896 goto error;
6897 }
6898 ret = 0;
6899 error:
6900 mutex_unlock(&fs_info->chunk_mutex);
6901 mutex_unlock(&uuid_mutex);
6902
6903 btrfs_free_path(path);
6904 return ret;
6905 }
6906
6907 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6908 {
6909 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6910 struct btrfs_device *device;
6911
6912 while (fs_devices) {
6913 mutex_lock(&fs_devices->device_list_mutex);
6914 list_for_each_entry(device, &fs_devices->devices, dev_list)
6915 device->fs_info = fs_info;
6916 mutex_unlock(&fs_devices->device_list_mutex);
6917
6918 fs_devices = fs_devices->seed;
6919 }
6920 }
6921
6922 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6923 {
6924 int i;
6925
6926 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6927 btrfs_dev_stat_reset(dev, i);
6928 }
6929
6930 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6931 {
6932 struct btrfs_key key;
6933 struct btrfs_key found_key;
6934 struct btrfs_root *dev_root = fs_info->dev_root;
6935 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6936 struct extent_buffer *eb;
6937 int slot;
6938 int ret = 0;
6939 struct btrfs_device *device;
6940 struct btrfs_path *path = NULL;
6941 int i;
6942
6943 path = btrfs_alloc_path();
6944 if (!path) {
6945 ret = -ENOMEM;
6946 goto out;
6947 }
6948
6949 mutex_lock(&fs_devices->device_list_mutex);
6950 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6951 int item_size;
6952 struct btrfs_dev_stats_item *ptr;
6953
6954 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6955 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6956 key.offset = device->devid;
6957 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6958 if (ret) {
6959 __btrfs_reset_dev_stats(device);
6960 device->dev_stats_valid = 1;
6961 btrfs_release_path(path);
6962 continue;
6963 }
6964 slot = path->slots[0];
6965 eb = path->nodes[0];
6966 btrfs_item_key_to_cpu(eb, &found_key, slot);
6967 item_size = btrfs_item_size_nr(eb, slot);
6968
6969 ptr = btrfs_item_ptr(eb, slot,
6970 struct btrfs_dev_stats_item);
6971
6972 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6973 if (item_size >= (1 + i) * sizeof(__le64))
6974 btrfs_dev_stat_set(device, i,
6975 btrfs_dev_stats_value(eb, ptr, i));
6976 else
6977 btrfs_dev_stat_reset(device, i);
6978 }
6979
6980 device->dev_stats_valid = 1;
6981 btrfs_dev_stat_print_on_load(device);
6982 btrfs_release_path(path);
6983 }
6984 mutex_unlock(&fs_devices->device_list_mutex);
6985
6986 out:
6987 btrfs_free_path(path);
6988 return ret < 0 ? ret : 0;
6989 }
6990
6991 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6992 struct btrfs_fs_info *fs_info,
6993 struct btrfs_device *device)
6994 {
6995 struct btrfs_root *dev_root = fs_info->dev_root;
6996 struct btrfs_path *path;
6997 struct btrfs_key key;
6998 struct extent_buffer *eb;
6999 struct btrfs_dev_stats_item *ptr;
7000 int ret;
7001 int i;
7002
7003 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7004 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7005 key.offset = device->devid;
7006
7007 path = btrfs_alloc_path();
7008 if (!path)
7009 return -ENOMEM;
7010 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7011 if (ret < 0) {
7012 btrfs_warn_in_rcu(fs_info,
7013 "error %d while searching for dev_stats item for device %s",
7014 ret, rcu_str_deref(device->name));
7015 goto out;
7016 }
7017
7018 if (ret == 0 &&
7019 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7020 /* need to delete old one and insert a new one */
7021 ret = btrfs_del_item(trans, dev_root, path);
7022 if (ret != 0) {
7023 btrfs_warn_in_rcu(fs_info,
7024 "delete too small dev_stats item for device %s failed %d",
7025 rcu_str_deref(device->name), ret);
7026 goto out;
7027 }
7028 ret = 1;
7029 }
7030
7031 if (ret == 1) {
7032 /* need to insert a new item */
7033 btrfs_release_path(path);
7034 ret = btrfs_insert_empty_item(trans, dev_root, path,
7035 &key, sizeof(*ptr));
7036 if (ret < 0) {
7037 btrfs_warn_in_rcu(fs_info,
7038 "insert dev_stats item for device %s failed %d",
7039 rcu_str_deref(device->name), ret);
7040 goto out;
7041 }
7042 }
7043
7044 eb = path->nodes[0];
7045 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7046 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7047 btrfs_set_dev_stats_value(eb, ptr, i,
7048 btrfs_dev_stat_read(device, i));
7049 btrfs_mark_buffer_dirty(eb);
7050
7051 out:
7052 btrfs_free_path(path);
7053 return ret;
7054 }
7055
7056 /*
7057 * called from commit_transaction. Writes all changed device stats to disk.
7058 */
7059 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7060 struct btrfs_fs_info *fs_info)
7061 {
7062 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7063 struct btrfs_device *device;
7064 int stats_cnt;
7065 int ret = 0;
7066
7067 mutex_lock(&fs_devices->device_list_mutex);
7068 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7069 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7070 continue;
7071
7072 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7073 ret = update_dev_stat_item(trans, fs_info, device);
7074 if (!ret)
7075 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7076 }
7077 mutex_unlock(&fs_devices->device_list_mutex);
7078
7079 return ret;
7080 }
7081
7082 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7083 {
7084 btrfs_dev_stat_inc(dev, index);
7085 btrfs_dev_stat_print_on_error(dev);
7086 }
7087
7088 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7089 {
7090 if (!dev->dev_stats_valid)
7091 return;
7092 btrfs_err_rl_in_rcu(dev->fs_info,
7093 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7094 rcu_str_deref(dev->name),
7095 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7096 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7097 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7098 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7099 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7100 }
7101
7102 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7103 {
7104 int i;
7105
7106 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7107 if (btrfs_dev_stat_read(dev, i) != 0)
7108 break;
7109 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7110 return; /* all values == 0, suppress message */
7111
7112 btrfs_info_in_rcu(dev->fs_info,
7113 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7114 rcu_str_deref(dev->name),
7115 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7116 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7117 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7118 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7119 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7120 }
7121
7122 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7123 struct btrfs_ioctl_get_dev_stats *stats)
7124 {
7125 struct btrfs_device *dev;
7126 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7127 int i;
7128
7129 mutex_lock(&fs_devices->device_list_mutex);
7130 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7131 mutex_unlock(&fs_devices->device_list_mutex);
7132
7133 if (!dev) {
7134 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7135 return -ENODEV;
7136 } else if (!dev->dev_stats_valid) {
7137 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7138 return -ENODEV;
7139 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7140 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7141 if (stats->nr_items > i)
7142 stats->values[i] =
7143 btrfs_dev_stat_read_and_reset(dev, i);
7144 else
7145 btrfs_dev_stat_reset(dev, i);
7146 }
7147 } else {
7148 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7149 if (stats->nr_items > i)
7150 stats->values[i] = btrfs_dev_stat_read(dev, i);
7151 }
7152 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7153 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7154 return 0;
7155 }
7156
7157 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7158 {
7159 struct buffer_head *bh;
7160 struct btrfs_super_block *disk_super;
7161 int copy_num;
7162
7163 if (!bdev)
7164 return;
7165
7166 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7167 copy_num++) {
7168
7169 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7170 continue;
7171
7172 disk_super = (struct btrfs_super_block *)bh->b_data;
7173
7174 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7175 set_buffer_dirty(bh);
7176 sync_dirty_buffer(bh);
7177 brelse(bh);
7178 }
7179
7180 /* Notify udev that device has changed */
7181 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7182
7183 /* Update ctime/mtime for device path for libblkid */
7184 update_dev_time(device_path);
7185 }
7186
7187 /*
7188 * Update the size of all devices, which is used for writing out the
7189 * super blocks.
7190 */
7191 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7192 {
7193 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7194 struct btrfs_device *curr, *next;
7195
7196 if (list_empty(&fs_devices->resized_devices))
7197 return;
7198
7199 mutex_lock(&fs_devices->device_list_mutex);
7200 mutex_lock(&fs_info->chunk_mutex);
7201 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7202 resized_list) {
7203 list_del_init(&curr->resized_list);
7204 curr->commit_total_bytes = curr->disk_total_bytes;
7205 }
7206 mutex_unlock(&fs_info->chunk_mutex);
7207 mutex_unlock(&fs_devices->device_list_mutex);
7208 }
7209
7210 /* Must be invoked during the transaction commit */
7211 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7212 struct btrfs_transaction *transaction)
7213 {
7214 struct extent_map *em;
7215 struct map_lookup *map;
7216 struct btrfs_device *dev;
7217 int i;
7218
7219 if (list_empty(&transaction->pending_chunks))
7220 return;
7221
7222 /* In order to kick the device replace finish process */
7223 mutex_lock(&fs_info->chunk_mutex);
7224 list_for_each_entry(em, &transaction->pending_chunks, list) {
7225 map = em->map_lookup;
7226
7227 for (i = 0; i < map->num_stripes; i++) {
7228 dev = map->stripes[i].dev;
7229 dev->commit_bytes_used = dev->bytes_used;
7230 }
7231 }
7232 mutex_unlock(&fs_info->chunk_mutex);
7233 }
7234
7235 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7236 {
7237 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7238 while (fs_devices) {
7239 fs_devices->fs_info = fs_info;
7240 fs_devices = fs_devices->seed;
7241 }
7242 }
7243
7244 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7245 {
7246 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7247 while (fs_devices) {
7248 fs_devices->fs_info = NULL;
7249 fs_devices = fs_devices->seed;
7250 }
7251 }